当前位置: 仪器信息网 > 行业主题 > >

仿生制造

仪器信息网仿生制造专题为您整合仿生制造相关的最新文章,在仿生制造专题,您不仅可以免费浏览仿生制造的资讯, 同时您还可以浏览仿生制造的相关资料、解决方案,参与社区仿生制造话题讨论。

仿生制造相关的资讯

  • 西南科大仿生微纳精密制造团队:精密3D打印构建仿生麦芒分级系统用于高效雾水收集
    作者:肖林雾水收集对解决水资源短缺具有重要的意义,如何提升雾水收集效率一直是研究热点。高效的雾水收集需要同时满足高效捕捉和快速传输两个严苛的条件。受大自然启发,制备合适的仿生系统被认为是实现这两个严苛条件的有效方法。然而,目前制备的仿生系统结构单一,精度较低,无法实现高效的雾水收集。近日,西南科技大学李国强教授领导的仿生微纳精密制造团队,受小麦麦芒启发,利用PμSL3D打印技术(深圳摩方材料科技有限公司,nanoArch® S130)构造了仿生麦芒分级系统,实现了高效的雾水收集。经过优化设计的仿生麦芒雾水收集系统,表面分布有众多微型刺状取向收集器,扩大了收集的有效面积,增强了雾滴捕捉效率,并突破传统结构下滴状传输的限制,实现了高速的膜状传输,极大地提高传输速度和收集效率。该系统的水雾收集效率可达5.9g/cm2h,有望应用于液滴传输、药物运输、细胞牵引、海水淡化等科学技术领域。图1 自然麦芒结构特征、雾水收集过程及仿生麦芒系统的制备过程。a.小麦麦芒捕捉潮湿空气中的小水滴。b.麦芒逆重力超快雾滴输运过程。c-e. 自然麦芒的分级结构SEM表征。f. PμSL 3D打印系统制备仿生麦芒分级系统的示意图。图2 自然麦芒与仿生麦芒的结构特征及演变规律。a-c.自然麦芒表面微刺、凹槽的结构特征统计曲线图。d-e.5种不同结构形式仿生系统示意图。f-g. 不同结构形式仿生系统的表征。h.仿生麦芒随微刺数目增加的结构演变示意图。要点:小麦麦芒可从潮湿空气中捕捉微小雾滴作为水分供给。这种高效的雾水收集能力主要是源于表面的锥形脊柱、梯度凹槽、方向性刺集成的分级微纳系统。通过对结构特征的分析,借助PμSL打印技术的高精度性、自由性对结构进行拆解、重新整合,并根据结构的演变过程优化构建模型,编程调控制备了不同结构形式的仿生系统,包括仿生脊柱系统(A-spine)、仿生凹槽系统(A-grooves)、仿生麦芒系统体系(A-awn-2、A-awn-3、A-awn-4)。图3 不同结构形式仿生麦芒的雾水收集过程。a-e. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)在水雾环境下逆重力的雾滴捕捉输运过程。图4 仿生麦芒的水雾收集作用机理。a-c. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)逆重力下的雾滴运输距离、速度、体积的统计曲线图。d-f. 仿生脊柱、仿生凹槽、仿生麦芒体系的雾水收集机理分析。要点:通过在水雾环境下观察,在仿生脊柱与仿生凹槽结构表面,雾滴以大液滴的形式进行定向地输运——滴状传输。但在仿生麦芒系统体系表面,无明显大液滴出现,相反雾滴是以一层薄水膜进行定向输运——膜状传输。液体传输模式的转变主要是受表面微结构所影响。脊柱与凹槽单级仿生结构系统,难以实现对雾滴快速高效的捕捉,无法在表面形成连续稳定的液体薄膜,所捕捉液滴易受周围液滴的吸引合并成大液滴进行传输。当其体积增大到某数值时,结构所产生的拉布拉斯力无法继续驱动液滴运动,最终钉扎在表面。而仿生麦芒分级系统体系,由于表面附加了众多的微型刺状取向收集器,增强了雾滴捕捉能力,实现快速的润湿过程,在表面形成连续稳定的液体薄膜。且与表面其他微滴合并凝结相比,微滴在水膜表面滑动的所需时间更短,因此更倾向于沿水膜表面运动,使得传输速度和收集效率得到显著的提升。实验结果表明,膜状传输的速度要比滴状传输高40倍,可实现3.5 mm/s的传输速度和 5.9 g /cm2h的收集效率。该工作以 “Programmable 3D printed wheatawn-like system for high-performance fogdropcollection” 为题发表在国际著名期刊《Chemical Engineering Journal》上。该项工作得到了国家自然科学基金委、四川省科技厅等基金项目的支持。论文链接:https://www.sciencedirect.com/science/article/pii/S1385894720311311.
  • 西南科大仿生微纳精密制造团队:精密3D打印构建仿生麦芒分级系统用于高效雾水收集
    雾水收集对解决水资源短缺具有重要的意义,如何提升雾水收集效率一直是研究热点。高效的雾水收集需要同时满足高效捕捉和快速传输两个严苛的条件。受大自然启发,制备合适的仿生系统被认为是实现这两个严苛条件的有效方法。然而,目前制备的仿生系统结构单一,精度较低,无法实现高效的雾水收集。近日,西南科技大学李国强教授领导的仿生微纳精密制造团队,受小麦麦芒启发,利用PμSL3D打印技术(深圳摩方材料科技有限公司,nanoArch® S130)构造了仿生麦芒分级系统,实现了高效的雾水收集。经过优化设计的仿生麦芒雾水收集系统,表面分布有众多微型刺状取向收集器,扩大了收集的有效面积,增强了雾滴捕捉效率,并突破传统结构下滴状传输的限制,实现了高速的膜状传输,极大地提高传输速度和收集效率。该系统的水雾收集效率可达5.9g/cm2h,有望应用于液滴传输、药物运输、细胞牵引、海水淡化等科学技术领域。图1 自然麦芒结构特征、雾水收集过程及仿生麦芒系统的制备过程。a.小麦麦芒捕捉潮湿空气中的小水滴。b.麦芒逆重力超快雾滴输运过程。c-e. 自然麦芒的分级结构SEM表征。f. PμSL 3D打印系统制备仿生麦芒分级系统的示意图。图2 自然麦芒与仿生麦芒的结构特征及演变规律。a-c.自然麦芒表面微刺、凹槽的结构特征统计曲线图。d-e.5种不同结构形式仿生系统示意图。f-g. 不同结构形式仿生系统的表征。h.仿生麦芒随微刺数目增加的结构演变示意图。要点:小麦麦芒可从潮湿空气中捕捉微小雾滴作为水分供给。这种高效的雾水收集能力主要是源于表面的锥形脊柱、梯度凹槽、方向性刺集成的分级微纳系统。通过对结构特征的分析,借助PμSL打印技术的高精度性、自由性对结构进行拆解、重新整合,并根据结构的演变过程优化构建模型,编程调控制备了不同结构形式的仿生系统,包括仿生脊柱系统(A-spine)、仿生凹槽系统(A-grooves)、仿生麦芒系统体系(A-awn-2、A-awn-3、A-awn-4)。图3 不同结构形式仿生麦芒的雾水收集过程。a-e. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)在水雾环境下逆重力的雾滴捕捉输运过程。图4 仿生麦芒的水雾收集作用机理。a-c. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)逆重力下的雾滴运输距离、速度、体积的统计曲线图。d-f. 仿生脊柱、仿生凹槽、仿生麦芒体系的雾水收集机理分析。要点:通过在水雾环境下观察,在仿生脊柱与仿生凹槽结构表面,雾滴以大液滴的形式进行定向地输运——滴状传输。但在仿生麦芒系统体系表面,无明显大液滴出现,相反雾滴是以一层薄水膜进行定向输运——膜状传输。液体传输模式的转变主要是受表面微结构所影响。脊柱与凹槽单级仿生结构系统,难以实现对雾滴快速高效的捕捉,无法在表面形成连续稳定的液体薄膜,所捕捉液滴易受周围液滴的吸引合并成大液滴进行传输。当其体积增大到某数值时,结构所产生的拉布拉斯力无法继续驱动液滴运动,最终钉扎在表面。而仿生麦芒分级系统体系,由于表面附加了众多的微型刺状取向收集器,增强了雾滴捕捉能力,实现快速的润湿过程,在表面形成连续稳定的液体薄膜。且与表面其他微滴合并凝结相比,微滴在水膜表面滑动的所需时间更短,因此更倾向于沿水膜表面运动,使得传输速度和收集效率得到显著的提升。实验结果表明,膜状传输的速度要比滴状传输高40倍,可实现3.5 mm/s的传输速度和 5.9 g /cm2h的收集效率。该工作以 “Programmable 3D printed wheatawn-like system for high-performance fogdropcollection” 为题发表在国际著名期刊《Chemical Engineering Journal》上。该项工作得到了国家自然科学基金委、四川省科技厅等基金项目的支持。论文链接:https://www.sciencedirect.com/science/article/pii/S1385894720311311.官网:https://www.bmftec.cn/links/10
  • 重大成果!电子束曝光(EBL)技术首次应用于蝉翅结构纳米柱的仿生制造!
    生物体从宏观到微观,再到纳米尺度的多级复合结构,使其具有诸多独特的优异性能。人们很早就开始模仿生物的特殊功能,来发明和应用新技术。例如人们根据苍蝇特殊的“复眼”结构,仿照制成了“蝇眼透镜”,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片;还有仿照水母耳朵的结构和功能,人们设计了水母耳风暴预测仪;根据蛙眼的视觉原理,研制成功了一种电子蛙眼,能准确无误地识别出特定形状的物体!图:苍蝇特殊的“复眼”结构(图片来源于网络)这就是早期的仿生学应用,但随着科技的进步和纳米技术的迅速发展,人们开始将仿生学应用到纳米尺度,研究者通过模仿生物的纳米结构仿生制造出类似的超微结构,以此来探究和获取生物的特殊功能。在纳米微结构加工领域,常用的微纳光刻技术有纳米压印、紫外光刻、X射线曝光等技术。而在最近的一项研究中,昆士兰科技大学的研究团队首次将电子束曝光(EBL)技术应用于生物纳米结构的仿生制造,并取得了重要研究成果。目前,该项研究论文已被Journal of Materials Chemistry(IF=4.776)录用,论文题目为Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication ofnanopatterned titanium pillars。研究中涉及的大量仿生制备工作由TESCAN 的EBL完成,并使用了TESCAN MIRA3场发射扫描电子显微镜表征细胞间相互作用。图:研究论文已被Journal of Materials Chemistry(IF=4.776)录用由于蝉翼具有多功能生物特性,如超疏水性,自清洁和杀菌作用等,人们对其在生物医学上的应用产生了浓厚兴趣。昆士兰科技大学Prasad KDV Yarlagadda及其研究团队对蝉翼的杀菌和细胞相容特性进行了系统研究,并首次使用电子束曝光技术(EBL)进行蝉翼结构的仿生制造,加工出类似的纳米锥阵列结构,经研究发现,其同样具有杀菌和生物相容性。首先,研究人员使用了SEM,AFM,TEM等多种微观分析技术对三种不同种类的澳大利亚蝉翅膀表面的纳米结构进行了表征。研究人员观察到,三种蝉翼表面均具有独特的形貌结构,虽然凸起的高度、直径、间距和密度并不完全相同,但都呈现出锥状的纳米柱阵列。图:不同物种的蝉翅具有不同高度、间距、直径和密度的纳米柱结构研究人员分别采用了在蝉翼上附着铜绿假单胞菌、金黄色葡萄球菌细胞和人成骨细胞的方法来探究昆虫翅膀的杀菌活性和生物相容性。实验证明,三种蝉翼均具有很好的杀菌活性,且附着人成骨细胞的蝉翅细胞形态在24小时后仍然保持完整,表明它们仍然具有生物相容性。在该项研究中,研究人员尝试进行蝉翼结构的仿生制造。由于是纳米尺度的阵列结构,一般的刻蚀、沉积方法均无法实现。而常规的电子束曝光(EBL)技术也无法实现如此规模的锥体制造。昆士兰科技大学的研究团队巧妙地利用电子束在光刻胶中的散射,通过控制电子束能量,制作出椎体的“模子”,然后利用沉积生长出需要的椎体,最后腐蚀掉所有光刻胶,得到了完美的纳米锥阵列。图:仿生纳米锥阵列的制作过程示意图最终制备的仿生Ti纳米锥的高度为116 ~282nm,锥形柱的顶端直径最小达13.3nm,底部直径93.6nm左右。并且,进一步实验发现,其同样具有杀菌性和生物相容性。昆士兰科技大学的这项研究成果对于纳米仿生学的应用具有重大意义。 图:通过EBL技术制备的仿蝉翼结构的Ti纳米锥陈列图:(E)在制备出的仿生Ti纳米锥阵列上附着铜绿假单胞菌细胞;(F)对照Ti柱和仿生纳米Ti柱上附着的人成骨细胞的活性;(G)在仿生Ti纳米锥阵列上附着扩散良好的成骨细胞;电子束曝光(EBL)技术是一种电子束直写技术,是利用电子束在涂有对电子敏感的高分子聚合物(光刻胶)的基底上直接描画出图形,通过刻蚀实现微小结构的加工。电子束曝光(EBL)技术避免了传统方法中对模板加工和使用的复杂过程,其高分辨、高度灵活性、高灵敏度的特点也受到研究人员关注,且EBL制备方法更加简单,更容易制备出小尺寸的各种花样的周期性结构。在上述工作中,昆士兰科技大学研究团队使用了TESCAN MIRA3高分辨场发射扫描电子显微镜搭配TESCAN自主研发的电子束曝光(EBL)技术出色完成了相关工作。不久前,昆士兰科技大学新采购了一台TESCAN最新的S8000X Xe Plasma FIB-SEM,这是一款功能强大的氙等离子源FIB,配置了TESCAN最新一代的多项专利技术,期待昆士兰科技大学未来取得更多的研究成果!图:昆士兰科技大学最新采购的TESCAN S8000X Xe等离子源FIB-SEM 注释:该项研究由昆士兰科技大学研究团队完成,相关论文目前已通过了英国皇家化学学会(Royal Society of Chemistry)评审,论文稿件已被录用,将于不久后在网上公开发布。
  • 上海理工《Nature Communications》:基于微流体辅助3D打印技术制造仿生复眼
    历经5亿年的演化,节肢动物的复眼已经进化成了一套结构复杂、功能卓越的成像系统,节肢动物可以通过复眼,以极大视场角的全景模式,结合深度感知的能力全方位洞察周边的事物。由于复眼在成像方面的诸多优势,研究人员不断提出各种制备仿生复眼的方案,但是,自然复眼的结构过于复杂,传统微加工工艺无法实现自然复眼的真实结构,过去所研制的仿生复眼无法适用于普通光学元件及图像传感器,这使得仿生复眼的应用受到了极大的限制。近日,上海理工大学长江学者张大伟教授领衔的超精密光学制造团队在庄松林院士的领导下,戴博教授及同事、张良等硕士研究生与美国杜克大学Tony Jun Huang教授课题组、戴顿大学赵乘龙教授课题组、南加州大学John Mai研究员合作,提出了一种基于微流体辅助3D打印的微结构加工技术,并将该技术用于制备仿生复眼。图一左图:蚂蚁的复眼,右图:基于微流体辅助3D打印技术制备的仿生复眼仿生复眼的具体加工工艺如下:利用面投影微立体光刻3D打印技术(nanoArch S130,P140,摩方精密)制备出超高精度的复眼模具及基底。模具为一个半球形凹坑,在坑内密布了圆柱阵列;基底为一个半球体,内部含有与圆柱阵列等量的微管道。然后,对模具进一步处理,在凹坑内填上光敏树脂,利用匀胶机作甩胶处理。当适度控制匀胶机转速时,凹坑中的胶会被完全甩出,而圆柱阵列中会残留部分光敏胶。静止一段时间后,圆柱阵列中的胶由于受到毛细力的作用,液面会下凹。经UV固化后,复眼模具便完成了。最后,将半球体基底倒扣在凹坑中,注满弹性树脂,经热固化后,取出半球体,便能获得一颗仿生复眼。在此工作中,研究人员实现了高度仿生的复眼,5毫米直径半球状的仿生复眼拥有多达12,000多颗子眼。结构与自然复眼高度相似,具有角膜(cornea lens)、晶锥(crystalline cone)、感杆束 (rhabdome)等核心元素。除了结构,所制得的仿生复眼在功能上也能与自然复眼媲美。研究人员将仿生复眼结合传统二维图像传感器,即可实现超大视场全景、全彩成像,还演示了在三维空间内对光源精准定位。图二仿生复眼的制备流程图图三利用仿生复眼观察发红光的X标记以及跟踪发蓝光的三角标记该成果以“Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing”为题发表在Nature子刊Nature Communications上。 文章链接:https://www.nature.com/articles/s41467-021-26606-zNatureCommunications volume 12, Articlenumber: 6458 (2021)
  • 成果分享|电子束曝光(EBL)技术首次应用于蝉翅结构纳米柱仿生制造
    div class=" rich_media_content " id=" js_content" style=" margin: 0px padding: 0px overflow: hidden color: rgb(51, 51, 51) font-size: 17px overflow-wrap: break-word text-align: justify position: relative z-index: 0 font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-style:=" " font-variant:=" " font-weight:=" " letter-spacing:=" " text-indent:=" " text-transform:=" " white-space:=" " word-spacing:=" " -webkit-text-stroke-width:=" " background-color:=" " section class=" " style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important white-space: normal " p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) font-size: 15px line-height: 22.5px letter-spacing: 1px font-family: 宋体, SimSun " 生物体从宏观到微观,再到纳米尺度的多级复合结构,使其具有诸多独特的优异性能。人们很早就开始模仿生物的特殊功能,来发明和应用新技术。 /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) letter-spacing: 1px font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% letter-spacing: 1px font-size: 15px line-height: 22.5px " 例如人们根据苍蝇特殊的“复眼”结构,仿照制成了“蝇眼透镜”,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片;还有仿照水母耳朵的结构和功能,人们设计了 /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px letter-spacing: 1px " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) letter-spacing: 1px font-size: 15px line-height: 22.5px " 水母耳风暴预测仪;根据蛙眼的视觉原理,研制成功了一种电子蛙眼,能 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) letter-spacing: 1px font-size: 15px line-height: 22.5px background: white none repeat scroll 0% 0% " 准确无误地识别出特定形状的物体 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) letter-spacing: 1px font-size: 15px line-height: 22.5px " ? /span /span /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/1d1bb32e-3372-45b8-b9f6-aecdb9c4480d.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 苍蝇特殊的“复眼”结构(图片来源于网络) /span /em /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em text-align: justify " span style=" box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-family: 宋体, SimSun margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 这就是早期的仿生学应用,但随着科技的进步和纳米技术的迅速发展,人们开始将仿生学应用到纳米尺度,研究者通过模仿生物的纳米结构仿生制造出类似的超微结构,以此来探究和获取生物的特殊功能。在纳米微结构加工领域,常用的微纳光刻技术有纳米压印、紫外光刻、X射线曝光等技术。 /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em text-align: left " span style=" font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 而在最近的一项研究中,昆士兰科技大学的研究团队 /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 首次将电子束曝光(EBL)技术应用于生物纳米结构的仿生制造 /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " , strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 并取得了重要研究成果 /strong 。目前,该项研究论文已被 /span em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " Journal of Materials Chemistry /span /em /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px color: rgb(136, 136, 136) " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " ( /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " IF=4.776 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " ) /span /em /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 录用,论文题目为 /span em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication ofnanopatterned titanium pillars /span /em span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 。 /span /span /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em text-align: left " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 研究中涉及的 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 大量仿生制备工作由 /strong /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " TESCAN& nbsp /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 的 /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " EBL /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 完成 /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " ,并使用了 /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " TESCAN MIRA3 /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 场发射扫描电子显微镜表征细胞间相互作用 /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 。 /span /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em text-align: center " span style=" line-height: 22.5px color: black margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " img src=" https://img1.17img.cn/17img/images/201903/uepic/a35e931d-e573-43b1-b2e3-19aec186d880.jpg" title=" 3.jpg" alt=" 3.jpg" / /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px color: black font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 研究论文已被 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " Journal of Materials Chemistry /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " ( /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " IF=4.776 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " ) /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 录用 /span /em /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 由于蝉翼具有多功能生物特性,如超疏水性,自清洁和杀菌作用等,人们对其 /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px " 在生物医学上的应用 span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px color: black " 产生了浓厚兴趣。昆士兰科技大学 /span /span em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " Prasad KDV Yarlagadda /span /em span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 及其研究团队对蝉翼的杀菌和细胞相容特性进行了系统研究,并 /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " 首次使用电子束曝光技术( /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " EBL /span /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px " )进行蝉翼结构的仿生制造 /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " , strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 加工出 /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 类似的纳米锥阵列结构, /strong 经研究发现,其 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 同样具有杀菌和生物相容性 /strong 。 /span /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-family: 宋体, SimSun margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 首先,研究人员使用了SEM,AFM,TEM等多种微观分析技术对三种不同种类的澳大利亚蝉翅膀表面的纳米结构进行了表征。研究人员观察到,三种蝉翼表面均具有独特的形貌结构,虽然凸起的高度、直径、间距和密度并不完全相同,但都呈现出锥状的纳米柱阵列。 /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black font-family: 宋体, SimSun " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/7a2f8f38-2397-4cfd-9bc6-e54722e8408a.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px line-height: 21px background: white none repeat scroll 0% 0% " 不同物种的蝉翅具有不同高度、间距、直径和密度的纳米柱结构 /span /em /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-family: 宋体, SimSun margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 研究人员分别采用了在蝉翼上附着铜绿假单胞菌、金黄色葡萄球菌细胞和人成骨细胞的方法来探究昆虫翅膀的杀菌活性和生物相容性。实验证明,三种蝉翼均具有很好的杀菌活性,且附着人成骨细胞的蝉翅细胞形态在24小时后仍然保持完整,表明它们仍然具有生物相容性。 /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 0, 0) font-family: 宋体, SimSun letter-spacing: 1px margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px " 在该项研究中,研究人员尝试进行蝉翼结构的仿生制造。由于是纳米尺度的阵列结构,一般的刻蚀、沉积方法均无法实现。而常规的电子束曝光(EBL)技术也无法实现如此规模的锥体制造。 /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px letter-spacing: 1px font-size: 15px color: rgb(0, 0, 0) font-family: 宋体, SimSun " 昆士兰科技大学的研究团队 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 巧妙地利用电子束在光刻胶中的散射 /strong , strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 通过控制电子束能量 /strong , strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 制作出椎体的“模子” /strong ,然后 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 利用沉积生长出需要的椎体 /strong ,最后腐蚀掉所有光刻胶, strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 得到了完美的纳米锥阵列 /strong 。 /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px letter-spacing: 1px font-size: 15px color: rgb(0, 0, 0) font-family: 宋体, SimSun " /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d17d1ca2-607e-4fd8-a567-b4576f6cf055.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px line-height: 21px background: white none repeat scroll 0% 0% " 仿生纳米锥阵列的制作过程示意图 /span /em /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-family: 宋体, SimSun margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 最终制备的仿生Ti纳米锥的高度为116 ~282nm,锥形柱的顶端直径最小达13.3nm,底部直径93.6nm左右。并且, strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 进一步实验发现,其同样具有杀菌性和生物相容性 /strong 。昆士兰科技大学的这项研究成果对于纳米仿生学的应用具有重大意义。& nbsp br/ /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" line-height: 22.5px color: black margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/77a6fae3-0d6c-41a1-889b-fb64fb4de48f.jpg" title=" 6.jpg" alt=" 6.jpg" style=" width: 600px height: 192px " width=" 600" vspace=" 0" height=" 192" border=" 0" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 通过 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " EBL /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 技术制备的仿蝉翼结构的 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " Ti /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 纳米锥陈列 /span /em /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px font-family: 宋体, SimSun " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px font-family: 微软雅黑, sans-serif color: rgb(0, 122, 170) background: white none repeat scroll 0% 0% " /span /em /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d4e4f267-227c-4ac9-bef0-70e9490d9095.jpg" title=" 7.jpg" alt=" 7.jpg" style=" width: 600px height: 165px " width=" 600" vspace=" 0" height=" 165" border=" 0" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 122, 170) font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px letter-spacing: 1px " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " 图: /span /em /span /strong span style=" margin: 0px padding: 0px max-width: 100% letter-spacing: 1px " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " ( /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " E /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " )在制备出的仿生 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " Ti /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " 纳米锥阵列上附着铜绿假单胞菌细胞; /span /em /span em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " ( /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " F /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " )对照 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " Ti /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " 柱和仿生纳米 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " Ti /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " 柱上附着的人成骨细胞的活性;( /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " G /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " )在仿生 /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " Ti /span /em em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic font-size: 14px letter-spacing: 1px " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 21px letter-spacing: 0.5px background: white none repeat scroll 0% 0% " 纳米锥阵列上附着扩散良好的成骨细胞; /span /em /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 电子束曝光( /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " EBL /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " )技术 /span /span /strong span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 是一种电子束直写技术,是利用电子束在涂有对电子敏感的高分子聚合物 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px font-size: 15px letter-spacing: 1px color: rgb(136, 136, 136) " (光刻胶) /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 的基底上直接描画出图形,通过刻蚀实现微小结构的加工。电子束曝光( /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " EBL /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " )技术 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 避免了传统方法中对模板加工和使用的复杂过程 /strong ,其 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " 高分辨、高度灵活性、高灵敏度 /strong 的特点也受到研究人员关注,且 /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " EBL /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 制备方法更加简单,更容易制备出小尺寸的各种花样的周期性结构。 /span /span /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 在上述工作中,昆士兰科技大学研究团队使用了 /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " TESCAN MIRA3 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 高分辨场发射扫描电子显微镜搭配 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " TESCAN /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 自主研发的电子束曝光 strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 15px letter-spacing: 1px text-indent: 28px white-space: normal " span style=" font-size: 15px letter-spacing: 1px margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px color: black " ( /span span style=" font-size: 15px letter-spacing: 1px margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px color: black " EBL /span span style=" font-size: 15px letter-spacing: 1px margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important line-height: 22.5px color: black " ) /span /strong 技术 /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 出色完成了相关工作。 /span /span /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 28px line-height: 1.75em " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px letter-spacing: 1px font-family: 宋体, SimSun " span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 不久前,昆士兰科技大学新采购了一台 /span strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " TESCAN /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " 最新的 /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important letter-spacing: 1px font-size: 15px line-height: 22.5px color: black " S8000X Xe Plasma FIB-SEM /span /strong span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " ,这是一款功能强大的氙等离子源 /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " FIB /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " ,配置了 /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " TESCAN /span span style=" margin: 0px padding: 0px max-width: 100% font-size: 15px line-height: 22.5px color: black " 最新一代的多项专利技术,期待昆士兰科技大学未来取得更多的研究成果! /span /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/05bb9e46-ded2-4c0d-87c8-d28cc7511e52.jpg" title=" 8.jpg" alt=" 8.jpg" style=" width: 450px height: 314px " width=" 450" vspace=" 0" height=" 314" border=" 0" / /p p style=" margin: auto 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-align: center line-height: 1.75em " span style=" box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% letter-spacing: 1px font-family: 宋体, SimSun " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px background: white none repeat scroll 0% 0% " 图: /span /em /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px font-weight: normal background: white none repeat scroll 0% 0% " 昆士兰科技大学最新采购的 /span /em /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px font-weight: normal background: white none repeat scroll 0% 0% " TESCAN S8000X Xe /span /em /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px font-weight: normal background: white none repeat scroll 0% 0% " 等离子源 /span /em /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" letter-spacing: 1px color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 14px line-height: 21px font-weight: normal background: white none repeat scroll 0% 0% " FIB-SE /span /em /strong strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " em style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-style: italic " span style=" color: rgb(0, 122, 170) margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important font-size: 15px line-height: 22.5px letter-spacing: 0.5px font-weight: normal background: white none repeat scroll 0% 0% " M /span /em /strong /span /p p style=" margin: 0px 8px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important clear: both min-height: 1em text-indent: 32px line-height: 1.75em " span style=" font-size: 14px letter-spacing: 1px margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important overflow-wrap: break-word !important color: rgb(136, 136, 136) font-family: 宋体, SimSun " 注释:该项研究由昆士兰科技大学研究团队完成,相关论文目前已通过了英国皇家化学学会(Royal Society of Chemistry)评审,论文稿件已被录用,将于不久后在网上公开发布。 /span /p /section /div
  • 【会议通知】全国生物制造工程学术年会暨生物制造国际研讨会
    全国生物制造工程学术年会暨生物制造国际研讨会2022年11月4日-6日,北京西郊宾馆由中国机械工程学会生物制造工程分会主办,北京航空航天大学,清华大学,中国人民解放军军事医学科学院和东南大学共同承办的2021全国生物制造工程学术年会暨生物制造国际研讨会(ACBD-ISBM2021)现定于2022年11月4日-6日在北京西郊宾馆举行。11月4日全天注册报到,5日大会主题报告和6日各专题报告。本次大会是中国机械工程学会生物制造工程分会新一届委员会成立后的第二次全国性学术年会,会议期间同期举办生物制造国际研讨会。邀请国际领域专家一同探讨生物制造领域的前沿发展。生物制造是一门以细胞、活性分子和生物材料为基本单元的仿生结构体的制造科学,是工程、材料、信息和生命科学交叉的新兴学科。生物制造的科学、技术和应用广泛应用于仿生制造、功能结构生物体制造、再生医学模型制造、体外生物/病理/药理模型制造及以细胞和活性分子为基础的细胞/组织/器官芯片和先进医疗诊断设备的制造。会议将围绕生物制造及相关领域,聚集来自海内外高校、科研院所、企业以及监管部门的专家学者,展示领域内的最新研究成果与进展,共同探讨现代工程和制造科学在生物工程和生物医学中的应用新领域,促进和引领生物制造新兴学科的发展,推动国际性合作交流,促进科研成果产业化,提升我国生物制造相关科研和成果的国际影响力。我们希望能将这次大会举办成中国和国际生物制造工程领域的盛会,我们诚挚地邀请您莅临本次大会,共同分享和探讨生物制造工程领域的创新、应用及前沿发展。组织委员会大会主席:张德远(北京航空航天大学)孙伟(清华大学)副主席:王常勇(军事医学科学院组织工程研究中心)林峰(清华大学)顾忠泽(东南大学)季林红(清华大学)秘书长:冯林(北京航空航天大学)程序委员会主席:陈华伟(北京航空航天大学)张婷(清华大学)周瑾(军事医学科学院)蔡军(北京航空航天大学)蒋永刚(北京航空航天大学)岳涛(上海大学)姜兴刚(北京航空航天大学)主办单位:中国机械工程学会生物制造工程分会承办单位:北京航空航天大学清华大学中国人民解放军军事医学科学院东南大学协办及支持单位:生物医学工程高精尖中心(北京航空航天大学依托)北京航空航天大学机械工程及自动化学院苏州永沁泉智能设备有限公司上普博源(北京)生物科技有限公司杭州捷诺飞生物科技股份有限公司北京雨燕飞天文化有限公司深圳摩方新材科技有限公司北京保利微芯科技有限公司北京敏速智造生物科技有限公司点云生物(杭州)有限公司纳糯三维科技上海有限公司北京理工大学出版社MDPI聚纳达(青岛)科技有限公司北京依维特技术服务有限公司北京沃玉科技发展中心专题及召集人: 生物制造及再生医学专题(王常勇)生物仿生制造与植/介入器械专题(张德远)生物感知与柔性电子制造多尺度生物仿生制造微操作与微创器械生物建模与生物3D打印专题(林峰)组织器官芯片专题(顾忠泽)创新医疗器械与生物材料专题(季林红)论坛及召集人:青年科学家论坛 -交叉融合与创新(冯林)摘要投递:本次大会现只接收报告摘要,中英文均可。请按后附的摘要模板通过会议网站投递,摘要接收截止日期为2022年9月20日。会议地点:北京西郊宾馆会议时间:2022年11月4 - 6日注册费:¥2500;学生(凭学生证):¥1500。付款方式账户名称:北京沃玉科技发展中心开户银行:农商银行北京天通苑支行银行账号:061605 0103000 002534报名方式:通过大会官网www.acbd-isbm.com报名参会。联系我们:大会秘书长:冯 林:linfeng@buaa.edu.cn参会联系人:李四民:acbdisbm@126.com和亚红:526263215@qq.com刘艳丹:1334665839@qq.com电 话:010-81731892手机/微信:13691363947/18910849746中国机械工程学会生物制造工程分会二〇二二年八月Abstract template/摘要模板:Abstract Title (14-pointTimes New Roman, bold, centered relative, and initially capitalized)First Name Last (Surname) Name1 and First Name Last (Surname) name2* (Example: Joana Magalhaes1, Rui Sousa 2, 12-point Times New Roman, and centered relative)1Department/Research Institute, University, Country2*Department/Research Institute, University, Country,E-mail@presenting.author The abstract content is in 12-point Times New Roman. Figure 1. Sample Only
  • “增材制造与激光制造”重点专项2022年度项目申报指南
    近日,科学技术部发布“增材制造与激光制造”重点专项2022年度项目申报指南。本重点专项总体目标是:到 2025 年,使我国增材制造与激光制造成为主流制造技术之一,总体达到世界一流,基本实现全球领先,在战略新兴产业、新基建、大国重器中发挥不可替代的重大作用。同时,基本实现增材制造与激光制造全产业链主体自主可控,形成系列长板技术和一批颠覆性技术,并汇集为行业整体优势,为一批领军企业奠基强大的国际技术竞争力,高端装备/ 产品大批进入国际市场,实现大规模产业化应用,在制造业转型升级中发挥核心作用。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”全链条部署任务。拟启动 28 项指南任务, 拟安排国拨经费 3.58 亿元。其中,围绕难熔金属材料增材制造、 超快激光制造中光子—电子—晶格相互作用观测与调控等技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费 400 万元,每个项目 200 万元。围绕个性化医疗器械制造、医疗植入物表面微功能结构制造等技术方向,拟部署 5 个科技型中小企业技术创新应用示范项目,拟安排国拨经费 1000 万元,每个项目 200 万元。 共性关键技术类项目,配套经费与国拨经费比例不低于 1.5:1。应用示范类项目鼓励产学研用紧密结合,充分发挥地方和市场作用, 配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊 说明外,每个方向拟支持项目数为 1—2 项,实施周期不超过 5 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过 4 个,项目参与单位总数不超过 6 家;共性关键技术类和应用示范类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名项目负责人,项目中每个课题设 1 名课题负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。 科技型中小企业项目要求由科研能力强的科技型中小企业 牵头申报。项目下不设课题,项目参加单位(含牵头单位)原则 上不超过 2 家,原则上不再组织预算评估,在验收时将对技术指 标完成和成果应用情况进行同步考核。科技型中小企业标准参照 科技部、财政部、国家税务总局印发的《科技型中小企业评价办法》(国科发政〔2017〕115 号)。1. 基础理论和前沿技术 1.1 跨尺度自润滑复合结构增材制造(基础研究类)研究内容:针对我国航空航天和高端装备对高度集成、精准按需润滑以及润滑异形件的设计与制造需求,开展复合润滑功能组件整体化增材制造研究,研究增材制造专用自润滑功能材料设计制备、跨尺度润滑功能结构、尺寸突变异形构件一体化精密制造关键技术,研发面向增材制造的自润滑复合材料体系,探索精准按需润滑结构增材制造新原理、新工艺,研究面向增材制造的可控自润滑表界面材料精准设计与构筑新方法,建立跨尺度增材 制造平台,发展润滑功能准确定制化系统设计与一体化制造技术。1.2 飞秒激光—电化学复合微纳增材制造(基础研究类) 研究内容:针对三维复杂金属微纳结构的飞秒激光辅助定域电化学增材制造,探索微结构无掩膜激光—电化学双耦作用定向诱导粒子原位增材制造机理,研究飞秒激光诱导下定域电化学沉积组织—结构—功能一体化微纳制造新方法,研究激光—电化学复合能场亚微米复杂构型和微米功能结构阵列制造、纳米体元与微米构型精准调控等技术。1.3 材料组分三维精确可控的粉末床熔融金属增材制造(基 础研究类) 研究内容:研发面向粉末床熔融增材制造的在线多组分材料精确添加技术,研究材料组分三维可控的非均质粉末床熔融增材制造工艺特性、材料原位冶金行为、材料梯度/界面行为和组织性能演化规律,明晰非均质材料构件成形过程中的应力—形变演化规律,建立非均质材料梯度/界面行为、组织与性能协同调控方法,研发材料成分过渡区间精确调控和后续热处理等关键技术,实现材料组分三维精确可控构件的创新设计、制造及评价。1.4 柔性光电器件的激光光场调控微纳制造(基础研究类) 研究内容:面向柔性光电器件中的关键微纳结构,研究激光时域/空域/频域光场调控方法,探索激光调控光场与柔性光子器件材料相互作用的新现象与新效应,研究激光远场与微腔等近场光学效应结合的宏微纳跨尺度无掩膜加工新技术,研制远场—近场复合光场的无掩膜高效激光微纳制造装备。1.5 异质仿生结构设计及一体化增材制造(基础研究类) 研究内容:探索仿生结构中材料/结构的多重耦合行为与机制,研究与高效减振、智能变形、损伤自修复等功能需求匹配的仿生结构模块化设计方法,揭示基于异质材料增材制造的仿生功能模块化调控规律,发展功能模块化构件的多维度、多尺度和异质材料的仿生设计技术;研究异质材料体系下模块化仿生构件的一体化增材制造关键技术,研发面向增材制造的宏微构型—异质材料仿生结构设计、仿真与工艺规划平台,发展多场复杂应用环 境下增材制造宏微构型—异质材料仿生构件的性能评价技术。1.6 功能化活性心肌组织增材制造(基础研究类) 研究内容:针对心肌组织损伤治疗,开展活性心肌组织高精度增材制造及其功能再生方法研究。研究功能化活性心肌组织复 杂微结构系统的仿生设计方法;研究具有电传导能力的活性心肌组织增材制造新原理与新工艺;研究增材制造活性心肌组织的体外三维定向排布生长与高频同步跳动方法,以及体外活性心肌组织电信号特征与其生物功能的作用关系;研究大型动物大面积心肌病变缺损修复的考核评价方法。1.7 面向前沿探索制造新原理(青年科学家项目) 研究内容:针对新能源、新材料等新兴产业领域重大需求, 重点开展难熔金属材料增材制造、超快激光制造中光子—电子— 晶格相互作用观测与调控、喷墨共形打印、复合制造等前沿制造新原理新方法研究。2. 核心功能部件 2.1 激光粉末床熔融增材制造在线监控与质量评价技术(共性关键技术类) 研究内容:研究合金成分、跨尺度微观组织/缺陷、应力/形变状态与激光粉末床熔融增材制造过程特征信息的相互关系;研究增材制造熔池动态行为、非均质宏/微观组织特征的多物理场在线监测方法和在线质量评价技术体系,研发铺粉状态快速准确识别与分类、熔池特征分析及质量预判、逐层熔凝区域组织/缺陷识别和轮廓变形分析、质量预警及多参量复合调控等关键技术;发展基于在线监测数据的多信息融合及高效率深度学习模型,明晰 工艺参数—特征信息—制造质量关联关系,研发基于过程特征的高效在线质量评价和多参量交互质量控制方法。2.2 大型复杂构件制造过程在线检测与智能调控技术(共性关键技术类) 研究内容:面向重大装备的高性能焊接与增材制造,研究大型复杂结构制造过程中的在线三维形貌及变形的跨尺度光学测量技术、制件与制造加工头的多自由度位姿测量技术;研究制造过程中熔池特征尺寸和温度场表征、制造缺陷非接触式在线检测技术;研发从微观位错演化到宏观结构件变形失效的跨尺度增材制造热力模拟预测技术和方法;揭示制造工艺与位错—晶界多级微 结构、结构变形和制造缺陷的关联关系;研究面向大型结构的表面形貌、结构变形、构件温度和制造缺陷等成形质量自适应闭环 控制系统与装备。2.3 增材制造构件长寿命服役行为表征与调控关键技术(共性关键技术类) 研究内容:研究增材制造构件在高温环境与复杂应力条件下的长寿命服役性能表征方法,典型增材制造构件/材料长寿命试验标准与疲劳数据库;研究增材制造构件微结构/缺陷与长寿命服役行为的关联机制,制造工艺—微结构/缺陷—服役性能的映射关系;研究提高服役寿命的增材制造缺陷/微结构在线调控技术,发展高服役性能构件增材制造工艺的优化方法;研究增材制造构件长寿命疲劳的评估技术。2.4 制造用高性能高功率飞秒激光器(共性关键技术类) 研究内容:探索飞秒激光产生、放大、线性和非线性调控过程的动力学机制,以及高功率大能量飞秒激光放大时由于增益导致的脉冲宽度劣化机制;攻克高单脉冲能量飞秒激光热管理、模式控制、高效率长寿命飞秒频率转换等关键技术,研究倍频产生高功率紫外飞秒激光参量的稳定控制及优化技术,开展高功率大能量飞秒激光器模块化设计和系统集成技术研究。2.5 制造用高性能高功率皮秒激光器(共性关键技术类) 研究内容:开展皮秒激光增益分布优化、模式控制机制和有效热管理等技术研究,攻克均匀泵浦、长寿命皮秒锁模及非线性抑制等关键技术,研究倍频转化效率提升、紫外皮秒激光光束质量控制及延寿等技术,研制高稳定性高功率红外、紫外皮秒激光器产品。3. 关键技术与装备 3.1 非均质材料飞秒激光制造技术与装备(共性关键技术类) 研究内容:面向复杂构件涉及的复合、多层膜、多孔等非均质材料的高性能加工共性需求,建立飞秒激光加工过程中光子能量吸收、电子状态变化、等离子体喷发、成形成性等多尺度连续观测系 统;从电子层面研究飞秒激光时/空/频域协同整形的非均质材料加 工新方法,突破损伤控制、选择性加工等关键工艺技术,研发飞秒激光跨尺度柔性加工装备和三维复杂构件微细加工装备。3.2 陶瓷多材料连续成形光固化增材制造技术与装备(共性关键技术类) 研究内容:研究高固含量/低粘度陶瓷打印浆料流变机理与稳定性优化方法,攻克陶瓷光固化增材制造精度光散射调控技术。 研发陶瓷多材料连续成形光固化增材制造技术与装备,开展高效加工策略与成形效能评估研究,开发材料—工艺—装备全链条性能评价方法。3.3 大能量高重频脉冲激光智能清洗技术与装备(共性关键技术类)研究内容:研究纳秒脉冲能量输出能力提升的新方法,开展大能量高重频脉冲激光光束控制、模式调控、高功率关断和多级放大等技术研究;揭示大能量纳秒脉冲激光高效高质清洗机制, 攻克基于机器视觉的精确定位、智能选区、残留物快速识别、复杂曲面路径智能规划、双光束联动无缝无重叠拼接等关键技术, 研制具备复杂曲面结构高效循环作业的激光智能化清洗成套工艺与装备。3.4 薄壁弱刚性构件激光电解复合高效铣削加工技术与装备 (共性关键技术类)研究内容:针对薄壁弱刚性整体复杂构件制造瓶颈,研究气液环境下激光束流作用过程、超高电流密度电化学加工材料去除机制及成形规律;研究激光—电解复合铣削制造新方法,攻克复 合能量场形性调控、束流流域设计等关键技术;研制大型构件激 光—电解复合铣削加工装备。3.5 结构功能部件飞秒激光精密制造技术与装备(共性关键技术类)研究内容:针对航空航天等领域结构功能一体化部件精密制造的需求,揭示飞秒激光光束运动参量调控的微结构控形控性制造机制,研究制造结构的几何特征、质量对部件功能和服役性能的映射关系;发展“压敏、密封、润滑”等功能部件飞秒激光制造方法,攻克激光脉冲三维整形、内腔光束运动姿态参量控制等关键技术,研制飞秒激光制造成套工艺与装备。3.6 海洋装备水下原位高效增材修复技术与装备(共性关键技术类)研究内容:针对海洋装备在服役过程中的修复需求,研究适用于水下原位增材修复的专用材料;研发复杂水下环境空间重构、 姿态感知和损伤区域快速三维测量技术与装备;研发水下空间约束环境下的增材修复过程规划、组织性能调控、修复部位服役性 能预测等技术;研究应急响应条件下的水下结构可修复性评价和修复方案智能决策方法;研发水下现场环境修复工艺和装备。3.7 大型点阵结构无支撑高效增材制造技术与装备(共性关键技术类) 研究内容:研究面向增材制造的多功能大型点阵结构设计技术;研究点阵结构的无支撑高效增材制造、高性能连接、多层点阵夹芯结构制造、结构变形控制等关键技术;研究大型点阵夹芯结构的无损检测技术;研发规模化低成本高效增材制造装备。3.8 大幅面纤维增强热塑性复合材料增材制造技术与装备 (共性关键技术类) 研究内容:研究面向大型纤维增强热塑性复合材料构件的多丝束挤出增材制造成形机理及翘曲变形行为,发展大型纤维增强热塑性复合材料构件设计方法,攻克大型纤维增强热塑性复合材料增材制造的路径优化、多材料性能匹配、多工艺参数匹配、界面结合优化、成形精度控制等关键技术;研究增材制造复合材料构件非降级回收再制造技术和构件的性能评价方法;研制大型纤维增强热塑性复合材料构件增材制造装备。3.9 超强韧中熵合金构件增材/强化/减材复合制造(共性关键技术类)研究内容:研究适用于增材制造的超低温超高强韧中熵合金高通量设计与性能验证方法;研究中熵合金在复合制造过程中形性调控机制与方法,以及表面损伤动态演变机制及抑制理论,研发激光增材/强化/减材复合制造工艺与装备,研究复合制造中熵合金在室温、液氧和液氮超低温环境下的强韧化机制,以及疲劳断裂等性能评价方法;研究面向服役环境的复合制造中熵合金构件重复使用评估体系。3.10 大型高性能结构件增等减材复合绿色智能制造(共性关键技术类) 研究内容:研究增材/等材/减材复合制造形性协同控制机理 和增材/等材/减材一体化复合制造技术;研究复合制造工艺—组 织—缺陷—性能的一体化映射关系,研发大型结构件综合力学性 能、疲劳性能提升关键技术;发展全过程智能化在线质量监控系统,研发大型复合绿色智能化制造装备。4. 典型应用示范 4.1 无人机十米级机身承力结构整体化增材制造示范应用 (应用示范类) 研究内容:针对高性能大型无人机研制需求,研究基于增材制造的大尺寸机身关键构件一体化设计方法;突破大尺寸精密复杂构件增材制造跨尺度形性主动调控及后处理关键技术;研究增材制造大尺寸机身整体构件无损检测评价关键技术;建立基于增材制造的大尺寸机身整体构件“材料—设计—工艺—检测—评价” 全流程技术体系。4.2 多材料功能梯度结构增材制造在无人潜航器领域应用示 范(应用示范类) 研究内容:针对万米深海无人潜航器应用需求,研究面向增材制造的无人潜航器多材料轻型耐压壳体的仿生优化设计方法, 包括无人潜航器壳体仿生结构、多材料梯度耐压结构、壳体外表面防生物附着结构等设计方法;研究高分子、陶瓷、金属等多材 料增材制造工艺及形性控制方法;研发无人潜航器多材料一体化智能增材制造装备,包括金属及高分子材料增减材一体化装备, 陶瓷材料高效增材制造装备;研究高分子、陶瓷、金属等多材料一体化增材制造构件的检测技术和评价方法。4.3 大型关重结构件激光高效高稳定增材制造工程应用示范 (应用示范类) 研究内容:研究面向规模化生产的大型关重结构件高效高精度激光增材制造材料、工艺稳定性控制方法与技术体系;研究质量性能一致性控制、检测和评价方法;研究激光增材制造典型材料关键力学性能许用值和数据库;研发面向规模化生产的高效高精度成套装备。4.4 内部精细流道增材制造在空间推进领域应用示范(应用示范类)研究内容:开展基于增材制造的空间推进系统集成化、轻量化和模块化设计研究,研发基于增材制造空间推进系统的流—固 —力—热多物理场耦合一体化设计方法及增材制造技术;研究小尺寸复杂内流道成形、内表面加工及质量控制、薄壁耐压结构成形质量控制及后续加工处理等关键技术;研究增材制造空间推进系统的检测方法及评价标准。4.5 高品质激光剥离与解键合在电子制造领域应用示范(应用示范类) 研究内容:针对 Micro-LED 显示、超薄晶圆封装中的激光剥离、解键合等制造技术瓶颈,研究紫外和深紫外光束传输与空间整形、光斑形貌与能量监控以及焦点跟随等关键技术;研究可减少器件损伤的激光剥离、解键合方法与加工工艺;研发光束整形器、焦点跟随等核心功能模块;开发 Micro-LED 显示激光剥离装备、超薄晶圆紫外激光解键合装备,研究成套工艺。4.6 科技型中小企业技术创新应用示范(科技型中小企业项目) 研究内容:面向增材制造与激光制造领域不断涌现的新兴产业增长点,开展个性化医疗器械制造、医疗植入物表面微功能结构制造、光纤微纳传感器制造、光子/电子器件制造、印制电路板 (PCB)增材制造等新兴增材制造与激光制造技术的产业化应用研究,发展新兴技术商业化装备,实现创新型构件或器件的小批量或个性化定制生产;开展具有产业新增长潜力的前沿新技术产业化研究,实现颠覆性创新新技术产业化应用。
