当前位置: 仪器信息网 > 行业主题 > >

大脑图谱

仪器信息网大脑图谱专题为您整合大脑图谱相关的最新文章,在大脑图谱专题,您不仅可以免费浏览大脑图谱的资讯, 同时您还可以浏览大脑图谱的相关资料、解决方案,参与社区大脑图谱话题讨论。

大脑图谱相关的资讯

  • Nature:迄今最精确人类大脑图谱出炉
    据悉,7月20日,美国圣路易斯华盛顿大学的一个研究小组称,他们绘制出迄今最全面、最精确的人类大脑图谱,其中97个人类大脑皮层区域此前从未描述过,属于首次公布。  一直以来,科学家试图描绘出一幅包含人脑连接性、功能和微观结构的高清图谱,但由于技术难度过大,这一设想一直未能成真。目前,绝大多数的大脑图谱都从较小的人群中得来,仅涉及上述特性的一小部分,这些限制导致大脑图谱“模糊不清”,且无法在个体间进行复制。  新研究中,该大学的马修格拉塞、大卫冯埃森和他们的同事借助机器学习技术,根据210位健康年轻成年人的大脑成像数据,绘制出了这幅精确的大脑图谱。这些年轻人都来自人类连接组计划。  始于2010年的人类连接组计划相当于人类基因组计划的大脑版,是一项耗资高达4000万美元的项目,旨在通过扫描1200名健康成年人的大脑,比较他们大脑各区域神经连接的不同,以及由此导致的认知和行为方面的个体差异,最终描绘出人类大脑的所有神经连接情况。  新的大脑图谱中,大脑的每个半球都分成了180个特定的皮层区,在共360个皮层区中,有97个区域第一次被描述。据悉,新图谱还在另外210位独立被试者中得到了验证。研究人员称,虽然存在个体差异,但他们在新被试者中准确地辨别出了这些区域。  论文作者称,科学家现在就能使用这一解剖框架,将其与其他人脑造影方法进行比较,在已被定义的大脑区域发现与功能和疾病相关的信息。这幅被称为“人类连接组计划多模态分区1.0版”的神经解剖图谱未来还会进一步改进和升级。由于几乎适用于所有人,新图谱有望首先在神经手术中获得应用。此外,通过与灵长动物对比,它还可能提供有关人类认知演化的新见解。  相关论文发表在最新一期《自然》杂志上。 小结  大脑的运行原理就像生命起源一样,是人类的终极问题。本研究为大脑建立了一个基本模型,用直观可视化的方式,让疾病治疗和基础研究有了参考的标准。这只是一个意义重大的起步,相信这个模型会不断完善,让我们日益接近进化的奥秘。当然,要达成这个目标,就需要全世界科学家的参与,也需要更多志愿者的付出。
  • PNAS:单细胞测序绘制大脑的细胞图谱
    斯坦福大学的著名学者Stephen Quake及其同事本周在《美国科学院院刊》(PNAS)上发表文章,介绍了人类脑细胞的单细胞转录组测序研究成果。   研究小组对近500个成人或胎儿脑细胞进行了单细胞RNA测序。利用这种方法,他们能够鉴定出大脑中所有主要的细胞类型,并确定神经元的亚型。他们还观察了神经元从早期发育到后期分化阶段的变化。   &ldquo 这些结果为构建人类大脑的细胞图谱奠定了基础,&rdquo 作者在文中写道。&ldquo 这种图谱将有助于我们确定神经元、胶质细胞和血管细胞的特定标志物,并将其与其他信息相关联,以便完全阐明人类大脑的细胞复杂性。&rdquo   人类大脑是极其复杂的。它含有许多种类的细胞,它们的基因表达模式存在差异。因标志物相对较少,传统的细胞分类方法存在限制,因此只能提供特定细胞类型的有限分子鉴定。   在这项研究中,研究人员使用了健康的神经元。它们是在癫痫的外科手术治疗过程中从人体中取得的。除了从8名成人中获得的样本,研究人员也研究了4个胎儿大脑样本中的细胞。他们总共对466个细胞进行单细胞RNA测序,以捕获成人和胎儿大脑中的细胞复杂性。   这些细胞的转录特征确定了10种类型的细胞,包括小神经胶质细胞、星形胶质细胞、少突胶质细胞、神经元、前体细胞,以及之前没有明确定义的细胞。同时,当研究人员通过特异表达的基因来分类细胞时,细胞的分类稍微少了一些。   在更精细的水平上,研究人员发现113个成体神经元细胞可分成7个子类,包括5类抑制性神经元和2类兴奋性神经元。   最后,研究人员还利用单细胞转录组学来区分小鼠和人类脑细胞的基因表达特征,以及区分成体神经元和胎儿大脑中新生的神经细胞的转录模式。例如,单个神经元的转录模式表明,胎儿大脑中的神经元细胞明显不同于成人大脑中的那些。   另一方面,一些成体神经元表达了主要组织相容性复合体I类的免疫相关基因,这些神经元因此可能有能力引起免疫应答,驳斥了神经元缺乏免疫活性的观点。   作者认为,这项工作证明了单细胞RNA测序适用于人类大脑的研究,也向构建人类大脑的全面细胞图谱迈出了第一步。
  • 科学家绘制出哺乳动物大脑运动皮层细胞图谱
    美国BRAIN计划于2017年设立了“大脑细胞普查网络”项目(BICCN),旨在对人类、猴和小鼠大脑中的不同细胞进行识别和分类。目前该项目第一部分已经完成,在分子水平上对哺乳动物初级运动皮层细胞类型进行了全面的定位和图谱绘制。近期,该研究成果在《Nature》期刊上同时发表了16篇文章,并以合集的形式呈现。  该系列论文介绍了项目方法、工具、研究结果和产生的数据集。该项目绘制了哺乳动物初始运动皮层多层次、多模式的细胞图谱,具体包括:(1)利用转录组、染色质可及性、DNA甲基化图谱等多组学描绘了运动皮层细胞中的分子遗传景观;(2)跨物种分析揭示了从小鼠到狨猴到人的细胞类型的保守性;(3)原位单细胞转录组学揭示了运动皮层空间图谱;(4)交叉模式分析揭示了神经元类型的生理与解剖特性和基因调控基础。该项目构建的大脑皮层初级运动神经元图谱中,涵盖了小鼠、非人灵长类动物以及人类大脑中神经元的分子、功能以及与其物理状态相关的数据,并向公众开放(https://biccn.org);同时构建了可以直接应用的软件,确保这些数据能够对神经元多样性的性质和起源的研究有帮助。  该研究形成的数据库对于理解运动神经环路是如何工作的提供了研究数据库和操作平台,同时这些研究成果对于制定特定细胞类型的大脑疾病治疗方案至关重要,最终将有助于临床医疗手段和药物研发,实现个性化医疗。   论文链接:  https://www.nature.com/collections/cicghheddj
  • Nature:王潇/刘嘉团队绘制大脑高分辨率单细胞空间转录组图谱
    显微镜的发明让科学家们能够观察和归类神经系统中丰富的细胞形态和类型,了解它们在健康和疾病中的作用。近年来单细胞RNA测序的发展更揭示了大脑中细胞类型组成的复杂性和多样性。借助新兴的空间转录组技术,研究人员实现了显微成像和单细胞测序的结合,在亚细胞空间分辨率的精度下,不仅可以揭示单个细胞的基因表达,还可同时了解它们在组织和器官中的排列分布,在解剖学的观察上加入了分子表达的丰富信息。2023年9月27日,美国麻省理工学院化学系/Broad 研究所王潇团队和哈佛大学刘嘉团队合作,在 Nature 期刊发表了题为:Spatial atlas of the mouse central nervous system at molecular resolution 的研究论文。该研究对小鼠大脑和脊髓中的一百万个单细胞的基因表达以亚细胞的空间分辨率进行了刻画和分析,用空间基因表达定义了更精细的组织区域。王潇团队使用了他们开发的空间转录组学工具(STARmap, STARmap PLUS, 和ClusterMap)表征和绘制了成年小鼠中枢神经系统中的一百多万个单细胞。通过大规模的分析和细胞注释,该团队展示了数百种细胞类型的空间分布,精确划分上百种组织区域的边界。研究人员还利用RNA条形码,揭示了全脑范围感染的病毒AAV-PHP.eB在不同细胞类型和区域的感染能力。图1:小鼠中枢神经系统单细胞分辨率细胞类型空间图谱,230种细胞类型由彩色点标注研究者们使用STARmap PLUS技术,在200-300纳米的空间分辨率下,原位检测了20片组织切片中的1022个基因的表达量。在这项技术中,他们用分子探针原位杂交组织切片,检测特定的RNA序列并特异放大为可测序的DNA纳米球,并通过化学处理将DNA纳米球和组织样品固定成水凝胶,最后用共聚焦显微成像原位测序 (SEDAL)。实验结果通过研究者先前开发的ClusterMap算法划分成带有空间位置信息的单细胞基因表达。图2:STARmap PLUS以及ClusterMap流程示意图(左);STARmap PLUS共聚焦显微镜成像数据图示例(右,SEDAL cycle 1),每个点代表由单个RNA分子产生的DNA纳米球。通过与已发表的单细胞测序数据集整合分析,研究者们基于单细胞基因表达定义和注释了230种“分子细胞类型 ”(molecular cell types),并基于空间基因表达定义和注释了106种“分子组织区域”(molecular tissue regions),从而对脑内的细胞进行了分子表达和空间分布的联合定义。图3:(a)通过单细胞基因表达与空间基因表达共同定义小鼠中枢神经系统重细胞类型的多样性。(b)“分子细胞类型“在”分子组织区域“上的分度热度图全脑范围内丰富的基因表达信息和高精度的空间分布信息,使得细胞类型的注释更为精确。例如,作者们发现部分端脑抑制性中间神经元(telencephalon inhibitory interneurons)亚型存在脑区分布特异性,比如纹状体(striatum)中特有的中间神经元、嗅球的外网状层 (olfactory outer plexiform layer)特有的表达多巴胺的中间神经元。基于空间上的分子表达,作者们还补充和完善了小鼠大脑解剖学结构。例如,作者们可以从“分子组织区域”组成的角度出发,对小鼠大脑皮层进行分区,并与传统解剖学的定义比较。一个有趣的发现是,作者们发现解剖学上的压后皮层(retrosplenial cortex)在小鼠大脑的前端和后端具有截然不同的“分子组织区域”组成;后端压后皮层在“分子组织区域”组成上与相邻的视觉皮层有着更高的相似性,这为理解压后皮层在视觉相关的行为和记忆中的功能提供了新的思路。通过和小鼠中枢神经系统单细胞测序数据集的整合,作者们将单细胞空间表达的基因维度从实验测量的1,022个基因拓展到了11844个基因,预测了全转录组范围的空间分辨单细胞基因表达特征。综上所述,这项工作为理解小鼠中枢神经系统提供了一个大规模的分子空间图谱,囊括了超过一百万个细胞,以及他们的基因表达特征,空间坐标,分子细胞类型,分子组织区域类型,以及遗传操作的可及性。这项工作为建立分子空间图谱提供了实验和计算的框架,涵盖了从单个RNA分子到单细胞再到器官组织区域的跨越多个空间尺度的分析,为神经科学研究提供了重要的数据和工具。作者们已将这套图谱开放共享(http://brain.spatial-atlas.net/),供研究者探索。图4:该工作的研究范式图5:该工作的空间细胞图谱数据网页截图示意“我们不仅提供了细胞的空间图谱,还提供了神经科学中常用的病毒工具对这些细胞的可及性。这份图谱代表了我们实验室目前分析的最大的数据集。这项工作也为神经科学研究者们提供了资源和基础,以进一步探索各种基因、细胞和组织在健康和疾病中的作用。“共同第一作者施海玲博士评论。“我们提供了前所未有的细胞级别的空间基因表达信息,为研究大脑的结构和功能提供了宝贵的数据。此外,我们的团队开放共享了相关数据和资源,希望未来能看到更多的高质量研究,进一步揭示大脑的奥秘”。共同第一作者贺一纯评论。“大脑的结构和功能依赖于不同类型的细胞在空间位置上的排列和分布,空间转录组、空间翻译组等空间组学技术的开发和应用无疑将为大脑的解析提供新的思路。”共同第一作者周一鸣博士表示。
  • 复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱
