当前位置: 仪器信息网 > 行业主题 > >

代谢研究

仪器信息网代谢研究专题为您整合代谢研究相关的最新文章,在代谢研究专题,您不仅可以免费浏览代谢研究的资讯, 同时您还可以浏览代谢研究的相关资料、解决方案,参与社区代谢研究话题讨论。

代谢研究相关的资讯

  • 走近“中药代谢组学研究平台”
    走近“中药代谢组学研究平台” ——访沃特世用户黑龙江中医药大学王喜军教授   代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统生物学的重要组成部分。研究中药这种成分复杂的混合物,代谢组学是最好的选择。同样,代谢组学也是中药质量控制的主要研究手段,有利于中药的出口和国际化。   根据代谢组学发展的要求,沃特世公司与代谢组学创始人Jeremy Nicholson教授合作,首创全球领先的超高效液相色谱UPLC技术,与高分辨质谱技术和计算技术结合,推出了以超高效液相色谱/高分辨质谱联用仪为代表的中药代谢组学研究平台。   2010年3月24日,仪器信息网受沃特世公司之邀,专访了沃特世中药代谢组学研究平台用户——黑龙江中医药大学王喜军教授,其结合科研实践中的使用感受,详细介绍了沃特世中药代谢组学研究平台具体应用情况。   Instrument:请简要介绍下目前您在中药代谢组学方向的研究课题以及所取得的科研成果。   王喜军教授:首先,我最开始的科研方向是天然产物及复方中药的体内代谢,即 “中药血清药物化学”。“中药血清药物化学”是在九七年提出来的,并于2002年获得了国家科技进步二等奖。在“代谢组学”概念提出后,我就将代谢组学和中药血清药物化学结合起来研究中药方剂的问题,在此基础上进一步提出了新的学科——中医方剂药物代谢组学。同时,我将自己所研究的课题与代谢组学“嫁接”在一起开展了中医症候本质研究。我们承担的国家973项目“基于体内直接作用物质的方剂配伍规律研究”也已经顺利结题。   Instrument:据悉,黑龙江省中药材GAP研究中心作为全国第一家GAP专业研究机构,是由王教授您组织建立的,请您谈谈该中心的成立背景及其主要工作内容。   王喜军教授:该中心是在“九五”末期“中药现代化研究及产业化行动”背景下建立的,这个主题就是要开展中药资源再生,实现可持续化发展。如果要进行中药材大面积有效生产,就要建立药材生产质量管理规范即所谓的GAP。实际上GAP是一个大概念,真正的GAP就是每种药材生产过程中的SOP(标准操作规程)。   该中心主要工作内容就是把黑龙江地道药材按GAP要求进行管理,但这就需要一个专业团队来进行具体研究,以获得相关的实验室试验数据做支撑。黑龙江省中药材GAP研究中心成立后已经先后完成八种黑龙江省的地道药材的GAP研究工作。此外,该中心还解决了中药材大面积生产过程中病害的无公害防治技术,提出了以中药治疗药用植物病害的理念,结束了中药只治疗动物和人类疾病的历史。GAP研究使得中药材生产由农民散在的经验模式种植,进入了科学管理规范状态。   Instrument:请问贵单位在科研工作中主要用到什么分析仪器?其中哪些属于沃特世“中药代谢组学研究平台”的产品?这个平台对您的科研工作起到了怎样的支撑作用?   王喜军教授:中药学是一门综合学科,我主攻体内分析方面的研究,所以分析仪器设备是非常关键的一个环节。目前科研工作中我们主要用到UPLC® 、Q-TOF、SYNAPT™ HDMS 、GC-MS等,另外还包括一些常规分析仪器,比如紫外分光光度计以及PCR等一些分子生物学仪器,其中大部分分析仪器都是沃特世产品。   由于我的专业是生药学,所以科研研究的核心还是药材品种质量。虽然一般分析仪器都能满足日常科研需要,但是不同分析仪器做出来的效果还是有差别的。如果科研需要更高要求的数据,那就对分析仪器质量性能提出了挑战。根据多年来使用感受,我认为沃特世公司的仪器在检测分辨率以及后期数据处理的工作站等方面都是不错的。   中药学无论是质量、活性成分研究以及效应评价,都不能以一种先入为主的态度去研究,而是需要先更多地去认识中药,然后才能更好地解析中药。如果一种仪器设备或手段能够提供更多的信息来让我了解中药,这个仪器可能就是比较好的。只有深入认识中药之后,才可能产生新的思路去研究它。而UPLC就提供了这样一个平台,可以让研究人员在短期内了解被分析样品大量的信息,提供良好数据支持新的思维。沃特世最早推出UPLC/ Q-TOF,它在使分离时间缩短的同时检测分辨率也相应提高,能够更快更好地检测出更多的被测成分。九十年代初,能够鉴定血清中三、五个成分就已经很不错了,而现在已经可以鉴定出四、五十个成分 当时需要用两小时进行分析检测,而现在可能只需要十分钟,这就是UPLC/Q-TOF的优势所在。   Instrument:据了解,王教授您最早购买了一台Q-TOF Micro质谱仪之后又购进一台SYNAPT HDMS质谱仪,请问是因为您所做的研究必须同时购置这两种仪器吗?这两种仪器对您的研究都有哪些帮助?   王喜军教授:因为我个人比较关注新技术、新产品,所以沃特世推出新品之后,我就希望了解新品的优势能具体解决科研中什么问题。比如SYNAPT™ HDMS质谱仪采用四极杆-离子淌度-飞行时间串联之后,与单纯Q-TOF相比,除了具有常规质谱仪按质量/电荷比分离的功能外,还能按照被检测物离子尺寸和形状来分离化合物。对于中药复杂成分来讲,有可能分开传统质谱不能分开的同分异构体分子,这无疑使得检测范围扩大,灵敏度提升。我在科研工作中使用SYNAPT HDMS,就是期望有可能开辟一个新的科研方向。   在已有仪器设备所限定的思维模式下,需要换一种新方法、新手段从而产生新的突破。人的思维与其知识积累、掌握的材料有关,一种新仪器提供的数据很有可能改变既有思维模式。例如我们目前所做的刺五加不同花丝长度的分析就采用这台质谱仪,它解决了科研过程中一些检测上的问题,包括后期多级分析。   Instrument:作为沃特世“中药代谢组学研究平台”的用户,您能否评价一下沃特世公司产品的性能以及该公司的售后服务?   王喜军教授:我在日本读博的时候就开始使用沃特世仪器,当时我们实验室里很多液相色谱仪都是Waters 990,所以对沃特世产品印象很深。我回国后留校从事科研教学工作,学校非常支持我的科研工作。根据我在日本留学时候的体会,建议学校购进了两台Waters 2996。随着沃特世仪器的不断升级以及研究领域的开拓整合,包括后期推出的中药代谢组学平台,逐渐引起我极大的兴趣,所以我在深入了解沃特世产品之后,决定将UPLC以及SYNAPT HDMS 和代谢组学软件MarkerLynx™ 引进来,用于我所从事的中药研究,以期待解决很多分析检测方面的问题。关于这部分,还需要提及了软件处理方面的重要性,一个应用平台要成功除了系统的硬件组成部分要过硬之外,很大程度上还取决于其软件支持方面 ,沃特世公司除了在硬件的稳定性、灵敏度方面不遗余力之外,还开发了配套的软件程序以帮助用户从复杂的质谱图中快速智能地查找出具有生物意义的标记物。例如,目前我们进行的疾病模型、方剂的配伍规律以及中药材基源物质的遗传多样性表型分析等方面研究都在使用这个中药代谢组学平台。   我经常给学生讲,无所谓什么好的手段或好的仪器,能解决问题的就是最好的。我需要质谱与前端分析仪器有效的整合成一种平台,在短时间内使得相似有效成分分离然后才能去检测。我之所以选择沃特世产品,就是因为其产品整合的比较好。其实从目前来讲,各种品牌的质谱仪之间的差别已经不是很大了,而如何将前端的分析仪器和后端的检测仪器有效地整合起来,使得从分析检测数据的采集到后期工作站数据的处理有效连贯起来,这就对不同品牌的仪器提出了较高的要求。不同研究课题之间的联系、通用、互用、整合,就要求检测仪器以及研究方法的一致性,检测手段连贯性、统一性、承接性。而沃特世产品很好的做到了这一点,所以我一直很信赖他们的产品。   我非常关注仪器的维修及时性问题。因为仪器使用过程中不可能预测何时会出现故障,何时需要维修,一旦出现故障,就需要维修或者及时更换零配件,否则仪器“停”了,整个研究工作也就停滞了。再加上我们所做的大部分都是生物样品,即使有低温冰箱也不行,很多成分还是在变化,这对科研项目来讲是非常致命的。不过通过与沃特世长期合作以及与其高层的沟通之后,这些问题目前解决的还是不错的,令人满意。
  • 代谢组学研究最新进展与代谢物鉴定分析交流会顺利举行
    p   strong  仪器信息网讯 /strong 2016年5月6日,由中国科学院大连化学物理研究所代谢组学研究中心与大连达硕信息技术有限公司联合主办的代谢组学研究最新进展与代谢物鉴定分析交流会通过仪器信息网网络讲堂平台顺利举行。 /p p   本次会议采取了网络直播与现场会议相结合的模式,300多名用户报名参加了在线的网络直播会议,同时有近50名来自有大连理工大学、黑龙江中医药大学等高校的研究人员在大连化物所参加了现场会议。 /p p   据介绍,本次交流会的举行主要是为了庆祝OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统开发完成。该系统由大连达硕信息技术有限公司与中国科学院大连化学物理研究所代谢组学研究中心共同开发完成,基于近2000个标准化合物,4个主流网络数据库,以及用户自建数据库,可实现代谢物的快速、批量、准确定性分析。 /p p style=" TEXT-ALIGN: center" img title=" 会议直播.jpg" style=" HEIGHT: 347px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201609/insimg/dc5e6755-def3-4ad1-b27d-8b13c1d917d8.jpg" width=" 500" height=" 347" / /p p style=" TEXT-ALIGN: center" img title=" 许国旺2c.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/606abeb9-aeb1-45dc-937f-46d81e32daad.jpg" / /p p   会议中,中国科学院大连化学物理研究所代谢组学研究中心许国旺研究员首先从代谢组学概述、代谢组学研究方法、代谢组学应用的新进展、前景展望等四个方面对代谢组学做了详细介绍。 /p p   代谢组学是研究生命体对于内在基因突变、病理生理变化以及外在环境等因素刺激作用下的体内的动态多元的代谢物响应,定性定量描述生物体内所有内源性代谢物。与其他组学相比,基因及环境因素改变而引起的变化在代谢组上体现的更为显著,并且代谢组变化快速、使得其对环境变化的应答更为及时灵敏,对于发现实际表型变化前的早期代谢扰动具有重要的潜力。目前,代谢组学在疾病、植物、肠道菌群、药物研发、食品等领域都有应用。 /p p   许国旺在报告中提到“基因组学和蛋白质组学告诉你可能发生了什么,而代谢组学则可以告诉你已经发生了什么,疾病变化往往在代谢组中能更早的体现出来,因而在早期疾病诊断中更具优势。” /p p   对于代谢组学的未来的发展,许国旺介绍说如何更好的表征代谢物,拓展代谢组学的分析能力,从而促进代谢组学在生化医学领域的应用是大家所关注的,如进行规模化代谢物鉴定,提高对所获取代谢物信息的利用率 高通量分析,应对大规模代谢组学分析 提高对低丰度代谢物信息的利用 由经典的表型发现向功能表征推进等。 /p p   大连达硕信息技术有限公司总经理曾仲大博士在会议中介绍了OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统的开发背景,需要解决的主要问题,采取的解决方案和关键技术,以及相应的应用实例。 /p p   曾仲大介绍说代谢物的鉴定是后续深度生物解释的基础和前提。而目前普遍认为,常规方法(主要指LC-MS sup n /sup 、GC-MS和NMR)能检测和鉴别的代谢物应不到样品中代谢物总量的10-15%。一次常规的代谢组学血液分析,在所获得了成千上万质谱特征中,往往仅能鉴定出几十至上百种代谢物,且大多数情况下并没有验证其准确性。 /p p   OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统融合多级质谱的精确质量数与保留时间信息,实现未知代谢物的多层次鉴定分析。该软件的特色在于快速、准确的实现未知代谢物定性,减少繁复的操作步骤,降低对使用者的要求。它拥有信息完备的自建标准数据库、集成了主流网络数据库、采用先进的定性匹配算法、能够实现多层次未知物定性,可实现定性经验的传递,以及丰富的数据库功能。 /p p   本次会议得到了用户的充分认可,会后仪器信息网的网友们通过多种渠道对许国旺研究员和曾仲大博士带来的精彩报告表示感谢。错过会议的网友们可查看本次网络讲座的视频回放,了解报告详细内容。请见链接: a href=" http://www.instrument.com.cn/webinar/Video/play/103101" http://www.instrument.com.cn/webinar/Video/play/103101 /a /p
  • SCIEX宣布推出用于常规和全面代谢与生物分解代谢研究的新型生物转化解决方案
    此次推出的生物转化解决方案采用了首款实现商用的蛋白质分解产物自动鉴定软件,能够加快代谢物和分解产物的鉴定速度。马萨诸塞州弗雷明翰 (2017 年 3 月 29 日) 全球知名的生命科学分析技术公司 SCIEX 今天宣布,其不断壮大的药物发现和开发解决方案家族再添新成员。常规生物转化解决方案和高级生物转化解决方案采用 SCIEX 全新的 MetabolitePilotTM 2.0 软件。这些全新的解决方案能够实现小分子代谢和生物制剂分解代谢研究的自动化,并且可以加快研究速度。两种解决方案均具备自动化结构解读、高级处理选项和抗体偶联药物 (ADC) 分析模板等功能,可以提供直观的代谢数据处理,从而提高常规和全面代谢物鉴定研究的效率,并节省成本。生物转化研究是小分子和大分子药物开发的必要组成部分。无论研究人员是迫切需要在药物发现中找到软点并确定代谢物,还是希望有十足把握确定药物开发中所有可检测的代谢物或多肽分解产物,SCIEX 都能提供可以满足科学家要求的集成式解决方案。SCIEX 的常规生物转化解决方案由 ExionLC™ AD 系统、X500 系列 QTOF 系统(四极杆飞行时间)平台和 MetabolitePilot 2.0 软件组成。SCIEX 操作系统的用户界面简单易用,能帮助制药研究人员简化小分子和大分子的高通量代谢物鉴定与软点分析。该解决方案可以鉴定化合物的主要代谢物,并以尽可能简单的方式向化学家和生物学家报告,能够迅速、准确地完成高通量筛选,从而缩短项目周期。SCIEX 的高级生物转化解决方案在 SCIEX TripleTOF® 6600 系统上使用客观公正的 SWATH® 采集技术,只需一次进样就能开展深入、全面的代谢/分解代谢研究。如今,利用 MetabolitePilot 2.0 软件,需要全面鉴定分子的所有代谢物和生物转化产物的制药研究人员能够实现代谢物和分解产物数据的自动化处理,这样就可以高度精确地鉴定传统小分子代谢物和复杂生物制剂分解产物的结构。“截至目前,在进行生物制剂分解代谢研究时,客户可以选择的处理软件并不多。此外,数据处理和解读通常都是手动进行,耗时耗力。这些采用 MetabolitePilot 2.0 软件的新型解决方案能够对生物制剂分解代谢数据进行智能处理。”SCIEX 制药/CRO 业务高级总监 Farzana Azam 说,“通过结合使用 SWATH 采集技术,研究人员只需一次进样就能完成分析,并且可以实现样品的全面覆盖。这让他们有信心不漏掉任何重要的低水平含量代谢物/分解产物。生物转化解决方案提供灵活的选择,不但可以快速鉴定代谢物和分解产物,而且能够进行更深入的代谢和分解代谢研究,还可以实现快速处理。”要详细了解如何革新生物转化研究和探索 SCIEX 的生物转化解决方案,请访问:sciex.com/biotransform###SCIEX 简介SCIEX 帮助科学家和实验室分析人员寻找解决方案来战胜他们面临的复杂分析挑战,从而改善我们生存的世界。凭借在毛细管电泳色谱和液相色谱-质谱行业的全球领导地位和世界一流的服务与支持,公司成为全球数以万计的科学家和实验室分析人员值得信赖的合作伙伴,这些人员主要从事基础研究、药物研发、食品和环境检测、法医学及临床研究工作。SCIEX 拥有 40 多年的创新历史,擅长通过倾听客户心声和理解客户不断变化的需求,开发可靠、灵敏且直观的解决方案,不断重新定义常规和复杂分析可以实现的成果。有关详细信息,请访问 sciex.com。SCIEX 社交帐号:Twitter: @SCIEXnews、LinkedIn、Facebook。仅限研究使用,不可用于诊断程序。RUO-MKT-12-4947-AAB Sciex 以 SCIEX 的名义开展业务。© 2017 AB Sciex.本文涉及的商标均归 AB Sciex Pte.Ltd. 或其各自的所有者所有。AB Sciex™ 的使用已获得许可。联系信息 Stacey Sicurella SCIEX 全球公关和品牌经理 stacey.sicurella@sciex.com 508-688-7958编辑跟进 Patrick Farrell Sniper Public Relations(代表 SCIEX) pfarrell@sniperpr.com 603-583-5488
