当前位置: 仪器信息网 > 行业主题 > >

分子影像

仪器信息网分子影像专题为您整合分子影像相关的最新文章,在分子影像专题,您不仅可以免费浏览分子影像的资讯, 同时您还可以浏览分子影像的相关资料、解决方案,参与社区分子影像话题讨论。

分子影像相关的方案

  • 溶剂分子性质与界面内层微分电容变化特性
    溶剂分子性质与界面内层微分电容变化特性 依照前文设立的偶极取向分布模型,利用模拟的C1(б)假想曲线阐析溶剂分子性质对电极/溶液界面内层微分电容的影响趋势。理想的C1(б)拟合曲线表现出单峰或双峰的两种基本式样,而溶剂分子的极化,各态偶极取向的差别以及偶极间的相互作用均将导致C1(б)曲线明显形变。据此,可从分子的性质预测各类电极/溶液界面体系C1(б)曲线变化特性。
  • 紫淮山与燕麦粉对酥性饼干品质及营养特性的影响
    ?本试验以紫淮山泥和燕麦粉替代部分低筋面粉,通过调整紫山药泥、燕麦粉、木糖醇、油脂的添加量,得到紫淮山燕麦饼干的最佳工艺配方,即为以混合粉(低筋粉和燕麦粉)添加量100%计,低筋粉添加量60%、燕麦粉添加量40%、紫淮山泥添加量50%、木糖醇添加量40%、油脂添加量40%、奶粉添加量4%、鸡蛋液添加量4%、食盐添加量0.3%、小苏打添加量1.5%、单甘酯添加量0.8%、柠檬酸添加量0.2%.
  • 探究粘度管倾斜度对粘度法测定大分子分子量的影响
    [摘要]误差是化学实验中不可避免的--个因素,其中系统误差和随机误差在一定的实验条件下是一定会存在的,不过--些不规范实验操作所引起的误差或者说是失误还是可以通过细心的实验操作和实验优化有效避免的。本实验探究的是粘度管倾斜度对粘度法测定大分子分子量的影响。[关键词]大分子 分子量倾斜度粘度法[引言] 在高聚物的研究中,相对分子质量是-一个不可缺少的重要数据。他不仅反应了高聚物分子的大小,且关系到高聚物的物理性能。但与一般的无机物或低分子的有机物不同,高聚物多是相对分子质量不等的混合物,因此通常测得的相对分子质量是-一个平均值。高聚物的相对分子质量测定的方法有很多,比较起来,粘度法设备简单,操作方便,并有很好的实验精度,是常用的方法之一。1由实验原理,高聚物的分子质量由公式[ n ]=KM' 得到, 由此看出,高聚物相对分子质量的测定,最后可归结为溶液特性粘度[η ]的测定。而在实验教材中,粘度管要求保持竖直状态,本实验探讨的就是粘度管的倾斜度,对t值测定的影响通过计算后从而探讨对大分子分子量的影响。
  • 紫淮山与燕麦粉对酥性饼干品质及营养特性的影响
    ?本试验以紫淮山泥和燕麦粉替代部分低筋面粉,通过调整紫山药泥、燕麦粉、木糖醇、油脂的添加量,得到紫淮山燕麦饼干的最佳工艺配方,即为以混合粉(低筋粉和燕麦粉)添加量100%计,低筋粉添加量60%、燕麦粉添加量40%、紫淮山泥添加量50%、木糖醇添加量40%、油脂添加量40%、奶粉添加量4%、鸡蛋液添加量4%、食盐添加量0.3%、小苏打添加量1.5%、单甘酯添加量0.8%、柠檬酸添加量0.2%,按此工艺配方制作的紫淮山燕麦饼干各项指标均符合国家标准GB/T20980—2021《饼干质量通则》及GB7100—2015《食品安全国家标准饼干》的要求。
  • 中科院士李永舫有机光伏巨分子受体(GMAs)与小分子受体结构
