当前位置: 仪器信息网 > 行业主题 > >

关键蛋白

仪器信息网关键蛋白专题为您整合关键蛋白相关的最新文章,在关键蛋白专题,您不仅可以免费浏览关键蛋白的资讯, 同时您还可以浏览关键蛋白的相关资料、解决方案,参与社区关键蛋白话题讨论。

关键蛋白相关的论坛

  • H7N9疫苗关键蛋白问世

    2013年04月23日 来源: 北京日报 由北京义翘神州生物技术有限公司研制的H7N9疫苗的关键蛋白——血凝素蛋白和神经氨酸酶蛋白已获得成功并规模化生产。记者昨日从北京经济技术开发区了解到,虽然并不意味着真正意义上的禽流感疫苗已经成形,但这些关键蛋白为科研人员进一步研制成功H7N9疫苗以及药物奠定了关键性的基础。目前,蛋白已经被送往国内外几十家科研院所和研究机构,为下一步研制疫苗做准备。 疫苗研制时间省下数月 在位于北京经济技术开发区的义翘神州实验室的一角,一股淡红色的液体缓缓流过白色的纯化柱,经过一系列纯化技术后,淡红色液体变成了无色透明的液体。这股无色液体,就是H7N9疫苗的关键蛋白。 “如果把H7N9比作一个骑车持刀抢劫的歹徒,那么H和N就分别是凶徒的两把利刃,H是指血凝素蛋白,N指的是神经氨酸酶蛋白,前者负责‘刺伤’细胞,后者负责‘开车’,让病毒感染伤害更多的细胞。”义翘神州技术人员张杰告诉记者,血凝素蛋白主要的功能是感染人体内的细胞,神经氨酸酶蛋白的作用则是使已感染的细胞进一步感染其他的细胞,扩散病毒的影响。 “知己知彼方能百战不殆。”要想研发出抑制这两种蛋白作用的抗体和疫苗,关键的一步,就是要根据流感病毒的基因序列研制出相应的重组蛋白。如果没有重组蛋白,科研机构需要利用技术手段研制假病毒,或者利用病毒毒株本身才能进行疫苗研究。 “毒株本身是有毒性的,出于安全考虑,除了疾控中心极少有机构能够获取毒株。而假病毒获取的技术手段有很高的挑战性。”张杰介绍,一个流感爆发后,缺乏蛋白研制经验的科研机构如果要想研制出流感病毒的这两种关键蛋白,快则数月,慢则需要半年甚至更长的时间。 “在安徽流感病人体内提取的毒株,和上海流感病人体内提取出的毒株,虽然基因序列相似,但仍有区别。成功的疫苗和治疗性药物必须对这些不同种类的毒株都有效才行。”张杰介绍,为了给疫苗、药物进一步研发提供更有针对性的蛋白,义翘神州研发的H7N9关键蛋白,已有“安徽株”和“上海株”两种。 关键蛋白研发12天搞定 3月底,全国首例人感染H7N9病例出现之后,中国疾病预防控制中心及时从病例样本中分离到H7N9禽流感病毒,并完成了鉴定和全基因序列分析。4月5日,义翘神州获得了公开的H7N9病毒的基因序列信息,包括公司总裁谢良志在内的30多位科研人员取消了周末,投入了一场与时间赛跑的研发战役。 要想快,不能乱。基因合成和目标载体构建、细胞培养、蛋白质纯化、质量控制和鉴定,这是研制蛋白过程中最关键的几个步骤。这些普通人在大学实验室里才能听到的专业术语和研发步骤,在义翘神州却变成了一场紧张有序的“流水线”式研发。 在分子生物学实验室里,技术人员在根据H7N9基因序列获取病毒基因、构建目标载体的同时,下一道工序的细胞培养实验室里,技术人员已经将细胞培养所需的培养液、器皿准备妥当。几天后细胞培养结束,提纯工序早已“整装待发”。30多位研发人员在上下游阶段有妥善的分工,在各个研发工序的衔接上不敢浪费一点时间。 “相比所有科研人员埋头苦干自己那份科研任务的单纯实验室式的科研,我们的科研流程已经进入了更为有条不紊的流水线式研发阶段,所以才有了12天研制出蛋白的速度。”张杰说,这成为了全球成功研发H7N9流感疫苗关键蛋白并具备量产能力的首个案例。 相关新闻 H7N9患者转诊可提高报销比例 本报讯(记者 袁京)针对我国部分地区出现人感染H7N9禽流感疫情,人力资源和社会保障部昨天发布通知,要求各地保证参保患者及时救治,减轻经济负担。对于因治疗需要转诊至高级别医院的患者,可适当提高报销比例。如果治疗期间使用了非医保药品或医疗项目,各地可根据需要适当放宽报销条件。 人保部提出,各地医保管理部门可根据实际情况和救治需要,在入院标准、定点医院选择等方面适当放宽条件,保证参保患者及时救治。对于因治疗需要,经基层医疗机构转诊至高级别医院的患者,可执行基层医疗机构支付比例或按地方规定适当提高支付比例。对参保患者治疗期间确需使用的不属于基本医保支付范围的药品和医疗服务项目,各地可参考国家卫生计生委制定的《人感染H7N9禽流感诊疗方案》,根据急救、抢救需要,予以放宽,以减轻参保患者治疗费用负担。各地临时放宽纳入基金支付范围的药品和诊疗项目要及时上报,由各省级人保部门汇总报送人保部医疗保险司。 对参保患者在参保地发生的符合规定的医疗费用,各级医保经办机构要实行即时结算;对于因转外就医等原因不能即时结算的,要简化结算手续、缩短结算周期,减轻参保人员垫支负担。对个人负担较重的参保患者,要做好医疗保险与医疗救助、大病医疗保险的衔接工作,具体办法由统筹地区制定。 人保部还提出,各省市要加强信息调度,随时了解掌握本地区人感染H7N9禽流感发病和医保基金支付情况,做好预案,并及时报送疫情及保障信息等。

  • 关于——胶原蛋白

    当你看见婴儿柔滑细腻的肌肤,你是否除了羡慕外还从心底发出一声感叹?感叹岁月的流逝,使你的肌肤水嫩不再!感叹镜中自己的脸已被浅浅的细纹爬满!你可知道,这都是胶原蛋白缺失惹的祸!  知道吗,胶原蛋白在滋润着你的皮肤,增加着皮肤弹性的同时,还增加着你头发、指甲的光泽,改善着你的关节和骨骼的健康,这个干燥风大的春天,如果你的皮肤感到了不适,也许应该在胶原蛋白上做点文章了。  胶原蛋白Q&A   每次在外边吃饭时,都会有人指着那盘猪蹄殷勤地对同桌的女士说:“女孩子多吃点好,能美容。”相信不少女性都听到过类似的话。为什么猪蹄能美容?原来是猪蹄里含有一种叫胶原蛋白的物质,这种物质可以增强肌肤的弹性,延缓肌肤的衰老。可什么是胶原蛋白,它真像人们说的那样,吃了它,就能让皮肤水嫩光滑、结实有弹性吗?  带着问题,我们咨询了美容营养专家段建华。  Q:胶原蛋白在人体有什么用?  A:胶原蛋白存在于人体皮肤、骨骼、牙齿、肌腱等部位,主要生理机能是做结缔组织的粘合物质。胶原蛋白能撑起皮肤。在皮肤方面,它与弹力纤维合力构成网状支撑体,提供给真皮层安定有力的支撑。  Q:为什么随年龄的增长皮肤会呈现出老态?  A:随年龄增长,人体胶原蛋白含量会逐渐流失,网状支撑体亦会变厚变硬、失去弹性,当真皮层的弹性与保水度降低,表皮即形成松垮的皱纹。  Q:维持胶原蛋白含量,真能保持年轻?  A:对,虽然胶原蛋白仅占总人体3-5%,但它是一个人身体外观是否呈现老态、肌肤样态是否有弹性的关键性因素,一旦身体获得足够胶原蛋白,即能迅速修复受伤的组织,提升细胞新陈代谢。因此只要护住这个关键,想保持年轻就简单多了。