  • 助力代谢组学精准研究,安捷伦与清华大学联合举办“代谢组学解决方案专题讲座”
    p img src=" http://img1.17img.cn/17img/images/201808/insimg/e017bc51-a3ae-4abc-800c-36d898027b8b.jpg" style=" float:none " title=" 061.jpg" / /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/9adc9c98-3838-4e4a-9cc2-70eb2d093da6.jpg" style=" float:none " title=" 062.jpg" / /p p & nbsp & nbsp 近日由安捷伦科技与清华大学蛋白质研究技术中心代谢组学平台合办的“代谢组学解决方案专题讲座”在清华大学生物新馆举行。来自清华大学及其他院校超过120 名师生参加了此次讲座。本次活动上,安捷伦科技的专家们分享了针对代谢组学研究领域如何实现多维度的动态研究以及不同疾病能量代谢通路与细胞功能的关联研究等方面的干货心得。& nbsp /p p & nbsp & nbsp 安捷伦液质联用产品应用经理冉小蓉博士为大家带来了题为《开启深度研究,洞悉机理机制—代谢组学、代谢流与 Seahorse 的前沿整合方案》的报告,向大家介绍了安捷伦拓展代谢组学深度研究的前沿解决方案。安捷伦基于 MPP 的非靶向/靶向代谢组学工作流程有效地发现差异代谢物,并匹配可能激活的通路;基于 VistaFlux 的定性代谢流解决方案提供更快、更准、更完整的差异代谢物在通路上动态活动规律的研究;Seahorse 在活细胞水平上的细胞能量代谢分析,实现对组学/代谢流结果的正交生物学验证。安捷伦这三个方案的整合,无疑实现了对一个复杂生物学问题从生物标记物的发现到机理机制深入阐释的多维度的动态研究。& nbsp /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/4c75825d-51d8-4473-9d30-47d4b6438257.jpg" title=" 063.jpg" / /p p & nbsp & nbsp 来自 Seahorse 团队的产品经理张小宇则着重从能量代谢角度做了《从能量角度看细胞:新的视角,独到的精彩》的报告。Seahorse 细胞能量代谢平台,可通过监测细胞的体内糖酵解/线粒体呼吸引起的胞外酸化速率、氧气消耗速率来判定不同状态下的细胞实时代谢状态,佐证代谢理论,方便、快捷地帮助研究者进行不同疾病能量代谢通路与细胞功能的关联研究。& nbsp /p p & nbsp & nbsp Agilent 的整体解决方案,将包括生物标志物的发现、鉴定、靶向验证以及通路分析过程中所需要的硬件、软件、消耗品及服务支持的整体融入到代谢组学综合解决方案中,为开启代谢组学的精准研究,提供了有力的条件。& nbsp /p p & nbsp & nbsp 此次讲座受到广大清华师生的热烈欢迎,会后安捷伦的工程师也为广大师生进行了长时间的问答和技术探讨。此次讲座是安捷伦与清华大学代谢平台的第一场联合讲座,后续还会有更多的关于技术分享的活动 /p
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 许国旺研究员:代谢组学研究对色谱-质谱分析技术的挑战
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   中国科学院大连化学物理研究所许国旺研究员的研究关注的是内源性代谢,代谢组学研究就是用一系列分析化学手段,如色谱、质谱、核磁共振、光谱等,将代谢产物进行分离,然后用数据分析方法把有用的信息进行提取,最后对信息进行生物学解析。与基因组学、蛋白质组学相比,代谢组学研究的是已经发生的改变,而前两者研究的是可能发生的改变,因此在这个意义上说,代谢组学更接近于临床。 中国科学院大连化学物理研究所许国旺研究员   但是,目前代谢组学研究面临以下挑战:其一,到目前为止,任何一种分析工具都只能分析代谢组中15%的代谢物 其二,代谢物的结构鉴定一直是一个没有解决的问题。许国旺研究员认为,代谢组学研究要取得进展,分析测试平台首先要取得突破,而其中色谱和质谱是最有前途的技术。   依据此思路,许国旺研究员在代谢组学分析手段方面进行了大量的研究,课题组搭建二维色谱-质谱联用仪器,使得代谢产物中亲水化合物与疏水化合物同时分离,并且提高了分辨率,使得以高分辨质谱为核心的集成方法解决代谢组学中未知化合物的定性问题。
  • 我国细胞代谢研究技术取得突破性进展
    p   烟酰胺腺嘌呤二核苷酸(NADH/NAD+)及其磷酸化形式(NADPH/NADP+),作为生物体内两对最重要的辅酶和核心代谢物,常被用作评价细胞代谢状态的关键指标,与癌症、糖尿病、肥胖症、心脑血管疾病、神经退行性疾病等的发生发展密切相关。NADH和NADPH的荧光光谱相似,但是二者的生理功能却显著不同。NADH主要参与物质能量代谢,NADPH主要参与合成代谢和抗氧化,传统的自发荧光分析方法难以区分这两种小分子。 /p p   生物反应器工程国家重点实验室(华东理工大学)杨弋教授、赵玉政研究员研究团队与中国科学技术大学刘海燕教授合作,在前期研究基础上,通过对底物结合蛋白的理性设计和改造, strong 开发了一系列特异性检测NADPH的高性能遗传编码荧光探针iNap,实现了活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。 /strong 利用iNap,研究团队精确测定了癌细胞内不同亚细胞结构中的NADPH,发现其受NAD激酶和葡萄糖-6-磷酸脱氢酶G6PD活性调节,证明氧化应激时癌细胞内NADPH代谢受葡萄糖的动态调节。基于大量数据分析,研究团队提出了哺乳动物细胞有很强的维持NADPH稳态的能力的观点。此外,iNap还揭示了NADPH代谢与巨噬细胞免疫激活以及机体创伤反应密切相关。 strong 细胞代谢荧光探针iNap,不仅可应用于抗氧化、AMPK、脂肪酸合成等代谢途径与通路分析,还可用于衰老及相关疾病创新药物的发现。 /strong /p p   相关成果于2017年6月5日以“研究长文”的形式在Nature Methods上发表。 /p
  • 基于代谢组学技术的病毒传染性疾病研究
    p style=" text-indent: 2em line-height: 1.75em " strong span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 仪器信息网讯 /span /strong span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp 代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学,是整合包括色谱联用质谱和核磁共振等现代分析技术、生物化学以及生物信息学等学科的一门交叉学科技术,用于研究生命活动链条下游的代谢物内稳态情况。& nbsp /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(192, 0, 0) " strong span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 代谢组学概念及常用技术 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em " 代谢组学是系统地对代谢物及其水平变化进行快速识别分析,其中代谢物是基因表达的最终产物,且代谢物的水平是由代谢途径中所有酶的活性及作用于这些酶的效应物所决定的,因此代谢组学所涉及的代谢物变化与机体的生理、病理、发育状态直接相关。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 436px " src=" https://img1.17img.cn/17img/images/202004/uepic/12f47ba2-459a-4d53-9b14-2155144401a4.jpg" title=" 截屏2020-04-03下午6.13.20.png" alt=" 截屏2020-04-03下午6.13.20.png" width=" 600" height=" 436" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " 代谢组学研究方法 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 代谢组学主要的两种分析技术,其一是核磁共振,另一种是质谱技术。与质谱技术相比,核磁共振确实具有一些明显的特色,如分析样品只需要简单甚至无需前处理、成本低、快速、重复性好等,但在灵敏度和代谢物识别的覆盖范围上不如质谱,因此限制了其应用, /span span style=" text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 目前研究使用最多的代谢组学技术依然是质谱技术。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 质谱分析技术为代谢物提供了高专一性的、与化学结构直接相关的分子质量或特征碎片离子等质谱信息,这些信息可通过与数据库中的标准图谱进行化学结构匹配来确定代谢物,或用于位置代谢物结构的推导。 /span span style=" text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 质谱技术与色谱分离技术的联用可实现复杂样品的代谢组学分析,从本质上提高了以质谱技术为基础的代谢组学的研究能力和范围。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 此外,代谢组学包括靶向代谢组学和非靶向代谢组学,前者是针对特定的代谢通路所涉及的代谢物进行定性和定量研究;相比较前者,后者采用高端分析技术进行代谢物全谱(理论上)轮廓差异分析、发现特异性代谢物并进行结构表征和代谢通路分析。在非靶向代谢组学研究中,由于代谢物的种类多、物化性质和浓度差异大,因此需要通过多种技术的整合,才能够比较全面和准确地实现代谢调控所涉及的差异性代谢物识别和定量分析的全谱覆盖。 /span br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 结合当前疫情,我们来关注下代谢组学技术在病毒感染及病毒宿主间的相互作用机制研究,下文将介绍一些基于代谢组学技术的病毒传染性疾病的相关研究应用。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 基于代谢组学技术的病毒传染性疾病研究中的应用案例 /span /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 案例1:中东综合征(Middle East Respiratory Syndrome,MERS)研究中的多组学技术 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " MERS是由冠状病毒(MERS-CoV)感染引起的一种呼吸道传染性疾病,主要表现为非典型肺炎和急性呼吸综合征,重症病例可发展为急性肾衰竭而导致死亡。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 2016年,Nakayasu等开发了MPLEx(metabolite, protein, and lipid extraction)样本制备法,该方法简单快速且适用于多组学的研究。基于该方法,研究者以侵染MERS-Cor的肺泡上皮细胞Calu-3为研究对象,通过蛋白组学、代谢组学和脂质组学研究,发现病毒感染过程中糖酵解/糖异生变化,以及脂肪酸、磷脂酰胆碱和神经酰胺等变化,为MERS-CorV感染人体机制的研究提供有力的数据支撑。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 317px " src=" https://img1.17img.cn/17img/images/202004/uepic/960a0f6a-4e07-439d-88b9-6a94ceff4364.jpg" title=" 截屏2020-04-03下午5.42.04.png" alt=" 截屏2020-04-03下午5.42.04.png" width=" 300" height=" 317" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " /span /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 275px " src=" https://img1.17img.cn/17img/images/202004/uepic/f9bd73e2-dba3-41b2-8a4a-17b6d84d9ed4.jpg" title=" 截屏2020-04-03下午5.43.10.png" alt=" 截屏2020-04-03下午5.43.10.png" width=" 300" height=" 275" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em " 多组学代谢网路图 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 案例2: 埃博拉(Ebola hemorrhagic fever, EBHF)病毒研究中的多组学技术 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " EBHF是由埃博拉病毒感染导致的急性出血性、动物源性传染病,1976年在非洲的苏丹和扎伊尔首次暴发,主要通过病人的血液、唾液、汗水和分泌物等途径传播。 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 2017年,西北太平洋国家实验室及东京大学等的研究人员对来自感染埃博拉病毒患者的单核细胞和血浆,基于转录组学、蛋白质组学、代谢组学及脂质组学平台,发现血浆游离氨基酸、葡萄糖、果糖、二酰基甘油磷酸甘油、单酰基甘油磷酸丝氨酸、神经酰胺、可溶性VSIG4、骨髓细胞趋化因子受体等的变化,并由此推断肠组织损伤、T细胞激活受损、炎症、胰腺组织损伤和胰酶释放等可能在EVD发病机制中的作用,研究结果有助于改善高危患者的预后。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 597px " src=" https://img1.17img.cn/17img/images/202004/uepic/920116f3-8e24-4d61-a902-a68df7319791.jpg" title=" 图片 2.png" alt=" 图片 2.png" width=" 600" height=" 597" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 总体流程图 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp strong 案例3: 水痘-带状疱疹病毒(Varicella zoster virus, VZV)研究中的代谢组学技术 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 水痘是由水痘-带状疱疹病毒(Varicella zoster virus, VZV)初次感染引起的急性传染病,主要发生在婴幼儿和学龄前儿童,相比儿童,成人发病症状更为严重。 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 2018年,Kuhn M等基于靶向代谢组学研究平台,对水痘不同亚型患者及对照样本的脑脊液样本进行研究,发现与VZV相关的4个代谢物,进一步的分析表明与VZV相关的代谢物增加可能与神经炎症/免疫激活、神经信号和细胞压力等相关。