当前位置: 仪器信息网 > 行业主题 > >

蛋白定量

仪器信息网蛋白定量专题为您整合蛋白定量相关的最新文章,在蛋白定量专题,您不仅可以免费浏览蛋白定量的资讯, 同时您还可以浏览蛋白定量的相关资料、解决方案,参与社区蛋白定量话题讨论。

蛋白定量相关的资讯

  • 预计到2025年全球蛋白检测及定量市场将达到30亿美元
    p   近日,有机构发布最新研究报告显示,到2025年,全球蛋白检测及定量市场有望达到30亿美元。报告指出,未来几年,在低浓度下进行蛋白估算以监控其变化的分析方法将驱动市场增长。 br/ /p p   各国政府和组织通过增加基金投入来鼓励蛋白质组学领域的科学研究,因此,报告预测,未来几年,蛋白检测和定量市场将以显著的速度增长,如Human Proteome Organization, National Cancer Institute (NCI) 和 Genomic Health Inc.等组织提供资金以支持蛋白质组学领域相关的研发和产品开发。 /p p   在分子水平上研究以了解慢性疾病并开发出解决方案的需求不断增加,这些都成为刺激相关组织制定基金研发计划的因素。美国国家癌症研究所(NCI)的公共健康基因组学计划推动了公共卫生癌症研究中的精准医疗和基因组学一体化研究进程,以减少全球癌症研究的负担。 /p p   虽然科技的发展不断简化蛋白估算,但在某种特定条件下,技术手段和实验的高昂成本影响了这些实验和技术手段的应用,例如,研究人员认为用于功能蛋白研究的质谱非常贵并且分析速度也缓慢。在质谱目标分析实验中,每一个靶标都要求有定制化抗体,以用于分析肽的亲和免疫浓缩,这一过程被认为成本很高并且时间较长。 /p p   报告还指出,比色法在实验室分析中使用的试剂和溶液最多,是最主要的分析方法,免疫法和光谱法被预测为同比增长最快的两种方法,而判断市场的依据是FTIR和SMCxPRO等技术的发展。由于采用这些方法,临床诊断有望成为未来几年增长最快的领域。 /p p   就应用领域方面,作为用于药物发现过程中生物分子评估中的科学技术的在药物发现过程中的靶标分析和其他过程的使用最多,而且,报告认为,学术机构是这类科学实验和临床诊断实验室发展最快的组织。 br/ /p p   地域方面,由于大量的蛋白质组学项目的实施,北美地区占了最大的份额,而亚太地区的卫生健康基础设施的改变也带动了市场对此类产品的需求,因此,亚太地区有望成为最赚钱的地区。 /p p   此外,报告认为,配件和试剂由于使用广泛或与仪器配套使用,消耗品的市场也非常可观。 /p p    /p p br/ /p
  • 2015年CNHUPO生物质谱高级研讨会-- 主题:蛋白定量
    2015年CNHUPO生物质谱高级研讨会(上海-北京) -- 主题:蛋白定量邀请函(第一轮通知) 为积极促进我国生物质谱技术和蛋白质组学技术的发展和应用,加强国内外相关研究领域的专家学者之间的交流与合作,提升研究队伍理论和技术水平,拟定于2015年1月20日和1月22日在上海/北京举办“2015年上海-北京CNHUPO生物质谱高级研讨会--主题:蛋白质定量”。本次会议由中国人类蛋白质组组织(CNHUPO)主办,赛默飞世尔科技(中国)有限公司独家赞助。 本次会议特邀Dr. Mike MacCoss (University of Washington), Dr. Robert Everley (Harvard Medical School-Steve Gygi Laboratory),和张玉奎院士,钱小红教授,曾嵘教授,刘斯奇教授,张丽华教授,贺思敏教授,邓海腾教授等多名国内知名专家围绕生物质谱在蛋白定量上的应用做专题报告。会议热忱欢迎各位同行、学者参加。现就会议有关事宜通知如下:一、会议时间2015年1月20日(周二)全天:上海邀请报告会2015年1月22日(周四)全天:北京邀请报告会 二、会议地点2015年1月20日上海邀请报告会:见第二轮通知 2015年1月22日北京邀请报告会:见第二轮通知 三、报名方式请有意参会者务必在2014年12月31日前将“报名回执表”以电子邮件反馈至会务组,或进行在线注册,请注明参加上海的还是北京的报告会。我们将根据“报名回执表”统计参会人数并发送第二轮会议通知。本次会议不接受现场注册。 四、会务费用会议费用:不收会务费。参会者交通和住宿等费用自理。会议提供午餐,茶点,以及晚宴。 五、会务组联系方式刘晓慧(复旦大学):021-54237961 liuxiaohui_fudan@sina.cn于翌婷(赛默飞):13127766615 yiting.yu@thermofisher.com 2015年CNHUPO生物质谱高级研讨会参会回执 我们将根据“报名回执表”统计参会人数并发送第二轮会议通知。您也可以登录 www.thermo.com.cn/Invitation116.html 在线报名。 中国人类蛋白质组组织(CNHUPO)赛默飞世尔科技(中国)有限公司2015年12月19日
  • 定量蛋白组方案升级——全新Velocity LFQ DIA 工作流程正式发布
    今天的蛋白组学研究中,研究人员们在转化研究,生物标志物发现,甚至单细胞分析等过程中,不止是追求简单的鉴定,更多的需要获取准确可靠的定量信息,用以理解生物学问题。 他们需要使用精确的定量检测方法来表征生物系统之间的差异,对大量样本进行高置信度、高通量的表征,验证生物学假说。在刚结束的USHUPO中,赛默飞正式推出了全新的Velocity LFQ DIA 工作流程。 该平台基于Thermo Scientific Orbitrap 超高分辨质谱仪、Thermo Scientific Vanquish NEO UHPLC 系统以及高效的 Thermo Scientific µ PAC UHPLC 色谱柱技术,具有优异的定量性能,蛋白组深度覆盖,并可轻松实现高通量分析,匹配今天研究人员们对定量蛋白组学研究的需求。 下面就由小编给大家介绍该平台的工作流程,并展示其在定量表征、蛋白组覆盖度和方法通量中的性能。WorkflowVelocity LFQ DIA 工作流程Velocity LFQ DIA 工作流程组成如图1 所示,包括Vanquish Neo UHPLC 系统和µ PAC Neo UHPLC 色谱柱用于色谱分离,Easy-Spray 纳升离子源和 Orbitrap Exploris 240/480 用于质谱数据采集,Spectronaut软件用于数据分析。图1. Velocity LFQ DIA 工作流程示意图(点击查看大图)色谱分离:大队列研究中需要有稳健的色谱设置(分离技术、色谱柱等),确保系统长期稳定运行。 Vanquish Neo UHPLC 系统可实现高重现性,并可进行多种类型的 LC-MS 实验。 新的色谱分离技术同样也可提高系统稳健性,例如基于微阵列的 µ PAC Neo 色谱柱,可提高分析灵敏度和保留时间稳定性 [1] 。质谱分析:除了稳健性和重复性之外,可靠的鉴定和定量在蛋白组学研究中十分重要。 Orbitrap 技术可提供高质量精度以及高分辨率,是复杂 DIA 扫描中可靠鉴定,以及准确、精确检测并分辨离子类型的关键因素。数据分析:DIA谱图中为混合母离子碎裂后所得的混合子离子谱图,通常需要使用谱图库方法进行解析。 但是,随着数据分析软件(例如,使用机器学习方法模拟预测获得高质量的谱图库)的发展,无需谱图库的方法成为了节约时间和成本的一种选择。Key WordsVelocity LFQ DIA 工作流程三个关键词:定量、覆盖度、通量为了深入展示 Velocity LFQ DIA的性能,我们建立一个稳健、高重现性的工作流程,可实现复杂样品中蛋白的准确鉴定和定量。 其中使用了两个不同的混合样品,包括两种蛋白组和三种蛋白组混合样品(图2),质谱数据采集使用OE240质谱仪。图2. Velocity LFQ DIA 工作流程性能展示所使用的的实验设计。 A,两种蛋白组混合样本,包括高含量的人类肽段背景(800 ng Hela 酶解肽段),低到中含量的 Ecoli肽段,比值为1:2:4:8; B,三种蛋白组混合样本,中等含量的人类肽段背景(325 ng Hela 酶解肽段),以及酵母和Ecoli肽段,比值分别为1:0.5和1:4。 这些混合样本分别模拟生物样本中的上调和下调蛋白表达情况。 (点击查看大图)01出色的定量性能分别对上述两种样本进行30min的LC-MS采样,数据采用Spectronaut16,directDIA的方式进行数据分析,肽段和蛋白的FDR均小于1%。Ecoli和hela的混合样本中,ecoli蛋白在4个样本中的3个不同比值均十分接近理论比值,且所有数据点在中位数附近分布很窄,展示了Velocity LFQ DIA工作流程的高定量准确性和精密度(图3A)。 此外,技术重复间肽段的 CV 值均小于 7%(图3B),说明该工作流程具有高定量精密度。图3. 工作流程的定量准确性和精密度展示,使用两个蛋白组混合样本。 A,Ecoli蛋白三个不同比值下的实际比值,以箱型图展示,橙色虚线为理论比值; B,4个不同比例下肽段丰度CV的小提琴图。 (点击查看大图)同时,使用Velocity LFQ DIA工作流程可获得约5个数量级的人类蛋白动态范围(图4A),有助于低丰度蛋白的发现。 在高含量的hela肽段背景下,使用该工作流程可发现很多细菌体内的重要蛋白,包括与转录翻译相关,以及人类干扰素诱导相关的ecoli蛋白。 另外,选取了Ecoli中十个丰度最低的蛋白,发现它们在不同样品间的实际比值依然十分接近理论比值(图4B),说明该工作流程即使在低丰度蛋白情况下仍可获得高定量准确性。图4. A,两个蛋白组混合样本的蛋白丰度分布; B,Ecoli中十个丰度最低蛋白的实际比值与理论比值偏差 (点击查看大图)在三个蛋白组混合样本中,Velocity LFQ DIA工作流程同样展示了出色的定量性能。 实际比值与理论比值之前偏差02深度蛋白组覆盖使用Spectronaut16的directDIA方法分析两个蛋白组样品,在不损失定量性能的同时,可获得深度蛋白组覆盖。 然后使用第三方软件DIA-NN [2] 分析相同的数据集,可获得与sp16类似的结果。 当使用Spectronaut17软件时,改善的directDIA+方法可提高30%的母离子鉴定,及10%的蛋白鉴定(图6),30min梯度内,不使用谱图库可获得接近7000个蛋白鉴定。 