当前位置: 仪器信息网 > 行业主题 > >

德累斯顿

仪器信息网德累斯顿专题为您整合德累斯顿相关的最新文章,在德累斯顿专题,您不仅可以免费浏览德累斯顿的资讯, 同时您还可以浏览德累斯顿的相关资料、解决方案,参与社区德累斯顿话题讨论。

德累斯顿相关的资讯

  • 德国德累斯顿工业大学发生化学物质泄漏
    德国德累斯顿工业大学1月19日发生化学物质泄漏,约百人受毒气影响出现恶心和呕吐等反应。   据德国媒体报道,德累斯顿工大一座化学楼当地时间19日下午17时左右发生化学物质泄漏,一些化学系新生当天在楼内开展实践活动。部分人员吸入有毒气体后出现恶心、呕吐等反应。德累斯顿市随即出动数十辆救援车紧急疏散楼内人员。   德国《萨克森报》援引救援人员的消息说,泄漏的化学物质可能为砷化氢,101名可能吸入有毒气体者已被送至医院接受观察或治疗。   砷化氢是一种无色、有大蒜气味的剧毒可燃性气体,可对肝、肾等脏器造成伤害。   目前化学物质泄漏的具体原因尚不清楚。   德累斯顿工业大学位于德国东部萨克森州首府德累斯顿,是德国最著名的理工大学之一。
  • 赛默飞世尔科技与德累斯顿工业大学流体力学学院展开合作
    &mdash &mdash 推出&ldquo 流变学入门课程&rdquo 培训包,内含实践实验指导 德国卡尔斯鲁厄(2010年6月7日) &mdash 全球服务科学领域的领导者赛默飞世尔科技有限公司与德累斯顿工业大学流体力学学院展开密切合作,为其学生提供流变学培训课程。此次合作可为公司的所有意向客户提供有关Thermo Scientific HAAKE Viscotester 550 粘度计的各种实践实验资料。 流变学研究对于新产品的开发和质量控制来说正变得日益重要 &mdash 例如,从低粘度的眼药水到固体聚合物。因此,早期培训对于了解流变现象就显得更为重要。赛默飞世尔的&ldquo 流变学入门课程&rdquo 培训包中包括具有特殊配置的HAAKE Viscotester 550粘度计和两个实践实验的说明。该培训可用于普通学校、职业学校、公司和大学。此外,培训包还为授课教师准备了教学指导和实验结果示例。为确保培训包的效果,赛默飞世尔科技将在研讨会活动中对授课教师进行一天的培训。 &ldquo 我们在学生培训课上使用HAAKE Viscotester 550等旋转粘度计进行流变测量教学。该仪器是实践实验的理想之选,通过使用预设的内部程序或软件,操作变得非常简单,可快速培训多个用户。&rdquo 德累斯顿工业大学流体力学学院磁流体动力学系主任Odenbach教授说道:&ldquo 在更复杂的流变测量中,我们使用诸如Thermo Scientific HAAKE MARS之类的仪器。它是一个模块化的流变仪平台,能够针对各种应用进行校准,并提供多种附件。 培训包优点一览: · 坚固可靠的旋转粘度计,带预设的内部程序。 · 适用于介质粘度试验的同心圆筒测量转子,可选用多种测量转子进行扩展(例如、平行板、锥板、旋转式或悬挂式同心圆筒) · 用户友好的Thermo Scientific HAAKE RheoWin测量和评估软件,适用于初学者或熟练用户,可在www.thermoscientific.com/mc 网站上进行免费升级。 · 文件资料中包含流变学基础知识和两个实践实验的说明,还包括授课教师的教学指导。 · 在授课教师的进一步培训中,可有针对性地讲授流变学基础知识或巩固已有知识。 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35,000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。请访问www.thermofisher.com 或中文网站www.thermo.com.cn, www.fishersci.com.cn。
  • 投资50亿欧元,英飞凌德国功率半导体工厂进入最后阶段建设
    近日,从全球领先的半导体公司之一的英飞凌(Infeneon)官网获悉,当地时间5月30日,英飞凌宣布其位于德国德累斯顿的全新智能功率半导体工厂已进入最后阶段建设,萨克森州总理迈克尔克雷奇默(Michael Kretschmer)在访问期间已正式递交了该工厂的最后一份建筑许可。据悉,新工厂的投资额达50亿欧元,按计划于2026年开始生产。该工厂主要用于生产模拟/混合信号和功率类产品,产品用于汽车工业和可再生能源领域。将创造大约1000个高素质工作岗位,旨在增强欧洲的供应链安全。Michael Kretschmer表示,英飞凌在德累斯顿的第四个生产模块是加强欧洲在微电子领域韧性的又一个重要基石,这是实现欧盟委员会将欧洲在全球芯片生产中所占份额提高到20%目标的又一步。声明中称,通过对新工厂的投资,英飞凌将在萨克森州首府额外创造1000个就业岗位。该项目将根据《欧洲芯片法案》寻求资助,英飞凌的目标是获得约10亿欧元的资金补助。
  • 2011年德国科技创新“未来奖”揭晓
    12月14日,德国总统武尔夫在柏林亲自颁发了2011年德国科技创新“未来奖”,来自德累斯顿的“有机电子——更多的光和能量来自微薄分子层”项目研究团队获奖并共享25万欧元的奖金。   有机电子泛指将有机或无机材料电子器件制作在柔性塑料或薄金属基板上的新兴电子技术,其应用前景十分广泛,如OLED(有机发光二极管)的有机显示和照明,采用卷对卷印刷技术的薄膜晶体管,能够在多种材质表面“印制”的有机物太阳能电池等。   此次获奖的研究人员和他们的团队正是在这方面获得了突破性进展。他们通过一些化学结构相对简单的有机物质制造出了不同特性的晶体管、发光二极管或太阳能电池,就像一张大小几乎可以随意的灵活而透明的薄膜。研究人员为此在德累斯顿建立了第一个可以简单、快速、廉价生产OLED的卷对卷生产设施,并成功将OLED材料应用到不同的产品中,创建了迄今无法想象的照明和光电创新应用的基础。   颁奖仪式上,武尔夫还同时赞扬了获得“未来奖”提名的另外两个项目,一个是奔驰公司快速感知环境的6D Vision智能驾驶辅助系统,另一个是弗莱堡科研人员研发的可充分利用太阳光的三层堆叠太阳能电池。   德国“未来奖”旨在奖励技术、工程以及自然科学领域的创新成果,获奖的项目不仅要具有很高的技术创新含量,还要有很高的应用价值和经济价值,一般由德国总统亲自颁发。
  • 赠书活动 | 动态和电泳光散射
    ☆hao好shu书tui推jian荐 动态和电泳光散射 - 粒度分析和 zeta-电位测定指南 ◐◐◐◐◐◐◐近几十年来最伟大的技术成就离不开纳米材料。它们为医学、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此人们对它们的性能和相互作用有很大的研究兴趣。安东帕是全球研究人员的可靠合作伙伴:世界 100 强大学*中有 96 所的人员每天至少使用我们的一种仪器工作。安东帕独特而灵活的纳米材料研究仪器组合为客户实验室提供了前瞻性的解决方案,今天购买的仪器,也为未来提供了无数的可能性。为了提高在纳米行业的关注以及在该行业的进一步发展,安东帕公司与德累斯顿工业大学和德累斯顿莱布尼茨聚合物研究所 (IPF) 的专家合作编写的实用指南《Dynamic and Electrophoretic Light Scattering》本书简要介绍了光散射和 zeta 电位测量背后的理论,以及样品制备、选择测量参数和解释结果的实用技巧。以安东帕的 Litesizer 500 为例,介绍了 DLS 和 ELS 的测量。精选的案例为您概述了这两种技术的不同应用领域。 【 获取方式 】数量有限,先到先得识别下方二维码点击“阅读原文”
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 赛默飞世尔推出革命性高效液相色谱技术
    赛默飞世尔科技在HPLC 2009年会上推出革命性的高效液相色谱技术 服务科学、世界领先的赛默飞世尔科技,今天宣布该公司将在第34次高效液相分离和相关技术国际研讨会上(HPLC 2009)推出两款世界上最精准的UHPLC泵,和一个新的Thermo scientific Accela PDA检测器,并将推出一系列内容丰富的研讨会、讲座、演示以及主题活动 。 此次HPLC年会将于 2009年6月28号至7月2号在德国的德累斯顿召开,赛默飞世尔科技将于年会期间,在Thermo Scientific展台(#6-8 )展示从样品制备到环保色谱的全系列Thermo Scientific仪器、色谱柱和易耗品。 在HPLC 2009年会推介的新泵技术使用了独特和创新的力反馈控制( FFC )系统 , 从而能够在所有操作条件下提供准确和精确的流量和洗脱梯度。这些泵能在整个运行范围内提供无与伦比的组分比例与流量的准确度和精确度 , 从而大大提高了结果的重现性。 Accela 600液相色谱泵提供了高达 600 bar的最高工作压力,而新的Accela 1000 液相色谱泵的最高工作压力则为15000 psi,使之成为独一无二的适用于所有UHPLC的最佳选择,也是与该公司世界领先的质谱技术匹配的理想伙伴。与Thermo Scientific Accela PDA探测器相配套的设计,使得新的色谱泵能够继续推动高效液相色谱和超高效液相色谱的实验室生产力。新Accela的PDA探测器特为高流量和高压强的工作条件设计,并能在采集率高达80赫兹时仍然提供极好的敏感性。 赛默飞世尔科技还将举办下列内容丰富的研讨会和演示会,介绍可以帮助解决分析挑战的新技术和创新技术: 顶级工业界和学术界的顶级科学家将在周日, 6月28日, 10:30 - 16:30举办于德累斯顿会议中心1号会议室的Hypercarb研讨会上讨论由使用独特的固定相Thermo Scientific Hypercarb柱带来的最新研究和应用的进展。 主题包括样品制备、绿色色谱法、独特的分离效果和改善Hypercarb色谱柱的使用。 继Hypercarb研讨会之后,赛默飞世尔科技将于周日,6月28日上午10时30分, 在德累斯顿国会中心Terrasse大堂举办Hypercarb的20周年庆典。业界领袖将在此次非正式的社交活动中欢聚一堂,共同庆祝Hypercarb色谱柱20周年。 Thermo Scientific 厂商研讨会 “超高效液相色谱法和质谱技术的进展”则将于星期一, 6月29日从14:15 - 15:15在第1会议室举办。与会者将了解最新的超高效液相色谱法和质谱技术创新,探索这些新的常规和高速色谱法和质谱分析的发展如何可以解决分析挑战。 赛默飞世尔科技也将展出一系列的海报 , 涵盖该公司最新的高效液相色谱法, 超高效液相色谱法和液相色谱/质谱技术。路易莎迪佩雷拉将展出三个海报,分别题为“多孔炭用于痕量极性污染物液相色谱/质谱分析”,“固相萃取的聚合物固定相与传统的基于硅的C18分析材料的比较”和“利用新型HILIC固定相进行亲水性和极性化合物分析”。姜贵峰也将展出一个海报 “使用超高效液相色谱/质谱确定与药物滥用有关的药品”。 欲了解赛默飞世尔科技色谱解决方案的更多信息,请在HPLC 2009访问赛默飞世尔科技展台(#6-8 ),或访问 www.themo.com/hplc2009 。 Thermo Scientific是服务科学、世界领先的赛默飞世尔科技的首要品牌。 关于赛默飞世尔科技(Thermo Fisher Scientific) 赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工34,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn (中文)。