  • 青蒿素衍生物靶向脂质代谢关键蛋白诱导铁死亡

    [size=14px] [/size] [size=14px]青蒿素(Arteminsinin)是从植物青蒿中分离出来的倍半萜内酯,与它的一些衍生物一起被公认为一种有效的用于治疗疟疾药物,现已逐渐被认为是潜在的抗肿瘤药物,已有一些研究试图确定青蒿素的蛋白质靶点并破译青蒿素杀死癌细胞的分子机制,但迄今为止,青蒿素的确切抗肿瘤相关靶点仍有很大挖掘空间。[/size] [size=14px] [/size] [size=14px]1、细胞毒性筛查将ART1确定为潜在的抗肿瘤药物[/size] [size=14px]作者首先制备了C-10位的不同芳基取代基的青蒿素衍生物(ART1、ART2和ART3),利用肺癌细胞系H1299和A549比较了它们以及青蒿素(QHS)及其衍生物双氢青蒿素(DHA)的抗肿瘤活性。发现ART1,一种含有萘环的青蒿素衍生物,对肺癌细胞表现出最强的细胞毒性。在肿瘤类器官模型和白血病MV4细胞中均证明ART1是最有效化合物。此外,ART1表现出对正常细胞的抗增殖活性非常弱。结果表明ART1是一种有前途的潜在抗癌药物。[/size] [size=14px]图片[/size] [size=14px]图1 ART1抑制肿瘤生长[/size] [size=14px]2、ART1诱导非经典铁死亡[/size] [size=14px]先前的报告表明青蒿素通过多种方式导致癌细胞死亡,包括细胞凋亡、自噬等。作者发现ART1触发的细胞死亡与凋亡、自噬无关。进一步确定ART1诱导癌细胞死亡的机制,发现ART1诱导的细胞死亡仅被铁死亡抑制剂ferrostatin-1(可防止脂质过氧化物的积累)抑制,而不能被细胞凋亡抑制剂z-VAD-FMK或坏死性凋亡抑制剂necrostatin-1抑制,表明ART1处理触发铁死亡。此外,ART1处理会诱导脂质过氧化,且ART1引起的脂质过氧化是铁依赖性的。深入机制研究发现ART1导致铁死亡已知类别的铁死亡诱导剂不同,它不影响其细胞内GSH水平和GPX4活性。[/size] [size=14px]图片[/size] [size=14px]图2 ART1诱导非经典铁死亡[/size] [size=14px]3、鉴定HSD17B4蛋白作为ART1的直接靶标[/size] [size=14px]为了确定ART1介导诱导铁死亡的蛋白靶点,作者设计了并合成了ART16(生物素标记的ART1)来开展Pulldown。ART16类似于ART1可诱导铁死亡,可用于后续实验。Pulldown+蛋白质组学分析显示HSD17B4蛋白为可能靶点, BLI、Pulldown+WB技术证实了两者的直接结合。[/size] [size=14px]图片[/size] [size=14px]图3 鉴定HSD17B4蛋白作为ART1的直接靶标[/size] [size=14px]4、ART1通过HSD17B4蛋白介导癌细胞死亡[/size] [size=14px]作者采用ART99(含有香豆素荧光团的ART1探针),发现ART99与靶蛋白HSD17B4的共定位。通过敲低HSD17B4来研究ART1诱导的细胞死亡是否由HSD17B4介导,发现HSD17B4敲低可显著减弱ART1的作用。[/size] [size=14px]图片[/size] [size=14px]图4 ART1通过HSD17B4蛋白介导癌细胞死亡[/size] [size=14px]5、ART1靶HSD17B4蛋白直接诱导脂质氧化[/size] [size=14px]HSD17B4蛋白是一种双功能酶,同时具有脱氢酶和水合酶活性,并参与VLCFA(极长链脂肪酸)的过氧化物酶体β氧化。作者发现ART1并未改变细胞中HSD17B4蛋白丰度,也不影响其脱氢酶和水合酶活性。由于ART1中的过氧化物部分对于诱导铁死亡是必不可少的,作者推测ART1可能是一种启动铁死亡的选择性氧化剂,与HSD17B4结合并促进周围脂质的氧化。作者验证发现ART1可以直接氧化铁死亡相关底物。PUFA,易受脂质过氧化的影响,是执行铁死亡所必需的。由于不容易获得超长链多不饱和脂肪酸,AA被用作替代物,作者发现ART1单独可以氧化AA,ART1还可以显著促进由亚铁离子催化的脂质过氧化。此外,活细胞成像探针发现ART1可以氧化细胞中HSD17B4蛋白周围的脂质。这些数据证实ART直接氧化HSD17B4蛋白周边的脂质,积累脂质过氧化物,并最终在癌细胞中促进铁死亡。[/size] [size=14px]图片[/size] [size=14px]图5 ART1靶向HSD17B4蛋白直接诱导脂质氧化[/size] [size=14px]6、ART1优先诱导高间充质状态癌细胞的铁死亡[/size] [size=14px]据报道,高间充质状态的耐药性癌细胞对铁死亡诱导剂敏感。作者检测这些肺癌细胞的上皮间充质状态,发现对ART1敏感细胞系H1299和H1838中的波形蛋白含量较高,表明高间充质状态,而对ART1耐药细胞系HCC366和H1650几乎表现出E-钙粘蛋白的丰度检测不到,这表明ART1的敏感性与癌细胞上皮间充质状态密切相关,ART1可优先诱导间充质癌细胞发生铁死亡。[/size] [size=14px]图片[/size] [size=14px]图6 ART1优先诱导高间充质状态癌细胞的铁死亡[/size] [size=14px]总结[/size] [size=14px]该研究将青蒿素衍生ART1已被确定为铁死亡诱导剂,对癌细胞增殖具有显著的抑制效果。接着使用化学蛋白质组学方法鉴定HSD17B4蛋白,一种在VLCF分解代谢中必不可少的酶,作为ART1的直接靶点。进一步研究发现ART1会导致铁死亡,通过直接氧化HSD17B4蛋白周围的脂肪酸而不干扰蛋白质的正常酶活性,揭示了一种意想不到的机制,其中ART1-HSD17B4用作“特洛伊木马”,潜入过氧化物酶体触发脂质氧化。总之,ART1通过靶向HSD17B4诱导铁死亡提供了一种有希望的癌症治疗方法。[/size]

  • 重组蛋白是什么?重组蛋白的生产、应用及选择

    [font=宋体][font=宋体]重组蛋白([/font][font=Calibri]recombinant protein[/font][font=宋体])是指应用重组 [/font][font=Calibri]DNA [/font][font=宋体]或重组 [/font][font=Calibri]RNA [/font][font=宋体]技术而获得的蛋白质。重组蛋白工程先应用基因克隆或化学合成技术获得目的基因([/font][font=Calibri]gene of interest[/font][font=宋体],[/font][font=Calibri]GOI[/font][font=宋体]),连接到适合的表达载体,导入到特定的宿主细胞,利用宿主细胞的遗传系统,表达出有功能的蛋白质分子。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体]其获得途径可以分为体外方法和体内方法。两种方法的前提都是应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体][b]当前重组蛋白的生产主要有四大系统[/b]:原核表达系统:最常用的大肠杆菌蛋白表达,真核表达系统如酵母,哺乳动物细胞蛋白表达(常用的细胞[/font][font=Calibri]CHO[/font][font=宋体],[/font][font=Calibri]HEK293[/font][font=宋体])及、昆虫细胞蛋白表达系统。重组蛋白的产生尚可利用转基因动物的乳腺或者植物产生,产生的重组蛋白作为生物制药的产物,在医学中作用显著。利用基因工程技术,可以使细胞或者动物本身变成“批量生产药物的工厂”。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]以利用转基因动物的乳腺表达重组蛋白为例:其方法是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。科学家已在牛和山羊等动物的乳腺生物反应器中表达出了抗凝血酶、血清白蛋白、生长激素和[/font][font=宋体]α[/font][font=Calibri]-[/font][font=宋体]抗胰蛋白酶等重要的医药产品。[/font][/font][font=宋体]重组蛋白在制药工业上主要是指表达获得的细胞因子、凝血因子或者人工设计的蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体]目前,重组蛋白试剂已被广泛应用于生物药、细胞免疫治疗及诊断试剂的研发和生产中。其中重组蛋白药物是生物药物的重要组成成分,常被被广泛应用于医疗领域[/font][font=Calibri],[/font][font=宋体]包括肿瘤治疗、免疫调节、神经保护、结缔组织疾病、肾病治疗等。包括细胞因子类、抗体治疗性疫苗、激素及酶等。[/font][/font][font=宋体] [/font][font=宋体]义翘神州致力于提供[url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白生产[/b][/url]、[url=https://cn.sinobiological.com/resource/protein-review/protein-expression][b]重组蛋白表达[/b][/url]及[url=https://cn.sinobiological.com/resource/protein-review/protein-production-systems][b]重组蛋白系统[/b][/url]详情的咨询与解决方案。为实验中特定的应用选择正确的表达系统是成功的关键所在。在选择表达系统时,蛋白溶解度、功能、纯化速度和产量通常是必须考虑的重要因素。此外,每个表达系统都有其独特的优势和挑战,这一点在选择时也需着重考虑。我们的专业团队将为您提供个性化的建议,以帮助您根据实验需求选择最合适的表达系统。[/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font][font=Calibri] [/font]