这表明Velocity LFQ DIA工作流程不仅可获得出色的定量性能,也可实现深度蛋白组覆盖,此外也说明了不使用谱图库可作为一种有效的DIA数据分析方法。 如果想进一步提高蛋白组覆盖深度,也可通过建立合适谱图库的方法实现。图6. 使用library free方法分析两个蛋白组样品可实现深度蛋白组覆盖。 柱状图比较了三个不同的软件(或版本)所得的蛋白和母离子数目,FDR03高通量流程在上述所展示的Velocity LFQ DIA工作流程中,有效梯度为30min,实际时长为每针39min,可提供每天分析 36个样品的通量。 另外,在一些大队列研究中,研究人员需要更高的分析通量。 在Velocity LFQ DIA工作流程中使用了Vanquish Neo液相,其使用灵活,且经过优化样品吸取、上样、色谱柱清洗和平衡等流程,可有效提高质谱利用率 [3] ,可方便研究人员根据项目需求,进一步提高样品通量。04工作流程稳健性为了验证Velocity LFQ DIA工作流程的稳健性,从一个持续两个月时间(使用同一根色谱柱)的项目中选取其中的一部分数据作为展示。 采用 200 ng Hela肽段,DDA实验作为系统性能的 QC,在两个月内间歇运行,梯度为67min,结果如图7所示。 由结果可知,肽段和蛋白的鉴定数字在整个500小时的项目中(总上样量约为130 µ g)保持一致(鉴定数字变化在5%以内)。 这说明了色谱柱,色谱分离以及质谱的稳健性,这对大队列研究十分重要,是获得良好数据的基础。图7. 两个月的使用时间内,肽段和蛋白鉴定的重现性。 在整个实验周期中,间歇运行DDA QC实验,数据分析使用CHIMERYS算法。 (点击查看大图)小结Velocity LFQ DIA工作流程结合了 Vanquish Neo 系统,µ PAC Neo色谱柱以及 Orbitrap 超高分辨质谱仪,是高通量非标蛋白组DIA鉴定和定量的一种理想工作流程。采用30min梯度的OE240方法展示了该工作流程的主要性能特点: 出色的定量深性能、蛋白组深度覆盖和分析高通量。Velocity LFQ DIA工作流程适用于需要高通量、稳健性、高准确性精密度定量性能和深度蛋白组覆盖的定量蛋白组学研究。
  • 融智生物:蛋白定量检测有望成为临床质谱的新突破点
    临床质谱成为精准医疗新方向临床检验需求的提升不断推动着检验技术的发展。生化、免疫等传统检验技术虽然具有自动化程度高、检测速度快的优势,但是已经不能满足临床对于检验方法灵敏度、特异性、多指标联检等的需求。近年来,临床质谱逐渐进入临床,由于其本身具有高灵敏度、高特异性、多指标联检等的优势,可以提高现有检验项目的精准度,也可以作为生化、免疫技术的有力补充,更好地指导临床诊断,有望成为精准医疗的新方向。所谓临床质谱,是指针对临床上特定分子的检测需求,结合了质谱仪器、试剂、耗材及样本前处理的一整套解决方案的统称。临床质谱技术目前在新生儿遗传代谢病筛查、维生素检测、药物浓度监测、激素检测、微生物鉴定、微量元素检测等多个临床场景应用广泛,主要集中在临床小分子代谢物的定量检测以及蛋白、核酸等大分子的定性检测方面,鲜见对于蛋白标志物的定量检测。MALDI-TOF质谱:临床大分子检测利器临床小分子代谢物的检测主要采用的是三重四极杆串联质谱技术(LC-MS/MS),这也是一段时间内临床质谱的主流技术。随着生命科学的进展,以及质谱技术的发展,能用于蛋白质、多肽、核酸等生物大分子检测的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术越来越受到人们的关注。MALDI-TOF MS的工作原理是用一定强度的激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量,与样品之间发生电荷转移使得样品分子电离。离子在高压电场作用下加速进入飞行管中,小离子飞得快,先到达探测器,大离子飞得慢,后到达探测器,从而得出检测结果。图 MALDI-TOF MS工作原理示意图由于其“软电离”的工作原理,MALDI-TOF MS非常适用于蛋白质、多肽、核酸等生物大分子的检测。临床质谱新高地——蛋白定量质谱目前常用的临床蛋白标志物的检测主要采用化学发光、免疫等方法,这些方法普遍存在依赖于抗体、抗干扰能力差、检测通量低、成本高等问题;串联质谱应用于蛋白质的检测虽然具有灵敏度、准确度、特异性高的优势,但是由于临床样本基质复杂,样本前处理繁琐,较难实现自动化,其对蛋白标志物的检测仍然停留在大规模蛋白标志物的筛选即科研层面,真正能用到一线临床蛋白标志物检验的质谱尚未出现。也就是说,临床质谱的蛋白定量检测目前仍然是一块空白的区域。MALDI-TOF MS在众多质谱中原理较简单、操作简便、对样本要求较低,是最容易实现自动化的一类临床质谱类型,这对于临床质谱的蛋白定量检测而言是一项巨大的优势。然而,上一代的MALDI-TOF MS由于重现性较差(SD>30%),不能满足临床定量的要求,所以其应用集中在定性检测方面,临床上我们所熟知的微生物质谱、以及近两年热门的核酸质谱都是MALDI-TOF MS在临床上的定性应用场景。随着技术的更新迭代,如今MALDI-TOF MS也能实现临床定量检测应用了。融智生物自主研发的新一代的MALDI-TOF MS平台——QuanTOF新一代宽谱定量飞行时间质谱,通过速度和空间同步聚焦、靶板和离子探测器同时接地、极高频率数据采集等专利技术的改进,首次实现在宽质量范围内(10-1,000,000Da)具有高的检测灵敏度和分辨率,且仪器的重现性达到SD<5%,完全能够满足临床定量的性能要求。图 QuanPRO蛋白定量质谱解决方案依托于高性能的QuanTOF质谱平台,融智生物正在朝蛋白定量检测方向积极布局,已经推出了包含试剂盒、全自动前处理仪器、质谱仪、数据处理软件在内的QuanPRO蛋白定量质谱全流程解决方案,可以一站式解决临床蛋白定量检测的面临的挑战,为临床疾病蛋白标志物的筛查提供更加快速、准确、经济的新方法。未来,临床蛋白标志物的快速筛查将是QuanTOF除微生物鉴定、核酸检测以外的一个重要的应用领域。
  • Invitrogen发布Qubit Flex八通道核酸/蛋白定量荧光计新品
    Qubit Flex八通道核酸/蛋白定量荧光计 产品描述Qubit Flex荧光计可同时准确测量多达 8 个样品,为DNA、RNA和蛋白质精准定量提供更灵活的通量选择。与单样品微量体积荧光计相比,Qubit Flex荧光计可对多样品同时进行检测,大大节约时间。Qubit Flex荧光计继承了Qubit 4荧光计的卓越准确性和精准度,同样采用荧光染料法,可特异性区分定量检测dsDNA、ssDNA、RNA,适合样品珍贵、对准确性要求高的应用领域,如NGS, qPCR, RT-PCR, 基因芯片Microarrays, Northern blot, Southern blot, Sanger sequencing, 转录, 转染, 克隆等。 特点与优点准确且可靠:荧光染料法特可特异性精准定量dsDNA、ssDNA、RNA、蛋白质,具有更出色的可重复性和低误差率灵敏且特异:比紫外吸光法更灵敏,可区分游离核苷酸或盐离子等杂质,样品仅需低至1μl更节约珍贵样品高效且便捷:3秒即可完成检测,可同时测多达8孔样品,避免单次重复操作,大触摸屏直观易用,大大节约时间50%专门内置四款计算器,帮助简化实验,提高效率:试剂计算器:可帮助算出需要制备多少量的工作溶液以用于所检测的样品量检测范围计算器:基于样品体积及检测类型,呈现最准确的核心浓度范围和可扩展的高低范围摩尔浓度计算器:可根据核酸长度和测得的浓度,快速计算样品的摩尔浓度归一化计算器:可用于测序文库制备中标准均一计算,轻松获得所需的质量、浓度或摩尔质量数据处理更轻松:本地数据可储存10,000样本,轻松通过Wi-Fi, USB, 网线连接导出数据可提供Digital SmartStart™ 3D在线演示教程,可视化互动展示如何安装、操作和维护仪器,随时随地可学Qubit 荧光计及套装订购信息:产品包装货号Qubit Flex荧光计1台Q33327Qubit Flex NGS入门套装1套Q45893Qubit Flex定量入门套装1 套Q45894Qubit Flex 八联管条125 tube stripsQ33252Qubit Flex 储液槽100 reservoirsQ33253Qubit Flex 系统验证分析试剂盒50 assaysQ33254DNA Assay KitsQubit 1X dsDNA HS Assay Kit100 assaysQ33230500 assaysQ33231Qubit dsDNA HS Assay Kit100 assaysQ32851500 assaysQ32854Qubit dsDNA BR Assay Kit100 assaysQ32850500 assaysQ32853Qubit ssDNA Assay Kit100 assaysQ10212RNA Assay KitsQubit RNA IQ Assay Kit75 assaysQ33221275 assaysQ33222Qubit RNA HS Assay Kit100 assaysQ32852500 assaysQ32855Qubit RNA BR Assay Kit100 assaysQ10210500 assaysQ10211Qubit microRNA Assay Kit100 assaysQ32880500 assaysQ32881Protein Assay KitsQubit Protein Assay Kits100 assaysQ33211500 assaysQ33212官方渠道购买 — 品质保证,售后无忧 从现在起,通过赛默飞世尔科技官方渠道购买全新Qubit Flex 荧光计,即享三年免费退换。 如果您在使用过程中需要技术支持,或者您的仪器出现问题或故障,请致电800-820-8982/400-820-8982 或发送电子邮件至LifeScience-CNTS@thermofisher.com 获取帮助。了解更多,请访问 www.thermofisher.com/qubitflex创新点:与备受欢迎Qubit 4荧光计相比,Qubit Flex八通道荧光计可以: 1. 更高通量:同时准确测量多达 8 个样品的 DNA、RNA 或蛋白质浓度; 2. 数据处理更轻松:可储存多达10,000个样品数据,增加了网线连接导出数据; 3. 更高效便捷:四款内置计算器,简化实验繁琐过程; Qubit Flex八通道核酸/蛋白定量荧光计