  • 抗断裂且可拉伸,仿生蛋白质创造二维分层复合材料
    科技日报北京7月25日电 据最新一期《美国国家科学院院刊》报道,美国宾夕法尼亚州立大学研究人员利用鱿鱼环齿上的仿生蛋白质创造了一种复合的层状二维材料,这种材料具有抗断裂和很强的弹性。大自然创造出像骨头、贝壳这样的分层材料,正是这种多级结构才确保了骨头具有极高的抗断裂强度,得以支撑庞大的身体。骨头中含有无数空隙,然而,随着生长发育,它对缺陷的敏感度会降低。这意味着即使骨头已经含有诸多“缺陷”,也依然具有较高的强度。宾夕法尼亚州立大学高级纤维技术中心主任、劳埃德和多罗夕福尔哈克仿生材料主席梅利克德米雷尔和多萝西福尔哈克表示:“研究人员很少报告骨头和贝壳的这种界面特性,因为它很难通过实验进行测量。”以此为灵感,新开发的复合二维材料是由像石墨烯或MXene(通常是过渡金属碳化物、氮化物或碳氮化物)这样的原子层厚的硬材料组成的,这些材料之间被一层东西黏合并隔开。虽然大块石墨烯或MXene具有块体性能,但二维复合材料的强度来自界面性质。德米雷尔介绍说,他们使用的是一种界面材料,可通过重复序列加以修改,从而能够微调性质,让它变得灵活而强大。此外,这种材料还具有独特的热传导性质。“这种材料很适合做跑鞋的鞋垫。”德米雷尔说,“它可以给脚部降温,反复弯曲也不会把鞋垫弄坏。”这些二维复合材料还可用于柔性电路板、可穿戴设备和其他需要强度和灵活性的设备。根据德米雷尔的说法,传统的连续介质理论无法解释为什么这些材料既坚固又灵活,但模拟表明,界面很重要。当组成界面的材料比例较高时,当材料受到压力时,界面会发生局部断裂,但作为整体的材料不会断裂。【总编辑圈点】搜索“鱿鱼环齿”,会发现科研人员早已对它摩拳擦掌,开展过多项研究,并尝试在不同领域应用。鱿鱼环齿蛋白质可被加工制成纤维和薄膜,可以替代塑料制品,提升织物的耐磨性,制作可穿戴设备… … 当然,要大规模应用这种仿生材料,需要先制造出仿生蛋白质,毕竟也不能一只只抓住鱿鱼扒拉蛋白质。本文中,科研人员用仿生蛋白质制造出复合层状材料,可以让它又坚固又灵活。从大自然的神奇生物身上,人类获得了很多“外挂”,改造后为自己服务。
  • 2021“制造基础技术与关键部件”重点专项预评审专家名单公布
    根据“制造基础技术与关键部件”重点专项评审工作安排,中心于2021年6月4-10日组织开展了“制造基础技术与关键部件”重点专项2021年度项目预评审。此次评审采用网络评审方式,涉及5个指南方向,评审专家共3组22人,统一从国家科技专家库中抽取产生。根据《国家重点研发计划管理暂行办法》(国科发资〔2017〕152号)的文件精神,现将评审专家名单予以公布。评审分组A:指南方向 1.5齿轮传动系统多维信息感知及智能运维 (青年科学家项目)序号专家姓名所在单位1刘春时沈阳机床(集团)有限责任公司2宋轶民天津大学3程永亮中国铁建重工集团股份有限公司4王禹林南京理工大学5陈信琦中国电子科技集团公司第四十九研究所6王晓力北京理工大学评审分组B:指南方向 1.6基于二维材料的柔性应变传感器阵列 (青年科学家项目)序号专家姓名所在单位1陈寿面上海集成电路研发中心有限公司2李青中国计量大学3查钢强西北工业大学4王惟彪中国科学院长春光学精密机械与物理研究所5许高斌合肥工业大学6伞海生厦门大学7董文飞中国科学院苏州生物医学工程技术研究所 评审分组C:指南方向 1.7 高灵敏磁电阻传感器(青年科学家项目)1.11工业测控高精度硅基压力传感器关键技术2.2 动力电池组控制安全传感器开发及示范应用序号专家姓名所在单位1李斌中国科学院上海技术物理研究所2苏岩南京理工大学3桑胜波太原理工大学4叶树亮中国计量大学5李加东中国科学院苏州纳米技术与纳米仿生研究所6费峻涛河海大学7徐大诚苏州大学8孟凡利东北大学9褚金奎大连理工大学专业机构:工业和信息化部产业发展促进中心中心申诉电话:010-68207746工业和信息化部产业发展促进中心2021-06-15
  • 香港城市大学吕坚院士团队:顶刊综述《结构材料的增材制造》
    近日,香港城市大学吕坚院士团队在 Materials Science and Engineering: R: Reports 上发表综述论文“Additive manufacturing of structural materials”该论文分别从增材制造领域的发展历史,材料选择,4D 打印,应用前景,和趋势展望等方面做了较为系统的介绍。论文链接:第一章:简介增材制造(Additive manufacturing, AM),又称 3D 打印,其应用被认为是继蒸汽机,计算机,和互联网之后的又一项工业革命。AM 技术在过去的 30 年发展迅速,尤其是在近 5 年 AM 技术一直在加速其应用。与减材制造(如常规机加工,铸造,和锻造等工艺)不同,AM通过在计算器辅助设计(CAD)模型的指导下连续逐层添加材料来构造三维结构。AM 是一种面向材料的制造技术,在各种材料(包括聚合物,金属,陶瓷,玻璃,和复合材料等)中,普通存在打印精度和打印尺度/速度不可兼得的矛盾。4D 打印技术通常指的是经 3D 打印成型的物体在外界刺激,例如热,磁,液,电,光,气压,预应力,或其组合的刺激下,实现构型和功能的变化。本文总结了各种刺激方法的常用材料和原理,对比了不同刺激方法的优缺点。4D 打印材料和技术,伴随着各种变形系统的开发,驱动着研究者在高维 AM 领域实现概念突破及实际应用。该综述对结构材料的增材制造提出了多元化展望,包括多材料(multi-material)AM,多模量(multi-modulus)AM,多尺度(multi-scale)AM,多系统(multi-system)AM,多维度(multi-dimensional)AM,和多功能(multi-function)AM。 AM 材料和方法的迅速发展为其在不同领域的结构应用提供了巨大潜力,包括航空航天领域,生物医疗领域,电子设备,核工业,柔性可穿戴设备,软质传感器/驱动器/机器人技术,珠宝和艺术装饰品,陆地运输,水下设备,和多孔结构。此项研究获广东省重点领域研发计划,深港科技创新合作区深圳园区项目,国家自然科学基金重大项目,国家重点研发计划,和大学教育资助委员会(香港)联合实验室资助计划的项目支持。△增材制造的技术路线图△各种增材制造材料和工艺普通存在打印精度和打印尺度/速度不可兼得的矛盾△各种 4D 打印驱动刺激的关系图△结构材料增材制造的多元化展望△多维度增材制造:更高的维度,更高的打印效率△3D 打印机有望借助自我打印能力而实现打印万物以下为该综述部分章节的简要介绍:第二章:不同材料的 AM2.1 聚合物材料的 AM该部分主要概述了聚合物 AM 的制造方法、材料种类以及 AM 聚合物的性能及使用领域,提出了聚合物 AM 的不足之处,并给出了解决方法。该部分同时展望了聚合物 AM 的良好发展前景。2.2 金属材料的 AM该部分介绍了金属 AM 利用多领域多学科融合的思路,在开发专用材料,新型工艺以及制造结构上的相关进展,同时高熵合金,金属玻璃(非晶合金),贵金属,金属结构材料的功能特性等方面前景广大,但仍需进一步发展。2.3 陶瓷材料的 AM该部分介绍了不同种类(粉基/浆基,镀膜基,聚合物前驱体基)的陶瓷打印材料的特点,重点概述了聚合物衍生陶瓷在陶瓷 AM 领域的优势和应用,总结了直写打印的特点和所需的墨水条件,并对陶瓷打印技术将会往打印构型更大和打印速度更快两个方向的发展做了展望。2.4 玻璃材料的 AM该部分对 3d 打印玻璃进行了系统的阐述,介绍了高温打印/低温打印/复合玻璃材料打印三种类型,对比了不同打印方式下产品的透光度和性能的差异,并对 3d 打印玻璃的应用和前景进行了展望。2.5 复合材料的 AM该部分第一小节总结了聚合物-金属复合打印的策略,介绍了多尺度的层级聚合物-金属复合材料能突破机械性能(例如强度-密度,强度-韧性)之间的耦合,特征尺寸可以跨越 7 个数量级,充分利用“越小越强”的尺寸效应。同时,机械超材料凭借特殊的架构设计可实现非凡的刚度,强度和韧性。该部分第二小节总结了聚合物-陶瓷复合打印的策略,生物陶瓷通常具有较高的强度和断裂韧性,这种良好的力学性能主要归因于其复杂而又巧妙结合的多级结构。3D 打印工艺是一种 “自下而上”制备工艺,能够很好的应用在仿生陶瓷的制备,例如常见的“Bouligand”结构,“砖-瓦”结构,“交叉叠片”结构等,为人们制备高性能仿生陶瓷提供了有效途径。该部分第三小节总结了金属-陶瓷-聚合物复合打印的策略,包括将金属-陶瓷-聚合物复合材料粉末混合打印,以及将金属-陶瓷-聚合物材料分层打印,并展望未来 3D 打印金属-陶瓷-聚合物复合材料的发展方向。第四章:AM 的结构材料在不同领域的应用4.1 航空航天领域在航天领域,尤其是航天器零部件和天线等结构方面的领域,得益于太空的零(微)重力环境,在轨增材制造可以打印很多传统加工方式难以实现的零部件。在航空领域,增材制造的应用逐渐成熟,从最初在非关键部件上的应用逐渐过渡到例如发动机核心部件的制造。例如使用增材制造燃油喷嘴,在减少部件的同时,提高燃油效率。在可以预见的将来,增材制造将在航空领域大放异彩,乃至于影响到飞机的整体设计。另外,3D 打印为新型可变机翼的研发提供了强大的加工能力,显著提高了新型结构的研发效率,并实现了应用于可变机翼的全新的结构体系,目前蓬勃发展中的 4D 打印技术将为可变机翼提供更多先进的技术路径。△增材制造在航天领域的应用△增材制造在航空领域的应用4.2 生物医疗领域增材制造在生物医疗领域已经获得了广泛的应用,包括骨科、牙科、软组织工程、组织修复再生和生物治疗等。该部分从打印材料,表面处理,结构设计等角度,总结了在硬组织工程应用中增材制造技术的研究现状。同时还对目前比较成熟的商业 3D 打印骨植入物,以及应用增材制造技术的典型病例,进行了介绍与总结。增材制造高精度,多材料的特点为复杂的生物支架制备提供了新的选择,在人造心脏,体内遥控机器人等高难度领域都有着不可替代的优势。△增材制造在生物医疗领域的应用4.3 电子设备该部分总结了 AM 在包括微波器件,PCB 板,MEMS,微电池,RFID 标签,以及陶瓷手机背板等电子设备上的应用。在现代微波通讯系统及电磁应用领域中,增材制造技术为器件的小型化、轻质化、高精度、低成本制造提供了新方法,可有效降低传统制造中存在的材料冗余、装配误差等缺点。在未来微波及太赫兹器件的增材制造技术发展方面,提升制造质量和速度,研发新材料以适应多功能需求以及实现更高频器件制造将具有广阔空间。随着 5G 时代的到来和无线充电技术的发展,陶瓷材料的 AM 有望在新型手机背板的开发上发挥重要作用。△增材制造在电子设备的应用4.4 核工业该部分主要概述了增材制造制备的高分子、金属及陶瓷材料在核工业中的应用。从复合材料及材料结构方面对中子屏蔽材料的性能及应用进行研究,并展望多功能复合材料在核工业中的潜在应用。△增材制造在核工业的应用4.5 柔性可穿戴设备3D 打印技术可应用于柔性、可穿戴电子设备的制造,例如应变传感器、纳米发电机、柔性电极等。△增材制造在柔性可穿戴设备的应用4.6 软质传感器/驱动器/机器人技术4D 打印湿度、温度响应水凝胶发展迅速,各种几何形状、复杂变形和定向运动都已经实现。3D/4D 打印在传感器、执行器和软体机器人等各个方面都显示出了巨大的应用潜能。△增材制造在软质传感器/驱动器/机器人技术的应用4.7 珠宝和艺术装饰品3D 打印技术由于制造周期短、可根据客户需求精确定制、制造过程具有零浪费等特点,成为了珠宝和装饰行业兴起的新型制造技术。3D 打印技术通过电脑建模可以设计结构复杂的珠宝和装饰,并且以高分子、金属、陶瓷等材质直接打印出来,也可以通过打印铸造珠宝所需的低熔点熔模来间接参与珠宝制作。△增材制造在珠宝和艺术装饰品的应用4.8 陆地运输增材制造技术在陆地交通领域有着巨大的应用前景。相较于传统的陆地交通工具(如汽车、自行车、高铁等)的制造技术,增材制造技术不仅可以有效地降低制造成本,缩短研发周期,提高生产效率,还能够推动交通工具定制化设计的普遍应用。4.9 水下设备3D打印在航海领域的价值不断在开发,从服务水面船舰维护到深海水下探测。受益于 3D 金属材料打印技术的成熟和海上环境 3D 打印技术的研发,未来远洋船舰中极可能标配 3D 打印设备,为远离陆地补给的船舰即时制备已磨损或需更换的配件或临时所需的结构。该领域的潜在可观的市场也将吸引和促进 3D 打印技术在动态环境下的发展。△增材制造在海陆空交通运输的潜在应用场景4.10 多孔结构随着各种 3D 打印技术的飞速发展,作为多孔结构的不同微观结构变得越来越重要。通过使用 AM 技术,多孔结构有广阔的应用前景,特别是在医疗领域,如骨支架。利用3D 打印技术,可以个性化地制造出不同的尺寸和形态的结构。吕坚院士简介吕坚院士现任香港城市大学机械工程系讲座教授,先进结构材料研究中心(CASM)主任,国家贵金属材料工程技术研究中心香港分中心 (NPMM)主任,香港工程科学院院士,法国国家技术科学院院士。2006 年及 2017 年曾两次获得由法国总统亲自任命的“法国政府颁授法国国家荣誉骑士勋章”及“法国国家荣誉军团骑士勋章”,2018 年获得“中国工程界最高奖”第十二届光华工程科技奖。吕坚教授的研究方向涉及先进纳米结构材料的制备和力学性能,实验力学,材料表面工程和仿真模拟,生物与仿生材料力学,航空航天材料与结构预应力工程,3D 打印先进材料与产品集成设计等。相关论文及链接[1] G. Liu*, X. Zhang*, X. Chen*, Y. He*, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, J. Lu†. Additive manufacturing of structural materials, Materials Science and Engineering: R: Reports. Online Apr 2021.论文链接[2] G. Liu, Y. Zhao, G. Wu, J. Lu†. Origami and 4D printing of elastomer-derived ceramicstructures, Science Advances. 4(8), eaat0641, Aug 2018.论文链接[3] G. Liu*, Y. He*, P. Liu*, Z. Chen, X. Chen, L. Wan, Y. Li, J. Lu†. Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials, Engineering. 6(11), 1232-1243, Nov 2020.论文链接[4] Z. Mao, K. Zhu, L. Pan, G. Liu, T. Tang, Y. He, J. Huang, J. Hu†, K. Chan†, J. Lu†. Direct‐ink written shape‐morphing film with rapid and programmable multimotion, Advanced Materials Technologies. 5(2), 1900974, Jan 2020.论文链接[5] Z. Li, P. Liu, X. Ji, J. Gong, Y. Hu, W. Wu, X. Wang, H. Peng, R. Kwok, J. Lam†, J. Lu, B.Tang†. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens, Advanced Materials. 32(11), 1906493, Feb 2020.论文链接[6] X. Yan, S. Yin†, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu†, M. Liu†. Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition, Materials Research Letters. 7(8), 327-333, Apr 2019.论文链接[7] L. Cheng, T. Tang, H. Yang, F. Hao, G. Wu, F. Lyu, Y. Bu, Y. Zhao, Y. Zhao, G. Liu, X.Cheng, J. Lu†. The twisting of dome-like metamaterial from brittle to ductile, Advanced Science. Accepted Jan 2021.
  • 第一届微尺度增材制造研讨会在深圳顺利召开
    7月9日,由重庆摩方精密科技有限公司主办的微尺度增材制造研讨会在深圳顺利召开。此次研讨会旨在搭建一个微尺度增材制造技术及其应用进展的高端交流与分享平台,探讨微尺度增材制造技术的研发进展、应用创新并展望其未来发展方向。本次会议由南方科技大学的葛锜副教授、哈工大深圳的金东东副教授、摩方精密技术经理彭瑛博士、哈工大深圳马星教授进行主题报告演讲。报告环节,4位行业专家就各自领域经验开展了深度分享。首先进行报告的是南方科技大学的葛锜副教授,主题为《面向智能结构与器件的微尺度增材制造技术》,报告主要介绍了多功能3D打印在3D打印装备、多功能3D打印材料、以及3D/4D打印结构设计等方面的最新进展。葛锜副教授报告其次由哈工大(深圳)的金东东副教授带来《可重构软物质微型机器人的微纳制造与集群控制》的主题报告。主要介绍了近年来在“水凝胶变体微型机器人的微纳增材制造”和“磁场驱动胶体微型机器人集群的可控构建”的工作,以生物智能材料为核心设计、构建与功能化可重构微型机器人,分别从个体强化和群体协同的角度出发增强其在生物医学应用中的智能性、实用性与安全性,从而实现能够感知环境变化并自主适应的多功能微型机器人系统。金东东副教授报告第三位报告人为摩方精密技术经理彭瑛博士,报告主题《高精度大幅面PμSL3D打印技术及其最新应用进展》。摩方精密凭借其特色的PμSL 3D打印技术,开发出最高光学精度达2μm的增材制造系统,并可靠加工出各种复杂微米三维结构,在超材料、仿生、微机械、生物医疗、微流控、新能源等领域取得了系列成果。本次报告主要介绍PμSL3D打印技术在上述领域的最新应用成果,包括超构表面离子悬浮、微针给药、太阳能水蒸发器等。彭瑛博士报告最后由哈工大(深圳)马星教授进行《微尺度3D打印技术与生物医用微纳米机器》 的主题报告。主要介绍基于微尺度3D打印技术构建微纳米机器人的方法、构建材料及其性能调控方法,并分析3D打印微纳米机器人的生物医学应用研究现状,进一步展望未来3D打印技术在微纳米机器人领域的应用前景和挑战。马星教授报告随着微纳3D打印技术逐渐被更多行业熟知和应用,到场的30多位老师和学者在研讨会上进行了深入有效的沟通交流与经验分享,会议嘉宾纷纷表示:“由于疫情原因,已经很久没有参加线下会议,这种小型的交流研讨会非常有意义,比线上会议更具有互动性。”摩方精密对所有支持本次研讨会的老师和学者表示衷心的感谢,也希望微纳3D打印技术能为不同领域的应用带来更多的发展和创新。
  • 厦大孙道恒教授课题组《Small》:在超材料制造领域取得新进展
    当前,超材料制造工艺主要有印刷电路板(PCB)、光刻、电子束刻蚀等,然而这些工艺在3D超材料结构制造方面普遍存在步骤繁琐、成本高、耗时长等问题,不易与曲面共形,难以满足实际应用条件。3D、曲面共形一体化超材料的制造仍然是一项重大挑战。近日,厦门大学航空航天学院孙道恒教授课题组基于面投影微立体光刻(PµSL)3D打印技术(microArch S240,摩方精密)结合液态金属填充方法制备了3D正交开口谐振环及曲面共形超材料结构,其嵌入式结构特征可有效保护金属谐振层免受外部环境影响,且具有宏-微、结构-功能一体化成型的优势。图1 3D打印嵌入式超材料制备流程图2 正交开口谐振环超材料结构及尺寸:(a) 平面型;(b) 半球形仿复眼超材料 (单元尺寸为1.25mm)工艺流程如图1所示,首先使用精度为10μm的3D打印机(microArch S240,摩方精密)制备带有超材料微结构空腔的模型,再利用液态金属真空填充方法制备超材料金属微结构。超材料结构尺寸如图2所示,开口谐振环截面尺寸为0.1mm×0.2mm,顶部开口尺寸为0.3mm,谐振环外径为1mm。图3 液态金属填充及超材料性能测试:(a-b) 平面型及仿生复眼曲面共形超材料液态金属填充前与填充后;(c-d) 超材料传输性能测试图3(a)为3D打印的3D正交开口谐振环、仿复眼曲面共形超材料及局部放大图,图3(b)为填充液态金属后的超材料结构及其局部放大。在液态金属填充满超材料结构空腔后,采用光敏树脂涂覆在液态金属填充入口处并用紫外灯照射固化以密封入口。图3(c-d)为平面型及曲面共形超材料测试结果。该研究将3D打印的灵活性与液态金属的易流动、易填充性相结合,使超材料制造不再受限于复杂结构,开辟了一类复杂超材料结构制造新方法。为超材料的结构创新、功能创新及应用创新奠定工艺基础,拓展了共形超材料的应用范围,如3D光学/电磁隐身衣、智能蒙皮、超透镜等。该成果以题为“3D Printed Embedded Metamaterials”发表于国际期刊《Small》(IF = 13.281)上,论文通讯作者为厦门大学航空航天学院孙道恒教授和陈沁楠助理教授,第一作者为厦门大学航空航天学院博士生张昆鹏。该研究得到了国家自然科学基金(51975498、U1505243、U2005214)和深圳市科技创新委员会技术攻关面上项目(JSGG20201102165202007)的支持与资助。原文链接:https://doi.org/10.1002/smll.202103262
  • 厦大孙道恒教授课题组《Small》:在超材料制造领域取得新进展
    当前,超材料制造工艺主要有印刷电路板(PCB)、光刻、电子束刻蚀等,然而这些工艺在3D超材料结构制造方面普遍存在步骤繁琐、成本高、耗时长等问题,不易与曲面共形,难以满足实际应用条件。3D、曲面共形一体化超材料的制造仍然是一项重大挑战。近日,厦门大学航空航天学院孙道恒教授课题组基于面投影微立体光刻(PµSL)3D打印技术(microArch S240,摩方精密)结合液态金属填充方法制备了3D正交开口谐振环及曲面共形超材料结构,其嵌入式结构特征可有效保护金属谐振层免受外部环境影响,且具有宏-微、结构-功能一体化成型的优势。图1 3D打印嵌入式超材料制备流程图2 正交开口谐振环超材料结构及尺寸:(a) 平面型;(b) 半球形仿复眼超材料 (单元尺寸为1.25mm)工艺流程如图1所示,首先使用精度为10μm的3D打印机(microArch S240,摩方精密)制备带有超材料微结构空腔的模型,再利用液态金属真空填充方法制备超材料金属微结构。超材料结构尺寸如图2所示,开口谐振环截面尺寸为0.1mm×0.2mm,顶部开口尺寸为0.3mm,谐振环外径为1mm。图3 液态金属填充及超材料性能测试:(a-b) 平面型及仿生复眼曲面共形超材料液态金属填充前与填充后;(c-d) 超材料传输性能测试图3(a)为3D打印的3D正交开口谐振环、仿复眼曲面共形超材料及局部放大图,图3(b)为填充液态金属后的超材料结构及其局部放大。在液态金属填充满超材料结构空腔后,采用光敏树脂涂覆在液态金属填充入口处并用紫外灯照射固化以密封入口。图3(c-d)为平面型及曲面共形超材料测试结果。该研究将3D打印的灵活性与液态金属的易流动、易填充性相结合,使超材料制造不再受限于复杂结构,开辟了一类复杂超材料结构制造新方法。为超材料的结构创新、功能创新及应用创新奠定工艺基础,拓展了共形超材料的应用范围,如3D光学/电磁隐身衣、智能蒙皮、超透镜等。该成果以题为“3D Printed Embedded Metamaterials”发表于国际期刊《Small》(IF = 13.281)上,论文通讯作者为厦门大学航空航天学院孙道恒教授和陈沁楠助理教授,第一作者为厦门大学航空航天学院博士生张昆鹏。该研究得到了国家自然科学基金(51975498、U1505243、U2005214)和深圳市科技创新委员会技术攻关面上项目(JSGG20201102165202007)的支持与资助。原文链接:https://doi.org/10.1002/smll.202103262
  • “展”微纳3D技术创新,“会”全球制造行业人才,2024期待与您再相遇!