    复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱近日,复旦大学类脑智能科学与技术研究院冯建峰教授团队在BRAIN上在线发表了题为《脑功能网络动态特性的神经、电生理和解剖关联及其在精神疾病中的改变》(“Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders”)的论文,该研究通过核磁共振扫描技术定量刻画人类大脑各区域的动态相互作用模式,揭示了大脑产生动态变化机制,首次绘制了动态脑功能网络图谱。研究发现,大脑功能网络的动态变化程度与人类的智能高度相关。根据这一发现,未来将有可能通过赋予人工智能系统内部各部件动态相互作用的模式,使机器人真正产生人类的思维方式,这一重大成果或将对人工智能的发展带来革命性的影响。该论文被选为Brain编辑推荐和当期封面论文,《英国每日邮报》等海外几十家媒体给予焦点报道。2014年美国麦克阿瑟天才奖得主,宾夕法尼亚大学Skirkanich讲座教授Danielle Bassett专门为此研究撰写了题为“The flexible brain”的评论,该评论认为“这项工作是我们在理解大脑网络动态变化道路上的一块重要基石 (an important stepping-stone)”。“传统智商测试因无法准确反映一个人的真实智力而受到诸多质疑。随着脑成像技术,特别是近年来功能核磁共振技术的发展,为我们定量化人类的大脑,并在此基础上充分洞悉人类智力提供了重大契机。我们的研究工作最初是从理解精神疾病如精神分裂症、抑郁症等疾病的大脑动态变化机制和疾病诊断出发,但却意外的通过这一工作,在解析人类智力上有惊人的发现,相信这将对目前如火如荼的人工智能技术发展带来更大的推动。”近年来,冯建峰教授与其带领的复旦大学团队和英国华威大学团队,一直致力于利用来自世界各地的数以千计被试者的大脑静息态磁共振数据,定量刻化人脑的动态变化,识别人脑不同区域之间动态相互作用的机制以及其在精神疾病中的改变。这项研究发现,人脑中与学习、记忆紧密关联的脑区表现出高度的“可变性”。这意味着这些区域同大脑其他部分之间的连接模式变动更加频繁,可发生在短短几分钟甚至数秒之间。另一方面,人脑中与智力相关性小的区域,包括视觉区、听觉区和感觉运动区,皆表现出了低“可变性”和低“适应性”。一个人的大脑“可变性”越强或越灵活,个体的智力以及其创造力也就越高。目前,人工智能系统并不具备“可变性”和“适应性”。而这两种人类独特的智能特性,已被该研究证实对于人类大脑的学习能力至关重要的。大脑网络动态图谱的绘制,未来可被应用于构造更先进的人工神经网络,使计算机具备学习、成长和自适应的能力。这一研究成果还在脑重大疾病的诊疗上带来重大发现,在精神分裂症患者、自闭症患者以及多动症患者的大脑默认网络中,都可以观察到“可变性”的状态变异。这也意味着,大多数精神疾病的根源来自于大脑可变性或可塑性方面的改变,这一认识可使科学家们能够更有效的治疗甚至是预防精神疾病的发生。据悉,冯建峰教授是上海国家数学中心的首席科学家,2015年受聘为复旦大学新成立的类脑智能科学与技术研究院首任院长。该研究院成立一年多以来,致力于开展脑科学与人工智能交叉前沿研究,在智能算法的发展及其对脑疾病的精准诊断上取得了多项重大突破,其中包括:利用多达数千例的脑疾病数据,开发了大数据驱动的全脑关联性分析方法(BWAS)的统计学方法,利用这一方法可实现在全脑数10亿的功能联接中寻找出病根:发现了精神分裂症病人中以丘脑为中心的脑功能异变网络(2015年Nature子刊Nature Partner Journal Schizophrenia),发现了自闭症儿童与人脸识别、社交相关的神经功能环路的显着变化(2015年Brain);研究发现了抑郁症病人大脑中憎恨环路的减弱和消失(2013年Nature子刊Molecular Psychiatry);同时,团队还发现了与纹状体相关的奖励预期行为受到VPS4A和RAC1基因的调控(2015、2016年PNAS)等,揭示了精神分裂症的脑结构具有“自愈”功能(2016 Psychological Medicine)。这些突破性成果被CNN、福布斯等媒体给予集中报道,被誉为“在脑疾病的寻根和靶向治疗上找到了前所未有的新途径”。目前,研究院正在积极开展国际脑科学研究合作计划。2016年7月,在瑞士召开的人类脑图谱年会美、中、英、法、德等六国闭门会议上,冯建峰教授发起了国际脑科学研究数据字典合作计划,建立了重大脑疾病多尺度数据(遗传、神经、影像、行为和环境等)标准化采集规范,与世界最大的多尺度数据库ADNI, IMAGEN, IMAGEMEND, BIOBANK开展数据共享。“我们正在利用全维度、多中心的生物大数据,发展一系列新型智能算法,期望在脑重大疾病寻根和大脑的定量化研究中,取得更大的突破。”
  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • 投入近36亿!NIH将绘制人脑细胞图谱,以推进人类大脑计划下一阶段
    9月22日,NIH宣布了一项为期五年的5亿美元(约合人民币35.8亿)捐赠计划,该计划叫“BRAIN Initiative Cell Atlas Network(BICAN)”,以支持研究单位通过单细胞测序、无创医学成像和先进的生物信息学分析,来绘制人类和非人类大脑的细胞图谱和细胞相互作用图,为研究神经系统疾病提供信息价值。其中金额最大的一项(1.73亿美元)捐赠给了Allen研究所,以推动建立有史以来第一个完整的人脑细胞图谱,同时还有狨猴和猕猴的大脑图谱。由Salk生物研究所领导的另一个小组获得了1.26亿美元的赠款,用于创建多组学人脑图谱中心。该中心将尝试在细胞水平上绘制人脑图,以了解大脑神经系统是如何运作和老化的。其余几笔赠款则相对较小,包括向布罗德研究所提供1490万美元用于开发人类脑细胞变异图谱;向加利福尼亚大学旧金山分校提供3640万美元用于研究人类和灵长类动物的大脑发育;向加州大学洛杉矶分校的研究人员提供530万美元用于绘制人类大脑发育过程中的细胞水平基因调控图。其实BRAIN计划在2013年就公布,并于2014年正式启动。此次公布的5亿美元捐赠计划,可以说是BRAIN计划2.0版本。截至目前,与BRAIN计划相关的赠款已经资助了大约1200项研究,并产生了5000余篇研究出版物。BRAIN计划的确在脑部疾病方面取得了一定成果,在2021年,加利福尼亚大学旧金山分校的研究人员就破译了一名超过15年没有说话的瘫痪男子的大脑信号,并利用这些大脑信号成功将其转化成呈现在屏幕上的单词。同年,贝勒医学院的研究人员启动了一项针对抑郁症患者的临床试验,该试验目的在测试深部脑刺激的益处,通过使用电震动来刺激大脑回路,已经证明对帕金森病等疾病有帮助。BRAIN Initiative 主任 John Ngai 说,“目前我们还有许多工作要继续推进,大脑结构极其复杂,我们仍无法理解其联系和组织原则,因此,我们需要投入资金以产出更多的研究和工具来帮助我们推进人类大脑计划。”
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • Science封面|全球首个脑再生时空图谱
    Science期刊封面近日,由杭州华大生命科学研究院主导,联合来自3个国家的17个单位的科学家共同组成的研究团队分析比较了蝾螈脑发育和再生过程,构建了首个蝾螈脑再生时空图谱,这也是全球首个脑再生时空图谱。9月2日,相关成果以背靠背封面文章的形式发表于国际顶级学术期刊Science。至此,短短半年内,华大时空组学与单细胞技术的相关研究成果已连续四次在《细胞》《自然》和《科学》三大顶级期刊发表,实现了大满贯。人类大脑在受伤之后,很难自行恢复,但是两栖类模式动物墨西哥钝口螈(Ambystoma mexicanum)可以。大脑再生是一个复杂的生物学过程。在这个过程中,发生了哪些关键的变化,有哪些重要的细胞参与?它们又分别行使了哪些功能?通过研究,研究团队找到了蝾螈脑再生过程中的关键神经干细胞亚群,描绘了此类干细胞亚群重构损伤神经元的过程,同时还发现脑再生与发育过程具有一定的相似性,为认知脑结构和发育过程提供助力,为神经系统的再生医学研究和治疗提供新的方向。在具体的研究中,要知道大脑是怎么再生的,研究团队先要了解大脑是如何发育来的。于是,研究团队利用堪称超广角百亿像素“生命照相机”的时空组学技术Stereo-seq,在蝾螈脑发育的6个重要时期,分别“拍摄”“照片”,这组“照片”就构成了蝾螈的脑发育时空图谱。通过它们,研究团队能够“看到”蝾螈脑在发育的过程中,各类神经元的分子特征以及空间分布动态变化。结果发现,蝾螈脑从青少年时期就开始特化出具有空间区域特征的神经干细胞亚型。那大脑受到损伤后再生的过程是如何的呢?研究团队对蝾螈脑的皮层区域进行机械损伤手术,并在损伤后的第2、5、10、15、20、30及60天,利用时空组学技术Stereo-seq对大脑样本进行“拍照”,得到各个时间点的蝾螈脑再生图集,完整记录了蝾螈大脑从损伤,到再生修复完成的过程。这就像对蝾螈大脑恢复过程定期做一个X光检查。不过,得到的片子可比X光片清晰度高多了,不只能看到大脑的形状,还能持续放大,看到大脑里的细胞,以及细胞里的分子变化状态。通过对比7个时期再生“照片”和过程中的伤口状态,研究团队发现,伤口区域在损伤早期就出现了新的神经干细胞亚群,这群重要的细胞由损伤区域附近的其他神经干细胞亚群在受到损伤刺激后转化而来,并在后续的再生过程中新生出神经元以填补损伤部位缺失的神经元。此外,虽然伤口处在修复早期便开始逐步被新生组织填充,但直到损伤后第60天,“照片”才显示损伤区域的细胞类型及空间分布恢复到了未损伤侧的状态。蝾螈脑再生时空图谱图片来源于Science最后,研究人员还对比了蝾螈脑发育和再生过程的神经元形成过程,发现这一过程在再生与发育过程中高度相似,或许脑损伤诱导了蝾螈神经干细胞逆向转化,回到发育时期的年轻化状态,以启动再生过程。论文的共同通讯作者、杭州华大生命科学研究院顾颖博士表示:“蝾螈在进化上相较于其他硬骨鱼类更高等,与哺乳动物脑结构具有更高的相似度。同时,它的基因编码序列与人类极其相似,研究蝾螈脑再生的启动机制,发现其中的关键基因,或将为人类神经系统损伤或退行性疾病的修复提供重要指导。”蝾螈脑再生过程中的关键基因,在人类的基因序列中也存在。那为什么其没有像在蝾螈脑中一样发挥再生的作用?这或许会是科学家下一步研究的课题。技术的发展让本研究的推进成为可能,“本研究主要基于华大自主研发的时空组学技术Stereo-seq进行,其达到了纳米级亚细胞分辨率,结合蝾螈细胞体积大的优势,使得研究人员可以在时空单细胞分辨率上解析蝾螈脑再生这一过程的重要细胞类型,并追踪其细胞谱系变化的空间轨迹。”论文的第一作者、杭州华大生命科学研究院魏小雨博士介绍说。“蝾螈脑发育及再生时空细胞图谱的构建,对于我们理解脑再生这一重要的生命过程、两栖类动物脑结构以及大脑结构的演化具有重要意义,为我们寻找有效的临床治疗方法,促进人类组织器官自我修复与再生提供了新的方向,也为物种进化研究提供了宝贵的数据资源。”论文的共同通讯作者、华大生命科学研究院院长徐讯表示,“未来,我们还将通过时空多组学技术去探究更多器官、更多物种的发育和再生过程,找到再生过程中的关键调控机制,助力人类再生医学的发展。”
  • Science:人类蛋白质图谱分析大进展
    2015年1月23日一期的Science公布了基于人类蛋白质图谱的大分析结果,包括与癌症相关的详细蛋白质图片,血液中蛋白质种类和数量,以及市场上被批准的所有药物所作用的目标蛋白质。 人类蛋白质图谱(The Human Protein Atlas),是由Knut and Alice Wallenberg基金会于2014年11月支持的一个大型跨国研究项目。近期他们又开放了一个以人器官组织为基础的蛋白质图谱数据库。基于1300万个注释的图像,整个数据库涵盖了人体中的所有主要组织和器官的蛋白质分布,也标注了仅表达在特定组织,如脑,心脏或肝脏的蛋白。作为一个开放的数据资源,这个数据库提高了对人类生物学的基本见解,更有望帮助推动新的诊断和药物的开发。 在Science的这篇文章里,"基于组织的人类蛋白质组图谱" 结合基因组学,转录组学,蛋白质组学,以及基于抗体的分析,详细分析了大约20,000个蛋白质编码基因。分析结果表明,蛋白编码基因几乎一半都是普遍表达在所有分析的组织。而有大概的15%的蛋白质编码基因大量表达在一个或几个特定的组织或器官,包括众所周知的组织特异性蛋白质,如胰岛素和肌钙蛋白。睾丸是含有最丰富种类蛋白质的器官,其后是大脑和肝脏。分析结果还表明,大约3000种蛋白质是从细胞中分泌释放的,另有5500种蛋白位于细胞膜结构。 这一蛋白质图分析结果为制药行业的提供了重要信息。研究小组的Uhlé n表示,他们发现了市场上使用的药品有70%的作用目标是分泌或膜结合蛋白。有趣的是,另外30%被发现是作用其他组织和器官,这可能有助于解释药物的一些副作用,并且对未来药物开发提供一定的参考价值。 该数据库已经免费对外开放,网址是www.proteinatlas.org.
