当前位置: 仪器信息网 > 行业主题 > >

电子全息

仪器信息网电子全息专题为您整合电子全息相关的最新文章,在电子全息专题,您不仅可以免费浏览电子全息的资讯, 同时您还可以浏览电子全息的相关资料、解决方案,参与社区电子全息话题讨论。

电子全息相关的论坛

  • 求助电子全息

    现在已经获得了电子全息图和参考图,进而获得了相位图和振幅图像,目的是做电荷分布。想问哪位大神如何以及用哪种软件对相位图进行分析?谢谢

  • 【分享】多国研究:通过激光驱动电子运动绘制原子全息图

    1月10日报道,近日,全息摄影术通常让人想到艺术性的三维图像,但它也能广泛用于多种领域。在最新研究中,一个由荷兰、德国和法国等多国科研人员组成的研究团队,通过激光驱动电子运动,建立了原子全息图。该技术有助于发展超快光电子能谱学,将来这种全息图像能让科学家以更直接的方式研究分子结构。相关论文发表在近日出版的《科学快讯》上。    “我们在实验中证明,将一个电子从分子中电离出来,利用激光场可改变电子相对于分子的方向。”论文合著者、就职于荷兰国家原子和分子物理研究所以及德国马克斯·玻恩研究院的马克·瑞金说。    在实验中,研究人员向一个原子或分子发射一束致密的红外激光,使原子或分子电离释放出一个电子,激光场驱动自由电子在离子周围来回做震荡运动。有时电子会和离子相撞,就在极短时间内爆发出辐射能量。    由于电子运动完全相干,就意味着它总是处于同样的相位,研究人员认为,这样就可以利用全息技术来记录离子和电子的信息。制作全息电子图像的关键是观察到相干波(由电子发出的波,不会影响离子)和信号波(由离子散射的波,可作为描述离子结构的编码信息)之间的干涉。当仪器探测到相干波和信号波之间发生了干涉,电子和离子的编码信息就被储存下来,并可在未来得以再现。研究人员解释说,这样生成的图像就是原子利用自身电子而产生的全息图。    研究人员还通过一种理论模型来模拟这种测量,证明了全息图能存储电子和离子的空间及时间信息。如将来能利用这种全息结构技术开发出一种全新的超快光电子能谱仪,科学家就能直接以阿秒(10-18秒)的时间分辨率测量电子和离子运动,这种功能对于从最基本层面理解化学反应非常有用,尤其是那些用其他方法很难研究的分子。

  • 【分享】多国研究:通过激光驱动电子运动绘制原子全息图

    全息摄影术通常让人想到艺术性的三维图像,但它也能广泛用于多种领域。在最新研究中,一个由荷兰、德国和法国等多国科研人员组成的研究团队,通过激光驱动电子运动,建立了原子全息图。该技术有助于发展超快光电子能谱学,将来这种全息图像能让科学家以更直接的方式研究分子结构。相关论文发表在近日出版的《科学快讯》上。    “我们在实验中证明,将一个电子从分子中电离出来,利用激光场可改变电子相对于分子的方向。”论文合著者、就职于荷兰国家原子和分子物理研究所以及德国马克斯·玻恩研究院的马克·瑞金说。    在实验中,研究人员向一个原子或分子发射一束致密的红外激光,使原子或分子电离释放出一个电子,激光场驱动自由电子在离子周围来回做震荡运动。有时电子会和离子相撞,就在极短时间内爆发出辐射能量。    由于电子运动完全相干,就意味着它总是处于同样的相位,研究人员认为,这样就可以利用全息技术来记录离子和电子的信息。制作全息电子图像的关键是观察到相干波(由电子发出的波,不会影响离子)和信号波(由离子散射的波,可作为描述离子结构的编码信息)之间的干涉。当仪器探测到相干波和信号波之间发生了干涉,电子和离子的编码信息就被储存下来,并可在未来得以再现。研究人员解释说,这样生成的图像就是原子利用自身电子而产生的全息图。    研究人员还通过一种理论模型来模拟这种测量,证明了全息图能存储电子和离子的空间及时间信息。如将来能利用这种全息结构技术开发出一种全新的超快光电子能谱仪,科学家就能直接以阿秒(10-18秒)的时间分辨率测量电子和离子运动,这种功能对于从最基本层面理解化学反应非常有用,尤其是那些用其他方法很难研究的分子。