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 714px " src=" https://img1.17img.cn/17img/images/202004/uepic/9a1768c5-247e-463d-baa5-4e7720355852.jpg" title=" 截屏2020-04-03下午5.44.43.png" alt=" 截屏2020-04-03下午5.44.43.png" width=" 600" height=" 714" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: center text-indent: 2em " 差异代谢物结果展示 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp strong 案例4: 拉沙病毒研究中的代谢组学技术 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 拉沙热(Lassa fever, LASV)是一种急性、传染性强烈的国际性传染病,是由拉沙病毒引起,于1969年在尼日利亚东北地区的拉沙镇发现。绝大多数的人类感染表现为轻症或无症状,其他表现为严重多系统疾病;主要通过直接接触拉沙热患者的血液、尿、粪便或其它身体分泌物进行传播,还可在人之间传播。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " Gale TV等收集拉沙热患者血清进行非靶向代谢组学研究,发现LASV感染对血液凝集、脂质、氨基酸和核苷酸代谢通路产生较大影响;同时,作者也发现PAF及其类似物等可能作为潜在的生物标志物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/b1d086f4-f673-4c62-855c-829a6f787b28.jpg" title=" 截屏2020-04-03下午5.45.49.png" alt=" 截屏2020-04-03下午5.45.49.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em text-align: center " 拉沙热潜在生物标志物 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp strong 案例5: SARS病毒研究中的多组学技术 /strong /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " SARS(重症急性呼吸综合征)为一种由SARS冠状病毒(SARS-CoV)引起的急性呼吸道传染病,WHO将其命名为重症急性呼吸综合征,2002年出现在中国广东省。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Wu Qi等收集感染SARS康复患者12年后的血清样本与健康样本进行常规代谢组学(GC-MS/LC-MS)和脂质组学分析,发现磷脂酰肌醇和溶血磷脂酰肌醇在康复患者体内升高,可能与使用高剂量的甲基强的松龙有关。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 897px " src=" https://img1.17img.cn/17img/images/202004/uepic/7ad3415c-fe4c-4f86-abcf-5be68dc6b551.jpg" title=" 截屏2020-04-03下午5.46.56.png" alt=" 截屏2020-04-03下午5.46.56.png" width=" 600" height=" 897" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 肌醇含量分布 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 参考文献 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Nakayasu ES, et al. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses. mSystems. 2016 May 10 1(3). /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Eisfeld AJ, et al. Multi-platform & #39 Omics Analysis of Human Ebola Virus Disease Pathogenesis. Cell Host Microbe. 2017 Dec 13. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Kuhn M, et al. Mass-spectrometric profiling of cerebrospinal fluid reveals metabolite biomarkers for CNS involvement in varicella zoster virus reactivation. J Neuroinflammation. 2018 Jan 17 15(1):20. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Gale TV, et al. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers. PLoS Negl Trop Dis. 2017 Sep 18 11(9):e0005943. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " Wu Q, et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017 Aug 22 7(1):9110.& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " & nbsp /span /p p br/ /p
  • 走向临床的代谢组学——访中科院大连化学物理研究所许国旺研究员
    1999年,英国帝国理工的Jeremy Nicholson教授定义了代谢组学(metabonomics)。短短20年时间,代谢组学这一组学研究领域的后起之秀,已成为当下科研领域中的“明星”。近年来,代谢组学热度不断攀升,不仅越来越多的国内外科研团队投入其中,同时也因其在精准医学和相关健康领域的广阔前景,受到临床医生、资本投资等团体的广泛关注。  当前,我国代谢组学研究的发展情况如何?被业内寄予厚望的代谢组学与临床的距离还有多远?分析化学家与临床医生在代谢组学领域如何携手并进?近日,仪器信息网编辑特别采访了国内代谢组学领域的代表学者之一,中国科学院大连化学物理研究所许国旺研究员,深入了解他和他眼中的代谢组学。中国科学院大连化学物理研究所许国旺研究员  阴差阳错开始的代谢组学研究  许国旺课题组是国内最早开展代谢组学相关研究的团队之一,在国内外代谢组学研究领域享有盛誉,殊不知他其实是阴差阳错才走入这个研究领域的。1991年,许国旺在大连化物所取得分析化学博士学位并留所任职,从事分析化学相关研究。1995年,他获得马普(Max-Planck-Institut)研究基金前往德国Tuebingen大学医学院工作。“当时,我想要从事与人体健康有关的研究,就决定去医学院。”在德国,许国旺的研究方向是尿液中代谢产物跟人体健康之间的关系。1997年,他回到大连化物所继续担任题目组长,并把这个课题继续了下去。  2002年一次偶然的机会,中科院上海生化细胞所的吴家睿研究员来访。在交流过程中,“吴家睿跟我说,‘国旺,你现在做的这个东西很时髦,叫代谢组学’,这是我第一次听到这个名词。”通过查阅相关论文,许国旺了解到,这是1999年帝国理工的Jeremy Nicholson教授提出来的一个新名词。自己已置身其中,居然不知,“惭愧”!也是在2002年,在所里的支持下,他的题目组名正式变更为“生物分子高分辨分离分析和代谢组学”。  从方法学到临床应用  许国旺表示,代谢组非常复杂,高分辨质谱是目前代谢组学最常见的研究工具,但是做一次样本分析,产生几千到几万个信号,其中可能只有百分之几被鉴定出来,建立高覆盖度的定性定量分析方法是研究人员面临的首要难题。此外,方法的重复性问题也是一大困扰,同一批样品分两次检测,数据可能有差异;同一批样品不同实验室做,数据可能很不一样。  最初,因为分析化学的专业背景,课题组主要的工作放在方法学上,先后研究了数十种代谢组学方法。其中,最具代表性的就是团队提出并发展的拟靶向代谢组学方法。  许国旺提到,代谢组学分析的主要策略有非靶向和靶向两种:非靶向,具有覆盖面广的优点,可通过高分辨质谱获得丰富的代谢组学信息,但是数据复杂、重复性差;靶向,是传统质谱定量的金标准,利用三重四级杆质谱,稳定性高,但是通常只能检测已知的化合物,覆盖度低,难以分析未知组分。“所以最初我们就设想,能不能将这两种方法的优点结合起来,这样就可以实现非靶向方法的高信息量以及靶向方法的高灵敏度和高数据质量的有机结合。”  由此,2012年,许国旺团队首次发表拟靶向代谢组学的概念,该方法结合了传统的靶向和非靶向方法的优势,在方法建立时,用高分辨质谱获取代谢物的离子对信息,而在实际样品分析时采用靶向的多反应检测(MRM)方式测量代谢物的丰度,该方法覆盖度高、线性和重复性良好,而且不需要标样来限定检测的代谢物。在接下来8年时间,许国旺团队进行了不断摸索和拓展,不仅开发了相应的自动挑选离子对的软件,还将该方法从代谢组学拓宽到了脂质组学。近期,许国旺团队还将该方法进行了系统总结和提升,相关结果形成范本发表于2020年6月的《自然-实验手册》(Nature Protocols)。现在,这种拟靶向的思路和方法,已被更多研究团队采纳和拓展。  除了大量的方法学研究之外,许国旺也表示,仅仅研究出方法,没有应用也不行。代谢组学是一个生命科学研究的基础平台,最重要的一个应用方向就是在临床领域。为此,许国旺团队与临床医院开展了多方合作,将团队的代谢组学平台与临床需求紧密结合起来,做了大量的研究。  代谢组学需要强强联合  谈到代谢组学在临床中的应用,可谓是当下最火热的研究领域之一。作为几大组学中最年轻的成员,相较于基因组、蛋白组,人们对代谢组重要性的认知要晚一些。代谢组处于基因调控网络和蛋白质作用网络的下游,代表了生物动态系统中最下游的阶段。代谢组学研究的是生物体内分子量小于1500的小分子代谢物组成的时空变化。相较于其他的组学,代谢组学反映了在生命体中已经发生的事件,因此能够更准确提供的是生物学的终端信息,这也使得代谢组学与临床的距离更接近。“基因组可以告诉我们基因发生了什么变化,但是基因出问题,人不一定一定发病;相反,一旦代谢异常,那么疾病肯定要发生了或已经发生了。”  如何将代谢组学平台与临床需求紧密结合起来,许国旺表示,第一,可以在代谢层面做疾病分型;第二,可以做潜在的疾病标志物的发现;第三,做代谢重编程研究 第四,就是通过研究代谢异常,找到新的治疗靶点。在这些方面,近年来,许国旺和大量临床团队展开合作。  比如,许国旺与郑州大学第一附属医院合作,就成功揭示了慢加急性肝衰竭的代谢重编程机制,并找到了通过代谢干预治疗肝衰竭的新方法。“这是一个非常让人振奋的例子,代谢组学在实际的临床治疗中起到了作用。”许国旺介绍,慢加急性肝衰竭是一种死亡率非常高的疾病,肝移植是最有效的治疗手段,但肝源有限。而这次的合作研究,通过代谢组学的方法,找到了慢加急性肝衰竭的异常代谢特征,并据此提出了新的治疗方案。“我们找到了这个代谢异常,临床医生余祖江教授一看,就找到了一种原来应用于心脏病治疗的药物-脂肪酸氧化抑制剂:曲美他嗪,可以用来干预这个异常。”在郑大一院,这个新的治疗方案一直在做临床试验,从结果来看,曲美他嗪显著改善慢加急性肝衰竭患者的临床预后,3个月的总体死亡率明显降低。  “在代谢组学领域,合作是非常必要的。”许国旺强调,每个团队都有自己擅长的领域,对于临床的问题,一定需要临床的医生参与进来。据统计,近5年,有超过60个医院曾与许国旺的代谢组学平台进行联合研究,其中很多都是全国很有名的三甲医院,如上海的瑞金医院、东方肝胆医院等等。除此之外,他也同很多其他的相关机构展开了深入合作。  最近,许国旺也和岛津展开合作,建立了代谢组学创新实验室。许国旺表示,自1996年开始,他与岛津一直保持着良好的合作关系,双方关于科研创新、人类健康等方面的理念是一致的。去年10月,岛津在中国成立创新中心,聚焦临床诊断、科研与组学、营养与安全、生物与制药、环境与能源五大行业,加速科研成果孵化,进一步加深了和中国科学家之间的合作。创新中心聚焦的领域,与许国旺的研究领域不谋而合,也使得本次合作得以开展。  谈到未来的合作,许国旺提到,代谢组学是一个冉冉升起的朝阳行业,也是质谱仪器未来应用的重点,但在实际的使用中,现有商业化仪器很难满足需求。在许国旺的实验室,经常需要对国外进口的先进仪器进行改造,并开发新的方法。通过合作,许国旺希望能与岛津一起,开发更适合于代谢组学和临床使用的质谱硬件或方法。另一方面,在应用领域,双方也将合作选择1-2个临床项目开展合作,希望能够最终转化为临床可用的试剂盒,真正应用在实际中去。  代谢组学:在解决临床问题中有无限潜力  从最初时髦的新名词,到现在生命科学乃至临床研究中的大热点,代谢组学只用了短短的20年。“我们确实看到了这种趋势,代谢组学的研究正以指数型上升。”近些年,代谢组学在国内热度空前,许国旺近期曾做过统计,使用质谱做代谢组学相关的论文数目,中国目前已经在世界范围内居于首位。代谢组学相关研究队伍,近年来在国内也越来越多。无论从科研群体规模、发表论文数量还是申请项目数量等方面看,代谢组学在国内确实“火了”,预示着一个快速的发展。  近几年,代谢组学在解决临床实际问题的时候显示出了很高的潜力,这也使得临床领域对代谢组学非常关注,许多医院都将代谢组学作为一个基础研究平台在建设。许国旺表示,一方面,医生们希望能够使用代谢组学的研究方法,发现并建立一些新的诊疗方法,使患者受益;另一方面,对于一些传统的生化指标,如氨基酸、肉碱、维生素D、同型半胱氨酸等,通过靶向的方式来进行高通量的常规临床检测。  许国旺形容代谢组学正处于“青少年阶段”,我们看到了其发展的无限潜力和迅猛的上升势头,但是作为一个年轻的学科,它也面临着许多要解决的问题。除了方法学上还面临的一系列难题之外,如单细胞、少量细胞、极少量组织、大批量临床样本分析等;面对临床,代谢组学还要解决如何满足临床医生需求,通过沟通合作,真正能使代谢组学的研究结果去解决临床实际、实现转化等问题。  许国旺表示,代谢组学的研究和真正的临床应用实际上是两个不同的概念,有不同的关注点。代谢组学研究的重点在于发现和创新,我们通过代谢组学找到新的疾病标志物或治疗靶点,再把这些获得的信息提供给临床专家。但是什么样的临床信息更重要、得到的信息如何用,临床医生更有发言权。将临床问题转化为代谢组学科学问题,以及将代谢组学成果转化为医院实际可以应用的技术方法都需要做很多工作。虽然从整体上来说,代谢组学现在还没办法像基因组学那样很成熟地应用在临床服务中,但另一方面,也让人看到了非常美化的前景,并取得了一些与临床紧密结合的成果。如现在已经在临床中很普及的新生儿代谢疾病筛查,就是代谢组学在临床中应用最成功的案例。  后记:  在采访中,许国旺一直在强调实际应用的重要性。他认为,如何将临床问题通过代谢组学研究,转化为实际能让病人受益的东西,是代谢组学研究的关键。“科研最后还是要落地到实际中去,这才是我们的终极目标。”  关于岛津中国创新中心  岛津中国创新中心成立于2019年10月,是岛津制作所全球范围内的第四个创新研发中心,是基于2015年10月成立的岛津中国质谱中心而建立的,其定位为携手用户研发最尖端的应用与技术、迅速应对用户的需求及法规的变化、基于市场需求开发新的系统三个方向。岛津希望通过全球创新中心的设立,使岛津的服务、产品更加系统化,从技术到产品整个过程中都可以给客户提供更多的帮助,成为科学家成果转化的加速器。  岛津公司成立已有144年,而创新始终是公司发展的基础。在一份第三方的数据统计中,岛津公司在拥有专利数量方面在业界位居全球第二位。而且,2002年岛津公司的田中耕一荣获了诺贝尔化学奖,开创了公司研究人员获奖的先河。如今,在面临新的发展机遇之时,岛津公司希望与中国广大用户合作、共同为国家、社会、经济等发展贡献力量。
  • 拓展组学研究的边界 _ 赛默飞携手迈特代谢共建战略合作实验室
