当前位置: 仪器信息网 > 行业主题 > >

催化合成

仪器信息网催化合成专题为您整合催化合成相关的最新文章,在催化合成专题,您不仅可以免费浏览催化合成的资讯, 同时您还可以浏览催化合成的相关资料、解决方案,参与社区催化合成话题讨论。

催化合成相关的论坛

  • 【原创】催化合成丁二酸二丁酯

    催化合成丁二酸二丁酯第一章 绪论1.1 概要羧酸酯是一类重要的化工原料,低级的酯一般都是水果香味,可作香料(如醋酸异戊酯有香蕉味,戊酸乙酯有苹果香味等)。液态的酯能溶解很多有机物,故常用作溶剂。有些酯还可用作塑料、橡胶的增塑剂。丁二酸二丁酯是一种新型塑料工业的增塑剂,该增塑剂为无色透明液体,常用作有机合成中间体、食物添加剂、气象色谱固定液,是一种昆虫驱避剂,用于驱除蟑螂、蚂蚁等害虫,它的合成与其它酯类化合物一样,由相应的酸和醇通过酯化反应而制得.以往的酯化反应多采用浓硫酸做催化剂,而浓硫酸有腐蚀性,使得酯化反应副反应多、后处理困难、产品色泽较差,同时,在后处理过程中还会产生大量的含硫废水污染环境.为解决浓硫酸作催化剂时的缺点,人们已研究了其它催化剂来代替浓硫酸,但对于丁二酸二丁酯的合成研究的较少,虽有人将TiO2/S042- 固体超强酸用于催化合成丁二酸二丁酯,但该催化剂的制备较为复杂,成本较高,不利于工业化生产.随着人们环保意识的增强,对于酯化反应的催化剂进行了广泛的研究,作者曾注意到结晶硫酸氢钠是一种常见的结晶无机盐,保管、运输、使用均很方便,又能克服无机酸的强腐蚀性,因此作者将研究把硫酸氢钠直接用于催化合成丁二酸二丁酯,主要研究该物质的增塑剂性能和合成该物质所使用的催化剂。

  • 【国产好仪器讨论】之北京祥鹄科技发展有限公司的电脑微波催化合成/萃取仪(XH-100A)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C44721%2Ejpg&iwidth=200&iHeight=200 北京祥鹄科技发展有限公司 的 电脑微波催化合成/萃取仪(XH-100A)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器简介:XH-100A型祥鹄电脑微波催化合成/萃取仪获得国家发明专利号:200820079378.5,是应用先进的微波技术作为物理催化手段的新型化学反应装置。主要由微波催化仪主机、微电脑智能控制系统、高精度温度传感器、回流冷凝系统等组成。仪器使用先进的温度传感器,对反应温度进行实时精确监测;采用独创的电脑自学习技术,自动调节微波功率,智能控温保温,控温精度达±1℃。大容量不锈钢腔体,耐腐蚀,耐高温,微波泄漏符合国家标准。仪器操作简单,界面友好,您可轻松制订各种实验方案,并对实验过程进行全程监控。XH-100A的优越性能,使您的实验过程更简单,实验结果更加理想,让您真正体验到化学实验的新感觉。 该仪器能催化加成、取代、酯化、水解、烷(酰)基化、聚合、缩合、环合和氧化等许多类型的有机、药物和生物化学反应及食品、天然产物和矿物的溶剂萃取等物理过程。 适用于有机合成化学、药物化学、食品科学、检疫防疫、军事化学、分子生物学、分析化学、无机化学、石油化工、材料科学、生物医学等相关领域。该仪器在上述领域中具有重要的应用价值,通过焓效应和熵效应诱导或加速化学反应和物理过程,使反应速度比常规方法加快数百倍甚至数千倍,同时提高反应选择性和收率,使过去许多难以发生或速度很慢的化学反应或物理过程变得容易实现和高速完成。技术参数:1.功率:100~1000W 10档自动可调 2.测温和控温范围:0~300℃ 3.测温精度:≤±0.2℃ 控温精度:≤±1℃ 4.大容量不锈钢腔体耐腐蚀、耐高温,外观美观大方 5.反应容积:10~1500mL 6.液晶显示反应条件、温度曲线 7.可储存10个反应条件,可随时进行打印 8.提供不同速度磁力搅拌,使反应更加充分,温度更加均匀 9.友好的人机界面和简便的键盘操作:通过简明的屏幕提示,轻易完成操作过程 10.高精度接触式镀铂金防腐温度传感器,实时监测反应温度,准确控制反应进程 11.先进的电脑温控自学习功能,全自动智能调节保温功率 12.开放式反应体系,可安装滴液漏斗和冷凝管等进行回流反应,微波泄漏符合国家标准,安全可靠。主要特点:祥鹄XH-100A电脑微波催化合成/萃取仪,是专门为催化合成萃取开发研制的产品,具有以下优势和特点: 1. 功率100-1000W,可根据实验的要求和反应容积进行调整。 2....【了解更多此仪器设备的信息】

  • 【原创大赛】【开学季】水解酶催化Domino反应合成3-取代-2H-苯并吡喃酮, 酶具有非专一性!!!!

    苯并吡喃酮作为一个非常重要的结构内核单元,广泛地存在于很多天然产物中,并且是一些具有生物活性的化合物的特定前导化合物。此外该类化合物也因其具有一些光致变色效应和热致变色性质而受到广泛关注。 生物催化作为一种绿色高效的现代有机合成技术,在医药、能源、材料等领域显示出巨大的潜力。酶作为一种高效,环境友好的催化剂,已经成为传统有机金属和小分子催化剂的有效补充,尤其是酶的非专一性在有机合成方面的应用备受研究者的青睐。近些年,已有一系列关于水解酶催化非专一性的C-C键以及C-杂原子键的形成反应的报道,但是对于单酶催化的多步串联反应的报道较少。基于此,我们设计和发展基于水解酶催化非专一性的domino反应,发现枯草杆菌α-淀粉酶可以有效地催化水杨醛和丁烯酮发生oxa-Michael/aldol缩合反应合成2H-苯并吡喃酮类化合物。2H-苯并吡喃酮的生物合成在25 mL烧瓶中加入水杨醛(2 mmol),不饱和醛或酮(10 mmol),50 mg 枯草杆菌α-淀粉酶(BSA),再加入500μL去离子水和4.5 mL DMSO,将其置于50℃恒温摇床中震荡反应(200 rpm)。TLC跟踪检测反应(紫外灯下观测),反应完全后,加入20 mL蒸馏水停止反应,然后用乙酸乙酯萃取(3×10 mL),有机相用无水硫酸钠干燥后,经减压蒸馏除去溶剂,经柱层析分离得目标产物(硅胶:300-400目,流动相:石油醚[font='Times

