当前位置: 仪器信息网 > 行业主题 > >

催化吸附

仪器信息网催化吸附专题为您整合催化吸附相关的最新文章,在催化吸附专题,您不仅可以免费浏览催化吸附的资讯, 同时您还可以浏览催化吸附的相关资料、解决方案,参与社区催化吸附话题讨论。

催化吸附相关的论坛

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

  • 【转贴】红外分光光度计--红外光谱研究吸附催化反应

    物理吸收电磁被附加分子以范德华力与吸附剂相结合。化学吸附则因被吸附分子和吸附剂间形成了离子键或共价键。这两种吸附情况,在红外光谱上的反映是不同的。物理吸附只看得谱带的位移、化学吸附由于形成了新的化学键,故出现新谱带。  (1)氮在低温多孔玻璃上的吸附是物理吸附。在未吸附氮分子的干燥多孔玻璃上,它的表面结构中羟基的倍频7326cm-1,引入氮分子后,它的倍频移到7257cm-1。并随时间的增加而加强。7326cm-1带则减弱,二十分钟后,7326cm-1源谱带完全消失。如加热到20℃ ,则7326cm-1带又出现了。这是因为加热使物理吸附的氮分子解吸了的缘故。     (2)乙烯催化加氢反应机理长久未能解决。最终还是用红外光谱解决了这个问题。有两种说法:①先打开双键CH2-CH2的缔合吸附再加氢。②先发生C-H断裂再加氢CH=CH+HM。      │  │              │ │      M  M              M M  由乙烯在镍上化学吸附后的红外光谱研究指出,这两种情况都有可能。而取决于实验条件——温度、压力、以及催化剂表面是否有一层预吸附层。如有预吸附层则为缔合吸附。这时在红外光谱上有2950-2880cm-1的饱和碳氢伸缩带及1465cm-1的亚甲基弯曲振动。  如催化剂表面无吸附层,则乙烯催化加氢的反应是离解型。红外光谱上有3030cm-1谱带出现,说明有v=CH伸缩振动带出现。

  • 【金秋计划】+固体核磁共振新进展!揭示固体催化剂表面物种吸附状态

    [size=16px][font=arial][color=#222222]近日,中国[/color][/font][font=arial][color=#222222]科学院[/color][/font][font=arial][color=#222222]大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。 [/color][/font] 氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。 固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。 本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。 该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。[/size]

  • 【原创大赛】如何用选择性化学吸附法测定负载型金属催化剂的分散度?

    [font=宋体]负载型金属催化剂是化学化工中广泛使用的一类催化剂,它的基本形式是活性组分[/font][font=宋体]/[font=宋体]载体,活性组分如[/font][font=Calibri]Pd\Au\Pt[/font][font=宋体]等在载体上有效分散,其分散程度会直接影响催化剂的活性、选择性和稳定性。因此,对负载型金属催化剂分散度的测定显得尤为重要。[/font][/font][font=宋体][font=宋体]金属在载体上的分散度是指分布在载体上的表面金属原子数和载体上总的金属原子数之比,一般用[/font]D[font=宋体]表示。现在通用的对分散度测定的方法包括选择性化学吸附法、[/font][font=Calibri]X[/font][font=宋体]射线光电子能谱法、透射电子显微镜法等,其中选择性化学吸附法是对催化剂表面具有催化活性的金属分散度进行测定,因而更易与催化剂的活性相关联。[/font][/font][font=宋体][font=宋体]所谓选择性化学性吸附是指某些气体对载体不发生化学吸附,而是选择性的吸附到活性金属的表面上,其中[/font]H[/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]、[/font]O[/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]、[/font]CO[font=宋体]等气体对活性金属的吸附具有明确的计量关系,因此实验中常通过对这几种气体的吸附量来计算金属在载体上的分散度。接下来我以[/font][font=Calibri]H[/font][/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]吸附法测定[/font]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]催化剂上金属[/font]Pd[font=宋体]的分散度为例来介绍一下如何[/font][/font][font=宋体]用选择性化学吸附法[/font][font=宋体]测定负载型[/font][font=宋体]金属[/font][font=宋体]催化剂[/font][font=宋体]的[/font][font=宋体]分散度[/font][font=宋体]。[/font][font=宋体][font=宋体]根据分散度定义,[/font]D=[font=宋体]催化剂表面活性[/font][font=Calibri]Pt[/font][font=宋体]的原子数[/font][font=Calibri]/[/font][font=宋体]催化剂中总的[/font][font=Calibri]Pt[/font][font=宋体]原子数[/font][font=Calibri]=2V/22.4*[(m*w)/M[/font][/font][sub][font=宋体]Pd[/font][/sub][font=宋体]][font=宋体],其中[/font][font=Calibri]V[/font][font=宋体]代表样品消耗[/font][font=Calibri]H2[/font][font=宋体]的总体积,[/font][font=Calibri]m[/font][font=宋体]为催化剂[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]的总质量,[/font]w[font=宋体]是催化剂中[/font][font=Calibri]P[/font][/font][font=宋体]t[/font][font=宋体][font=宋体]的质量分数。因此,要得到分散度[/font]D[font=宋体]的信息,必须测定[/font][font=Calibri]m[/font][font=宋体]质量的[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体](P[/font][font=宋体]t[/font][font=宋体][font=宋体]质量分数为[/font]w)[font=宋体]可以吸附多少体积的[/font][font=Calibri]H[/font][/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]。接下来,需要根据氢氧滴定的方法对[/font]V[font=宋体]进行测定:即先将催化剂[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]运用氢气还原,再经过氧气滴定,最后再通氢气滴定,氢氧滴定中[/font]1[font=宋体]个[/font][font=Calibri]Pt[/font][font=宋体]原子消耗[/font][font=Calibri]3[/font][font=宋体]个氢原子,可以通过氢滴定的耗氢量来计算[/font][font=Calibri]V[/font][font=宋体]。[/font][/font]