    有机太阳能电池(OSCs)因其在柔性和可穿戴光伏设备制造中的低成本溶液加工方法而备受关注。特别是全聚合物太阳能电池(all-PSCs),由于其良好的柔性和形态稳定性,在柔性设备领域显示出巨大潜力。然而,早期用于all-PSCs的聚合物受体在近红外区域的吸收能力较弱,且分子堆积不理想,限制了其进一步发展。为了克服这些挑战,提高功率转换效率(PCE),研究人员提出了聚合小分子受体(PSMA)的概念,利用窄带隙小分子受体(SMAs)作为关键构建模块。PSMAs不仅具有低带隙和强吸收的优点,还具有适合的分子堆积和较小的激子结合能,这些特性促使all-PSCs的PCE超过了17%。尽管PSMAs在all-PSCs的发展中取得了显着成就,但其光伏性能受批次变化的影响较大。为了解决这一问题,并实现更低的扩散特性,需要开发具有精确定义结构和接近聚合物分子量的新材料。在这样的背景下,中科院院士李永舫团队设计了一系列巨大分子受体(GMAs),包括DY、TY和QY,它们分别具有两个、三个和四个小分子受体亚基。这些GMAs通过逐步合成方法制备,并用于系统地研究亚基数量对受体结构和性能的影响。基于这些受体的器件中,TY基膜显示出适当的给体/受体相分离,更高的电荷转移态产率和更长的电荷转移态寿命。结合最高的电子迁移率、更高效的激子解离和更低的电荷载流子复合特性,基于TY的器件实现了16.32%的最高PCE。发表于Nature Communications的结果不仅表明GMAs中的亚基数量对其光伏性能有显着影响,而且还证明了通过GMAs的结构多样化,可以深入理解从SMAs到PSMAs的性能差异,这对于推动高效率和稳定的有机太阳能电池应用至关重要。
  • 北京微讯超技:脱毒亚麻粕籽粉对面团流变学及面包特性的影响研究
    采用粉质仪、拉伸仪、质构仪等分析手段探讨脱毒处理后的亚麻籽粕粉添加到小麦粉中对面团流变学特性(粉质特性、拉伸特性)、面包烘焙特性的影响。结果表明,挤压处理使有毒成分生氰糖苷含量显著降低;随着脱毒亚麻籽粕粉添加量的增加,面团吸水率、弱化度增加;面团形成时间、稳定时间和粉质评价值降低;面团的R5阻力、最大拉伸阻力、拉伸长度、拉伸能量降低;复合小麦粉所制面包比容下降,感官评分及硬度、弹性等物性指标均无较大的变化。当添加量增大(超过5%时),需同事配合使用小麦粉改良剂。
  • 使用QCM-D技术检测分子膜水分子透过性能
    在活体生物钟,细胞膜对水的透过性能扮演了非常重要的角色。人体中还有70%的水分,这些水分需要被运输到泪腺,口腔,肾,脑,肺,和血液等等。人体的皮肤的最外层通过调制,吸收和释放调节水份。在这篇文章中,作者通过QCM-D成功研究分子膜水分子透过性能,这对于化妆品,药学和医学应用方面具有深刻的影响。
  • 巧用绝缘聚合物矩阵, 全小分子有机太阳能电池的稳定性
    有机太阳能电池(OPV) 凭借其轻薄、 柔性可弯曲和成本低廉等优势, 成为新一代光伏技术的重要发展方向。 而近年来, 全小分子有机太阳能电池(ASM OPV) 因其更易于合成、 更高的材料可重复性、 以及更易于精确调控材料特性等优点, 受到科研人员的广泛关注。 与聚合物太阳能电池相比, 全小分子有机太阳能电池ASM OPV 具有以下显著的优势和劣势:优点:1. 高纯度和可控性: 小分子材料可以通过精确的化学合成获得高纯度, 这使得材料特性更易于控制和重现, 从而提高电池性能的一致性和稳定性。