    拓展组学研究的边界 | 赛默飞携手迈特代谢共建战略合作实验室近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与武汉迈特维尔生物科技有限公司(以下简称:迈维代谢)合作实验室签约暨揭牌仪式在武汉隆重举办!国际知名代谢组学专家海南大学罗杰教授、知名蛋白质组学专家中国医学科学院苏州系统医学研究所叶子璐研究员出席并见证签约仪式。本次战略合作将通过结合赛默飞全球领先的质谱技术和迈维代谢领先的组学技术创新平台,推动双方深入拓展蛋白质组学及代谢组学分析研究领域,进一步推动新技术在医学研究、生命科学领域的成果转化和应用,开启多组学驱动的数字生命新时代!赛默飞与迈维代谢签约仪式多组学研究对于生物体内的各种生物过程、疾病的发生机制以及药物的研发都有着重要的意义。迈维代谢创造性开发了以“广泛靶向”专利技术为核心的高通量、超灵敏代谢组技术平台,已成为国内代谢组学领域发展最快、成果最多的知名企业之一。本次的战略合作,通过联合赛默飞强大的质谱技术,将进一步帮助迈维代谢拓展蛋白质组学及代谢组学分析的无限可能,深入更多组学研究高精尖领域,达到前所未有的研究深度。赛默飞色谱与质谱业务中国区商务副总裁何燕女士为迈维代谢颁发 Orbitrap Astral 高分辨质谱仪中国首批用户证书 近年来以质谱分析技术为核心的多组学研究,极大的推动了精准医学的进步,迈维代谢专注于领先的代谢组学服务,自主创新建立了220万代谢物的专属数据库,与赛默飞的战略合作将进一步帮助迈维代谢拓展蛋白质组学等多组学领域,从广泛的靶向分析到更广阔的非靶向分析,结合产学研发展需求,助力精准医学的研究和临床和转化! 会议邀请了中国医学科学院苏州系统医学研究所叶子璐研究员,为参会人员带来《Faster and ultra-sensitive analysis of proteomes enabled by narrow-window DIA》报告,为大家带来 Orbitrap Astral 高分辨质谱在蛋白质组学的最新全球数据,让与会专家领略到 Astral 在蛋白质领域的无限潜力。赛默飞液质应用专家带来《赛默飞全新一代高分辨质谱技术提升蛋白组学分析极限》报告,报告中提到 Astral 从解决通量的 8 分钟超过 8000 个蛋白的鉴定水平,到追求鉴定覆盖度的 15000 个蛋白的鉴定,Orbitrap Astral 高分辨质谱仪兼具超高的检测通量和深度蛋白组覆盖能力。在代谢组学方面,Astral 既能提供高质量分辨率的一级图谱,又能利用非对称轨道无损质量分析器提供快速、高灵敏度的二级图谱采集,从而开发出全新的 workflow(SQUAD),在一次上样中完成精准定性定量的过程,解决了代谢组学走进大数据时代的问题。系统生物学研究内容主要包括“基因-蛋白-代谢-表型”等多个层次,越来越多研究表明,多组学已成为生命科学和医学研究的重要工具。“基因组反映了可能发生的变化,蛋白组和代谢组反映了正在或者已经发生的变化”,迈维代谢持续创新质谱技术,创新性的开发出了广泛靶向代谢组检测技TM,建立了行业领先的植物代谢数据库和医学代谢物数据库 MWDB,真正实现了“高通量、超灵敏、广覆盖”,尽可能多的检测样本中所有的小分子化合物。与此同时,迈维代谢和赛默飞达成战略合作,在引进新一代质谱平台 Orbitrap Astral 并同步配置 Orbitrap Exploris 120 质谱仪后,双方进一步深入技术联合开发,携手努力打造为世界领先的创新蛋白质组和代谢组研发中心。加快和深化对拓展蛋白质组学及多组学领域的探究,更好地服务于生命科学和医学健康研究领域,助力精准医学高质量发展!关于迈维代谢武汉迈特维尔生物科技有限公司(简称“迈维代谢”) ,总部位于武汉国家生物产业基地,此外建有上海/嘉善华东研发中心、长沙 GMP 生产中心、武汉迈维医学检验实验室,另设北美子公司,是国内首家代谢组学境外公司。公司专注于提供领先的代谢组学技术服务及创新临床检测产品应用,致力于代谢基础研究、分子设计育种、疾病诊断、药物研发及与代谢组学相关领域应用研究,为生命科学研究、改善人类健康做出持续贡献。
  • 基于NMR的代谢组学研究助力新冠肺炎重症早发现*
    虽然造成新冠肺炎(COVID-19)的新型冠状病毒(SARS-CoV-2)主要是呼吸道病毒,但这种疾病会累及全身的器官。除了肺部损伤和呼吸困难外,新冠肺炎患者还表现出神经、肾、肝和血管受损的症状。 研究表明,新冠肺炎患者具有与健康对照者不同的、提示代谢紊乱和血脂异常的代谢谱,且它们也与疾病的严重度相关联。这提升了利用代谢组学来识别具有最高重症风险的新冠肺炎患者的可能性。然而,大多数此类研究只是将新冠肺炎患者与健康对照者进行比较,导致无法确定这种关联是新冠肺炎特有的,还是只是提示危重疾病的普适性标志。 来自德国吕贝克大学的研究人员,通过将接受重症监护室(ICU)治疗的新冠肺炎患者,与在同一ICU进行心源性休克治疗的患者进行比较,研究了代谢谱的特异性。 近乎完美的区分 研究人员分析了5名接受ICU治疗的新冠肺炎患者、11名新冠病毒检测阴性的心源性休克患者,以及58名健康对照者的代谢和脂蛋白谱。他们在布鲁克Avance IVDr平台*(配备TXI探头的布鲁克核磁共振代谢分析系统)上总共分析了276份血清样品。初步的非靶向NMR代谢组学和脂质组学研究表明,新冠肺炎患者与健康对照者及心源性休克患者之间都存在差异。通过针对性分析,研究人员能够量化来自NMR谱图的代谢物和脂蛋白,并识别引起最大差异的代谢物类别。这些分析实现了对新冠肺炎患者与健康对照者及心源性休克患者近乎完美的区分。 为了进一步研究新冠肺炎的代谢影响,研究人员对代谢物和脂蛋白进行了比对分析。结果显示,有许多与能量状态紊乱、肝损伤和血脂异常相关的一致变化。 与其他重症患者截然不同的代谢谱 被识别出的一些关键特征包括低谷氨酰胺/谷氨酸比值,这是由分解代谢疾病状态下谷氨酰胺消耗增加所导致的。这一重症感染的典型指标与新冠肺炎有关联,但与心源性休克无关联。 苯丙氨酸是新冠肺炎患者出现上升的另一特征参数。该氨基酸通常在肝脏中代谢,其水平上升提示肝功能受损。 一些标志物提示能量代谢严重紊乱和代谢抑制,包括葡萄糖水平升高,以及组氨酸、蛋氨酸和乳酸水平降低。但是,这些变化只是新冠肺炎患者相比健康对照者所存在的差异,而与心源性休克患者相比没有这些差异,这表明它们可能不是新冠肺炎所特有的,而是提示危重患者能量状态紊乱的普适性指标。 根据之前的研究,研究人员还发现,新冠肺炎患者的脂蛋白谱严重紊乱,提示心血管疾病风险上升。该脂蛋白谱中很大一部分都与心源性休克患者不同。尤其要提到的是,新冠肺炎患者的极低密度脂蛋白(VLDL)、小颗粒VLDL组分及中密度脂蛋白水平上升——它们相比更大的低密度脂蛋白颗粒更易导致动脉粥样化;因此是引起心血管疾病和心脏损伤的风险因素。此外,新冠肺炎患者的甘油三酯水平相比健康对照者和心源性休克患者都有上升。 惊人的关联 该研究还研究了无症状感染或轻症之后持续发生的代谢变化。为此,研究人员分析了来自18个具有新冠病毒抗体的人的34份血清样本,并与来自相同年龄和性别的、不具有新冠病毒抗体的对照者的样本进行了比较。两组患者在采血前的急性冠状病毒感染检测均为阴性。 主成分分析(PCA)显示,两组之间的代谢谱和脂蛋白谱无显著差异,区分度很低,说明总体血清谱无显著差异。研究人员表示,这意味着新冠肺炎感染康复之后代谢谱回归正常。 然而,在来自曾经的轻症感染者的样本中,发现了抗体滴度和代谢健康标志物之间的关联。例如,抗体滴度与心血管风险标志物(包括小颗粒LDL-6、胆固醇和磷脂)呈负相关。还发现抗体滴度与作为代谢健康标志物的甘氨酸呈正相关。研究人员指出,他们无法从现有数据中确定因果关系,但拥有健康的代谢状态的个体可能更有可能对病毒产生有效的免疫反应,使得感染后的抗体滴度更高。 总之,研究人员表示,他们的发现表明新冠肺炎重症患者的代谢高度紊乱,包括分解代谢状态、肝损伤和严重血脂异常等。这一信息表明,基于NMR的代谢组学研究可被进一步用于患者的识别和分层,以帮助预测新冠肺炎的严重度。 *布鲁克核磁共振波谱仪仅供研究人员使用,不能用于临床诊断。 参考资料 Schmelter F, Foeh B, Mallagaray A et al. (2021) Metabolic markers distinguish COVID-19 from other intensive care patients and show potential to stratify for disease risk. medRxiv preprint. doi: https://doi.org/10.1101/2021.01.13.21249645.
  • 岛津合作研究:全球首次!开发出准确测量代谢的新技术
    —有助于代谢疾病治疗方法、生物燃料生产微生物开发的新技术—研究成果的重点? 发挥产学相结合优势,在世界上首次开发出准确测量细胞内代谢物的糖磷酸盐的技术。? 代谢中间体糖磷酸盐大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。? 预计有助于代谢疾病的新型治疗方法、生物燃料生产微生物的开发、生物质资源植物的开发等。研究概要大阪大学研究生院情报学研究科的冈桥伸幸副教授、松田史生教授等生物信息计测学讲座研究小组,与(株)岛津制作所、大阪大学?岛津分析创新共同研究讲座※1饭田顺子特聘教授(岛津制作所分析计测事业部 生命科学事业统括部高级经理)的团队,在世界上首次开发出一项准确分析在细胞内代谢物中发挥着重要作用的糖磷酸盐※2的技术。这使得可以更准确地测量代谢流量。人类的每一个细胞都具有新陈代谢※3的功能,分解通过膳食等摄取的糖分,获取生存必需的能量和生长所需的制造新细胞的成分(氨基酸等)。一般认为代谢功能异常与糖尿病和癌症等各种疾病有关,为了阐明其机理,亟需一种准确测量糖降解过程中可能产生的代谢中间体的分析技术。其中,若干种被称为糖磷酸盐的代谢中间体具有相似的结构,即使2000年前后出现的代谢中间体的网罗式测量技术,经过近20年的发展,使用传统技术分离这些中间体非常困难,而且测量的准确性有限。此次,松田教授等人的研究小组利用岛津制作所开发的前沿分析仪器进行产学联合研究,成功开发出一种通过完全分离糖磷酸盐,准确进行分析的方法。将本方法应用于癌细胞时,可以更准确地测量代谢流量。今后,通过将本方法应用于各种细胞、组织等,并对所获得的数据进行分析,预期有助于疾病新治疗方法和药物的研发。另外,由于所有生物都具有代谢功能,因此本技术可应用于生产生物燃料的微生物和固定CO2的生物质植物,有助于环境友好产品制造技术的改进等各项研究的发展。本研究成果于9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》上。研究背景截至目前,已知构成生物的细胞将葡萄糖等糖摄入细胞内,通过糖酵解系统的代谢途径进行分解,并在此过程中制造能量及成为新细胞成分的前体物质。糖酵解是所有细胞生物的基本功能,近年来表明糖尿病和癌症等各种疾病与糖酵解系统有着密切的关系。而且,为培育生产生物燃料的微生物,正在尝试人工改善糖酵解系统。为了开展这些研究,需要准确测量糖酵解系统中大约15种代谢中间体。但是,糖酵解中间体(糖磷酸盐)大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。生物信息计测学讲座的冈桥副教授、松田教授等人,与(株)岛津制作所和大阪大学?岛津分析创新共同研究讲座开展共同研究,根据(株)岛津制作所拥有的负CI模式气相色谱/质量分析技术※4,开发一种新型分析方法,可以完全分离糖磷酸盐,准确测量其同位素标记率※5。而且,将本方法应用于乳腺癌细胞(MCF7)的分析,成功地测量了代谢流量,准确度比以往提高10倍以上。这是大阪大学的研究成果和(株)岛津制作所的技术成果相结合的产学合作研究成果。本研究成果对社会的影响(本研究成果的意义)根据本研究成果,通过测量各种生物可以获得糖酵解系统更准确的数据。通过对收集的数据进行分析和运用,阐明各种疾病与糖酵解功能之间的关系,有望获得癌症以外疾病的新型治疗方法和药物研发有关知识。而且,通过将本技术应用于微生物和植物,预计有助于生产生物燃料的有用微生物的开飞,固定CO2的植物改良等,环境友好产品制造技术等研究的发展。特别记载事项本研究成果于2018年9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》(Online)上。标题 :“Sugar phosphate analysis with baseline separation and soft ionization by gas chromatography-negative chemical ionization-mass spectrometry improves flux estimation of bidirectional reactions in cancer cells”作者名称 :Nobuyuki Okahashi, Kousuke Maeda, Shuichi Kawana, Junko Iida, Hiroshi Shimizu,and Fumio Matsuda此外,作为文部科学省新学术领域研究“代谢适应的Trans-Omics分析”的重要一环,本研究的部分研究在与大阪大学研究生院工学研究科福崎英一郎教授的合作下实施的。术语说明※1 大阪大学?岛津分析创新共同研究讲座 成立于2015年4月20日,旨在建立以“生物技术”为核心的环境友好型可持续社会系统。以大阪大学的代谢物组学(总代谢物分析)为核心竞争力,协同岛津制作所致力于解决各种问题。(URL:https://www.shimadzu.co.jp/labcamp/index.html)※2 糖磷酸盐磷酸基团与几乎所有生物拥有的糖相结合的代谢物群的总称。结构类似的物质很多,完全分离很难。※3 代谢所有细胞都通过代谢的一系列化学反应,供给生存所需的能量和蛋白质合成所需的前体物质。如果代谢发生异常,则会导致糖尿病和高脂血症等疾病。※4 负CI模式气相色谱/质量分析技术一种在气相色谱分离技术、质量分析检测技术中组合应用负CI电离技术的测量方法。岛津制作所是日本气相色谱及质量分析仪器的顶级制造商。※5 同位素标记率大阪大学研究生院信息科学研究科正在开发测量代谢流量的技术。向细胞施用碳稳定同位素(与碳的性质相同但质量不同的物质)标记的葡萄糖,通过调查碳的稳定同位素通过糖酵解系统转移到糖磷酸盐的情况,可以测量代谢流量。为了准确地掌握代谢流量,必须将各个糖磷酸盐完全分离,并测量其同位素标记率。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 农产品加工研究所构建苹果时空品质评价代谢物数据库
    我国是世界第一大苹果生产国和消费国,2022年全国苹果产量约3500万吨。随着消费习惯的改变,人们对果实品质和营养健康效益也越来越重视,而不同品种果实在食用品质、贮藏特性、营养品质等方面存在差异。果实特征与代谢物直接关联,建立基于营养代谢物的时空品质评价数据库是提升果实品质的基础,这不仅是满足人民对美好生活向往的需要,更是农业高质量发展、乡村振兴和改善人民生命健康的重要举措。农产品加工研究所基于广谱代谢组技术构建了苹果时空品质评价代谢物数据库,包含类黄酮、酚酸、有机酸、脂质、生物碱、单宁、氨基酸、核苷酸、糖及糖醇、萜类等2575种营养代谢物。对来自全球的292份自然群体苹果品质与代谢物含量进行分析,比较了不同族系差异代谢物及其营养特征,鉴定了特征代谢物对不同品种果实鲜食、加工、贮藏等特性的影响。在此基础上,基于全基因组关联分析鉴定了222877个与2205种苹果营养代谢物显著关联的位点。这是目前最大的苹果时空品质评价代谢物数据库,从基因组层面系统解析物质代谢调控位点,为我国果实品质改良、加工适宜性和营养品质评价等提供数据支撑,将极大地促进果实品质的数字化、标识化、优质化和加工原料品种专一化,为打造农产品品牌和提升生产加工标准化提供了技术支撑。该研究成果在国际顶级期刊《Genome Biology》(IF5-y=20.366)在线发表。农产品保鲜与物流创新团队林琼副研究员、研究生陈静、果蔬加工与品质调控创新团队刘璇研究员、迈维代谢王彬博士为论文共同第一作者,毕金峰研究员为通讯作者。研究材料采自国家苹果梨种质资源圃。研究得到了国家重点研发计划(2022YFD2100100)、国家苹果产业技术体系(CARS-27)、中国农科院农产品加工研究所创新工程院所重点任务(CAAS-ASTIP-G2022-IFST-02)等项目支持。原文链接:https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02945-6图 基于群体代谢视角揭示苹果品质改良机制
  • 智慧碰撞 探讨代谢组学研究的难题与挑战——紫荆代谢组学国际会议成功召开