  • 化工催化剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38856.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]随着负载型双组份催化剂的发展,催化剂表征方法的建立使人们对催化剂中组分、活性以及存在状态具备综合分析的依据,能够对于所制备的催化剂的反应行为给予更合理的解释。如应用TPR及H2和O2化学吸附等方法对PtSn/Al2O3催化剂中的锡组分存在状态的表征,应用电镜和XRD对催化剂结构进行表征,通过ICP及XRF对催化剂进行定性及定量分析,另外对催化剂的积碳失活的检测有助于催化剂表面再生行为的研究,运用TPO、TG及STA等手段对催化剂表面积碳行为。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]平台基础配套设施齐全,配备催化剂表征所具备的材料物化分析检测仪器设备,主要包括STA、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、FT-IR、ICP、XRD、XRF等以及催化剂原位表征,包括化学吸附-质谱联用、吡啶透射红外、原位XRD、原位漫反射红外等。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]化工产品/催化剂[/td][td]比表面积[/td][td]GB/T 19587-2017[/td][/tr][/table]

  • 【资料】光催化转化氮氧化物的研究进展

    光催化转化氮氧化物的研究进展 马睿 谭欣 赵林 ( 天津大学环境学院, 天津 300072) 摘要:对光催化转化氮氧化物的研究进展进行了综述。首先介绍了氮氧化物的危害及传统处理方法的缺点以及光催化反应的机理 随后着重介绍了以 TiO2 为催化剂对 NOx 去除的研究进展, 并对其他用于分解氮氧化物新型光催化进行了介绍 最后对应用前景作出 展望。光催化转化氮氧化物的研究分为光催化氧化和光催化还原 2 种, 反应器则主要为固定床反应器和流化床反应器。N 原子的搀 杂、氧空穴的产生以及表面负载 Pt 均能有效地利用可见光, 炭( AC) 、沸石、氧化钙、ZrO2、高岭土等载体也可明显地提高光催化转化 氮氧化物的效率。此外, 植入过渡金属离子沸石, 也可有效地转化氮氧化物。 关键词 TiO2 氮氧化物 光催化 脱除 载体 可见光 进展 中图分类号 O43 文献标识码 A 文章编号 0517- 6611( 2007) 08- 02215- 03目前, 脱除 NOx 的技术措施主要有非催化法和催化还 原法两类[1]。非催化法主要包括湿式吸收法、固体吸附法、电 子束照射法等, 这些方法往往需要复杂的设备、较高的成 本, 且存在二次污染问题。选择性催化还原法是目前主流发 展方向, 但也存在二次污染及要求较高的反应温度等问题。 例如, 在 Ag/Al2O3 催化剂上选择性还原 NO 的最佳操作温 度是 500 ℃[2], 在 Ba/MgO 催化剂上选择性还原 NO 的最佳操 作温度是 700 ℃[3]等。光催化技术是近几年发展起来的一项 空气净化技术, 具有反应条件温和、能耗低、二次污染少等 优点[4], 笔者对光催化分解氮氧化物的研究进展进行了综述。1 光催化反应机理半导体材料存在能级分布, 当用能量大于半导体禁带 宽度的光照射半导体时, 光激发电子跃迁到导带, 形成导带 电子( e-) , 同时在价带留下空穴( h+) 。由于半导体能带的不 连续性, 电子和空穴的寿命较长, 它们能够在半导体本体和 表面运动, 与吸附在半导体催化剂粒子表面上的物质发生 氧化还原反应, 而将污染物分解掉。以 TiO2 为例, 它的禁带 宽度为 3.2 eV, 在波长小于 380 nm 光照下, TiO2 的价带电 子被激发到导带上, 产生高活性的电子- 空穴对。图 1 绘出 了受光源照射时半导体内载流子的变化。电子和空穴被光 激发后, 经历多个变化途径, 主要存在俘获和复合两个相互 竞争的过程。光致空穴具有很强的氧化性, 可夺取半导体颗 粒表面吸附的有机物或溶剂中的电子, 使原本不吸收光而 无法被光子直接氧化的物质, 通过光催化剂被活化氧化。光 致电子具有很强的还原性, 能使半导体表面的电子受体被 还原, 这两个过程均为光激活过程。同时迁移到体内和表面 的光致电子和空穴又存在复合的可能, 此为去激活过程, 对 光催化反应无效。空穴能够同吸附在催化剂粒子表面的OH-或 H2O 发生作用生成 HO?。HO?是一种活性很高的粒 子, 通常被认为是光催化反应体系中主要的氧化剂。光生电 子能够与 O2 发生作用生成 HO2?和 O2?-等活性氧类, 这些活 性氧自由基也能参与氧化还原反应。目前对 NOx 的光催化 反应的研究分为光催化氧化和催化分解 2 种。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903201415_139711_1614854_3.gif[/img]