2. 电子迁移率高: 小分子材料通常具有较高的电子迁移率, 这有助于提高电池的光电转换效率。3. 溶液加工性: 小分子材料通常易溶于有机溶剂, 适合溶液加工技术, 例如旋涂、 刮涂和印刷, 这些技术具有低成本和大面积制备的潜力。4. 结构灵活性: 小分子材料的化学结构可以通过分子设计灵活调整, 以优化光吸收、 电荷传输和能级匹配。5. 热稳定性: 小分子材料的结构稳定性较高, 一般具有更好的热稳定性, 这有助于提高电池的使用寿命。缺点:1. 薄膜形成难度: 小分子材料在成膜过程中容易出现结晶和相分离现象, 这会影响薄膜的均匀性和电池性能。2. 溶剂选择有限: 虽然小分子材料可以溶解在有机溶剂中, 但合适的溶剂选择有限, 这可能会影响制程的灵活性。3. 机械柔韧性较差: 小分子材料的机械柔韧性一般不如聚合物材料, 这可能会影响电池在柔性基板上的应用。4. 成本相对较高: 由于小分子材料的合成过程较为复杂, 纯度要求高, 其成本通常高于聚合物材料。5. 能级匹配挑战: 小分子材料的能级匹配需要精确设计, 这对材料设计和制备提出了更高的要求。另外, ASM OPV 系统也存在着一些问题, 例如 其分子堆积和聚集结构通常比聚合物系统更加脆弱, 导致其在实际应用中更容易发生性能衰退。近期, 香港理工大学李刚教授团队 在 Advanced Materials 期刊上发表了重要研究成果, 为提升全小分子有机太阳能电池的稳定性指明了新方向。
  • 使用KSV NIMA LB膜分析仪研究细胞模型内生物分子相互作用
    生物界中绝大多数反应发生在由磷脂双分子层构成的细胞膜,或者细胞内部。细胞膜会影响到蛋白质的折叠,并且会创造出适合细胞反应生存的微环境。为了进一步了解和模拟真实的细胞膜结构,使用KSV NIMA LB膜分析仪学习细胞生物分子的相互作用。
  • 白金纳米粒子凝聚温度及氛围气的影响
    测试仪器: 组合型多功能X线衍射仪RINT-UltimaⅢ+ X线衍射-差热扫描同时测试装置XRD-DSCⅡ 想了解什麽? 粒径数十nm以下的金属纳米粒子与块状粒子在很多点存在不同的特性、各方面应用研究在不断向前发展。 但到了20nm以下时、随着粒径的減少,表面能量急剧变大易凝聚,采取各种凝聚抑制政策的同时,正在研究适度凝聚的方法。  白金纳米粒子催化活性较高、期待有广泛的应用,不会引起凝聚及表面劣化,还要保持高催化活性比较困难。采用X线衍射-DSC同时测试仪器,很容易得知因温度和氛围气带来的易凝聚之区别。
  • 使用iMScope™ QT快速绘制小鼠肾脏和大脑中的药物及其代谢物分子影像
    质谱成像(Mass Spectrometry Imaging: MSI)是一种众所周知的无需标记即可实现生物样本中成分可视化的技术。在本研究中,我们使用新开发的被称为大气压基质辅助激光解吸电离-MSI的iMScope QT快速绘制了C57BL/6雄性野生型小鼠的丙咪嗪、氯喹及其代谢物的图谱(32像素/秒)。证实了小鼠肾脏和大脑中药物及其代谢物的区域特定性定位。本研究中观察到的这些药物及其代谢物的详细定位信息有助于了解这些药物的临床相关特性、有效性和潜在副作用。另外,本研究证实了iMScope QT快速绘制生物样本中存在的小分子药物及其代谢物图谱的可行性。