    仪器信息网讯 2021年7月20日,由清华大学药学院主办、安捷伦科技(中国)有限公司协办的紫荆代谢组学国际会议在北京文津国际酒店成功召开。清华大学药学院胡泽平研究员和中国科学院化学物理研究所许国旺研究员共同担任本次会议主席,会议线上线下同步进行,近百位观众现场参会,近3万人次参与线上互动。会议现场会议开始,清华大学药学院教授、副院长、中药研究院院长、清华大学药学技术中心主任尹航教授,以及安捷伦高级副总裁兼首席技术官、美国国家工程院院士Darlene Solomon博士分别进行了致辞。尹航教授 清华大学药学院副院长尹航教授提到,今年是清华大学建校110周年,清华大学始终坚持面向世界科技前沿和国家的重大战略需要,坚定地走中国特色的自主创新之路。清华大学长期以来以文理学科交叉、中西融合的多学科平台为科学发展和社会进步做出了贡献。在新冠疫情的大环境下,我们积极响应习总书记提出的“面向人民健康”的号召,承担起引领科技发展方向,增进人类健康共同福祉的重要使命。今天的代谢组学会议是从整体角度出发,用高通量、可量化的组学数据分析,为疾病的发生、发展等全过程的全面认识提供支持,通过多组学的数据的整合分析已经成为科学家探索生命机制的新方向。代谢组学检测的是基因转录翻译等系列事件的最终产物,能够准确反映生物体系的状态,是当前组学发展的重要组成部分,期待今天的会议大家能够了解当前代谢组学研究的前沿进展。Darlene Solomon 安捷伦高级副总裁兼首席技术官、美国国家工程院院士Darlene讲到,此次大会聚焦生命科学和转化研究的重要课题,新冠疫情也证明,只有生命科学的进步才能为人类创造更健康的生活环境。目前生命科学研究面临很多挑战,需要技术的持续创新突破相关研究瓶颈。创新是安捷伦的基因,安捷伦不仅通过总部研发的持续投入来实现创新方案的推出,还不断拓展与科研学术客户的紧密合作来发掘创新的源泉。公司非常重视在组学解决方案上的创新,提供行业领先的代谢组学、脂质组学及多组学解决方案,同时整合细胞分析、NGS及病理学分析,帮助科学家实现疾病机制及下一代转化研究。安捷伦愿意成为用户最佳的合作伙伴,成就用户科研目标,提升人类生活质量。本次会议聚焦代谢组学前沿技术、代谢重塑与肿瘤、代谢重塑与病毒传染病等研究中的最新进展,共有10位国内外代谢组学领域具有重要影响力的专家学者通过现场或者在线的形式分享了精彩的报告。许国旺 研究员 中国科学院大连化学物理研究所报告题目:《向着代谢组的全景分析》税光厚 研究员 中科院遗传发育所分子发育生物学国家重点实验室报告题目:《Systematic discovery and functional analysises of metabolic disorders in COVID-19》Jason Locasale,PhD,Duke University(线上)报告题目:《The Impact of Cellular Metabolism on Chromatin Dynamics and Epigenetics 》瑕瑜 教授 清华大学化学系报告题目:《脂质组精细结构分析的质谱方法》张金兰 研究员 中国医学科学院北京协和医学院药物研究所报告题目:《基于代谢途径内源性代谢物分析新方法研究》朱正江 研究员 中国科学院上海有机化学研究所报告题目:《基于离子淌度质谱的多维高分辨代谢组学技术》冉小蓉 博士 安捷伦创新合作研究中心报告题目:《代谢组学、代谢流整合细胞分析——深入功能和机理阐释》Daniel Raftery,PhD, University of Washington报告题目:《So Why is Biomarker Validation So Hard in Metabolomics? Exploring Data Quality and Confounding Effects》Justin R.Cross,PhD,Donald B.and Catherine C.Marron Center Metabolism Center报告题目:《Building a successful in horse metabolomics capability for biomedical research》胡泽平 研究员 清华大学药学院报告题目:《新型代谢组学技术揭示病毒性传染病的代谢重塑》会议特别设置了圆桌讨论环节,主持人胡泽平从对报名听众征集到的200多个的问题中选择了7个具有代表性的问题,包括代谢组学技术标准化、脂质组学质谱精细结构、非靶向代谢组学中代谢物鉴定深度、空间代谢组学、代谢流技术、单细胞和亚细胞的代谢组学、多组学联合研究等内容。与会嘉宾现场进行了热烈的讨论,智慧碰撞,为代谢组学研究人员提供了更多思路。圆桌讨论全体参会人员合影后记:代谢组学作为生命组学家族的最新成员和重要环节,被广泛应用于与生物医药相关的各个领域,如疾病机制阐释、药物靶标发现、药物毒理及安全评价、精准医学和用药及中医药现代化等研究。此外,代谢组学与其他生命组学和人工智能等生物计算技术结合,可推动精准大健康的逐步实现。紫荆代谢组学国际会议,专家们带来了满满的干货,现场嘉宾和听众收获匪浅,纷纷表达了对清华大学药学院和安捷伦的感谢。正如许国旺研究员所言,代谢组学是正在成长发育的青少年,以后前景不可估量。目前代谢组学研究中还存在一些挑战和难题,这样的学术探讨十分必要,期待在相关领域专家和仪器企业的共同努力下,推进代谢组学更快发展,更好的应用于人类健康的保障当中。
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 研究速递丨LCMS-8060助力广泛靶向代谢组学研究
    mGWAS (metabolome Genome-Wide Association Study)指基于代谢组学的全基因组关联分析,是将代谢组数据作为表型,与基因型数据进行关联分析的一种领先方法。由于代谢组数据对表型鉴定更为精细,因此关联分析的精度比传统GWAS分析更高。 海南大学和华中农业大学的罗杰教授团队在mGWAS领域建树颇丰,近年来已有10余篇相关研究发表在高分杂志上。 2020年12月7日,《Nature Plants》杂志在线发表了罗杰教授团队的最新文章《Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance》,该篇研究针对水稻中双萜化合物的合成通路相关基因簇进行了深度解析。双萜类化合物是水稻中植物抗菌素的主要种类之一,本研究在7号染色体(DGC7)上发现了完整编码5,10-双酮蓖麻烯(单环蓖麻烯衍生物的成员)整个生物合成途径的一个基因簇。 文章采用领先的代谢组检测技术——广泛靶向代谢组检测技术,实现高通量、高灵敏、广覆盖、无差异的检测近1000种代谢物,助力代谢组学和多组学研究。水稻中双萜基因簇的鉴定 本研究使用超高效液相色谱三重四极杆质谱联用仪LCMS-8060,对采用相应候选物侵染或未侵染的本氏烟草叶片进行代谢谱分析,10-酮蓖麻烯和5,10-双酮蓖麻烯对照品从水稻叶中纯化得到。 5,10-双酮蓖麻烯的质谱图 图a为本氏烟草叶中同时过表达OsTPS28,OsCYP71Z2和OsCYP71Z21的产物图b为5,10-双酮蓖麻烯标准品本文中使用的串联质谱仪LCMS-8060和GCMS-TQ8040(拍摄于华中农业大学作物遗传改良国家重点实验室)
  • 岛津超快速质谱助力靶向代谢组学研究
    靶向代谢组学中,通常需要同时检测多个目标组分,这对质谱数据的采集速度提出了很高的要求。 岛津超快速质谱(UFMS)拥有业内首屈一指采集速度。以LCMS-8050为例,其驻留时间(Dwell time≥0.8 ms)、切换时间(Pause time≥1 ms)、扫描速度(Scan speed≤30000 u/sec)、正负极切换速度(Polarity switching time=5 ms);并且具有触发子离子扫描功能,可以实现MRM定量的同时对目标组分进行子离子扫描定性分析。 以下图为例,假设一个峰宽6秒的UHPLC色谱峰用于定量分析,必须有20个采集点左右,峰型才足够平滑,峰面积和出峰时间的重复性才能达标。如此算来,每个采集点的循环时间(loop time)只有300 ms。在300ms的时间段内,需要进行所有目标组分的采集,如下AB正离子,CD负离子: 1.采集循环开始,切换时间内对质谱通道电压进行调整(为A离子对“铺路”);2.A母离子通过四级杆Q1、碰撞池内进行碰撞、四级杆Q3筛选子离子、最终到达检测器进行离子计数,这段时间总和即为驻留时间;3.为B离子重复以上过程,到此正离子采集完成;4.接着切换从离子源到质谱通道到检测器的电压为负,此为正负极切换时间;5.进入到C、D的采集过程,过程与AB一样;6.最后将电压切换为正,到此结束整个循环时间,开始下个采集点的循环时间。 这只是两个正离子和两个负离子的采集例子,如果采集目标组分数量急剧增加,在峰宽不变的情况下(即循环时间loop time不变),分到每个离子的驻留时间和切换时间将急剧减少,因此最小驻留时间和切换时间,直接决定了该质谱在所能同时采集的离子对数量,这对于靶向代谢组学或其他需要进行多目标物同时筛查的项目,至关重要! 图2. 质谱采集信号的过程,以及频率和点数的关系最后,举例说明岛津UFMS在靶向代谢组学中的一个应用实例:脂质组学属于代谢组学的一个分支。为进行靶向脂质组学研究,岛津公司利用超快速质谱适于多化合物同时检测的特性,推出了第三版脂质介质方法包:包含了主要脂类化合物如类花生酸、二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等多价不饱和脂肪酸代谢物,花生四烯酸乙醇胺(AEA)、血小板活化因子(PAF)等196种主要脂质介质及其相关物质的色谱、质谱条件(MRM通道)。 该方法只需20分钟的色谱分析便能获得这196种化合物的脂质介质的分析结果。此外,方法包中还根据出峰时间和结构特性,准备了18种氘代内标化合物的MRM通道。另外,该方法包可进行保留时间校正,可使用内标法进行半定量,所以可用于检索多变量解析时的标记物。下图显示了超快速质谱MRM模式中,196种脂质和18种内标同时分离所采集得到的色谱图。 图3. 脂质介质方法包用于196种脂质,18种内标的分离 撰稿人:钟启升
  • MDO会议召开 赛默飞世尔展示药物代谢研究技术
    第18届国际微粒体和药物氧化学术会议 (18th International Symposium on Microsomes and Drug Oxidations, 2010MDO) 由中国医学科学院主办、药物研究所承办,于2010年5月17至20日在北京国际会议中心召开。来自世界各国著名国立科研院所、大学和制药企业的从事药物代谢的约500多位学者,参加了此次会议以积极推广和相互交流与药物代谢基础理论和应用研究的最新技术。   作为领先的科学仪器商, 赛默飞世尔科技参加了此次会议,集中展示了其秉承Orbitrap质量分析器的Exactive高分辨静电场轨道阱液质联用仪,革命性的LTQ Velos双压线性离子阱液质联用仪,LTQ Orbitrap XL线性离子阱静电场轨道阱组合质谱仪,并展示了赛默飞世尔科技在药代动力学及药物研究领域的诸多应用文献。     5月18日上午,赛默飞世尔科技代谢组学策略市场经理黄莹莹博士应邀在大会上做了题为“利用碎片离子查找与自动碎片预测技术进行代谢物检测和鉴定”的报告,介绍了Thermo Scientific Mass Frontier软件在代谢物研究领域的相关应用。   同天中午,赛默飞世尔科技举办了专场午餐研讨会,约120余位专业人士参加了此次会议。施贵宝Ruan Qian博士做了题为“利用高分辨LC/MS分析代谢产物以支持药物研发”的报告。Ruan博士表示,LC/MS 已广泛用于药物代谢研究领域,Ruan博士所在的实验室一直使用高分辨LTQ Orbitrap线性离子阱静电场轨道阱组合质谱,开发高度敏感和有效的分析方法,在药物研发中的高通量代谢物鉴定和反应性代谢物筛选中取得了很好的效果。     Ruan博士     踊跃提问   现场听众踊跃提问,对Ruan博士的研究成果以及Orbitrap高分辨质谱在药代学领域的高效应用表现了浓厚的兴趣。   随后,赛默飞世尔科技代谢组学策略市场经理黄莹莹博士做了题为“台式Orbitrap结合新型定性和定量软件包MetQuest加速药物研究进程”的报告,介绍了Orbitrap高分辨、高质量精度的全扫描数据可以保障DMPK快速分析,而无需为目标化合物创建具体的研究方法。除了化合物的动力学数据,其代谢产物的鉴定和相关定量结果也可同时提供。新型软件工具MetQuest可基于HRAM数据的新型算法自动处理报告定性和定量结果。     黄莹莹博士   作为领先的科学服务商,赛默飞世尔科技是药物开发与药代研究领域专家人士的最佳选择,我们提供的优质技术平台必将简化您的工作,助您更快成功!   关于赛默飞世尔科技   赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站www.thermo.com.cn www.fishersci.com.cn 。
  • 代谢组学| 岛津质谱助力生物标志物的研究与发现
    导读代谢组学(Metabonomics / Metabolomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分,已经应用到了诸如动物、植物、微生物的机理研究中,着重探索、发现与疾病、医药、功能相关的生物标志物(Biomarker)。生物标志物是指“一种可客观检测和评价的特性,可作为正常生物学过程、病理过程或治疗干预药理学反应的指示因子”,寻找和发现有价值的生物标志物已经成为当前生物、医药领域的研究热点。然而,生物标志物的发现,是一场砂砾淘金、去伪存真的艰难征程,面临诸多挑战。 挑战1 生物标志物的发现,海量筛选,准入高,难度大 相比于基因组学和蛋白组学,代谢组学难度急剧增加。原因有: 1. 目标物范围更广:基因/转录组只需测4种核苷酸排列,蛋白组测20种氨基酸排列,代谢组则包含各类小分子代谢物,要进行结构鉴定可比大海捞针; 2. 需要交叉专业知识:如将代谢组学应用在生物研究中,需要分析化学背景进行分离检测,这些数据的正确解析和可视化需要有统计分析的基础;最后需要了解生物学知识以诠释数据背后的生物学意义; 3. 软硬件要求高:使用的分析体系大都属于高端仪器及其配套软件,比如色-质谱联用系统里色谱可选GC-MS,LC-MS,CE-MS,质谱根据靶向、非靶向可选QQQ,Q-TOF,IT-TOF等;海量数据采集完毕还需要专业、多功能数据分析平台解读数据,最后还要对潜在生物标志物进行结构鉴定,因此代谢组学每一步都是准入高,难度大! 挑战2 如何去伪存真,减少无意义差异物,找到真正的生物标志物 代谢组学巨大的挑战之一,是如何减少生物样品本身,或采集、保存、前处理和分离检测过程中产生“非预期”或“噪音”代谢物,从而去伪存真,找到真正的差异生物标志物: 1. 个体情绪差异、非目标病因的生理差异(近期饮食习惯、喝水量、排尿量、运动量、生病、过敏)、其他药物的耦合作用/副作用,都会对个体代谢物产生非预期的影响; 2. 在采集样本时,如血样、组织、器官,采集者参差不齐的技术熟练度也会引入其他刺激和干扰因素; 3. 样品的保存同样会引入大量干扰物或造成样品变化。比如保存前是否存在溶血,保存温度,冷冻时间长短等,都会使样品产生不可预期的变化; 4. 不同的样品前处理手段,如液液萃取、固相萃取、蛋白沉淀等,其化学、物理选择性不同;另外,操作人员的熟练度、溶液量、溶液污染、萃取柱批间差等样本外的误差,都可能会造成样品组内和组间差异。 海量的待选小分子目标物,加上上述这些“不确定性”和“科学偏差”产生比生物标志物浓度更高、响应更强的无意义组别差异物,使得代谢组学在生物标志物发现的路上,困难重重,犹如大海捞针,沙里淘金。虽然后续的统计分析会把大多数的这类干扰物去除,却不能保证最终能得到正确的生物标志物,或使其处于最显著地位。 虽然代谢组学研究困难重重,但经过多年的研究探索,科研界都认同利用代谢组学的思路发现生物标志物是方向正确、前景广阔的,相信随着分析仪器,特别是高端质谱及其配套软件和科学家研究水平的提高,越来越多有用的生物标志物会被挖掘出来造福于人类。 岛津是全球领先的质谱研发、生产厂家:从上世纪70年代开始研发扇形质谱,成功生产了世界上第一台商品化扇形磁场型质谱GCMS LKB9000;80年代开发了基质辅助激光解析电离飞行时间质谱(MALDI-TOF)和电感耦合等离子体质谱(ICP-MS),岛津科学家田中耕一先生在2002年因为MALDI离子源的研发获得了诺贝尔化学奖,因此岛津拥有深厚的质谱研发基础和实力。 目前岛津质谱的产品线齐全,有机质谱包括单四极杆质谱(SQ)、三重四极杆质谱(TQ)、高分辨质谱离子阱飞行时间质谱(IT-TOF)和四极杆飞行时间质谱(Q-TOF);无机质谱有ICP-MS;生命科学领域有MALDI-TOF、质谱显微镜等。这些质谱仪器与分离技术联用,满足科学研究的各种需求。基于岛津高端质谱,国内高校研究所发表了多篇代谢组学用于脑卒中、癌症和动物生理相关的生物标志物发现的文章,在此系列微信中挑选出典型案例,帮助读者进一步了解疾病和生理现象。
  • 安捷伦科技公司授出心血管代谢疾病转化研究基金