  • 【分享】对负载金属催化剂的考察

    1,Pt-Sn催化剂的TPD谱与催化活性对不同活性程度的Pt-Sn样品进行了氢气的TPD试验。具有相近初活性的工业样品和实验室样品,再其新鲜状态时,有着相当符合的TPD谱图,证明制备技术是良好重复的。但在100毫升反应装置上使用之后,活性有明显下降的样品,其脱附谱图也产生很大变化。除总脱附氢量明显下降外,总的趋势是最大值向高温方向移动。样品活性最低,其脱附谱图特征变化也更大一些,甚至低于450摄氏度的峰型全消失了。由以上三类催化剂的比较看出,在活性评价和TPD试验结果之间,存在着相当平行的关系。2.试验条件对Pt-Sn催化剂TPD谱的影响(1)催化剂预处理条件的影响 为了排除在轻度还原中表面上不稳定的活性中心,及在高温氢气气氛中所可能形成的活性吸附,已获得清晰的脱附谱图,试验条件改变为:室温氢气(76毫升/分)吹扫至水分低于200ppm后,以2.10C/min升温至2500C,停留1小时,在升温至5000C,保持1小时。之后,以Ar气(40ml/min)吹扫40分钟,并在Ar气氛中降温至零度。氢气吸附1小时,Ar气吹扫3.5小时,取下冰瓶15分钟后,开始进行TPD试验。由于延长还原周期,并增加高温下的Ar吹扫,因而得到较好分散的脱附谱峰,使得对每个谱峰下面积的定量工作容易进行。实际上,这一试验的结果,主要反映了表面钝化和吸附温度的影响。(2)吸附后,Ar气吹扫时间的影响为了排除物理吸附和体相氢,在00c吸附后,进行改变Ar吹扫时间的试验,当吹扫时间超过3小时后,个峰值和所占的份数,以及总脱附氢量均大体不变,可以认为,系统内的气相氢和表面物理吸附氢已基本脱除干净,在脱附谱图上所得的峰型,是化学吸附氢的表现。(3)脱附时,载气流速的影响 Tm值与载气流苏的关系是检查再吸附是否发生的实验标识。当载气流速超过40毫升/分以后,Tm值的变化在实验误差以内,因而可以认为,基本上抑制了在吸附现象。对总脱附量来说,由于吸附条件相同,其值也应一致。但在该实验中发现,随着载气流速的减小,托福粮油增加的趋势。估计可能是热导池鉴定器的灵敏度所限,当流速较快时,应答跟不上,因而造成记录的峰的面积减小。此外,脱附最终温度对高温峰的Tm值是有影响的。当最终温度提高时,Tm值也增加了。这可能是在较低的温度下,高温中心不能干净地脱附造成的。(4)程序升温速度的影响 随着表面覆盖度增大,峰形变得尖锐了。在小于350C/分下,峰高随覆盖度直线的增加。气候,则变得缓慢了。这意味着脱附速度手表面覆盖的减小的影响,因而说明,表面至少存在这部分布均匀性,动力学参数不能按简单的方法求出。3.在Pt/Al2O3中加入其它金属对TPD谱的影响为考察各种负载金属催化剂活性中心的特征,判断TPD法的分辨能力,对一组实验室制备的样品:Pt/Al2O3,Pt-Au/Al2O3,Pt-Re/Al2O3,Pt-Re-Au/Al2O3和两种工业催化剂:Pt-Sn/Al2O3和Pt-Ir-Al-Ge/Al2O3进行了氢气的TPD试验。可以看出,对于Pt/Al2O3,峰最大出现在84-C,2290C,和4500C以及在3700C附近有一个小的肩状峰。Pt-Au/Al2O3脱附曲线的特征类似于Pt/Al2O3.但最大特征峰(4180C)更趋于低温,并且总脱附量也有所减少。这说明,具有较强正电性的金,不仅参加了与Pt的合金化作用,二爷也抑制了Pt对氢气的吸附性能。因此,它在重整催化剂中,可能起着活性抑制剂的作用。Re的引入,是Pt的2290C峰消失,并且最大特征峰向高温移动4800C,出现一个宽的谱带。同时,总脱附氢量增加,显示出更为良好地金属分散性。这与Pt-Re催化剂在重整反应中具有高活性,高稳定性的行为是一致的。Pt-Re-Au催化剂,除了基本上保持这Pt在低温和高温下的特征峰外,在404度和505度下有两个明显的肩状峰出现,它实际上是Pt-Au和Pt-Re 最大特征峰的变异。这说明,在Pt,Re,Au三个元素之间必然发生相互作用,但又不是完全融为一体,从而在氧化铝载体上形成了特殊的能态分布。由于Au 的引入,并不改变Pt-Re催化剂对氢的吸附能力,即不改变金属的分散程度,但却改变了活性中心的结构,因此,可以预期,元素Au有可能作为改进Pt-Re催化剂选择性的一种助剂而被采用。Pt-Sn催化剂有着与Pt-Re类似的谱图特征,而总脱附氢量却与Pt/Al2O3相同。说明,带有较强负电性的Sn,并未改变金属的分散程度,但却增加了化学吸附强度,使活性中心的分布和结构特征产生变化,因而在重整过程总显示出较好的稳定性和选择性。Pt-Ir系催化剂有着特别大的低温特征峰和较宽的高温特征峰,并且,在180-4300C之间有一个连续的表面不均匀的能带。拉塞尔认为,在Pt/Al2O3中引入Ir,使氢的解离活化吸附增加,它在表面反应中与碳氢化合物的C-C键 具有较强的反应能力,从而抑制了表面积炭,是稳定性改善。如果按阿本等人的观点,认为结构不敏感的加氢(脱氢)、氢解等反应主要与低温峰有关,那么,对Pt-Ir系催化剂来说,它不仅大大增加了总的活性中心数目,而且,特别是增加了低能中心的数目。所以,这类催化剂除了显示出高的重整催化活性和抗结焦能力外,还有极强的氢解能力。由于低碳氢分子较易生成,它可能对液体收率和选择性带来不利的影响。从对上述六种类型催化剂的观察得出,他们保持这与Pt/Al2O3相同的低温特征峰(78-840C。这说明,这一活性中心可能是Pt的某种结构所特有的。除了与Pt同族的Ir可以使这个中心的数目增加之外,第二或第三金属组员的引入,则主要是改变了高能中心的结构特征。从而使之在重整反应中表现出不同的活性、稳定性和选择性。同时,由以上的讨论,我们不妨做这样的推测,即催化剂的活性与总的活性中心数目有关,选择性与各个中心的相对分布有关;而稳定性主要与高温峰的位置有关。有各种催化剂总脱附氢量的比较看出,它和我们以前关于金属分散性的测定结果,咋趋势上是一致的。这说明,用TPD法不仅能从数量上考察各种催化剂活性中心的情况,而且也可以从结构特征上看出各类金属的相互作用。如果对这些谱图进一步解析,并与每种中心的反应性能相关联,则可能得到有关催化剂制备的鞥有指导意义的知识

  • [求助]关于高岭土和分子筛,FCC催化剂表面酸性,羟基等的分析

    刚刚接触红外分析,主要做炼油催化剂的表面酸性,羟基等的分析,现在的吡啶吸附系统操作十分麻烦,经常压的片在做了半天之后掉了,白忙一天,就算正常也一个样要做一天,请问各位有没有比较高效,操作简单的真空吸附系统.另外是否有原位红外可以实现吡啶-红外检测,谢谢各位