  • 分子排阻色谱柱法分析EGFP IVT mRNA聚集体
    mRNA聚集体检测是指使用特定的分析技术来识别、量化并表征mRNA分子在生产或存储过程中可能形成的聚集体。mRNA(信使核糖核酸)是一种单链RNA分子,它携带遗传信息,指导细胞合成特定的蛋白质。在mRNA疫苗或药物的生产过程中,mRNA分子可能会因为多种因素(如温度变化、pH值波动、物理或化学应力等)而形成聚集体。聚集体的存在可能会影响mRNA的稳定性、活性以及最终的疫苗或药物效果。因此,检测mRNA聚集体对于确保产品质量、安全性和有效性至关重要。本应用采用全新推出的Biozen dSEC-7建立了一种分析mRNA聚集体的方法,并评估加热处理对聚集体的影响。通过分子排阻色谱法(SEC-HPLC)研究人员可以更好地理解和控制mRNA聚集体的形成,从而优化mRNA疫苗和药物的生产工艺,提高产品质量。
  • 硅胶填料的孔径和粒径大小对一种小分子蛋白质——胰岛素分离的影响 (PDF)
    本文采用不同孔径和粒径的硅胶填料色谱柱对胰岛素这种小分子蛋白质进行分离。对不同孔径(包括 80 ?、95 ?、120 ?、170 ?、300 ?)和粒径(包括 1.8 μm、2.7 μm、3.5 μm、5 μm)填料色谱柱的柱效和分辨率进行了对比。对比结果显示,胰岛素分析采用较大孔径填料的色谱柱可获得更高的柱效。填料孔径大于100 ? 的色谱柱即可以使胰岛素达到高效分离,而采用 300 ? 的大孔径色谱柱对于该中等分子量分子的分析就没有必要。采用小粒径填料色谱柱分析胰岛素也可获得较高柱效。这一点通过改变粒径大小(5 μm&3.5 μm&1.8 μm)进行分析得到证实。Agilent Poroshell 120 色谱柱使用了 120 ? 孔径,2.7 μm 粒径的表面多孔颗粒填料,使它成为胰岛素分析的最佳选择。
  • 提高小分子药物分析方法的开发效率
    本文通过同时分析多种小分子药物的方法条件考察案例,介绍了方法开发系统的自动化流程。结果表明,受流动相和固定相的影响,logP和pKa等不同的组分,其分离结果会发生较大变化。在开发分析方法时,自动更换对目标组分分离和保留影响较大的因素-色谱柱和流动相的组合,确认最佳分离条件。通过使用Nexera方法开发系统和专用软件“Method Scouting Solution”,可自动实施条件变更和数据采集,大幅减轻HPLC分析条件考察的负担,提高效率。各分析条件所得的色谱图分离效果可使用多数据报告功能进行定量评估,也可以图表形式将考察结果可视化,因此可有效地筛查最佳分析条件。
  • 株式会社理学:白金纳米粒子凝聚温度及氛围气的影响
    测试仪器: 组合型多功能X线衍射仪RINT-UltimaⅢ+X线衍射-差热扫描同时测试装置XRD-DSCⅡ想了解什麽? 粒径数十nm以下的金属纳米粒子与块状粒子在很多点存在不同的特性、各方面应用研究在不断向前发展。 但到了20nm以下时、随着粒径的減少,表面能量急剧变大易凝聚,采取各种凝聚抑制政策的同时,正在研究适度凝聚的方法。 白金纳米粒子催化活性较高、期待有广泛的应用,不会引起凝聚及表面劣化,还要保持高催化活性比较困难。采用X线衍射-DSC同时测试仪器,很容易得知因温度和氛围气带来的易凝聚之区别。
  • 从分子互作水平解读,为何新冠突变体传染能力增强?