  • 德国新成立液态金属研究联盟
    由赫姆霍茨德累斯顿研究中心牵头的液态金属研究联盟近日在德国成立。液态金属可用于很多工业领域,比如钢与轻金属铸造,并因可用于新型液态金属电池储能、零排放氢生产、或是制造太阳能电池而被纳入未来技术的行列。这些新用途皆与其属性有关,即能大容量储能或是高效导热。其导热系数是水的50-100倍,并可在很大的温度范围内保持液态。液态金属由此适宜用来为高能量工艺程序降温,也可提高能源和资源的利用率,因为温度越高,热力过程的效率也会随之提高。该联盟的两个子项目也因此致力于液态金属在太阳能发电厂的应用。 近年来,液态金属技术的操作安全性有显著提高,这要归功于可完整监控流量的新型测量方法。对新测量方法作进一步开发也是该联盟的工作目标。另一个任务在于继续提高液态金属技术的能源与资源利用效率,包括在金属铸造、贵重金属与渣熔体分离或是在太阳能硅的生产过程中。 参与者该联盟的有多个赫姆霍茨研究中心、德国卡尔斯鲁尔理工学院及多所国内外大学。联盟拥有2000万欧元经费,用于研究液态金属技术的广泛应用。赫姆霍茨德累斯顿研究中心的领队认为,德国在这个技术领域里的研究处于地位。 以上信息由HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱、高低温交变湿热试验箱、盐雾腐蚀试验箱、药品稳定性试验箱、两三厢冷热冲击试验箱、精密曲线编程旋转烘箱、远红外线干燥箱、防爆干燥箱、精密烘箱、真空测漏箱、人工气候箱、光照培养箱、生物安全柜、干培两用箱、超净工作台、真空脱泡箱等。
  • HUPO大奖揭晓!华人科学家黄超兰教授荣获“临床转化蛋白质组学科学奖”
    2024人类蛋白质组组织(HUPO)大会即将于10月20日至24日在德国德累斯顿举行,作为全球蛋白质领域最顶尖的学术交流平台,HUPO大会将汇聚全球顶尖科学家,更以其权威奖项表彰在蛋白质组学研究中做出杰出贡献的学者。日前,HUPO官方揭晓了本届大会的五大奖项(Clinical and Translational Proteomics Sciences Award、Discovery in Proteomic Sciences Award、Distinguished Achievement in Proteomic Sciences Award、Rising Star AwardAward、Science and Technology Award)获奖者。其中最为瞩目的“临床转化蛋白质组学科学奖”授予了中国医学科学院北京协和医院黄超兰教授。这一荣誉不仅是对黄超兰教授在蛋白质组学及临床转化领域深耕多年、不懈探索的高度认可,更是对她所引领的科研创新与实践转化成果的国际赞誉。HUPO大会主席Jennifer Van Eyk特向黄超兰教授致以诚挚的祝贺,并强调“临床转化蛋白质组学科学奖”的授予是基于全球范围内27位杰出评委的一致认同与投票支持,这深刻体现了国际专家群体对黄超兰教授在蛋白质组学临床转化领域内所展现出的卓越贡献与非凡成就的高度肯定。黄超兰教授不仅是一位杰出的科学家,还身兼昱言科技董事长及CEO,以其卓越的领导力和深厚的科研功底,成功推动了蛋白质组学从实验室走向临床的重大跨越。在半个多月前,基于临床大队列研究筛选的特异性靶点Target-X,进一步自主研发的ADC药物FS001更是赢得了国际制药巨头益普生的青睐,双方达成高达10.3亿美金的全球独家授权协议。这一里程碑式的合作彰显了蛋白质组学临床转化的巨大潜力,为全球新药研发注入了新的活力与希望。(更多ADC药物FS001详情内容点击下方图片↓)奖项将在2024年HUPO大会上于德国德累斯顿当地时间10月23日 (星期三) 16:45的颁奖典礼和闭幕会议上颁发,在此,我们向黄超兰教授致以最热烈的祝贺,同时也向2024 HUPO大会其他奖项的获奖人表示衷心的祝贺。HUPO大会是一场学术的盛宴,也是全球蛋白质组学领域创新与合作的新起点。让我们共同期待在即将到来的HUPO大会上,来自世界各地的科学家们能够继续碰撞思想火花,携手推动蛋白质组学领域迈向更加辉煌的明天,共同开创人类健康的新篇章!编辑视角:黄超兰教授及其团队的成功并非偶然,而是源于他们对蛋白质组学领域的深刻理解和不懈探索。 她们利用先进的蛋白质组学技术,结合临床大数据和生物信息学分析,成功发现了多个具有临床应用价值的蛋白质标志物和药物靶点。所开发的ADC药物FS001,有望为癌症患者带来新的治疗选择。这项研究成果也为其他疾病的药物研发提供了新的思路和方法,推动着精准医疗的快速发展。
  • 热成像"科研与发展"主题活动日
    热成像日"科研与发展"主题活动 (Thermography Day &ldquo Research & Development&ldquo on October 16th, 2012 in Dresden) 交流红外热成像技术Knowledge Transfer on the Capabilities of Infrared Thermography 2012 年 10 月 16 日,InfraTec(英福泰克) 公司将在德累斯顿首次主办"热成像技术的研究与发展"的免费信息日活动。有关各方可以通过这个活动全面了解红外热成像技术及其应用,并获得有关InfraTec(英福泰克)的更多创新的红外热像仪精品和系统解决方案的信息。 这次活动的主要重点是由多位红外应用专家来讲述和展示有趣的应用。 现代的焦平面成像技术及最先进的评价方法,不断的带来红外热像仪在应用领域的新突破。 伴随"现场体验热成像"活动,还会介绍InfraTec(英福泰克) 公司的最新一代高清级红外热像仪-VarioCAM ® HD 和 ImageIR ® 9300,以及许多其它热像仪和配套产品。还将参观InfraTec(英福泰克) 公司的主动热成像实验室和传感器制造部。 这一活动是无拘无束的,你的出席会使你能够更好地评估在你的工作中应用先进的热成像技术的可能性。 日期: 2012 年 10 月 16 日 地点:InfraTec(英福泰克) GmbH Infrarotsensorik und Messtechnik Gostritzer Str. 61 - 63, 01217 Dresden 德累斯顿 请注意: 语言为德语 21.08.2012 Thermography Day &ldquo Research & Development&ldquo on October 16th, 2012 in Dresden On October 16th, 2012, InfraTec(英福泰克) hosts the first free information day on &ldquo Thermography in Research and Development&ldquo in Dresden. Interested parties can gain compact knowledge about the capabilities of thermography in this demanding field of application and find out more about innovative product novelties and system solutions by InfraTec(英福泰克). The main focus of this event is the expert presentations by various speakers, who will talk about selected interesting applications in research and development. The modern FPA camera technology and state-of-the-art evaluation methods are pushed to their limits in order to constantly explore new fields of application for infrared thermography. On the occasion of the accompanying exposition &ldquo Live Thermography Experience&rdquo , we also introduce our latest HD thermography systems of the next generation, VarioCAM ® HD and ImageIR ® 9300, along with many others. The event will be completed by practical demonstrations in the active thermography laboratory and a visit at the sensor manufacturing department. The attendance of this information event is absolutely non-binding and will put you in a position to better evaluate the potential of modern thermography for your personal tasks and applications.