    2023年,摩方精密致力与专家学者共同探索微纳3D技术的最新应用场景,解决高精度制造的需求,为生物医疗、微流控、超材料、仿生学、微机械等前沿科研领域的应用提供技术支持。在这一年里,摩方精密坚持自办研讨会及参加各领域行业大会,旨为行业创新发展、商贸洽谈激发了机遇搭建了一个高质量的合作平台,在推动创新链与产业链深度融合,充分激发了各类企业的创新活力,为产业全链发展增添了无限动力。01 先进制造技术创新研讨会Advanced Manufacturing Technology Innovation Seminar为深入探讨先进制造研究最新前沿动态,加强各领域行业专家的交流合作,进一步促进微纳尺度先进增材制造技术创新发展,摩方精密在武汉、杭州、成都、上海、北京等地先后开展了6场自办“先进制造技术创新研讨会”,邀请业内领先的研究学者和技术专家,共同探讨当前微纳增材制造领域的热点问题,分享最新的研究成果和技术进展。"先进制造技术创新研讨会"已经得到了众多专家的高度评价,同时,在业内也激起了广泛的讨论和关注。摩方精密始终坚持原创技术牵引,洞察市场最新趋势,研讨会汇聚全球各行业院士专家、合作伙伴、龙头企业家代表等,将围绕微纳3D打印技术在生物医疗、精密电子、航天航空、低碳能源、环境治理等领域的创新应用展开交流研讨。专家们在圆桌论坛上共同剖析精密增材制造技术的应用之道、合作模式、产业现状以及未来的发展趋势。他们深入探讨精密增材制造在生物医疗领域的创新应用,交流在行业应用场景、关键项目的阶段性进展以及产学研合作的新模式。通过这些讨论,他们共同为产业化发展把脉,探寻着将科技创新转化为实际应用的最佳路径。02 行业大会,合作共赢Industry Conference, Win-win cooperation一、Medtec China2023年6月,摩方精密携最新研发成果精彩亮相第十七届Medtec China暨国际医疗器械设计与制造技术展览会,本次展会展出的微针贴片、内窥镜、心血管支架等多个医疗行业超高精密样件,引起强烈反响。二、高端医疗器械展览会2023年8月,摩方精密成功亮相2023第七届广州国际高端医疗器械展览会(高医展),期间展出了药物释放--血管支架、倾斜微针结构、陶瓷/树脂内窥镜端座、心血管支架、微流控等样件等自主研发的医疗应用端样件,吸引众多来自医院专家、行业学者、医疗企业人员等业界人士前来参观。三、CIOE中国光博会2023年9月8日,摩方精密携多款样件及终端应用参展第24届中国国际光电博览会(简称: CIOE中国光博会),重点展示了在精密电子、消费电子、生物医疗、科研及创新领域应用的超高精密打印技术,为精密制造行业带来一系列定制化解决方案。四、TCT Asia2023年9月12日,摩方精密成功亮相第九届亚洲3D打印、增材制造展览会(TCT Asia),并在首日举办了“探索微纳之间 智造无限可能”新品发布会,重磅推出了多款新设备、新终端、新材料和解决方案,引起业界的广泛关注,吸引了众多行业专家、科研学者、企业客户、行业资深媒体的洽谈交流。五、全球化视野,原创技术出口FORMNEXT成功亮相法兰克福增材制造盛会,向公众展示摩方精密最新精密部件及涂层技术TCT UK成功亮相英国TCT大会,现场展示摩方精密最新系列产品 microArch S350。RAPID +TCT携多款精密部件及高精密3D打印解决方案重磅亮相于北美3D打印盛会。03 精彩回顾,展望未来Wonderful review, Looking forward to the future33全国举办线下展会场次、100+全球线下展会举办城市、2000+建立合作共赢关系、5W+接待客户总人次摩方精密正致力于加快新产品的研发步伐,整合内外部资源,提供更优化的服务,将持续不断地为客户提供专业的技术支持、高效率的服务和一站式的系统解决方案,以期实现互利共赢的局面,共同迎接行业高速发展带来的新机遇。展望2024年,摩方精密将继续紧跟市场需求导向,以匠心和创新为产品赋能,向业界同仁展示品牌全新面貌的同时,持续助力行业向上发展,为制造业高端化、智能化、绿色化发展贡献摩方力量。
  • 复旦大学魏大程团队研发半导体性光刻胶,实现特大规模集成度有机芯片制造
    近日,复旦大学高分子科学系、聚合物分子工程国家重点实验室魏大程团队设计了一种新型半导体性光刻胶。2024年7月4日,该成果以《基于光伏纳米单元的高性能大规模集成有机光电晶体管》(“Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors”)为题发表于《自然纳米技术》(Nature Nanotechnology)。光刻胶又称为光致抗蚀剂,在芯片制造中扮演着关键角色,经过曝光、显影等过程能够将所需要的微细图形从掩模版转移到待加工基片上,是一种光刻工艺的基础材料。传统光刻胶仅作为加工模板,本身不具备导电、传感等功能。该成果则报道了一种半导体性的光刻胶设计策略,通过掺杂光活性粒子进行光电功能化,可以通过微电子制造业通用的光刻技术进行光电晶体管的大规模高分辨率制备,实现了大规模有机光电芯片的集成,将集成度和光响应度提高了两个数量级以上。现代信息科技的飞速发展对功能芯片集成度的要求越来越高。目前硅基芯片的制程工艺已经达到了3纳米的节点,集成密度已经超过2亿个晶体管每平方毫米。硅基芯片单片集成的集成度从小规模集成度(SSI)、中规模集成度(MSI)、大规模集成度(LSI)、超大规模集成度(VLSI)和特大规模集成度(ULSI)(集成器件数量分别大于2、26、211、216、221)不断迈向更高的水平。相比之下,基于有机半导体材料的有机芯片克服了无机半导体固有的刚性,凭借其与软组织良好的机械相容性,在可穿戴电子学、生物电子学等新兴领域具有广阔的应用前景。然而,目前有机芯片的集成度远远落后于硅基芯片。通过溶液加工(丝网印刷、喷墨打印)或真空蒸镀等方法制备出的有机芯片,其集成度通常不超过大规模集成度(LSI)水平。这是因为有机半导体导电通道由范德华力堆叠形成,在复杂制造流程的溶剂和热处理过程中易受到损伤,导致芯片性能随小型化而急剧降低。尤其当特征尺寸降低到微米及以下时,小型化和性能的折中显著地限制了高集成有机芯片的发展。图1:(a)光刻胶组成;(b)光刻胶聚集态结构;(c)在不同衬底上加工的有机晶体管阵列;(d)有机晶体管阵列结构示意图及光学显微镜照片;(e)有机光电晶体管成像芯片(PQD-nanocellOPT)与现有商用CMOS成像芯片以及其他方法制造有机成像芯片的像素密度对比。在这项工作中,魏大程团队报道了一种新型半导体性光刻胶的设计策略,该材料包含光引发剂、交联单体、导电高分子,可以通过光交联形成纳米尺度的互穿网络结构,同时实现了亚微米级的光刻图案化精度、良好的半导体性能和工艺稳定性。这种半导体性光刻胶可以通过添加不同的活性粒子来功能化。为了实现高灵敏的光电探测能力,研究者开发了一种具有光伏效应的核壳结构纳米粒子,添加到半导体性光刻胶中。纳米光伏粒子在光照下会产生光生载流子,电子被内核捕获,对半导体导电通道产生原位光栅调控,大幅提升了器件的响应度。作为展示,研究者利用光刻技术在全画幅尺寸芯片上集成了2700万个有机晶体管并实现了互连,实现了特大规模集成度(ULSI)的制造水平。该阵列(4500×6000像素)集成密度达到3.1×106 units/cm2,光响应度达到6.8×106 A/W。研究者将高密度阵列转移到柔性衬底上,实现了仿生视网膜应用,在基于神经网络的图像识别算法中展现出比传统CMOS器件更高的性能。此外,该团队还研发出具有化学传感功能、生物电传感功能的光刻胶。由于开发的功能化半导体光刻胶使用半导体产业通用的光刻技术进行加工,所以与商业微电子制造流程高度兼容,具有很大的应用前景。未来该团队也会积极寻求产业界的合作,希望能够推动科研成果的实用化。图2:(a,b)人眼和仿生视网膜的结构示意图;(c)在5&thinsp ×&thinsp 5 晶体管阵列上展示光电突触性能;(d)基于神经网络的图像识别算法中仿生视网膜与传统CMOS光电探测器的性能对比。“我们正在积极寻求产业界合作,希望能够推动科研成果的应用转化。未来,这种材料一方面能够用于制造高集成度柔性芯片,另一方面由于其光刻兼容性,还有可能实现有机芯片与硅基芯片的功能集成,进一步拓展硅基芯片的应用。”团队负责人魏大程说。
  • 金秋十月,首届中国MEMS制造大会燃起来
    p   自第一代Iphone面世至今,苹果手机逐渐成为高端手机的“代言人”,而人们不知道的一个很重要的原因是MEMS产业发展的惠及,技术的应用。 /p p    strong MEMS产业发展势头强劲 /strong /p p   MEMS产业技术目前在穿戴设备、车联网、智能家居、物联网等领域蓬勃发展。应用端市场更驱动了MEMS产业、技术、产品、制造的飞速发展。MEMS也正在给半导体产业及其终端应用市场带来一场技术革命。 /p p    strong 存在问题不容忽视 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 615px height: 143px " src=" https://img1.17img.cn/17img/images/201907/uepic/bf5f1029-6894-4f5e-81d2-e74fd9ee583e.jpg" title=" 1.png" alt=" 1.png" width=" 615" height=" 143" / /p p    strong “中国半导体行业协会MEMS分会”勇担重任 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 630px height: 553px " src=" https://img1.17img.cn/17img/images/201907/uepic/0634cd27-99ae-43e0-93e1-d520ce0747b9.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 630" height=" 553" / /p p   中国半导体行业协会MEMS分会作为国内唯一的MEMS行业组织,计划每年在苏州举办中国MEMS制造大会,旨在汇聚全球MEMS制造产业资源,打造MEMS领域品牌会议,加强MEMS设计、研发、加工制造、封装测试等全产业链联动关系,促进以MEMS制造为主线的产业资源垂直整合,推动我国MEMS产业领域的人才集聚、技术创新、成果转化,加速突破我国MEMS制造领域发展瓶颈。 /p p   strong  金秋十月,佳期将至 /strong /p p   2019年10月23-25日,首届中国MEMS制造大会将于苏州国际博览中心金鸡湖国际会议中心隆重举行。 /p p    strong 提前透露一下大会主题 /strong /p p   MEMS全球市场与产业链布局 /p p   MEMS全球晶圆代工产业格局和发展趋势 /p p   MEMS先进晶圆封装测试市场发展方向 /p p   MEMS在智能终端的应用前景与发展方向。 /p p    strong 大会出席嘉宾有哪些? /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 640px height: 868px " src=" https://img1.17img.cn/17img/images/201907/uepic/5251ebb7-835d-4fcf-8c32-ed2158d6172b.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 640" height=" 868" / /p p strong /strong br/ /p p   现已邀请到包括阿里巴巴、MEMSRIGHTER、中国科学院苏州纳米所加工平台、SMIC、IMT、天水华天科技股份有限公司、北京耐威科技股份有限公司、罕王微电子(辽宁)有限公司、瑞声科技控股有限公司、苏州敏芯微电子技术股份有限公司、ULVAC等MEMS行业权威企业嘉宾代表。届时,他们将带给我们一场场精彩的专业演讲,让我们拭目以待! /p p   不得不说,此次大会邀请到了众多的行业领袖和高端人才,汇聚了五湖四海的产业精英,真可谓是大咖云集,阵容强大! /p p    strong 废话不多说,一起去认识一下它们吧! /strong /p p    strong 阿里巴巴: /strong 没错,正是马云的阿里巴巴集团 /p p   经营多项业务,包括核心电商、云计算、数字媒体和娱乐以及创新项目等。另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。届时,阿里首席智联网科学家丁险峰将出席大会并做专题报告。 /p p    strong MEMSRIGHTER: /strong 国内首个全开放、市场化运作的MEMS加工平台 /p p   专注于6英寸微纳机电制造(MEMS)专业研发与代工,从根本上解决中小MEMS设计企业产品化上的最大难题。 /p p    strong 中国科学院苏州纳米所加工平台: /strong 国家出资,政府支持 /p p   隶属于中国科学院纳米技术与纳米仿生研究所,硬件设施雄厚,可实现多种材料的微纳加工、器件流片加工。推动一大批国内产业链上下游企业发展。 /p p    strong SMIC中芯国际: /strong 世界领先的集成电路晶圆代工企业 /p p   是中国内地技术最全面、配套最完善、规模最大、跨国经营的集成电路制造企业,拥有全球化的制造和服务基地。 /p p    strong InnovativeMicroTechnology,Inc.(IMT): /strong 美国最大的MEMS技术和晶圆制造服务商 /p p   专门生产微机电系统(MEMS)器件。IMT提供MEMS量产,以及从设计到生产过程的制造服务。 /p p    strong 天水华天科技股份有限公司: /strong 销售格局布局全球 /p p   主要从事半导体集成电路封装测试业务。拥有一套先进的大生产管理体系,集成电路年封装规模和销售收入均位列我国同行业上市公司前列。 /p p    strong 瑞声科技控股有限公司: /strong 领先全球的通信及消费电子市场的微型元器件全面解决方案供应商 /p p   利用先进的制造技术,为多领域智能设备提供硬件、软件高度结合的技术解决方案。 /p p    strong 苏州敏芯微电子技术股份有限公司: /strong 中国国内最早成立的MEMS研发公司之一 /p p   不仅填补国内 MEMS 产业的空白,还将利用世界半导体产业向中国转移的趋势,进一步发展成为具有世界影响力的MEMS公司。 /p p   看了以上企业的介绍,是不是瞬间觉得本届MEMS制造大会高端大气上档次呢! /p p   想与产业领域大咖交流分享?想获取行业内最新动态、观看技术研发成果?想进一步开拓市场?那么 MEMS制造大会欢迎您的到来!10月23日-25日,我们期待更多的企业和行业领袖加入我们,一起谱写MEMS产业的美好明天。 /p p   参会联系人: /p p   陆 炜& nbsp & nbsp 联系方式:15050142680 /p p   & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 邮箱地址:luw@nanopolis.cn /p p   参展联系人: /p p   万成东 联系方式:13584824068 /p p   & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 邮箱地址:wancd@nanopolis.cn /p p br/ /p
  • 西安交大前沿院邵金友教授在原子/分子团簇与器件制造领域取得新进展
    原子/分子团簇是物质结构的一种新形态,具有独特的本征性质。从原子/分子团簇到器件的跨尺度制造,将为高端装备和新兴电子等产业发展带来深刻变革。团簇的多物质构效关系、宏量制造、团簇结构跨尺度构筑以及团簇器件的高性能制造等是原子/分子团簇器件制造的关键发展方向,主导着从原子到产品制造的发展历程。把握这些发展背后的重要机遇,将有助于占领原子级制造研究的制高点,引领原子级制造方法的变革。由原子/分子团簇直接构筑功能器件或构件,是产品制造的新形式,在先进制造领域具有重要的意义,其中包括两个方面。首先,可以微缩器件的特征尺寸并提高制造精度。在集成电路的发展中,越小的器件尺寸意味着更高的集成度和更好的性能。利用原子/分子团簇直接构筑功能器件或构件可以将器件尺寸缩小到原子水平,将成为在后摩尔时代提高芯片性能的重要途径。其次,该策略更具颠覆性的意义,因为它可以突破分子和晶体的限制,通过对原子的精细操控来创造新分子、新材料和新器件。因此,原子/分子团簇直接构筑功能器件或构件不仅是由原子尺度物质科学支撑的先进制造技术,而且是推动物质科学发展的一种未来技术,甚至是未来物质科学的一种新形态,其必将颠覆现有制造方式获得的产品性能,深远影响高端国防装备和新兴电子产业的未来发展。另一方面,通过对原子结构的调控,能够提高材料的工作温度,实现陶瓷增韧,为高超航天器提供新型耐高温材料与结构。在电子产业领域,将原子/分子团簇等按照一定的方式进行组装能构筑具有特定功能的器件,如具有超高分辨率、超高亮度、超快响应能力的新型显示器、红外光电探测系数数倍增强的超敏传感器以及单分子电子器件及其构建的下一代集成电路等。基于上述背景,西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授等从团簇新材料的宏量制造、新型功能器件的原子/分子团簇构筑、团簇—器件的跨尺度制造工艺和装备等三个方面概括了原子/分子团簇与器件制造领域的主要研究进展,总结了原子/分子团簇与器件领域的关键科学问题及面临的挑战,并对其未来发展方向和发展战略给出了建议。特别地,建议从以下三个方面重点关注其中的科学问题研究:1. 在原子/分子团簇及晶胞结构的形性调控机制与宏量制造方面。建议重点研究量子力学在团簇生成及晶胞结构调控过程中的作用机制与控制方法,为原子/分子团簇和晶胞的高性能制造提供量子力学调控原理;研究团簇和晶胞结构形态与材料特性之间的构效关系,为优异特性的材料制造提供合理设计;研究特定形性团簇和晶胞的稳定性和一致性控制方法,为团簇及晶胞的宏量制造提供关键方法保障。2. 在团簇结构的定域组装方法及异质/异构界面特性的调控方面。建议重点研究团簇组装和图形化过程中的界面力学作用机制,为团簇结构制造提供关键理论支撑;研究“自下而上”与“自上而下”相结合的团簇结构定域组装机制与调控方法,实现团簇微纳结构的一致性、批量化制造;研究团簇异质/异构界面的力、热、光、电等基本物理特性形成机制与控制方法,实现团簇结构的基本性能调控。3. 在团簇—微纳结构—器件性能映射关系与一体化高性能制造工艺和装备方面。建议研究团簇形性特征、微纳结构功能特征、器件性能表现三者之间的相互映射关系,为器件功能和性能设计提供理论依据;研究由团簇材料到宏观器件的一体化制造新工艺和新方法,为高性能团簇器件制造提供创新工艺技术;研究典型团簇器件的创新印刷装备,为团簇器件的制造和应用提供制造装备范式。该研究成果以《基于原子/分子团簇结构的材料与器件制造》(Manufacturing From Atomic and Molecular Clusters to Devices)为题发表于材料领域高水平期刊《中国科学基金》。西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授为论文的第一/通讯作者。论文链接:DOI: 10.16262/j.cnki.1000-8217.2024.01.028 邵金友教授简介邵金友,现任西安交通大学科研院常务副院长、曾任职前沿科学技术研究院院长、机械学院副院长、国家杰出青年基金获得者、机械工程学院领军学者、博士生导师。主要从事微纳制造、电子皮肤与可穿戴电子、生物仿生与软体机器人、医工交叉等方面的研究工作。国家自然科学基金“纳米制造的基础研究”重大研究计划重大集成项目首席、国家重点研发专项项目首席,担任国家第六次科技预测(2020-2035规划)极端制造领域专家、十四五国家重点研发计划“高性能制造技术与重大装备”重点专项指南专家。已发表SCI论文160余篇,其中以第一和通讯作者在Nature Communications、Advanced Materials,ACS Nano等国际高水平期刊发表论文80余篇,SCI他引约3100余次,在第一、通讯作者SCI论文中,多篇被Advanced Materials,Advanced Functional Materials,Small,Nanoscale,IEEE Nanotechnology等期刊选为封面亮点论文,入选英国物理学会、美国化学学会和英国化学学会的精选论文或热点论文,被Wiley Video Abstracts,Material View,Advanced Science News,Nanowerk等国际知名学术新闻网站作为研究亮点评述。以第一发明人获得国家授权发明专利22项,获得美国PCT发明专项2项。