  • 【分享】光催化净化原理

    光催化材料是具有环境净化和自洁功能的半导体材料的总称。它在微量紫外线作用下,能产生强大的光氧化还原能力,催化分解附表的有机物和部分无机物。光催化技术的特点是能有效利用光能、易操作、无二次污染,在环境保护(废水废气净化、空气净化)、新能源开发、有机合成、自洁和抗菌材料生产等领域具有广阔的应用前景。 TiO2是公认的最有效光催化剂,它的显著优点是:能有效吸收太阳光谱中的弱紫外辐射部分;氧化还原性较强;在较大pH值范围内的稳定性强;无毒。但由于TiO2的禁带宽度为3.2eV,只能吸收波长小于387nm的紫外辐射,不能充分利用太阳能。另外,TiO2的光量子效率也有待进一步提高。有鉴于此,国内外已从多种途径对TiO2材料进行改性,包括TiO2表面贵金属淀积、金属离子掺杂、半导体光敏化和复合半导体的研制等。近来研究发现纳米级TiO2材料的催化效率高于一般半导体材料。纳米半导体粒子存在显著的量子尺寸效应,它们的光物理和光化学性质已成为目前最活跃的研究领域之一,其中纳米半导体粒子优异的光电催化活性倍受世人注目。与体相材料相比,纳米半导体量子阱中的热载流子冷却速度下降,量子效率提高;光生电子和空穴的氧化还原能力增强;振子强度反比于粒子体积而增大;室温下激子效应明显;纳米粒子比表面积大,具有强大的吸附有机物的能力,有利于催化反应。 纳米TiO2具有良好的半导体光催化氧化特性,是一种优良的降解VOCs(可挥发性有机化合物)的光催化剂。它的本质是在光电转换中进行氧化还原反应。根据半导体的电子结构,当其吸收一个能量不小于其带隙能(Eg)的光子时,电子(e-)会从充满的价带跃迁到空的导带,而在价带留下带正电的空穴(h+)。价带空穴具有强氧化性,而导带电子具有强还原性,它们可以直接与反应物作用,还可以与吸附在催化剂上的其他电子给体和受体反应。例如空穴可以使H2O氧化,电子使空气中的O2还原,生成H2O2,OH" 基团和HO2" ,这些基团的氧化能力都很强,能有效的将有机污染物氧化,最终将其分解为CO2、H2O、PO43-、SO42-、NO23-以及卤素离子等无机小分子,达到消除VOCs的目的。TiO2 +hv —— e - + h +e - + h + —— N +能量 (hv’入射光能量hv或热能)HO- +h+ —— OHH2O + h+ —— OH +H+O2 + e- —— O2-O2-+H2O —— OOH +OH-2OOH —— H2O2 +OH-OOH +H2O+ e- ——H2O2 +OH-H2O2 + e- —— OH+OH-

  • 催化剂中金属比表面的测定

    催化剂的金属比表面积是催化剂表征中的一个项目,通过测定催化剂中金属和气体的反应,通过测定消耗气体的量计算出活性金属的量,计算出活性金属比表面积或金属分散度来表征。其主要结构就是一个反应装置和一个检测装置,测定结果跟反应条件和方法有非常大的关系。国内科研单位测定这个指标有两种方式:一是用气相色谱仪改造,二是用化学吸附仪中的金属表面积测定功能进行测定。在仪器展中检索到的国内化学吸附仪进口的基本也是比表面积仪的生产商如麦克、康塔、BEL等,国产的有浙江泛泰,外形跟麦克的很像,文献和高校中多用的是天津先权,但它可能不太宣传。其实它的结构也很简单,一个六通阀脉冲进反应气,通过一定温度下的催化剂,然后用TCD检测一下消耗掉的反应气。自己很想做一个,只是没有多余的气相色谱仪,其实最垃圾的能用就行了,程序升温也不用,对检测器要求也不高,有个六通阀、柱温箱、TCD就搞定了,想想以前单位报废掉多少国产的色谱仪,这里想用都没有。

  • 三元催化剂的制备和原料选择

    [align=center][b]三元催化剂的制备和原料选择[/b][/align]稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的, 目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NOx 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。 Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵金属来担当催化剂的活性组分,催化还原Co、HC和No。2提高催化剂的抗中毒能力机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。 稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。 研究表明Ce02对尾气中S02组分有一定的储硫作用。汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。 3提高催化剂的热稳定和机械强度 通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。 加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60 m2g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。 4. 自动调节空气燃料比(储氧能力提高催化剂的活性) (围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。) 许多研究发现,氧化铈等稀土氧化物具有储放氧能力。Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。 Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。 (当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。 其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.) 5.助催剂的作用 汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。CO+H2O- -CO2+H2 为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。 6.提高活性涂层的催化活性 加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化格点减少, 使活性受损。在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]eO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。CeO2 的分散阈值即为它的最佳添加用量。Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3形成固溶体而失去活化作用。CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh的活化作用。La2O3也能防止Pt 超微细粒长大。将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。 CeO2 还是一种有效的烃类氧化催化剂。在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。CeO2 在氢作用下易产生低价铈和氧空位。Pt/ CeO2 可吸收[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]氢并再释放出来。在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧 。另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用。催化剂的制备工艺非常复杂,从配方的粉体原材料选择:催化剂粉体主要的材料是三氧化二铝、铝胶、稀土材料(氧化镧、氧化铈、氧化锆等)进行工艺混合,再由不同比例的贵金属活性组分添加,通过800度的高温制备而成。整个制备的工艺是一个科技含量非常高和严谨的流程。三元催化转化器的结构三元催化转化器主要由外壳、隔热保护罩、中间段、入口和出口锥段、弹性夹紧材料、防直通密封催化剂等几部份组成, 其中催化剂作为三元催化转化器的技术核心包括载体、涂层两部分。2.1 载体 基本材料为陶瓷(MgO2, Al2O3,SiO2)。目的是提供承载催化剂涂层的惰性物理结构。为了在较小的体积内有较大的催化表面,载体表面制成为蜂窝状。2.2 涂层在载体表面涂敷有一层极松散的活性层,它以金属氧化物γ-AL2O3 为主。由于表面十分粗糙,这使壁面的实际面积增大了约7000 倍,大大的增加了三元催化转化器的活性表面和储存氧的能力。在活性层外部涂敷有含锆Zr 和铈Ce 等元素的助催剂,含有铑Rh、钯Pd、铂Pt 等贵金属的主催化剂。市场现状(2)— 国内催化剂生产量估算[table][tr][td][b]厂 家[/b][/td][td][b]年产量(万升)[/b][/td][/tr][tr][td]昆明贵研催化剂有限责任公司[/td][td]300[/td][/tr][tr][td]无锡威孚力达[/td][td]60(剂)+20(封装)[/td][/tr][tr][td]天津化工研究设计院[/td][td]50[/td][/tr][tr][td]天津卡达克[/td][td]50(封装)[/td][/tr][tr][td]其他[/td][td]30[/td][/tr][tr][td]合计:[/td][td]500[/td][/tr][/table][img=,499,267]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD7D.tmp.jpg[/img][img=,480,361]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD8E.tmp.jpg[/img]三元催化剂的制备过程,提高催化效率,关键在于选用合适的催化剂。催化剂要求粒径小,大比表面积,同时要求高分散性,要求分散吸附性能强。市场上主流的效果最好的纳米氧化铈生产厂家有:杭州九朋新材料有限责任公司,其生产的纳米氧化铈比表高达200-300平,且分散性好,价格合理,同时还生产纳米氧化铝,纳米氧化铝溶胶,铂铑钯催化剂。另一家是山东加华,外资企业,主要生产氧化铈,出口为主,价格较高。要更换新的三元催化如何选择呢? 1、原厂件:4s如果你依然信任他,而且你也能够承担高出好几倍的价格,那么可以选择,关键是三元催化原厂件厂家一般都没有质保,原因很简单,因为新车的时候都很难质保。 2、品牌件:这个选择的难度就比较大了,因为今天中国的三元催化市场太吓人,从100元的三元催化到1万元的都有,一家三口人都可以在家里生产三元催化,这个市场是乱的把外星人都吓跑了,这么一个高科技含量的配件今天在中国变成家庭作坊都可以生产,这也难怪为什么主机厂基本在中国放弃了在用车市场,因为实在无法竞争。那我们消费者选择起来可就更难了,外行根本看不懂啊。其实方法还是有的。再乱的市场也有正规做事情的企业。