  • 德国研制出世界首款“化学芯片”
    德国德累斯顿工业大学日前成功研制出一款“化学芯片”,这也是世界上第一款“化学芯片”。   “化学芯片”大小接近A5纸张,厚度与手指相当,由多层复合材料构成,密集的网格状微小管道分布其中,2000个微量阀门可以根据化学液体的成分、浓度等属性自动做出反应,允许液体通过或者阻断其通过。通过这样的控制,化学液体就可以按照预先设定的方式进行分析反应。   这种芯片目前已实现血样、尿样的快速自动分析,并可作为快速检验血糖水平的工具。
  • 科研人员首次在拓扑绝缘体中制造出激子
    德国“维尔茨堡-德累斯顿卓越集群—量子物质复杂性和拓扑结构”(ct.qmat)的科研人员在拓扑绝缘体中制造出了激子,有助于新一代光控电脑芯片和量子技术研究。相关研究已发表在《自然通讯》杂志。   科研人员通过短脉冲光作用在单个原子层组成的材料层(铋),从而产生了激子。激子在拓扑绝缘体中被激活,为拓扑绝缘体研究开辟了全新方向。光与激子的相互作用预示了这种材料能够产生新现象,如量子比特。量子比特是量子芯片的计算单元,使用光而不是电压能够让量子芯片具有更快的时钟速率,为未来量子技术和微电子领域开发新一代光控元件铺平了道路。
  • 国内外专家齐聚云端 共探过程层析成像技术及应用发展趋势
    过程层析成像(Process Tomography,简称PT)利用某种探测源在被测目标内部建立敏感场,扫描并获取场域边界的投影数据,通过反演算法来重建物体内部介质的二维/三维图像,具有可视化、无扰动等优点。过程层析成像兴起于20世纪80年代中期,研究人员将医学CT技术移植并应用到工业过程参数检测领域,主要用于获得以多相流为代表的快速复杂工业过程参数分布图像及其过程信息,并逐渐在工业过程监测、生物医学诊断等领域展现出广泛的应用前景。根据所采用的物理敏感场性质不同,过程层析成像可分为电学、超声、光学以及射线等多种模态,且分别具有不同的特点及其适用的应用范围。随着计算机、电子、信息处理技术的飞速发展,以及现代工业对过程状态参数在线观测的更高的要求,过程层析成像逐渐向智能化、集成化、多模态方向发展,在工业过程可视化测试领域备受关注。为展现过程层析成像技术的最新进展及应用,为过程层析成像研究人员以及工业过程设计、开发、优化等用户提供重要的参考信息,仪器信息网、中国计量测试学会多相流测试专业委员会、天津市过程成像与检测国际联合研究中心、江苏大学将于9月3日联合召开“第二届多相流测试技术网络研讨会——过程层析成像及应用论坛”。论坛内容由天津大学过程层析成像与多相流测试研究室谭超教授与浙江大学控制科学与工程学院冀海峰副教授牵头组织,特邀国内外过程层析成像领域主要课题组的研究人员,聚焦不同模态过程层析成像技术原理、应用及其发展方向分享主题报告。点击图片报名会议天津大学过程层析成像与多相流测试研究室(http://ptmfm.tju.edu.cn/)成立于20世纪80年代,依托天津大学检测技术与自动化装置国家重点学科和天津市过程检测与控制重点实验室开展工业/生物过程层析成像,多相流过程可视化与参数测试,工业仪表与过程控制等研究工作。团队已开发出多套高速工业标准总线电阻层析成像系统、电容层析成像系统、超声层析成像系统、电学/超声多模态层析成像系统、电容/电导/超声多普勒多模态多相流测量系统等仪器,及其相应的多相流可视化与参数测试软件包,可实现多相流过程参数和流动状态的在线检测。团队现有教授2人、副教授4人、助理研究员2人,博士、硕士研究生四十余人,先后承担国家“863”计划、基金委仪器专项等国家级重要项目30余项。依托国际工业过程层析成像学会,于2018年8月成立天津市过程成像与检测国际联合研究中心,与英国爱丁堡大学、德国德累斯顿工业大学、日本千叶大学、日本北海道大学、挪威卑尔根大学、芬兰东芬兰大学等长期保持良好的学术交流与合作。浙江大学多相流检测技术研究团队, 依托“控制科学与工程”双一流重点建设学科以及工业控制技术国家重点实验室,长期从事多相流检测技术、过程层析成像技术及相关应用的研究工作。开发了电容层析成像、电阻层析成像、非接触式电阻抗层析成像等基于过程层析成像技术的参数检测系统,在复杂多相流动过程中实现了重要参数的在线测量及流动可视化。研究团队现有教授2人,副教授1人、副研究员1人、博士后2人,博士和硕士研究生二十余人,先后承担和参与国家“863”计划、国家科技重大专项、基金委自然科学基金等项目二十余项。会议日程时间报告主题报告人09:30-10:00微波层析成像及其在工业过程中的应用王海刚(中国科学院工程热物理研究所)10:00-10:30非接触式电阻抗层析成像技术姜燕丹(浙江大学)10:30-11:00电容层析成像及若干应用孙江涛(北京航空航天大学 )11:00-11:30抗静电干扰电容层析成像稠密气固两相流动可视化李健(东南大学)11:30-14:00午休14:00-14:30层析成像及燃烧诊断蔡伟伟(上海交通大学)14:30-15:00声电多模态层析成像与多相流过程可视化测试梁光辉(天津大学)15:00-15:30Electromagnetic Flow Tomography电磁层析成像Marko Vauhkonen(东芬兰大学)15:30-16:00Fast tomographic imaging of multiphase flow多相流的快速层析成像Uwe Hampel(德累斯顿工业大学)报名方式扫描下方二维码或点击以下链接即可进入报名页面。报名链接:https://www.instrument.com.cn/webinar/meetings/pt2021/报名参会 加入会议交流群,随时掌握会议动态
  • 我国建成世界顶级脉冲强磁场实验装置
    日前,我国&ldquo 十一五&rdquo 期间部署建设的国家重大科技基础设施项目&mdash &mdash 脉冲强磁场实验装置,在华中科技大学通过国家验收,正式宣告我国拥有了国际顶级水平的脉冲磁场实验装置。   强磁场与极低温、超高压等,被列为现代科学实验最重要的极端条件之一。脉冲强磁场技术是产生强磁场的重要技术,建设脉冲强磁场实验装置可为凝聚态物理、材料、磁学、化学、生命与医学等领域科学研究提供理想的研究平台。   脉冲强磁场实验装置边建设、边试运行。截至2014年9月底,脉冲强磁场实验装置已累计开放5790机时,为德国德累斯顿强磁场实验室、美国普渡大学、日本东北大学及我国北京大学、南京大学、中科院物理所等50个国内外科研单位开展了170项科学实验。   验收委员会认为,脉冲强磁场实验装置以其优异的性能,成为国际上最好的脉冲强磁场装置之一。希望项目建设单位充分发挥装置优势,进一步提高性能、开放共享,加大人才的培养和引进力度,着力开展高水平的科学研究,使脉冲强磁场实验装置成为国际一流的科研平台。
  • 7月上海:欢迎莅临摩方展台交流与洽谈经销合作
    深圳摩方是全球唯一商业化超高精度PμSL光固化3D打印解决方案提供商。作为高精密增材制造领域的领军企业,摩方已和众多全球知名企业开展合作,包括GE、强生、安费诺、日本电装、三菱重工、佳能、泰科电子、歌尔、开立医疗、立讯精密、中石油等,摩方设备也已被清华、北大、浙大、中科院、英国诺丁汉、德国德累斯顿理工、新加坡南洋理工等众多全球顶级高校和科研机构所使用。我们将于7月3日-5日慕尼黑上海电子展以及7月8日-10日TCT亚洲增材制造展上,携10微米超高精度微纳3D打印系统nanoArch S140 Pro,展示微尺度高精密3D打印解决方案。我们诚邀有志于开拓快速精密制造这个大市场的各界朋友,莅临摩方展台参观交流,洽谈经销合作。慕尼黑上海电子展(Electronica China)展会时间:2020年7月3-5日展会地点:上海国家会展中心展位信息:6.2 / A440亚洲3D打印、增材制造展览会(TCT Asia)展会时间:2020年7月8-10日展会地点:上海新国际博览中心展位信息:E5 / C65温馨提醒:按照上海市防疫部门要求,观展将实行预约实名制。所有观众均需携带绿色“随申码”及身份证或护照,人脸识别入场,请各位朋友提前登记预约。“随申码”办理:微信或支付宝,搜索“随申办”,进入小程序,点击“随申码”进行注册。