  • 深度学习助力增材制造梯度力学超材料逆向设计
    由于其特异的宏微观基元拓扑构型,力学超材料在刚度、韧性、减隔振和热膨胀等性能方面显著优于传统均质材料,受到了航空航天、生物医学、电子电路和土木工程等领域的广泛关注。生物体经过长期进化形成的各类器官,与超材料的概念相契合,即通过多层级微结构实现超常物理力学特性,同时生物器官的微结构基元还呈现出梯度渐变、长程无序等特征。目前,针对力学超材料发展的拓扑优化方法和机器学习设计方法,主要面向周期性结构,对于仿生梯度超材料的逆向设计和优化,缺乏高效率、高保真的计算分析方法。 图1深度神经多网络系统实现多属性胞元的定制总体思路框图近期,来自北京理工大学的研究者们提出了一种加速梯度力学超材料逆向设计的深度学习方法。发展了一种由对抗神经网络(GAN)、性能预测网络(PPN)和结构生成网络(SGN)组成的多重网络深度学习框架,如图1所示,可实现力学性能参数和拓扑构型的快速双向映射。基于此深度学习框架,将各向异性材料杨氏模量、剪切模量和泊松比组成的属性空间,类比于R-G-B色彩空间,进而将梯度力学超材料逆向设计转换为色彩匹配问题。利用HTL树脂3D打印(NanoArch S140,摩方精密)制备了超材料结构样件,采用数字图像相关(DIC)方法验证了逆向设计的有效性。相关成果以“A Deep Learning Approach for Reverse Design of Gradient Mechanical Metamaterials”为题发表在《International Journal of Mechanical Sciences》期刊。图2 周期性超材料的应力应变曲线和泊松比应变曲线,其中左侧插图为3D打印试件,右侧插图为有限元分析模型。(a) 正泊松比结构。(b)零泊松比结构。(c)负泊松比结构;该研究中,首先基于拓扑优化方法得到了不同杨氏模量E、泊松比υ和剪切模量G的超材料胞元,并建立对应的属性空间作为数据样本。随后,基于Keras平台搭建了具备三个卷积解码/编码网络的深度神经网络系统,用于实现结构性能评估、结构补充与结构生成。基于拓扑优化样本实现PPN网络的离线训练,同时结合随机结构训练GAN网络以补充胞元属性空间。最后,基于属性空间扩充后的样本进一步训练SGN网络,对于任意的力学参数目标,均可在0.01秒内给出胞元构型,实现了多属性胞元的快速逆向设计。针对优化设计和网络预测得到的特定属性结构进行3D打印(如图2所示),并开展DIC压缩试验表征了其模量与泊松比,验证了算法的准确性和有效性。 图3 相邻胞元结构连通性的实现:(a)单元边界的定义和连接的分类(具有不同颜色的结构表示不同的属性);(b)SGN网络调整初始设计;(c)经过网络匹配得到的最终结构。在超材料胞元快速逆向设计的基础上,创新提出了一种结构像素化方法,通过结构的E-υ-G属性与R-G-B通道一一映射,将结构属性数据库转化为像素数据库。首先基于像素匹配的方式生成满足宏观属性需求的初始设计,随后网络系统根据结构的连通性要求进一步优化胞元结构,保证宏观结构的可制造性,如图3所示。研究者们以髋关节假体为例,开展了梯度超材料结构的快速设计。如图4所示,髋关节假体在人体中主要承受非轴向载荷,如果嵌入骨骼中的部分发生弯曲,受到弯曲拉应力作用的一侧,将牵引其上附着的骨组织,诱发组织损伤。模仿实际骨骼的力学属性分布特征,采用神经网络系统在不同位置自动排列模量与泊松比梯度变化的超材料胞元(图5),从而调整了宏观结构的变形模式,使髋关节植入结构的两侧,均保持在压应力状态,解决了假体界面失效的问题。计算模型基于围绕假体的凹槽,用于模拟假体插入骨骼,固定凹槽的底端并在假体的顶部施加非对称压缩载荷。同时他们还建立了一个多材料模型,每个晶胞区域代表一种材料,材料性质与超材料模型中相同位置的晶胞的E-G-υ一致。两种模型的水平位移计算结果如图5f所示,槽左侧的位移为负,而右侧的位移为正,这表明假体两侧的界面被均匀挤压。假体与骨牢固结合,有效防止界面破坏,梯度结构具有完美的连接状态,类似于超材料模型的设计目标。超材料模型和多材料模型的计算结果高度一致,证实了他们提出的超材料设计方法的准确性,这种有效的连接策略在满足增材制造要求的同时实现了与多材料设计相同的性能。图4 人体髋关节假体的受力状态。(从外到内为皮肤、髋骨和假体。假体受到不对称轴向压缩力作用,中间的粉红色区域被选为目标设计区域。) 图5 深度神经网络系统实现梯度模量/泊松比髋关节结构设计:(a)具有生物相似结构的梯度模量分布;(b)受变形模式启发的泊松比分布;(c)叠加后的最终力学性能分布;(d)GSN网络在像素匹配后调整结构;(e)满足目标模量和泊松比设计要求的超材料髋关节结构。(f)模拟假体受载的位移云图,等效多材料模型(上)和超材料模型(下)。
  • 《海牙协定》助力中国设计、中国制造走向世界
    《海牙协定》全称是《工业品外观设计国际注册海牙协定》,是用于保护工业产品外观设计的一项国际条约,与《商标马德里协定》和《专利合作条约》共同构成工业产权领域的三大业务体系,由世界知识产权组织(WIPO)统一管理。海牙体系为创新主体提供了一种简捷高效的外观设计国际注册程序,主要体现在两方面:一是申请人只需要提交一份国际申请、使用一种语言、支付一种货币,就可以在多个缔约方申请外观设计的保护,显著降低了企业在产品全球化布局过程中的外观设计注册成本,大幅提升注册效率。二是申请人在日后如有权利变更、保护期续展等需求时也只需向WIPO国际局提交一份请求,即可在所有指定缔约方生效,极大方便了创新主体对外观设计权利的集中化管理。加入《海牙协定》,有利于中国企业积极融入外观设计全球化体系,促进工业外观设计的创新能力提升,助力中国设计、中国制造走向世界。同时,也有利于把国外先进的工业品外观设计引入中国市场,有利于我国工业领域的发展和高水平对外开放。国家知识产权局已开通外观设计国际申请系统,自2022年5月5日起,申请人可以使用该系统进行用户注册并办理外观设计国际申请业务。系统网址:https://hague-agreement-design.cponline.cnipa.gov.cn,使用方法参见系统操作手册。外观设计国际申请相关请求类表格清单及样式见附件。申请人可通过访问国家知识产权局网站(http://www.cnipa.gov.cn)“政务服务”专利专栏下的“表格下载”栏目下载使用。此外根据《国家发展改革委 财政部关于外观设计专利年费、单独指定费标准有关问题的通知》(发改价格〔2022〕465号)和《工业品外观设计国际注册海牙协定》(以下简称海牙协定)有关规定,国家知识产权局于2022年5月5日起执行新的外观设计专利年费和单独指定费标准:一、外观设计专利第11—15年年费标准为每年3000元。二、单独指定费(人民币标准)为:第一期(1—5年)4100元,第二期(6—10年)7600元,第三期(11—15年)15000元。根据海牙协定有关规定,通过海牙协定指定我国的工业品外观设计国际注册申请及国际注册续展,申请人应按照国家知识产权局和世界知识产权组织确定的单独指定费瑞郎折算价格进行缴纳,相关瑞郎折算价格将在国家知识产权局网站另行通知。
  • “3D细胞智造工厂”制造商完成近3亿元B轮融资
    近日,专注创新3D细胞技术的北京华龛生物科技有限公司(以下简称“华龛生物”)宣布完成近3亿元B轮融资。本轮融资由高榕资本、中金资本旗下中金启德基金和中金启元国家新兴产业创业投资引导基金联合领投,中国科兴、国药中生等新老股东跟投。融资资金将用于研发升级、扩大核心产品产能、丰富产品线与智能化整体解决方案、拓展国际化业务与CDMO业务等。华龛生物由清华大学医学院杜亚楠教授科研团队于2018年领衔创建。公司专注于打造原创3D细胞“智造”平台,提供基于3D微载体的细胞规模化定制化扩增工艺整体解决方案,解决全球细胞产业发展痛点。杜亚楠,清华大学医学院生物医学工程系长聘教授、博士生导师,清华大学医学院和清华-北大生命联合科学中心研究员。本科毕业于清华大学化学工程系 博士毕业于新加坡国立大学生物工程系 于美国麻省理工学院和哈佛医学院进行博士后研究。在“微组织工程”这一特色交叉研究方向进行创新探索,实现理论探究和技术转化。研究内容为整合微纳加工技术、生物材料、基因编辑和生物力学构建精确可控、具有仿生结构和功能的各类生理和病理3D微尺度组织,为组织工程, 再生医学以及药物筛选和病理研究提供新型平台技术。团队开发的3D微组织技术,可作为新一代干细胞药物的扩增制备平台和药剂学递送系统革新再生医学 并通过构建体外仿生病理微组织模型首次报道了肝窦毛细血管化可通过胶原纤维介导的“旁张力信号”促进肝脏纤维化的全新病理机制,为肝病治疗提供了精准用药方案。为再生医学、药物开发和病理研究提供新型平台技术、理论模型和解决方案。共发表高影响力SCI论文80余篇 (发表在Nature Materials,Nature Communications, PNAS,Science Advances 等杂志),发表图书章节8篇。批准授权专利14项,其中两项微组织工程技术专利已商品化。分别主持国家自然科学基金杰青项目、国家自然科学基金优青项目、北京市自然科学基金杰青项目。并获得教育部青年长江学者称号。同时为Tissue Engineering和ACS Biomaterials Science & Engineering的编委。华龛生物核心产品3D TableTrix微载片(微载体)是自主创新型、全球首款可用于细胞药物开发的药用辅料级微载体,整体解决方案在全球范围内处于领先地位。基于3D微载体细胞培养技术,华龛生物进一步开发3D FloTrix细胞大规模全自动化制备工艺系统。华龛生物的产品与服务可广泛应用于基因与细胞治疗、细胞外囊泡、疫苗及蛋白产品等生产的上游工艺开发。同时,在再生医学、类器官与食品科技(细胞培养肉等)领域也具有广泛应用前景。华龛生物表示,本轮融资将助力公司打造“3D细胞智造工厂”,在未来实现细胞规模化、定制化培养,以及生产制备流程自动化、智能化、无人化,推动细胞产业迈向工业4.0时代。
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 37年把冷板凳坐热,清华大学教授陈国强团队—— 开拓生物制造技术新方向
    在可降解的生物材料研发上摸索了37年的清华大学教授、合成与系统生物学中心主任陈国强,最近终于眉头舒展:“这次接近看到曙光了。”  为减少不易降解的石化塑料造成的白色污染,科学家一直在寻找可降解材料,生物制造是路径之一。在诸多生物材料中,PHA(聚羟基脂肪酸酯)这一类材料家族,有全过程在水里合成、完全降解、动物可食用等优势,被寄予厚望。上世纪90年代,工业界试图大规模生产时,却遇到成本高、能耗高等难题。相比成熟的化工制造,生物制造PHA材料实在没有竞争力。  从80年代开始,陈国强就在做PHA研究。PHA大规模产业化被认为难以走通时,相关研究迅速降温,有观点认为:作为大宗材料,PHA没有前途。靠着从国家自然科学基金委员会和产业界争取到的资助,陈国强继续研究生物制造技术。“我坚信这是未来发展方向,咬着牙也要把它做下去。”陈国强告诉记者。其间,在科技部有关课题的持续支持下,他探索出了可行的PHA规模化生产方法,但受制于制造成本、复杂的生产流程等,实际应用的范围很小。  生物制造成本居高不下,重要原因是反应过程消耗大量淡水和能量,生产工艺复杂、设备投资巨大,生产过程中出错(染菌)率很高。能不能用海水来替代淡水?实现这一设想,前提是找到适合海水的菌种。2003年,陈国强团队得知新疆有个艾丁湖,这是一个由于酷热、干燥的气候形成的内陆咸水湖。经过多次实地土壤筛选,他们惊喜地发现,两株细菌具有高度耐盐以及快速生长的特性,且不易被其他微生物感染。这正是团队苦苦寻找的理想工业微生物菌株。  但这些嗜盐菌能否充当新一代生物制造的底盘细胞?陈国强带领团队利用合成生物学和代谢工程学方法,改造出适应能力更强、生长速度更快的菌株,并从科学上验证:基于嗜盐菌发展“下一代工业生物技术”进行制造不仅可行,而且相比上一代技术有巨大提升。2011年,陈国强团队发表的论文引起行业广泛关注,多个国际科学团队和企业纷纷跟进。沉寂多年的PHA研究,包括使用极端细菌的工业过程,成为生物制造的新热点。  从实验室走向工业化,没人清楚能否走得通。在国家多个科技项目支持下,陈国强开始了另一场远征——规模化生产技术验证。又攻关近10年,他带领团队基于嗜盐菌构建了生物制造的系列核心技术平台,解决了发酵生产中高耗能、易染菌、过程复杂、产物难提取、生产成本高等难题。无论基础研究还是工程化实现,该团队如今都走在全球前列。  “科学研究就像一场冒险,一路走来,我是幸运儿。”陈国强感慨,“37年科研生涯中,走过的弯路很多,失败探索远多于成功。走到现在,源于自己坚信:任何一个研究方向往深处钻研一定会有新发现。”  2021年10月,他带领团队完成200吨发酵罐的PHA开放生产。利用得到的PHA,他们与多个兄弟单位合作,成功制成纤维纺织品、可降解农膜、管材、3D打印材料、医用无纺布以及发光材料等。在合成生物学和“下一代工业生物技术”制造PHA生物塑料的道路上,陈国强团队使我国处于世界领先的水平。“看到下一代生物制造从梦想变成现实,我感到一切付出都值得!”他说。
  • 中国制造业企业首次丨摩方精密获全球光电行业最高奖荣誉Prism Awards(棱镜奖)
    北京时间3月3日,2021年全球光电科技领域最高奖“棱镜奖(Prism Award)”最终获奖名单颁布,重庆摩方精密科技有限公司的超高精密3D打印系统microArch S240荣获2021年度该世界级大奖。今年由于疫情原因,改为线上颁奖,本次评选有来自18个国家的149家企业进行角逐,所颁奖项分为生命科学、制造业、医疗器械、软件等十大类别,每个类别有且仅有一位获奖者。其中,摩方精密的超高精密3D打印系统“microArch S240”凭借过硬的技术,最终赢得“制造业”类别大奖。决赛中与重庆摩方精密竞争的,是两家著名美国工业上市企业nLight和IPG,这是中国企业第一次凭借本土原创精密制造技术的领先性,获得此奖项。棱镜奖是国际光学工程学会(SPIE)联合Photonics Media于2008年创立,是目前全球光电行业的最高奖项。该奖项由SPIE和Photonics Media共同赞助,杜绝商业运作,具有极高的科技权威性。棱镜奖是年度国际竞赛,旨在鼓励市场上最好的新型光学和光子学产品,以及在光学,光子学与成像科学领域中具有创新突破,并通过光学技术解决现存问题,改善现有技术,并提升生活质量的新发明与新产品,素有光学界的奥斯卡之称。决赛入围者和获胜者由国际专业评审团选出,评审团包括来自全球的技术专业人士,企业高管及金融专家。本次获奖的microArch S240,是摩方第二代系统,S240具备更大的打印体积(100mm×100mm×75mm),打印速度提升最高10倍以上,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。同时,在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大满足了工业领域制造对产品耐用的需求,也为科研领域开发新型功能性复合材料提供支持。部分打印样件图:(一)微流控芯片(二)火柴对比视角下的北京鸟巢体育馆(三)仿生微针结构重庆摩方精密科技有限公司成立于2016年,是目前全球唯一能够生产制造打印精度达2微米超高精密3D打印系统的企业,并实现全球产业化。在此领域,摩方在全球没有仿制对标他人,而是走在全球最前沿,是被追赶的对象。2018年6月至今,已为全球超过25个国家、500家以上的企业/院所提供了超高精密的3D打印设备、材料和打印服务。在工业领域,全球最大的眼科医疗器械厂商Alcon,全球最大的连接器厂商泰科TE,全球最大规模的医疗卫生企业Johnson & Johnson,以及Facebook,HRL,Apple,Merck, Intuitive Surgical,Stryker等世界尖端企业均已采购摩方的系统或服务。(美国强生公司Johnson & Johnson采用摩方设备现场照片)摩方超高精密3D打印系统及服务也出口至日本SDK等著名知名企业及院校,中国企业出口超高精密基础制造系统至日本客户,尚非常罕见,充分说明摩方在这一领域全球范围内的优势。在科研领域,我国众多知名大学,包括清华大学,北京大学,南京大学,北京航空航天大学,北京理工大学,上海交通大学,浙江大学,香港城市大学等均已采购摩方设备。国际范围内,包括日本东京大学,早稻田大学,德国德累斯顿工业大学,英国诺丁汉大学,新加坡南洋理工,阿联酋Khalifa等众多知名院校均也采购了摩方的系统。(英国诺丁汉大学采用摩方设备现场照片)
  • 国家重点研发计划“高性能制造技术与重大装备”重点专项2021年度申报项目预评审专家名单公告