  • 超微量分光光度计|蛋白以及细菌生长浓度的定量检测【恒美】
    点击此处可了解更多详情→超微量分光光度计 超微量分光光度计是一种高精度的分析仪器,主要用于核酸、蛋白定量以及细菌生长浓度的定量检测。它利用分光光度的原理,可以将样品中的物质进行分离和检测,以获得其具体的浓度和组成等信息。 超微量分光光度计具有很多优点,比如说它的测量精度非常高,可以检测出样品的微小差异;它的灵敏度也很高,可以检测出样品中微量的物质;此外,它还可以同时对多个样品进行检测,大大提高了工作效率。这些优点使超微量分光光度计成为生物医学、化学分析等领域中必不可少的实验仪器之一。 在使用超微量分光光度计的过程中,需要注意以下几点。 首先,要保证仪器的稳定性,避免在测量过程中出现误差;其次,要注意样品的准备,要将样品进行精细的稀释和纯化,以保证测量结果的可靠性;最后,要根据不同的样品选择合适的波长和测试条件,以便得到更准确的结果。 总的来说,超微量分光光度计是一种功能强大的实验仪器,它的应用范围广泛,可以用于核酸、蛋白定量以及细菌生长浓度的定量检测。它不仅可以提高实验的精度和效率,还可以为生物医学、化学分析等领域的研究提供有力的支持。
  • 岛津参与医药标准制定 | LC-MS/MS法定量检测胶原蛋白含量
    背景介绍2022年8月1日,由国家药品监督管理局发布YY/T 1805.3-2022《组织工程医疗器械产品 胶原蛋白 第3部分:基于特征多肽测定的胶原蛋白含量检测 液相色谱-质谱法》医疗器械行业标准正式实施。该标准适用于组织提取纯化的胶原蛋白及其胶原类产品中不同类型胶原蛋白特征多肽含量的测定,并规定了液相色谱-质谱法测定不同类型胶原蛋白特征多肽含量的方法。该标准由全国外科植入物和矫形器械标准化技术委员会组织工程医疗器械产品分技术委员会(SAC/TC110/SC3)归口,岛津中国创新中心使用LCMS-8050参与了新标准的研制和验证工作,助您一起轻松应对新标准的应用。胶原蛋白检测新标准来袭,您准备好了么?标准解读胶原蛋白具有良好的生物降解性、生物相容性和弱抗原性,成为应用最为广泛的生物材料之一。胶原蛋白产品属于大分子,可用液相色谱法、MALDI质谱法,凝胶电泳法对其整体性能进行表征。但不同动物来源及不同类型的胶原蛋白的结构、分子量、等电点等理化性质较为相似,上述传统方法对胶原内部精细结构的变化识别能力有限,无法实现胶原类别的精准鉴别。本标准基于液相色谱质谱特征多肽法可实现不同动物来源不同类型的胶原蛋白的定性和定量检测,为胶原蛋白产品的定性及纯度判别提供了依据。胶原蛋白是大分子纤维状蛋白,具有三螺旋结构,本标准采用热变性处理使其三螺旋结构解旋并溶解,胰蛋白酶酶解后对不同类型胶原的特征肽进行检测。为了减少质谱分析时基质的干扰并提高方法的准确性,本标准采用内标法进行定量。本标准的颁布对不同类型胶原产品进行精准鉴别、规范动物源胶原的监管、提高胶原产品的理化表征能力和生物安全性等方面具有深远的意义。图1.《组织工程医疗器械产品 胶原蛋白第3部分:基于特征多肽测定的胶原蛋白含量检测 液相色谱-质谱法》医药行业标准发布稿特征多肽法的原理:筛选已知序列目标蛋白中特有且稳定存在的肽段,利用液质联用技术检测该肽段含量从而推算目标蛋白的含量。该方法通常使用胰蛋白酶特异性地酶解精氨酸和赖氨酸的C末端,生成具有碱性氨基酸末端的多肽,因此具有较强的方法专属性和检测灵敏度。目前特征多肽法已成功应用于胶类中药的真伪鉴别,食品中过敏原的检测以及乳品中A2 β-酪蛋白的含量测定等工作中。岛津解决方案岛津三重四极杆液相色谱质谱联用仪LCMS-8050采用全新设计的加热ESI源和新型碰撞池UFsweeperⅢ,大幅提高了灵敏度。在确保数据准确度和精度的同时,LCMS-8050可实现555 ch/sec的高速MRM采集和5 msec的正负极性切换。即便对于未完全分离的色谱峰,LCMS-8050也可实现定量离子、参比离子和内标离子充分的采集。Skyline软件是由西雅图华盛顿大学的MacCoss团队开发的一款蛋白质靶向分析的专业软件,实现了从蛋白质到多肽再到MRM离子对检测列表的转化。其独特的保留时间预测功能以及碰撞能量预测功能使得多肽分析方法的开发变得更加便捷。岛津LabSolutions工作站与Skyline软件无缝衔接,是靶向蛋白质定量方法开发的得力工具。分析仪器表1. 猪I型胶原蛋白特征多肽MRM检测参数*定量离子对猪I型胶原蛋白特征多肽对照品的典型色谱图见图2,二级质谱图见图3。图2. 猪I型胶原蛋白特征多肽对照品典型色谱图图3. 猪I型胶原蛋白特征多肽对照品典型二级质谱图结 论胶原基生物材料中胶原蛋白的含量检测是胶原蛋白制品品质评价,工艺稳定性评价的重要要素。猪I型胶原海绵是一种重要的医用胶原制品,其主要成分猪I型胶原蛋白分子量逾40万,液质联用仪无法直接检测。本方法采用碳酸氢铵水溶液稀释并使用胰蛋白酶酶解。通过检测猪I型胶原特征肽的含量,折算出胶原海绵中猪I型胶原蛋白的含量。本法具有前处理操作简便,方法特异性好,精密度高等优点,方法稳定可靠,可在胶原医疗器械产品检测领域推广。-参考文献 -《YYT 1805.3-2022 组织工程医疗器械产品胶原蛋白第3部分:基于特征多肽测定的胶原蛋白含量检测——液相色谱-质谱法》
  • 拒绝千篇一律,让核酸和蛋白定量检测更准确有效!-Molecular Devices
    拒绝千篇一律,让核酸和蛋白定量检测更准确有效!核酸及蛋白的定量是遗传学和分子生物学中许多复杂实验上游的基本检测方法,如DNA测序、PCR/qPCR、克隆/转染等。如何能够准确和灵敏对核酸及蛋白质进行定量检测是许多实验成败与否的重要环节。各种方法被开发出来用于定量这些生物学成分,然而最常见的检测手段仍然是紫外分光光度法。即DNA、RNA在微孔板读板机测定其溶液在260nm波长处的光吸收值。原理是核酸的嘌呤、嘧啶碱基具有共轭双健在260nm强烈光吸收值特点;而蛋白质溶液则是在280nm波长处的光吸收值,原理是利用色氨酸的芳香性质在280nm 处强烈光吸收值。与核酸定量检测不同的是计算蛋白浓度会受到多种多样的的氨基酸序列中的色氨酸残基的影响。当然通常情况下也会在其他波长处进行辅助测量,以提供样品纯度的信息和检测其他污染物。如进行核酸检测时其260nm/280nm光吸收值作为样品纯度重要考虑因素,比值在1.8-2.0之间说明杂蛋白等物质含量较低。(了解更多请咨询美谷分子仪器)但传统光吸收检测法,不足之处其最低检测线最低仅250 ng/mL,低于这个浓度的DNA溶液使用微孔板读板机的荧光法可进行更准确定量检测,如荧光法对dsDNA检测下限可达到0.5pg/ul,而蛋白检测下限可达10ng/ml,这里介绍Molecular Device公司各种微孔板读板机可为核酸及蛋白质检测提供了多种可靠方案。结合SoftMax Pro 软件强大的数据处理分析功能,可一键生成定量结果,并可根据用户需求定制格式并导出数据。
  • 融智生物推出MALDI-TOF MS法糖化血红蛋白定量分析解决方案
    p   近日,融智生物宣布正式推出MALDI-TOF MS法定量分析糖化/非糖化血红蛋白解决方案。 /p p   空腹血糖和餐后血糖是反映某一具体时间的血糖水平,容易受到进食和糖代谢等相关因素的影响。而由于人体红细胞的寿命一般在120天,在红细胞死亡前,血液中HBA1c含量也会保持相对不变,因此HBA1c水平反映的是在检测前120天内的平均血糖水平。所以说空腹和餐后两小时血糖只是诊断糖尿病的标准,而衡量糖尿病控制水平的标准是糖化血红蛋白。目前欧美等发达国家以糖化血红蛋白率诊断糖尿病。糖化/非糖化血红蛋白定量分析已在欧美发达国家取代传统的血糖测试。在中国,越来越多的诊断也开始使用糖化/非糖化血红蛋白定量分析。 /p p   传统上,糖化/非糖化血红蛋白分析的主流技术是免疫法和高效液相色谱法。相较而言,高效液相色谱法精度更高,方法亦相对简单,目前,高效液相色谱法正快速取代免疫法。 /p p   与目前的传统技术相比,融智生物基于新一代全谱可定量飞行时间质谱平台QuanTOF推出的质谱法,具有更高灵敏度、更高效率、更低成本、更简单操作以及更高通量等诸多优势。 strong /strong /p p style=" text-align: center " img width=" 500" height=" 333" title=" quantof.jpg" style=" width: 500px height: 333px " src=" http://img1.17img.cn/17img/images/201803/insimg/1f511bc3-2b2d-4bfd-a2b4-7cb02e7ed6ae.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 融智生物新一代全谱可定量飞行时间质谱平台QuanTOF /strong /p p   所需要的设备除了QuanTOF主机外,只需一台离心机,要求最简化,在试剂方面,也仅需要纯水和基质。 /p p   在定量精度方面,融智生物经多次验证结果显示,QuanTOF的定量重现性接近甚至高于高效液相色谱,完全可做到对传统方法的替代, span style=" color: rgb(31, 73, 125) " strong 该方法尤其适合于样本量较大、对测试成本敏感的大型用户。 /strong /span /p p style=" text-align: center " img width=" 600" height=" 532" title=" 1.jpg" style=" width: 600px height: 532px " src=" http://img1.17img.cn/17img/images/201803/insimg/72717b18-1acc-4633-bd62-6bc22b6c5887.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong QuanTOF方法与其他方法优劣比较 /strong /p p    strong i TIPS:对糖化/非糖化血红蛋白定量分析方法的推出,意味着MALDI-TOF MS具备对更多蛋白的定量分析可行性。 /i /strong /p p    span style=" color: rgb(31, 73, 125) " i span style=" font-family: 黑体, SimHei " 附:MALDI-TOF-MS检测糖化血红蛋白方法 /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   一、标准曲线制定 /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "    /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " 1、将6个不同水平的糖化血红蛋白标准品,用去离子水稀释200倍,形成稀释标准品待测液。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   2、将稀释标准品待测品与SA基质,按照1:8充分混合,形成待测样品溶液。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   3、将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   4、编辑程序进行质谱上机检测,根据所得实验建立标准曲线得到线性关系公式。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   二、样品检测 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   1. 血清的制备,将人全血用去离子水稀释200倍,形成稀释血样待测品。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   2. 将稀释血样待测品与SA基质,按照1:8充分混合,形成待测样品溶液。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   3. 将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   4. 编辑程序进行质谱上机检测。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   5. 根据质谱图得出,糖基化蛋白峰面积(A)/糖基化蛋白峰面积(A)+非糖基化蛋白峰面积(B)。 /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p p span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei "   6. 计算得出糖化血红蛋白的质谱值=A/A+B,计算得到糖化值。 /span /i /span span style=" color: rgb(0, 0, 0) " i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i i span style=" color: rgb(31, 73, 125) font-family: 黑体, SimHei " /span /i /span /p
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 我国开发定量蛋白质组学数据解析软件
    中科院计算所究团队与董梦秋实验室合作,成功开发了定量蛋白质组学数据解析软件,用计算方法排除干扰信号的影响、提高肽段和蛋白质的定量准确度并对每个定量值进行准确性评价。   基于质谱的定量蛋白质组学是现代生物学技术的生长点之一,用于测量复杂生物体系中蛋白质及其翻译后修饰在不同条件下的丰度变化,是研究蛋白质功 能和药物作用机制的重要工具。已有的定量软件往往不能有效排除干扰信号,定量值的计算方法有待完善,而且缺乏准确性评价,致使输出结果&ldquo 鱼龙混杂&rdquo ,引起 的假阳和假阴两方面的困扰都比较严重。  为了更好地解决问题,开发者研究了几百个可疑定量值的原始质谱图和色谱图数据,找原因、攒经验,充分挖掘肽段的质谱、色谱信号特点以及从肽段定量到蛋白 质定量的方法,灵活应用各种组合和统计算法,建立了一整套非常细致的数据分析流程。为了验证软件的性能,董梦秋实验室的同学通过轻重SILAC或 14N/15N标记哺乳动物细胞或细菌,从10:1到1:10按不同比例混合得到14套标准样品,产生了14套测试数据集。 测试结果表明,定量结果的准确性明显超过定量蛋白质组学领域的两个主流软件Census和MaxQuant,主要表现在输出的非数比值数目(即 不能定量的部分)占总比值数目的0.01&ndash 0.5%,远低于Census的MaxQuant的对应比例2.5&ndash 10.7%和 1.8&ndash 2.7%;Census和MaxQuant输出了许多不准确结果,其定量值的标准差是软件的1.3&ndash 2倍;给出了肽段和蛋白质定量比值的置信区 间,而Census和MaxQuant没有准确性评价。目前,该研究工作得到了科技部、基金委、中科院和北京市政府的资助。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 重磅!史上首次定量检测完整的人类蛋白质组
    重磅!史上首次定量检测完整的人类蛋白质组在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 布鲁克推出多重蛋白MALDI成像和空间蛋白组学新产品
    摘要* 布鲁克使用 AmberGen 的 HiPLEX-IHC 肽编码抗体探针,结合全覆盖脂质组学、糖组学和代谢组学成像技术,为 timsTOF fleX 推出新型 MALDI HiPLEX-IHC 组织成像解决方案。* 新的 Canopy CellScape™ 单细胞、高度定量的空间蛋白质组学 ChipCytometry™ 平台具有全自动迭代染色功能,使用开源抗体对 TME 和转移研究的整个组织切片进行几乎无限的免疫肿瘤标记分析。* 对于癌细胞系和生物活检样本的蛋白质组学研究,在 timsTOF 4D 平台上采用 dia-PASEF® 可以鉴定高达 13,000 种蛋白质(控制1% FDR);采用库检索方式,在 35 分钟内可鉴定和定量 8000 多种蛋白质;使用新的 TIMScore 算法磷酸化肽段鉴定增加了 25% 以上。* 新型 timsTOF SCP 平台支持无偏单细胞蛋白质组学研究,是空间生物学癌症研究中 sc-RNA-seq 的重要补充。* 独特的高通量 timsTOF Pro 2 平台可以使液体活检生物标记物研究能够通过各种无偏的深层血浆蛋白质组学和 PTM 方法进行。2022年4月11日美国路易斯安那州新奥尔良——在2022年AACR年会上,布鲁克(纳斯达克股票代码:BRKR)推出并展示了针对空间多组学、单细胞蛋白质组学以及细胞系、组织和血浆蛋白质组学癌症的独特而新颖的研究。继最近对AmberGen公司的战略投资之后,布鲁克宣布建立合作伙伴关系,将Ambergen Miralys™ 肽标签抗体试剂盒应用于布鲁克timsTOF fleX新型MALDI HiPLEX-IHC工作流程,用于组织中的靶向蛋白质表达谱分析。通过将用于蛋白质识别的系列肽标签报告特征抗体探针与布鲁克灵活的MALDI成像工作流程相结合,研究人员可以在标准载玻片的组织切片中生成靶蛋白的高度多重图像。布鲁克timsTOF fleX平台将MALDI HiPLEX-IHC蛋白质图像与来自同一组织切片的小分子全谱成像(脂质、聚糖、代谢物、外源性物质)相结合,这是一种新颖独特的多组学分析能力,可用于新鲜冷冻或福尔马林固定石蜡包埋(FFPE)切片的癌细胞系、组织和肿瘤微环境(TME)成像研究。布鲁克生命科学质谱成像业务总监Michael L. Easterling博士评论说:“空间蛋白表达图谱可以阐明免疫肿瘤学以及TME和癌转移研究中的过程。基于AmberGen肽标签抗体组合的MALDI HiPLEX-IHC工作流程提供了靶向蛋白质定位,并增加了在同一组织切片上绘制重要脂质、聚糖和代谢物分子图像的能力。此外,布鲁克还展示了新的CellScape™ 高精度靶向空间蛋白质组学仪器,该仪器最近由Canopy生物科学部门推出。Canopy生物科学的CellScape是新一代的Chipcytometry™ 仪器,它能够以单细胞和亚细胞分辨率对多种样本类型中的蛋白质生物标记物进行高倍数空间成像和量化。CellScape进一步提高了空间分辨率,提供高达 8 倍的通量和无人值守自动化。CellScape在定量生物学方面是独特的,它具有 8 个量级的极高动态范围(HDR)成像,可以定量同一样本中的低表达和高表达蛋白质,解决了高复合物成像固有的一个关键挑战。在癌症生物学中的应用非常丰富,包括肿瘤微环境(TME)中各种肿瘤和免疫细胞类型的空间表型。Canopy还推出了用于芯片细胞仪平台的空间免疫分析试剂盒。空间免疫谱 试剂盒是一种用于FFPE组织的定量、多重检测,旨在为芯片细胞研究人员(例如免疫肿瘤学)提供即用型预验证抗体试剂。这些试剂盒使研究人员能够跳过检测开发,直接进行转化和临床研究检测。
  • 安捷伦科技公司与 SISCAPA Assay Technologies 联合提供完整的多重靶蛋白定量解决方案以增强客户工作流程