  • 中国企业获全球首张石墨烯产品认证证书
    p style=" text-indent: 2em " 日前在德国德累斯顿举行的全球石墨烯春季大会上,中国企业山东利特纳米技术有限公司获颁全球首张石墨烯材料产品认证证书。本次大会由“幻影基金会”主办,汇集了来自全球49个国家和地区的700余名石墨烯行业顶级专家学者和企业家,在行业内具有广泛影响。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/ae875c3a-ae15-4c20-b199-7cebe10e2bb9.jpg" title=" 201807021658556090.jpg" / /p p style=" text-align: center " strong 证书颁发 /strong /p p style=" text-align: center " strong 欧盟石墨烯旗舰计划标准负责人Norbert(左) /strong /p p style=" text-align: center " strong 刘忠范院士(右) /strong /p p style=" text-indent: 2em " 受这家企业委托,中国科学院院士刘忠范6月28日领取了国际石墨烯产品认证中心颁发的证书。业内人士认为,首张证书的颁发将有助于规范石墨烯上下游产品市场,推动全球石墨烯产业更加健康有序发展。 /p p style=" text-indent: 2em " 据了解,山东利特纳米技术有限公司目前可年产20吨石墨烯粉体、200吨能源材料、30000吨高分子复合材料和50000吨功能涂料。国际石墨烯产品认证中心是由中国石墨烯产业技术创新战略联盟与欧洲石墨烯平台机构“幻影基金会”等相关组织发起成立的国际性独立第三方认证机构。中心于2018年1月18日成立,总部设在美国。 /p
  • 2009HPLC暨第34届HPLC国际会议在德召开
    HPLC国际会议是关于HPLC及其相关技术如SFC、电色谱的国际性学术会议。自1973 年以来,此系列的会议专门关注与液相相关的分离技术,是全世界最大的国际色谱会议。上届会议于2008年12月在日本京都举行,此次会议于2009年6月28日至7月2日在德国东部多元化城市德累斯顿举行,由Paris-London University Christian Huber 教授担任会议主席,会议主题涉及: 1、液相色谱技术进展   仪器和检测技术、色谱柱及固定相技术、整体柱和小颗粒填料技术、超高压和高温色谱技术、高通量分析技术、微分离和微全分析系统技术、多维液相\芯片纳升及微检测技术、电分离及毛细管电泳技术、样品前处理方法 2、多维技术和串联技术  色谱质谱联用技术、色谱与磁共振光谱联用技术、多维色谱技术 3、分离基础研究 分离的分子基础、热力学和分离机制  4、分离技术在工业方面的应用  聚合物分离、预色谱和过程色谱、对映体分离、超临界流体萃取及色谱、方法确认、自动化及过程分析技术、数据分析和信息管理技术  5、临床与药物分析   临床诊断、药物(生物药物)分离分析、药物研发和药物动力学、天然产物的分离和结构确定 6、生命科学 基因组学\蛋白质组学\代谢组学、生物标记物研究和确认、生物技术产品、法医鉴定和毒物分析、药物滥用和添加剂分析 7、食品与环境分析  食品安全、食品样品前处理和环境监测分析 等。 会议同期还举行展览会,Agilent Technologies、Pfizer、Waters、SIGMA-ALDRICH、Molnar-Institute for Applied Chromatography 、DIONEX、Thermo SCIENTIFIC、KNAUER、BECKMAN COULTER、AB、BISCHOFF CHROMATOGRAPHY、GERSTEL、VWR、PerKinElmer、SHIMADZU、MERCK等公司参展。 更多信息请查看:www.hplc2009.com
  • 用美国康塔仪器表征CDCS新进展
    近日,德国德累斯顿工业大学(Dresden University of Technology)的科学家研究出了一种新的碳化物衍生碳材料(CDCs)合成方法,通过这种热敏的模版式合成方法,可以得到孔径可控、比表面高于2800m2/g、孔容近2cm3/g的高性能碳材料,因此,这种材料在生物材料分离、储气、超级电容、电极等领域具有广泛的应用前景。美国康塔仪器公司(Quantachrome Instruments)参与了此项合作研究,并对该材料的物理特性进行了研究。使用美国康塔仪器公司(Quantachrome Instruments)研究级全自动比表面和孔隙度吸附仪Autosorb-iQ对该材料系列细微的微孔和介孔结构差别以及材料的储气性能进行表征,结果如下图所示。同时,借助于美国康塔仪器公司的PoreMaster型全自动压汞仪证明,该新颖的合成方法还会为材料提供大量大孔结构(50nm)。该项成果已于近期发表于2012 Angew. Chem. Int. Ed.:更多详情请见http://onlinelibrary.wiley.com/doi/10.1002/anie.201200024/abstract jsessionid=6C6F27B0B68581AAA6DC60EDABE538C6.d02t02?systemMessage=Wiley+Online+Library+will+be+disrupted+on+7+July+from+10%3A00-12%3A00+BST+%2805%3A00-07%3A00+EDT%29+for+essential+maintenance 或与美国康塔仪器公司北京代表处联系: www.quantachrome-china.com
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 拉曼光谱技术新应用:“看”鸡蛋识别小鸡性别
    p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 对蛋鸡孵化厂来说,不会下蛋的小公鸡如同废料,刚孵出的小公鸡通常会筛选出来后直接杀死。德国每年因此被杀死的小公鸡超过4000万只,但这种做法竟引起一些争议。 /p p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp 德国德累斯顿工业大学附属诊所的研究人员开发出一种新方法,可借助拉曼光谱分析技术,在鸡蛋孵化时,提前判断小鸡的性别,避免上述情况发生。 /p p style=" LINE-HEIGHT: 1.75em"   光照射到物体时会发生散射,而特定物质分子吸收了光的部分能量后,散射光的频率会变低,波长会变长,这被称为“拉曼效应”。由于散射光的频率变化与物质成分有关,通过分析散射光谱即可辨别出某些物质的分子,因此“拉曼散射光谱”也被称为物质的“指纹光谱”。 /p p style=" LINE-HEIGHT: 1.75em"   研究人员介绍,鸡蛋从开始孵化到小鸡出壳的时间约为20天左右,但孵化约72小时后小鸡的血管已经初步形成。这时就可采用近红外激光照射鸡蛋,再对散射光进行光谱分析。研究发现,公鸡与母鸡胚胎血细胞中核酸物质散射的“拉曼光谱”信号有所不同,通过这一特点,即可用来提前判断小鸡的性别。 /p p style=" LINE-HEIGHT: 1.75em"   研究人员表示,这种性别判断法的可靠性及检测速度仍有待提高。此外,在大规模生产中,实现全自动筛选的方法还有待开发,他们希望能在2017年年中以前实现这一目标。 /p p br/ /p
  • 印度科学家初步确认韩春雨实验的可重复性