    根据2021年度国家重点研发计划重点专项评审工作安排,科技部高技术研究发展中心于2021年8月1日至8月7日组织开展了“十四五”“高性能制造技术与重大装备”重点专项2021年度申报项目预评审工作。此次评审采用网络评审方式,评审专家按照科技计划项目评审专家选取和使用的统一要求,从国家科技专家库中产生,共55人。根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发﹝2014﹞11号),和中共中央办公厅、国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》(中办发﹝2018﹞37号)等文件精神,现将预评审专家名单予以公布,公示期为8月11日-8月15日。  专项管理办公室联系方式:010-68335972  组1:1.1 重大装备设计基础前沿(青年科学家项目)序号姓名单位名称1王海涛河北工业大学2陈长军苏州大学3何立子东北大学4薛梓中国计量科学研究院5丁香乾中国海洋大学6邓斌西南交通大学7刘建荣中国科学院金属研究所  组2:1.2 高性能基础件基础前沿(青年科学家项目)序号姓名单位名称1周锦松中国科学院空天信息创新研究院2李小灵江南造船(集团)有限责任公司3樊荣中煤科工集团重庆研究院有限公司4王勇广州机械科学研究院有限公司5白振华燕山大学6蔺永诚中南大学7徐丰羽南京邮电大学  组3:1.3 高性能制造工艺基础前沿(青年科学家项目)序号姓名单位名称1刘越东北大学2吴恒安中国科学技术大学3田良成都工具研究所有限公司4苏峰华华南理工大学5沈承金中国矿业大学6张路明中信重工机械股份有限公司7薛文斌北京师范大学8钟毓宁湖北汽车工业学院9张正元中国电子科技集团公司第二十四研究所10练朝春上汽通用五菱汽车股份有限公司11郭明忠盛瑞传动股份有限公司12胡献国合肥工业大学13唐晔北京遥感设备研究所14刘红旗中国联合网络通信集团有限公司15杨卫民北京化工大学16任玉成中国重型机械研究院股份公司17王建峰中国科学院苏州纳米技术与纳米仿生研究所18徐军同济大学19吴兴旺中国船舶重工集团公司20赵铁石燕山大学  组4:2.1 耐高温抗腐蚀传动系统轴承序号姓名单位名称1金百刚鞍钢集团有限公司2王文杭州电子科技大学3强永席杭州颢熙科技有限公司4陆宁云南京航空航天大学5刘永斌安徽大学6周文龙大连理工大学7杨为佑宁波工程学院  组5:2.7 大型薄壁铝合金整体构件精确成形技术序号姓名单位名称1杨志刚同济大学2皮孝东浙江大学3袁国东北大学4王冰昆山双桥传感器测控技术有限公司5袁鸿暨南大学6党选举桂林电子科技大学7魏静重庆大学  组6:3.4 第三代半导体高性能碳化硅单晶制备和外延工艺及成套装备序号姓名单位名称1毕英杰上海宝信软件股份有限公司2庞慰天津大学3孙清清复旦大学4张辉东南大学5恩云飞工业和信息化部电子第五研究所6黄辉大连理工大学7姚友良山推工程机械股份有限公司科技部高技术研究发展中心2021-08-11
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 第二轮通知|第二届甬江实验室材料与先进制造分析测试技术论坛
    为推动材料与先进制造领域分析测试技术的创新和发展,提升其在支撑科研、链接产业、赋能创新中的作用,甬江实验室将于2023年10月13日举行第二届甬江实验室材料与先进制造分析测试技术论坛。本次论坛以“分析测试技术成就高质量创新”为主题,邀请科学界、产业界、仪器界知名专家与会做精彩报告,围绕材料与先进制造领域展示分析测试技术的最新研究进展和应用,促进产、学、研、政之间的交流与合作。同期举行圆桌论坛,邀请检测平台负责人、科学界学者、产业界企业家等深入交流与合作,旨在推动学术界、产业界分析测试能力与水平的提升。欢迎感兴趣的科技工作者、企业代表积极报名参会。时间地点时间:2023年10月13日(星期五) 09:00-18:00地点:浙江省宁波市慈海南路1792号 甬江实验室519星璨报告厅组织机构主办单位:甬江实验室、微谱科技集团媒体支持:DT新材料、仪器信息网赞助单位:宁波银行股份有限公司、赛默飞世尔、上海主流、CAMECA、北角仪器论坛日程09:0012:30主旨报告启动仪式&领导致辞使役条件下材料微结构演变的原位电子显微学研究——隋曼龄 北京工业大学 教授 博士生导师建设科研新高地,点燃创新主引擎——崔平 甬江实验室 主任题目(待定)——科技部10:4511:00茶歇纳米测量技术中的工匠与工匠精神——苏全民 中国科学院沈阳自动化所 研究员高质量建设运营公共技术服务平台与新型研发机构促进科创生态发展——任天斌 同济大学教授/微谱科技集团创始人/长三角国创中心功能材料所 所长圆桌论坛:研发机构分析测试平台的功能定位、运营管理与相互合作12:3013:20自助午餐13:2013:50实验室参观14:0018:00分会场一:国际分析测试技术前沿研究与进展磁性吸波材料的原位电镜研究——车仁超 复旦大学 教授 博士生导师原子分辨透射电子显微术及其在氮化物半导体材料与器件缺陷表征中的应用——苏旭军 中国科学院苏州纳米技术与纳米仿生研究所测试分析平台 副主任三维连续切片扫描电子显微技术发展及其应用——陈波 同济大学 研究员 资产与实验室管理处副处长C1分子催化活性显微溯源与催化剂动态行为追踪——刘伟 中国科学院大连化学物理研究所 研究员三维原子探针(APT)技术提供原子量级分辨率,助力新材料科研突破——邹奕量 CAMECA 中国区总经理极致的S/TEM表征艺术:Specta与Hydra的梦幻二重奏——牟新亮 赛默飞世尔 博士透射电子显微技术在集成电路新技术开发和失效分析中的应用——李昆 甬江实验室 研究员分会场二:分析测试技术在研发创新与品控中的最新应用品质成就未来:扎根高纯金属与溅射靶材基础研发——王学泽 江丰电子 总工程师 党委书记实验室助力新材料的应用开发——吴俊 万华化学宁波高性能材料研究院 实验室主任服务新能源产业、电池及其材料测试分析技术研究与应用介绍——王愿习 天目湖先进储能技术研究院有限公司 测试分析中心主图像处理、三维重构及数值模拟结合CT技术在材料科学中的应用——耿华 赛默飞 博士 中国区应用专家失效分析技术助力“工业医院”精准把脉产品质量提升——杨宝麟 微谱科技集团 技术经理先进制样技术在电镜表征中的应用——谢佩松 徕卡 应用经理最新透射电子显微镜TEM成像技术及谱学分析——袁昊 Gatan中国应用首席 博士动态二次离子质谱DSIMS在半导体材料分析中的应用——高钟伟 甬江实验室 博士扫描电镜SEM、双束电镜FIB与透射电镜TEM在新材料及器件研发中的应用——任杰 甬江实验室 博士分会场三:中国科学仪器的开发与应用超高分辨显微系统的研发与技术进展——崔志英 永新光学研究院 院长质谱仪器国产化及其技术进展——黄正旭 广州禾信仪器股份有限公司 博士 副总经理聚束科技高通量电镜最新技术发展及应用——张琛 聚束科技应用事业部 副总经理十年沉淀,多阀多柱气相色谱仪的开发与应用——吴增文 北角仪器研究院 博士低场核磁共振成像技术,创新20载,智行高质量——杨培强 苏州纽迈分析仪器股份有限公司 董事长匠心研发国产有机质谱(LCMS、GCMS)及无机质谱 (ICPMS),与质谱技术在行业中的应用——杨晓燕 天瑞仪器 产品开发总监面向类器官制造的显微操作智能装备——庄松霖 甬江实验室 研究员圆桌论坛:中国科学仪器的发展机遇、挑战与研发创新路径参会对象01 高校、科研院所、国家与地方实验室等分析测试中心负责人、技术负责人、各类仪器应用专家,以及科研团队。02 海内外从事材料、能源、半导体、汽车零部件、化工与医药等企业的研发人员、品控人员。03 国际、国内仪器厂商与从事仪器开发、测试应用工作者。报名通道参会咨询吴欣:18968307621(微信同)扫码注册报名特别说明:本次论坛免费开放注册。甬江实验室是浙江省政府批准设立的专注于新材料及相关领域研究的具有独立事业单位法人资格的新型科研机构,于2021年5月19日正式揭牌。甬江实验室坐落于美丽的东海之滨——宁波。宁波毗邻上海、杭州,是长三角南翼的经济中心,全球重要的制造业基地,经济活跃,产业配套齐全,交通便利宁波正朝着建设现代化滨海大都市的目标奋进。实验室以“前瞻创新、从0到1、厚植产业、造福社会”为宗旨,致力于新材料前沿科学探索,关键核心技术突破及其应用,致力于成为具有全球影响力的研究机构,以此拓展人类认知边界,应对全球挑战,为人类谋求最大福祉。实验室正在围绕先进高分子材料、高端合金材料、绿色化工与高端化学材料、电子信息材料与器件、新型生物医用材料新能源材料、智能制造与高端装备等研究领域建设若干研究中心,建立材料分析与检测、信息材料与微纳器件制备、工程验证与成果转化、绿色特种化工材料开发、材料数字化、极端条件综合装置等相关公共平台。实验室拥有世界一流的仪器设备,满足前瞻创新、应用研究、技术验证、成果转化等全链条需求。所有资源向全社会开放。
  • 福建物构所3D打印仿生结构研究获进展
    具有复合特征的仿生结构因独特的机械性能,为各种工程应用开发设计优异性能的结构提供了设计思路。然而,在仿生制造和设计这些复杂精细结构时,在模具成型和复杂结构验证等方面常常受到加工条件限制。3D打印可快速制造各种复杂结构,为仿生结构的设计、制造和验证提供了新方法。   中国科学院福建物质结构研究所研究员吴立新团队面向轻量化3D打印结构在鞋业和汽车等领域的应用开展研究。受自然界生物结构兼具刚度和柔韧性的特征启发,科研人员通过分级弯曲和拉伸主导的结构来设计混合架构的晶格。   进一步,该工作使用纯树脂及高二氧化硅固含的复合材料,采用3D打印方式制备了以上晶格结构,并将结果与理论分析数据进行比较以验证设计合理性。结果表明,该结构设计比单一晶格拓扑结构的模量和应变能量密度提高了7倍。添加填料进一步将结构的刚度提高12倍以上,且减少了结构屈曲。此外,该工作还评估了带有石墨烯基涂层表面的混合晶格设计特性。该研究设计的晶格结构具有良好的弹性恢复能力,且功能化特性也得到了拓展。   相关研究成果发表在Additive Manufacturing上。研究工作得到福建省“揭榜挂帅”重大专项和闽都创新实验室自主部署关键技术攻关项目的支持。   之前,科研人员将3D打印用于防滑鞋底设计。仿照树蛙等动物的足底结构进行仿生设计,结合材料研发和有限元计算,通过3D打印获得在潮湿表面仍有良好摩擦力的结构。上述成果表明,3D打印可用于具有优异性能的仿生结构制造和验证。仿生(a)兼具刚硬和韧性结构来设计(b)分级弯曲和拉伸主导的混合晶格结构
  • 天津“十四五”制造业重点关注生命科学仪器及试剂
    天津市人民政府办公厅公开发布《天津市制造业高质量发展“十四五”规划》,其中提到在高端医疗器械层面,将支持基因测序产品、生物检测产品以及与仪器配套使用检测品的研发和产业化,攻克原料抗体、酶等关键开发制备技术。  在智慧医疗与大健康方面,重点发展医用智能传感器、家用可穿戴式健康监控仪器设备。加快开发针对感染性疾病、常见慢性病、心血管病、癌症等重大疾病快速检测诊断设备、血液检测配套设备、诊断仪器设备等重大产品。  详情如下:天津市制造业高质量发展“十四五”规划  “十四五”时期(2021—2025年),是天津在全面建成高质量小康社会的基础上,开启全面建设社会主义现代化大都市新征程的第一个五年,是推动高质量发展、构建新发展格局的关键时期。为加快建设制造强市,推进制造业高质量发展,全面增强全国先进制造研发基地核心竞争力,依据《天津市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》,制定本规划。  一、发展基础和面临形势  (一)发展基础  “十三五”时期,是天津工业调结构、夯基础、育动能的重要五年,特别是市第十一次党代会以来,全市深入贯彻习近平总书记对天津工作“三个着力”重要要求和一系列重要指示批示精神,坚定不移贯彻新发展理念,以深化供给侧结构性改革为主线,加快构建以智能科技产业为引领的现代工业产业体系,全力推进全国先进制造研发基地建设,工业高质量发展态势加快形成。  1.产业结构调整成效显著。2020年,全市工业增加值达到4188亿元,占地区生产总值比重达到29.7%。“十三五”期间工业增加值年均增长3.6%。智能科技产业成为引领产业转型升级的重要引擎,营业收入占全市规模以上工业和限额以上信息服务业比重达到23.5%。人工智能产业加快培育,国家新一代人工智能创新发展试验区、天津(西青)国家级车联网先导区成功获批。产业结构明显改善,工业战略性新兴产业增加值占规模以上工业增加值比重达到26.1%,比“十二五”末提高8.6个百分点 高技术产业(制造业)增加值占规模以上工业增加值比重达到15.4%。360、TCL北方总部等总部企业成功落户,云账户、今日头条、滴滴出行等新业态企业加快培育壮大。绿色转型步伐加快,114个绿色工厂、绿色供应链、绿色园区、绿色产品入选国家绿色制造名单,规模以上工业单位增加值能耗累计下降16%。  2.产业创新能力持续提升。信息技术应用创新产业全国领先,打造了涵盖芯片、操作系统、数据库、服务器的完整产业链。企业创新主体地位进一步增强。工业企业研发经费支出占全市研发经费支出比重达到46.1%。国家企业技术中心达到68家,位居全国重点城市第3名。市级企业技术中心达到646家,比“十二五”末增加102家。培育建设现代中药、车联网、操作系统等9家市级制造业创新中心。国家技术创新示范企业总数达到22家,比“十二五”末增加12家。中科曙光成为国家先进计算产业创新中心,形成中科院工生所、天津药研院、中汽中心、“芯火”双创基地等一批产业创新平台。新一代超级计算机原型机、重组埃博拉病毒疫苗、首款脑机接口专用芯片“脑语者”等一批关键核心技术取得重大突破。  3.重大项目加快建设。“十三五”时期,工业固定资产投资年均增长5.6%。实施5000万元以上工业投资与技改项目1300项,累计投资5400亿元,为工业经济增长提供了有力支撑。一汽大众华北基地、空客A330、爱旭太阳能电池等一批重大项目相继竣工投产,长征五号、七号、八号运载火箭和空间站核心舱完成总装,大型察打一体无人机“彩虹—5”批量生产。中芯国际全球单体最大8英寸晶圆生产线等项目顺利实施。中沙新材料园、“两化”搬迁、中石化液化天然气(LNG)等一批重大项目持续推进,南港化工新材料产业基地加快建设。  4.智能制造深入推进。成功举办四届世界智能大会,设立了百亿元智能制造财政专项资金,累计支持五批1726个项目,市、区两级财政共支持资金52.1亿元,形成1∶20的放大带动效应,建成丹佛斯、海尔第五代移动通信(5G)智能工厂等一批全球智能制造标杆,累计创建102家智能工厂和数字化车间。工业互联网创新发展,培育了中汽研、宜科电子等一批行业工业互联网平台,超过6000家工业企业上云。重点企业数字化研发设计工具普及率达到81.9%,生产设备数字化率达到53.3%,关键工序数控化率达到54.8%。移动宽带、固定宽带下载速率从全国第11位、第7位均跃居全国第3位,累计建成5G基站2.4万个,打造“宽带中国”示范城市。  5.产业布局不断优化。“两带集聚、多极带动、周边辐射”的产业空间布局基本形成,累计建成11个国家新型工业化产业示范基地,产业集聚度进一步增强。滨海新区工业产值占全市比重保持在50%以上,龙头带动作用进一步发挥 其他各区都市产业、高端产业、特色产业等加快培育。“钢铁围城”基本破解,通过局部退出、减量调整,实现集中布局、提质增效、绿色发展。“园区围城”治理基本完成,完成246个园区治理,整合形成以国家级园区为龙头、市级园区为支撑的空间格局,为产业高质量发展腾出空间。  同时,工业发展中还存在一些深层次问题和发展瓶颈:制造业占比有所下降,工业基础地位有所弱化 新动能“底盘”偏小,新旧动能转换不畅 产业核心竞争力不强,缺少具有较强竞争力的国际化本土品牌 产业链处于中低端环节,水平有待提高 园区主导产业不突出,集约化水平不高,产城融合水平有待提升 要素资源保障不足,企业直接融资占比低,高端人才吸引力不足,水电气等要素成本较高,营商环境有待进一步优化。  (二)面临形势  “十四五”时期是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的第一个五年。天津工业面临的机遇和挑战发生新变化,总体上仍处于重要战略机遇期。  一是新发展阶段提出新要求。当今世界正经历百年未有之大变局,新一轮科技革命和产业变革深入发展,国际力量对比深刻调整,新冠肺炎疫情影响广泛深远,经济全球化遭遇逆流,世界进入动荡变革期,不稳定性、不确定性明显增加。必须深刻认识错综复杂的国际环境给天津制造业带来的新矛盾、新挑战,保持战略定力,善于在危机中育先机、于变局中开新局,更好地运用国际国内两个市场、两种资源,在立足国内大循环、谋篇国内国际双循环中打造新引擎、厚植新优势,加快建设全国先进制造研发基地。  二是新发展理念赋予新使命。我国已转向高质量发展阶段,制度优势显著,发展韧性强劲,继续发展具有多方面优势和条件,但发展不平衡不充分问题仍然突出。党的十九届五中全会明确指出,坚持把发展经济着力点放在实体经济上,坚定不移建设制造强国、质量强国、网络强国、数字中国 推动京津冀协同发展,打造创新平台和新增长极。这为天津发展提供了新的发展机遇。天津作为国内重要的工业城市,承担着建设全国先进制造研发基地的历史重任,要坚持把制造业作为立市之本、强市之基,加快建设制造强市,深入实施创新驱动发展战略,推进产业基础高级化、产业链现代化,提高经济质量效益和核心竞争力,推动制造业质量变革、效率变革、动力变革,持续支撑全市高质量发展。  三是新发展格局提出新任务。“十四五”时期,我国加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,为制造业发展创造了更大的发展空间。天津工业历史悠久,产业门类齐全,同时也面临着新旧动能转换不畅、产业核心竞争力不强等挑战。要主动融入新发展格局,围绕产业链部署创新链,围绕创新链布局产业链,打造自主创新重要源头和原始创新主要策源地。要坚持系统观念,一手抓战略性新兴产业培育壮大,做大新动能“底盘”,一手抓传统产业改造提升,稳住工业发展基本盘,提升产业链供应链稳定性和现代化水平,全面增强全国先进制造研发基地核心竞争力。  二、总体要求  (一)指导思想  以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中、四中、五中全会精神,深入贯彻习近平总书记对天津工作“三个着力”重要要求和一系列重要指示批示精神,立足新发展阶段,贯彻新发展理念,构建新发展格局,坚持制造业立市,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以智能制造为主攻方向,坚定不移走创新驱动之路,大力发展战略性新兴产业,加速制造业高端化、智能化、绿色化发展,打好产业基础高级化、产业链现代化攻坚战,全面提升产业链供应链竞争力,着力构建现代工业产业体系,强化制造业对天津经济发展的引领支撑,加快建设制造强市,打造人工智能先锋城市和全国领先的信创产业基地,成为国家制造业高质量发展示范区,基本建成全国先进制造研发基地。  (二)基本原则  ——坚持创新驱动。