    安捷伦科技公司与 SISCAPA Assay Technologies 联合提供完整的多重靶蛋白定量解决方案以增强客户工作流程 2014 年 5 月 27 日,北京 — 安捷伦科技公司(纽约证交所:A)和 SISCAPA Assay Technologies (SAT) 今日宣布双方已签订了一份非专属性协议。协议签订后,SAT 将能够利用高度自动化的 SISCAPA 液质联用工作流程提供端到端的多重蛋白定量解决方案。本解决方案将 SAT 的靶蛋白定量试剂与安捷伦的 Bravo 自动化液体处理平台结合用于样品前处理,并利用液质联用仪 (LC/MS) 进行定量分析。本协议将扩展安捷伦与 SAT 建立的战略合作关系,进一步提高双方在增强客户工作流程方面的能力。 SAT 将为靶蛋白测定提供一体化的解决方案。目前针对 Bravo 平台开发的方案是仅添加胰蛋白酶酶解,然后进行抗多肽免疫富集,它由专用且直观的软件界面提供支持。该流程可实现每个工作日制备 400 个多重样品,并使用安捷伦三重四极杆质谱仪完成高灵敏性、高选择性的质量分析。 采用 SISCAPA 分析可减少配体结合分析以及抗蛋白免疫捕获质谱分析所存在的特异性低和蛋白质干扰等问题。首先利用胰蛋白酶对样品进行酶解,然后富集目标肽段,这意味通过 SISCAPA 分析能够对靶蛋白的数量进行高度多重且高通量地测定,并且不存在此类的干扰问题。这大大减少了临床研究中关于筛选候选蛋白质生物标记物的瓶颈问题。 包括自动化和液质联用业务部在内的安捷伦生命科学解决方案部的副总裁兼总经理 Yvonne Linney 说道:“安捷伦是高精密度样品前处理系统和灵敏耐用型液质联用系统等工作流程解决方案的领导者。通过本次合作,我们将向客户提供真正有效的工作流程进行靶蛋白的分析,其通量和精密度也是前所未有的。SISCAPA Assay Technologies 是靶蛋白定量分析领域的领导者,安捷伦很高兴能与之合作,为研究员们提供一体化的解决方案,不仅用户界面更简单,定量的精密度和灵敏度以及工作效率也更高。” SAT 将提供包含其 SISCAPA 分析试剂在内的完整系统,同时还将结合 Bravo 平台和软件以及各种安捷伦液相色谱和液质联用系统,包括但不仅限于安捷伦备受欢迎的三重四极杆液质联用系统和 RapidFire 高通量液质联用系统。 SAT 销售与营销部副总裁 Selena Larkin 说道:“这项协议使我们的客户可以将高选择性的抗多肽免疫捕获与 MRM 质谱相结合用于蛋白质的定量测定,实现高灵敏度和最低的用户干预。作为这个完整解决方案的一部分,SAT 将提供实施工作流程所需的全部组件以及分析执行的技术支持。SISCAPA Assay Technologies 现已推出这款无缝的端到端解决方案。” 关于 SISCAPA Assay Technologies, Inc. SISCAPA Assay Technologies Inc. (SAT) 利用 SISCAPA?(稳定同位素标准和抗肽抗体提取)技术提供各种工具用于开发高灵敏度、高通量的特异性蛋白(包括临床生物标记物)分析方法。SISCAPA 是 SISCAPA Assay Technologies Inc. 在美国和/或其他国家的注册商标。更多关于 SISCAPA technology、试剂和注册的信息,请登录www.SISCAPA.com。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如需了解安捷伦科技的信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 布鲁克与Evosep共推临床蛋白质组学解决方案,5分钟可定量1200个蛋白
    p   在上周召开的2018美国HUPO大会上,布鲁克与Evosep联合推出用于临床蛋白质组学研究的全新整体解决方案,该方案由Evosep公司的Evosep One纳流液相色谱系统和布鲁克公司的timsTOF Pro超高分辨四级杆-飞行时间质谱系统组成。 /p p   timsTOF Pro采用了专有捕获离子迁移谱(Trapped Ion Mobility Separation,TIMS)技术、平行堆积和连续碎裂(PASEF)技术,允许以高灵敏度以及接近100%的占空比,同时还可以保持前体和产物离子的超高质量分辨率,具有更高的速度和灵敏度,满足临床蛋白质徐学研究中大批量样本检测的工作需求,引领应用纳流LC-MS/MS进行临床研究的潮流。 /p p style=" text-align: center " img width=" 300" height=" 297" title=" 1.jpg" style=" width: 300px height: 297px " src=" http://img1.17img.cn/17img/images/201803/insimg/08c197b9-042d-45c9-9234-235a1ab83ddd.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong timsTOF Pro /strong /p p   临床蛋白质组学研亟需更高通量的检测方法,LC-MS/MS是最主要的技术手段。目前的不足之处在于,前端色谱的分离速度难以匹配后端质谱超高的检测速度,导致质谱无法发挥出自身最高性能,也就无法进一步提升通量。Evosep One是全新的用于临床蛋白质组学研究中大批量样本检测的纳流液相色谱系统,每天可处理200个以上样本,使质谱利用率达到90%以上。在5分钟的梯度中,色谱峰宽度可达2秒。 /p p style=" text-align: center " img width=" 300" height=" 263" title=" one.jpg" style=" width: 300px height: 263px " src=" http://img1.17img.cn/17img/images/201803/insimg/85e41e27-01b0-4a83-8144-7051852bea22.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Evosep & nbsp One /strong /p p   这套全新的解决方案已拥有高超的灵敏度(50ng HeLa)和5分钟检测1200个蛋白的通量。从而实现每天200个样本的生物标志物的研究和验证,这是临床蛋白质组学研究的一个突破。 /p p   在双方协议合作下,布鲁克和Evosep将共同努力,进一步整合两个仪器,以实现通过布鲁克的Hystar LC-MS软件控制整个组合,并进一步提高该组合的表现。 /p p   Evosep公司应用主管Nicolai Bache评论道:“我们对双方的合作和集成感到应分, timstof Pro出色的扫描速度和灵敏度与Evosep One强大的分离能力完美适配,二者相得益彰。” /p p   布鲁克公司蛋白质组副总裁Gary Kruppa阐述:“对于需要高通量的用户来说,Evosep One是timsTOF Pro完美的前端方案,它发挥出了PASEF技术的优势,将世界级的生物标志物发现和验证能力送到临床研究人员手中。” /p p style=" text-indent: 2em " strong 关于布鲁克公司 /strong /p p style=" text-indent: 2em " 55多年来,布鲁克已经使科学家们能够突破发现,开发新的应用,提高人类生活质量。 Bruker的高性能科学仪器和高价值分析和诊断解决方案使科学家能够在分子,细胞和微观层面探索生命和材料。 /p p style=" text-indent: 2em " 与我们的客户密切合作,Bruker在生命科学分子研究,应用和制药应用以及显微镜,纳米分析和工业应用方面实现了创新,生产力和客户成功。近年来,Bruker也成为细胞生物学,临床前成像,临床表现学和蛋白质组学研究,临床微生物学和分子病理学研究的高性能系统的提供者。 /p
  • GE给您完全的蛋白印迹方案
    GEWestern Blot实验相关产品秋季开学特惠 活动日期: 2012年即日起至10月31日 GE从蛋白制备、电泳、转印及杂交到显色、成像,为您带来完全的蛋白印迹方案。 详情请见www.reagent.com.cn 细胞组织裂解 -- 样本研磨试剂盒 蛋白抽提 -- 蛋白抽提缓冲液试剂 蛋白稳定化 -- 混合蛋白酶抑制剂及核酶 混合物 蛋白分级化 -- 蛋白分级试剂盒 蛋白定量 -- 蛋白定量试剂盒 垂直电泳 -- SE250/SE260 电泳试剂 蛋白Marker -- 彩虹分子量标准 蛋白Marker -- Amersham ECL DualVue 免疫 印迹标准
  • “鸟枪法(shotgun)”定量蛋白质组学技术介绍
    p   简介: /p p   1999年,Yates研究组提出“鸟枪法”(shotgun),其基本技术路线是针对液体或SDS-PAGE条带的复杂混合物用酶(Trypsin)酶解成肽段混合物,然后对肽混合物进行多维毛细管液相色谱分离和串联质谱分析以及数据库检索,从而确定蛋白质的种类,可同时鉴定成百上千种蛋白质。他们把这种思路称为多维蛋白质鉴定技术,即Mud PIT(multidi-mensional protein identification technology)。与传统的双向电泳技术相比具有灵敏度更高,动态检测范围更广等特点。 /p p   鸟枪法(shotgun)可以分析全细胞裂解样品和组织抽提物,也可以分析亚细胞分级组分、分离的细胞器等其他亚蛋白质组。如果样品已经过稳定同位素标记。根据不同标记的信号强度比例就可以精确确定化学上具有均一性的蛋白在不同样品中的相对丰度,这种多重分析可以利用在谱图上产生前后次序的质量标记得以完成。质谱分析以前在样品中加入同位素标记的某种质量校准肽,通过对此肽的相对定量就可以获得绝对定量的信息。实现目的肽段的绝对定量,而这一性质可以被充分应用以提供临床诊断的标准值或阈值。 /p p   差异蛋白质的定量研究是基于肽段水平而非完整的蛋白质,成为该技术最大的技术特色,该技术实现了样品分离与鉴定直接联合,完全自动化操作,可以用于各种蛋白质混合物的蛋白质组学分析,如血清、组织、各种体液以及尿液等。 /p p   技术路线: /p p   鸟枪法为基因组测序,是先将基因组打断,分段测序, 然后利用计算机重组在一起。从而确定一段的基因序列。 /p p   鸟枪法在蛋白质组研究中的应用方式与此相类似,首先将蛋白质混合物酶解成肽段的混合物, 利用质谱进行分析确定该肽段的氨基酸序列,然后计算机根据设定好的运算法则根据肽段的信息在理论蛋白质数据库中检索出这些蛋白质,从而确定该混合物中的蛋白质成分。 /p p style=" text-align: center " img title=" 1.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/130ae366-baaa-4006-9cf4-2c70b8441925.jpg" / /p p style=" text-align: center " img title=" 2.