    河北科技大学的副教授韩春雨领衔研发的NgAgo-gDNA技术在《自然》子刊《生物技术》(Nature Biotechnology)发表后,引起了科研圈的广泛关注,赞扬声自然是不断,不少学者们称其为“诺奖级”的成果 但在另一方面,也存在质疑声,其中包含了方舟子在近日发文所质疑韩春雨“诺奖级”实验成果的可重复性问题。【详情】  一个科学成果的证明或是证伪,从来靠的不是言语上的争论,只要有独立的第三方通过论文里所提供的方法重复了实验,那么所有的流言和质疑都将不攻自灭。  目前有网友曝出两则关于第三方成功重复NgAgo-gDNA实验的消息,来源都是两封电子邮件,其中一封署名为Jan Winter,由于缺乏更多的相关信息,这个来源看起来可信度不高 看起来比较靠谱的是另一位来自位于印度的Debojyoti Chakraborty博士所发的邮件。  为了进一步验证消息的来源,DT君专门给Chakraborty博士写信求证。我们先简单介绍一下这位印度博士:Debojyoti Chakraborty从德国的马克斯普朗克研究所(类似于德国的中科院)获得了博士学位,直至2015年底在德国德累斯顿理工大学(TU Dresden)从事生物学研究,今年年初回到了印度,就职于位于新德里的基因与综合生物学研究所(Institute of Genomics and Integrative Biology)。Chakraborty博士迅速地做出了回复,原文如下:  Chakraborty博士在信中确认了他们使用NgAgo技术剪辑了海拉细胞(HeLa,传说中的不死细胞)中GFP(绿色荧光蛋白)的相关序列,并观测到了细胞中的GFP减少的现象,这初步确认了剪辑技术发生了作用,然而是要判定韩教授的方法的可重复性,必须要等到基因测序结果出来以后才能下结论。  由于Chakraborty博士应该与韩春雨没有任何利益关系,因此基于他的书面回复,我们可以说,这位印度博士的实验结果初步确认了韩春雨NgAgo技术的可重复性,然而是否能最终判定,我们还需要等待。  以下附上Chakraborty博士的公开简历。
  • SITA析塔品牌介绍
    德国析塔SITA 全球著名表面张力仪,清洁度仪,泡沫仪生产商SITA析塔详细介绍德国析塔SITA成立于1996年,是专门开发,生产和销售用于控制零件清洁度的表面清洁度仪,用于测量液体动态静态表面张力的设备,用于分析液体起泡行为的全自动泡沫测试仪以及监控工业清洗中清洗槽的污染水平的污染度仪。析塔SITA生产的测量设备还用于化学工业的研究与开发实验室中以进行分析和质量保证任务,并在表面技术领域中用于监视和控制过程。背景:  起初,一群年轻的工程师着手研究用于电气用具的液体动态表面张力测试的革新方法。这是德国德累斯顿工业大学的一个研究项目。1993年这些年轻的工程师创立了新一代表面张力计的理论基础,这成为了后来SITA公司成功的基础。在拥有了成功建立了这款新仪器雏形的经验后,德国SITA公司也于1996年被创立。SITA的名字来源于希腊字母Sigma和TheTA――它们是表面张力和温度的国界符号,是液体的两个物理特性,现在它已经成为源自德国的新颖、易用的仪器设备的代名词。翁开尔是德国析塔SITA在中国的独家代理,翁开尔公司拥有近40年的行业服务经验。德国SITA析塔公司成立于1996年,是专门开发,生产和销售用于控制零件清洁度的表面清洁度仪,用于测量液体动态静态表面张力的设备,用于分析液体起泡行为的全自动泡沫测试仪以及监控工业清洗中清洗槽的污染水平的污染度仪。翁开尔是德国析塔SITA中国独家代理。放大查看
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 拯救一只小公鸡 从光谱定性做起
    p   多亏了一项被称为光谱学的成像技术,对孵化场来说,对四天之内的孵化蛋进行鸡雏性别的精准确定成为可能。这种无损方法对蛋中所含液体做区别检测,判断即将孵化出来的是公鸡还是母鸡。 /p p   在蛋胚胎性别鉴定上有了这样一种相当低廉的办法,可能会给家禽业带来更多的伦理实践。因为这可以阻止每年宰杀70亿只几乎没有利用价值的日龄雏公鸡,同时它们的姐妹们要时刻投入生产,以满足全球每年6830万吨的鸡蛋需求。 /p p   这项研究由德国德累斯顿工业大学的Roberta Galli和立陶宛维尔纽斯大学的Gerald Steiner发表于普林格出版的《分析和生物分析化学》(Analytical and Bioanalytical Chemistry)上。 /p p   若论肉制品的话,蛋鸡不同于肉鸡,肉质不鲜美,几乎没什么经济价值 加上公鸡日后不能加入产蛋大军,所以很多生产者会选择宰杀日龄雏公鸡。仅在北美和欧洲,每年就有7.9亿只鸡雏被杀。日龄雏公鸡被窒息或研磨致死,既是一个产业问题,也是一个伦理问题,引发了越来越多的旨在提供合适替代方法的研究。 /p p   当下的研究是Galli 和Steiner之前成像技术可用于孵化蛋胚胎性别鉴定这一课题研究的延伸部分。胚胎血液包含在蛋壳内,利用近红外激光照射孵化蛋,胚胎血管反射出荧光,通过观察其特定性别的生物化学差异,即可做到。 /p p   在这项研究中,785纳米波长的激光照射、27个蛋、长达11天,研究人员一直观察着。他们注意到,在近红外荧光光谱下,与性别相关的差异出现在孵化开始后的3.5天。进一步分析还表明,雄性蛋胚胎的血液特征定位于-910纳米的荧光带上。 /p p   Galli 和Steiner研究团队测试了光波长下的荧光特性和变化可否用于区分蛋孵化出公鸡与母鸡。他们一共在380个鸡蛋上进行了实验,结果证明这项新技术的准确率为93%。 /p p   Galli表示:“基于光谱分析的胚胎性别鉴定是非损伤性的,并不需要提取任何蛋物质或使用任何消耗品。此外,这个方法特别适用于孵化第四天、在未形成痛觉神经的第七天前,因此又与动物福利契合。” /p p   Steiner说,应用这种荧光技术开发蛋胚胎性别鉴定的工业系统,而不是基于昂贵的光谱仪,也是有潜力的。它可以使用少量配备带通滤波器的光探测器,在选定的光谱范围内测量信号强度。 /p p br/ /p
  • 可在P型与N型间转换的新式晶体管问世
    据美国物理学家组织网12月21日(北京时间)报道,德国科学家研制出一种新式的通用晶体管,其既可当p型晶体管又可当n型晶体管使用,最新晶体管有望让电子设备更紧凑 科学家们也可用其设计出新式电路。相关研究发表在最新一期的《纳米快报》杂志上。   目前,大部分电子设备都包含两类不同的场效应晶体管:使用电子作为载荷子的n型和使用空穴作为载荷子的p型。这两种晶体管一般不会相互转化。而德累斯顿工业大学和德奇梦达公司携手研制的新式晶体管可通过电信号对其编程,让其自我重新装配,游走于n型晶体管和p型晶体管之间。   新晶体管由单条金属—半导体—金属结构组成的纳米线嵌于一个二氧化硅外壳中构成。从纳米线一端流出的电子或空穴通过两个门到达纳米线的另一端。这两个门采用不同方式控制电子或空穴的流动:一个门通过选择使用电子或空穴来控制晶体管的类型 另一个门则通过调谐纳米线的导电性来控制电子或空穴。   传统晶体管通过在制造过程中掺杂不同元素来确定其是p型还是n型,而新式晶体管不需要在制造过程中掺杂任何元素,通过在一个门上施加外部电压即可重新配置晶体管的类型。施加的电压会使门附近的肖特基结阻止电子或空穴流过设备,如果电子被阻止,空穴能流动,那么,晶体管就是p型,反之则是n型。   研究人员解释道,使这种再配置能起作用的关键是调谐分别通过肖特基结(每个门一个)的电子流动情况,模拟显示,纳米线的几何形状在这方面起关键作用。   尽管该研究还处于初期阶段,但新式晶体管展示出了极佳的电学特性。比如,与传统纳米线场效应晶体管相比,其开/闭比更高,且漏电更少。该研究的领导者沃尔特韦伯表示:“除采用人造纳米线外,采用目前先进的硅半导体制造技术也可以制造出这种晶体管,还可以用到自对准技术,大大提高工作频率和速度。”   接下来,科学家们计划通过改变材料的组成来改进新式晶体管的性能,并制造出由其运行的电路。他们表示,最大的挑战是,在将其与其他晶体管结合在一起时,如何将额外的门信号整合进来。