    繁殖不息,突变不止,进化不断——这个是所有物种的共性,尤其是已经肆虐了一年多的新冠病毒。病毒的突变不一定会使得病毒自身毒性更强,但往往会导致传染能力更强。新冠病毒S蛋白与人受体ACE2的分子结合能力是决定病毒传染能力强弱重要的因素之一。一个新冠病毒突变株的氨基酸突变点非常多,但是最值得关注就是那些位于S蛋白与人受体ACE2的结合部分(RBD结构域)的突变,可以直接影响其与受体的结合亲和力,从而改变其感染能力。
  • 不同干燥方式对滑子蘑滋味物质的影响
    为探究热风干燥、热泵干燥和微波干燥3种不同干燥方式对滑子蘑中滋味物质的影响,结合电子舌分析,测定比较了干燥滑子蘑中游离氨基酸、有机酸、5'-核苷酸的含量,并运用等鲜浓度(Equivalentumamiconcentration,EUC)值对其进行了鲜味评价。
  • DNA&RNA寡聚核苷酸的准确分子质量测定
    生物质谱的技术为寡聚核苷酸的分子质量和序列分析提供了新的途径。之前,基质辅助激光解吸电离飞行质谱(MALDI-TOF)主要用于分子质量比较小的寡聚核苷酸分析,受仪器的灵敏度,分辨率,碱金属离子加合峰的影响,测试的精确度和可靠性都存在一定问题。另外,基于常规的电喷雾离子阱(Ion Trap)质谱的检测,同样受限于分辨率与质量精度,也无法满足高精度、高分辨、高灵敏的寡聚核苷酸的检测分析。LTQ-Orbitrap Elite 组合式质谱仪结合了最新的双压线性离子阱质谱仪和新型高场 Orbitrap TM 质量分析器,可以提供高达240,000 的分辨率(FWHM)、高灵敏度、快速的扫描速度和更大的动态范围,并且可以在同一台质谱上可以同时实现低分辨和高分辨扫描,满足客户的不同需求。该系统可以为寡聚核苷酸的分子质量测定提供准确、快速、可靠的分析测试。
  • 差示扫描量热法如何测量生物分子稳定性
    1.差示扫描量热法如何测量生物分子稳定性差示扫描量热法(主要用于表征生物分子(如蛋白质)的稳定性。重要的是,它是对其天然形式的生物分子的直接测量。差示扫描量热法测量可以提供关于热稳定性的数据,并作为结构指纹来评估构象。通过以恒定速率加热分子,测量与生物分子热变性相关的热量变化。差示扫描量热法的优点 由于差示扫描量热法依赖于热测量,因此可以表征天然生物分子,而不必具有光学透明的样品。通过差示扫描量热法测量的特性提供了熔化温度,但也提供了生物分子内折叠和展开力的数据。
  • 差示扫描量热法如何测量生物分子稳定性
    差示扫描量热法(主要用于表征生物分子(如蛋白质)的稳定性。重要的是,它是对其天然形式的生物分子的直接测量。差示扫描量热法测量可以提供关于热稳定性的数据,并作为结构指纹来评估构象。通过以恒定速率加热分子,测量与生物分子热变性相关的热量变化。差示扫描量热法的优点 由于差示扫描量热法依赖于热测量,因此可以表征天然生物分子,而不必具有光学透明的样品。通过差示扫描量热法测量的特性提供了熔化温度,但也提供了生物分子内折叠和展开力的数据。
  • 【安捷伦真空】让您的真空设备健康快乐的工作——分子泵篇
    分子泵是涡轮分子泵、牵引分子泵和复合分子泵的统称,是一种非常常见的获得高真空和超高真空的设备。分子泵的正确使用和及时保养,对分子泵轴承乃至整个分子泵的正常工作意义重大。
  • 用于威士忌真假鉴别的分子光谱技术的对比
    目前,酒类产品的鉴别依赖于耗时费力的实验室检测技术——目前尚无可用于酒类鉴别的快速筛选检测方法。分子光谱分析技术特别适用于快速筛查,其优点在于成本较低,操作容易,结果快速准确。分子光谱分析技术并不局限于实验室的各类物品,无需使用气体、溶剂等。近年来,移动式或便携式分子光谱分析技术的出现已经使实验室筛选结果更接近于测量点或现场检测结果。在威士忌真伪鉴别方面,已有多项分子光谱分析技术问世,这些技术均有助于假冒威士忌的检测。本文旨在研究分子光谱分析技术在威士忌真伪鉴别方面的应用潜力,并推荐几种适用于鉴别酒类造假的小型化检测方法。
  • 小分子多肽的分离纯化
    94%)的多肽产品,为此类小分子多肽样品的分离纯化提供了一种高效、快速且成本低廉的解决方案。
  • 小分子检测海量数据,用BLI技术更容易!
    近期就有几篇不错的应用BLI技术开发小分子药物的文章发表,就让陈老湿给大家作一个简单的介绍,更有陈老湿力推的小分子检测“神功宝典”!