  • 电子显微镜的现状与展望(ZT)

    摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 关键词 透射电子显微镜 扫描电子显微镜 仪器制造与发展 中图法分类号 TN16 O766.1 Q336    电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[1]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[2]。   电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。 半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究[3]。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献[1]。 透射电子显微镜 1、高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献[4]。 用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子[5]。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构[6]。 2.像差校正电子显微镜 电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm[7]。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm[8]。 3、原子尺度电子全息学 Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果[9]。Lichte等用电子全息术在CM30 FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30 FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领[10,11]。

  • JJG157-2008电子全能试验机检定规范

    JJG157-2008电子万能试验机检定规范是根据国家规范、技术规范,采用旧规范的有些条款拟定的。新旧规范改变主要有以下几点:   1.规范的适用范围有所改变  旧规范适用于新制的,运用中和修补后的电子全能试验机检定,新规范适用于非金属拉力、压力和全能试验机的初次检定,后续检定和运用中查验。旧规范仅限于10MN以下非金属拉力、压力和全能试验机;新规范的适用范围愈加广泛了,包罗了对各种资料试验机的检定,其间包罗:小负荷资料试验机、细小力值试验机,以及皮革、纸张、橡胶、塑料、纤维等非金属资料试验机。  2.试验机的分级及专业术语有所改变  旧规范试验机等级分为四级,即:0、1、2、3级;新规范试验机等级分为三级,即:0.5、1、2级,其间0.5级与旧规范中的0级技术指标一样,1、2级不变,取消了3级。  3.对试验机的装置需求有所增加  旧规范对电子万能试验机在装置方面的需求是依照运用说明书装置在安定的基础上。新规范试验机在装置方面增加了对水平度的需求(不超越0.2mm/m)。

  • 全息光栅的特点

    全息光栅的特点为:(1)无鬼线,杂散光极小。(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高。

  • 中国科学院物理研究所博士后招聘

    中国科学院物理研究所博士后招聘 先进材料与结构分析实验室的研究工作主要涉及高分辨电子显微学,电子能量损失谱,电子全息,会聚束电子衍射,纳米及能源材料的微结构分析,功能氧化物及强关联材料的物理性质研究。利用计算机模拟和理论模型化方法对实验的数据进行深入分析。实验室将于2012年底到位一台国际先进的双球差校正冷场发射电子显微镜,并配有高性能能谱、电子能量损失谱及电子全息设备。先根据工作需要,招聘博士后多名。 研究方向:1。先进电子显微方法及在凝聚态物理和材料科学中的应用     2.对表界面结构及电子结构的第一性原理计算 1、应聘条件 1)具有在学术界长期发展的意愿;2)具有科研积极主动性;3)具备一定独立开展科研工作的能力,取得一定的科研成果;4)能够熟练使用英语进行阅读与写作。 2、岗位待遇 依据中科院物理所博士后人员待遇办理(年薪12-18万)。 3、应聘材料 详细的个人简历,包括完整的学习工作经历、主要研究工作内容和代表论文论著清单,提供三位推荐人姓名及联系方式。 4、联系方式 联系人:谷林 研究员地 址:北京市中关村南三街8号   电 话:010-82649550   E-mail:l.gu@iphy.ac.cn 欢迎申请者到实验室参观与交流!该启事长期有效。

  • 全息光栅的特点及相关内容

    随着全息激光技术的发展,出现了采用激光干涉照 相法制作的衍射光栅,这种光栅称为全息光栅。在磨制好的光栅毛坯上均匀涂布一层光敏物质,然后置于同一单色光源的两束激光干涉 场中曝光。把明暗相同的干涉条纹记录在光敏层上。将已曝光的坯基浸入一种特殊的溶液中,涂层各部分由于所接受的曝光量不同而受到不同程度 的溶蚀,从而在坯基上出现了与干涉条纹相当的槽线,最后在真空中镀上反射铝膜和保护膜就制成全息光栅。全息光栅的特点为:(1) 无鬼线,杂散光极小。(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没 有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度 得到提高。

  • 全息母光栅

    求助,那位大虾知道,热电紫外的全息母光栅是什么东东???