  • 异佛尔酮均相催化芳构化合成3,5-二甲基苯酚及衍生物的工艺研究与4-氨基-3,5-二甲基苯酚的合成方法

    [b]【序号】:1【作者】:[font=宋体][color=#414141]马超[/color][/font]【题名】:[font=宋体][size=12px]异佛尔酮均相催化芳构化合成3,5-二甲基苯酚及衍生物的工艺研究与4-氨基-3,5-二甲基苯酚的合成方法[/size][/font]【期刊】:[font=宋体][color=#414141]西北大学 硕士论文 [/color][/font]【年、卷、期、起止页码】:[b][font=宋体][color=#414141]2012年[/color][/font][/b]【全文链接】:https://xuewen.cnki.net/ArticleCatalog.aspx?filename=1013136376.nh&dbtype=CMFD&dbname=CMFD201301[/b]

  • 相转移催化及其在有机合成中的应用

    相转移催化及其在有机合成中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14330]相转移催化及其在有机合成中的应用[/url]

  • 【技术@创新】化学所合成新型高效不对称有机小分子催化剂

    在国家自然科学基金委、科技部、中科院的支持下,分子识别与选择性合成实验室有机催化课题组深入开展手性有机小分子(Chiral Organocatalysts)催化研究,最近,他们设计并合成了一类新型的二胺型手性有机小分子催化剂,实现了对aldol反应的高活性、高立体选择性催化。相关研究结果发表在近期《美国化学会志》(J. Am. Chem. Soc. 2007, Vol. 129, No. 11, p. 3074-3075)上。 Aldol反应是存在于生命体中的一种重要的化学反应,也是有机合成化学中用于碳-碳键构建的一类重要化学手段。实现高效、高选择性不对称aldol 催化对认识生命体的化学本质以及天然产物的合成都有着重要的意义。该课题组在前期工作中,设计合成了手性离子液型催化剂,并探索性地将其应用到不对称aldol反应催化,表现出了较高的催化活性以及中等的立体选择性(Angew. Chem. Int. Ed. 2006, 45, 3093 Tetrahedron, 2007, 63, 1923-1930)。该类催化剂兼具手性胺催化和离子液体的优良特性,在高效不对称催化反应的同时,能够有效地实现对催化剂的分离、循环利用的目的。

  • 【分享】多功能生物催化剂--卤醇脱卤酶的研究进展

    多功能生物催化剂―――卤醇脱卤酶的研究进展 郑楷 汤丽霞 (电子科技大学生命科学与技术学院,四川成都610054) 摘要:光学纯的环氧化物及β-取代醇是一类高价值中间体,在手性药物及精细化工合成领域具有十分重要的应 用前景。卤醇脱卤酶是一类通过分子内亲核取代机制催化邻卤醇转化为环氧化物的脱卤酶,可以高效高选择地 催化环氧化物和邻卤醇之间的转化,因而可以用来合成具有光学纯的环氧化物及β-取代醇等化合物。本文着重 介绍了卤醇脱卤酶的催化机理及其应用研究进展,并对研究的发展方向提出了一些设想。 关键词:卤醇脱卤酶 生物催化 亲核试剂 光学纯环氧化物与β-取代醇 中图分类号:Q814?9 文献标识码:A文章编号:0438-1157(2008)12-2971-07 1 卤醇脱卤酶研究概述 有机卤化合物已成为当今重要环境污染物之一,主要是由于工业排废以及人工合成卤化物在化 工合成以及农业上的广泛应用造成的。在自然界 中,大部分异生质卤化物自降解能力很差,同时许多化合物被疑是致癌或高诱变物质。因此,应用微 生物降解有机卤化物已引起人们广泛的关注。从 1968年Castro等[1]首次发现以2,3-二溴丙醇作为 唯一碳源而生存的黄杆菌(Flavobateriumsp?) 菌株至今,人们相继筛选到多种可以降解邻卤醇的 微生物[2-8]。其中包括从淡水沉淀物中分离的放射 形土壤杆菌(Agrobacteriumradiobacter)菌株 AD1和节杆菌(Arthrobactersp?)菌株AD2以及 从土壤中获得的棒状杆菌(Corynebacteriumsp?) 菌株N-1074等。它们降解有机卤化物的途径虽然 存在明显差异,但是卤醇脱卤酶作为关键酶之一, 催化碳卤键的断裂存在于所有的代谢途径中。 卤醇脱卤酶也叫卤醇-卤化氢裂解酶,通过分 子内亲核取代机制催化邻卤醇转化为环氧化物和卤 化氢,是微生物降解此类化合物的关键酶之一。大 部分已知的卤醇脱卤酶都已经被克隆并在大肠杆菌 中进行重组表达,并根据其序列同源性分为 HheA、HheB、HheC3类。相关的研究表明,卤 醇脱卤酶与依赖NAD(P)H的短链脱氢酶/还原 酶家族(SDR)具有一定的序列相似性,同时蛋白 质三级结构的研究进一步揭示卤醇脱卤酶与SDR 家族成员有一定的进化相关性[9]。SDR是一类依 赖于NAD(H)或NADP(H)并在功能上具有 多样性的一组酶类,主要催化醇、糖类、类固醇和 一些异生质的氧化还原反应[10-11]。由于辅酶结合 位点在卤醇脱卤酶中被卤离子结合位点取代,因而 卤醇脱卤酶是一类不需要辅酶参与的脱卤酶。同 SDR家族一样,在卤醇脱卤酶中严格保守的丝氨 酸、酪氨酸和精氨酸在催化过程中起着关键作用。 其催化机制(图1)为:保守的丝氨酸通过与底物 羟基氧原子之间形成氢键,稳定了底物的结合 精 氨酸可用以降低酪氨酸的pKa值 酪氨酸从底物 的羟基中夺取一个质子,然后以底物上的氧原子作 为亲核试剂,进攻邻位卤素取代的碳原子,进而释 放卤离子,形成环氧化物[9,12]。 卤醇脱卤酶备受关注的另一个原因是其在生物 催化领域的应用,可以用来合成具有光学纯的高价 值中间体。这些化合物在手性药物、手性农药以及 各类手性合成的合成领域中具有传统化学合成法所 无法比拟的优越性。其中光学纯的环氧化物以及用 来合成该类化合物的前体邻卤醇在有机合成中具有 特别重要的应用价值。因为环氧化物环具有非常活 泼的化学特性,易与亲核试剂发生反应生成一类重要的手性合成单元―――不对称醇类。因此,多种合 成光学纯环氧化物的生物学方法已被广泛研究,其 中包括人们熟知的脂肪酶、环氧化物水解酶等。卤 醇脱卤酶催化邻卤醇生成环氧化物将成为高效合成 光学纯的环氧化物的主要方法之一。本文将重点介 绍卤醇脱卤酶在催化合成环氧化物、短链β-取代 醇以及叔醇类化合物方面的研究进展。