    安捷伦科技公司授出心血管代谢疾病转化研究基金美国杜克大学 Christopher Newgard 博士的团队采用安捷伦平台对疾病机制展开深入研究 2014 年 1 月 13 日,北京 — 安捷伦科技公司(纽约证交所代码:A)今日宣布向新成立的美国杜克大学分子生理学研究所(DMPI)授予研究基金。DMPI 研究团队目前正在使用安捷伦的整合生物学解决方案深入研究主要慢性疾病(如,心血管疾病)的代谢和生理学机制。 DMPI 团队的负责人是 Christopher Newgard 博士,他在美国杜克大学医学院药理学和癌症生物学系担任教授,同时担任 Sarah W. Stedman 营养及代谢研究中心和分子生理学研究所的主任。 Newgard 博士说:“杜克分子生理学研究所致力于将强大的基因组学、表观基因组学、转录组学和代谢组学平台与计算生物学、临床转化医学和基础科学经验相融合,以深入研究心血管代谢疾病的机制,我们衷心感谢安捷伦在研究方面给予的支持,并且十分期待与他们的进一步合作,推进心血管疾病和未确诊代谢疾病的深入研究。” Newgard 博士的生物学通路研究以 Agilent GC/MS、三重四极杆 LC/MS 和四极杆飞行时间 LC/MS 系统,以及带化学工作站功能的 MassHunter 工作站等软件为基础,辅以 Agilent-Fiehn GC/MS 代谢组学 RTL 谱库和使用 METLIN 个人代谢物数据库和谱库的 MassHunter 定性软件。安捷伦的 GeneSpring GX 软件、Mass Profiler Pro 和 Pathway Architect 将在数据集成和通路导向解析方面发挥重要作用。 “我们很高兴能够为杜克大学 Newgard 博士和他的团队在开创性转化医学研究领域提供支持,”目前正在与该团队紧密协作的安捷伦“组学应用”主管 Steve Fischer 说道,“他们将拥有整合不同“组学数据”的强大功能,深入研究复杂疾病机制并查明之前不为人知的疾病表型通路。此外,我们的解决方案还将帮助他们更快速地了解心血管代谢疾病的复杂过程,从而更快速地开发治疗方案。” “我们在将整合方案应用于解决心血管代谢疾病之类的重要健康问题方面拥有强大的技术基础,”安捷伦整合生物学总监 Leo Bonilla 补充道,“所以,我们非常期待能够为 Newgard 博士在杜克进行的开创性研究提供进一步支持。”关于安捷伦科技公司的大学事务 安捷伦在支持全球高等教育和研究方面发挥着积极作用。要了解有关最新研究合作、研究工具、教育支持、顶尖大学人才招募和慈善机构的详细信息,请访问:安捷伦大学事务。关于安捷伦整合生物学解决方案 安捷伦科技公司为研究者们提供了涵盖所有四门主要“组学”学科的分析产品。这些组合式硬件/软件和信息学解决方案正在推动新一代生物学通路的多组学研究,并且获得了与药物响应、耐药性、诊断标志物和基础疾病/毒理学途径相关的重要信息。有关安捷伦整合生物学解决方案整套产品的更多信息,请访问 http://biology.chem.agilent.com。关于安捷伦科技公司 安捷伦科技公司(NYSE:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后电子测量公司名字为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 大气污染对代谢异常人群急性损伤效应的定组研究
    p   流行病学及毒理学研究已经确证大气污染是心肺系统疾病的重要风险因素。近年,少量研究也指出大气污染物暴露与代谢异常疾病(例如糖尿病)的健康指标可能存在关联。 br/ /p p   北京大学环境科学与工程学院朱彤课题组就此提出了一系列科学问题:代谢异常人群是否对大气污染更易感?大气污染暴露是否会加快代谢疾病进程?其背后的生物学机制如何?哪些污染物是更重要的危险因素?等等。考虑到中国严重的空气污染现状、庞大的糖尿病人口基数及疾病负担,回答这些科学问题对于我国的公共卫生政策具有重要意义。但由于相关研究非常有限,在研究设计及方法上也存在局限性,因此这些科学问题目前还没有得到系统的证据支持。 /p p   在上述背景下,朱彤课题组于2013年起开展了前瞻性人群定组研究(SCOPE),通过与北京大学校医院合作,招募糖尿病前期人群(血糖浓度高于正常水平、但未确诊糖尿病)及健康对照人群各60名,在一年间对受试人群进行了四次重复随访测量。临床随访中完成功能性指标测量并采集呼出气、呼出气冷凝液、血清、血浆、尿样等多种生物样品,结合流式细胞仪、代谢组学等分析手段,详尽评价了每名受试者呼吸及心血管系统性炎症、血糖血脂代谢、血管内皮功能、氧化应激损伤等多条机制通路的相关生物标志物水平 同时利用北大环境观测站点以及个体采样器,发展大气污染的暴露组学研究,获得大气颗粒物全面的理化特征(各粒径段数浓度及化学组分)和个体暴露水平。 /p p   通过多项精细的生物标志物及大气污染浓度测量及暴露、代谢、基因等多种组学的综合分析,SCOPE研究有助于回答“代谢异常人群是否对大气污染更易感、大气污染暴露是否会加快代谢疾病进程”等科学问题,并可深入揭示大气污染物暴露对人群心肺及代谢系统的损伤效应及潜在生物学机制。 /p p   SCOPE人群项目的研究方法设计相关论文近日在线发表于SCIENCE CHINA Life Sciences (《中国科学:生命科学》英文版),敬请关注 ▼ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/9d3ea031-01c4-44c5-89ba-7d0b2fa1c9ad.jpg" title=" 1.jpg" width=" 597" height=" 124" style=" width: 597px height: 124px " / /p p   [该研究得到了国家自然科学基金(41421064, 21190051,41121004)、以及中国博士后基金(154248)的支持。朱彤教授为通讯作者,朱彤课题组王彦文博士和韩逸群博士后为论文共同第一作者] /p p   点击下方链接,可免费阅读该论文详细内容↙ /p p   http://engine.scichina.com/publisher/scp/journal/SCLS/doi/10.1007/s11427-017-9074-2?slug=full%20text /p p br/ /p
  • 【专刊论文推荐】上海交通大学吕海涛研究员:基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢
    p style=" text-align: justify line-height: 1.75em "    strong 仪器信息网讯 /strong 本期推荐的是发表在《Journal of Analysis and Testing》2020年第3期的 strong 上海交通大学系统生物医学研究院吕海涛研究员课题组 /strong 原创论文 strong “基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢” /strong 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6a08beaa-f9b4-45f6-9d6c-a71acc5cbd57.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center line-height: 1.75em "   基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢 /p p style=" text-align: center line-height: 1.75em "   郭睿,吕海涛* /p p style=" text-align: justify line-height: 1.75em "   近日,国内第一本国际性的英文分析化学期刊Journal of Analysis and Testing (JOAT) 特邀请中国科学院大连化学物理研究所许国旺研究员作为客座编辑,主持“Metabolomics: state of art in methoddevelopment and applications”专题。上海交大系统生物医学研究院吕海涛课题组受邀发表基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢的最新研究成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/80edb75a-ab8d-4946-845d-843615694741.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify line-height: 1.75em "   生物膜是由多种微生物在外界压力环境下产生,表面被胞外聚合物(EPS)包裹的微生物群落,EPS的存在使细胞对杀虫剂,抗生素以及其他入侵力的抵抗力都明显高于其悬浮细胞。生物膜的形成对各个领域都产生了影响,包括临床感染,环境污染,农业生产,食品工程和工业污染等。然而,生物膜的形成机制尚未完全阐明,并且目前我们还缺乏解决这些问题以及破坏生物膜形成的有效手段。在本研究中,我们试图探寻金属锰离子通过调节生物膜形成过程的关键功能代谢产物进而认知其调控生物形成的代谢模式与特征表型,以为后续生物膜形成机制研究奠定靶向调控物质基础。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/388cbcf4-2dfb-43a5-9b92-a42f7ac258e2.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify line-height: 1.75em "   本研究初步发现,金属锰离子能够调控大肠杆菌生物模的形成,与作用剂量具有一定的依存关系,且对其微观内质结构具有明显的修饰作用,进而影响稳态生物膜的形成与解离。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/d74c56a0-1141-4ad9-9e1d-dbbc853c3ce4.jpg" title=" 4.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/43fa82ea-6ee5-4c86-8297-1e88465fb16b.jpg" title=" 5.jpg" / /p p style=" text-align: justify line-height: 1.75em "   进一步,经过精准靶向代谢组学分析,我们初步确证锰离子具有调控生物膜形成过程中特征分子代谢的潜力,而这些代谢直接关联生物膜的形成。由此,我们认为,锰离子或许能够成为抑制和调控生物膜形成的一种生物基质选择,而其靶向调控的功能代谢物,也具备调控生物膜形成的分子特征。未来可考虑从锰离子靶向调控功能代谢物角度,设计全新策略,清除生物膜的形成,彻底解决上述不同生命科学领域与生物膜相关的有害挑战。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/f1b30c68-5ce7-44a0-9bf3-b24f437699f4.jpg" title=" 6.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/89426807-d3b6-47a6-988c-5dd2a5467724.jpg" title=" 8.jpg" / /p p style=" text-align: justify line-height: 1.75em "   课题组正在基于上述代谢表型结果,聚焦具体有价值功能代谢物,结合生物合成调控修饰策略,开展相关机理研究,核心目标是从金属调控代谢维度阐明生物膜形成与解离的分子机理,为生物膜相关挑战性科学与转化应用问题的解决提供共性策略和方法参考。 /p p style=" text-align: justify line-height: 1.75em "   课题研究得到国家重点研发计划、国家自然科学基金和上海交通大学高层次人才启动基金等支持。 /p p style=" text-align: right line-height: 1.75em "   (感谢吕海涛研究员团队提供论文主要内容翻译) /p p style=" text-align: justify line-height: 1.75em "   下载本文: Guo, R., Lu, H. Targeted Metabolomics Revealed the Regulatory Role of Manganese on Small-Molecule Metabolism of Biofilm Formation in Escherichia coli. J. Anal. Test. (2020). a href=" https://doi.org/10.1007/s41664-020-00139-8" _src=" https://doi.org/10.1007/s41664-020-00139-8" https://doi.org/10.1007/s41664-020-00139-8 /a /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/73e7f637-5326-4057-aefe-d245e15b3247.pdf" title=" 10.1007@s41664-020-00139-8.pdf" 10.1007@s41664-020-00139-8.pdf /a /p p style=" text-align: center line-height: 1.75em "   上海交通大学吕海涛研究员简介 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ac915f0a-4375-4c52-9eaa-b84c216234d0.jpg" title=" 微信图片_20200727115812.jpg" alt=" 微信图片_20200727115812.jpg" / /p p style=" text-align: justify line-height: 1.75em "   吕海涛博士,,上海交通大学研究员(教授)/课题组长/博士生导师,国家重点研究发计划课题负责人,权威的QUT Vice Chancellor’ s Research Fellowship校长特聘教授席国际人才基金获得者,交通大学绿色通道引进高层次人才和功能代谢组学科学实验室主任。 /p p style=" text-align: justify line-height: 1.75em "   2009年于黑龙江中医药大学获得生药学博士学位,师从王喜军教授。2009-2013年先后在美国爱因斯坦医学院,华盛顿大学医学院和麻省理工学院完成博士后训练,研究方向为代谢组学、化学生物学和RNA Modifications, 合作导师为Irwin J. Kurland 教授, Jeffrey P. Henderson 教授和Peter C. Dedon 教授。2012年9月-2015年12月,任重庆大学创新药物研究中心(药学院)“百人计划”研究员,博士生导师,主任(院长)助理,功能组学与创新中药研究实验室负责人。2015年12月,加盟上海交通大学系统生物医学研究院,任课题组长,研究员,博士生导师,领衔功能代谢组科学实验室建设与发展。 /p p style=" text-align: justify line-height: 1.75em "   先后在Mass SpectrometryReviews, Journal of Proteome Research, Molecular Cellar Proteomics,Pharmacological Research, 和Liver International 等权威杂志发表SCI检索论文46篇,被Nature Chemical Biology, Chemical Reviews和Mass Spectrometry Reviews 等著名杂志引用1000余次,并发表会议论文30余篇,国内外学术会议和科研机构特邀学术报告40余次,担任分会主席主持会议5次。目前担任自2013年7月起,兼任澳大利亚昆士兰科技大学校长特聘教授/博士生导师。中国生物物理学会代谢组学分会副秘书长,世中联网络药理学专委会常务理事,中国药理学会网络药理学专委会理事,中国药理学学会分析药理学专委会创会理事,美国科学促进会(AAAS)荣誉会员和国际代谢组学学会会员。同时担任著名SCI检索杂志Phytomedicine (JCR 1区,IF 4.2)副主编,Frontiers inMicrobiology(IF 4.1)副主编,以及Pharmacological Research (IF 5.57)顾问主编,Scientific Reports (IF 4.1)和Proteomics-Clinical Applications (IF 3.5)编委,以及SCI检索杂志Acta PharmaceuticaSinica B (IF 5.7)和Chinese Journal of Natural Medicines (IF 1.9)青年编委。并受邀为Mass SpectrometryReviews, NPJ Systems Biology and Applications, Journal of Proteome Research,Biomacromolecules 等20余本SCI检索杂志审稿,国家自然科学基金委和澳大利亚NHMRC基金评审专家。 /p p style=" text-align: justify line-height: 1.75em "   近五年,吕海涛博士先后主持国家重点研发计划课题1项,国家自然科学基金面上项目2项,中央高校基本科研业务费重大项2项,重庆自然科学基金面上项目1项,QUT Vice Chancellor’s Research Fellowships 1项(校长特聘教授席国际人才基金项目), 上海交通大学特别研究员计划项目1项(绿色通道引进高层次人才项目),重庆大学百人计划项目1项(引进海外高层次人才项目)。获教育部科技成果一等奖1项,获批合作发明专利1项。 /p p style=" text-align: justify line-height: 1.75em "   联系 Email: haitao.lu@sjtu.edu.cn /p p br/ /p