坚持把创新作为推动制造业高质量发展的核心动力,强化企业创新主体地位,促进各类创新要素向企业集聚,构建创新平台集中、创新人才集聚、企业活力迸发、产学研用深度融合的产业创新体系,提升自主创新和原始创新能力。  ——坚持质效优先。着力提高产业发展质量效益和核心竞争力,切实转变发展方式,加快新旧动能转换,壮大先进制造业集群,推进产业基础高级化和产业链现代化,推动质量变革、效率变革、动力变革,实现更高质量、更有效率、更可持续地发展。  ——坚持融合发展。推进新一代信息技术与制造业深度融合,推动产业数字化、网络化、智能化升级。大力发展服务型制造,推动产业链上中下游、大中小企业融通创新,加快产城融合步伐,构建集约、高效、安全的产业发展生态。  ——坚持绿色转型。坚持把可持续发展作为推动制造业高质量发展的着力点,围绕碳达峰、碳中和战略决策部署,加快推进重点行业和重要领域绿色化改造,推动行业结构低碳化、制造过程清洁化、资源能源利用高效化,加快构建绿色制造体系。  ——坚持协同开放。全面融入新发展格局,紧紧围绕京津冀协同发展重大国家战略,优化区域产业链布局、强化区域产业协同,携手打造创新平台和新增长极。推动制造业更高水平对外开放,加强国际交流合作,在深度融入全球经济中厚植竞争新优势。  ——坚持系统推进。加强前瞻性思考、全局性谋划、战略性布局、整体性推进,着力固根基、扬优势、补短板、强弱项,强化底线思维,统筹发展与安全、制造与研发、新兴与传统,实现发展质量、结构、规模、速度、效益、安全相统一。  (三)总体目标  到2025年,基本建成研发制造能力强大、产业价值链高端、辐射带动作用显著的全国先进制造研发基地。  ——质量效益跃上新台阶。工业增加值年均增长6%以上,制造业增加值占地区生产总值比重达到25%,工业全员劳动生产率累计增长6.5%。  ——结构升级实现新突破。现代工业产业体系全面形成,工业战略性新兴产业增加值占规模以上工业增加值比重达到40%,成为制造业高质量发展的主引擎。高技术产业(制造业)增加值占规模以上工业增加值比重达到30%以上。智能科技产业营业收入占全市规模以上工业和限额以上信息服务业比重达到30%。  ——创新发展得到新提升。产学研用协同创新体系更加健全,规模以上工业企业研发经费占营业收入比重达到1.35%,国家高新技术企业达到11600家,国家企业技术中心90家左右,规模以上工业企业新产品销售收入占比保持在20%以上。  ——绿色集约达到新水平。“两带集聚、双城优化、智谷升级、组团联动”的市域产业空间结构基本形成,工业用地产出效率提高到40亿元/平方公里,规模以上工业单位增加值能耗累计降幅完成国家任务,工业固体废物综合利用率保持在98%以上,单位工业增加值污染物排放强度逐年下降。  ——融合发展迈出新步伐。新一代信息技术与制造业深度融合水平保持全国前列,数字化制造基本实现,网络化制造全面推广,服务型制造深度应用,关键业务环节全面数字化企业比例达到65%,生产性服务业增加值占地区生产总值比重达到45%。  到2035年,制造业综合实力大幅跃升,产业创新能力显著增强,重点领域发展取得重大突破,形成一批全球领军企业和世界级产业集群,核心产业竞争力处于国内第一方阵,建成现代工业产业体系,成为具有全球影响力的先进制造研发基地。  三、全面构建现代工业产业体系  立足全国先进制造研发基地定位,围绕产业基础高级化、产业链现代化,以智能科技产业为引领,着力壮大生物医药、新能源、新材料等新兴产业,巩固提升装备制造、汽车、石油化工、航空航天等优势产业,加快构建“1+3+4”现代工业产业体系,推动冶金、轻纺等传统产业高端化、绿色化、智能化升级,打造制造强市。  (一)大力发展智能科技产业  加快发展以人工智能产业为核心、以新一代信息技术产业为引领、以信创产业为主攻方向、以新型智能基础设施为关键支撑、各领域深度融合发展的新兴产业,加快建设“天津智港”。  人工智能。高水平建设国家新一代人工智能创新发展试验区。加快建设天津(滨海新区)人工智能创新应用先导区。以应用为牵引,以场景为驱动,重点推动基础软硬件、智能终端、智能应用三位一体发展,突破新一代人工智能芯片、高端智能传感器、应用软件、智能终端产品,加快培育类脑智能、脑机接口等前沿领域。以系统集成和技术服务为切入点,面向公共服务领域发展智能安防、智能物流、智能金融、智能医疗等产品集成及综合解决方案,加快推动人工智能技术应用,形成一批智能应用试点示范,全力打造人工智能先锋城市。  新一代信息技术。大力发展集成电路、高性能服务器、网络安全设备、可穿戴设备等,推动操作系统、数据库、中间件、办公软件等领域研发创新,不断向产业前沿和高端领域迈进,打造具有较强国际影响力的新一代信息技术产业高地。到2025年产业规模达到6500亿元。其中,电子信息产业3000亿元,年均增长8%以上 软件和信息技术服务业3500亿元,年均增长10%。  5G。建设创新孵化体系完善、网络基础设施先进、应用场景智慧丰富、核心产业集群汇聚、可控的5G产业生态,打造全国一流5G城市。重点支持5G基带芯片、终端核心射频器件、智能传感器、关键材料、天线、模组等关键产品的研发和生产,加快5G核心产品规模化、产业化步伐。引导企业开发基于5G标准的应用解决方案。加强云计算、大数据、区块链、人工智能等新兴信息技术与5G融合应用,满足高精度定位、智能人机交互、可信安全运维等应用领域典型需求,推动行业应用软件向服务化、平台化转型。  (二)培育壮大新兴产业  1.生物医药  巩固提升化学药和现代中药优势,加快培育生物药、高端医疗器械、智慧医疗与大健康等新兴产业。到2025年,产业规模突破1000亿元,年均增长10%,成为国内领先的生物医药研发转化基地。  化学药。着力推动化学原料药、化学制剂、仿制药与创新药发展,推进关键药物中间体和高端原料药的研发制造。支持企业进行二次仿制创新,开发治疗恶性肿瘤、心脑血管等重大常见多发疾病的新药、重大仿制药以及大品种化学合成创新药物等。加快建设天津药物研究院药物创新中心,提升原创药开发能力。  现代中药。拓展组分中药、中药制剂新产品,推进中药材有效成分提取、分离与纯化技术的产业化。加快建设生物医药(中医药)产业园,支持企业建立中药种植、研制一体化模式,促进中药产业链的构建与提升。加大重点品种和品种群的建设,在全国中药市场塑造“卫药”品牌。  生物药。重点布局抗体药物、蛋白及多肽药物、系统靶点药物等生物制品。推进肿瘤、艾滋病、新冠等新型疫苗研发生产,加快建设高标准综合性人用疫苗产业化基地。开发培育干细胞器官再生药物等新型单抗药物,开展高端仿制药、首仿药等引进生产,提升基因与再生医学仿制药质量水平。加快建设国家合成生物技术创新中心、天津国际生物医药联合研究院二期等产业创新平台,提升原创药开发能力。  高端医疗器械。加快发展一维超声振幅波型/二维断层剖面图(A/B型)超声测量仪等专科诊疗设备,壮大植介入器械和高价值生物医用材料产品,突破人类免疫抗体临床检测试剂盒等高端医用试剂产品,支持基因测序产品、生物检测产品以及与仪器配套使用检测品的研发和产业化,攻克原料抗体、酶等关键开发制备技术。  智慧医疗与大健康。重点发展医用智能传感器、家用可穿戴式健康监控仪器设备、理疗床等基于“互联网+”的智慧医疗检测与诊疗辅助设备,加快开发针对感染性疾病、常见慢性病、心血管病、癌症等重大疾病快速检测诊断设备、血液检测配套设备、诊断仪器设备等重大产品,加快建设中日(天津)健康产业发展合作示范区,提高智慧医疗与大健康水平。  2.新能源  扩大锂离子电池产业优势,壮大风电产业规模,强化太阳能产业集成,加快氢能产业布局。到2025年,产业规模达到1200亿元,年均增长8%,打造全国新能源产业高地。  锂离子电池。围绕锂离子电池关键材料、电芯及电池系统等领域,重点发展高镍、高电压等正极材料和高端石墨、碳硅等负极材料,加快布局电解液和隔膜材料领域。加快开发固态电池生产关键装机及配套工艺、高功率电极的制备工艺、低成本石墨烯材料生产工艺等,研发退役动力电池异构兼容利用与智能拆解技术,加快锂离子电池与新能源汽车产业深度融合,拓展在电动船舶、电网储能、智能和信息装备等方面应用。  风电。围绕风电机组及关键零部件生产制造、风电场设计建设施工控制运维等重点环节,打造风电全产业链。重点加强4兆瓦(MW)及以上大功率风电机组、10MW及以上大功率海上风电设备研发和产品推广,提升复合材料风电叶片、齿轮箱、控制系统等关键部件的自主化生产水平和配套能力,促进风电装备采购本地化。  太阳能。重点发展新型高效光伏电池,突破高效叠瓦组件等先进生产技术。升级光伏电池、光伏组件和光热装备制造工艺,提升太阳能发电的效率和可靠性。扩大12英寸超大硅片、高效智能太阳能电池片等先进产品生产规模,推动企业向产业链上下游延伸。鼓励“光伏+5G网络”、“光伏+数据中心”、“光伏+充电桩”等特色行业智能光伏应用。  氢能。大力整合企业副产氢资源供应能力,支持高效低成本制氢技术研发,积极发展高压氢气存储材料与设备、液态氢储运装备等配套产业,加快储氢、运氢技术研发和产业化。推动大功率电堆、高性能长寿命关键材料、高可靠核心零部件的关键技术及系统集成产业化,积极推进氢燃料大客车、物流车、叉车的研发生产,加快氢燃料电池汽车检测基地项目建设。  3.新材料  面向制造业高质量发展要求,发展新一代信息技术材料、生物医用材料、新能源材料、高端装备材料、节能环保材料和前沿新材料六大重点领域。到2025年,产业规模达到2400亿元,年均增长8%,建成国内一流新材料产业基地。  新一代信息技术材料。扩大8—12英寸硅单晶抛光片和外延片产能,加快6英寸半绝缘砷化镓等研发生产。开发生产高精度、高稳定性、高功率光纤材料,提升光电功能晶体材料研究开发和产业化水平。推动氟化氩光刻胶、正性光刻胶材料绿色发展,改进光刻胶用光引发剂等高分子助剂材料性能,提升抛光液材料环保性。推进聚碳酸脂类改性材料在智能硬件壳体应用,增强产品美观性、耐磨耐热性和绝缘性。  生物医用材料。加大钛合金椎弓根钉、纯钛接骨板等脊柱植入材料开发力度,提高关节类、创伤类骨科植入材料性能。重点开发生物仿生纳米药物控释材料,增强纳米粒子靶向、缓释、高效性能。发展医用苯乙烯类热塑性弹性体等医用高分子材料,提升医用泌尿植入管、医用导管性能水平,提高密封塞等药用包装的安全性。  新能源材料。重点突破高端钴酸锂等锂电池正极材料制备技术,发展硅碳附件、中间相炭微球等负极核心材料,推进六氟磷酸锂电解液材料生产线落地。引入氢燃料电池关键材料企业,研发长寿命高分子质子交换膜,发展高性能碳纤维纸等气体扩散层基材。推进太阳能光伏硅材料扩大产能,加快发展铜铟镓硒等太阳能薄膜电池材料。  高端装备材料。积极开展首批次应用示范,推进高强度止裂厚钢板及船用耐腐蚀钢产业化技术开发。面向国产大飞机需求,引入先进航天材料生产技术和工艺,发展飞机风扇、反推装置用碳纤、玻纤等高性能纤维材料。开展镁铝合金薄板产业化制备技术攻关,加快轻量化镁铝合金材料在汽车车身、底盘、轮毂等领域应用。开发综合性能稀土永磁材料,提升智能制造装备传感器、伺服电机用钕铁硼永磁体、钐钴永磁体性能。  节能环保材料。发展混合基质膜、高性能中空纤维膜等气体分离和水处理膜材料,拓展膜材料在水污染、空气污染治理领域应用。推进硅气凝胶、碳气凝胶技术革新,降低气凝胶生产成本,扩大气凝胶在建筑节能、保温领域应用。重点开发低辐射镀膜玻璃、热反射镀膜玻璃等高档节能玻璃,加速产品优化升级。加快天津市生物基材料制造业创新中心建设,推进生物基聚乳酸材料技术开发及成果转化。  前沿新材料。深化与中国航发北京航空材料研究院等高校院所合作,推进石墨烯材料产业基地建设,发展石墨烯防护装甲材料、石墨烯导电浆料、石墨烯弹性体材料等。推进高温超导电缆材料开发,革新高温超导薄膜技术,推动超导技术实用化。发展三维(3D)打印用合金粉末材料、纳米陶瓷材料,开发粉末雾化制备关键技术和快速制模工艺。  (三)做精做强优势产业  1.装备制造  聚焦研发设计、高端制造、系统集成和服务等核心环节,壮大智能装备产业,提升发展轨道交通装备产业,着力打造海洋装备产业集群,形成一批具有国际竞争力的高端产品。到2025年,  健全规划实施动态评估机制,开展规划年度跟踪监测、中期评估和末期全面评估,根据评估结果适时对目标任务进行必要调整,及时研究解决规划实施过程中的全局性重大问题。密切关注国家宏观调控政策和市场变化,及时调整优化规划实施手段,确保规划目标顺利实现。
  • 科研级超高精度3D打印在仿生材料领域的应用
    自然进化使得生物材料具有最优化的宏观和微观结构、自适应性、自愈合能力以及优异的机械性能、润湿性、粘附性等多种特点。随着仿生学的深入开展,人们不仅从外形、功能去模仿生物,而且还从生物奇特的结构中得到不少启发进行仿生制造。自然界的动植物就给我们提供了很多功能性结构的灵感从而设计出不同应用领域的仿生材料。 仿生材料,其研究起源于对天然材料的详细考察,通常是指模仿生物的运行模式和生物材料的结构规律而设计制造的人工材料。根据仿生材料所针对的天然生物材料的不同特性,仿生材料可以包括仿生高强度材料、仿生超亲水/超疏水材料、仿生高黏附材料、仿生智能薄膜材料以及仿生机器人等。 仿生材料来源于对天然材料的模仿,又与实际应用关系密切,多功能表面的仿生微结构如超疏水表面结构就是受植物叶子启发所设计,如根据荷叶不会粘上水珠这一现象仿生制备了超疏水薄膜,通过仿生牙釉质微观结构制备坚韧仿生材料用于飞行器等。经过近些年仿生材料领域科学家的努力,荷叶表面、猪笼草、蜘蛛丝、水黾腿部等的微观结构都已经被揭示出来,并成为设计制备仿生材料的重要指导依据,其在自清洁,抗腐蚀,油/水分离,微反应器和液滴操作等均具有非常广泛的实际应用。 尽管仿生材料研究正处于一个蓬勃发展的阶段,但目前传统制造技术很难仿造出自然界中复杂的微结构,越来越多的研究人员考虑用3D打印的加工方式来弥补传统加工方式的不足。摩方超高精度3D打印设备就为这种复杂的微结构加工提供了可能,其分辨率高达2μm,具有高分辨率、超高精度、跨尺度加工、适用材料广、加工效率高、加工成本低等诸多特点,非常适用于制作微尺度的复杂三维结构。 下面就列举了一些摩方超高精度3D打印系统制备的仿生微结构案例,希望能给大家带来一些启发,为仿生领域提供一种高效的加工手段; 一、仿生麦芒结构: 麦芒上分布着许多取向性坚硬倒刺使其表现出摩擦各向异性特征,通过研究其结构特征能够揭示出其背后的科学机制; 同天然麦芒相比,3D打印麦芒上面的倒刺尺寸、排布密度和倾斜角度可自由调控,并能够很好地与被接触基底表面进行相互作用,实现摩擦各向异性的最大化; 文章链接地址: Small(DOI: 10.1002/smll.201802931) 摩方设备打印样品:微结构尖端最小尺寸:8μm,使用设备:nanoArch S130,分辨率:2μm 二、仿生仙人掌簇状的针型微结构 : 仙人掌刺微结构有助于水滴的凝结和运输,通过3D打印可改变仙人掌刺微结构表面的疏水性能以进一步增加水滴凝结的速率 文章链接地址: https://onlinelibrary.wiley.com/doi/full/10.1002/admi.201901752 此类簇状针型微结构同样可利用摩方超高精度3D打印系统制作,能够直接快速成型,分辨率2-10μm,最小细节可达5μm; 三、仿生槐叶萍固液气界面表面结构(气膜恢复机理): 水下固液气界面在大压强、高流速以及气体扩散等因素的影响下易发生失稳甚至消失,这严重影响了水下生物的生存条件以及固液气界面的工程应用,而槐叶萍却具有极强的环境适应能力,这源于其表面特殊微结构产生气膜的作用。通过研究槐叶萍表面的微结构及其水下固液气界面力学特性,能够发现一种新的水下固液气界面稳定性机理; 文章链接地址: https://www.pnas.org/content/117/5/2282?iss=5 以下为通过摩方3D打印设备制造的槐叶萍叶片表面,基于实际槐叶萍叶片尺寸放大10倍打印,以验证这种结构仿生机制的可行性; 使用设备:nanoArchS140,分辨率:10μm;圆柱直径300μm,底部最小缝隙10um左右; 四、仿生叶片的超疏水打蛋器微结构: 传统制造技术很难仿造出此类复杂的微结构,而利用3D打印方式可以灵活实现出研究者想要的臂数以调节表面结构与水滴的粘附力;此类结构可以作为‘微型机械手’来操控微液滴,也可用于油污的吸附和高效油水分离 文章链接地址: http://onlinelibrary.wiley.com/doi/10.1002/adma.201704912/epdf 摩方设备打印样品:最小杆径:30μm,使用设备:nanoArch S130,分辨率:2μm 五、仿生微针结构: 微针(MN)是一种长度为数百微米的微型针,由于其微创,无痛且易于使用的特性而受到了广泛的关注;仿生微针在组织中具有持续的药物释放行为,其在软组织应用中具有的强大潜力,在经皮下给药、组织伤口愈合、长期体内药物传递和生物传感方面具有丰富的应用前景; 此案例作者基于PμSL技术,制备出具有倒刺结构的高粘附性仿生微针; 文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197 摩方3D打印系统打印的其它微针结构: 最小尖端直径:15μm,使用设备:nanoArch S140,分辨率:10μm,层厚20μm 结尾: 以上,是超高精度3D打印在仿生领域的应用分享,除了上述介绍的具有代表性的仿生材料以外,还有许多其他仿生材料也在迅速发展,例如仿鲨鱼皮、仿蘑菇头、仿蜂巢、仿水母等;而摩方的超高精度3D打印技术,分辨率高达2μm,并能兼顾大幅面,目前还在进一步丰富打印材料库,如水凝胶材料,磁性功能材料等,将进更好地服务仿生微结构的加工和验证。
  • 我国科学家研制“龙虾壳”新型仿生材料
    近日,中国科学技术大学俞书宏院士团队首次提出了非连续布利冈(Bouligand)结构的设想,并发展了一种程序化组装纳米纤维的方法,成功地创制出一种新型的轻质高强仿生非连续布利冈结构纳米复合材料,实现了非连续纤维桥连和布利冈构造诱导裂纹偏转的协同增韧。该成果为研制高性能结构材料提供了新的组装方法。相关论文日前发表在国际期刊《物质》上。布利冈结构由单向纳米纤维片层螺旋堆叠构成,在骨、鱼鳞、龙虾壳等多种生物材料中广泛存在,是一种典型的纤维增强结构,直接决定这些生物材料的卓越力学性能。然而,蕴藏在自然布利冈结构中的智慧仍未得到充分开发和运用,已实现的仿生布利冈结构与自然布利冈结构相比,无论在结构层级还是结构精度方面都相差甚远。研究人员基于所开发的有序组装纳米纤维基元的程序化装置,以环境友好的硬硅钙石纳米纤维和海藻酸钠为原料,通过螺旋组装硬硅钙石纳米纤维于海藻酸钠基体中,并结合溶胶—凝胶—薄膜转变过程,成功制备了非连续布利冈结构纳米复合材料。实验表明,该材料展现了卓越的力学性能,优于许多如鱼鳞片、层状骨、蟹螯等天然布利冈结构材料以及仿生布利冈结构类似物和部分工程纤维复合材料。进一步通过断口微结构分析与理论模拟发现,该材料表现出裂纹偏转和纤维桥连增韧机制。这种仿生纳米复合材料具有广泛的应用前景,可作为高损伤容忍性能的骨修复材料等,对于今后开发新型纳米纤维复合材料、提升传统纤维增强复合材料的性能具有重要的指导意义
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制