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/fe437d70-d969-4f29-a6c9-4e8e1d3e7b65.jpg" / /p p   分析目标: /p p   寻找差异表达蛋白,并分析蛋白功能。 /p p   Gene ontology分析 /p p   GO数据库包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。 /p p   对于每一种表达趋势的基因,选择性的进gene ontology功能分析。对差异表达的所有基因向gene ontology数据库的各节点映射。计算每个节点的基因数目,并结合整个数据库的基因作为背景分部,对于每个节点,得到一个2x2的表格,使用超几何分布检验基因在每个GO节点的富集或贫乏程度。 /p p   Pathway enrichment分析 /p p   找出差异表达基因在生物学通路中的位置,以阐明其生物学功能以及不同基因之间的相互作用。 /p p   1)把差异表达基因定位在生物学通路(Pathway)上。 /p p   2)统计分析,确定差异基因可否可以代表某些生物学通路 /p p   优点:信息量大,样本量低,检测低丰度蛋白更多,相对定量 /p p   应用领域: /p p   1)差异蛋白组分析(疾病早期诊断、疗效监测) /p p   2)细胞差异性分析(如正义转染vs空载、目标基因RNAi vs空载) /p p   3)疾病标志检测(肿瘤标志物,如无血清培养后的分泌蛋白质组) /p p   4)治疗检测(术前vs术后) /p p   5)药物开发(给药vs对照) /p p   6)癌症研究(原位肿瘤细胞系vs转移) /p p   Shotgun法可以检测动态范围10000:1内的低丰度肽段,是目前蛋白质组学研究最主要的技术路线。 现已成功应用于中大规模蛋白质的分离鉴定,不再依赖于双向凝胶电泳。 /p p   因大部分蛋白质在酶解后总有部分肽段是可用质谱鉴定的,因此,多维蛋白质鉴定技术弥补了碱性、疏水蛋白质、相对分子量极大和极小蛋白质在分离和鉴定方法上的不足。 /p p   该方法可达到对低丰度蛋白、极端等电点、分子量、完整膜蛋白具有与其他蛋白有相同的灵敏度。 如鸟枪法可鉴定出10个跨膜域以上的膜蛋白,而2DE仅能检测出2~4个跨膜域的。 /p p   Shotgun法可实现自动化、快速、高通量的蛋白组学分析。 /p p   但Shotgun法数据冗余复杂,需要专业人员进行分析。 /p p   在医学领域,Shotgun技术可用于以下方面: /p p   除血清血浆外,还可用于研究体液及组织的蛋白组 /p p   分泌蛋白组 /p p   大脑皮层神经元细胞蛋白组 /p p   新生物标记物的发现 /p p   疫苗研究,分析感染源的表面蛋白质,从而发现潜在的抗原。如,在分析人类疟疾致病源plasmodium falciparum时,发现了大量潜在的抗原, 目前这些抗原的特性巳经被评估出来。 /p p   发现新的药靶。如,研究发现甲硫氨酸氨基肤酶是肿瘤生长抑制因子bengmide的分子作用靶点。 /p p   部分参考文献: /p p   1)A proteomics approach to discovering natural products and their biosynthetic pathways, Stefanie B Bumpus, Bradley S Evans, Paul M Thomas, Ioanna Ntai1, Neil L Kelleher, Nature Biotechnology,27,951-956,2009 /p p   2)High-throughput generation of selected reaction-monitoring assays for proteins and proteomes, Paola Picotti, Oliver Rinner, Robert Stallmach, Franziska Dautel, Terry Farrah, Bruno Domon, Holger Wenschuh, Ruedi Aebersold, Nature Methods 7, 43-46 (6 December 2009) /p p   3)Large-scale analysis of the yeast proteome by means of multidimensional protein identification technology, M.P. Washburn, D. Wolters and J. R. YatesNature Biotechnology, 19, 242-247, 2001 /p p   4)Comparison of alternativeanalyticaltechniques for the characterisationof thehuman serumproteomein HUPO Plasma ProteomeProject, XiaohaiLi, Xiaohong Qian etc. Proteomics, 5, 3423–3441,2005 /p p   5)An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics, Dirk A. Wolters, Michael P. Washburn, and John R. Yates, Anal. Chem., 73 (23), 5683-5690, 2001 /p p & nbsp /p
  • 初代timsTOF Pro单个细胞蛋白质定量突破3000大关
    近期,浙江大学化学系方群教授团队在国际权威期刊《Nature Communications》上发表了题为“Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell”的研究成果,创新性地提出了PiSPA(Pick-up Single-cell Proteomic Analysis)技术用于单细胞蛋白组分析。该工作流程利用纳升级微流控液滴操控机器人,可以实现单细胞精准捕获、样本前处理以及自动进样,利用布鲁克tims TOF Pro质谱仪在单个哺乳动物细胞内实现了超过3000种蛋白的定量深度。作者通过此项技术对三种不同的哺乳动物细胞(HeLa、A549和U2OS细胞)进行单细胞蛋白质组学研究,以及研究了HeLa细胞在迁移过程中的细胞异质性,均展现了超高的定量分析深度。PiSPA平台的单细胞捕获过程是基于SODA(Sequential Operation Droplet Array)技术开发的微流控液体处理系统,可在“点取式”操作模式下实现自动化纳升级单细胞分选,并且能够基于细胞的明场形态特征或是标记的荧光信号灵活地选择单细胞,具有很高的捕获成功率和指向性。此外,研究人员将商品化的锥形底部内插管改造成阵列化的纳升级微反应器,兼容后续的液相色谱自动进样,可大大提高整个工作流程的可操作性、可靠性和成功率。PiSPA平台可自动完成单细胞捕获、样品前处理、色谱分离、质谱检测等一系列操作,最大程度降低样品的损失。研究人员利用PiSPA工作流程,对多种哺乳动物单细胞实现了深度覆盖的定量分析。采用优化的胰蛋白酶/蛋白比例和色谱梯度,分别通过DDA和DIA扫描模式对A549、HeLa和U2OS三种细胞进行单细胞蛋白组分析,所有质谱数据均使用布鲁克4D蛋白质组学平台——timsTOF Pro进行采集。布鲁克独特的捕集离子淌度技术(TIMS)带了额外一维离子淌度信息,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性,最新一代平行累积连续碎裂技术(PASEF® )可以实现极高的二级扫描速度和灵敏度,只需要很少量样本就可以达到组学鉴定新深度。在本研究中,timsTOF Pro更是展示了探索单细胞蛋白质组学的能力,在DIA扫描模式下,利用DIA-NN(MBR算法)进行library-free数据检索,可在A549、HeLa和U2OS三种细胞的单细胞样本中,分别平均定量到3008、2926和2259种蛋白质,展现了PiSPA平台在单细胞蛋白组定量分析中的覆盖深度;此外,有2869、2772和1889种蛋白质在至少80%的A549、HeLa和U2OS单细胞样本中被重复定量到,说明了PiSPA平台有很高的重复性和可靠性。为了证明PiSPA平台的实际应用价值,研究人员分析了迁移过程中HeLa单细胞的蛋白质组表达情况。通过细胞划痕实验,选取有明显迁移(n=46)和未发生迁移(n=43)的HeLa单细胞进行定量分析。采用DIA扫描模式,分别平均鉴定到了2544和2893种蛋白质,后续生物信息学分析发现Cdc42、Rac1和RhoA等蛋白在发生迁移的HeLa细胞中发生显著上调,揭示了迁移过程中的焦点粘附和肌动蛋白骨架调节通路发生激活,说明了PiSPA可以作为细胞迁移研究和抗癌药物靶点研究的有效工具。PiSPA工作流程包含了高精度的液体操控、单细胞的精确前处理,结合布鲁克先进的液相色谱-捕集离子淌度谱-四极杆飞行时间质谱仪(LC-TIMS-QTOF MS)进行蛋白质组分析,突破了传统质谱分析在单细胞蛋白组研究领域的技术瓶颈,实现在单个哺乳动物细胞中定量超过3000种蛋白,重新定义了单细胞蛋白质组学分析。这项成果也再次向我们证明了单细胞蛋白质组学在疾病诊断和预防、药物开发、癌症基因组学等精准医学研究中的应用潜力。参考文献:1. Wang Y, Guan ZY, Shi SW, et al. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammaliancell. Nat Commun. 2024 15(1):1279.2. Meier F, Brunner AD, Koch S, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018 17(12):2534-2545.3. Meier F, Brunner AD, Frank M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020 17(12):1229-1236.