  • 铁蛋白,C反应蛋白,心肌三项检测试剂

    北京易斯威特生物医学科技有限公司产品介绍 铁蛋白(FER)检测试剂盒 (胶体金法)1.国内第一家免疫层析法检测FER的产品。2.本产品应用世界上最先进的单克隆抗体技术结合胶体金(纳米金)免疫层析技术,以双抗体夹心法快速定性检测人血清,血浆中的铁蛋白,适用于急性贫血,肝脏损伤等相关疾病的辅助诊断3.最快速准确的辅助诊断方法。4.血清铁蛋白是血液去铁蛋白和铁核心Fe3+形成的复合物。是检查体内铁缺乏的最灵敏的指标。血清铁蛋白测定在临床上常用于缺铁性贫血的诊断。简单 便捷 快速 灵敏 环保 肌红蛋白/肌酸激酶/心肌肌钙蛋白I,心梗三项检测试剂盒(胶体金法)1.本产品应用世界上最先进的单克隆抗体技术结合胶体金(纳米金)免疫层析技术,以双抗体夹心法快速定性检测人血清,血浆中的肌红蛋白,肌酸激酶,心肌肌钙蛋白I检测,用于临床快速诊断急性心肌梗塞(AMI).2.最快速准确的辅助诊断方法。3.肌红蛋白:是心肌梗死的标志物,增高表示冠状动脉堵塞引起心肌严重缺血造成心肌梗死;4.肌钙蛋白:是一种心肌蛋白,升高见于心肌损伤,多见于心肌梗死,也见于心肌炎和心肺复苏后患者,特异性较高,阳性的话一般可确诊心肌损伤,阴性的话不能排除,因为肌钙蛋白的升高出现在心肌梗塞3-6小时之后,之前可能出现阴性。肌酸激酶敏感性较高,特异性较低,升高也出现在心梗3-8小时之后。5.肌酸激酶:主要存在于骨骼肌和心肌,在脑组织中也存在,是参与体内的能量代谢的一种酶。在临床上主要用于诊断心肌梗塞。心肌梗塞患者发病后2-4小时,血液中此酶活动即开始升高。比血清中谷草转酸酶和乳酸脱氢酶的活力变化都出现得早。 简单 便捷 快速 灵敏 环保 C反应蛋白(CRP)检测试剂盒(胶体金法)1.国内第一家免疫层析法检测CRP的产品。2.本产品应用世界上最先进的单克隆抗体技术结合胶体金(纳米金)免疫层析技术,以双抗体夹心法快速定性检测人血清,血浆中的C反应蛋白,适用于感染,炎性疾病,组织损伤,手术创伤及组织坏死等病变情况的辅助诊断3.最快速准确的辅助诊断方法。4.是一种能与肺炎球菌C多糖体反应形成复合物的急性时相反应蛋白。可用于细菌和病毒感染的鉴别诊断简单 便捷 快速 灵敏 环保

  • 重组蛋白技术的科学原理与实践应用

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白[/b][/url]([/font][font=Calibri]recombinant protein[/font][font=宋体])技术原理是现代生物技术的核心之一,它通过将目的基因插入到表达载体中,在宿主细胞中进行表达,从而获得所需的重组蛋白。这一技术的关键是选择合适的表达载体和宿主细胞,以确保目的基因的正确表达和蛋白质的正确折叠。重组蛋白技术的应用范围非常广泛,包括药物研发、疫苗生产、诊断试剂、生物治疗等领域。通过重组蛋白技术,我们可以快速、高效地获得具有特定结构和功能的蛋白质,为科学研究、医学和工业应用提供重要的工具和资源。[/font][/font][font=宋体] [/font][b][font=宋体] [/font][font=宋体]构建重组蛋白的技术路线主要包括以下几个步骤:[/font][/b][font=宋体] [/font][font=宋体]①目的基因的获取:根据所需蛋白质的氨基酸序列,设计并合成相应的基因片段,或者从基因文库中筛选出相应的基因。[/font][font=宋体]②表达载体的构建:将目的基因插入到表达载体中,常用的表达载体包括质粒、病毒等,它们可以在宿主细胞中进行复制和表达。[/font][font=宋体]③宿主细胞的选择:选择适合的宿主细胞,如细菌、酵母、昆虫、哺乳动物等,以确保目的基因的正确表达和蛋白质的正确折叠。[/font][font=宋体]④重组蛋白的表达:将构建好的表达载体转入宿主细胞,进行培养或诱导,使目的基因在细胞内表达,产生重组蛋白。[/font][font=宋体]⑤重组蛋白的纯化:通过各种分离纯化技术,如离心、过滤、沉淀、色谱等,将重组蛋白从细胞中提取出来,并进行纯化和精制。[/font][font=宋体]⑥重组蛋白的鉴定:通过各种检测技术,如质谱、免疫学检测等,对重组蛋白进行鉴定和质量控制。[/font][font=宋体]通过以上技术路线,可以构建出具有特定结构和功能的重组蛋白,为科学研究、医学和工业应用提供重要的工具和资源。[/font][font=宋体] [/font][b][font=宋体] [/font][font=宋体]重组蛋白技术应用:[/font][/b][font=宋体] [/font][font=宋体]一、药物研发与生产:[/font][font=宋体]靶点验证:在药物研发初期,可以使用重组蛋白来验证药物作用的靶点。[/font][font=宋体]抗体药物:利用重组蛋白技术可以生产人源化抗体,用于癌症治疗、自身免疫性疾病治疗等。[/font][font=宋体]直接药物:某些重组蛋白本身就是药物,如胰岛素、生长激素等。[/font][font=宋体]二、疫苗开发:[/font][font=宋体]基因工程疫苗:使用重组蛋白技术生产疫苗,例如针对乙肝、流感等疾病的疫苗。[/font][font=宋体]三、诊断试剂:[/font][font=宋体][font=宋体]免疫检测:重组蛋白可以用作抗原或抗体,用于各种免疫检测技术,如[/font][font=Calibri]ELISA[/font][font=宋体]、免疫荧光等。[/font][/font][font=宋体]四、生物治疗:[/font][font=宋体]细胞因子:重组蛋白技术可以生产各种细胞因子,用于促进细胞生长、分化、凋亡等。[/font][font=宋体]五、基础研究:[/font][font=宋体]结构生物学:利用重组蛋白研究蛋白质的结构与功能关系。[/font][font=宋体]信号转导研究:通过重组蛋白研究细胞内信号转导过程。[/font][font=宋体]六、其他应用:[/font][font=宋体]酶工程:生产具有特定性质的酶。[/font][font=宋体]七、农业应用:如生产抗虫作物或具有特定性状的动物。[/font][font=宋体]通过以上几个方面,重组蛋白技术在生物医药领域中发挥着越来越重要的作用,为疾病治疗、疫苗开发、基础研究等提供了有力的技术支持。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供重组蛋白纯化服务:[/font][font=Calibri]https://cn.sinobiological.com/services/recombinant-protein-expression-service[/font][/font][font=宋体][font=宋体]更多重组蛋白详情可以以关注义翘神州:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font][font=Calibri] [/font]

  • 【分享】蛋白饮料类生产许可证审查细则

    一、发证产品范围  实施食品生产许可证管理的蛋白饮料类产品包括以乳或乳制品、或有一定蛋白质含量的植物的果实、种子或种仁等为原料,经加工或发酵制成的饮料。包括含乳饮料、植物蛋白饮料、复合蛋白饮料。  含乳饮料是指以鲜乳或乳制品(经发酵或未经发酵)为主要原料,经调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的饮料,包括配制型含乳饮料、发酵型含乳饮料、乳酸菌饮料。植物蛋白饮料是以蛋白质含量较高的植物果实、种子或核果类、坚果类的果仁等为原料,经处理、制浆、调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的产品。复合蛋白饮料是以乳或乳制品和不同的植物蛋白为主要原料,经加工(可经乳酸菌发酵)调配而制得的饮料。  二、基本生产流程和关键控制环节  (一)基本生产流程。  1.含乳饮料。  乳(复原乳)→调配→均质→杀菌灌装(灌装杀菌)→成品  ↓ ↑  杀菌冷却 水处理→ 水+辅料  ↓ ↓  发酵→均质→调配→均质→杀菌灌装(灌装杀菌)→成品  注:活性乳酸菌饮料无最后一步杀菌过程。