  • 催化反应的应用领域

    工业的应用现代化学工业的巨大成就与催化剂的使用是分不开的。约90%以上的化学工业产品是借助于催化过程来生产的。例如,从煤炭和石油资源出发合成了甲醇、乙醇、丙酮、丁醇等基本有机原料,改变了过去用粮食生产的途径;合成纤维的生产减轻了人类对棉花的依赖;塑料的发展减轻了人类对木材的依赖。合成橡胶、化肥、医药、合成食品、调味品的生产都与催化剂的使用分不开。例如,硫酸的生产,相比于二氧化氮作催化剂的铅室法,产品浓度低、杂质多、产量小;用铂作催化剂可使硫酸产品浓度达98%以上,可制得发烟硫酸;用钒作催化剂后,产品质量大大提高,成本大幅度下降。又如炼油工业中的催化裂化,用分子筛催化剂代替无定形硅铝胶催化剂后,由于分子筛的择形作用,改变了裂化产物的分布,得到了高质量产品。生态上的应用处理各类废弃物。二氧化碳 + 废塑料轮胎→汽柴油+可燃气+炭黑,既解决了空中环境堵塞,又将地面废弃物转化为能源;煤+地面农、林、牧、城市生活废弃物、城市工业废弃物→汽柴油+可燃气+炭黑,既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的CO2问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%。优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将炼油工业转化为资源节约型的工业结构。石油→汽柴油+可燃气+炭黑,以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2),且更多的产出来源于石油中的生物质。

  • 【分享】光催化净化原理

    光催化材料是具有环境净化和自洁功能的半导体材料的总称。它在微量紫外线作用下,能产生强大的光氧化还原能力,催化分解附表的有机物和部分无机物。光催化技术的特点是能有效利用光能、易操作、无二次污染,在环境保护(废水废气净化、空气净化)、新能源开发、有机合成、自洁和抗菌材料生产等领域具有广阔的应用前景。 TiO2是公认的最有效光催化剂,它的显著优点是:能有效吸收太阳光谱中的弱紫外辐射部分;氧化还原性较强;在较大pH值范围内的稳定性强;无毒。但由于TiO2的禁带宽度为3.2eV,只能吸收波长小于387nm的紫外辐射,不能充分利用太阳能。另外,TiO2的光量子效率也有待进一步提高。有鉴于此,国内外已从多种途径对TiO2材料进行改性,包括TiO2表面贵金属淀积、金属离子掺杂、半导体光敏化和复合半导体的研制等。近来研究发现纳米级TiO2材料的催化效率高于一般半导体材料。纳米半导体粒子存在显著的量子尺寸效应,它们的光物理和光化学性质已成为目前最活跃的研究领域之一,其中纳米半导体粒子优异的光电催化活性倍受世人注目。与体相材料相比,纳米半导体量子阱中的热载流子冷却速度下降,量子效率提高;光生电子和空穴的氧化还原能力增强;振子强度反比于粒子体积而增大;室温下激子效应明显;纳米粒子比表面积大,具有强大的吸附有机物的能力,有利于催化反应。 纳米TiO2具有良好的半导体光催化氧化特性,是一种优良的降解VOCs(可挥发性有机化合物)的光催化剂。它的本质是在光电转换中进行氧化还原反应。根据半导体的电子结构,当其吸收一个能量不小于其带隙能(Eg)的光子时,电子(e-)会从充满的价带跃迁到空的导带,而在价带留下带正电的空穴(h+)。价带空穴具有强氧化性,而导带电子具有强还原性,它们可以直接与反应物作用,还可以与吸附在催化剂上的其他电子给体和受体反应。例如空穴可以使H2O氧化,电子使空气中的O2还原,生成H2O2,OH" 基团和HO2" ,这些基团的氧化能力都很强,能有效的将有机污染物氧化,最终将其分解为CO2、H2O、PO43-、SO42-、NO23-以及卤素离子等无机小分子,达到消除VOCs的目的。TiO2 +hv —— e - + h +e - + h + —— N +能量 (hv’入射光能量hv或热能)HO- +h+ —— OHH2O + h+ —— OH +H+O2 + e- —— O2-O2-+H2O —— OOH +OH-2OOH —— H2O2 +OH-OOH +H2O+ e- ——H2O2 +OH-H2O2 + e- —— OH+OH-

  • 【分享】稀土在催化中的应用

    稀土在催化中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14975]稀土在催化中的应用[/url]作者:(苏)Х.М.米纳切夫(Х.М.Миначев)等著;刘恒潜译出版项:科学出版社 / 1987.9目录:第一章 稀土元素氧化物的主要性质和物理性质第二章 简单气体的催化转化第三章 烃中的氢-氘交换反应第四章 烃的脱氢、脱氢环化和加氧反应第五章 裂化、烷基化、异构化和聚合反应第六章 醇的脱氢和脱水反应第七章 伯醇、酸的酮化和酯的合成第八章 有机物的氧化与还原反应和以CO和H2为主体合成烃与醇的反应第九章 其他反应附录: 用稀土作催化剂的专利资料结束语近十年来稀土催化的进展

  • 楷拓生物科技(苏州)有限公司刚刚发布了酶催化生物分子合成工艺研究员职位,坐标苏州市,敢不敢来试试?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-79358.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]酶催化生物分子合成工艺研究员[b]职位描述/要求:[/b]职责描述:在技术负责人指导下,参与酶催化生物分子合成相关的研发项目,具备分子生物学经验的候选人优先;候选人应当熟悉酶催化反应的1)条件设计,2)优化策略,3)酶性质及动力学研究等方面的具体研究思路和策略,熟悉酶催化反应相关的常规操作;能够严格按照标准流程,准确、独立地完成各项相关实验操作;定期汇报实验和工作进程;本科学位或以上,硕士优先,具备1-2年工作经验者优先,生物化学,化工或工程,化学生物学,发酵工程,生物技术,及其它相关专业;具有团队合作精神,善于沟通,做事踏实认真,责任心强;具备良好的英文文献搜索及阅读能力。[b]公司介绍:[/b] 楷拓生物科技(苏州)有限公司位于中国(江苏)自由贸易试验区苏州片区苏州工业园区裕新路108号A栋3楼312室,注册资本为1668万人民币,成立于2021-06-17,目前公司的主要经营范围是一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;技术进出口;货物进出口;科技推广和应用服务;医学研究和试验发展(除人体干细胞、基因诊断与治疗技术开发和应用);企业管理;信息咨询服务(不含许...[url=https://www.instrument.com.cn/job/position-79358.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【转贴】微波技术在催化领域中的应用