  • 科研人员利用质谱等技术发布首个水稻全景定量蛋白质组图谱
    记者30日从中国农业科学院获悉,该院生物技术研究所联合国内多家单位共同绘制了水稻全景定量蛋白质组图谱。相关研究成果日前发表在国际期刊《自然植物》上。中国农业科学院 图一直以来,受限于蛋白质组技术的覆盖度和精度,人们对作物定量蛋白质组以及蛋白质表达的调控机制理解还不够深入。蛋白质是作物实现各种生物学功能的主要执行者,构建全景定量蛋白质图谱在阐释植物生长发育、逆境响应及代谢调控等方面具有重要意义。论文通讯作者、中国农业科学院生物技术研究所研究员梁哲告诉记者,科研人员利用质谱等技术,量化了水稻主要组织中超过15000个基因的蛋白质水平,鉴定了8964个蛋白质,并为另外7077个蛋白编码基因提供了蛋白质水平证据,从而绘制出水稻全景定量蛋白质组图谱。“本研究成功绘制了迄今为止首个作物全景定量蛋白质组图谱。此前的植物基因表达调控研究主要聚焦在基因组至转录组层面,建立了中心法则(生物体内遗传信息的流动方向)中转录本(RNA)到蛋白质这一关键环节的多组学研究策略。此次研究发现,蛋白质的表达量不仅受到转录过程的影响,还受到转录后修饰的调控。这一研究为水稻的基因功能研究提供了重要的蛋白表达量资源,为基于多组学数据的作物智能设计育种提供了新思路。另外,研究运用的定量蛋白质组的方法也给其他作物蛋白质组的深入研究提供了借鉴。”梁哲说。
  • 重大突破:史上首次定量检测完整的人类蛋白质组
    在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。  SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。  能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。  尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。  个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 安捷伦与ISB合作开发人类蛋白质定量分析方法
    2009年11月30日,北京——系统生物学研究所(ISB)和安捷伦科技公司(NYSE: A)今天宣布,合作开发人类多反应监测(MRM)Atlas,一种让科学家对所有人类蛋白质进行定量分析的综合方法。该项目将有望使生物标志物的发现与验证,以及基于蛋白水平的诊断检验、个性化医疗、人类健康监测等工作获得重要进展。   该项目获得“美国复兴与再投资法案——投资机会”项下国立卫生研究院国家人类基因组研究所提供的460万美元资助,由ISB的Robert Moritz 和 Leroy Hood开发“全人类多肽和MRM Atlas ”。苏黎世联邦理工学院的Ruedi Aebersold 也将携欧洲科研理事会提供的经费加入该项合作研究。   该研究将历时2年,分别在西雅图的ISB和苏黎世ETH进行,将使用安捷伦三重串联四极杆和四极杆飞行时间液相色谱/质谱(LC/MS)系统和纳流液相色谱-芯片/质谱系统。   “我们相信这将是蛋白质分析领域一个革命性的进展,”ISB成员兼蛋白质组学负责人Rob Moritz说,“这将促进蛋白质定量的常规应用,在人类疾病的机理研究、早期诊断和监测中发挥重要作用。”   “安捷伦很高兴共同担纲开发人类MRM Atlas,并且基于MRM方法,支持蛋白定量研究,”安捷伦LC/MS营销负责人Ken Miller说,“我们的三重串联四极杆质谱系统、蛋白质分析专用软件工具、以及独特的液相色谱-芯片/质谱技术,构成了分析这些大量样品稳定而灵敏的平台。”   MRM Atlas旨在让科学家们能够对人类组织、细胞系和血浆中大约20,000种蛋白质进行定量处理,从而对关乎人类健康的众多领域产生影响。该计划对每个人类蛋白编码基因,可生成多达四种多肽的数据库,经过快速精确的质谱MRM方法分析验证,实现对人类蛋白质组中几乎所有蛋白的明确鉴定与定量,从而将对普通生物学研究和大规模蛋白质组研究产生积极推动作用。
  • 定量蛋白质组学方法应用于病毒结构、功能及感染机制研究
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 病毒是一种特殊的生命形式,与人类的疾病和健康都密切相关。在一些情况下,某些病毒会侵染人体,导致一系列的疾病,甚至危及生命。对病毒的防控,我们可以通过了解病毒的特点与传播规律,阻止病毒传播;也可以通过研发相应的疫苗来提前预防病毒的感染,而这些工作都需要对病毒有深入的认识和了解。SCIEX面向全球提供不同类型的高端质谱平台和多组学研究方案,能够在基础研究、临床诊疗和药物研发的领域助力对于病毒相关的研究与防控。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 基于iTRAQ试剂的定量蛋白质组学揭示相似病毒的结构和功能差异 /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/dec9490a-bd41-4d1e-9bd3-67dc8f2d04d3.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: justify text-indent: 2em " 图1:iTRAQ试剂结合定量蛋白质组学能够揭示病毒不同状态下的蛋白丰度差异(来源Zhihong Hu,JVI, 2012) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " EV71(肠道病毒71型)是导致幼儿手足口病的主要病原体之一,其表达两种EV71病毒,包涵体衍生型病毒(occlusion-derived virus,ODV)和出芽型病毒(budded virus,BV)。ODV主要侵染肠,而BV则有可能侵染其他易感组织。如果能够对这两种病毒蛋白层面的差异进行分析,那么就能够掌握病毒颗粒侵染偏向的线索。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于iTRAQ试剂的定量蛋白质组学能够很好的完成相似样品在蛋白层面的差异比较。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本研究中,研究人员使用不同的iTRAQ试剂(116和117)来标记不同两种不同的肽段样品,等量混合后,使用SCIEX高分辨质谱仪进行数据采集。数据分析软件通过采集到的二级谱图,不仅可以进行肽段序列的鉴定,还能够通过报告离子116和117的相对强度来对该肽段在两个样品中的相对丰度进行定量。通过SCIEX 高分辨质谱系统对EV71两种不同状态下的病毒颗粒中的51个蛋白质进行定量蛋白质组学分析,揭示了EV71在不同状态下高表达的蛋白质,其中有12个BV特异表达的蛋白,有21个ODV特异表达的蛋白,这其中的差异很有可能就是病毒颗粒侵染偏向的原因,这为我们后续的研究提供了重要的线索。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 基于SWATH采集技术的定量蛋白质组学绘制全面的病毒蛋白表达及功能谱图 /span /strong /p p style=" text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/d6902936-0d92-4585-aa4e-308c18e939cc.jpg" title=" 2222.jpg" alt=" 2222.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: justify text-indent: 2em " 图2:使用SWATH采集技术结合定量蛋白质组学方法来得到病毒不同蛋白在侵染过程中不同时间点的表达情况(来源:MCP, Anthony,2015) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为了预防和控制急性病毒感染在全球流行,对病毒的基础研究是战略性的。病毒的基础研究中,病毒蛋白的功能,及其在宿主细胞中的动力学是重要的环节,能够让我们更加透彻的了解病毒。SWATH(sequential windowed acquisition of all theoretical fragment ions)采集技术结合定量蛋白质组学策略作为一种数据非依赖采集策略,基于超快速扫描的高分辨质谱TripleTOF系统,能够全面的采集到样品中所有肽段的信息,为我们完整的展现病毒所有蛋白的变化水平。在这个研究中,科研人员使用牛痘病毒为模式病毒,基于TripleTOF系统的SWATH采集模式,为我们展示了病毒蛋白在体内动力学变化的研究流程。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究者将不同侵染阶段的样品分别进行蛋白提取及酶解,无需额外的同位素标记及其他后续工作,直接使用SCIEX特有的SWATH采集模式对不同的样品进行采集。