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • ,静态吸附是室温下吸附30分钟。

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。

  • [资料] 离子选择电极法测定催化剂中氟

    离子选择电极法测定催化剂中氟[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21541]离子选择电极法测定催化剂中氟[/url]  在催化剂的研制过程中,氟元素的加入可以增强载体或催化剂的表面酸性,防止Ni2Al 、Al2W、Al2Mo 等尖晶石的形成,延长催化剂的使用寿命[1 ] 。研究表明[2 ] ,载氟量对催化剂晶体结构、活性、选择性都有很大的影响。对于催化剂中氟含量测定,光度法[3 ]需要用浓高氯酸蒸馏以绘制标准曲线 间接络合滴定法[4 ] 对酸度、共存元素要求严格,且操作繁琐。离子选择电极法具有测量准确、重复性好、分析速度快、操作简便等优点,是分析催化剂中氟含量的极为有效的手段。[em17]

  • 钯碳催化剂粒径的测定?

    是钯吸附在活性碳上,我不知道折射率选的是碳对不对?分散剂用水,超声3分钟(试过1-5分钟,基本上没什么变化),水面一直浮着少量的催化剂微粒,有点象油花,不知道要不要加点活性剂?

  • 【转帖】Z张大煜——中国催化科学的奠基人之一

    【转帖】Z张大煜——中国催化科学的奠基人之一

    [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705101748_51355_1634962_3.jpg[/img]张大煜,物理化学家,中国催化科学的奠基人之一。早年从事胶体和表面化学以及人造燃油的研究;在大庆油田开发以后,组织了石油炼制、石油化工、高能燃料、色谱、激光和化工过程的研究;组建了我国第一个石油、煤炭化学的研究基地,并为我国培育了几代研究人才。晚年仍关注石油工业有重要影响的强化采油中界面现象新领域的开拓。 张大煜,字任宇,1906年2月15日生于江苏省江阴县长泾镇。他从小酷爱读书,学习成绩优异。中学毕业以后,考入南开大学,后转清华大学。1926年张大煜和清华大学、中央大学、交通大学等校学生发起组成大地社,该社由翟凤阳负责,成员有葛春林、袁翰青、张大煜等十余人,他们经常探讨如何“工业救国”和“科学救国”,并多次参加学生运动,为清华脱离外交部管辖,从留美预备学校转为正式大学起到了一定作用。   1929年,张大煜于清华大学毕业,同年考取了公费留学德国和美国,他把留学美国的名额让给了同学,自己赴德国德累斯顿大学学习胶体与表面化学,1933年获工学博士学位。回国以后在清华大学任教,历任讲师、教授。他在回忆文章中写道:“虽然自己曾经有很大的抱负和雄心,想用学得的知识和技能为祖国服务,但是当时政府只把科学当作点缀品,哪怕是很小一点研究工作也得不到支持,……。”   抗日战争爆发,张大煜从北平到长沙,又从长沙辗转到昆明在西南联大任教并兼任中央研究院化学所研究员。从基础研究转向石油、煤炭方面的技术科学研究,以期为抗日胜利贡献力量,当时曾尝试过从植物油制造重要国防物资并开展了将煤炼制成汽油的方法。他利用云南丰产的褐煤,在昆明附近宜良滇越线上建立了一个从褐煤低温干馏提炼汽油的小型实验工厂(利滇化工厂),边实验边生产,历尽千辛万苦炼出了油。但在人力、物力、设备和经费等方面困难重重,终于被迫停办。张大煜“工业救国”的尝试遭到了挫折,但为他后来创建我国第一个石油煤炭化学研究基地提供了最初的经验。抗日战争胜利后,张大煜从昆明到上海,任交通大学教授兼北京清华大学化工系主任,讲授工业化学和胶体化学,在极端困难的条件下,还开展了一些研究工作。留学回国十余载的经历,使他思想处于彷徨之中,他亲眼看到知识分子在旧中国不可能实现富国强民的理想,1948年底经上海地下党负责人介绍毅然离开上海,绕道香港和朝鲜,于1949年初到达大连。   1949年大连大学创办初期,他任化工系教授、系主任,同时担任大连大学科学研究所(后改名为东北科学研究所大连分所)研究员、副所长。1952年该所划归中国科学院领导,并先后更名为工业化学研究所、石油研究所、大连化学物理研究所,他一直担任所长。   50年代初期,张大煜紧密围绕国民经济恢复和建设需要的重大课题开展工作,在我国天然石油资源尚未开发的情况下,他组织和发展了我国水煤气合成液体燃料、页岩油加氢、汽油馏分环化制甲苯等研究,取得杰出成绩,有些成果达到当时的世界先进水平。   在完成国民经济重大研究课题的同时,张大煜也很重视基础研究,50年代初期开始,他就致力于工业上广泛使用的催化剂担体研究,结合水煤气合成石油的钴催化剂和合成氨催化剂的催化性能研究,逐步建立了物理吸附、化学吸附等一系列研究方法,并且提出了表面键理论的设想,并以此为指导,研制成功了合成氨新流程3个催化剂,超过了国内外同类催化剂的水平。通过实践,培养和建立起一支学科配套,有解决综合问题能力的催化科学队伍。   随着国家建设对科学事业发展的需要,张大煜在研究所的布局和发展上,及时提出了建议。经中国科学院批准,先后于1958年和1960年从石油研究所抽调科技力量,建立了兰州石油研究所和太原煤炭化学研究所,他兼任这两个所的所长,为促进内地科学事业的发展作出了贡献。   1962年,中国科学院石油研究所改名为大连化学物理研究所。张大煜在担任大连化学物理所所长期间,跟踪国外同学科的发展趋向,及时提供最新信息。他查阅大量文献,经常到实验室参加研究工作。他特别关心培养新生力量,对青年循循善诱、严格要求,不断提高他们的学术研究水平,使研究室成为学术空气浓厚、工作勤奋的研究集体。   “文化大革命”时期,张大煜遭到迫害,身心受到严重摧残,抑郁成疾。但是,就在这样重重压力下,他仍多次要求开展磁场对化学反应影响的研究,不断提出建立催化剂库等发展催化科学的新建议,坚持为科学献身。   1977年,张大煜调任中国科学院感光化学所任顾问兼第一届学术委员会主任,同时兼任大连化学物理研究所顾问。他培植了严谨的优良学风,并为创建界面与光催化研究室,强化采油界面现象研究等新学科领域的开拓做出了贡献。   张大煜学识渊博、治学严谨,谦虚和蔼,待人宽厚,善于发挥他人之长,深受同行们的崇敬,在学术界享有很高的威望。他在组织和发展我国的人造石油、石油炼制、催化科学、化肥工业、化学工程、色谱、激光和相应的理论研究等方面都有贡献。在胶体化学、吸附和催化作用、催化剂研究、水煤气合成、表面化学研究等方面发表过学术论文30余篇。   张大煜是中国科学院学部委员,一级研究员,曾当选为中国化学会第二十届理事会副理事长,第一、二、三届全国人大代表,第五届全国政协委员,中国民主同盟中央委员等职。   张大煜为我国科研事业、教育事业和我国第一个石油化学和煤炭研究基地的创建与发展倾注了全部心血,做出了卓越贡献。