  • 【求助】请教关于几种出射波重构的方法的比较

    最近想学习学习高分辨分析中的波函数重构方法,有一些问题想请教各位:看到李方华老师著作中有写到“出射波重构途径有两个:一个是借助电子全息术,从一幅全息图出发;二是从若干幅不同离焦量的显微像出发”,1.请问一下这两种方法的比较和优缺点。2.能不能简单的介绍一些出射波重构的软件。我自己知道的有LinFang 老师自己写的的REW,还有FEI 的商业化Trueimage软件,不知道哪种比较好,想学习学习,请指教。3. 书中还有介绍李方华老师解卷法进行出射波重构,这个是用什么软件实现的?小弟不懂,问题外行请多见谅,只是比较感兴趣,自己盲目的看书效率比较低,而且有时候容易进死角,所以来向各位老师学习了,先谢谢各位了[img]http://simg.instrument.com.cn/bbs/images/brow/em09502.gif[/img]

  • 【求助】 关于激光全息涂料的

    有哪位大虾知道激光全息涂料的 信息层 、离型层 和保护层的配方和检测标准阿?需要有耐磨 耐刮擦 耐酸碱性 耐水性等特性的 最好能给我几篇相关的文章 小女子垂泪敬上

  • 【求助】全息光栅和凹面光栅的优缺点

    之前只是简单的知道这两种光栅,别人问这两种光栅有什么优缺点的时候,我就不会了。为什么现在很多分子荧光选用凹面光栅,而不选用全息光栅那。我认为全息光栅在光的分光作用上,应该比凹面的好才对啊!!!

  • 便携式全息显微镜检测细菌在美发明成功

    加州大学洛杉矶分校(UCLA) Ozcan教授称,“医生可以使用这些设备来改善偏远地区的卫生健康问题”。  该便携式设备使用激光而不是镜头识别中水、食物或血液中的病菌。廉价的造价还不到 100美金 (60 英镑)。其生成的图像可以被上载到远程计算机作进一步的分析。科学家们希望该技术将有助于缺乏先进的诊断设备的地区提高医疗健康服务。有关显微镜的发明内容,加利福尼亚大学洛杉矶分校 (ucla)的研究人员已经发表在《Biomedical Optics Express》。微三维技术  该设备有两种操作模式:“传输模式”可以分析水和血液等液体,“反射模式”则可以产生高密度物质表面的全息图像。 “传输模式很好的观测透明的细胞或薄片”,Leicester大学先进显微镜中心Karl Ryder博士解释说。“但是,如果你想看看固体的表面,不能使用传输模式,因为光线不会穿透过去”。在反射模式中,显微镜使用全息技术产生样品的三维图形。“你采用一束激光并使用分束镜分成两束,然后使用这两束激光照亮样品”。“你可以再用数学模型让重组的两束光产生三维图形”。廉价芯片  设计的关键优势是它采用廉价的电子元件而不是昂贵的镜头。Ryder博士说,“在此系统中没有光学器具,使得体积做得很小,而且用来看小样品,你不需要复杂的聚焦”。而且显微镜使用类似iPhone 和Blackberry手机中常见的数码照片感应器。这些仅用到少于15美金的成本。尽管它的价格低,研究者声称该显微镜可以监视难检测的细菌如大肠杆菌的暴发。UCLA教授Ozcan表示,“在水和食物检测低浓度大肠杆菌是十分艰巨的任务,这个显微镜可以提供现场调查的方案”。  该设备可以获得原始数据,但简单的设计意味着需要具有计算能力的外部设备进一步处理。用户可以转发图像数据到他们的手机、笔记本电脑、或上传到互联网服务器。Ozcan教授相信该显微镜可以为发展中国家的医务工作提供不可估量的价值。“只需要简单培训,在缺乏医疗检测设备的偏远地区,医生可以使用这些设备提高医疗健康服务。