  • 颜宁教授获2015年赛克勒国际生物物理奖
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 280px HEIGHT: 418px" title=" 20151081512248800.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/insimg/715d234f-59d4-4213-9f85-308bce500be5.jpg" width=" 280" height=" 418" / /p p   清华新闻网10月8日电 10月7日,清华大学医学院颜宁教授与德国德累斯顿工业大学Stephan Grill教授共同获得赛克勒国际生物物理奖(The Raymond & amp Beverly Sackler International Prize in Biophysics)。颜宁的获奖理由为“对包括具有里程碑意义的人源葡萄糖转运蛋白GLUT1在内的关键膜蛋白的结构生物学研究做出突出贡献”(For seminal contributions to structural biology of crucial membrane proteins including the landmark human glucose transporter GLUT1)。颁奖典礼将于12月15日在以色列特拉维夫大学举行。 /p p   颜宁教授自2007年10月回国组建实验室以来,一直致力于结构生物学中最富挑战的领域之一、膜蛋白的结构与功能研究,并在短短8年内取得了一系列杰出成就。2014年,她率领的团队在世界上首次解析了人源葡萄糖转运蛋白GLUT1的三维晶体结构,2015年进一步获得了具备更多构象的GLUT3结合底物和抑制剂的超高分辨率结构,从而清晰揭示了葡萄糖跨膜转运这一基本细胞过程的分子基础。此外,她还对离子通道结构生物学领域做出重要贡献,解析了电压门控钠离子通道的晶体结构,最近又利用最新冷冻电镜技术获得了最大钙离子通道RyR1的高分辨率结构。 /p p   颜宁因其杰出工作获得国内外学术界的认可:2012年入选美国霍华德休斯医学研究院(HHMI)首批“国际青年科学家”,同年获得国家自然科学基金委“杰出青年基金”和中国第9届“青年女科学家奖” 2015年入选教育部“长江学者” 2015年颜宁教授因为对跨膜运输的结构生物学研究获得国际蛋白质学会(Protein Society)颁发的“青年科学家”奖。 /p p   雷蒙德与比佛利赛克勒国际生物物理奖(简称赛克勒国际生物物理奖),是由雷蒙德博士和比佛利赛克勒夫人捐赠所设立的,旨在促进原创及杰出的生物物理研究成果,一般表彰年龄在45岁以下的科学家,个别年度不设年龄限制。清华大学施一公教授和美国哈佛大学的庄小威教授分别于2010年和2011年获得该奖。(原标题:清华大学颜宁教授获2015年赛克勒国际生物物理奖) /p
  • 直播预告:Pμ SL极限微尺度3D打印技术及其科研应用进展
    主题: PμSL极限微尺度3D打印技术及其科研应用进展时间: 2020年6月18日下午15:30-16:30直播讲师单位:BMF深圳摩方材料科技有限公司、英国诺丁汉大学University of Nottingham 直播提纲:BMF深圳摩方:①微尺度3D打印技术;②PμSL微尺度3D打印技术原理及特点;③PμSL微尺度3D打印的极限微尺度加工能力;④PμSL微尺度3D打印的科研应用进展英国诺丁汉大学:①诺丁汉大学增材制造中心介绍;②诺丁汉大学&摩方合作情况;③PμSL微尺度3D打印技术方向的研究展望BMF深圳摩方材料科技有限公司专注于高精密微纳3D打印领域,是全球微纳尺度3D打印技术及颠覆性精密加工能力解决方案提供商。其业务涵盖高精密3D打印设备的研发及生产、高精密3D打印定制化产品服务、高精密3D打印原材料的研发及生产、高精密3D打印工艺设计开发及相关技术服务,拥有较为完整的高精密微纳3D打印产业生态链。在科研领域,摩方自主研发的3D打印系统已被麻省理工、新加坡南洋理工、英国诺丁汉、德国德累斯顿工大、清华、北大、港中文、港城大、南方科技大学、西湖大学、浙江大学、中科院等众多全球顶级高校和科研机构使用。University of Nottingham英国诺丁汉大学是一所世界百强名校,英国老牌名校,其教学与研究水平都具有国际声誉。迄今为止,诺丁汉大学已经产生了很多的杰出校友,包括3位诺贝尔奖的得主和众多奥运奖牌得主。根据2011年UCAS报告,该校与剑桥大学并列英国第三培养出最多位知名CEO的学校,毕业生在英国列为重点聘雇的第2名。英国诺丁汉增材制造中心拥有跨学科研发团队,包括博士、博士后及导师共98人,其研发方向覆盖基础研究到应用型研究,主要包括多材料增材制造技术与可用于增材制造的特种材料开发。本次直播主要讲述的是PμSL极限微尺度3D打印技术及其科研应用进展。产品特点: 摩方nanoArch 3D打印设备采用面投影微立体光刻(PμSL:Projection Micro Stereolithography) 3D打印技术,该技术具有成型效率高、制造成本低和打印精度高等突出优势,被认为是目前最具有前景的微尺度加工技术之一。全球领先的超高打印精度(2μm/10μm/25μm),高精密的加工公差控制能力(±10μm/±25μm/±50μm),配置韧性树脂、硬性树脂、耐高温树脂、生物树脂等创新打印材料,使得nanoArch系列3D打印系统可直接成型精密塑料结构件和功能器件,无需再经过抛光、打磨、喷涂等后处理工艺,可为客户实现小批量的精密塑料零件快速加工。
  • 布劳恩手套箱助力Fraunhofer IKTS固态电池研究
    在新能源科技的浪潮中,固态电池以其卓越的能量密度和安全性,正迅速成为市场关注的焦点,并展现出巨大的商业化潜力。Fraunhofer IKTS,作为全球领先的科技研究机构之一,在固态电池技术的研究上取得了令人瞩目的成就。今天,我们将一起探索布劳恩手套箱在Fraunhofer IKTS固态电池研究中的应用案例。1安全与创新并行,固态电池的研发之路目前,固态电解质材料的研究正如火如荼地进行,种类繁多的材料特性正被逐一探索与解析。Fraunhofer IKTS的“电池设计和测试”工作组专注于电解质和复合阴极材料的开发,这些材料是提升电池性能的核心要素。陶瓷材料是Fraunhofer IKTS自主研发的成果,以其众多的优良属性,正成为新型电池概念的坚实基石。它们不仅在安全性和能量密度方面展现出巨大潜力,更在推动固态电池技术迈向成熟的道路上发挥着不可或缺的作用。© 弗劳恩霍夫 IKTS陶瓷固态电池的组成及特性2布劳恩手套箱:打造理想实验环境在这一过程中,布劳恩手套箱发挥了至关重要的作用。它为固态电池的研发生产提供了一个无尘、无氧、无水的超洁净环境,确保了电池材料、组件的纯净度和实验的可重复性。Fraunhofer IKTS固态电池实验室的布劳恩手套箱系统由多个手套箱组成,并集成PVD镀膜系统,形成了一个高效的电池生产和测试平台。从单个电池组件的生产到锂或其他金属的物理气相沉积(PVD),再到在惰性气体氛围下完成电池的组装,都在布劳恩手套箱系统中完成。这不仅提高了实验操作的效率,还确保了不同手套箱之间的环境一致性,为电池的规模化生产打下了坚实的基础。© 弗劳恩霍夫 IKT集成PVD系统的布劳恩手套箱Fraunhofer IKTS固态电池研发过程视频关于Fraunhofer IKTSFraunhofer IKTS 是欧洲最大的陶瓷研究所, 其总部设在德累斯顿,在Dresden-Klotzsche 和Hermsdorf(图林根州)设有两个分所,全所共有650 多名员工。研究所设备仪器齐全,拥有30000 多平米的实验室和中试工厂。此外,研究所还设有多个分支实验机构,例如电池技术中心、生物能源和薄膜技术应用中心。这些实验中心专注于新技术的开发,并对其潜在应用进行重点测试。Fraunhofer IKTS 致力于先进陶瓷的研究, 范围涵盖了从基础研究到整个陶瓷领域的应用。作为科研和技术服务机构,Fraunhofer IKTS开发现代高性能陶瓷材料、定制工业生产工艺,创建原型组件和系统。此外,Fraunhofer IKTS还提供各种测试方法和测试系统,为产品和设备的质量提供了可靠保证。