    微波技术在催化领域中的应用微波技术是近代科学技术发展的重大成就之一,发展极为迅速。20世纪80年代微波开始在化学领域中得到广泛研究,并取得了积极效果,如在有机合成方面,合成某些放射性药剂及干燥等方面[1]。最近,微波在催化领域中的研究也越来越活跃,这里介绍近年来微波技术在催化领域中所取得的进展,如微波用于诱导催化反应,用于催化剂的制备以及载体的改性方面。微波技术用于诱导催化反应一、 微波诱导催化反应原理 微波是一种电磁波,电磁波包括电场和磁场,电场使带电粒子开始运动而具有一种力,由于带电粒子的运动从而使极化粒子进一步极化,微波的电和磁部分的相关的力方向快速变化,从而产生摩擦使其自身温度升高。这就是微波加热的基本原理[2]。 许多有机反应物不能直接明显地吸收微波,但将高强度短脉冲微波辐射聚焦到含有某种“物质”(如铁磁性金属)的固体催化剂床表面上,由于表面金属点位与微波能的强烈作用,微波能将被转变热,从而使某些表面点位选择性地被很快加热至很高温度。尽管反应器中的物料不会被微波直接加热,但当它们与受激发的表面点位接触时可发生反应。这就是微波诱导催化反应的基本原理[3]。 二、微波诱导催化反应的催化剂和载体 微波诱导催化反应实质上是微波首先作用于催化剂或其载体,使其迅速升温而产生活性点位,当反应物或载化都可以用于微波诱导催化反应的,只有那些可能被微波激活的催化剂和载体才能用于微波诱导催化反应。对于金属催化剂,能与微波发生强相互作用的主要是那些铁磁性金属,如镍、钴、铁等。对于金属氧化物,则视组分和结构不同而有很大差别;对于S区金属氧化物,不存在变价情况,则对微波是透明的。对于P区金属氧化物和过渡金属氧化物,存在变价现象,则它们对微波是不透明的,即吸收微波的能力随组分和结构而不同[4]。有人曾对过渡金属和P区金属的氧化物与微波之间的相互作用作过较深的研究[5]。把金属氧化物分成3类:第1类是高损耗物质,它们是一些含有变价元素的金属氧化物,如NI2O3,MNO2,Co3O4等,在微波场中有很高的活性。第2类是在微波场中辐射一段时间后才开始急剧升温,如Fe2O3,CdO,V2O5等。第3类低损耗物质,如AL2O3,TiO2,ZnO,PbO,La2O3,Y2O3,ZrO2,Nb2O5等。显然,第1类金属氧化物最适宜作微波诱导催化反应的催化剂,第3类金属氧化物宜作载体。 三、微波诱导催化反应的应用 (1) 甲烷分解 四烷分解制成乙烯有着十分重要的经济和学术意义。研究证明[6],在微波辐射下,许多催化剂可使甲烷快速分解,通过适当控制条件,可选择地获得较低或较高烃类。当在400 W 微波炉中用Ni-1404片或Ni粉作催化剂时,其转化产物主要为乙烯、乙烷和乙炔。 (2) 烃类氧化 脂肪烃和芳香烃直接氧化有着重要的经济意义,已被广泛地研究了几十年,但是迄今未能找到转化率高、选择性好的直接氧化方法(尤其是对于甲烷的氧化。)最近研究证明:在微波辐射下,甲烷、丙烷、再烯、乙烷、甲苯都可与水发生催化氧化,形成相应的醇、酮、醚等。 微波场中甲烷部分氧化剂制合成气的研究较为活跃,因为在微波场中进行的甲烷部分氧化(POM)反应与常规加热条件下相比较前者具有反应速率快,催化床层温度低,反应物的转化率和产物的选择性均得到改善等优点[7]。对微波场中甲烷部分氧化合成气所用催化剂的考察,研究人员做了很多工作[8],通过对Ni/La2O3,Ni/ZrO2,Co/La2O3,和Co/ZrO2的催化性能的考察,发现以ZrO2为载体的镍基催化剂的活性和稳定性明显优于钴基催化剂,活性顺序为:Ni/ZrO2>Ni/La2O3>Co/ZrO2>Co/La2O3。 甲苯选择氧化制苯甲酸的多相工业化生产由于甲苯的转化率和苯甲酸的选择性较低而无法实现。研究表明[9],在微波场下,V2O5/TiO2在较低的温度下选择氧化甲苯,可得到苯甲酸和苯甲醛的收率分别为41%和14%。与传统加热催化过程相比,苯甲酸的收率有较大的提高。 (3) SO2和NO的还原 以往的除去SO2的方法大都是将其氧化后中和除去,但基氧化物腐蚀性强,处理费用高。把含有SO2的空气在微波场下通过Ni-1404催化剂,则SO2可分解而释放出氧和硫;同样把含NO的空气在微波场下通过Ni-1404催化剂,则NO被分解成为O2、N2及少量N2O。微波技术用于催化剂的制备及载体的改性 一、分子筛的合成 利用微波的介电加热作用进行分子筛合成,是一种新型合成方法。据报道。用微波技术合成的分子筛有A型,X型,Y型,ZXM-5型,CoAPO-44型,CoAPO-5型,AlPO4-5型以及中孔MCM-41型分子筛,还有NaX及NaA分子筛。与传统的水热合成方法相比,微波合成法能同时大量成核且能大幅度缩短晶化时间,获得均匀细小的晶粒,比表面积增大。 二、活性组分在分子筛上的负载 活性组分负载在载体上是一个复杂的过程,其分散度影响催化剂的活性、选择性及寿命等各个方面。最近不少学者采用微波技术使一些无机盐很好地负载在分子筛等载体上。据研究,微波固相法制备的ZnCl2/NaY催化剂与普通法制备的ZnCl2/NaY催化剂相比,在Diels-Alder反应中表现出较高的环加成选择性和区哉选择性。利用微波法制备的ZnCl2-HY分子筛催化苯甲醚与乙酰氯的酰化反应,发现这种催化剂具有良好的初活性。利用微波功率的增大,苯甲醚的转化率和甲氧基苯乙酮的选择性也增加。这可能是由于微波功率增大,促进了ZnCl2在HY分子筛中的分散及与HY分子筛的交换的缘故。 用微波法负载活性分于分子筛上,与传统法相比,具有以下优点:分散度高;处理时间短,效率高;处理样品简单,避免了溶液的混合烘干及培烧;无机盐很容易分散到多孔分子筛上。 三、载体的改性及新型材料的合成 Al2O3是多相催化中广泛应用的载休,利用微波辐射制备结晶γ-Al2O3,与传统的深浅法所获得的γ-Al2O3相比,具有规整、清晰的晶貌特征。这是由于在微波下,水分子被子激活形成活性水分子,加速了铝溶胶的溶解从而促进了体系中结晶Al(OH)3xH2O的生成所致其制备方法是:将铝溶胶置于微波炉中,利用策波辐射加热,保持沸腾3h后,冷却,静置,将所得白色沉淀洗涤,分离,在120℃烘干,在马福炉中按规250℃ 1h,350℃ 1h,450℃ 1h,550℃ 3h顺序焙烧,得到白色粉末,即可得到边界清晰、结构规整的结晶γ-Al2O3。 Al2O3作为一种载体,由于它的比表面积较小,所以某些活性成分在其上面的负载将受到限制。若将 Al2O3分散于比表面积较大的沸石上,则可制得一种具有Al2O3表面性质又保持沸石高比表面积的新型复合材料。据研究,用化学镀饰法化学浸渍法和高温热处理法所制的Al2O3/NaY新型催化材料的分散度均不高,而采用微波辐射固相法制得的Al2O3/NaY新型催化剂材料具有较高的分散度。Al2O3在NaY沸石上的理论分散值为0.62,实验测得用微波辐射得到的分散值为0.45,其他方法得到的分散值均小于0.3。 四、 结 语 微波技术应用于化学研究有着相当大的优势和无限的魅力。微波技术发展的特点之一,是它与更多的学科相结合。这会大大地突破传统内容,建立一系列新的生长点。而研究用的微波炉也易于获得,使该方法的研究更具有普遍意义。但微波技术应用于催化领域也存在一些复杂性。有关微波诱导催化反应的机理以及微波参催化剂作用的机理的研究毕竟还很不深入,主要原因是微波场中温度无法准确测量。所以进一步改进实验测量技术(特别是微波场中的温度测量技术)具有十分重要的意义。只有将微波的作用机理进行深入研究才能使微波在催化剂领域中得到进一步发展。