  • 蛋白纯化的原理及操作步骤

    [font=宋体]重组蛋白的表达(尤其是使用细菌载体和宿主)是一项成熟的技术。难点在于如何将其以活化形式分离。[/font][font=宋体] [/font][font=宋体]重组蛋白的纯化是生物学研究中的重要技术。为了研究蛋白的特定功能和结构,研究人员必须将重组蛋白从生物体中分离并纯化。蛋白纯化方法主要利用不同重组蛋白之间的相似性和差异性。可以根据蛋白之间的相似性去除非蛋白物质,然后根据蛋白之间的差异分离纯化目标重组蛋白。[/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]是一种可以提高重组蛋白的溶解度、简化蛋白纯化的简单有效的工具,并通过简单的方法跟踪蛋白表达和纯化过程。此外,蛋白标签是追踪活细胞中蛋白和进程的一种有效工具,可以通过显微镜直接跟踪或者通过[/font][font=Calibri]Western blot[/font][font=宋体]、免疫沉淀或免疫染色间接进行跟踪。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]蛋白纯化的原理:[/b][/font][font=宋体]不同的重组蛋白具有不同的氨基酸序列和空间结构,导致其物理、化学和生物学特性存在差异。我们也可以根据目标蛋白与其他蛋白和裂解液的性质差异设计合理的蛋白纯化方案。[/font][font=宋体] [/font][font=宋体][font=宋体]大多数的纯化方案需要不止一步才能达到理想的纯度水平。该过程中的每一步都会造成一定的产品损失,假设每一步的获得率为[/font][font=Calibri]80%[/font][font=宋体]。因此,建议尽可能减少纯化步骤。起始原料的选择是纯化过程设计的关键。[/font][/font][font=宋体] [/font][font=宋体]在背景信息、检测方法和样品规格都已到位的情况下,可以考虑采用三阶段纯化策略。纯化分为捕获、中度纯化和精细纯化三个阶段,每个阶段都有特定的目标。捕获阶段的目标是分离、浓缩和稳定目标产物。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][url=https://cn.sinobiological.com/resource/protein-review/protein-purification]蛋白纯化[/url]操作步骤:[/b][/font][font=宋体]理想情况下,最终的纯化过程包括样品制备,其中包括在需要时进行萃取和澄清,然后进行上述捕获、中度纯化和精细纯化三个阶段的纯化。步骤的数量始终取决于所需的纯度和蛋白的预期用途。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供不同表达系统的蛋白纯化服务,有细菌系统蛋白纯化、哺乳动物瞬时系统蛋白纯化、杆状病毒系统蛋白纯化。详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification[/font][/font]

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 蛋白电泳小技巧1

    1. 跑page胶的时候,小电压跑会避免高电压产生的热量尔导致的胶层变形。低电压泳道会比大电压泳道跑的直一些,且分离效果更高,有利于分子量相差不大的蛋白分离。2. 做WESTERNBLOT 的时候,大家往往会摸索一抗、二抗的浓度,封闭时间,曝光时间等等,而每次变换其中的一个条件就需要从新跑胶、转膜,甚至重新提蛋白,这样会浪费大量的时间。其实完全没有必要这样。一次转膜后,将PVDF膜晾干,裁减成小块,保存起来,用的时候取出一块,没有任何影响。这对于摸索条件的战友来说,节约了大量的时间。3. 可将SDS-PAGE的积层胶,分离胶预先配好大体积如100ml储存在4度冰箱(注:10%AP,TEMED不加,切记!!!),每次配置时只需吸取相应体积的预制胶加入AP,TEMED即可,没必要每次制胶时候翻分子克隆,特别方便,而且,这样的预制胶可储存半年以上,不失为偷懒的绝佳方法;更关键的是可大大减少与丙稀酰胺的接触,因此大大减少中毒的机会。

  • 第二届功能蛋白、生物活性肽的开发、应用与大健康产业发展高峰论坛

    关于举办“第二届功能蛋白、生物活性肽的开发、应用与大健康产业发展高峰论坛”通知各有关单位: 2017年1月5日国家发展改革委与工业和信息化部联合发布《关于促进食品工业健康发展的指导意见》指出“十三五”期间将积极研究开发功能性蛋白、生物活性肽等保健和健康食品,为功能性蛋白、生物活性肽开发应用带来新的高度。 为进一步推动这一产业健康顺利发展,交流功能性蛋白、生物活性肽有关研究的新技术、新成果和应用新领域,搭建“产学研”之间交流与合作的平台,我单位定于2017年 4月 25日-27日在北京市举办“第二届功能蛋白、生物活性肽的开发、应用与大健康产业发展高峰论坛”。邀请国内外知名专家,为参会者答疑解惑,同时进行科技新成果、新产品展示推介。热忱欢迎全国行业界新老朋友莅临本次论坛。 一、组织机构主办单位:全国医药技术市场协会 国家食品行业生产力促进中心 协办单位:中国化工企业管理协会医药化工专业委员会 支持单位:征集中..........二、时间地点:时间:2017年 4月 25日-27日(25日全天报到)地点:北京市(具体地点、报名后通知)三、会议主要内容及拟邀专家:(采取专场会议形式)* 大会报告1.功能性蛋白、生物活性肽“十三五”相关政策解读2.功能性蛋白、生物活性肽应用的未来发展趋势3.蛋白质组学与质谱分析* 健康食品行业专场1.生物活性肽、功能蛋白配方食品领域研发项目的立项、申报2.生物活性肽、功能蛋白新产品工艺与工程研发3.我国蛋白和生物活性肽食品需求及市场发展趋势分4.功能蛋白、生物活性肽与疾病、保健及免疫作用研究5.蛋白基因组学、微生物学、生物化学及分子生物学6.活性肽功能蛋白营养作用及营养支持7.生物活性肽和蛋白质配方食品安全性研究及评价8.生物活性肽的消化吸收及分布 9.功能性研究、功能性成分分离鉴定10.天然蛋白质资源开发和深加工利用11.食源功能肽产业化技术转化与营养保健开发 12.生物活性肽、功能蛋白检测方法及研究进展13.功能蛋白肽食品生产工艺及安全管理与质量控制/标准建设14.新产品加工工艺开发中的选择及过程控制中关键点15.工艺确认和评价及生产工艺开发的关键步骤* 药品行业专场1.《生物产业发展“十三五”规划》中蛋白质和肽药物发展思路2.“生物类似药研发与评价技术指导原则(试行)”解读3.我国蛋白和多肽药物需求及市场发展趋势分析4.肽及蛋白质类药物传输系统研究5.蛋白和小分子药物设计研究 6.肽和蛋白类药物结构稳定性的研究 7.肽和蛋白质药物临床前安全性研究及评价 8.蛋白质药物构象及生物学活性检测技术9.结构改造的化学策略及生物活性功用、肽合成策略及肽药剂型的应用10.肽和蛋白质类药物微粒制剂的研究和应用 11.毛细管电泳技术在蛋白质及多肽药物研发中的应用 12.蛋白质药物的分离纯化与PEG化学修饰技术 13.蛋白质药物生产工艺 14.多肽、蛋白质药物的大规模生产与制备、成套工艺技术用拟邀嘉宾:  谷瑞增 中国食品发酵工业研究院蛋白功能肽产业研发部 主任 刘新旗 国家“千人计划”专家、北京工商大学 博士 何 梅 北京营养源研究所副所长乐国伟 江南大学食品学院殷腊生 时代(中国)生物活性多肽研究所所长 罗永章 清华大学蛋白质药物北京市重点实验室主任 梁 伟 中科院生物物理研究所蛋白质与多肽实验室任副主任 屈 锋 北京理工大学教授 相关专家报告继续预约中,敬请持续关注! 最终专家日程安排将在会前一周发给报名参会者!四、参会对象:1、健康食品及保健特医食品企业从事开发研究、质量管理的人员、注册专员等高级技术和管理人员;2、新药及仿制药企业从事开发研究、质量管理的人员,负责药品注册文件的编写、审评和注册申报的管理人员;联系人: 马超 电话/传真:010-52706606 手 机:13240487419 电子邮箱:1683101345@qq.com

  • 求助-检测血红蛋白

    我想检测兔子全血的血红蛋白,不知道那个公司有这方面的试剂盒?如果我用血红蛋白计测量,xk-2血红蛋白计怎么样啊?还有就是全血的血红蛋白和血浆的血红蛋白的差别到底在哪啊?请各位老师指教!!