之后借助数据分析软件,导入数据库后,就可以直接得到病毒各种蛋白在不同侵染阶段的表达曲线。基于这些信息,我们能够很清楚的了解病毒的不同蛋白各自在何时被表达及执行功能,能够帮助我们绘制出病毒不同蛋白的表达及功能谱图,是病毒基础研究重要的一环。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 基于差异比较蛋白质组学进行SARS冠状病毒炎症机制研究 /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8fe2a6d0-6c5e-40b7-87b2-4a5543e1715e.jpg" title=" 3333.jpg" alt=" 3333.jpg" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span br/ /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图3:定量蛋白质组学策略揭示SARS病毒的PLpro蛋白对宿主细胞免疫相关信号通路的影响(来源:Proteomcis,Cheng-Wen Lin,2012) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " SARS(重症急性呼吸综合征)冠状病毒的PLpro蛋白具有去泛素化酶活性,能够让干扰素调节因子3(Interferon regulatory Factor 3)和NF-kB失活,抑制I型干扰素信号通路,从而降低干扰素(IFN)的表达。在这个研究中,作者使用SCIEX高分辨质谱系统对PLpro过表达的人源幼单核细胞系的蛋白质组学和细胞因子水平进行了分析。发现PLpro过表达后,细胞内炎症因子TGF-b1相关的蛋白呈现显著的上调趋势,与此相关的信号通路为p38 MAPK及 ERK1/2信号通路。这份研究能够为我们在临床抑制SARS冠状病毒介导的炎症提供机制依据。 /p p br/ /p
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 生物大分子药之蛋白表征
    蛋白表征生物大分子药蛋白质是由不同氨基酸连接形成的多聚体,并且通过正确折叠为一个特定构型,发挥蛋白药物的生物学功能。氨基酸序列的特定位置可以与化学基团共价结合,发生蛋白质翻译后修饰,这些翻译后修饰会导致蛋白的结构发生改变,从而影响蛋白药物的生物学活性,所以需要对蛋白的分子量、肽段覆盖率、翻译后修饰等进行检测。精确分子量分析:分子量的检测是鉴定蛋白的第一步,使用高分辨率质谱分析可得到蛋白质的多电荷信号,通过对信号进行去卷积分析,可获得精确分子量数值,并初步判断蛋白的修饰状态。对于抗体药物还可打开轻重链或者去除糖基,分别分析糖基化和去糖基化轻链和重链的分子量。我们推荐THERMO高分辨质谱来进行:Thermo Scientific LTQ-Orbitrap XL 是离子阱和轨道阱高分辨组合质谱仪,通过强大的功能、稳定性以及低运行成本成为蛋白质组学和代谢组学研究的最佳选择,完全超过并替代 Q-TOF系统。通过高分辨、精确质量数测量和多级碎片解析,完成复杂体系成份鉴定和表征。LTQ-Orbitrap XL采用全新HCD八极碰撞反应池,实现信息更丰富的MS/MS应用,包括蛋白质差异定量分析iTRAQ、PTM分析、de novo 序列分析以及代谢组学研究。Thermo Scientific&trade Q Exactive&trade 组合型四极杆 Orbitrap 质谱仪可以快速可靠地识别、定量和确认更多化合物。 本台式 LC-MS/MS 系统将四极杆母离子选择性与高分辨率和准确质量数(HRAM)Orbitrap 检测相结合,提供出色性能和多功能性。 Q Exactive 质谱仪特别适用于非目标或目标化合物筛查,也能够实现广泛的定性和定量应用,可广泛用于药物发现、蛋白质组学、环境和食品安全、临床研究和法医毒理学。2.肽段覆盖率及肽段分析:肽段覆盖率是指检测到的肽段氨基酸数量占该蛋白质总氨基酸数量的比例。蛋白质肽段覆盖率的检测,对于蛋白质类药物的一级氨基酸序列的确证,保证蛋白质类药物的高级结构形成及维持蛋白质类药物性质均具有很重要的意义。3.二硫键分析:二硫键是蛋白质通过各种链间和链内的半胱氨酸连接在一起的化学键,对蛋白质分子保持正确的高级结构,维持必要的生物活性至关重要。所以在蛋白质类药物的结构分析中,二硫键一直是分析的重点。4.N-糖糖型分析:N糖(聚糖与天冬酰胺的氮链相连)是生物药物中,尤其是单抗药物中最广为人知的糖基化形式,其中N-聚糖结构会影响药代动力学、药效学和免疫原性,因此需要对糖型进行分析。另外,抗体结构分析还可以用到毛细管电泳系统,我们推荐BECKMAN PA800 PLUScIEF法测定单抗药物等电点 使用CE(毛细管电泳仪)对样品与已知等电点多肽作为参照物进行cIEF等点聚焦,依据样品与参照肽段的相对迁移时间计算样品的等电点。 cIEF 法测定单抗样品电荷异质体纯度 使用CE(毛细管电泳仪)对样品进行cIEF等点聚焦,而后对主峰纯度进行积分,得出样品电荷异质体纯度。 CE-SDS 法测定单克隆抗体纯度 将样品还原后,使用SDS毛细管电泳电泳与紫外检测器分析,检验轻链或重链的纯度及杂质含量。
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
  • 近红外大豆蛋白分析仪在不同场景的应用
    近红外大豆蛋白分析仪是一种专用于大豆及其制品的快速、无损、多指标定量检测的分析设备。其主要应用于大豆产业链的各个环节,包括收购、储存、加工等,为大豆品质鉴定提供了有效的检测手段。了解更多近红外大豆蛋白分析仪产品信息→https://www.instrument.com.cn/netshow/SH116147/C541874.htm收购场景快速决策支持:在大豆的收购过程中,仪器可在短时间内对大豆蛋白含量等关键指标进行检测。这使得收购人员可以迅速做出决策,确保所购大豆符合质量标准。仓储场景质量监控:在大豆仓储环节,近红外大豆蛋白分析仪可用于定期对储存的大豆样品进行检测,实时监控大豆的蛋白质等指标,确保仓储期间质量的稳定性。加工场景工艺调控:在大豆加工过程中,仪器可用于监测原料大豆的蛋白含量,为生产过程提供数据支持,帮助调整加工工艺,确保最终产品的品质。室内检测实验室应用:作为室内检测设备,仪器可放置在实验室环境中,用于进行更为精细和深入的大豆蛋白质分析,为科研和产品研发提供支持。车载检测移动式检测:设备的车载设计使其能够方便地在不同地点进行移动和应用。这对于需要在野外或不同仓储点进行检测的场景非常有用,提供了便携式的解决方案。综合而言,近红外大豆蛋白分析仪在不同场景的应用为大豆产业链的各个环节提供了灵活、有效的检测手段,有助于确保大豆及其制品的质量和生产过程的可控性。
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 我国首个高尔基体蛋白73测定试剂盒临床应用
    由解放军第302医院与北京热景生物技术有限公司联合攻关研制的“肝癌标志物高尔基体蛋白73(GP73)定量测定试剂盒”,日前获准临床应用。该试剂盒可精确定量测定肝病患者血液中肝癌标志物GP73含量,为肝病患者预警肝癌发生提供了新的手段。这也是我国第一个获得批准的可用于定量测定患者高尔基体蛋白73的试剂盒。   肝癌早期症状通常很隐蔽,许多患者几乎没有任何症状,当出现明显的肝癌症状时,多已到中晚期,此时治疗已较困难。肝病患者血液中高尔基体蛋白GP73 含量异常与肝癌发生密切相关,是肝癌早期诊断的血清标志物。在肝细胞癌(HCC)患者血清中,GP73水平显著升高,且对于早期HCC的诊断,GP73比常用指标甲胎蛋白AFP出现更早。对此,在302医院临床检验医学中心毛远丽主任牵头以及在北京市及院内课题的资助下,该中心筛选出高特异、高灵敏的高尔基体蛋白GP73的单抗3E12,并且应用该单抗研制出高尔基体蛋白GP73定量测定试剂盒。   在上述企业的支持下,经国内6家医院参加的多中心临床研究证实,在1645例正常人中,该试剂盒的特异性达到98.89% 在对未治疗肝癌标本(708例)进行的检测中,GP73的阳性率为68% 在对慢性肝病患者(946例)的检测中,特异性为80.11% 在对其他肿瘤标本(217例)的检测中,特异性为89.76%。随访研究发现,诊断为肝硬化且GP73升高的患者在随访观察中罹患肝癌的危险性显著增加:14例GP73 阳性肝硬化患者在8个月内第二次诊断时,有6位被确诊为肝癌 而在47例GP73阴性肝硬化患者中,在8个月内只有3例在第二次诊断时发现肝癌。对 GP73阳性和阴性的肝癌患者进行术后追踪发现,GP73阳性的肝癌患者术后GP73含量逐渐下降,而术前GP73阴性的肝癌患者术后GP73有短暂的异常升高,大约在4~5天后恢复正常,因此估计手术创面的形成也会影响GP73的释放。研究数据还显示,将该试剂盒与现有的甲胎蛋白联合使用,可将肝癌阳性检出率提高至88%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制