  • 再精一点!3000+脑细胞基因组高清图谱来了
    哺乳动物的大脑各不相同,脑细胞数量也有差别:人约有1千亿个脑神经细胞,狗约有5.3亿个,而小鼠约有7千万个… … 那么,单个脑细胞的基因长什么样?它们的形状和功能之间又有何关联?1月22日,一项刊发在《细胞》上的研究带来了超过3000个哺乳动物脑细胞的转录组图集和三维基因组图集。根据这些数据,研究者可为神经发育及相关疾病的诊疗提供帮助。该研究由北京大学生物医学前沿创新中心主任谢晓亮带领团队完成。大脑细胞里关键基因的高清三维结构。左侧为来自父亲的基因,右侧为来自母亲的基因。(图片来源:《细胞》)结构决定功能人类对生命的探索不止不休。1953年,世界首个DNA模型问世,双螺旋结构深入人心。2001年,人类基因组工作草图问世,人类遗传密码的破译程度前所未有。在基因组学成为生物学一大子领域的今天,科学家对“结构决定功能”这句话的理解愈发深刻:不止是基因组序列,DNA分子本身的三维结构对单个细胞的功能也有重要影响。每个细胞的基因组结构都不尽相同。得益于不断更新的技术手段,科学家已经能构建出哺乳动物单细胞基因组的三维结构——这项2018年发表在《科学》上的研究,作者之一正是谢晓亮。该成果的发表得益于一系列技术,其中一项新技术——单细胞染色质构象捕获技术(diploid chromatin conformation capture,Dip-C)起到了关键作用。在当时,谢晓亮团队的博士后成员谭隆志参与了相关技术的开发工作。本次发表在《细胞》上的新成果,就是凭借Dip-C等技术获得的。“过去的技术无法测量单细胞的三维基因组结构,此前也没有哺乳动物大脑产后发育的单细胞数据”,论文第一作者、斯坦福大学生物工程系博士后谭隆志告诉《中国科学报》。大脑皮层单个神经细胞的结构图,分辨率20kb。(图片来源:谢晓亮课题组)不断精进的单细胞测序技术全职加入北大前,谢晓亮曾在美国哈佛大学从事单分子生物研究多年。2012年,谢晓亮课题组推出的单细胞全基因组均匀扩增的新方法—多重退火循环扩增法(MALBAC),大幅提高了单细胞测序的通量和精准度。“MALBAC是一项非常独特、创新的单细胞测序技术”,谭隆志表示,该技术从设计层面入手,注重提升扩增均一性,能够灵敏、准确地测量单细胞中含量极少的DNA和RNA。这之后,该课题组一直致力于开发高精度的单细胞测序方法。2017年,谢晓亮和同组的陈崇毅、邢栋、谭隆志、李恒等人采用RNA而非DNA拷贝来扩增基因组,推出的单细胞基因组线性扩增(linear amplification via transposon insertion,LIANTI)进一步提升测序的均一性和准确性。从生物体角度来看,人类、相当一部分高等动物都是二倍体。但基因组学诞生后的很长一段时间里,单个二倍体细胞的结构测量无法实现。2018年,为了将研究范围从单倍体拓展到二倍体,课题组开发了Dip-C技术。人类的46条染色体平分为2套,套内的23条染色体分别来源于父母,这之中的序列相似度高达99.9%,差异非常细微,但通过Dip-C技术,研究者可以对两套染色体进行区分。“迄今为止,Dip-C仍然是测量单个二倍体细胞高分辨率3D全基因组结构的唯一方法。”谭隆志表示。随着测序技术的不断精进,相关的研究发现也越来越多。比如作为细胞“大脑”的细胞核,其内部的染色质在细胞特异性基因表达中发挥着重要作用——视觉和嗅觉都与高度专门化的功能神经元密切相关,而这些神经元的基因组有着独特的三维结构,很可能决定着相应的功能。本次新发表的研究中,谢晓亮等人用到了MALBAC技术的升级版:MALBAC-DT(数字转录组学)。进一步提高灵敏度和准确度后,课题组首次得到了哺乳动物大脑在产后发育过程中的单细胞转录组图谱,具体数量为3517个。而借助Dip-C方法,他们完成了3646个三维基因组结构图集。根据这些数据,他们又得到不少有趣的发现。向理解脑内神经发育更进一步根据转录组图谱的数据,课题组发现小鼠出生后,大量基因被动态表达,从而形成初生、成年两个基因表达模组。“这说明初生与成年大脑在基因表达上有巨大差异、并可能影响大脑认知功能的形成。”谭隆志表示。而将三维基因组图集和转录组图集结合起来看,谭隆志等人发现小鼠出生后一个月内,其大脑在三维结构和转录组层面都有变动,这意味着大脑的确在分子层面发生了转化。“这一转化恰好发生在大脑开始接收外界感官刺激的时期,即小鼠出生后第一个月。”谭隆志说。那么,这些这些分子层面的变化是由外界感官刺激引起的吗?针对这一问题,课题组从视觉研究入手,将出生的小鼠饲养于黑暗环境中,避免其受到视觉刺激。但他们发现,这些“暗中饲养”的小鼠视觉皮层的三维基因组和转录组转化几乎都不受后天影响,因此答案是否定的。另一个有趣的发现是,先前研究中,谭隆志与谢晓亮等人发现嗅觉细胞的基因组内有独特的内移现象:很多平时处在细胞核表面的基因区域,会在神经细胞分化时大幅移向细胞核内部。而这种现象对嗅觉受体调控有重要作用。而在本次发表的研究中,课题组发现这种内移现象同样存在于大脑的各种神经细胞中,大约发生在小鼠出生后的一个月内。“这一发现表明,中枢与周围神经细胞系在三维基因组结构方面可能共享某些特殊通路,未来可以深入研究。”谭隆志说。接下来,课题组还会拓展现有技术的应用范围,并继续开发测序新方法。谭隆志表示,他们将进一步测量单个细胞的三维基因组结构、转录组或其他组,“生物方面,我们将测量更多器官、更多年龄的更多细胞,更全面地解释哺乳动物发育的分子原理。”单个海马体神经细胞结构图,分辨率20kb。(图片来源:谢晓亮课题组)相关论文信息:https://doi.org/10.1016/j.cell.2020.12.032
  • 我国科学家提出一种绘制全细胞神经介观图谱的光学多层干涉断层成像方法
    大脑的神经回路是极其复杂的网络,包含数十亿个神经元细胞,这些细胞间又存在着数以百亿计的连接。如果只了解其中单个分子或单个神经细胞的工作机理而不了解多个神经元细胞之间连接之后的网络结构和集体行为方式,则无法理解大脑复杂且高等的功能行为,也无法解释很多脑部疾病的致病机理。目前成像技术众多,但仍然缺乏可在亚细胞神经元突起水平上描绘出单个脑组织中所有细胞以及神经投射图谱的方法。构建出一种能快速绘制神经网络联接图谱,展现全细胞细节并与电子显微成像相关联以发挥二者优势的光学成像技术,对了解大脑的工作机制和相关疾病机理具有重大意义。  近期,中国科学院苏州生物医学工程技术研究所张若冰课题组提出一种光学多层干涉断层成像方法Optical Multilayer Interference Tomography(OMLIT)。科研人员发现,原本仅用于收集超薄切片的卷带以及为电镜成像提供导电性的导电镀层在光学显微镜下可发挥独特作用:光经过层与层之间的反射与干涉后到达物镜,获得对比度增强的图像。OMLIT在此基础上,通过测试收集超薄切片时所使用的卷带材料、镀层材料、镀层厚度、超薄切片厚度等因素,找到一种在光学分辨率下获取满足介观尺度下要求的图像的条件。  这种成像方法另外的优势在于快速高效准确。相较于电子显微镜成像所需的3.5小时,OMLIT最快可在12分钟内获得神经突触水平下的小鼠皮层三维结构数据集(0.95×1.15×0.027mm3),并可区分和重建所有神经元和神经胶质细胞的形态以及空间位置,以及毛细血管和神经突触的交织网络。使用扫描电镜验证OMLIT的成像与三维重建精度,展示了两种成像方法之间的兼容性。科研人员认为,未来可将长程神经投射图谱与单个脑组织中全细胞的局部回路的互补突触级细节合并,提高大尺度脑图谱的成像通量。  相关成果发表在ACS Photonics上。  论文链接
  • 科学家将人类大脑分为180个不同区域 下一步的计划又是什么?
    科学家将人类大脑分为180个不同区域 下一步的计划又是什么?在一项来自神经科学研究的爆炸性新闻中,最近来自美国的一组研究人员对人类的大脑外层结构—大脑皮层进行了绘制,研究者将人类大脑皮层分为180个不同区域;人类连接组计划(human connectome project)是美国政府发起的一项绘制人类大脑结构和功能性连接的重大计划,利用人类连接组计划的相关数据,科学家们对210名健康年轻人的大脑进行分析,相关研究结果将是人类大脑的现代图集,其中97个区域是此前研究者并未描述过的。人类的大脑皮层是一种折叠的大脑外层结构,其给予大脑一种典型“皱纹”样的结构表现,大脑被分为左右两个半球;我们都知道大脑皮层的特殊区域行使着不同的功能,位于中脑竖向凹槽中的主要体觉皮质区(primary somatosensory cortex)结构主要负责机体的触觉感受。我们关于大脑精细结构的大部分理解都源于对啮齿类动物的研究,大鼠、小鼠和灵长类动物的大脑结构和人类大脑结构大部分相似,但又存在着明显的差异;并不像啮齿类动物那样,人类大脑中有着较大面积的前额皮质结构,该区域主要负责高度的“行政职能”,比如决策制定等;我们可以通过语言进行交流,同样我们大脑中还有着特殊的加工处理区域,这些区域可以帮助说话并且理解说话的意思。功能性磁共振成像(fmri)技术可以通过检测血流改变来测定机体大脑的活性,而诸如此类技术的改善或可帮助我们以一种空前详细的方式来对活体大脑进行实时成像。古老神经科学研究的目标对大脑图谱进行绘制是几个世纪以来科学家们的夙愿,追溯到19世纪颅相学学科领域时,研究者认为个体的人格特质位于大脑的特殊部分中。一些研究支持者在相应的大脑区域测定了大脑的头骨结构,从而来确定个体如何表现得有责任心、有仁慈心及好战的?一个多世纪以前,德国的解剖学家korbinian brodmann根据大脑每个区域中细胞的结构和组成将大脑分为多个特殊的区域,到目前为止,这些区域都是被人们广泛接受的大脑特殊区域,即所谓的布劳德曼区(大脑皮层细胞结构分区)。这项最新研究中,研究者利用不同mri成像技术进行结合对结构和功能不同的大脑区域进行绘图,这些区域看起来像物理结构,比如大脑皮质的厚度等,同时在进行特定任务期间被激活的大脑区域以及其活性表现都通其它区域的活性相协调一致。某些大脑区域主要和单一功能的发挥有关,比如视觉加工和运动区域等,但很多区域却并不是这样的;实际上科学家们还发现了当大脑处于休眠状态时被激活的大脑区域网络。一个详细的大脑图谱—那又如何?这项对大脑图谱的最新绘制将是神经科学研究的一个重大标志,最新的大脑绘制图谱信息将为科学家们提供更多细节性的信息来帮其解析大脑控制行为的机制,以及大脑特殊区域的障碍为何会诱发大脑疾病的发生。啮齿类动物的大脑图谱来源于近交系的动物,这些动物在大脑解剖学上改变较少,而在人类大脑中单一改变非常常见;目前人类的左脑和右脑半球在解剖学结构上存在较大差异,从而就会使得不同年龄和性别个体大脑结构的差异。比如近来对1400名个体的研究结果就发现,和记忆相关的大脑区域—左侧海马体结构,通常男性要大于女性。由于存在一定差异,科学家们历来难以比较不同大脑成像研究产生的结果,同时他们也很难确定大脑成像扫描可以表现出相同大脑区域的活性;但如今对大脑区域的精确区分就可以使得科学家们进行更好地比较和研究了。大脑图谱的绘制对于神经外科研究领域有着较大的实用价值,当前外科医生会利用一种立体定位系统(3d)来确定并且对大脑特殊区域进行操作,但这或许并不是理想的,因为不同个体的大脑结构并不相同,科学家们利用新的算法往往可以绘制出新的大脑图集,而这或许会被用于个体化的图谱绘制来帮助更加特殊精确地指导外科手术的进行。未来的分类未来研究者很有可能对大脑进行重新区分,将其分为超过180个区域的结构,随着成像技术的改善,我们未来就可能在大脑组成和活性上发现更具特性的不同亚结构。但是研究者仍然认为,某些新绘制出的大脑区域或许要更加晚于亚结构区域的发现,以主要体觉皮质区(primary somatosensory cortex)为例,大脑皮层是由躯体特定区域的亚结构区域组成,这些大脑区域同机体不同部分的感觉感受器点对点相对应。目前不同的研究小组正在开始对不同大脑区域的基因组架构进行绘制,相关的研究发现或将帮助未来科学家们绘制出更加精细完整的人类大脑结构。
  • 北京生科院建立单细胞环形RNA分析技术及表达图谱
    环形RNA是一类在真核细胞中广泛存在的内源性非编码RNA分子,在生物体发育过程中发挥重要作用。之前研究已在不同物种中鉴定出数百万个环形RNA分子,并产生了大量用于揭示生物体组织表达模式的环形RNA数据资源。然而,由于大多数环形RNA表达量较低,传统的转录组测序方法无法表征单个细胞环形RNA表达谱系特征及异质性。近年来,随着单细胞全长转录组测序技术的发展,已可对单个细胞中环形RNA进行捕获测定。尽管效率较低,仍可部分揭示单细胞分辨率下环形RNA的表达模式。因此,单细胞水平的环形RNA表达及功能研究已成为该领域重点关注的问题。 中国科学院北京生命科学研究院研究员赵方庆团队致力于环形RNA方面的研究。6月10日,该团队在《自然-通讯》(Nature Communications)上,发表了题为Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing的研究论文。该研究基于海量单细胞全长转录组测序数据集,实现了单细胞分辨率下环形RNA的高效识别及深度挖掘,基于大规模时空组学数据的整合分析,探索了环形RNA的细胞异质性,揭示了环形RNA作为细胞类型标志物的应用潜力。该研究将目前环形RNA研究从传统组织水平提升至单细胞水平,为探究不同细胞类型中环形RNA的生物学功能提供了重要的数据资源和分析技术。 科研人员收集整理了171个已发表的单细胞全长转录组数据集(图1),包含人和小鼠中58种组织和细胞类型,共计172,137个细胞。同时,研究建立了基于单细胞转录组数据的环形RNA识别和整合分析方法,在人和小鼠中共识别出40,604和131,533个高度可靠的环形RNA分子。基于以上数据所生成的单细胞环形RNA综合表达图谱,为环形RNA的研究提供了有力的数据支持,并为揭示环形RNA在不同细胞类型及发育阶段的动态变化提供了重要资源。 该研究深度剖析了单细胞数据中环形RNA的表达模式,发现它们在不同细胞类型上具有高度特异性。研究对小鼠大脑不同细胞类型中环形RNA的表达的分析表明,抑制性和兴奋性神经元的差异性表达与RNA结合蛋白的表达具有高度相关性。此外,研究观察到胚胎发育不同阶段的特征性环形RNA,阐释了环形RNA从母体来源至合子表达发生的动态转变过程。 进一步地,基于单细胞测序技术可有效的揭示肿瘤发展和转移过程中细胞水平的异质性,研究建立了20名乳腺癌患者的单细胞数据集,分析发现环形RNA在正常和肿瘤细胞的上皮间质转换过程中的表达规律和潜在功能。研究筛选出人和小鼠中细胞类型特异性环形RNA,并验证了其可作为生物标志物在解析肿瘤浸润性免疫细胞中的适用性。最后,研究构建了目前首个单细胞环形RNA数据分析和资源平台——circSC(http://circatlas.biols.ac.cn)(图2),为环形RNA研究奠定了独特而重要的数据和技术基础。 研究工作得到国家杰出青年科学基金、国家自然科学基金基金重点项目和国家重点研发计划的支持。赵方庆团队致力于建立高效的算法模型和实验技术,探索人体微生物与非编码RNA的结构组成与变化规律,解析它们与人类健康和疾病的关系。近年来,相关成果先后发表在Cell(2020)、Gut(2022/2020/2018)、Nature Biotechnology(2021)、Nature Computational Science(2022)、Nature Communications (2022a/2022b/2021/2020/2017/2016)、Genome Biology(2021/2020/2016)、Molecular Biology and Evolution(2022)、ISME J(2019)等上,这些研究丰富了科学家对人体微生物与非编码RNA多样性、结构组成与功能的认识,并为相关数据挖掘及功能机制研究提供了重要方法学工具。   论文链接 图1.基于单细胞全长转录组的环形RNA识别和整合分析 图2.环形RNA单细胞表达图谱及数据平台——circSC 精彩会议预告:点击图片免费报名参加“第五届基因测序网络大会”