  • 用户感受重于百年品牌,卡尔蔡司改名蔡司
    著名镜头镜片、显微镜及工业测量、电子测量设备厂商卡尔蔡司,公布了自己将要更名的消息。   蔡司在其官方博客上表示,&ldquo 蔡司是全球知名的,在所有相关领域都备受尊敬的品牌,卡尔蔡司的名称来源于公司的创始人,也是公司名称卡尔蔡司AG(Carl Zeiss AG)的一部分。然而,我们的品牌长期以来都被称为蔡司。在日常使用中,&ldquo 蔡司&rdquo (&ldquo ZEISS&rdquo )在公司和logo两方面都已经在许多国家和语言中成为了广为人知的既成事实。蔡司正在考虑在创建自己的品牌沟通的一致性中的这种进展,目标是创建一个让用户感觉更清晰、更一致的形象。蔡司未来将尽可能消除卡尔蔡司(Carl Zeiss)和蔡司(ZEISS)在使用中缺少一致性的问题。结论是,卡尔蔡司(Carl Zeiss)将变成蔡司(ZEISS)。&rdquo   德国古镇耶拿(Jena)是卡尔蔡司公司创始人之一卡尔· 蔡司的故乡。卡尔原本只是一个仅高中毕业的学徒工,因为多年对光学和化学的兴趣,在学徒期满之后,卡尔长期在当地的耶拿大学旁听,而在长期的学习与工作中,这位昔日的学徒也逐渐成长为世界光学巨头。1846年,30岁的卡尔创办了一个工作室,早期产品是放大镜片和简单的显微镜。得益于两位大科学家恩斯特· 阿贝和奥托· 肖特(光学玻璃中&ldquo 肖特&rdquo 玻璃的开创者)的帮助,蔡司光学镜头的质量一直处于领先地位。二战以前蔡司设在德累斯顿的生产车间,是世界上生产规模最大的镜头工厂。   如今,蔡司已经有多个领域的产品:显微镜、测量仪器设备、眼镜片、望远镜和相机镜头等。而多年来,蔡司也曾经使用过不同的品牌。   &ldquo 卡尔蔡司· 耶拿&rdquo (&ldquo Carl Zeiss Jena&rdquo )是蔡司在二十世纪二十年代最早使用的商标,是一个透镜形状的商标,各子公司均在使用,如卡尔蔡司拥有大部分股权的蔡司依康(Zeiss Ikon AG)。第二次世界大战后,美军迫使卡尔蔡司员工搬迁去德国南部,在巴登-符腾堡州奥伯科亨(Oberkochen, Baden-Wü rttemberg)建立了Opton工厂,这使得蔡司依康等也使用了新公司的商标。   1953年春季,奥伯科亨的卡尔蔡司和VEB Carl Zeiss Jena分道扬镳,卡尔蔡司奥伯科亨开始独立发展并把自己叫做&ldquo 卡尔蔡司&rdquo (&ldquo Carl Zeiss&rdquo ),从logo中去掉了&ldquo 耶拿&rdquo (&ldquo Jena&rdquo )。这导致卡尔蔡司和联邦德国的卡尔蔡司· 耶拿两个商标之间发生了纠纷,诉讼在世界各地发生。这也成了东德空前绝后的最长官司。   经过近18年的诉讼,于1971年达成了所谓的&ldquo 伦敦协议&rdquo 。根据协议的条款,东德和西德的卡尔蔡司公司应该使用能区分彼此的商标和公司名称。此外,因为东德公司去掉了&ldquo 耶拿&rdquo ,西德方也去掉了&ldquo 卡尔&rdquo ,出现了去掉&ldquo 卡尔&rdquo 的商标。结果在七十年代末,&ldquo 蔡司&rdquo 成了两者的共同点。而为了清楚地区别于耶拿,&ldquo 西德&rdquo (&ldquo West Germany&rdquo )添加为原产地的名称。   1991年,德国统一后卡尔蔡司也进行了合并,并共同决定提升logo的知名度,1993年-1994年,卡尔蔡司开始使用一个镜头形状的新标志,这就是今天仍在使用的标志形状。而在1997年,改变了配色方案的蔡司标志开始投入使用,被沿用至今。   在2011-2012年,蔡司高层设立了一个工作小组来调研蔡司的市场定位和一致性,做出建议进一步发展品牌。结果建立了一系列的品牌管理原则,将管理使用未来的蔡司品牌,决定在所有产品上使用相同的蔡司标志。   蔡司Touit镜头在镜头前圈上使用了成为蔡司标志,成为首批由卡尔蔡司(Carl Zeiss)变成蔡司(ZEISS)的产品,未来,蔡司其他产品也将同样更名。
  • 2022年世界科技发展回顾 • 新材料篇
    俄罗斯 Russia碳纳米纤维增加铝材硬度 开发智能玻璃制造新技术铝及其合金是现代工业和技术的关键材料之一。俄罗斯国家研究型技术大学科研人员将碳纳米纤维添加到铝复合材料中,使其硬度增加了20%,材料结构在微观层面上也发生了极大变化。这项研究不仅改善了特定铝合金的性能,而且对许多铝及其合金部件都具有重要的实际意义。别尔哥罗德国立研究大学基于铁、钴、镍、铬和碳开发出了高强度、高延展性合金,在-150℃及更低温度下具有出色的性能,强度比最好的同类产品高一倍半,并具有24%的出色延展性。新合金可广泛用于探索太空、海洋、北极和南极所需的技术系统。托木斯克理工大学科研人员提出了一种利用激光和石墨烯对玻璃进行改性的技术,开发出基于石墨烯和玻璃的复合材料。这种技术允许用石墨烯“画出”所需的结构,将其融合到几毫米厚的玻璃中,有助于在玻璃产品中制造出石墨烯导电结构,作为积成电子产品的基础,最终实现用石墨烯制造新一代电子产品。新材料可长时间使用而性能不降低,可用于开发廉价高效的柔性电子产品、新型光电器件以及具有扩展功能的各种玻璃产品。图片来源:视觉中国俄罗斯国立研究型技术大学超硬和新型碳材料研究所与俄罗斯科学院西伯利亚分院物理研究所首次合成一种基于含钪碳纳米结构的富勒烯超硬材料。研究表明,电与不含钪的聚合富勒烯晶体相比,该材料的刚性较低,但同时相变压力也较低,这能降低该结构的实验室获取难度。该技术可用于研发适用于光伏、光学器件、纳米电子学和生物医学的新型超硬材料。法国 France开发便宜无毒新型热电材料 DNA微机器人探索细胞过程法国CRISMAT实验室研究人员开发出安全且廉价的热电材料,该材料由铜、锰、锗和硫组成,生产过程相当简单。他们使用球磨机简单将铜、锰、锗、硫粉末机械合金化,形成一个预结晶相,然后在600℃下烧结使其致密化,所生产的新型材料可将热能转化为电能且在400℃下仍能保持稳定。研究人员发现,用铜代替一小部分锰会产生复杂的微结构,具有相互连接的纳米域、缺陷和相干界面,会影响材料的电子和热传输特性。未来研究人员将进一步改进这种新型无毒热电材料,替代传统含铅、碲等有毒元素的材料。法国国家健康与医学研究院、国家科学研究中心和蒙彼利埃大学研究人员使用DNA折叠方法,即用DNA分子作为构建材料,以预定义的形式自组装3D纳米结构,制成DNA纳米机器人,可用来更好地了解细胞机械敏感性的分子机制,并发现对机械力敏感的新细胞受体,还能在细胞水平更精确地研究施力过程中,生物和病理过程的关键信号通路何时被激活。日本 Japan新系统按需合成光气衍生品 机械手指上“长出”仿真皮日本神户大学研究小组首次成功开发出以氯仿为前体的新型流式按需合成系统,使用这个系统能够合成光气衍生的化学产品。此外,他们实现了超过96%的高转化率,在短时间内(一分钟或更短的曝光时间)合成了这些有用的化合物。该系统具有多重优势,安全、廉价且简单,对环境影响小,可用于合成各种化工产品并连续大量生产。研究人员预计,该系统可以在不久的将来扩大为工业生产的模型系统。大阪大学研究人员开发出一种方法,将一个不显眼的可食用标签嵌入食物中,无需先破坏食物即可读取相应数据,而且这种标签完全不会改变食物的外观或味道。信州大学纤维工程研究所材料科学家开发出一种由超细纳米线编织而成的纺织品。