  • 【资料】-蛋白柱常见问题和日常维护

    蛋白柱常见问题和日常维护在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。①样品不保留:在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。②回收率(质量回收率)低蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。③柱压过高 柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。④性能改变蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。(转贴[em07] )

  • 【分享】蛋白柱常见问题和日常维护

    蛋白柱常见问题和日常维护在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键 不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。 ①样品不保留: 在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。 此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。 在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。 ②回收率(质量回收率)低 蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。 ③柱压过高 柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。 ④性能改变 蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 蛋白柱常见问题和日常维护

    在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。   不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。   ①样品不保留:   在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。   此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。   在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。   ②回收率(质量回收率)低   蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。   ③柱压过高   柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。   ④性能改变   蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 二硫键,二硫键蛋白,蛋白质二硫键

    二硫键,二硫键蛋白,蛋白质二硫键

    含有一对或多对二硫键修饰的多肽:二硫键在蛋白质的结构稳定中起到重要作用,目前我们国肽生物已经能够为客户提供四对二硫键修饰的多肽。多对二硫键成环技术蛋白质和多肽类药物具有作用位点专一,疗效明确等优点,近年来,蛋白质和多肽类药物的研究和发展已经成为生物医药领域研究的一个热点。二硫键在维持多肽和蛋白质的空间立体结构及由此决定的生物活性中发挥着重要的作用。二硫键即为蛋白质或多肽分子中两个不同位点Cys的巯基(-SH)被氧化形成的S-S共价键。一条肽链上不同位置的氨基酸之间形成的二硫键,可以将肽链折叠成特定的空间结构。[align=center][img=,526,200]https://ng1.17img.cn/bbsfiles/images/2019/04/201904300953261874_7512_3531468_3.jpg!w526x200.jpg[/img][/align]多肽分子通常分子量较大,空间结构复杂,结构中形成二硫键时要求两个半胱氨酸在空间距离上接近。此外,多肽结构中还原态的巯基化学性质活泼,容易发生其他的副反应,而且肽链上其他侧链也可能会发生一系列修饰,因此,肽链进行修饰所选取的氧化剂和氧化条件是反应的关键因素,反应机理也比较复杂,既可能是自由基反应,也可能是离子反应。多肽的二硫键修饰中,分子内或者分子间一对二硫键的合成通常比较容易,反应条件有多种选择,比如空气氧化,DMSO氧化等温和的氧化过程,也可以采用H2O2,I2,汞盐等激烈的反应条件,反应产物也比较容易纯化分离,得到较高的纯度和产率。空气氧化法形成二硫键是多肽合成中最经典的方法,并且在早期的研究中取得了较好的结果。采用空气氧化法通常是将巯基处于还原态的多肽溶于水中,在近中性或弱碱性条件下(PH值6.5~10),反应24小时以上。为了降低分子之间二硫键形成的可能,该方法通常需要在低浓度条件下进行。碘氧化法在多肽合成中应用同样广泛,一般将多肽溶于25%的甲醇水溶液或30%的醋酸水溶液中,逐滴滴加10~15mol/L的碘进行氧化,反应15~40min。当肽链中含有对碘比较敏感的Tyr、Trp、Met和His的残基时,氧化条件要控制的更精确,氧化完后,立即加入维生素C或硫代硫酸钠除去过量的碘。当一条肽链上需要形成两对或两对以上的二硫键时,反应过程就变得相对复杂。在固相合成多肽之前,需要提前设计几对二硫键形成的顺序和方法路线,选择不同的侧链巯基保护基,利用其性质差异,分步氧化形成两对或多对二硫键。通常采用的巯基保护基有trt,Acm,Mmt,tBu,Bzl,Mob,Tmob等多种基团。我们分别列出两种以2-Cl树脂和Rink树脂为载体合成的多肽上多对二硫键形成路线:[align=center][img=,666,432]https://ng1.17img.cn/bbsfiles/images/2019/04/201904300953443844_9290_3531468_3.jpg!w666x432.jpg[/img][/align]二硫键的形成一直是多肽合成中的一个难点,经过不懈的研究和累积,我们公司已经具备相当成熟的多对二硫键成环技术,目前我们已经能够高成功率的合成三对和四对二硫键的多肽。不断克服实验困难,不停提高产品质量,不懈努力达到客户要求是我们国肽生物的不变宗旨。成功案例:固相合成序列DC*TSHNGAC*NHHSHC*C*SNVC*NTWAHLC*T,并对其成功进行3对二硫键修饰。HPLC分析:[align=center][img=,562,246]https://ng1.17img.cn/bbsfiles/images/2019/04/201904300954000045_2353_3531468_3.jpg!w562x246.jpg[/img][/align]MS分析:[align=center][img=,562,224]https://ng1.17img.cn/bbsfiles/images/2019/04/201904300954145791_912_3531468_3.jpg!w562x224.jpg[/img][/align][align=left]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122172;17718122684;17730030476;17718122397[/align]

  • 蛋白柱常见问题和日常维护

    在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。   不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。   ①样品不保留:   在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。   此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。   在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。   ②回收率(质量回收率)低   蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。   ③柱压过高   柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。   ④性能改变   蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 【转帖】胶原蛋白 你该怎么补

    胶原蛋白在被大众知晓的短短几年间,就以其与美丽、健康的密切关系,迅速蹿红起来,成为尽人皆知的美容圣品。但是,胶原蛋白到底应该怎么补,你又知道吗?   20岁开始补充胶原蛋白 胶原蛋白(collagen)是人体内含量最多的一种蛋白质,约占人体蛋白质总量的25%~33%,它遍及全身的各个组织器官,如:肌肤、骨骼、软骨、韧带、角膜、各种内膜、筋膜等,是维持肌肤与组织器官形态、结构的主要成分。因此,胶原蛋白对人体的健康和美丽扮演着举足轻重的角色,有紧肤平皱、保湿滋润、恢复弹性、乳房挺拔、关节灵活、防止妊娠纹等作用。 女性在20岁时胶原蛋白已经开始流失,含量逐年下降,25岁后进入流失的高峰期,40岁时含量不到18岁时的一半。在肌肤当中,胶原蛋白负责为肌肤提供弹性和紧致度,并扮演着“深层水库”的角色为表皮提供水分。胶原蛋白的流失,导致肌肤出现干燥、粗糙、松弛、皱纹、毛孔粗大、暗淡、色斑等衰老现象。可以说肌肤衰老的过程,就是胶原蛋白流失的过程。因此,女性20岁以后就要注意胶原蛋白的补充了。 补充胶原蛋白,你选哪样? 目前,补充胶原蛋白的方式主要有3种:1.添加在护肤品中:含胶原蛋白的化妆品有一定保湿、抗皱效果,但仅作用于表皮,很难进入真皮层。2.外部注射:直接皮下注射胶原蛋白,有立竿见影的效果,但存在肌肤排斥、过敏的风险,并且价格昂贵,维持的时间也较短暂。3.口服食用:口服胶原蛋白是最直接有效的补充方式,但要坚持2个月的周期,因为长时间流失掉的胶原蛋白,没有一定时间是难以补回来的。 从饮食上摄取胶原蛋白,如猪蹄、肉皮、牛蹄筋、鱼皮、软骨等可以在一定程度上补充胶原蛋白。但是,这些食物中的胶原蛋白由于是大分子蛋白质,很难被人体直接消化吸收,并且这类食物大多脂肪含量较高,不适合爱苗条的女性经常食用。因此,选择服用提炼加工后的胶原蛋白饮料是补充胶原蛋白最好的方式。刘纳老师还提醒,晚上睡前是服用胶原蛋白饮料的最佳时间,因为夜间10点到凌晨2点是肌肤修复和更新的最佳时段。 选择胶原蛋白的三个重要标准 标准一 胶原蛋白的分子量越小越好 人体在吸收胶原蛋白时,分子量是非常关键的因素,分子量越小越易被人体吸收。刘纳老师指出,胶原蛋白的分子量要在3000道尔顿以下,才适宜被人体吸收。 标准二 胶原蛋白的数量越多越好 人体在每天的自我更新中会不断流失胶原蛋白,女性从20岁开始每天要流失5000mg的胶原蛋白,随着年龄的增长,这一数值还在不断增加。因此,刘纳老师提醒,每天服用的胶原蛋白饮料中胶原蛋白的含量不应少于5000mg。 标准三 胶原蛋白不可缺少的搭档 刘纳老师告诉记者,胶原蛋白饮料中只含有胶原蛋白其效果不会长久,只有在胶原蛋白饮料中同时添加了透明质酸和弹性蛋白这两种物质,才能保证胶原蛋白的效果被完全发挥出来。   胶原蛋白产品推荐 1、FANCL胶原蛋白果味饮料?? 容量:50ml×10瓶/盒 价格:298元 自我介绍:特有的HTC胶原蛋白含大量三肽氨基蛋白,无需消化肌肤能直接吸收,有效促进皮肤胶原蛋白的新生。 2、Fine胶原蛋白饮料?? 容量:500ml/瓶 价格:1680元 自我介绍:以日本本地猪胎盘和鱼的胶原蛋白为主要原料,再加以DNA、弹性蛋白、透明质酸、维生素等成分制成。 3、Lumi(康魄)胶原蛋白液态饮料? 容量:50ml×8瓶/盒 价格:216元 自我介绍:胶原蛋白源自日本深海无污染鱼类的鱼皮,并且提取的是分子量为1000道尔顿以下的超细肽分子。 4、海姿丽海洋胶原蛋白果汁饮料? 容量:50ml×10瓶/盒 价格: 258元(基础型) 498元(加强型) 自我介绍:胶原蛋白源自无污染的深海三文鱼鱼皮,有基础型和加强型两种规格可以选择