  • 【分享】稀土在催化中的应用

    稀土在催化中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14975]稀土在催化中的应用[/url]作者:(苏)Х.М.米纳切夫(Х.М.Миначев)等著;刘恒潜译出版项:科学出版社 / 1987.9目录:第一章 稀土元素氧化物的主要性质和物理性质第二章 简单气体的催化转化第三章 烃中的氢-氘交换反应第四章 烃的脱氢、脱氢环化和加氧反应第五章 裂化、烷基化、异构化和聚合反应第六章 醇的脱氢和脱水反应第七章 伯醇、酸的酮化和酯的合成第八章 有机物的氧化与还原反应和以CO和H2为主体合成烃与醇的反应第九章 其他反应附录: 用稀土作催化剂的专利资料结束语近十年来稀土催化的进展

  • 【分享】有机废气的催化燃烧处理资料

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=94621]低浓度挥发性有机废气的处理进展.pdf [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=94622]活性炭纤维吸附—催化燃烧装置处理有机废气.pdf [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=94623]有机废气的催化燃烧.pdf [/url]

  • 催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    [align=center][img=https://www.instrument.com.cn/webinar/meetings/catalyst2022/,690,151]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101025467345_9400_3295121_3.jpg!w690x151.jpg[/img][/align][size=24px][color=#ff0000]催化剂表征与评价 主题网络研讨会[/color][/size][size=18px]举办时间:6月28日 14:00[/size][font=&]1、韩一帆(华东理工大学/郑州大学 长江学者、中原学者、教授/博士生导师):Elucidating Active Sites for Syngas to Olefins through F-T Reaction[/font]2、周琰(安东帕(上海)商贸有限公司 产品经理):气体吸附在催化剂表征中的应用3、刘丽萍(大连理工大学 高级工程师):固体多孔材料比表面积和孔结构分析方法应用探讨4、杨军(中国科学院过程工程研究所 研究员):贵金属基异质结构纳米材料及其电催化应用戳链接,[size=18px][color=#ff0000]免费[/color][/size]报名:[url]https://www.instrument.com.cn/webinar/meetings/catalyst2022/[/url]

  • 请问用脉冲吸附和静态吸附,脱附的结果一样吗?

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。这个帖子重复了要继续讨论的到下面的链接去http://bbs.instrument.com.cn/shtml/20110803/3446623/

  • 【求助】骨架镍催化剂的比表面积和孔径测试

    我要做骨架镍催化剂的比表面积和孔径测试,送去给测试老师,问我需要设的参数,我头一次做不知道怎么选啊?吸附仪型号是Autosorb-1mp,老师问我加热温度和加热时间多少,测中孔还是微孔?多少点吸附,多少点脱附,多少点BET,P/P。取多少?请大侠们帮帮忙,这些参数选择的依据是什么啊,一般的取值多少啊

  • 求助吡啶红外吸附问题

    本人做催化剂酸性表征,采用吡啶吸附的原位红外表征方法,样品在400度下抽真空预处理2小时,降温至200度吸附吡啶,之后程序升温至400度,吸附吡啶前后分别采集200度、300度、400度的红外谱图,计算1450cm(L)和1540cm(B)酸对应的峰面积。按说随着温度升高,酸量会减少,为什么相应的峰面积反而变大呢?这种情况不止遇见一次。