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 【分享】一种以铁为主的新制药催化剂问世

    加拿大一研究小组找到了一种以铁为基础原料制造催化剂的新方法。这种新型催化剂与目前通常使用的铂等金属催化剂相比,毒性小且成本低,有望作为制药和芳香剂生产工艺中的催化剂。   药物合成中通常都需要催化剂,这对药物成本的影响很大。而且,如使用毒性大的钌、铑、钯等铂系金属作为催化剂,最后的合成产品就需要先经过昂贵的净化技术来消除毒素。   多伦多大学化学系罗伯特-莫里斯教授相信,使用他们研制的新型催化剂,不仅价廉而且毒性低,可以免除铂系金属催化剂带来的上述两种缺陷。   莫里斯教授在新一期《化学》杂志上发表论文说,铁一般被认为是催化活性很低的“贱金属”,使其能够成功用于替换通常使用的铂系金属作为催化剂,秘诀在于将铁的结构通过一定的手段转换成与铂系金属相似的结构。他们所研制的催化剂是一种包含碳、氢、磷及氮的有机分子,科学家们将各原子排列成一种独特的右旋结构,依附于铁上,使其处于一种亚铁状态。   化学催化剂的作用是加快化学反应过程,但同时,它们也会对反应过程中的化学物结构产生影响。用于药物合成过程中的催化剂,其最有价值之处在于它们可以将药物化学品的产品限定在一种特定的结构形式,而不会使其产生另一种镜像结构形式。   目前,多伦多大学研究人员已通过使用少量的这种催化剂,并运用对称转移氢化法工艺,成功将价廉的酮转化成了结构为左旋形式的酒精。

  • 催化氢化装置的优点

    [font=&]催化氢化是有机化学实验中的一项重要内容之一。[/font][font=&]这一反应的具体内容是气态氢在催化剂存在下,与有机化合物进行加成或还原反应,从而生成新的有机化合物。[/font][font=&]它的优点是:[/font][font=&](1)有些反应,如碳碳不饱和键的加氢,应用其他方法比较复杂和困难,而应用催化氢化反应,则可以方便的达到目的。[/font][font=&](2)它对醛酮,硝基及亚硝基化合物都能起还原作用,生成相应的醇和胺,不需要任何还原剂和特殊溶剂。氢气本身极其便宜,因而成本低操作方便。[/font][font=&](3)反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,后处理方便,产品纯度、收率都比较满意。[/font][font=&]根据氢化时选用的压力不同,可将催化氢化分为常压氢化,低压氢化(4-5atm)及高压氢化(>6atm)。图2.9是在常压及低压下进行催化氢化的装置图。而高压氢化则需要非常特殊的装置,(由于有较高压力),这些已超出本书的范围,但不论是在任何压力进行氢化,都不得使用明火,包括电火花。[/font][font=&]催化氢化装置:主要包括氢化用的圆底烧瓶,气压计,量(贮)气管和平衡瓶。贮气管的体积一般在100mL到2L之间,可根据反应的规模大小选择合适的贮气量;在平衡瓶里所装的液体通常是水或汞。在反映过程中,氢气的压力大小可以通过平衡瓶的高度来调节。反应结束后,再通过平衡瓶来测量参加反应的氢气的体积。气压计可以保证在反应前后,氢气都在相同的压力下(一般为1atm)进行体积测量。[/font]

  • 武汉植物园在抗癌三萜化合物生物合成研究上取得进展

    http://www.cas.cn/ky/kyjz/201207/W020120709366764733493.jpg药用化合物白桦酯酸、熊果酸与齐墩果酸的生物合成途径 药用化合物白桦酯酸、熊果酸以及齐墩果酸具有抗肿瘤、HIV病毒以及抵抗多种微生物病菌的功效,尤其是白桦酯酸,被认为是继紫杉醇之后又一最具潜力的抗癌药。 中国科学院武汉植物园天然药物生物合成学科组的博士研究生黄莉莉在章焰生研究员的指导下,从药用植物长春花中首次分离了熊果酸与齐墩果酸合成途径中的两个关键基因(这两基因分别被命名为CrAS与CrAO),将这两个基因转入微生物酵母细胞,构建的转基因酵母系具备合成熊果酸与齐墩果酸的能力。 更为重要的是,CrAO能够催化羽扇豆醇合成白桦酯酸,利用组合生物技术,研究人员将来源于模式植物拟南芥中的羽扇豆醇合酶(AtLUP1)基因与长春花中的CrAO基因进行组合并转入酵母细胞,形成的转基因酵母细胞系利用培养基即能合成抗癌化合物白桦酯酸。此举可以改善通过白桦树的树皮提取白桦酯酸而产生的生产成本较高且不利于可持续发展的问题。 该研究的成功开展为白桦酯酸、熊果酸以及齐墩果酸的合成提供了一条新的途径,将具有广泛的应用前景。相关的研究结果已经被国际植物学杂志Planta接受发表。