  • 【资料】求《计算机制全息图》这本书

    [size=4]大家好,请问谁有《计算机制全息图》这本书,[color=#666666] 书名:[/color]计算机制全息图[color=#666666] 作者:[/color]虞祖良,金国藩编著[color=#666666] 出版社:[/color]清华大学出版社[color=#666666] 出版时间:[/color]1984.10[color=#666666] 页数:[/color]194页[color=#666666] 开本:[/color]26cm谢谢![/size]

  • 3D技术获突破:低成本移动全息图将成现实

    2013年06月30日 来源: 新浪科技http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130630/00234edd254e1339d4a01b.jpg  美国麻省理工大学的科学家攻克了一个重大技术难关,让制造低成本高品质全息显示器的梦想照进现实。与3D图像一样,全息影像允许观察者四处走动,从任何一个角度进行观察http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130630/00234edd254e1339d47d1a.jpg  美国麻省理工大学的科学家攻克了一个重大技术难关,让制造低成本高品质的全息显示器的梦想照进现实。据科学家估计,采用他们研发的新技术制造全息显示器的成本不到320英镑(约合500美元)  新浪科技讯 北京时间6月30日消息,据国外媒体报道,美国麻省理工大学的科学家攻克了一个重大技术难关,让制造低成本高品质全息显示器的梦想照进现实。不久后,消费者便可以使用笔记本电脑观看到《星球大战》中出现的移动全息图。  全息视频经常在科幻作品中出现,最著名的例子当属《星球大战》中莉亚公主的全息影像。当前用于投射全息影像的系统不仅造价高,同时存在重大缺陷,其中最主要的缺陷就体现在空间光调制器上。这种装置负责在三维空间内引导光线,形成光点。如果采用当前的技术,全息影像的尺寸、观看角度、帧速以及景深等主要指标均受到限制。  麻省理工大学的科学家研制出一种全新的空间光调制器,能够克服绝大多数缺陷。这一研究成果让全息影像从科幻走进现实成为一种可能。研究发现刊登《自然》杂志上。据科学家估计,采用这项新技术制造全息显示器的成本不到320英镑(约合500美元),这还不包括光源的费用。  此项研究由迈克尔-伯维博士领导。研究小组在论文中指出:“我们正在研制基于这种装置阵列的显示器,例如小型PC驱动的全息视频显示器和宽度超过1米,由专业硬件驱动的大型全息显示器。借助于我们研发的新技术,制造全色标准视频解析度和30 Hz刷新率的全息视频显示器能够成为一种可能。”与3D图像一样,全息影像允许观察者四处走动,从任何一个角度进行观察。(孝文)

  • 【原创】矿石原子吸收金属离子全分析

    有没有人有做矿石[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]金属离子全分析的资料(需要齐全),我是新进入这行的品检主任.有的发份给我谢谢了.

  • 橙子全果中的农残咋就这么难弄呢

    大侠们,橙子中的农残你们用什么前处理方法啊?尤其是做橙子全果中的嘧霉胺和多菌灵大家都是怎么做的啊?这两种我的回收率做了很多次,也改进了几次,但都是30%的回收率,郁闷啊!我的前处理参照的是761的前处理,做蔬菜和其它水果都很好,但就橙子不行啊?大家给支支招吧,再次谢过

  • ICP 汞灯校准 拍摄全息谱图是花屏的

    ICP 汞灯校准 拍摄全息谱图是花屏的,没有找到汞灯的光斑,检测器温度也降下来了,就是花屏,检测了步进马达,Y轴卡住了,修好后,汞灯观测位置校准信号不强,最大只有30左右,这是什么原因?哪位大哥大姐能指导一下,谢谢。

  • 测量材料动态的3D形貌,效果请看视频,基于菲涅尔衍射的数字全息重建技术

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=薄膜形变实时测量,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_01_1546_3.gif!w384x216.jpg[/img][img=MEMS面内面外运动测量,201,220]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_02_1546_3.gif!w201x220.jpg[/img][/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制