  • 液质联用法在皂苷体内代谢产物分析中的研究
    p 皂苷是许多中草药如人参、远志、桔梗、甘草、知母和柴胡等的主要有效成分之一,药理研究表明皂苷类成分具有抗菌、抗肿瘤、调节机体代谢及免疫、治疗心血管疾病和糖尿病等的生物活性。采用现代化学,药理学,生物学,医学,生物信息学等多学科研究方法,对常用中药及复方进行系统的化学成分,体内过程,配伍规律,作用机制等研究,阐明药效物质和作用机理;将中药有效物质及其配伍研制成为疗效确切,安全性高,有效成分清楚,作用机理明确,质量可控,剂型先进,服用方便的现代中药;同时探讨有效成分的生源途径和生物合成。诠释中医药理论,创制现代中药,促进中药现代化和国际化。 /p p   采用色谱-质谱连用法进行皂苷体内代谢产物分析,为阐明中药的治病机制提供有利的证据。液相色谱-质谱联用(LC/MS)技术是一项集高效液相色谱HPLC的高分离性能与串联质谱的高灵敏度、高专属性优点于一身的生物分析技术,它不需要分析物之间实现完全的色谱分离,其多窗口检测功能允许同时对多个成分进行定量分析。 /p p   中草药及其方剂成分复杂,HPLC与UV或DAD检测器相联接,对于单个色谱峰仅能提供保留时间及紫外吸收等信号,而对未知成分所能提供的结构信息相当有限。色谱峰的指认必须有对照品,而大多数中药化学成分的对照品很难获得,而对于体内中药药物分析,一般的检测技术也难以满足给药后血药浓度的测定要求。 /p p   HPLC/MS的应用可以集HPLC的高分离效能与串联质谱的高灵敏度、高专属性的优点于一体,,并能够给出被测组分的分子量信息,通过多级串联质谱分析,还可以得出被测物质的结构信息。 /p p   1、液相色谱串联质谱法进行人血液中伪人参皂苷代谢产物分析 /p p   建立液相色谱串联质谱法测定人血浆中伪人参皂苷GQ浓度。在血浆样品中加入适量内标,以乙酸乙酯萃取后采用Waters Xevo TQSLC-MS/MS进行分析。采用Poroshell 120 EC C8色谱柱(2.1 mm× 50 mm,2.7μm),柱温40℃,以甲醇-10 mmol· L-1醋酸铵水溶液(80∶20)为流动相,流速0.3 mL· min-1 采用多反应离子监测(MRM)的扫描模式,以电喷雾离子源(ESI)在负离子电离模式下进行测定。 /p p   该方法的线性范围为2.500~5000 ng· m L-1,最低定量限为2.500 ng· m L-1,日内、日间精密度均小于15%,准确度在85%~115%之间,萃取回收率约9%~11%,基质效应约66%~73%,稳定性考察结果良好。药动学试验结果表明,静注伪人参皂苷GQ 120 mg· 次-1,每日1次,连续用药5 d后,达峰时间为2 h,半衰期约10 h。试验第1 d和第5 d主要药代动力学参数基本一致,计算蓄积系数分别是RC max=0.964± 0.099,和RAUC=0.965± 0.181,两者均接近1。 /p p   该方法适用于伪人参皂苷GQ的人体药代动力学研究。在此给药方案下,伪人参皂苷GQ在人体内没有明显蓄积现象,连续给药不影响伪人参皂苷GQ的人体药代动力学过程。 /p p   2、LC-MS/MS进行大鼠血液中丫蕊花皂苷代谢产物分析 /p p   采用高效液相-串联质谱(LC-MS/MS)法测定大鼠血浆中丫蕊花皂苷G的含量,并研究其在大鼠体内的药动学特征。方法采用Phenomenex Luna C18色谱柱(150 mm× 2 mm,3μm),流动相为乙腈-水(含0.1%甲酸),流速0.2 mL· min~(-1),以人参皂苷Rg3为内标 分别于大鼠尾静脉注射丫蕊花皂苷G 0.25、0.5、1 mg· kg-1,给药后于不同时间点采血,经固相萃取法处理后,采用上述LC-MS/MS法测定血药浓度 采用DAS 3.0软件、非房室模型拟合药代参数。结果 0.01~1.0μg· m L-1丫蕊花皂苷G与峰面积的线性关系良好,方法学考察均符合要求 大鼠静脉给药后的血浆药动学参数为:t1/2=3.447± 0.898 h、MRT0-∞=4.568± 1.075 h、CL=0.858± 0.171L· h-1· kg,AUC、Cmax随给药剂量的增加而等比增大,符合线性药动学特征。此方法简便、灵敏,结果准确,适用于大鼠血浆中丫蕊花皂苷G的含量测定及其药动学研究。 /p p   也有研究者采用HPLC-ESI-MS/MS方法对血塞通注射液中皂苷进行定性定量分析。还有研究者采用加压溶液萃取法(PLE)与HPLC-DAD-MS技术测定人参叶和人参中9种皂苷及2种聚乙炔醇类化合物(人参环氧炔醇,人参醇),这是一种快速检测中药的方法,对于控制人参的质量很有帮助。 /p p   建立可靠的分析方法是进行药物体内代谢产物分析的前体,随着现代色谱联用技术的发展,体内多微量代谢产物的分离、鉴定已经成为了一个连续过程。尤其是LC-MS样品前处理简单,一般不要求水解或衍生化处理,运用LC-MS技术不仅可以避免复杂繁琐的分离、纯化代谢产物的工作,而且可以分离鉴定难以辨识的体内痕量代谢产物。 /p p /p
  • 以普洱茶为例介绍代谢组学研究中药的新思路
    p   上 span style=" font-family: times new roman " 海市第六人民医院转化医学中心研究组最近应邀在美国《科学》杂志为中药研究增设的副刊Science,The Art and Science of Traditional Medicine上发表综述文章,贾伟教授针对中药研究的瓶颈问题——复杂成分中药的药代动力学,提出采用代谢组学与生物学分析技术相结合的手段进行多组分中药药物代谢动力学研究的新策略,并提出了Poly-PK(polypharmacokinetics)的新概念,文章以普洱茶中多组分的药代动力学为例子展示和总结了Poly-PK的研究思路和方法。 /span /p p span style=" font-family: times new roman "   普洱茶根据发酵工艺不同分为生茶和熟茶两种,生茶由晒青茶精制而成,熟茶则需经过渥堆、发酵的过程,并且一般认为普洱茶存放时间越长,茶的色泽味越好,生物活性作用也越强。前期的实验中,研究小组通过对存放1~ 10年的普洱熟茶成分谱的分析发现,随时间的增加,普洱茶的化学成分谱随之发生明显变化。与1年的普洱茶相比,10年的茶中的生物活性成分,如表儿茶素、葡萄糖含量增加,而茶中具有神经兴奋作用的咖啡因含量则相对减少。对不同工艺制备的茶进行比较后发现,茶叶中的色素,茶褐素(theabrownin, TB)在普洱茶中含量较高,而立顿红茶和龙井绿茶则以茶红素(thearubigin, TR)为主,这可能与普洱茶独有的渥堆发酵工艺有关。 /span /p p span style=" font-family: times new roman "   很多研究表明普洱茶具有降低血脂和血清总胆固醇水平的作用,但对普洱茶中究竟哪些是真正被机体吸收利用的活性成分并不十分清楚。研究小组利用代谢组学平台采用Poly-PK的研究思路对普洱茶中的化学成分进行了药代动力学研究。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" mmexport1460432233165_副本.png" src=" http://img1.17img.cn/17img/images/201604/insimg/93710b3b-c992-413c-a4cd-62803605b87a.jpg" / /span /p p span style=" font-family: times new roman "   首先,研究人员对志愿者饮茶后0、1、3、6、9、12、24小时的尿液样本分别进行收集,然后采用超高效液相色谱四级杆-飞行时间质谱仪和气相色谱-飞行时间质谱仪对普洱茶提取液中所含化学成分以及人喝茶后尿液中的代谢成分的变化进行了研究。采用多元相似性分析方法,将喝茶后不同时间点的尿液与0点相比较,寻找到喝茶后引起改变的内源性物质118种。将喝茶后不同时间点的尿液与茶提取液相比较,得到尿液中有19种物质成分是从普洱茶中吸收的,还有26种物质成分是从普洱茶吸收并经体内代谢产生的,接下来又通过相关性分析研究表明这几组物质间存在正相关或负相关关系。如发现咖啡因与它的代谢产物次黄嘌呤、茶碱、马尿酸、3-羟基苯乙酸呈明显正相关。而次黄嘌呤与内源性小分子物质鸟氨酸、缬氨酸、酪氨酸等呈明显正相关,茶碱与2-甲基鸟苷呈正相关而与尿素等呈负相关,升高的3-羟基苯乙酸导致氨基丙二酸二乙酯和2-氨基丁酸的升高。该研究结果阐明了喝茶后能被机体吸收的成分物质以及能产生生物活性作用的物质组成基础,并以期刊封面论文发表在2012年的Journal of Proteome Research上。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" mmexport1460432229668_副本.png" src=" http://img1.17img.cn/17img/images/201604/insimg/a1b5c4f9-1b44-4aa5-a2aa-44d092ff9430.jpg" / /span /p p span style=" font-family: times new roman "   Poly-PK的研究思路可以针对中药多组分的特点对复杂成分进入体内后的动态代谢过程,以及对机体内源性小分子代谢物的影响同时进行评价,阐明多组分药物在体内的吸收、代谢,清晰的了解复杂成分中药中哪些可能是具有生物活性的物质成分。 /span /p p span style=" font-family: times new roman "   原文出处: /span /p p span style=" font-family: times new roman "   1. Jia Wei, Fang Taiping,Wang Xiaoning, Xie Guoxiang. The polypharmacokinetics of herbal medicine.Science, The Are and Science of Traditional Medicine. 2015, 350, 6262:871. /span /p p span style=" font-family: times new roman "   2. Xie, Guoxiang Ye, Mao Wang, Yungang Ni, Yan Su, Mingming Huang, Hua Qiu, Mingfeng Zhao, Aihua Zheng, Xiaojiao Chen, Tianlu Jia, Wei*. Characterization of Pu-erh Tea UsingChemical and Metabolic Profiling Approaches. Journal of Agricultural and FoodChemistry. 2009, 57 (8): 3046–3054. /span /p p span style=" font-family: times new roman "   3. Xie Guoxiang, Zhao Aihua,Zhao Linjing, Chen Tianlu, Chen Huiyuan, Qi Xin, Zheng Xiaojiao, Ni Yan, ChengYu, Lan Ke, Yao Chun, Qiu Mingfeng, Wei Jia*. Metabolic Fate of Tea Polyphenolsin Humans. Journal of Proteome Research. 2012, 11(6):3449-54. /span /p p /p
  • 沃特斯(Waters)创新的代谢组学研究分析平台即将亮相
    2006年8月上海-讯:作为全球领先的液相色谱、质谱、化学品及实验室信息管理系统专业生产厂家, 沃特斯(Waters)将于今秋9月19日至21日参加在上海新国际博览中心举办的慕尼黑上海分析生化展, 重点推介其创新的代谢组学研究解决方案--超高效液相色谱(Waters® ACQUITY UPLC™ )与高分辨率TOF质谱联用的分析平台。 超高效液相色谱(Waters® ACQUITY UPLC™ )是液相色谱系统的领先者。这一创新技术使得液相色谱技术在分离度,灵敏度和速度的综合性能得到全面提升。超高效液相色谱(Waters® ACQUITY UPLC™ )系统利用在填料化学性能、仪器系统优化、检测器设计和数据处理及控制方面的优势,对分离科学进行了重新定义。 超高效液相色谱(Waters® ACQUITY UPLC™ )与高分辨率TOF质谱联用为代谢组学研究提供了功能强大的分析技术平台,可用于鉴定未知化合物、量化已知物质并解释分子的结构和化学特性,这意味即使在复杂的化学混合物样品中,浓度很低的化合物也可以被鉴定。它的重要功能包括代谢鉴定,生物标记物发现以及毒性研究等。 同期,沃特斯(Waters)还将于展会首日9月19日下午14:00至14:30在W2展馆M2会议室举办“沃特斯(Waters)代谢组学研究分析平台”专题论坛,与业内专家共同探讨这一创新的解决方案。 关于沃特斯公司(Waters Corporation) 沃特斯公司(Waters Corporation)在三大分析技术领域:液相色谱技术、质谱技术和热分析技术方面占据世界领先地位。在整个200至250亿美元分析仪器市场份额中约占50亿美元。 媒体查询,请联络: 沃特世科技(上海)有限公司 谢迎锋 小姐 电话:+86 21 54263597 传真:+86 21 64951999 Email:xie_ying_feng@waters.com 网址: www.waters.com www.waterschina.com
  • 我国药物代谢研究与国际先进水平还有差距——访中国科学院上海药物研究所钟大放研究员