  • 三元催化_台式XRF分析仪

    三元催化器,是安装在汽车排气系统中最重要的机外净化装置,载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。 它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。  HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。经过研究证明,三元催化器是减少这些排放物的最有效的方法。通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。三种有害气体都变成了无害气体。三元催化剂最低要在350摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度(最佳的工作温度)是400℃到800℃左右,过高也会使催化剂老化加剧。在理想的空燃比(14.7:1)下,催化转化的效果也最好。它安装在发动机排气管中,通过氧化还原反应,二氧化碳和氮气,故又称之为三元(效)催化转化器。

  • 聚乙二醇的N-羟基琥珀酰亚胺琥珀酸酯的合成工艺、苏氨酸负载及催化应用

    【序号】:1【作者】: 张雅伦【题名】:聚乙二醇的N-羟基琥珀酰亚胺琥珀酸酯的合成工艺、苏氨酸负载及催化应用【期刊】:兰州大学【年、卷、期、起止页码】:2017【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkOTSE1G1uB0_um8HHdEYmZhkBIZJEK02VaOdneXeYijuWwpOfpIhlJTd0mjIpAyz7&uniplatform=NZKPT

  • 【转帖】Z张大煜——中国催化科学的奠基人之一

    【转帖】Z张大煜——中国催化科学的奠基人之一

    [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705101748_51355_1634962_3.jpg[/img]张大煜,物理化学家,中国催化科学的奠基人之一。早年从事胶体和表面化学以及人造燃油的研究;在大庆油田开发以后,组织了石油炼制、石油化工、高能燃料、色谱、激光和化工过程的研究;组建了我国第一个石油、煤炭化学的研究基地,并为我国培育了几代研究人才。晚年仍关注石油工业有重要影响的强化采油中界面现象新领域的开拓。 张大煜,字任宇,1906年2月15日生于江苏省江阴县长泾镇。他从小酷爱读书,学习成绩优异。中学毕业以后,考入南开大学,后转清华大学。1926年张大煜和清华大学、中央大学、交通大学等校学生发起组成大地社,该社由翟凤阳负责,成员有葛春林、袁翰青、张大煜等十余人,他们经常探讨如何“工业救国”和“科学救国”,并多次参加学生运动,为清华脱离外交部管辖,从留美预备学校转为正式大学起到了一定作用。   1929年,张大煜于清华大学毕业,同年考取了公费留学德国和美国,他把留学美国的名额让给了同学,自己赴德国德累斯顿大学学习胶体与表面化学,1933年获工学博士学位。回国以后在清华大学任教,历任讲师、教授。他在回忆文章中写道:“虽然自己曾经有很大的抱负和雄心,想用学得的知识和技能为祖国服务,但是当时政府只把科学当作点缀品,哪怕是很小一点研究工作也得不到支持,……。”   抗日战争爆发,张大煜从北平到长沙,又从长沙辗转到昆明在西南联大任教并兼任中央研究院化学所研究员。从基础研究转向石油、煤炭方面的技术科学研究,以期为抗日胜利贡献力量,当时曾尝试过从植物油制造重要国防物资并开展了将煤炼制成汽油的方法。他利用云南丰产的褐煤,在昆明附近宜良滇越线上建立了一个从褐煤低温干馏提炼汽油的小型实验工厂(利滇化工厂),边实验边生产,历尽千辛万苦炼出了油。但在人力、物力、设备和经费等方面困难重重,终于被迫停办。张大煜“工业救国”的尝试遭到了挫折,但为他后来创建我国第一个石油煤炭化学研究基地提供了最初的经验。抗日战争胜利后,张大煜从昆明到上海,任交通大学教授兼北京清华大学化工系主任,讲授工业化学和胶体化学,在极端困难的条件下,还开展了一些研究工作。留学回国十余载的经历,使他思想处于彷徨之中,他亲眼看到知识分子在旧中国不可能实现富国强民的理想,1948年底经上海地下党负责人介绍毅然离开上海,绕道香港和朝鲜,于1949年初到达大连。   1949年大连大学创办初期,他任化工系教授、系主任,同时担任大连大学科学研究所(后改名为东北科学研究所大连分所)研究员、副所长。1952年该所划归中国科学院领导,并先后更名为工业化学研究所、石油研究所、大连化学物理研究所,他一直担任所长。   50年代初期,张大煜紧密围绕国民经济恢复和建设需要的重大课题开展工作,在我国天然石油资源尚未开发的情况下,他组织和发展了我国水煤气合成液体燃料、页岩油加氢、汽油馏分环化制甲苯等研究,取得杰出成绩,有些成果达到当时的世界先进水平。   在完成国民经济重大研究课题的同时,张大煜也很重视基础研究,50年代初期开始,他就致力于工业上广泛使用的催化剂担体研究,结合水煤气合成石油的钴催化剂和合成氨催化剂的催化性能研究,逐步建立了物理吸附、化学吸附等一系列研究方法,并且提出了表面键理论的设想,并以此为指导,研制成功了合成氨新流程3个催化剂,超过了国内外同类催化剂的水平。通过实践,培养和建立起一支学科配套,有解决综合问题能力的催化科学队伍。   随着国家建设对科学事业发展的需要,张大煜在研究所的布局和发展上,及时提出了建议。经中国科学院批准,先后于1958年和1960年从石油研究所抽调科技力量,建立了兰州石油研究所和太原煤炭化学研究所,他兼任这两个所的所长,为促进内地科学事业的发展作出了贡献。   1962年,中国科学院石油研究所改名为大连化学物理研究所。张大煜在担任大连化学物理所所长期间,跟踪国外同学科的发展趋向,及时提供最新信息。他查阅大量文献,经常到实验室参加研究工作。他特别关心培养新生力量,对青年循循善诱、严格要求,不断提高他们的学术研究水平,使研究室成为学术空气浓厚、工作勤奋的研究集体。   “文化大革命”时期,张大煜遭到迫害,身心受到严重摧残,抑郁成疾。但是,就在这样重重压力下,他仍多次要求开展磁场对化学反应影响的研究,不断提出建立催化剂库等发展催化科学的新建议,坚持为科学献身。   1977年,张大煜调任中国科学院感光化学所任顾问兼第一届学术委员会主任,同时兼任大连化学物理研究所顾问。他培植了严谨的优良学风,并为创建界面与光催化研究室,强化采油界面现象研究等新学科领域的开拓做出了贡献。   张大煜学识渊博、治学严谨,谦虚和蔼,待人宽厚,善于发挥他人之长,深受同行们的崇敬,在学术界享有很高的威望。他在组织和发展我国的人造石油、石油炼制、催化科学、化肥工业、化学工程、色谱、激光和相应的理论研究等方面都有贡献。在胶体化学、吸附和催化作用、催化剂研究、水煤气合成、表面化学研究等方面发表过学术论文30余篇。   张大煜是中国科学院学部委员,一级研究员,曾当选为中国化学会第二十届理事会副理事长,第一、二、三届全国人大代表,第五届全国政协委员,中国民主同盟中央委员等职。   张大煜为我国科研事业、教育事业和我国第一个石油化学和煤炭研究基地的创建与发展倾注了全部心血,做出了卓越贡献。