  • 【转帖】施一公小组阐明能量耦合因子转运蛋白结构

    来自清华大学生科院、医学院、普林斯顿大学Lewis Thomas实验室等单位的研究人员报道了一种重要的转运因子的蛋白结构,这一结构的6个跨膜区域以未报道过的新折叠形式出现,这一发现对于了解核黄素(维生素B2)的运输,以及进一步拓展其生物学结构具有重要意义。研究论文发表在最近一期《自然》(Nature)杂志上。 文章的通讯作者是清华大学生命科学院院长施一公教授,其研究组主要致力于运用结构生物学和生物化学的手段研究肿瘤发生和细胞调亡的分子机制:专注于肿瘤抑制因子和细胞凋亡调节蛋白的结构和功能研究、重大疾病相关膜蛋白的结构与功能研究、胞内生物大分子元件的结构与功能研究。另外两位作者分别是王佳伟(Jiawei Wang)和张鹏(Peng Zhang)。该研究组近期研究发现了一类重要的蛋白:能量耦合因子(energy-coupling factor,ECF)转运蛋白,这类蛋白是一些微量营养元素的运输因子,负责原核生物的维生素摄入。每个ECF转运因子都包含一种嵌入细胞膜的能结合底物的蛋白结构——S组件。这一结构是能量耦合的关键部件,由两个ATP结合蛋白和一个跨膜蛋白组成。然而目前这一结构的具体构架,以及运输机制并不清楚。

  • 尿微量蛋白(尿微量白蛋白/蛋白尿)试验

    尿微量蛋白(尿微量白蛋白/蛋白尿)试验(也称“白蛋白试验”,“尿微量白蛋白”和“蛋白尿”试验)何为尿微量白蛋白(白蛋白)试验?尿微量白蛋白试验是对尿液中的蛋白质进行测定的筛选试验。人体血液中有一种蛋白质称为白蛋白。在正常情况下,几乎无法在尿液中检测到。只有在肾脏受损,尤其是损伤早期,它可以优先于其他肾损伤标志物在尿液中被检测出,因此,尿微量白蛋白在诊断肾脏疾病、早期肾损伤等方面具有重要意义。此项试验有何目的?蛋白质是人体的基本构成“材料”,具备一些重要的功能和作用,可结合营养物质将其运输至各个组织,,并将人体中循环的体液量维持在适当水平。肾脏功能正常时,蛋白质几乎无法通过肾脏进入尿液(仅会排出血液循环产生的废料)。然而,如果人的肾功能受损或衰竭,该肾脏对蛋白质的过滤能力将有所下降,因而一些蛋白质将会透过肾脏而出现在尿液中,称为尿微量蛋白。尿微量白蛋白与蛋白尿有何不同?白蛋白是一种大量存在于血液中的典型蛋白质。因其分子个头小,当肾脏功能出现问题时,白蛋白是能够率先通过肾脏进入尿液的几种蛋白质之一。尿液中出现少量白蛋白的情况称为尿微量白蛋白。若肾脏功能受损严重,尿液中的白蛋白数量呈现出增长趋势,这种症状被改称为蛋白尿。尿微量白蛋白/蛋白尿有何症状?病症早期,并无明显症状或征兆显现。随着肾功能衰竭的加重,大量蛋白质出现在尿液中,手脚、腹部和面部可能出现肿胀。如果蛋白尿的情况加重,可能会造成永久性肾功能损伤,有些病人可能需要做透析或肾移植。不论上述症状是否存在,尿蛋白测定是确定有多少蛋白质进入尿液的唯一办法。蛋白尿还可能引发心血管疾病。血管受损除了会引发肾脏疾病外,还可能会造成窒息和心力衰竭。患蛋白尿(症)的高危人群有哪些?患有糖尿病、高血压、心血管疾病和其他类型肾脏疾病等慢性病的病人易出现蛋白尿。老年人、肥胖人群以及有肾脏疾病家族史的人群。其

  • 玩笑!——不含胶原蛋白的如何叫胶原蛋白产品?

    10月8日,有媒体报道称,经过第三方机构检测,市售的Fancl、Lumi、丸美、汤臣倍健、颜如玉、无限极、安婕妤等七款胶原蛋白产品均出现胶原蛋白含量不足的问题,其中汤臣倍健、颜如玉、无限极的三款产品甚至未能检出胶原蛋白的特征物“羟脯氨酸”。由此,业内再一次掀起有关胶原蛋白产品的讨论。由此,业内再一次掀起有关胶原蛋白产品的讨论,频频陷入舆论危机。同时还了解到目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确。不过多方认可,目前胶原蛋白的检测标准主要是测羟脯氨酸的含量。琳琅满目的胶原蛋白产品中胶原蛋白的含量是否合格?如何检测?国家相关的标准状况怎样?

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

  • 标签蛋白沉淀技术原理及步骤详解

    [font=宋体]蛋白质是生物体的基本组成部分,参与各种生物过程。为了更好地理解和操控这些过程,科学家们开发了多种技术来分离和纯化蛋白质。其中,标签蛋白沉淀技术是一种非常有效的方法,它通过将特定的标签连接到目标蛋白上,利用标签的特性将其与其他蛋白分离开来。这项技术的优点在于其高特异性和高纯度,使得研究人员能够获得高质量的蛋白质样品,以进行进一步的分析和研究。在生物科学领域,[b]标签蛋白沉淀技术[/b]已成为一项关键技术,它有助于我们更好地理解生命的基本过程以及开发新的治疗方法。标签蛋白沉淀技术步骤:[/font][font=宋体] [/font][font=宋体][font=宋体]①这一技术的核心在于对目标蛋白进行巧妙的改造。我们通过在蛋白编码序列中嵌入特定的标签或标记(例如[url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]谷胱甘肽[/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]S-[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]转移酶[/b][/url],[/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]His[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]标签[/b][/url],[/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]FLAG[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]标签[/b][/url]等),使目标蛋白在表达时能与标签紧密结合。[/font][/font][font=宋体] [/font][font=宋体]②我们将携带标签蛋白编码序列的表达载体导入适合的宿主细胞。在适当的培养条件下,宿主细胞高效地表达出目标蛋白。随后,通过细胞破碎技术释放出蛋白质。[/font][font=宋体] [/font][font=宋体]③核心环节——沉淀。利用标签与亲和配体间的特异性结合力,我们使用具有亲和性的树脂、磁珠或柱子将目标蛋白从混合物中分离出来。不同标签有其独特的亲和性,确保了蛋白的高纯度分离。[/font][font=宋体] [/font][font=宋体]④在成功沉淀目标蛋白后,我们通过洗涤步骤去除其他杂质和未结合的蛋白。最后,只需特定的洗脱条件,目标蛋白便能从亲和树脂上完全洗脱下来。[/font][font=宋体] [/font][font=宋体][font=宋体]⑤经过这一系列步骤,我们获得的蛋白纯净度极高,可进行各种后续分析,如[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、质谱等。而这些高纯度蛋白在科学实验、药物研发、生物工程等领域具有广泛的应用前景。[/font][/font][font=宋体] [/font][font=宋体]值得注意的是,选择合适的标签和亲和树脂是这项技术的关键。同时,标签的引入可能会对蛋白的结构和功能产生影响,因此在实验设计时必须慎重考虑。[/font][font=宋体] [/font][font=宋体]总的来说,[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]标签蛋白[/b][/url]沉淀技术以其精准、高效的特性,为蛋白质研究领域带来了革命性的突破。随着科学技术的不断进步,我们有理由相信这一技术将继续为生命科学领域带来更多突破性的发现。[/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注义翘神州[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font]

  • 胰蛋白酶原 标准操作规程(SOP)

    名称:胰蛋白酶原 标准操作规程(SOP)关键词:胰蛋白酶原目的:用于急性胰腺炎检查。**科胰蛋白酶原 标准操作规程(SOP)实验室名称 项 目 编 号 制定日期急 诊 室 胰蛋白酶原 JZ022 20040620手工法。标准操作程序的改动可由任一使用本SOP的工作人员提出,并根据下述人员批准签字:专业主管,科主任。采用免疫层析法,包括两种人胰蛋白酶原-2抗体。一种结合在蓝色的乳胶粒子上,另一种被固定在膜上,捕捉与抗原抗体复分 物并与之结合,显示阳性结果。由上海基因生物技术公司技术公司提供。 新鲜尿液。1、让贮存罐与尿液达到室温。从贮存罐中取出所需数目的试纸条,紧闭贮存罐。不要接触浸渍区,在试纸条上做好标记;2、将浸渍区浸入尿液,保持到液体进入反应区,液面不要超过黄色区域,从标本溶液中取出试纸条,水平放置。五分钟后读结果,若反应区出现:两条蓝线 一条为阴性;无蓝线时为检测失效。正常人应为阴性。1、正常人为阴性。2、急性胰腺炎时尿液中的胰蛋白酶原-2抗原明显升高,可早期诊断。1、不要让试纸条留在标本中,吸收的量过大或过小检测将不准确。2、不要超过黄色浸渍区。试纸条上面部分不能弄湿。3、不要使用已变湿的试纸条。4、如果使用前反应区有蓝色,请不要使用。5、如果没有出现质控线表示结果无效。 操作人员 部门主管 质量负责人姓 名日 期

  • 抗体融合蛋白结构:融合蛋白与单抗区别有哪些?