    药物代谢动力学主要阐述药物在机体内的吸收、分布、生化转换及排泄的过程,特别是血药浓度随时间变化的规律,是确定给药方案的重要依据。相关研究需要生物分析提供基础数据。中国科学院上海药物研究所钟大放研究员是国内药物代谢研究领域非常具有代表性的专家,他在该领域科学研究、人才培养以及指导原则的制定方面都做出了杰出的贡献。6月中旬,在苏州举办的中国药学会医药生物分析学术年会上,仪器信息网专访了钟大放研究员,就生物分析的难点、大分子药物生物分析和药物代谢研究的特点以及我国生物分析和药物代谢研究的发展现状等内容进行了深入的交流。钟大放研究员 中国科学院上海药物研究所 基质复杂、药物和代谢物含量低是生物分析难点在新药和仿制药研发过程中,生物分析和药动学研究起着重要的作用。药理学有一个基本假设,血浆中药物或活性代谢物的浓度与药物的药效和毒副作用相关,药物代谢过程决定最终给药方案,所以了解药物进入体内后的变化过程十分重要。药物进入体内后会转化成多种代谢产物并最终排出体外,代谢物的结构、代谢物浓度随时间的变化以及何时彻底排出就是药物代谢研究的主要内容,而这需要通过生物分析获得基础数据。狭义的生物分析是指生物样本中药物浓度测试,包括分析方法建立和分析方法应用。钟大放介绍说:“相较于其他样品分析,生物分析具有较大难度。我们大学一年级学习的滴定实验要求的准确度为千分之三,但生物分析要求的准确度误差为10%,即千分之一百,这就能反映出生物分析的难度。”钟大放举例解释了生物分析难度大的原因:“如药片中含药量的检测,药片中只有淀粉等辅料,干扰物质相对较少,分析物明确且药物浓度较高,因此检测难度相对较小。而生物分析的样品主要是血浆,研究对象是代谢产物,血浆中含有大量蛋白质、磷脂等复杂的物质,给生物分析带来较多干扰。此外,代谢产物的含量低于药片中药物的含量几个数量级,只有纳克每毫升的浓度水平,因此生物分析所建立的分析方法对灵敏度、选择性、线性和稳定性等参数要求更难于达到。本世纪以来,液质联用技术逐渐发展成为小分子药物生物分析的主流技术,而该技术应用门槛本身就很高,光一套仪器就要两三百万。” 生物分析技术已达国际先进水平,药代研究还有差距钟大放认为,目前我国的生物分析技术已基本与国外持平,但药物代谢研究与国际先进水平还有差距。“总体来说,中国的新药研发还没有实现良性循环,我国的医药行业的政策也还没有达到稳定、平衡的状态。”钟大放讲到。据钟大放介绍,建立药物代谢研究平台需要高分辨质谱仪这样的大型仪器和至少一个博士的人员投入,早些时候,由于中国新药太少,建立这样的平台药“吃不饱”,所以会外包给CRO企业。“生物分析可以像做作业,按照合同完成每一个作业就可以了,但药物代谢要有研究的过程,CRO企业通常不会进行这样深入的研究。”钟大放讲到。在一些发达国家,药物代谢研究的主战场是大的制药企业,研发投入非常大,团队的科研力量通常很强。钟大放举了一个例子,在美国,一个重磅药物上市,一年收入10亿美元以上,每个星期就有500万美元。用这笔经费可以购买任何需要的设备,只要加快进度,每个星期就可以省下500万美元。“他们以这样的理念建立药物代谢研究平台,中国还没有发展到这样的程度。”“在国内,做生物分析和药物代谢研究的主导力量是在CRO企业,它们以盈利为主要目的,科研投入非常有限。另外,高等院校是基础研究的主阵地,然而高校虽然有研究能力,硬件设施却通常达不到要求。而且基础研究主要考核指标是发表的文章,导致高校的科研团队对于推动新药发展不会有太多兴趣和动力。”钟大放无奈地说。目前,国内这种情况也在逐渐改善,有一些药企在这方面已经开始引进先进的仪器设备进行平台搭建,钟大放团队培养的十余位博士到恒瑞医药等各大药企从事相关工作。“药物代谢研究还需要一定的经验积累,不是说买了硬件就可以实现。现在他们还是处于久旱之后,微雨即干的状态,只是在建设,还没有平衡。我们举办的学术会议,我特意争取让更多的企业参与,就是希望了解企业的需求,我们再思考如何满足这些需求。”“2015年以后,我国的生物分析基本符合国际标准” 2015年,我国医药行业发生了两件大事,给生物分析领域带来了深远的影响。一件是7月22日国家食品药品监督管理局发布《关于开展药物临床试验数据自查核查工作的公告》,药企俗称“722惨案”,直接导致正在申报的89.4%的项目被撤回;另外一件,就是2015年版《中国药典》发布并首次引入《生物样品定量分析方法验证指导原则》。目前,我国使用的药物绝大多数为仿制药。对于仿制药来说,需要先证明与原研药具有相同的有效性和安全性,才能够通过审评以及确定服用规则。生物等效性试验以药动学参数为指标,比较原研药和仿制药之间被人体吸收的速度和程度,最终确定两种药物之间的临床有效性。据钟大放介绍,对于生物等效性试验,国际上一有套标准的成本和利润计算规则,但有相当长的一段时间,国内CRO企业大打价格战,一定程度上扰乱了这套规则。“有企业甚至以低于成本价十几万的价格来获得项目,在这种情况下,就会出现实验数据造假的情况。2015年以前近十几年的时间里,很多生物分析项目的质量不合格。”钟大放透露。钟大放曾在德国实验室进行药物代谢研究工作,对于生物分析的国际标准非常了解,所以在建设上海药物代谢研究平台时,也始终按照国际标准来执行。“在国内制药行业生物等效性试验项目低价竞争的那些年,我们始终按照国际标准来做项目。我们要保持起码的真实性。正因为如此,‘722惨案’发生时上海药物代谢研究中心未受影响。” 钟大放介绍道。钟大放认为,药物代谢研究实验室想要符合国际标准,一方面靠自律,另一方面也要靠国家的监督和检查。符合国际标准难度并不大,当国家标准达到一定程度,对于科研机构和正规的 CRO企业的实验室来说,只要按照国家标准执行就都能达到。“可以认为,2015年以后,中国生物分析实验基本都能符合国际标准。”钟大放讲到。 大分子药物生物分析 试剂严重依赖进口我国的生物药产业在近十年的时间里迅速发展起来,钟大放团队在抗体药物方面也开展了多项药动学试验。“生物大分子药物的生物分析和药物代谢研究的指导原则与小分子药物基本没有区别,但在分析技术、代谢研究及给药指导方面,大分子药物的分析存在一定的特殊性。”钟大放介绍了大分子药物与小分子生物分析研究的不同。小分子药生物分析常用技术为液质联用技术,属于物理化学方法;生物药物因分子量较大,色谱分析不能直接出峰,液质联用技术在大分子药物的生物分析时不再直接适用,通常采用酶联免疫分析,属于生物化学方法。大分子药物体内分布的特点是,受分子量限制,无法跨膜,血药浓度比小分子药物浓度高2-3个数量级。“无论采用何种方法,从法规的角度都要求具有一定的分析精密度和准确度。”钟大放强调。在药物临床应用方面,大分子药物的半衰期较长,给药周期通常较长,且以注射为主。在分析技术方面,钟大放介绍说:“近年来,基于质谱平台的大分子药物生物分析在西方国家已经比较普及,国内也逐渐发展起来。大分子药物进行质谱分析前,需用特异性内切酶进行样品前处理,形成几百个不同的肽段,从中选择具有代表性的肽段,与血浆蛋白酶切生成的肽段区别开,再进行质谱分析,以此来代表抗体药物浓度。” 钟大放认为,对于中国而言,大分子药物质谱分析方法具有特殊的优点:不受生物试剂进口限制。“酶联免疫分析方法需要使用生物试剂,而目前生物试剂严重依赖进口,具有一定的垄断性。中国进口抗体试剂比国际价格高出几倍,属于‘卡脖子’环节,一旦爆发贸易战,将直接影响药物的生物分析环节。但质谱仪器价格不比国际价格高,且目前不存在贸易战的威胁。”他解释道。后记:与钟大放对话,能够感觉到他是一位能够沉得下心来做科研的专家。无论政策如何、环境如何,他始终坚持对数据真实性的高要求。同时,他十分关心中国药物代谢动力学研究的整体发展,期望通过组织会议等方式更好的促进我国药物代谢研究的发展进步。明年,钟大放迎来退休之年,问及退休后的生活,他坦言还没有想好,我猜,大概他还是会继续进行药物代谢研究的事业吧。钟大放个人及团队成就:钟大放除担任中科院上海药物所研究员、博士生导师、研究组长外,还兼任上海药物代谢研究中心主任、中国药典委员会委员、中国药理学会代谢专业委员会副主任、中国药学会医药生物分析专业委员会主任委员等。钟大放用几个数字总结了他和团队所取得的工作成果:50/100,300/200/20。人才培养方面,钟大放一共带过50位博士生和近100位硕士研究生,目前所带硕士研究生均已毕业,唯一一位在读博士研究生作为关门弟子也将于明年毕业。钟大放的很多学生仍在科研单位或制药企业继续深耕药物代谢研究。科学研究方面,钟大放团队完成了几百个新药研发当中的代谢和药动学实验项目。据统计,临床前实验共约300项,其中200项进入临床试验阶段,有20个1.1类新药在中国批准上市。钟大放在中国制定生物分析和药物代谢法规性指导原则方面也发挥了关键的作用。2015年版《中国药典》中首次引入《生物样品定量分析方法验证指导原则》正是由他起草的,该指导原则主要参考了欧盟的相关标准,2020年版《中国药典》中,该部分未作任何修改。此外,钟大放作为顾问专家多次参与讨论了国家药品审评中心制定的指导原则,包括临床前药代动力学试验指导原则、临床药代动力学试验指导原则和药物相互作用试验指导原则等。 关于上海药物代谢研究中心钟大放原在沈阳药科大学任教,2005年,应中国科学院上海药物研究所要发展药物代谢研究所需,钟大放来到上海。这一年,钟大放团队用800万元的项目投入购买了三台质谱仪,并在接下来的两年里一边做课题一边建设平台。2007年,上海药物代谢研究中心正式成立。上海药物代谢研究中心是上海市科委主管的研发公共服务平台,在进行药物代谢基础研究的同时,也向制药企业提供科研服务,助推新药研发上市。如今,很多大型制药企业更愿意与上海药物代谢研究中心合作,据钟大放介绍,不同于CRO公司的以盈利为主,上海药物代谢研究中心更侧重于基础研究和能力建设,对于项目研究更加深入。
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 日渐深入的机制解析研究——代谢组学在生物医学与食品科学领域的最新进展
    仪器信息网讯 我们知道细胞内的生命活动由众多基因、蛋白质、以及小分子代谢产物来共同承担,而上游的(核酸、蛋白质等)大分子的功能性变化最终会体现于代谢层面,如神经递质的变化、激素调控、受体作用效应、细胞信号释放、能量传递和细胞间通讯等,所以代谢组处于基因调控网络和蛋白质作用的网络的下游,所提供的是生物学的终端信息。因此科学家们常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么。  代谢组学(Metabolomics)是20世纪90年代末期发展起来的一门新兴学科,是研究关于生物体被扰动后(如基因的改变或环境变化后)其代谢产物种类、数量及其变化规律的科学。代谢组学着重研究的是生物整体、器官或组织的内源性代谢物质的代谢途径及其所受内在或者外在因素的影响及随时间变化的规律。代谢组学通过揭示内在和外在因素影响下代谢整体的变化轨迹来反映某种病理生理过程中所发生的一系列生物事件。  8月12日,仪器信息网举办了“2021年代谢组学技术及应用新进展”主题网络研讨会,聚焦代谢组学的前沿应用,包括其在生物医学以及食品科学领域的最新进展。(点击了解会议的回放视频)  在科学家们不断努力开发高覆盖率的组学方法的同时,代谢组学和脂质组学的整合正成为一种新兴的机制研究方法。代谢组和脂质组的整合提供了一个完整的代谢图谱,使全面的网络分析能够识别疾病病理中的关键代谢驱动因素,有助于研究脂质和其它代谢产物在疾病进展中的相互联系。  复旦大学生命科学学院/人类表型组研究院的唐惠儒教授团队的主要研究是代谢表型组,也就是小分子代谢物的定量组成及变化规律。通过结合核磁共振波谱、质谱及量子化学计算等多种技术,实现准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律。  本次会上唐教授作了题为《脂蛋白代谢组定量揭示病理生理内涵》的报告。  脂蛋白是脂质成分在血液中存在、转运及代谢的形式。脂蛋白代谢更是通过肝脏、肠道等大量器官参与的活动,如果代谢出现紊乱可引起一些严重危害人体健康的疾病。脂蛋白组分的定量方法常用的有核磁共振波谱法以及质谱法等。报告介绍了唐教授团队在脂蛋白代谢组定量揭示病理生理研究的最新工作进展,其团队当前正在进行的研究:通过分析10余个独立队列5万余人血浆/血清健康人群各脂蛋白亚类及组分的参比浓度范围,希望能够进一步定义什么是健康人。  中国科学院大连化学物理研究所刘心昱副研究员作了题为《代谢组学在重大疾病诊疗中的应用》的报告。  肝癌是严重影响我国人民健康的恶性肿瘤,早期无明显临床症状,发展快且易转移。报告介绍了刘心昱团队针对肝癌的早期筛查缺乏可靠标志物的问题,利用代谢组学技术全景解析了肝癌代谢紊乱,揭示了肝癌发生过程中的代谢重编程过程,发现并验证了肝癌早期诊断标志物。针对肝癌术后易复发转移,建立基于代谢小分子的风险预测模型,有效的预测肝癌患者术后复发转移风险。中国医学科学院北京协和医学院药物研究所贺玖明研究员作了题为《质谱成像空间代谢组学与脑科学研究》的报告。  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。目前,科学家对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量的分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  报告介绍了贺玖明团队开发的一种空间分辨代谢网络作图方法、高通量AFADESI-MSI方法和代谢组学策略,及其最新研究进展。中国检验检疫科学研究院的张九凯研究员作了题为《基于质谱的代谢组学及其相关衍生技术在食品真实性鉴别中的应用》的报告。  随着食品产业全球化布局进程的加快和食品供应链不断延长和复杂化,经济利益驱动的食品掺假现象日益凸显。以代谢组学为代表的组学技术能够针对食品中的尽可能多的代谢产物,从整体角度进行定性定量分析,为食品真实属性鉴别研究提供了一种新兴的研究工具。近年来,随着检测技术的发展,代谢组学产生了很多衍生技术,包括脂质组学、挥发组学和风味组学等。  报告介绍了代谢组学及其相关衍生组学技术在食品物种及品种鉴别、产地溯源、品质分级和掺假掺杂识别等真实属性鉴别研究,为进一步保证食品质量安全、保障消费者利益提供了技术支撑。
  • Orbitrap助力非靶向代谢组学在临床研究中取得新进展
    近日,Metabolomics杂志以封面文章形式,发表了基于Orbitrap的非靶代谢组学在新生儿先天性心脏病手术预后评价方面的研究成果。该研究首次报道了受心脏手术影响的关键代谢通路,并筛选出潜在的新生物标志物,有望应用于筛查手术预后不良风险较高的新生儿。早期识别手术致残风险较高的新生儿,可提示为患儿及时制定个性化长期治疗方案,提高患者术后生存质量,在未来具有重要的应用价值。图片来源:Metabolomics杂志 开创新篇非靶向代谢组学TGA应用新前景大动脉转位(Transposition of the Great Arteries,TGA)是一种致死率极高的先天性心脏病,需在新生儿出生3周内及时进行心肺转流术(Cardiopulmonary-bypass ,CPB)予以矫正。由于手术中使用的药物会对患者术后代谢图谱造成严重扰动,研究者首先建立了术中涉及的1255种药物及术后可从尿液中二次检出的药物相关的代谢物清单,将此清单在代谢分析时予以背景扣除。该项目对比分析了TGA患者术前和CPB术后尿液中的代谢物,共检测到39,000多种特异化合物,其中371种可预测注释的差异代谢物。最终准确注释的13种差异代谢物通路分析表明,犬尿氨酸代谢通路中色氨酸降解与手术干预相关性最强。 立意新颖创新数据分析流程克服基质干扰此次研究中,来自意大利的研究团队应用了一种全新的思路,同时也是这项研究的一项重要优势:即建立了克服基质干扰因素的数据分析工作流程,这使可靠地测定目标代谢物的变化成为可能。而这一创新思路和研究进展,是基于QE高分辨质谱的超高分辨率和Compound Discoverer这一强大的数据分析软件完成的。 文中显示,作者首先使用Compound Discoverer™ 2.1(Thermo Fisher Scientific)的“生成预期化合物”功能建立了给药药物及其内源性代谢物的列表。该列表包括母体化合物、术中用药成分,及它们可能的转化产物。接着在两步“生成预期化合物”功能生成的化合物离子列表中使用“寻找预期化合物”功能进一步搜索化合物,最终建立了一份“外源药物”相关的化合物质谱列表。研究者使用该方法,成功排除了外源药物对内源性代谢标志物筛选的干扰,从而发现真正与手术因素密切相关的差异代谢物。对于新生儿心脏手术引发的不良预后监测有重大而深远的意义。 前景广阔,靶向定量与验证——早期脑损伤患者或迎曙光本研究中使用的非靶向代谢组学方法,具备可区分手术前和手术后样品代谢物差异的能力,而发现的差异代谢物将研究者未来的思路引向犬尿氨酸通路。而基于现有研究成果和成功的分析流程创新,研究者有信心后续更大范围的进行冠心病患者的定量(靶向)代谢组学分析。这些代谢物的定量将与受损神经发育金标准GFAP以及手术后神经学和神经发育测试获得的数据有潜在相关性。这可以提供预测脑损伤所需的生物标志物,尽早识别处于不良神经发育风险的患者,对于先发性干预和辅助神经发育治疗的启动都至关重要。 相较中低分辨率质谱系统而言,文中提及的基于组学金标准Orbitrap技术的Q Exactive质谱系统,能够提供超高分辨分辨率和灵敏度,这也为代谢组学研究者所面临的共同挑战-样本基质复杂、代谢产物鉴定数量不足、辨别假阴性/假阳性结果-带来更加直观的帮助。而Compound Discoverer强大的数据处理和分析功能,能够延展性的帮助研究者创新工作流程,结合公共数据库信息,能够更加方便和准确的鉴定代谢物。 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 钟大放研究员:UPLC/Q-TOF MS追踪和鉴定药物代谢产物
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   药物代谢研究属于外源性代谢研究,其是新药研发中的重要环节,在药物发现中是开发可行性评价的依据 在药物开发中是安全性评定的依据。目前,药物代谢研究面临的挑战是:完整性,不丢失代谢产物的信息 准确性,不产生假阳性结果。 中科院上海药物研究所钟大放研究员 中科院上海药物研究所钟大放研究员利用UPLC/Q-TOF鉴定代谢产物,首先通过UPLC对生物样品或体外孵化物(肝细胞、重组酶等)中的代谢产物进行分离,并通过Q-TOF MS 检测而获得精确分子量和碎片信息,接着用MetaboLynx去烷基化预测及MDF数据处理检测代谢产物,最后用MassFragment推测代谢物的结构。在报告中,钟大放研究员以抗肿瘤新药甲磺酸氟马替尼及抗心律失常药胺碘铜为例,详细介绍了此方法用于代谢研究的过程与结果。   钟大放研究员认为母体药物和代谢物的质谱裂解特点值得特别的关注 以UPLC/Q-TOF为平台,利用多级质谱方法,可获得完整的代谢产物信息,从而检测到更多的代谢物数目 酶水解与空白样品对照是排除假阳性干扰的必要步骤 获得代谢物对照品才能最终确认代谢物结构。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制