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 【转帖】邓景发:生活需要催化剂

    邓景发:生活需要催化剂邓景发物理化学家。1955年上海复旦大学化学系毕业。现为复旦大学化学系教授、博士生导师。中国科学院院士(化学部)。首先在国内研制成电解银催化剂用于甲醇制甲醛的工业生产。自行设计、组装了多种近代能谱仪,在国内较早建成了一个从分子水平研究表面吸附和催化过程的表面催化实验室,系统开展了银系列催化剂的基础理论研究。研究出环戊烯一步催化合成戊二醛,突破了国外专利必须用无水体系的限制,为碳五馏分的利用开拓了新的领域,已获国家专利。 不是一家人 院士邓景发是研究催化剂的,那些催化剂通常作用于各种化学反应之间。而在生活中,他自己则成了一道笑声“催化剂”,作用在周围的人群之间。在他的身边,聚集了一群有追求并快乐的人们。他的家庭就是这样一个奇特的组合。 邓景发的老伴九年前过世了,女儿已出嫁,我想象一个人的家也许会冷清而寂寞。然而当我刚踏进邓景发家门的时候,我便听见了屋里不时传出的小男孩欢快的叫声和七嘴八舌的说话声。邓景发说,这是女儿、外孙及他学生胡建国一家在玩。 这是个欢乐的大家庭,共六口人,虽然没有血缘关系,但他们一起共同生活了11年。 11年前,老家在绍兴农村、单身住在学校宿舍的胡建国之子患了肾病,到上海治疗,生活极为困难。邓景发闻讯后对他说,你和我们一起住吧,这样你可以省点开支,而且还可以给孩子烧点好吃的。这一住就是11年,期间胡建国的妻子常往返老家和上海之间照顾孩子,每次都住在邓家。 邓景发的房子变动过几次,每次邓景发都对建国说,我家房子大,人又少,大家就住在一起吧。分两处住,大家都一样要开伙,还不如合在一块吃,省事省力。 推开书房门,迎面是两张面对面的书桌。邓景发指着那张略小的书桌说,这是孩子(学生之女)用的,暑假她住在这里和我合用一个书房,我们是面对面办公。说着,邓景发又转身指着书架说,这些书是孩子们看的,虽然我很喜欢看小说,但现在实在太忙,没办法一口气看完一本长篇小说了,一些短篇的看看还行。以前我读书的时候,还曾是复旦大学话剧团团长呢。我喜欢表演话剧,比如《雷雨》什么的。 胡建国的女儿剪着一个男孩头,在一边腼腆地笑着,穿着“华东理工大学”的T恤衫。邓景发慈爱地拍拍她的脑袋说,明天你要回校住了,我要少一个伴了。我爱实验室 邓景发的家里有一间“绿色会客厅”,窗台上十几盆绿色植物排成了一道绿墙,一边靠墙放着一大缸热带鱼,几十条大小不一、色彩斑斓的热带鱼在水中彩灯的照耀下欢快地游着。邓景发说,这些花花草草都是女儿和胡建国的儿子胡学迅专为他种养的,让他累了的时候看看它们休息放松。“眼睛不停地跟着鱼转,可以防止老年痴呆症。”邓景发很开心地笑,对女儿和学生的孝心,全盘接收。 随和的老邓不是一个传统封建的家长,他把家交给了女儿打理,从摆设到布置,他都听女儿的,因为对于他来说,时间呆得最长的那个家是在复旦大学的化学楼里。那里有他花费了多年心血建立起的表面化学和催化实验室。暑假里,邓景发每天都去实验室工地转,现场指挥装修工人,大到实验室内部的整体安排、实验仪器的摆放,小到每张实验桌的式样。凡是与实验室有关的一切,他都事无巨细地过问。而三年前,家里装修时,每个房间的家具样式、布置都是女儿说了算的。 站在初具规模、宽敞明亮的新实验室里,邓景发自豪地说:“我们这个实验室投资了近千万元,可以说比国外一些实验室毫不逊色。”现在每个实验室均由4名学生共用,每人都有单独的实验桌。同时实验室还配备了几台目前世界上最先进的表面分析仪。这些仪器的大部分零件是由实验室自行设计后委托国内相关厂家加工制造的。邓景发为了这个面貌焕然一新的实验室,累得躺倒了。 催化的路还很长邓景发说起自己从事催化剂领域的研究,还有一个小故事。70年代,他带着学生在工厂边劳动边进行教学时,工人对他说,我们现在生产甲醛用的浮石银催化剂不仅甲醛的产率不高,而且在用硝酸处理浮石时易被灼伤,而国外是用电解银催化剂生产甲醛的,你能替我们研究电解银吗? 邓景发看到了实际工作对催化剂的需求,开始了催化化学的研究。通过廿余年的努力,邓景发领导的小组在国内最早研制成电解银催化剂,并用于甲醇制甲醛、乙醇制乙醛、丁醇制丁醛、乙二醇制乙二醛等工业生产,达到国际先进水平,其中仅甲醇制甲醛一项,年赢利就达数千万元,用电解银催化剂生产乙二醛,具有自主知识产权,是首创性的工作。 最近,邓景发的研究室与上海焦化公司成立了催化研究中心,专门研究处理炼焦过程产生的煤气。因为到2004年时,因“西气东输”工程的完工,上海将全面使用天然气,原来炼焦产生的煤气和氢气将不再需要而成为“废物”。这个研究中心的工作就是希望能将这些“废物”用作原料,制成国家急需的产品。

  • 有用过催化分光光度法测硒含量的吗?

    由于实验条件有限,准备采用催化分光光度法测硒,主要是利用测定原理:Se4+能够催化氯酸钾氧化盐酸苯肼生产偶氮离子,继而与变色酸耦合成红色偶氮燃料,生成的红色偶氮燃料的520 nm处的吸光度与一定浓度范围的硒成正比。 在做标曲时,出现吸光度不成比例? 怀疑是变色酸显色的问题? 有没有用过这个方法的?