    [font=宋体][font=宋体]抗体融合蛋白([/font][font=Calibri]Ig[/font][font=宋体]融合蛋白)是指在基因水平上将目的基因同免疫球蛋白部分片段基因相连,并在真核或原核表达系统中表达的重组蛋白。抗体融合蛋白具有抗体的特性及融合功能蛋白的活性,可广泛应用于免疫诊断、免疫治疗、抗体纯化及抗体和抗原的定量分析等,特别可用于免疫导向药物的制备。根据结合的[/font][font=Calibri]Ig[/font][font=宋体]片段的不同,可以将抗体融合蛋白分为[/font][font=Calibri]Fab[/font][font=宋体]融合蛋白、[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白与单链抗体([/font][font=Calibri]scFv[/font][font=宋体])融合蛋白。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白结构:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]融合蛋白、单链抗体融合蛋白研究表明,抗体可变区的[/font][font=Calibri]N[/font][font=宋体]端空间结构上与互补决定区([/font][font=Calibri]CDR[/font][font=宋体])形成的抗原结合部位十分接近,有的抗体可变区[/font][font=Calibri]N[/font][font=宋体]端残基甚至直接参与抗原结合部位的形成,如果将效应蛋白与抗体片段的[/font][font=Calibri]N[/font][font=宋体]端结合,可能对抗体可变区的空间构型造成较大影响,从而降低抗体与抗原的结合能力。因此,通常将蛋白与抗体片段的[/font][font=Calibri]C[/font][font=宋体]端进行结合,形成抗体融合蛋白。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Fc[/font][font=宋体]融合蛋白[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]Fc[/font][font=宋体]融合蛋白在结构上是将抗体的[/font][font=Calibri]Fc[/font][font=宋体]区与功能蛋白进行融合,可将[/font][font=Calibri]Fc[/font][font=宋体]的[/font][font=Calibri]N[/font][font=宋体]端或[/font][font=Calibri]C[/font][font=宋体]端与目的基因进行融合。根据结合蛋白的不同,可以有多种构型。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白作用原理:[/b][/font][font=宋体] [/font][font=宋体]含有抗体可变区的抗体融合蛋白[/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]融合蛋白与[/font][font=Calibri]scFv[/font][font=宋体]融合蛋白含有抗体的可变区,可以进行抗原[/font][font=Calibri]-[/font][font=宋体]抗体反应,其作用原理为利用抗体[/font][font=Calibri]-[/font][font=宋体]抗原特异性结合的特性,通过这种特性的引导,将具有生物活性的蛋白靶向引导至细胞的特定部位,进而发挥一定的生物效应。[/font][/font][font=宋体] [/font][font=宋体]不含抗体可变区的抗体融合蛋白[/font][font=宋体] [/font][font=宋体][font=宋体]该类融合蛋白含有的抗体功能区为[/font][font=Calibri]Fc[/font][font=宋体]区,不能进行抗原[/font][font=Calibri]-[/font][font=宋体]抗体反应,[/font][font=Calibri]Fc[/font][font=宋体]段的作用为延长药物在血浆内的半衰期、增加融合蛋白的稳定性等。[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白药理作用的发挥依赖于功能蛋白部分,利用受体[/font][font=Calibri]-[/font][font=宋体]配体之间的相互作用产生一系列的生物学效应。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白制备:[/b][/font][font=宋体] [/font][font=宋体]最初抗体融合蛋白制备的方法为化学交联法,但这种方法制备的抗体融合蛋白组成不均一、性能不稳定、免疫源性大,随着基因工程技术的发展,该技术已被淘汰。目前主要利用基因工程技术来进行抗体融合蛋白的制备。[/font][font=宋体] [/font][font=宋体][font=宋体]其制备原理为:将抗体基因与目的蛋白基因通过一段接头序列([/font][font=Calibri]linker[/font][font=宋体])进行链接,然后将链接产物亚克隆至载体中,并用原核或者真核表达系统进行表达。制备抗体融合蛋白过程中,一个关键的问题是两蛋白间的接头序列[/font][font=Calibri](Linker)[/font][font=宋体]的长度,[/font][font=Calibri]linker[/font][font=宋体]的长短对蛋白质的折叠和稳定性非常重要。如果接头序列太短,可能影响两蛋白高级[/font][font=Calibri]-[/font][font=宋体]结构的折叠,从而相互干扰;如果接头序列太长,又涉及免疫原性的问题。抗体融合蛋白与双特异性抗体抗体融合蛋白是将抗体的部分片段与目的蛋白进行融合表达得到的重组蛋白,若将两个具有不同抗原特异性的抗体片段连接至同一蛋白,即可得到双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][b]单克隆抗体与抗体融合蛋白区别:[/b][/font][font=宋体] [/font][font=宋体]单克隆抗体抗体[/font][font=宋体] [/font][font=宋体][font=宋体]结构:[/font][font=Calibri]Y[/font][font=宋体]型[/font][/font][font=宋体][font=宋体]制备方法:杂交瘤技术[/font][font=Calibri]/[/font][font=宋体]基因重组[/font][/font][font=宋体][font=宋体]表达系统:真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]作用原理:特异性识别抗原,[/font][font=Calibri]Fc[/font][font=宋体]段引起[/font][font=Calibri]ADCC[/font][font=宋体]、[/font][font=Calibri]ADCP[/font][font=宋体]、[/font][font=Calibri]CDC[/font][font=宋体]等作用。[/font][/font][font=宋体] [/font][font=宋体]抗体融合蛋白[/font][font=宋体] [/font][font=宋体]结构:具有多种结构[/font][font=宋体]制备方法:基因重组[/font][font=宋体][font=宋体]表达系统:真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]作用原理:功能蛋白与靶分子间的受体[/font][font=Calibri]-[/font][font=宋体]配体的相互作用[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以参考:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=Calibri] [/font]