  • 【转贴】有机试剂在络合吸附波中的应用

    张军红,刘道杰(聊城大学化学系,山东聊城 252059)有机试剂在光度分析中得到了广泛的应用,而且在电化学分析中近20年来也有了较快的发展。络合吸附(包括催化)波极谱法在我国发展较快,是具有中国特色的极谱分析方法。它可以通过选择特效有机试剂提高极谱法的灵敏度及选择性,发挥极谱吸附波的特点,大大扩大了极谱分析的应用范围。张正奇、李启隆曾对1991年前的有机试剂在极谱吸附波中的应用进行过评述,本文则对近10年来的有机试剂在络合吸附波中的应用进行简要综述。以络合吸附波测定微量及痕量物质的方法是重要的电化学分析方法之一。络合吸附波不仅可测定无机化合物,也可测定有机化合物,应用非常广泛[6]。近年来,关于有机试剂在极谱催化波测定无机物和有机物中的应用论文有500多篇,国外的文献多侧重于电极反应机理等方面。本文综述了以下几类有机试剂。1 偶氮化合物偶氮染料为水溶性的染料,分子中的偶氮基团-N=N-易吸附在滴汞电极上并发生电化学反应,这类化合物用于光度法测定金属离子灵敏度不高,多用于极谱方法[7]。偶氮试剂在络合吸附波中的应用,见表1。其中7-(1-苯偶氮)-8-羟基喹啉-5-磺酸钠(BQ)多用于光度分析,在络合吸附波中的研究很少。周长利等研究报道了SnE-BQ络合吸附波,该法测定冶金样品中的痕量锡,灵敏度高,不受氧波及多种元素干扰,选择好,RSD3.64%,测定结果满意。DBC2偶氮胂也是一种新型的偶氮类显色剂,何平等[以其为配体用络合吸附波测定了铑离子,在pH3.2的甲酸-甲酸钠介质中,RhD与DBC2偶氮胂生成络合物,于-1104V出现一尖锐、灵敏的络合吸附波,峰电流与RhD浓度在215@10-8~9.2@10-7mol/L范围内呈良好的线性关系,检出限611@10-9mol/L。试验了多种离子对峰电流的影响,采用离子交换法分离干扰离子,用于标样中铑的测定,得到了满意结果。2 卟啉化合物卟啉和金属卟啉化合物在仿生学、医学、催化、太阳能利用和光谱分析等方面有着越来越重要的作用[42],由于卟啉的特殊结构,其金属络合物所发生的特殊生化反应可作为生物体某些反应的模拟模型[43]。此外,利用卟啉的/光化学烧空现象0而制成的高密度分子存贮器对信息工业的发展也起了巨大的推动作用[44]。在医药上,卟啉还可以作为动力学光疗法的光敏剂[45]。在电化学分析方面,罗登柏等[46]报道卟啉在强碱性条件下具有较强的络合能力,可以和金属离子形成络合物吸附波。王小萍等[49]研究了镉-meso(42磺基苯)卟啉络合物的极谱行为,结果表明,镉离子在3@10-7~1@10-5mol/L范围内与络合物峰电流有良好的线性关系,可用于CdC的定量分析。王莉红等[50]利用在碱性介质中铜与(42磺基苯)卟啉形成络合物,研究了其伏安特性,检出限达8@10-10mol/L,比文献[51]值提高了约2个数量级,用于工业硫酸锌盐中微量铜的测定,结果令人满意。卟啉试剂在络合吸附波中的应用,见表2。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221931_18809_1634962_3.gif[/img]3 铜铁试剂铜铁试剂是一种重要的分析试剂,其结构特点是:分子中羟氨上的氧和亚硝基能和金属离子键合 含有苯环,具有共轭双键结构,P电子云易于在汞电极上交叠,有吸附性 含有不饱和基团,可在电极上分三步两电子还原,最后产物为苯肼。李启隆[52]曾对其在络合吸附波中的应用在1994年做过综述,铜铁试剂不仅与金属离子络合,也氧化电极反应产物,再生电极反应物,形成催化循环,产生催化电流。这类络合物吸附波既有吸附富集,又有催化电流,灵敏度很高。Mo-铜铁试剂的灵敏度可达到1@10-9mol/L。由此可见,铜铁试剂具有络合性、吸附性和电活性,能满足络合吸附波对配位体的要求。实验证明,铜铁试剂不但是络合剂,同时又是平行催化过程中的化学氧化剂,因而,它比其他一些非变价金属离子-铜铁试剂的络合吸附波灵敏的多。马翠玲等[56]研究了CuC-铜铁试剂络合吸附波的性质和反应机理,结果表明,在011mol/L的HAc-NaAc(pH510)溶液中,CuC与铜铁试剂形成1B1络合物,后者吸附于电极表面起富集的作用,从而使络合吸附波的灵敏度提高。铜铁试剂在络合吸附波中的应用,见表3。4 三苯甲烷类试剂三苯甲烷类试剂分子的共轭度较大,在汞电极上有较强的吸附性,且试剂分子中含有配位能力很强的氨羧配位基团和多个羟基,因而适于在极谱催化波中作配体。龙晖等[64]提出了SnE-PR-VE-SDS新体系,检出限可达4@10-10mol/L。此方法灵敏度高,选择性好,线性范围宽,已成功应用于罐装食品中微量锡的测定。4,52二溴苯基荧光酮(Br22PF)是一种灵敏的无机金属离子显色剂,温轲等[66]首次采用电化学方法,对AlD与Br22PF的成络行为、络合物性质等进行研究,建立了测定微量铝的灵敏的分析方法,应用于碳酸钠、锌合金和铁矿石样品中铝的测定,结果满意。三苯甲烷类试剂在络合吸附波中的应用,见表4。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221932_18810_1634962_3.gif[/img]

  • 全自动六站化学吸附仪ChemiSorb HTP

    全自动六站化学吸附仪ChemiSorb HTP优化设计和高效利用催化剂需要彻底了解催化材料表面结构和表面化学特性。在设计生产阶段,以及后期使用阶段,化学吸附分析提供大量所需的信息来评估催化剂材料。ChemiSorb HTP是一个完全自动化高测试量化学吸附分析仪,可测定催化剂材料的金属分散度、活性金属表面积、活性粒子,表面酸度。仪器包含六个独立经营分析站。可同时运行,也可单独运行,节省时间以及实验室空间。分析测试量大,带有六个独立分析站最多可同时进行六个化学分析每个分析站带有独立的加热炉,设定范围:10℃到700℃石英样品反应器带溢流道设计,可用于各种尺寸的颗粒和粉体全自动分析无需人看守即可得到高分辨率吸附等温线分析站可同时运行,也可独立运行最多可同时连接多达12种不同的气体 Windows®操作界面

  • 请问催化去除甲烷的催化剂或催化炉的成分和原理是什么?