  • Neuron:最新下丘脑室旁核(PVH)催产素神经元单细胞全脑投射图谱
    前言骆清铭院士和龚辉教授带领MOST团队发明的显微光学切片断层成像系列技术(MOST/fMOST)作为介观尺度最精准的三维完整器官成像技术,已在神经机制、脑疾病、心脑血管疾病以及药理毒理等科学前沿领域研究中发挥重要作用,并带动了相关标记技术和大数据处理和解析技术的发展。 文章题目:Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns发表时间:2024年1月29日发表期刊: Neuron研究团队:北京大学生命科学学院黎胡明珠、华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者;北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者 催产素是九个氨基酸组成的环状神经肽,由大脑中的神经细胞合成、分泌。其最早被报道的作用是促进分娩和泌乳,主要由垂体分泌至外周循环的催产素完成。进一步研究发现催产素还参与维持机体代谢平衡和内稳态,并调控社交行为、学习与记忆、奖赏等复杂行为。关于催产素的研究已经持续百年,但其多样功能的结构基础仍不清楚。一个关键问题是,催产素神经元如何将催产素分泌至各个脑区及外周组织,从而实现特定功能的调控。前人研究表明大脑中产生催产素的神经元主要分布在14个脑区中,其中下丘脑室旁核(paraventricular hypothalamic nucleus, PVH)拥有数量最多且投射最为复杂的催产素神经元。因此,对于室旁核催产素神经元投射的形态解析对理解其功能多样性至关重要。室旁核包含两类传统方法定义的催产素神经元类群:大细胞催产素神经元被认为拥有复杂的轴突结构并参与中枢和外周的调控,小细胞催产素神经元主要参与中枢自主神经调控(图1)。然而群体示踪的方法无法精细区分两类神经元的投射图谱,也无法揭示每一类群中是否存在进一步的功能与形态异质性。系统性重构单神经元形态为解答这一问题提供了可能。 2024年1月29日北京大学于翔团队与合作者在 Neuron 期刊发表了题为“Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns”的研究论文,在单细胞水平揭示了下丘脑室旁核催产素神经元的完整形态。中国科学院脑科学与智能技术卓越创新中心与上海科技大学联合培养,目前就职于北京大学生科院的黎胡明珠博士为第一作者。 图1:(左)根据传统分类与群体示踪的大细胞催产素神经元(magnocellular)与小细胞催产素神经元(parvocellular)分类。(右)基于系统性重构单神经元形态提出的室旁核催产素神经元C1与C2分类 该研究首先构建了病毒载体rAAV-EF1α-DIO-YPet-p2A-mGFP,在Oxytocin-ires-Cre小鼠中实现了室旁核催产素神经元的稀疏高亮标记。通过荧光显微光学切片断层成像(fluorescence micro-optical sectioning tomography, fMOST)对稀疏标记样本进行全脑成像,用Fast Neurite Tracer进行形态追踪,重构了264个室旁核催产素神经元的完整三维形态,从而绘制了亚微米分辨率下的单神经元全脑投射图谱。进一步通过层级聚类和投射靶点相关性分析,揭示室旁核催产素神经元包含两类投射模式互斥的类群。其中,C1类包括177个神经元,轴突较短且终止于正中隆起(连接下丘脑与垂体的脑区),仅有少量分支分布于下丘脑区域,且对其他脑区几乎没有投射(图2,红色);C2类包括87个神经元,其轴突广泛投射至除正中隆起之外的两百余个脑区,涵盖新皮质、嗅区、海马结构、皮质板下层、纹状体、苍白球、丘脑、下丘脑、中脑、脑干、脑桥、延髓、小脑和纤维束(图2,绿色)。每一类群又可进一步分为投射模式不同的三个亚类。此外,还发现室旁核催产素神经元,特别是C2类神经元的树突形态复杂并可延伸至室旁核以外,而C1类神经元的树突则较简单且分布在胞体附近,两类神经元胞体位置有一定偏好,并具有独特的转录特征与分子标志。 图2:小鼠下丘脑室旁核催产素神经元根据单神经元投射图谱可分为C1类(红色)和C2类(绿色)。 C1类和C2类神经元及其亚类在投射模式上的高度异质性,表明各亚类神经元可能分别执行了催产素的不同生理功能:(1)正中隆起—垂体后叶是催产素向外周分泌的重要途径,因此C1类神经元应主要负责通过神经内分泌调控外周生理活动,同时其在下丘脑的投射分支可能参与中枢自主神经调控;(2)C2类1亚型(C2-1)神经元投射至脑干多个区域,可能参与自主神经调控、介导躯体感觉以及伤痛感觉的调控;(3)C2-2 和 C2-3亚型神经元拥有复杂且精细轴突分支,全脑广泛投射,除了涵盖C2-1亚型神经元的功能之外,很可能介导社会识别、亲社会行为、学习与记忆、奖赏行为及厌恶行为等高级脑功能;(4)脑室周围存在C2类神经元轴突分布,提示其分泌的催产素可能是脑脊液中催产素的重要来源之一;(5)对催产素神经元树突的重构发现其分支延伸至室旁核周围核团中,可能具有整合信号输入及通过催产素的树突释放调控周围脑区的作用(图3)。 图3:(A, B) 室旁核催产素神经元各亚类的单神经元投射图谱。(C) C1类与C2类神经元具有截然不同的投射模式。(D) C2类神经元轴突投射至脑室附近区域。 综上,该研究对室旁核催产素神经元进行全方位的、单细胞精度的胞体、树突和轴突形态学分析,为进一步理解催产素神经元调控复杂生理功能提供了详实的结构基础。两类神经元分子标记物的鉴定,为后续特异性的分子、环路操作和功能探索奠定了基础。该项工作从单细胞水平,更新了人们长久以来对于室旁核催产素神经元形态结构的认知,并将为后续研究提供重要的参考。 该研究工作是多团队联合攻关的成果。中科院脑科学与智能技术卓越创新中心和上海科技大学博士毕业生,现北京大学生命科学学院研究助理黎胡明珠是该论文的第一作者。华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者。北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者。华中科技大学骆清铭、龚辉与李安安团队,中科院遗传与发育研究所吴青峰课题组,中科院脑科学与智能技术卓越创新中心严军与许晓鸿课题组及全脑介观神经联接图谱平台中心对该研究做出了重要贡献。 原文链接:https://www.cell.com/neuron/fulltext/S0896-6273(23)01010-3
  • 了解大脑的巨大挑战:采用功能性近红外光谱法进行神经成像
    耶鲁医学院神经生物学和精神病学教授Joy Hirsch博士 在生命科学的所有挑战中,对大脑的了解是难中之最。大脑是人体最复杂的器官,拥有超过1千亿个神经元和其他细胞,形成了超过100兆个连接。这些连接由多种神经化学因子调节,这些因子跨越空间维度,从分子开始并发育到细胞、循环、系统、并最终导致包括认知过程、情绪、感知、记忆和目标导向行为。从出生到生命终结的人类发育所有阶段的大脑疾病在世界范围内的流行,导致了严重的医学、政治、经济、法律和生活质量问题。无论如何,在健康和疾病领域,大脑仍是一项科学前沿问题。 不过,这种广泛而未被满足的医疗需求的紧迫性再加上神经系统科学领域的近期进展已经激发了这样一个充满希望的愿景:对于大脑的全面理解是一个可以实现的目标。在美国,这一愿景最近已经集中到了一项被称为BRAIN(通过推进创新神经科学技术来进行大脑研究)倡议的行动计划上。此项倡议于2013年4月2日由美国总统巴拉克奥巴马(Barack Obama)公布,他宣布“加速对能够让研究人员生成显示设想速度下个体脑细胞与复杂神经回路间互相作用的大脑动态图片的新技术的开发和应用”是一项巨大挑战(The White House,2013年)。随后,国立卫生研究院(NIH)制定了一项10年计划,用以实现加速技术开发以便获得关于神经系统在健康和疾病中所起到功能的基础见解这一主要目标。一开始,BRAIN倡议的终点是大脑中的神经回路,包括组成细胞的表征、突触连接、以及行为相关活动的动态集合。这一总体目标横跨多个研究领域,从管理短程细胞回路的分子和细胞过程到由人类神经成像观察到的管理复杂行为的远程流程。行动过程人类大脑成像 针对这一倡议的一个主要目标包括现有技术的改善以及用于大脑机制及行为之间关系探索和建模的全新技术的开发。主要采用核磁共振成像(MRI)和诸如脑磁图描记术(MEG)及脑电图描记术(EEG)等电磁技术的现有脑成像技术,是正常及病理条件下人类大脑研究的基础。这些技术对一个重点为功能性脑活动与认知及行为之间相关性的神经系统科学主要分支做出了大量贡献。尤其是大脑成像技术的爆发式成长,实现了对于人类语言、记忆、决策制定、视觉和听觉过程、情绪、学习及社交互动等复杂认知行为相关的专门神经过程的操作性了解。 总之,这些系统的神经学和生理学组成部分1) 局限于特定的大脑区域和接收及传输信息的短程神经回路,并且2) 通过涉及的大脑区域之间的远程途径相互连接。因此,出现了两大大脑组织原则。首先是隔离原则,大脑特定区域专门用于特定的任务和处理;第二是互动原理,在特定任务需求下大脑中共同有效区是相互连接的。例如,在人类语言系统中,位于左颞上回的一个通常被称为威尔尼克语言区(Wernicke’s area)的区域,专门用于语言接收功能(理解并解读说出的语句)。此外,位于左额下回的一个通常被称为布鲁卡语言区(Broca’s Area)的区域专门用于产生语言功能(产生语音)。 这两种专用大脑区域的复合体通过广为人知的途径相互连接,包括弓状纤维束和用于传输了解语言并用于说话的过程相关当地信息的弓形钩突。其他被广泛认可为和记忆及情绪有关的大脑区域,在特定任务过程中和语言系统功能性连接。语言相关操作过程中这些互动区域之间的动态关系,已经采用当代神经成像技术进行了广泛研究。技术进步 主要由于采用磁共振成像(MRI)技术研究大脑过程的限制,主流神经成像技术被局限于单个个体的研究。在扫描仪环境下,两个个体之间的自然人际互动是不可能的。不过,实时交流涉及语言和非言语交流,包括目光接触,动态面部表情和反应手势。虽然涉及两个个体之间动态交流的互动社会行为是人类社会化的一个基本方面,但这些隐含的沟通线索不会出现在仅包含一个个体的扫描环境中。主要是由于这些技术的局限性,导致人类对调节和调制自然人际互动和交流的潜在神经回路知之甚少。因此,具有社交互动相关潜在深刻缺陷的神经病(例如孤独症谱系障碍、精神分裂症、焦虑症和抑郁症)的神经生理学机制仍无法确定。用于生态学上有效的条件下两个个体间交流过程中大脑成像的新技术的开发,为在传统神经成像中收集的信息不足的大型临床全体的需求的解决提供了一个特别有影响力的机会。近红外光谱法(NIRS)的基础性新角色 一种新兴的神经成像技术——功能性近红外光谱法(fNIRS)采用了固定在头戴帽上的光极,并且适合在自然情况下用于多位受试者而且不受头部移动影响。和MRI一样,NIRS能够在无离子化造成的毒性的情况下,实现对个体受试者运作中神经系统的观察。此项技术利用了活跃神经组织回路氧合的血液比例比非活跃神经组织更大这一生理学原理的优势。在这一过程中局部微脉管系统内脱氧血红蛋白(deOxyHb)的顺磁性作用降低。被称为血氧水平依赖性(BOLD)信号(Ogawa等人,1990年)的MRI中信号放大是由于deOxyHb比例降低以及由此导致的顺磁性作用减少。BOLD信号也是利用光谱吸收(J?bsis,1977年)通过NIRS测定的,这种方法能够区分氧合血红蛋白、OxyHb和deOxyHb信号。脉冲激光(采用岛津NIRS系统)发射三种波长的光,而检测器则测量氧合血红蛋白(OxyHb)和脱氧血红蛋白(deOxyHb)浓度的变化。对于每个通道,测量在780nm、805nm和830nm下的近红外光吸光度,并根据改良朗伯-比尔定律(Beer-Lambert Law)分别换算为相应的deOxyHb、总Hb(HbT)和OxyHb(Matcher & Cooper,1994年)(图1)。 图1. 脱氧血红蛋白与氧合血红蛋白吸收光谱这些函数显示了OxyHb和deOxyHb在780nm及830nm波长处的最大吸光度差异。大脑血液中的氧浓度影响着反射的光波长。改良朗伯-比尔定律被用于换算对应于deOxyHb(780nm)、总血红蛋白(805nm)和OxyHb(830nm)浓度变化的三个波长下的光衰减直接测量结果。 