  • 膜蛋白提取原理及方法

    [font=宋体][font=宋体]在生物细胞的世界里,膜蛋白是一个不可或缺的角色。它们不仅参与细胞的识别、信号转导和物质运输等重要功能,还成为了药物研发的重要靶点。动物细胞的膜脂主要有[/font][font=Calibri]9[/font][font=宋体]种,而膜蛋白的种类繁多,虽然多数膜蛋白分子数量较少,但它们赋予了细胞膜至关重要的生物学功能。[/font][/font][font=宋体]根据与脂分子的结合方式和分离难易程度,膜蛋白主要分为外在膜蛋白和内在膜蛋白两大类。[/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])外在膜蛋白为水溶性蛋白,通过离子键或其它较弱的键与膜表面的蛋白质分子或脂分子结合。因此,通过改变溶液的离子强度或提高温度,就可以轻松地从膜上分离出来,而不会破坏膜的结构。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])内在膜蛋白与膜结合非常紧密,一般只有用去垢剂[/font][font=Calibri](detergent)[/font][font=宋体]使其膜解后才可分离出来。[/font][/font][b][font=宋体]膜蛋白提取方法:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1)[/font][font=宋体]膜蛋白色谱[/font][font=Calibri](Chromatography of Membrane Protein,CMP)[/font][font=宋体]:[/font][font=Calibri]CMP[/font][font=宋体]分离强疏水性蛋白、多肽混合物的层析系统,一般有去垢剂(如[/font][font=Calibri]SDS[/font][font=宋体])溶解膜蛋白后形成[/font][font=Calibri]SDS-[/font][font=宋体]融膜蛋白,并由羟基磷灰石为固定相的柱子分离纯化。羟基磷灰石柱具有阴离子磷酸基团([/font][font=Calibri]P-[/font][font=宋体]端),又具有阳离子钙([/font][font=Calibri]C-[/font][font=宋体]端),与固定相结合主要决定于膜蛋白的大小、[/font][font=Calibri]SDS[/font][font=宋体]结合量。利用原子散射法研究[/font][font=Calibri]cAMP[/font][font=宋体]的分离机制发现,样品与[/font][font=Calibri]SDS[/font][font=宋体]结合后在离子交换柱上存在[/font][font=Calibri]SDS[/font][font=宋体]分子、带电荷氨基酸与固定相中带电离子间的交换,从而达到分级分离的目的。[/font][/font][font=宋体][font=Calibri]2)[/font][font=宋体]顺序抽提法:根据细胞蛋白溶解性的差异,用具有不同溶解能力的蛋白溶解液进行抽提的方法。用[/font][font=Calibri]Tris[/font][font=宋体]碱溶液裂解细胞提取高溶解性蛋白;把未溶解的沉淀用标准液溶解提取高疏水性蛋白;最后用含复合表面活性剂的蛋白溶解液,可以再次抽提前两次抽提后不能溶解的膜蛋白。[/font][/font][font=宋体][font=Calibri]3)[/font][font=宋体]离心蛋白提取法([/font][font=Calibri]centrifugal protein extraction[/font][font=宋体])[/font][/font][font=宋体]原理:高渗的蛋白裂解液让细胞溶胀破裂后,超高速离心[/font][font=宋体][font=Calibri]4)detergent-based[/font][font=宋体]:提取时先用裂解液裂解胞膜(选用不同的去污试剂是关键),梯度离心分离细胞器[/font][font=Calibri](ER)[/font][font=宋体],然后分级抽提方法。例如,去掉细胞器之后的[/font][font=Calibri]DEBRIS[/font][font=宋体]就是核膜,再裂解得到核膜蛋白。而膜蛋白是裂胞膜时不溶的部分。[/font][/font][font=宋体]总的感受:细胞的量要很充足。之后的定性鉴定常用的方法有双向免疫扩散、免疫电泳及聚丙稀酰胺凝胶电泳等。纯化蛋白质浓度的定量测定可用双缩脲法、酚试剂法或紫外光吸收法定量鉴定膜蛋白,方便迅速。[/font][font=宋体] [/font][font=宋体]除了上述的提取方法,还有其他一些方法可以用于提取膜蛋白。例如,可以采用超声波破碎法或反复冻融法来破坏生物膜的结构,从而使膜蛋白释放出来。此外,还可以使用一些特殊的分离技术,如超离心或凝胶电泳,来分离和纯化膜蛋白。[/font][font=宋体] [/font][font=宋体]值得注意的是,不同的膜蛋白具有不同的性质和稳定性,因此需要采用不同的提取方法。在选择提取方法时,需要考虑的因素包括目标膜蛋白的分子量、溶解度、稳定性以及生物膜的组成和性质等。[/font][font=宋体] [/font][font=宋体]总之,提取和纯化膜蛋白是一项具有挑战性的任务,需要综合考虑多种因素。通过对不同方法的了解和比较,我们可以根据实际需求选择合适的方法来提取和纯化目标膜蛋白,为进一步的研究和应用奠定基础。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/platform/multi-pass-transmembrane-protein][b]多次跨膜蛋白开发技术平台[/b][/url],详情可以关注[/font][font=Calibri]https://cn.sinobiological.com/services/platform/multi-pass-transmembrane-protein[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 膜蛋白的类型及功能详解

    [b][font=宋体]什么是膜蛋白?[/font][/b][font=宋体]膜蛋白是一类广泛存在于生物体细胞膜上的蛋白质分子。它们在维持细胞结构完整性、调控物质运输和信号传导等方面起着重要作用。根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为三大类:外在膜蛋白或称外周膜蛋白、内在膜蛋白或称整合膜蛋白和脂锚定蛋白。膜蛋白包括糖蛋白,载体蛋白和酶等。[/font][font=宋体] [/font][font=宋体][font=宋体]通常在膜蛋白外会连接着一些糖类,这些糖相当于会通过糖本身分子结构变化将信号传到细胞内。研究膜蛋白结构的技术包括[/font][font=Calibri]X[/font][font=宋体]射线衍射等,常用于重组膜蛋白的表达系统有真核表达系统。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的类型:[/font][/b][font=宋体]目前存在不同类型的膜蛋白,例如:[/font][font=宋体]①整合膜蛋白[/font][font=宋体]②外周膜蛋白[/font][font=宋体]③脂质结合蛋白[/font][font=宋体]④两性蛋白[/font][font=宋体] [/font][b][font=宋体]膜蛋白的特点:[/font][/b][font=宋体][font=宋体]膜蛋白有多种形状和大小,执行多种任务,但它们总是依赖于一些关键特征。[/font] [font=宋体]膜蛋白的一些区别特征如下。[/font][/font][font=宋体]①跨膜域: 跨膜结构域是延伸到脂质双层全长的蛋白质片段。 疏水性氨基酸残基是这些结构域的共同特征,它们介导与膜磷脂疏水性尾部的相互作用。[/font][font=宋体]②疏水和亲水区域: 膜蛋白包含疏水和亲水结构域,使它们能够与脂质双层和两侧的水环境进行交流。[/font][font=宋体]③选择性:膜蛋白的一个共同特征是它们能够调节某些分子或离子的通过。 通常是蛋白质的独特结构和电荷决定了它的选择性。[/font][font=宋体]④受体位点: 当膜蛋白上的受体区域与各自的目标分子或离子结合时,这些区域就会被激活。 大多数时候, 分子 或由受体检测到的离子在受体上具有与该位点结构或化学相容的结合位点。[/font][font=宋体]⑤构象变化: 当膜蛋白结合特定分子或离子时,它通常会发生构象变化,从而引发生物反应或允许蛋白质将结合的分子转运穿过膜。[/font][font=宋体]⑥锚固:多种机制,包括与其他蛋白质的相互作用和与膜中脂质分子的结合,可用于将膜蛋白锚定到细胞膜。[/font][font=宋体]⑦糖基化:碳水化合物链通过称为糖基化的过程与几种膜蛋白结合。 这种改变可以作为防止蛋白水解的保护措施,并作为细胞中下游蛋白质的信号。[/font][font=宋体][font=宋体]跨膜结构域、疏水和亲水区域、选择性、受体位点、构象变化、锚定和糖基化都是膜蛋白的特性,对它们在细胞膜中的功能至关重要。[/font] [font=宋体]由于这些特性,膜中的蛋白质能够运输分子、发送信号、提供结构支持和催化反应。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的功能:[/font][/b][font=宋体]①运输功能[/font][font=宋体]膜转运蛋白分为载体蛋白和通道蛋白两种。主动运输和协助扩散都需要载体蛋白。水分子进去细胞时需要水通道蛋白,还有一种离子通道蛋白,需要注意的是通过通道蛋白进出细胞因为不需要能量所以属于协助扩散。[/font][font=宋体] [/font][font=宋体]②识别功能[/font][font=宋体] [/font][font=宋体]两个不相邻细胞间信息交流是通过信号分子(如激素、神经递质、淋巴因子等)来完成的,而细胞膜上能与信息分子结合的便是细胞膜上的特异性受体。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞与细胞之间可以通过相互接触而相互识别,例如精子与卵细胞的相互识别,效应[/font][font=Calibri]T[/font][font=宋体]细胞与靶细胞之间的相互识别就是依靠糖蛋白来完成的[/font][/font][font=宋体] [/font][font=宋体]③催化功能[/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白可能是某些反应所需要的酶。例如[/font][font=Calibri]Na+-K+[/font][font=宋体]泵中存在[/font][font=Calibri]ATP[/font][font=宋体]水解酶;光反应、有氧呼吸之所以在膜上发生的原因之一就是膜上存在反应所需的相关酶。[/font][/font][font=宋体] [/font][font=宋体]④抗原功能[/font][font=宋体] [/font][font=宋体][font=宋体]表面抗原能和特异的抗体结合,如人细胞表面有一种蛋白质抗原[/font][font=Calibri]HLA[/font][font=宋体],是一种变化极多的二聚体。不同的人有不同的[/font][font=Calibri]HLA[/font][font=宋体]分子,器官移植时,被植入的器官常常被排斥,这就是因为植入细胞的[/font][font=Calibri]HLA[/font][font=宋体]分子不为受体所接受之故。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白制备[/b][/url]平台及跨膜蛋白详解:详情可查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • CRT蛋白和检测

    原理:C-反应蛋白(C-Reactive protein,简称CRP).早于1930年发现,是一种能与肺炎球菌C多糖体反应形成复合物的急性时相反应蛋白.CRP的检测在八十年代以前作为炎症和组织损伤的非特异性标志物大量应用于临床.问题:由于过去CRP的检测方法较为落后,假阳性和假阴性很高,影响了它在临床上的价值,而逐渐被临床所忽视. 前景:解决假性,前途无量!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制