  • 分子排阻色谱法测定单克隆抗体分子大小变异体的高效方法开发
    本文描述了通过使用具有高耐腐蚀性的Nexera XS inert、pH值监测器(pHM-40)和LabSolutions MD(支持方法开发的专用软件),为mAb分子大小变异体测定提供足够的分离能力和耐用性的高效方法优化示例。
  • 流感病毒分子诊断整体解决方案
    天隆科技自成立以来,一直专注于分子诊断、基因检测领域。针对流感防控,我司自主研发的分子诊断产品已经超过60种,并可提供实验室设计规划+仪器试剂配置+医学检验服务+操作培训及报告解读等分子诊断整体解决方案,助力流感防控!
  • PriboLab公司推出全球领先技术的分子印迹固相亲和柱
    近期,Pribolab公司将先进的分子印迹技术应用于霉菌毒素高效液相色谱(HPLC)检测领域,面向全球推出基于分子印迹技术的展青霉素分子印迹固相亲和柱。Pribolab公司推出的PriboMIPTM Patulin 展青霉素分子印迹固相亲和柱,是运用分子印迹技术原理,模拟抗原抗体反应模式,配合HPLC液相方法在检测展青霉素前,将样品中的展青霉素进行特异性提纯处理和富集,完全除去其他杂质。
  • 优化加速小分子药物筛选解决方案
    随着新的药物筛选靶点的不断涌现,新的检测方法、分析技术的不断更新,为小分子药物筛选提供了新的机遇和可能。作为 科学服务领域的世界领导者,赛默飞世尔科技可以提供优化加速小分子药物筛选的整体解决方案。
  • 分子探针法表征A型沸石的孔径分布
    分子探针法是评价微孔沸石的窗孔孔隙分布的一种方法。该方法利用探针分子的分子筛分作用,从而对沸石的孔隙分布进行直接评价。本文介绍了使用五种探针分子(H2O:0.28nm (dc),CO2:0.31 nm (dm),C2H4:0.40nm(dm),n-C4H10:0.45nm (dm),iso-C4H10:0.58nm(dm),见图像)评估三种A型沸石(3A,4A, 5A)的微孔分布的结果。图1显示每个沸石的探针分子在298.15 K下的吸附等温线。H2O, CO2,C2H6 用于探测沸石 3A , CO2,乙烷C2H6,正丁烷n-C4H10,异-丁烷iso-C4H10 用于探测4A、5A沸石。
  • 大气压冷等离子体处理对椰子球蛋白分散稳定性的影响
    椰奶富含蛋白质和油脂,容易受到微生物污染,在加工过程中需要进行杀菌处理。椰奶的传统杀菌方法是热杀菌,如巴氏杀菌和高温瞬时杀菌。在热加工中,食物结构和质地会不同程度被破坏。此外,热杀菌过程会导致大量蛋白质降解,从而影响椰奶的乳液系统,包括液滴聚集和分层。在椰奶中,椰子蛋白作为天然乳化剂,粘附在椰子油表面,形成油在水(O/W)乳液。椰子球蛋白(CG)是椰子中的主要蛋白质(占60-75%),具有良好的乳化性能,对椰奶的稳定性起着重要作用。大气压冷等离子体技术(ACP)作为一种新型的非热杀菌技术,其优点是低温操作,处理时间短,杀菌效果好,对食品质量影响最小。然而,在ACP处理期间,多种活性物质也会受到影响,如蛋白质、脂质和多糖。这些变化会影响食品的稳定性、结构、质地和感官性能,从而影响食品的质量。然而,ACP在食品中应用的最大挑战是如何精确定义操作条件,以实现微生物的有效灭活,同时将对食品质量的影响降至最低。因此,迫切需要研究不同ACP处理条件下食品成分和结构的变化,以促进ACP在食品中的大规模应用。本研究选择椰浆稳定性的重要成分椰子球蛋白(CG),探讨ACP处理对CG乳化性能的影响。同时为减少其他外源乳化剂的添加以及使用ACP处理来保持椰奶的质量和稳定性提供理论基础和实践指导。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制