Shimadzu Corporation(日本东京)是一家fNIRS系统的领先制造商。图2显示了专门用于超高扫描的岛津LABNIRS配置,可为参与互动任务的两个个体同时获取信号。这种特殊系统可利用配备场景及瞳孔摄像头的SMI镜片实现实时NIRS信号的获取及眼球追踪采集。在此示例中,每顶帽子都包含42个通道,并为每位受试者分为两个半球。帽子配置是灵活性的,可以根据实验目的修改。NIRS信号的获取速率范围为10至33毫秒,空间分辨率为约3厘米。这种时间分辨率非常适合大脑内和大脑间活跃区域连接性的测量,不过和fMRI相比空间分辨率方面相对有所损失。 fMRI和fNIRS信号都反映出了大脑血流和大脑血氧饱和度的变化,而这些和潜在神经活动关联。后者已经由Eggebrecht及其同事(Eggebrecht等,2012年)最近在健康志愿者的视觉刺激过程中得到证实。fMRI BOLD和deOxyHb及OxyHb之间高度的正相关性目前已经得到很好证实(Sato等人,2013年;Scholkmann等人,2014年)。 在单个受试者、单次运行和单个光极的大拇指敲击任务中获得的“原始”fNIRS信号显示,同时获得了对任务相关时间系列作出响应的OxyHb和deOxyHb信号(图3)。注意OxyHb和deOxyHb信号之间的反相关性,和理论预期一致。由于和神经(而非心血管)事件的已知相关性,deOxyHb信号预期将是和fMRI BOLD信号最紧密相关的信号(Franceschini等人,2006年) 图2. 耶鲁大学医学院大脑功能实验室的fNIRS系统(LABNIRS,ShimadzuCorp.)。采用LABNIRS系统的参与者以SMI(ETG-2)眼部追踪镜片显示。单个受试者/单个通道/单个位置 图3显示了在不采用岛津LABNIRS系统(白色箭头)进行滤波的单次运行、单个受试者、单个通道手指大拇指敲击任务中,OxyHb(红色)和deOxyHb(蓝色)信号之间的反相关性。大脑覆盖最优的帽子设计 两位受试者相应大脑半球上的光极放置如图4所示。表1中包含了每个通道解剖学位置的示例(单个受试者),采用现行蒙特利尔神经学研究所系统(Montreal Neurological Institute)以标准解剖学坐标表示(ICBM152,Mazziota等人,2001年)。由于NIRS不会和MRI一样提供结构信息,使用标准脑图谱将通道位置与已知解剖结构相关联。 在两位受试者身上,光极被放置在相似的头部位置上,以便获得来自几乎相应脑区的皮质信号。探针被放置在每位受试者的头部,和被定义为从鼻根通过Cz到枕骨隆突的中线对齐。探针的位置以10-20国际坐标系统(Jasper,1958年)为基础,可提供与皮质解剖结构之间的准确关系(Koessler等人,2009年)。诸如PATRIOT Polhemus(Colchester,VT)等3D磁数字化仪通常被用于识别光极位置从而识别每位受试者的通道位置,根据受试者头骨的形状和尺寸进行标准化(Singh等人,2003年)。除了个体光极的位置之外,还记录了头部解剖学标志的三维坐标(Okamoto等人,2004年)。这些坐标被用于估计每个通道的位置,由发射器-检测器光极对采用比如NIRS-SPM (http://www.fil.ion.ucl.ac.uk/spm/)(一种基于MATLAB的应用)等标准软件包进行定义。继续所有渠道。表1 通道为止MNI坐标示例通道几何中心位置:MNI坐标 图4两个脑半球的通道分布 两个或以上个体的新神经系统科学 两人或以上个体间互动的近期研究已经证实了NIRS技术的功效,目前正引领着一种个体间自然交流的新神经系统科学之路(Babiloni和Astolfi,2014年;Scholkmann等人,2013年)。技术、计算算法和实验范式的突破,为社会大脑理论框架开发、以及通常社交功能受损的多种精神疾病和神经疾病的治疗的未来进展保证了一个质的飞跃。一种新的神经系统科学的新型基础,源于用以观察特定功能相关大脑间同步的高级计算方法。例如,已经采用小波分析测量了某项计算机任务合作过程中额叶皮质信号的一致性,并且显示了在同一个任务上进行竞争的受试者之间的一致性更高,表明了一种对合作特定的人际关系敏感的神经生理学底物(Cui等人,2013年)。在一项采用四个受试者群组同步记录的方法进行的合作性文字游戏中报告了相似的额极结果(Nozawa等人,2016年)。采用左前额和顶叶脑区同步NIRS记录的方法,对群组中领导者和追随者的出现进行了研究。研究发现揭露了团队领导者的出现,与领导者和追随者之间神经同步相对于追随者之间同步的增加相关(Jiang等人,2015年)。这些发现表明,未来可采用超高扫描方法和NIRS来了解领导能力的神经学机制。面对面交流中观察到的大脑间左半球神经同步相对于背对背交流中同步的增加表明面部表情为人际交流提供了特殊的神经信号,并且为将生动面部表情作为自然个体间交流的基础组成部分的研究指明了道路(Jiang等人,2012年)。参与某项手指敲击模仿人物的两个大脑的运动前区的同步,大于以自身步调进行的控制任务中的同步(Holper等人,2012年)。目光接触也可以增加大脑之间的一致性(Hirsch等人,2017年)。其他示例包括合作性按按钮(Funane等人,2011年)和正回任务(Dommer等人,2012年)。这些研究发现都为关于大脑间作用特定于某些神经区域、以及在不同人际交流条件下一致性出现增加提供了证据。这些基础性发现是记录基于NIRS的新型超高扫描技术潜在重要性的早期切入点,并且前进的轨迹正在以非常快的速度移动。当两人互相对话时两个大脑会发生什么? 在我们对健康成人配对组之间面对面交流过程中进行的大脑间同步互动早期研究中,在15秒的回合内关于对话和倾听对象的画面交替出现。这些回合是结构化的,并且决定了讲话和倾听的顺序。对受试者配对组在独白/对话和面对面/阻挡条件下获得的信号的神经活动进行了比较。三分钟的运行时间被分为十二个15秒长的回合。此处假设与独白相比,在对话过程中讲话及倾听相关的脑区中大脑内和大脑间同步将增加。对于每个回合,监视器上将显示某个对象的单独照片并由每位受试者查看。任务在面对面交流条件下以及面部被阻隔的条件下(即受试者无法看到他们的搭档)进行。结构化独白任务:在第一个示例中,受试者1识别了图片对象并提供了和对象相关的口头叙述。受试者2进行了倾听但并未回应。第二个回合采用了一个新的图片。受试者2说出了对象的名字并进行了口头叙述,而受试者1则进行了倾听。这种讲话和倾听的交换持续了3分钟,如图5所示。结构化对话任务:除了讲话的人对先前讲话人叙述进行了回应之外,结构化对话任务和结构化独白任务是相同的。预期是对话条件将揭露面对面条件下由于动态互动强度变化而到导致的语言系统的上调。 图5. 独白和对话范式 图6. 单独通道的fNIRS信号:通道12背外侧前额叶皮层(DLPFC,顶行)和通道18额极皮质(底行)显示了讲话和倾听过程中来自两位互动受试者的同源位置S1和S2的反相关信号。图片显示了OxyHb(中列)和deOxyHb(右列)的信号平均值并证实了配对受试者之间对应于角色变换(倾听和说话)的预期反相关性、以及OxyHb和deOxyHb信号之间的反相关性。 图6展示了两位受试者源自对讲话和倾听敏感的脑区S1和S2的信号之间的反相关性。和fNIRS信号的预期相同,每位受试者每个通道内的deOxyHb和OxyHb信号反相关(详见上文吸收光谱和示例)。对话过程中大脑内功能连接性大于独白期间:采用常规线性模型和心理生理互动(PPI)分析技术。 旨在了解传统人物相关、单个大脑功能连接性作用的分析,证实了面对面互动中对话的神经显著性。大脑偏远区域间功能连接性的测量表明,和独白相比在对话过程中同步会增加。尤其是在一项面部敏感性大脑区域梭状回(Kanwisher等人,1997年)被选定为重点区域的心理生理学互动(PPI)(Friston等人,1997年)的分析中,证实了面对面目光下对话可以增强威尔尼克语言区和布鲁卡语言区之间神经共变的强度(图7)。研究发现证实了对面对面过程中布鲁卡语言区和威尔尼克语言区间互动性增加的规范性语言系统的预期。对话过程中大脑间一致性大于独白过程:旨在研究大脑间互动的大脑间一致性(采用小波比较)。 根据内部(大脑内)功能连接性研究发现预计,这些区域在面对面条件下也会产生大脑间的共鸣。根据在每个通道获得的分级信号的小波核心,为对话(红色)和独白(蓝色)条件下的大脑间一致性(图8A)进行了绘图。对于两个大脑间大脑区域所有可行配对都以不偏不倚的方式进行了考虑。仅在对话和独白条件下发现了布鲁卡-威尔尼克语言区配对的核心范围内约6.34秒的大脑间一致性的显著差异(x轴)。语言产生区域(布鲁卡语言区)和语言接收区域(威尔尼克语言区)推定功能之间的大脑间一致性和这些研究发现一致,并且和以当前对这些区域的了解为基础的预期结果一致(图8B)(Jiang等人,2012年)。 图7. 在双方面对面目光下,对话条件下的大脑内功能连接性(PPI)大于独白条件下。依据是梭状区(绿色),连接区域(p ≤ 0.05)为布鲁卡区(-55, 20, 16)和威尔尼克区(-48, -36, 40)deOxyHb信号。(Hirsch, J., Noah, A., Zhang, X., Yahil, S., Lapborisuth, P., & Biriotti, M.(2014年10月)。背外侧前额叶皮层内专用于人际交流的神经专区:一项NIRS研究。神经系统科学协会年度会议上的演讲,美国伊利诺斯州芝加哥。) 这些研究表明了采用fNIRS和超高扫描技术研究互动人脑间动态关系的潜在未来方向。此外,语言超高扫描研究记录了诸如语言系统组分等广为人知的功能性神经解剖结构是可以采用fNIRS观察到的,而且两个个体间大脑一致性和同步的其他特征可以被作为新型探索方向进行研究,以便对作为社交互动神经事件基础的未知问题进行表征。这些研究还证实了光极覆盖范围可涵盖整个头部表面的技术的优势(Zhang等人,2016;Zhang等人,2017年;Dravida等人,2017年)。由于神经系统依赖于多个区域之间的信号合作(整体性原则),最成功的NIRS技术将取决于整个大脑的大脑功能采样。潜在获益包括可实现人际交往和相互交往过程中涉及的神经组织原则的方法及技术的标志性突破。进一步的研究可采用这些新的技术来进一步了解交流障碍的神经学基础,以及发育障碍中的社交能力障碍的神经学基础是如何偏离正常发育基础的。 之后我们应该怎么做? 功能性NIRS是一种正在快速成长的神经成像技术,在过去的20年间每3.5年相关著作数量就会翻一倍(Boas等人,2014年),且目前的增长轨迹呈指数型。主要开发领域包括神经发育、感知和认知、运动控制、以及精神疾病及神经疾病和治疗等传统神经系统科学主流领域中应用的仪器、分析方法、以及实验程序优化。神经反馈(Lapborisuth等人,2017年)和成人冲突认知神经系统科学(Noah等人,2017年)的近期应用展现了这些新的目录。不过,fNIRS的主要优势和自然环境中信号获取相关,而不受到高磁场以及限制头部运动及交流的不适成像条件带来的局限性的限制。这些优势让fNIRS成为了神经系统科学领域一种新前沿的潜力领先技术;这一前沿旨在了解社会行为和大脑间人际互动的神经相关性(Pinti等人,2015年;Noah等人,2015年;Hirsch等人,2017年)。旨在实现这一主要进展的各方各面基本已就绪。这一特定最终目标的关键开发优先事项 包括:1) 专注于代表和系统及其他非神经组分区分的信号的神经贡献的信号组分的计算算法(Kirilina等人,2012年; Zhang 等人,2016年);2) 光极完全覆盖头部以便获取潜在远程神经回路的动态活动;3) 同步EEG、fNIRS、以及眼部追踪综合测量(例如)用于远程大脑机制综合性报告的多模式系统。BRAIN倡议和fNIRS作为主流神经技术兴起的共同发生,催动了专门针对两个或以上个体之间人际互动的未开发神经系统的有效潜力。 图8. 大脑间同步的一致性分析。A. 为独白(蓝线)和对话(红线)条件下威尔尼克及布鲁卡语言区(WA和BA)的deOxyHb fNIRS信号绘制了一致性,表明了和独白相比对话条件下同步性显著更高(p 0.005),并且仅在面对面条件下观察到。研究发现在成对受试者中具有双边意义,并且在目标区域方面无偏倚。B. 这些一致性研究结果仅限于布鲁卡和威尔尼克语言区(群组数据)。(Hirsch, J., Noah, A., Zhang, X., Yahil, S., Lapborisuth, P., & Biriotti, M.(2014年10月)。背外侧前额叶皮层内专用于人际交流的神经专区:一项NIRS研究。神经系统科学协会年度会议上的演讲,美国伊利诺斯州芝加哥。)参考文献Babiloni, F., & Astolfi, L. (2014).Social neuroscience and hyperscanning techniques: past, present and future.Neuroscience & Biobehavioral Reviews, 44, 76-93.Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014).Twenty years of functional near-infrared spectroscopy: Introduction for the special issue.Neuroimage, 85, 1-5.Cui, X., Bryant, D. M., & Reiss, A. L. (2012).NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex durintion and methodology.Neuroimage, 85, 6-27.Singh, M., Kim, S., & Kim, T. S. (2003).Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans.Magnetic Resonance in Medicine, 49(1), 108-114.The White House, Office of the Press Secretary.(2013).Remarks by the President on the BRAIN Initiative and American Innovation [Press release].Retrieved fromhttps://www.whitehouse.gov/the-press-office/2013/04/02/remarks-pr esident-brain-initiative-and-american-innovationZhang, X., Noah, J. A., & Hirsch, J. (2016).Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering.Neurophotonics,3(1), 015004-015004.Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2017).Signal processing of functional NIRS data acquired during overt speaking.Neurophotonics, 4(4), 041409. doi: doi:10.1117/1.NPh.4.4.041409