    首先说明:这里讨论的是催化方法[b] 除掉样气中的甲烷[/b],催化生成H2O和CO2。 而不是加氢催化无机碳生成CH4市场上有测量非甲烷总烃的FID设备,原理是使用催化炉除掉样气中的CH4,至于其他如乙烷、乙烯、甲醇等其他 有机成分都保留,送到FID测量,得到非甲烷总烃。请问这种催化剂的原理和成分是什么?

  • 【求购】大量采购催化剂表征仪器(招标)

    公司名称:深圳市东阳光实业发展有限公---东莞东阳光科技园新材料研究所因公司发展规划,新成立氟化工研究所,主要项目有环保型制冷剂、氟树脂、氟涂料、氟精细化工产品等,现欲求购一批实验室仪器,主要涉及相关项目催化剂表征要求:国外进口,功能齐全先进,售后服务好,价格可以商量1.比表面仪2.扫描探针电镜3.X光电子能谱仪4.热重分析仪(TG/DTA)5.透射电镜6.程序升温化学吸附仪地址:东莞长安上沙东阳光科技园邮编:523871联系人:胡工 13727585576 刘工 13058520966有意向的公司请加Q342188551详谈或请邮寄产品资料、报价、以及国内使用该产品的单位。最好来本公司技术交流。

  • 【金秋计划】高纯度气体与流量控制在催化实验中的作用

    催化实验是化学、材料科学和工业生产中至关重要的一环,其目的是评估催化剂在不同反应条件下的性能和选择性。为了获得准确和可靠的实验结果,使用高纯度的反应气体和精密的流量控制系统是不可或缺的。这不仅可以确保实验条件的一致性,还能够精确地表征催化剂的活性和稳定性,从而为催化剂的设计和优化提供重要数据支持。 [b]1. [b]催化实验中的反应气体使用[/b][/b] 在催化实验中,反应气体作为催化反应的原料或反应环境,直接影响催化剂的表现。常见的反应气体包括氢气、氧气、氮气、甲烷、二氧化碳等,这些气体通过催化剂表面发生反应,生成目标产物。为了准确评估催化剂的性能,实验中必须严格控制反应气体的纯度和流量。 [b]2. [b]高纯度反应气体的重要性[/b][/b] 使用高纯度的反应气体在催化实验中具有多方面的重要意义: [list][*][b]避免副反应的干扰[/b]:反应气体中的杂质可能引发副反应,从而影响催化剂的实际性能表现。例如,在氢化反应中,氧气或水蒸气的杂质可能导致催化剂表面氧化,降低其活性或改变选择性。因此,使用高纯度气体能够减少这些不必要的副反应,确保实验结果的准确性。 [*][b]保证催化剂的选择性[/b]:催化剂的选择性是指其促进特定产物生成的能力。气体杂质可能与催化剂表面发生竞争性吸附或反应,导致产物分布的改变。因此,高纯度的反应气体有助于精确评估催化剂对目标反应的选择性,避免由于杂质引起的误差。 [*][b]提高实验的可重复性[/b]:使用高纯度气体可以减少批次之间的差异性,使得实验条件更加可控,从而提高实验的可重复性。对于工业应用或催化剂的规模化生产,这种一致性尤为重要。 [/list] [b]3. [b]精密流量控制系统的作用[/b][/b] 除了气体纯度,精密的流量控制系统也是催化实验中不可或缺的部分。流量控制的准确性直接影响反应物的供给速率和反应条件的稳定性,从而对催化反应的结果产生重要影响。 [list][*][b]精确调节反应条件[/b]:通过精密流量控制系统,可以精确调节反应气体的流速,确保每次实验在相同的气体供给条件下进行。这对于评估催化剂的活性和选择性至关重要,因为催化反应的速率和产物分布往往依赖于反应物的供给速度。 [*][b]动态实验条件控制[/b]:在某些催化实验中,研究者可能需要在实验过程中动态调节反应气体的流量,以模拟实际工业过程中的工况变化。精密流量控制系统可以实现这种实时调整,帮助研究者更全面地评估催化剂的性能。 [*][b]提高实验安全性[/b]:许多反应气体(如氢气、氧气、甲烷等)具有易燃易爆性或毒性。精密流量控制系统能够确保气体供给的安全性,避免由于气体流量过大或波动导致的安全事故。 [/list][b]4. [b]选择合适的高纯度气体与流量控制系统[/b][/b] 在实际的催化实验中,选择合适的高纯度气体和流量控制系统至关重要。以下是一些关键考虑因素: [list][*][b]气体纯度要求[/b]:根据催化反应的敏感程度,选择适合的气体纯度。通常情况下,气体纯度应在99.999%(5N)或更高,以最大限度减少杂质的影响。 [*][b]气体供应商的选择[/b]:选择信誉良好的气体供应商,以确保气体的纯度和稳定性,同时要求供应商提供详细的气体成分分析报告。 [*][b]流量控制设备的精度[/b]:流量控制系统应具备高精度和高稳定性,确保在不同实验条件下的准确调节。选择时应考虑流量计的量程、响应速度以及与实验系统的兼容性。 [*][b]系统校准与维护[/b]:定期校准和维护流量控制系统,确保其长期稳定运行。同时,气体输送系统的密封性和防泄漏设计也是保障实验安全的重要方面。 [*]在催化实验中,使用高纯度的反应气体和精密的流量控制系统是确保实验结果准确性和可靠性的关键。高纯度气体能够避免副反应和杂质干扰,从而准确评估催化剂的性能和选择性。精密流量控制系统则保证了实验条件的可控性和安全性,使研究者能够深入探索催化剂的行为特性。这两者的结合不仅有助于获得高质量的实验数据,还为催化剂的设计和工业应用提供了坚实的基础。[/list]

  • 三元催化_台式XRF分析仪

    三元催化器,是安装在汽车排气系统中最重要的机外净化装置,载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。 它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。  HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。经过研究证明,三元催化器是减少这些排放物的最有效的方法。通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。三种有害气体都变成了无害气体。三元催化剂最低要在350摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度(最佳的工作温度)是400℃到800℃左右,过高也会使催化剂老化加剧。在理想的空燃比(14.7:1)下,催化转化的效果也最好。它安装在发动机排气管中,通过氧化还原反应,二氧化碳和氮气,故又称之为三元(效)催化转化器。

  • 【分享】纳米二氧化钛的光催化特性

    一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制