这种线由相变材料和其他材料制成,与电热和光热涂层结合在一起,最终成为一种面料,能根据需要对不断变化的温度做出反应,在穿着者身上升温或降温。东京大学科学家在机器人身上制作出“活的”类人皮肤,不仅为机械手指提供了人类皮肤般的质感,还具有防水和自愈功能,让人们离科幻目标又近了一步。名古屋大学研究团队合成了一种带状分子纳米碳,具有扭曲的莫比乌斯带拓扑结构,即莫比乌斯碳纳米带。构建结构均匀的纳米碳,对于纳米技术、电子学、光学和生物医学应用中的功能材料的发展至关重要。韩国 South Korea“元表面”纳米材料可调谐 新聚合物常温下能生物降解2022年10月,韩国蔚山科学技术院科研团队研发出可作为6G通信元器件的“元表面”新纳米材料。“元表面”材料是平面光学器件中新型的纳米结构材料,以二氧化钒为基础,呈透明状。实验表明,该二氧化钒“元表面”透明电极在保持一定的太赫兹波通过的同时,还可调谐电导率至数千倍左右,成为6G通信元件或太赫兹波、近红外线混合通信技术的最佳器件材料。该方法还可用于其他二维物质材料的研发和应用。11月,韩国亚洲大学团队以磷酸金属盐作为催化剂开发出一种新型生物降解聚合物PBAT(属于热塑性生物降解塑料,是己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,兼具PBA和PBT的特性),其制成的可降解塑料在土壤中的降解速度约是现有可降解塑料的9倍。新型PBAT聚合物通过在生产过程中添加一定量的磷酸金属盐,使其结构变成离子键的结合形式,既具备耐久性,又可在常温下生物降解。德国 Germany“四中子态”最明确证据发布 人工智能助力新材料设计优化材料基础研究方面,慕尼黑工业大学获得了迄今最明确地证实“四中子态”物质存在的证据,有助于更好地理解宇宙是如何形成。慕尼黑工业大学和德累斯顿工业大学合作,在氟化钬锂中发现了一种全新相变,并观察到成千上万个原子的纠缠,这对于研究材料中的量子现象以及新应用来说是一个重要基础和一般参考框架。图片来源:视觉中国合金材料方面,马克斯普朗克钢铁研究所成功将人工智能技术应用于高熵合金的设计和优化。研究人员利用699种合金的公开数据训练学习算法,然后让算法生成大量具有低热系数的候选成分,再通过包括原子特征和热力学数据库的有关物理特性的算法筛选出17种高熵因瓦合金,最终确定出两种在300开氏度时具有极低热膨胀系数的高熵合金。催化剂方面,亥姆霍兹柏林研究所等研发出纳米结构的硅化镍作绿氢催化剂,可显著提高电解水反应的效率。科林公司成功开发了一种廉价稳定的合金材料催化剂,可用二氧化碳直接电解生产一氧化碳。纳米材料和应用方面,德国电子同步加速器实验室(DESY)阐明了分子马达的结构、完整的功能循环和作用机制。慕尼黑工业大学首次成功使用DNA折叠法制造出一款分子马达,可自组装并将电能转换为动能,未来有望用于驱动化学反应。埃尔朗根—纽伦堡大学研发迄今世界上最小的可运动的能量驱动齿轮,该装置只有1.6纳米大小,由两个啮合组件共71个原子构成。生物相关材料方面,莱布尼茨交互材料研究所开发出可与生命物质交流和发挥作用的材料,并成功将活性细胞分裂机制整合到合成囊泡中,使人们离生产功能性合成细胞的目标又近了一步。慕尼黑工业大学设计了一种新型葡萄糖燃料电池,厚度仅400纳米,可将葡萄糖直接转化为电能。德累斯顿工业大学首次演示了一款高效有机双极晶体管,为有机电子学开辟了全新前景。此外,德国地球科学研究中心成功合成具有六方晶格的锗化硅材料,可有针对性地控制带隙和光电特性。该中心还开发了一种新方法,可在高于正常大气压110万倍的压力下测量二氧化硅玻璃的密度。马克斯普朗克量子光学研究所开发了一种新的分子气体冷却技术,可将极性分子冷却到几纳开氏度。英国 The UK薄膜硅光伏电池吸收率创纪录 新催化剂降低氢燃料电池成本英国与荷兰科学家合作,借助一种纳米纹理结构,使薄膜硅光伏电池变得不透明并增强了其吸收太阳光的效率。实验表明这种薄膜电池能吸收65%的阳光,是迄今薄硅膜表现出的最高光吸收率,接近约70%的理论吸收极限,有望催生柔性、轻质且高效的硅光伏电池。帝国理工学院开发出一种氢燃料电池,它使用的催化剂由铁而非稀有昂贵的铂制成,降低了氢燃料电池的成本。该技术让氢燃料广泛部署成为可能,有助于减少温室气体排放,推进世界走上净零排放的道路。伦敦玛丽女王大学研究团队首次研制出单晶有机金属钙钛矿光纤,可加速宽带传输、改善医学成像。伯明翰大学与美国杜克大学研究人员合作,利用糖基原料而非石化衍生物,研制出两种新的聚合物,既拥有普通塑料的特性,又可降解和物理回收。其中一种像橡胶一样可拉伸,另一种则像大多数塑料一样坚固且有韧性。美国 The US发现迄今最佳半导体材料 纳米研究带来高效新设备在半导体科学领域,美国麻省理工学院、休斯顿大学和其他机构的一个研究团队发现,立方砷化硼兼具导电和导热优势,可能是迄今发现的最佳半导体材料。密歇根大学开发出一种半导体材料,可在室温下实现从导体到绝缘体的“量子转换”,有助于开发新一代量子设备和超高效电子设备。在有关“打印”的各种应用中也有很多成果。研究人员使用定制打印机,3D打印出了首块柔性有机发光二极管显示屏,无需以往昂贵的微加工设备。北卡罗莱纳州立大学研究人员开发出一种将电子电路直接印刷到弯曲和波纹表面上的新技术,并使用该技术制造了原型“智能”隐形眼镜、压敏乳胶手套和透明电极,这为各种新的柔性电子技术铺平了道路。美国国家标准技术研究院科学家报告了一种利用糖在几乎任意共性表面上进行转印的方法,有望为电子、光学和生物医学工程等领域带来新材料。研究人员打印出首块柔性有机发光二极管显示屏。图源:物理学家组织网在纳米级的材料研究方面,麻省理工学院研究人员通过改变材料的表面,创建了一种纳米级配置,能将闪烁体的效率提高至少10倍,甚至可能提高100倍,有助实现更灵敏X射线成像;该学院还在单原子薄材料中发现了一种奇异的“多铁性”状态,首次证实多铁性可存在于完美的二维材料中,为开发更小、更快、更高效的数据存储设备铺平道路。约翰斯霍普金斯大学研究人员设计出由微小纳米管组成的无泄漏管道,可自我组装和自我修复,且能连接到不同的生物结构,这是创建纳米管网络的重要一步,该网络将来有望向人体中的靶细胞提供专门的药物、蛋白质和分子。莱斯大学开发出由可见光而非紫外线激活的纳米级“钻头”,通过对真实感染的测试,证明这些分子机器能有效杀死细菌。在传感器相关研究方面,斯坦福大学科研团队报道了一种极富弹性的可穿戴显示器,具有很好的明亮度和机械稳定性,是高性能可拉伸显示器和电子皮肤研究的重要进展。麻省理工学院工程师展示了一种新型超声波贴纸设计,仅邮票大小,可贴在皮肤上,对内脏器官提供48小时的连续超声波成像。加州大学圣地亚哥分校工程学院研究人员开发出一种无电池、药丸状可吞服生物传感系统,能对肠道环境进行持续监测。以色列 Israel新型织物用于市政 创新材料服务医疗2022年4月,以色列特拉维夫市政府宣布在该市试验一种新型太阳能织物,这种户外织物内含太阳能有机光伏电池,白天可为行人遮蔽阳光,晚上则可使用太阳能照明。这对夏季光照充足、炎热少雨的以色列非常适用。7月初,以色列理工学院研究团队发表论文,称其开发出一种基于有机硅的超薄材料——一种高科技织物。这种材料可包裹在受损神经周围,近红外光可穿透皮肤照射到织物上,促使其产生电流刺激神经,从而加速神经修复或用于心脏起搏。实验显示,该材料将小鼠神经修复速度加快了1/3。9月底,以色列理工学院研究团队宣布,受生物体天然矿物生长过程的启发,创造了一种控制材料磁性的方法。团队在存在氨基酸的情况下合成了碳酸锰晶体,通过测量晶体磁性,发现含有氨基酸的碳酸锰比原始材料具有更高的磁化率,这意味着它更容易受到外部磁场的影响。此外,随着添加更多的氨基酸,碳酸锰对磁性的反应性也会增加。研究证明可通过加入非磁性有机分子改变材料磁性,这一发现或可应用于微电子和医学等领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制