  • 首次发现:你的大脑“指纹”,全球独一份
    近日,来自瑞士洛桑联邦理工学院医学图像处理实验室和神经假体研究中心的 Enrico Amico 教授及其团队,发表了一项新的研究,表明人类大脑同样具有独一无二的活动特征,即“大脑指纹”。同指纹识别一样,通过大脑“指纹”也能精准识别不同个体。  同时,研究人员还证实,大脑独一无二的活动特征最先出现在眼球运动、视觉感知相关的感觉区域,随后出现在与复杂认知功能相关的额叶皮层区域。而阿尔兹海默病等神经退行性疾病患者随着疾病进展,大脑“指纹”特征似乎会逐渐消失。  对此 Amico 教授表示,“我们的研究表明,只需要 1 分 41 秒就能获得人类大脑活动的“指纹”信息,这一信息最先出现在大脑视觉相关的感知区域,随着时间的推移,也会出现在复杂认知相关的额叶皮层区域。未来,我们或许可以通过大脑‘指纹’监测来筛查潜在神经退行性疾病患者、自闭症患者、中风患者、甚至成瘾的患者。”  相关研究以“When makes you unique: Temporality of the human brain fingerprint ”为题发表在最新一期的 Science Advances 杂志上。  每个人都有一个与众不同的大脑  17 世纪中期,意大利著名组织学家兼医生马塞洛马尔皮吉(Marcello Malpighi),首次观察到人体指尖上有明显的纹路和汗腺。这一观察结果为后续的指纹与个体识别技术奠定了基础。  如今,我们已经知道,每个人都有独一无二的指纹,指纹信息已经成为了人类身份认证的重要依据,在人类生活中被广泛应用。例如手机指纹解锁、指纹门禁打卡、刑事案件侦破等等。显然,指纹识别技术的出现让我们的生活变得更加快捷、更方便。  (来源:Pixabay)  然而,经常看电影的小伙伴们可能会发现,指纹是可以被盗取的。因此,近年来,人们也研发出了一系列诸如视网膜识别、人脸识别等技术,用于指纹识别的补充。  2015 年的时候,Finn 等人首次提出人类大脑存在特异性这一理念,并通过功能核磁共振成像技术(fMRI)证明,仅计算人类大脑功能连接,就能找到大脑“指纹”。  简单地来说,fMRI 是通过测量神经细胞活动时所引起的血液氧气含量变化,来观察大脑不同区域的活动情况,可以像照相机一样记录大脑的活动状态。  通过扫描出来的 fMRI 图像可以得到每个人的连接矩阵,由于不同的生活经历和后天环境,每个人大脑内部连接的方式都不一样,所以可以根据连接矩阵来判断是否为同一人。  2016 年的时候,来自卡耐基梅隆大学的科学人员采用了五个数据库的数据,通过使用功能性核磁共振成像分析了 699 个人脑的连接图谱。  (来源:scitechdaily)  随后,该团队共开展了 17000 多次实验,最终证明,通过大脑功能核磁共振扫描,的确可以找到每个人独特的大脑“指纹”,并且再次扫描仍旧能够完美复现,确认身份。研究人员还发现,就连同卵双胞胎的大脑之间也存在这种区别。扫描结果显示,同卵双胞胎的大脑结构连接模式只有 12% 是相同的。  对此,卡耐基梅隆大学的心理学助理教授提摩西威尔斯迪南(Timothy Verstynen)表示,“研究结果证实了神经科学领域的一项假设,即每个人大脑中的连接模式都是独一无二的。这说明你的生活经历可以在大脑的连接模式中有所体现。”  大脑“指纹”获取仅需 1 分 40 秒  近年来,随着大脑“指纹”的概念得到证实,从人类大脑功能连接数据中提取“指纹”已成为神经科学的一个前沿方向。  此前的研究虽然通过对大脑神经功能连接数据进行分析,证实了大脑“指纹”的存在,且只需两次 fMRI 扫描就可以准确匹配受试者。但是,到目前为止,绝大多数科学家都是通过长时间的 MRI 扫描来获取大脑“指纹”。  这些研究没有解释清楚,大脑指纹究竟是如何产生的?又是何时产生的?  为了找到答案,Amico 教授带领的研究团队利用人脑连接的时间动力学,使用动态大脑功能连接技术,来探索大脑“指纹”产生的时间问题,即大脑指纹是何时产生的,在多长时间内产生,哪些大脑区域对此负责。  研究结果显示,人类大脑最佳的指纹出现在测试开始的200秒左右。不过,最快仅需 1 分 40 秒,就能成功获取人类大脑的“指纹”,且大脑指纹最先出现在大脑中的感觉区域,也就是与眼球运动、视觉感知和视觉注意力相关的区域。随着时间的推移,与认知功能相关的额叶皮层区域也可以揭示人类大脑的独特信息。  (图 | 大脑“指纹”(来源:Enrico Amico))  此外,根据初步研究结果,某些神经退行性疾病,例如阿尔兹海默病等,随着疾病的进展,大脑的“指纹”特征会逐渐消失,通过大脑功能连接来识别个体身份会变的越来越困难。  最后,通过元分析调查,研究人员证实,大脑指纹的产生与人类行为密切相关,不同行为会在不同的时间,激发不同大脑区域的“指纹”特征,二者之间存在复杂的梯度关系。也就是说,大脑“指纹”具有随时间波动的特征。  对此,Amico 教授表示,“我们的研究证明,大脑‘指纹’特征具有明显的波动性,疾病等各种因素均会影响大脑‘指纹’的出现。据此我们可能通过大脑‘指纹’监测中枢神经系统疾病或其他诸如中风等可能影响中枢神经系统的疾病。”
  • 微型化多光子显微镜揭秘大脑,开启自由活动动物成像新范式——超维景生物科技研发总监胡炎辉
    近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别制作【小动物活体成像技术创新突破进行时】专题,并策划“小动物活体成像技术”主题征稿活动,以期进一步帮助广大用户从多维度深入了解小动物活体成像技术应用、主流品牌、市场动态以及相关内容。本期约稿特别邀请超维景生物科技有限公司研发总监胡炎辉,就小动物活体成像技术发展、市场规模及未来趋势进行分享,并就超维景生物科技在面对小动物自由运动活体成像瓶颈取得的突破性进展。 本期嘉宾:胡炎辉,超维景生物科技有限公司 研发总监 胡炎辉,超维景生物科技有限公司研发总监。2018年毕业于北京大学,电路与系统专业,曾参加基金委国家重大仪器专项,负责逻辑控制、微弱信号探测及系统设计,在激光扫描显微成像、微弱信号探测及高速信号处理等技术方向有着多年的积累。2017年至今,作为超维景核心创始团队成员之一,参与公司技术专利20余项,开发了新一代双光子成像处理平台,推出了科研、医疗等多款多光子产品,具有丰富的产学研融合开发及落地经验。——01—— 从单光子到多光子成像,推动活体成像技术发展在医学和生命科学研究的领域内,不断的革新和突破在成像技术方面是推进科学发展的关键,同时也是推动新的生物学发现和进步的重要引擎。其中,多光子成像技术通过激光与生物样本内的分子和原子相互作用产生荧光反应,以荧光显微的形式,允许我们以无损害的方式直接观察到组织的内部结构。尽管生物样本本身对光有较好的透光性,它们也具有强烈的散射特性。通常,细胞水平的高分辨成像技术在生物组织中的穿透深度“软极限”大约为1mm。不过,使用更长波长的激光可以减小对光的散射,并且增强穿透力。多光子吸收提供了一种非线性的荧光激活方法,其中双光子和三光子吸收的波长分别是单光子激发的两倍和三倍。与单光子相比,多光子成像可以实现几乎10倍的成像深度增强。这种非线性激发方法也带来了更高的信号-背景比及更优秀的层析成像能力。所有这些成像上的优势使得多光子成像特别适合用于复杂条件下的活体成像研究,成为一种在这些应用中非常重要的工具。Winfried Denk于1990年在康奈尔大学发明了世界上第一台双光子激光扫描显微镜。而自21世纪初以来,随着超快激光技术的突破及商业化,双光子显微成像技术迅速成为最广泛使用的活体动物成像方法。特别值得提及的,超维景的创始人程和平院士早在1992年就开始涉足双光子显微技术,成为最早的技术参与者之一,并致力于推广这一技术。历经近三十年的发展,双光子显微成像技术已变得在脑科学研究中不可或缺。尽管传统的台式双光子显微镜分辨率高,但它们体积庞大且重量重,需将实验动物固定或麻醉以完成成像,因此无法适用于自由活动的动物。微型单光子成像技术可以实现对自由活动的小鼠进行成像,但它在分辨率和对比度方面相对较低,难以达到亚细胞级别的分辨率和三维成像效果。——02——直面脑科学研究自主研发工具挑战,2.2克微型化双光子显微镜“轻装上阵”打造用于全景式解析脑连接和功能动态图谱的研究工具是当代脑科学的一个核心方向。针对如何在自由行为动物上绘制大脑神经元功能图谱的难题,超维景团队研发出了头戴式2.2克微型化双光子显微镜,首次实现自由活动小鼠大脑神经元和突触水平钙信号功能成像,为脑科学研究提供了革命性的新工具。这项技术解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术,入选“2017年度中国科学十大进展”,并被评为Nature Methods“2018年度方法”。依托此技术建成“南京脑观象台”,为中国脑计划提供了“人无我有”的支撑平台;专利技术的产业转化实现高端显微成像装备自主创制的突破,完成对欧美国家的整机出口,累计实现销售额过亿元。通过技术拓展,研发了应用于人体的手持式双光子显微镜,在临床医学与航天医学中具有巨大的应用前景。为病理诊断技术带来一种全新的手段,成为临床疾病精准检查的重要工具。这项技术成果属于国家基金委重大仪器专项转化的科技成果,是国家在高端装备研发方向投入的典型产出代表。除了在脑科学、医疗应用领域的技术贡献之外,同时彰显了中国也可利用具有自主知识产权的国际领先的技术,实现在高端仪器方向的突破,提振了中国科学家在高端仪器装备方向的研究信心,并以此为核心技术来推动国内以及国际的科学研究大计划,对国内的脑科学研究领域也起到积极引领作用。——03——深耕小动物自由运动活体成像,持续提升核心竞争力超维景公司始创于2016年,公司核心力量来自北京大学院士创建和领导的多学科交叉团队,是一家专注于高端生物医学成像设备研发、生产和销售的国家高新技术企业。2017年,超维景核心团队成功研制仅2.2g的超高时空分辨微型化双光子显微镜,在国际上首次获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像,被评为“2017年度中国科学十大进展”和《Nature Methods》“2018年度方法”(无限制行为动物成像),开启自由活动动物成像新范式,研究成果可应用于脑认知基本原理研究、脑重大疾病机理研究和脑疾病的药物研究,本技术进一步可应用于临床实时在体无创细胞级检测。部分获奖照片“微型化”是指将显微镜做到拇指大小,可以佩戴在小鼠头上,同时不影响小鼠的自由活动,进而观察小鼠在觅食、社交、睡觉等自主行为时大脑神经元的真实活动和功能连接。超维景的微型化显微镜体积微小,让小鼠能够“戴着跑”,实现了自由行为动物的清晰稳定成像,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,观察神经突触、神经元、神经网络等的动态变化,从而获取小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像。2.2g微型双光子荧光显微镜2021年,团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力,原始论文发表于《Nature Methods》。2023年2月,团队将微型化探头与三光子成像技术结合,成功研制微型化三光子显微镜,重量仅为2.17克,并在 《Nature Methods》 发表文章。一举突破了此前微型化多光子显微镜的成像深度极限,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 《Nature Methods》发表相关技术成果2023年2月,神州十五号航天员乘组使用由我国自主研制的空间站双光子显微镜开展在轨实验任务并取得成功,是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮千层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。图为神舟十五号航天员乘组在轨使用空间站双光子显微镜2023年12月,由超维景公司自主研发的在体双光子显微成像系统获批上市,是中国首个基于双光子显微成像原理的医疗器械。本次研发是首次实现脑科学技术跨学科助力皮肤检测的技术应用,将最前沿的双光子显微成像技术引入现代皮肤医学检测领域,实现“实时、无创、在体、原位、无标记”的高分辨率皮肤细胞及胞外组织三维成像,为患者和医生带来便利。——04——布局微型化多光子产品体系,开启自由行为动物显微成像新范式解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,但传统的多光子显微镜进行常规脑成像通常需要将动物的头部固定在台式显微镜上,这严重限制了模式动物的自由生理状态。为此需要打造自由行为动物佩戴式显微成像类研究工具。基于团队及技术发明,超维景已布局微型化多光子成像产品体系,并成功实现多款产品的产业化,包括SUPERNOVA-100一体式微型化双光子显微镜、SUPERNOVA-600集成式微型化双光子显微镜与SUPERNOVA-3000微型化三光子显微镜等,解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术。超维景微型化多光子显微成像系列产品,可以在微观尺度上、不干扰自由运动动物行为的前提下,对大脑神经元和神经突触进行无创性观察和实时、动态成像,为研究神经科学、行为学、认知科学等多个领域提供了新的视角和手段,从而为脑健康研究开辟新的道路。树突棘成像 单树突棘级分辨率 神经元轴突与亚细胞结构成像 ——05——持续加码小动物自由运动活体成像系统“科研+临床”的广阔应用脑科学机理研究。大脑是一个极度复杂的器官,目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,融合微观神经元和神经突触活动与大脑整体的信息处理和个体行为信息,是领域内亟待解决的一个关键挑战。要想实现动物在体脑功能实时成像的研究,能够观察到整个皮层甚至更为深入的其他脑区,涉及到仪器开发、手术技术、生物研究等等不同的方面领域,技术挑战非常大。为了真正解密大脑的工作原理和流程,人们需要在对大脑神经元高分辨成像的同时,被观察者能够自由的正常活动,也就是最理想的脑功能成像需要被观察者在自由运动状态下进行脑功能观测。脑疾病机理研究。目前一些重要的脑疾病,如自闭症、精神类疾病、老年痴呆症等都是全世界的难题。以老年痴呆症为例,根据得病率统计,85岁以上老人中的 50%患有老年痴呆。预计到2050年,中国将有近1亿患者的生活需要照顾、需要医疗系统的救助,这是严重的社会负担。通过本技术对脑科学疾病研究,如果有新发现,对于老年痴呆症,就可能找到早期诊断的方法,早发现、早干预,把严重症状出现期从85岁延缓到95岁,社会负担就可以大大减轻,提高国民生活质量。神经药物筛选。微型化双光子显微镜不仅可以“看得见”大脑工作的过程,还将为可视化研究自闭症、阿尔茨海默病、癫痫等脑疾病的神经机制发挥重要作用。而此类疾病的药物开发,由于缺少快速直接的药效反馈手段,而大大受阻。微型化双光子技术的应用将极大的推动此类神经疾病药物的开发进程,为人类脑疾病的诊断和治疗提供新的手段。携手全球合作伙伴,携手共谋发展。微型化多光子成像系统已获得国内的上亿元订单,以及国外的数千万元订单。其中,国内用户包括北京大学、中科院上海神经所、中科院深圳先进技术研究院、复旦大学、上海交通大学、西湖大学、中山大学、华南理工大学、南京脑观象台等。国外用户包括加州理工、纽约大学、德国马普神经所、德国波恩大学、德国马普鸟类研究所等。未来,超维景将在多光子显微成像技术继续深挖“科研+临床”的广阔应用,这将作为神经探索领域的引路明灯,照见更多未知的领域。参考文献:• Zhao, C., et al. (2023). Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods, 2023 Apr 20(4):617-622.• Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.• Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • 沃特世色谱柱在中药指纹图谱研究中的应用
    指纹图谱作为中药复杂样品体系质量控制强有力的技术手段,能够较全面反映中药内在质量,已赢得国际上的广泛认可并得到迅速发展。2010版中国药典收载高效液相色谱特征图谱7项,指纹图谱13项,其中中成药6项,提取物14项,为中药产品质量的控制开辟了新途径,成为我国中药企业的一次重大突破。 1、复方丹参滴丸 【指纹图谱】色谱条件与系统适用性试验 用Waters® ACQUITY UPLC® HSS T3(柱长为100mm,内径为2.1mm,1.8&mu m)色谱柱;以含0.02%磷酸的80%乙腈溶液为流动相A,以0.02%磷酸溶液为流动相B,按中国药典第907页条件进行梯度洗脱;流速为每分钟0.4ml;检测波长为280nm;柱温为40℃。理论板数按丹参素峰计算应不低于8000。 2、三七三醇皂苷 【指纹图谱】 按中国药典第368页条件运行,共有5个色谱峰,其中2号峰为三七皂苷R1,3号峰为人参皂苷Rg1,4号峰为人参皂苷Re,作为参照峰。色谱柱: Waters SymmetryShield&trade RP18, 5&mu m ,250× 4.6mm。 3、生脉注射液、参附注射液 【指纹图谱】色谱条件与系统适用性试验 固定相采用Waters SymmetryShield RP18色谱柱(4.6mm× 250mm;5.0&mu m);柱温30℃,以乙腈为流动相A,以水为流动相B,梯度洗脱;检测波长为203nm。理论板数按人参皂苷Rb1峰计算应不低于1350000。测定法 分别精密吸取参照物溶液和本品各10&mu l,注入液相色谱仪,测定。在8~95分钟范围内,应呈现十七个与生脉注射液对照指纹图谱相对应的特征峰。按中药色谱指纹图谱相似度评价系统计算,以特征峰计算相似度,本品指纹图谱与生脉注射液对照指纹图谱比较,相似度应不得低于0.80。另对供试品色谱图中所有峰面积值高于人参皂苷Rb1峰面积值的百分之五的色谱峰进行积分,非特征峰面积之和不得高于总峰面积的50%。(见国家药典委员会关于生脉注射液、参附注射液质量标准有关内容的公示) 中药指纹图谱研究的特点 适合中药指纹图谱研究的Waters色谱柱推荐 (1)适合中药指纹图谱研究的色谱柱推荐之T3 XSelect&trade HSS T3,采用三官能团键合,低配基密度(~1.6 &mu mol/m2)C18 烷基链键合和专利的封端技术,是沃特世公司最先进的键合和封端技术的有力体现。 &bull 在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力,又称&ldquo 平衡柱&rdquo ,能够对同时包含强极性和疏水性的复杂中药组分提供适中的保留。 &bull LC-MS兼容 &bull 耐受100%水相流动相 &bull 分离重现性好 对应的UPLC® 色谱柱为ACQUITY UPLC HSS T3,典型应用如国家药典委员会公示的护肝胶囊、护肝颗粒含量测定,用ACQUITY UPLC HSS T3(2.1× 100mm,1.7&mu m)分析,要求理论板数按五味子乙素峰计算不低于150000。 (2)适合中药指纹图谱研究的色谱柱推荐之Shield RP18 Shield RP18色谱柱基于沃特世专利的内嵌极性基团技术,能够&ldquo 屏蔽&rdquo (shield,英文有&ldquo 护罩&rdquo 、&ldquo 屏蔽&rdquo 的含 义)硅胶表面的残留硅醇基,使其不能与碱性较大的化合物发生拖尾作用。Waters Shield技术在硅胶颗粒和BEH颗粒上均高度成功, SymmetryShield RP18色谱柱在pH2-8范围内提供独特选择性,峰形与分离度都显著改善,并且完美兼容高水相条件;而BEH Shield RP18更将此诸多优势拓展到pH2-11的宽范围,为方法开发提供了极大灵活性。Shield RP18对含有生物碱、极性组分等中药体系都是良好的选择,更有相对应的ACQUITY UPLC色谱柱为获得超高分辨率和实现快速分离提供保障。
  • 普洛帝发布液体消光颗粒光谱图谱集
    普洛帝,作为一家在流体颗粒监测技术领域深耕多年的创新型企业,近日正式发布了一套液体消光颗粒光谱图谱集。这套图谱集的诞生,不仅标志着普洛帝在光谱分析领域的一次重要突破,更为相关行业带来了前所未有的便利和可能。这套图谱集聚焦于液体消光颗粒的光谱特性,通过精密的实验与数据分析,将颗粒在不同波长下的消光特性以图谱的形式呈现出来。图谱中,每一个数据点都凝聚着普洛帝科研团队的心血与智慧,它们共同构成了一幅幅精细的光谱画卷,展现了液体消光颗粒的独特魅力。这套图谱集不仅具有高度的专业性和精确性,更在实用性上表现出色。它能够帮助科研人员更深入地了解液体消光颗粒的光谱性质,为相关领域的研究提供有力的数据支持。同时,图谱集也为工业生产中的质量控制提供了可靠的依据,有助于提升产品的性能和品质。普洛帝发布这套液体消光颗粒光谱图谱集,不仅展示了其在颗粒光谱技术领域的领先地位,更体现了其对推动行业发展的责任和担当。未来,普洛帝将继续深耕光谱技术领域,不断探索创新,为相关行业的进步贡献更多力量。可以说,普洛帝发布的这套液体消光颗粒光谱图谱集,不仅是一次技术成果的展示,更是一次对光谱技术领域未来发展的美好憧憬。它必将为相关行业的研究和生产带来更加深远的影响。
  • 中国首个指纹图谱质控的中药注射剂产生
    目前中药注射剂乃至整个中药产业都面临严重的“信任危机”。如何在国家不断加大药品监督力度的情况下保证中药注射剂的安全性,就成为了解决此次信任危机的重中之重。   由于中药成分相对复杂,需要对每味中药和每种成分逐一鉴定,才能够严保质量关。但就现有的技术而言,只有指纹图谱技术能够在检测中尽可能多地反映产品全貌,因此,指纹图谱技术就成为了监督中药产品质量的关键。   具有先进分析技术的指纹图谱特别是数字化色谱指纹图谱的出现为中药产品质量的控制开辟了新途径。为促使此项技术能早日正式投入使用,企业的质检中心从2004年起就用指纹图谱全程控制注射用双黄连(冻干)的质量。无论是对注射用双黄连(冻干)的原料金银花、黄芩、连翘及提取物 还是对注射用双黄连(冻干)配剂药液及该制剂成品都进行了严格的监控。技术应用至今,注射用双黄连(冻干)成品的指纹图谱均达到国家标准。   2009年7月1日,注射用双黄连(冻干)将进入2005年中华人民共和国药典增补本,这不仅是我国唯一一个,同时也是首个采用指纹图谱控制产品质量的中药注射剂。中华人民共和国药典是药品的最高法典,代表着国家对药品的最高标准,只有安全性好、用药广泛、质量标准高的药物才能进入此药典。此举无疑是继注射用双黄连(冻干)第一个进入2000版药典的中药粉剂后,中药企业的又一次重大突破。届时中药企业会正式将指纹图谱技术应用于生产过程的各个环节,从而严格有效地控制注射用双黄连(冻干)的质量,以此保证产品质量的均一和稳定,并保证产品的有效性和安全性。   指纹图谱标准的应用,不仅能确保对中药产品的质量控制,更能提高中药产品的市场竞争力,同时对中药注射剂质量与安全再评价的顺利通过,以及整个中药行业产品质量标准的提高都将奠定良好的技术基础。
  • 全球首个“藻类分类图谱专家系统”发布
    (2010年8月9日,杭州)--中国领先的微生物检测技术和设备供应商-杭州迅数科技有限公司-今天宣布&ldquo Algacount藻类分类图谱专家系统&rdquo 正式发布,这是中国科学家领导国际合作建立的全球首个藻类分类图谱专家系统,将极大的满足在我国大范围开展藻类监测工作在&ldquo 系统性专业藻类分类图谱&rdquo 和&ldquo 鉴定分析技术人员培训&rdquo 方面的迫切需要。 &ldquo 显微镜检观察技术&rdquo 是目前有害藻华(Harmful Algal Blooms,HABs)(包括海洋赤潮和淡水水华)生物定性及定量研究的主要技术手段。显微观察技术需要专业人员操作,对专业技术知识和经验要求非常高。然而,由于近10几年来对藻类监测工作的不够重视,目前中国藻类学基础科研与检测人才培养现状不容乐观:虽然经国家水利部水文局在全国举办过几次培训班,现有的藻类鉴定分析技术人员和技术手段仍然无法满足我国大范围开展藻类监测工作的迫切需求! &ldquo 显微镜检观察技术&rdquo 主要是对有害藻华生物的形态学特征或显微结构进行研究和分析,通过与专业图谱的比较来进行有害藻华生物的种类判别和统计。为保证能在尽可能短的时间内展开工作,我国的藻类监测人员急需能够满足系统性藻类研究需要的藻类分类图谱和专业研究设备! 杭州迅数科技有限公司响应国家需要,中国研发基地利用其全球研发网络,与已经开展国家藻华监测研究计划的美国、日本、澳大利亚等多个国家的浮游植物专业研究机构展开合作,历时2年获取了近4000幅华美的专业藻类图片的使用版权,研发出全球首个&ldquo Algacount 藻类分类图谱专家系统&rdquo ,并将其整合于受到广泛好评的&ldquo Algacount 藻类辅助鉴定计数仪&rdquo 。迅数科技建立了涵盖中国常见藻类的11个门、672属、3350种藻类形态数据库,分别涉及:蓝藻门、绿藻门、硅藻门、裸藻门、黄藻门、褐藻门、甲藻门、隐藻门、金藻门、红藻门、轮藻门。每种藻以中文,拉丁文双命名,辅以真实的显微照片、手绘结构图和详尽的形态文字描述。用户可以用中文名或拉丁文名搜索某个具体的藻类,或按门、属、种的分类学次序进行搜索。用户还可凭借自己的专业知识选择某个门,该门下所有属的典型种合成图以队列形式出现,与实际拍摄的未知藻类进行特征对比,即实现快速鉴别藻的种类。尤其适合水生生物鉴定分析技术人员的有效和快速培训。 据迅数科技的科学家介绍:&ldquo Algacount 藻类分类图谱专家系统&rdquo 除了&ldquo 专家辅助鉴定&rdquo 功能外的最大特色是根据当前中国&ldquo 水环境监测规范&rdquo 和&ldquo 近海污染生态调查和生物监测规范&rdquo 的规定所建立的 Algacount专业藻类图库。 Algacount专业藻类图库包含了中国几乎所有常见的淡水藻类和海洋藻类;而且其分类标准和规范符合中国科学出版社出版的《中国淡水藻志》、《中国淡水藻类》和《中国近海赤潮生物图谱》等权威藻类分类工具书的分类标准和规范。 Algacount专业藻类图库中的淡水藻类图库基本覆盖了中国七大水系、28个重点湖库的常见种属,尤其是富营养化较严重的湖泊,如太湖、滇池、巢湖等。建立了全国各地常见水华的藻种图库,如隠藻水华、微囊藻水华、鱼腥藻水华、硅藻水华、金藻水华、角藻水华等等。Algacount专业藻类图库中的海洋藻类图库以中国东海、渤海、黄海、南海常见浮游藻类为主,同时专门建立了中国近海常见赤潮微藻图库。 据悉:Algacount 藻类辅助鉴定计数仪作为首台可以精确到属和种的藻类分类计数仪,继在2009年中国藻类学会30周年庆典大会上获得肯定后,又于2010年5月在上海举办的中国环境科学年会获邀发表专题技术报告-&ldquo Algacount 藻类辅助鉴定计数仪技术及其在水质监测中的应用&rdquo 并受到国内外专家的高度评价。中国水产科学研究院,水利部太湖水环境监测中心,苏伊士环境-中法水务,法国威立雅水务等大型研究与检测机构已成为首批应用Algacount 藻类辅助鉴定计数仪的荣誉客户。 又讯:2010年6月25日,中国科学院国家生化工程重点实验室刘春朝课题组在国际权威刊物《Journal of Chemical Technology & Biotechnology》上发表了采用迅数Algacount藻类分析技术进行藻类定量实验的研究成果(《Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae》)。这是迅数科技多年来与国内外重要科研机构积极开展合作取得的又一成就。
  • 《临床检验诊断学图谱》发布
    我国检验医学领域一部全面、系统、完美、精致的工具书和参考书——《临床检验诊断学图谱》近日由人民卫生出版社出版发行。该书提供了许多高分辨显微镜摄影图片,反映了临床形态学检验诊断的经典内容和最新进展。   本书由临床血液学检验诊断专家、北京大学第一医院教授王建中主编,临床尿液和体液检验专家、北京协和医院教授张时民,血液体液和实体瘤细胞学检验专家、中国中医科学院广安门医院教授刘贵建、血液病免疫治疗主任医师与诊断专家、北京道培医院教授童春容,临床微生物学检验专家、北京友谊医院教授许淑珍,真菌学检验诊断专家、北京大学第一医院教授李若瑜,临床寄生虫病检验诊断专家、北京友谊医院教授郭增柱任本书副主编。近百位特约专家、编委、编者和图片作者来自国内外。我国著名实验诊断学教育家、血液学家,上海交通大学医学院瑞金医院教授王鸿利为本书撰写序言。   据悉,《临床检验诊断学图谱》有以下特点:图幅数量多,包括彩色图、黑白图、模式图、散点图、大体图等多种形式的图谱,全书共有近8000幅精选图片。   专家及编者队伍强。编委会专家多为国内检验和临床专业学术团体成员,是相关专业学术带头人,作者多为国内知名专家和中青年学者。   编排新颖,突破以往的传统横竖编排模式,以大图小图交互穿插、嵌合图、组合图等各种国际流行方法编排,视觉感明显。   图文并茂,每幅图或组图都有细致的文字说明,包括病例介绍、形态特点、应用评析和临床意义等。   内容丰富,几乎包含了血液、骨髓、尿液、体腔液、排泄物、分泌物及相关组织标本的细胞学、血液学、免疫学、微生物学、寄生虫学、遗传学等的显微镜形态学全部和相关内容。   显微镜应用多样化。采用非染色、染色、暗视野、相差显微镜、荧光显微镜、偏振光显微镜、电子显微镜、数字图像分析设备等多种技术手段对细胞或被检验物形态进行细致表达,可看到不同角度的图像信息。   病例资料全面。临床血液病及其他疾病病例分析是该书的亮点之一,以66例临床病例为主体,以血液和骨髓形态学检查为基础,结合细胞化学染色、染色体分析和流式细胞免疫表型分析,对病例进行讨论分析。   据了解,编者们出版这部图谱的目的是为提高我国医学检验诊断水平,特别是对强调重视形态学检验,提升我国形态学检验和诊断水平而作的巨大贡献。本图谱可供检验医学专业人员、临床医师及相关专业人员在临床检验诊断工作中查阅参考 也可作为临床检验医师、技师规范化培训教材,也可由高等医学院校临床检验专业、临床医学相关专业的教师和学生在教学工作中参考和使用 更可作为图书馆和检验科室重要的参考工具书,供广大检验医师和检验技师随时查阅,解决临床检验工作中有关形态学检查的具体问题。
  • 岂止于图谱——TA仪器测试技术分享会
    日常的测试工作中,您是不是常常烦恼无法做出漂亮的基线?有时又对如何分辨及解读图谱一筹莫展?错误的数据和虚假的图谱对您测试会产生何种危害?TA仪器,秉承一贯的为您提供最真实最可靠测试数据的原则,将会为您一一揭晓这些问题的答案。来,和TA一起发现隐藏在数据和图谱里的真相吧!在此次讲座中,我们将带来如下大家关注的热点问题:?如何正确又巧妙的安排热分析测试?如何准确的分析及解读热分析数据?仪器精度所带来的图谱差异?新技术对传统材料分析产生的影响演讲专家:许炎山 先生 TA仪器资深应用技术经理曾先后任职于台湾台塑集团的南亚塑料公司第六轻油裂解计划ABS厂研发专员,与台湾化学纤维公司的ABS建厂专员,累积丰富的流变学与热分析技术在产业界与学术界之相关应用经验,并且也拥有超群的仪器实际操作能力。马倩 博士 TA仪器热分析技术专家美国Tufts大学凝聚态物理博士,毕业于美国顶尖热分析实验室。有着多年高分子热分析表征以及X射线散射理论和实验研究经历。李润明 博士 TA仪器流变技术专家上海交通大学材料学博士。主要研究方向是聚合物流变学,在材料表征分析和测试领域具有丰富的经验。是少数能结合流变理论、实际操作和产业经验流变专家。日程安排时间:2015年4月28日(周二)9:00-16:15地址: 上海市徐汇区虹桥路100号上海西藏大厦万怡酒店3楼会议室1+2日程安排09:00-09:30 TA公司介绍及产品概述09:30-10:30 TA热分析技术在材料领域的最新进展10:30-10:45 茶歇10:45-12:00 热分析数据差异解读及常见问题12:00-13:30 工作午餐13:30-14:30 材料研发涉及的黏弹测试技术14:30-14:45 茶歇14:45-15:45 如何测定材料的热传导性能15:45-16:15 现场交流及答疑详情请垂询:TA仪器市场部王小姐电话:021-34182128 传真:021-64951999Email:vwang@tainstruments.com或者请致以下链接填写详细信息并提交http://www.tachina.net/wot/index.html
  • 科学家绘制世界最大蛋白质图谱
    科学家已经发现了上万种新的蛋白联结,约占蛋白联结总量的四分之一。  为了揭示蛋白质是如何构建细胞与机体,来自多个国家的科学家组成的研究团队筛选了不同生物的细胞,这些细胞从变形虫到蠕虫到老鼠到人类,来源十分广泛。  这项蛋白质科学的壮举,是来自七个国家的三个研究小组合作的结果,由多伦多大学唐纳利中心的Andrew Emili教授和德克萨斯大学奥斯汀分校的EdwardMarcotte教授领导,发现了成百上千种新的蛋白质相互作用,其中细胞内蛋白质的接触作用大约占四分之一。  一个蛋白联结的缺失都会致病。图谱已经帮助科学家锁定病变蛋白。这些数据将通过开放数据库的访问提供给世界各地的研究人员。  虽然十几年前的人类基因组测序无疑是生物学中最伟大的发现之一,然而这只是人们对细胞工作的深入了解的开始。基因只不过是一幅模板,而它的复制品——蛋白质,担任了细胞运转的主要工作。  蛋白间相互联系,共同协作。许多蛋白质结合形成所谓的分子机器并在细胞活动中扮演关键角色,例如合成新的蛋白质,或者是回收旧蛋白,再造新蛋白。但是人类细胞中有上万种蛋白质,其中的大部分我们仍旧不知道它们的作用。  于是有了Emili 和Marcotte的图谱,团队使用最先进的方法,可以提取细胞内数千个分子机器并分析其蛋白构成。然后他们建立了一个类似于社交网站的网络,通过探知未知蛋白与已知蛋白的联结,推知未知蛋白质的功能。例如,未知蛋白与“杂活儿工”蛋白有联结,那么这个未知蛋白极可能也具有细胞修复功能。  今天这项里程碑式的研究收集了九个物种分子机器的信息,分别包含了面包酵母、阿米巴虫、海葵、苍蝇、蠕虫、海胆、青蛙、老鼠和人类,并由此可以绘制出一个生命树图。这个新的图谱将蛋白质结合体数目扩大到已知的十倍有余,并可以让我们观察到它们如何随着时间进行进化的。  “对于我来单单是此项研究的规模就足以吸引人们的眼球,我们已知的每个物种的蛋白联结已达到到原先所知的三倍。我们现在通过蛋白质相互作用网络可以非常可靠的预测,所有动物具有超过一百万种蛋白质相互作用,这从根本上来讲是一个巨大的进步。”Emili说,他也是疾病管理生物标记方面的安大略研究会主席、分子遗传学教授。  研究发现,自从十亿年前原始细胞出现之后,动物生命出现在地球上以前,成千上万种蛋白质协作关系一直保持不变。  “就蛋白质分布而言,人类与其他物种通常是相同的,这不仅印证了我们拥有共同祖先,也对在基因组学的基础上研究多种疾病以及这些疾病如何存在于不同物种中有实际意义。”Marcotte说。  在确定人类疾病的可能原因方面,人们已经证明这个图谱是有用的,例如一种新发现的分子机器名为Commander,由十二个单一的蛋白质组成。人们曾发现一些智力障碍患者的机体里具有编码Commander某些组分的基因,但并不清楚这些蛋白质的机制。  由于Commander存在于所有动物的细胞里,研究生FanTu正在破坏蝌蚪中的蛋白质部件,揭示了胚胎发育阶段脑细胞位置异常,并为复杂的人类起源问题提供了一个可能。  “有了成千上万种蛋白质相互作用,我们的图谱会帮助人们研究蛋白质相互作用和人类疾病的多种联系,这是我们未来几年的研究方向。”Emili博士总结道。
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 微生物蛋白指纹图谱数据库首次亮相
    以“跨界开拓检验行业视野 系统提高检验诊断能力”为主题,由中国医师协会和中国医师协会检验医师分会主办的“2016中国医师协会检验医师年会暨第十一届全国检验与临床学术会议”近日在厦门会展中心召开。  依托本次会议的契机,紧扣“精准检测和精准诊断”的主题,由北京毅新博创生物科技有限公司组织的卫星会同时举办。与会期间,由北京协和医院与北京毅新博创生物公司合作建立的微生物蛋白指纹图谱数据库首次亮相,引发关注。毅新博创基因组技术负责人、中国人民解放军总医院陈琛博士介绍了一种新的应用于临床常规检测的技术,可满足循环肿瘤DNA和甲基化定量检测,即质谱技术在临床微生物鉴定及循环肿瘤DNA精准检测方面的应用,向更多人传播了临床检测的最前沿技术。  本次大会的第九专题会会以“精准检测和精准诊断”为主题,由北京毅新博创生物科技有限公司协助组织,来自首都医科大学附属天坛医院实验诊断中心主任、中国医学装备协会现场快速检验(POCT)装备技术专业委员会会长康熙雄教授主持并做报告。期间,来自北京协和医院的肖盟〔协和研究实习员,北京协和微生物与感染网站责任编辑〕提出,由于当前国内没有统一的微生物蛋白指纹图谱数据库,临床菌库多引自国外,因人种的个体差异及地域的差异,造成国外菌库在中国临床的应用有所偏差,因此建立中国人自己的微生物蛋白指纹图谱数据库迫在眉睫。  此外,毅新博创在企业展位重点介绍了质谱技术在临床微生物鉴定、循环肿瘤DNA 精准检测等领域的应用及研究进展,吸引了众多专家和业内同行关注。
  • 创新中药材多维指纹图谱新技术通过鉴定
    由中科院长春应化所、吉林大学、中国农科院特产所共同承担的吉林省科技发展计划项目“龙胆草等长白山道地中药材多维指纹图谱研究”近日通过吉林省科技厅组织的专家组鉴定。专家认为,该项目为中药的质量控制提供了新的技术和方法,其实验手段和技术达国际先进水平。   中药指纹图谱是一种能够全面反映中药材及其制剂中所含化学成分种类与数量,进而对中药材及药品质量进行整体描述和评价的技术手段。   中药及其制剂均为多组分复杂体系。目前,我国在中药材及其饮片指纹图谱研究中主要采用的是色谱指纹图谱技术。该技术虽然具有通用性较强、灵敏度较高等优点,但同时存在着建立方法繁琐、分析时间较长、特征性及抗干扰能力较差等缺点。   中科院长春应化所、吉林大学和中国农科院特产所的科研人员,从开拓中药指纹图谱新技术、新方法,为中药质量控制提供有力技术支撑的目标出发,在吉林省科技厅的大力支持下,以我国“天然药库”长白山道地中药材为载体,于2006年年开始了龙胆草、五味子、淫羊藿、黄芪和甘草5种中药材的多维指纹图谱的研究,取得了系列具有我国自主知识产权,国内领先、国际先进的创新成果。   针对中药质量控制中对整体性、特征性、系统性的需求,建立了龙胆等中药材多指标成分分析的液相色谱质量控制方法及主要成分结构确认的质谱分析方法 建立了龙胆等5种中药材及其饮片的质谱特征指纹图谱分析方法和质谱特征指纹相似度的分析系统,以及用于药材产地区分、品种鉴定、采收期识别、生长年限区分等质谱指纹图谱化学模式识别方法 建立了龙胆等5种中药材的近红外指纹图谱和应用光谱计量学方法构造快速分析道地药的方法,以及用于中药材产地、生长年限等区分的近红外指纹图谱化学模式识别方法。   科学实验和实际应用证明,该所所开拓的质谱、近红外光谱中药材指纹图谱新技术,与传统的色谱指纹图谱技术相比,具有建立方法简捷、特征性强、灵敏度高、分析时间短等优点。   专家组认为,该新技术、新方法的建立,不仅能快速对中药材的品种进行整理、进行真伪识别,还可以通过结果的聚类、系统分析,获得带有规律性的启迪,从而进一步寻求植物科属、化学成分和疗效间的相关点,结合相关的活性、毒性指标,实现利用质谱及红外指纹图谱技术,对中药种植、加工及新药研发过程的质量评价及控制,对于提高中药质量,推进中药现代化具有重要的意义。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 全球第一套烟草全基因组序列图谱完成
    12月9日,由中国农业科学院烟草研究所参与规划设计与实施的全球第一套烟草全基因组序列图谱&mdash &mdash 绒毛状烟草和林烟草全基因组序列图谱完成,这是继马铃薯和番茄基因组之后,全球完成的第三种茄科植物全基因组序列图谱。   烟草是重要的科研模式植物,绒毛状烟草和林烟草是栽培烟草的两个祖先种。这两个品种的全基因组序列图谱是目前已知植物基因组序列图谱中基因组最大、组装精度最高、组装结果最好的2个图谱。此项工作的完成标志着烟草研究从此全面进入基因组时代。   绒毛状烟草和林烟草全基因组序列图谱测序是中国烟草基因组计划的一部分。中国烟草基因组计划于2010年12月启动,由国家烟草基因研究中心、中国农业科学院烟草研究所等单位承担。目前,重大专项已在多个领域取得突破性进展,烟草突变体库创制已达27万份并正在进行大规模鉴定和分析,烟草分子遗传图谱构建和重要突变基因定位克隆也取得了突破。在此基础上,科研人员将有序开展绒毛状烟草和林烟草的遗传图谱和物理图谱绘制,并启动大量四倍体栽培烟草的基因组测序工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制