  • 【原创大赛】单原子催化剂的介绍及其相关研究

    【原创大赛】单原子催化剂的介绍及其相关研究

    [align=center][font=微软雅黑]单原子催化剂的介绍及其相关研究[/font][/align][b][font=微软雅黑][font=微软雅黑]钱冠求[/font] [/font][/b][align=center][font=微软雅黑]([/font][font=微软雅黑]北京[/font][font=微软雅黑]化工[/font][font=微软雅黑]大学化学学院[/font][font=微软雅黑] [/font][font=微软雅黑]北京[/font][font=微软雅黑] [/font][font=微软雅黑])[/font][/align][font=微软雅黑][font=微软雅黑]摘[/font] 要:[/font][font=微软雅黑][font=微软雅黑]近年来,单原子催化剂以其优异的催化性能、极大的比表面积与较好的稳定性成为了催化领域炙手可热的研究方向,已被广泛应用于各种催化领域的研究。本文通过整理大量文献,简明地阐述了单原子催化剂的发展情况以及制备方式,并以部分文献中的实验过程和表征结果为基础简要地提出了一些理论上可行的改进方法,以期能为之后单原子催化剂的合理设计与可控合成实验提供新思路。除此之外,单原子催化剂在表征与测试方面优异的表现,更证实了其在电催化、[/font]CO优先氧化等领域上有着良好的应用前景。[/font][font=微软雅黑] [/font][font=微软雅黑]关键词:单原子,催化剂,贵金属,非贵金属[/font][font=微软雅黑]一、研究背景[/font][font=微软雅黑]单[/font][font=微软雅黑]原子催化剂,是指通过一系列手段阻止载体上的金属原子团聚,使之以单个原子的形态均匀分散在载体上的一系列催化剂的总称。其具有高反应活性、高稳定性、高选择性的特点,同时,原子的高程度分散,也使得原子利用率得到极大提高,从而节省了催化剂原子的浪费与经济支出,具有明确的现实经济意义。[/font][font=微软雅黑][font=微软雅黑]将催化剂单原子化概念的产生,可以追溯到上个世纪,早在[/font]1[/font][font=微软雅黑]997[/font][font=微软雅黑]年,[/font][font=微软雅黑]Haruta[/font][sup][font=微软雅黑][font=微软雅黑][1][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人就在文章中写道,贵金属[/font]Au的催化活性往往不尽如人意,但是当其高度分散到直径5nm以下时,低温下的催化活性高于Pt与Pd。他的另一项研究[/font][sup][font=微软雅黑][font=微软雅黑][2][/font][/font][/sup][font=微软雅黑][font=微软雅黑]也表明了,[/font]Au催化剂的单位面积活性随Au的粒径减小而增大。2[/font][font=微软雅黑]011[/font][font=微软雅黑][font=微软雅黑]年,[/font]Qiao[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]等人利用[/font][font=微软雅黑]P[/font][font=微软雅黑]t原子与Fe/[/font][font=微软雅黑]O[/font][font=微软雅黑]x的相互作用,合成了高分散度、高活性与稳定性的单原子催化剂Pt[/font][font=微软雅黑]1/F[/font][font=微软雅黑]e[/font][font=微软雅黑]O[/font][font=微软雅黑]x,掀起了对单原子催化剂的合成热潮。[/font][font=微软雅黑][font=微软雅黑]多相催化反应的发生需要经历三个过程,即反应物的吸附[/font]-反应-脱附过程[/font][sup][font=微软雅黑][font=微软雅黑][4][/font][/font][/sup][font=微软雅黑][font=微软雅黑],就反应步来说,具有高催化活性的原子往往是贵金属,其高昂的成本限制了其工业化的大规模应用。除此之外,[/font]Pt的中毒等现象也令其实用性受到了极大阻碍。[/font][font=微软雅黑][font=微软雅黑]于是,人们自然而然的将目光投向了贵金属催化剂的改性以及用[/font]Fe、Cu、Co等廉价金属替代贵金属的研究上,[/font][font=微软雅黑]Liang[/font][sup][font=微软雅黑][font=微软雅黑][5][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等以维生素[/font]B[/font][sub][font=微软雅黑][font=微软雅黑]12[/font][/font][/sub][font=微软雅黑][font=微软雅黑]与聚苯胺铁络合物为前体,制备出了高活性的非贵金属[/font]Fe-[/font][font=微软雅黑]N-C[/font][font=微软雅黑]催化剂。随[/font][font=微软雅黑][font=微软雅黑]后,[/font]Co[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]N[/font][font=微软雅黑]i[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]u[/font][sup][font=微软雅黑][font=微软雅黑][8][/font][/font][/sup][font=微软雅黑]等高性能催化剂也[/font][font=微软雅黑]被相继研发出来。单原子催化剂可以广泛应用于电催化[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][10][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]O[/font][font=微软雅黑]的优先氧化[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]、硝基芳烃还原[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑]、葡萄糖的催化氧化[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]等研究领域。[/font][font=微软雅黑]二、[/font][font=微软雅黑]制备方法[/font][font=微软雅黑]1.原子层沉积法[/font][font=微软雅黑]将反应物交替释放到体系中,以此精确控制沉积层数,随着循环次数增加,催化剂的质量也均匀上升,故而该法可控性强。但当载体表面官能团过少时易成核生长或难以均匀成膜。产量低、不利于大规模生产。[/font][align=center][img=,367,207]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056027180_7399_3237657_3.png!w367x207.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]1.原子层沉积法示意图[/font][/align][font=微软雅黑]2.液相还原法[/font][font=微软雅黑]利用还原性物质在液相中将前体还原,和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]还原法相比,液相还原所需的温度更低,可以有效避免金属离子的聚集、保护载体不被高温破坏,受到还原剂、温度、金属阳离子种类的影响可能造成颗粒过大或使用大量表面活性剂,难以去除。[/font][font=微软雅黑]3.沉积-沉淀法[/font][font=微软雅黑][font=微软雅黑]通过在有金属盐与载体的溶液中缓慢加入弱碱,使金属盐沉淀在载体空隙中温度过高可能引起大量快速沉淀,[/font]pH的局部过浓或过稀也会影响沉淀的形貌。不利于制造催化原子含量高的催化剂。催化剂金颗粒尺寸分布比较均匀、操作简单。[/font][font=微软雅黑]4.高温裂解法[/font][font=微软雅黑][font=微软雅黑]过高温将含有[/font]C、N有机配位配体的金属前驱体分解在载体上,来制备催化剂的手段,直接高温裂解法后得到的N-C结构可能包含大量无序结构,且会造成金属离子团聚,采用MOF骨架可以使催化剂活性位点被锁在分子笼中,耐久度高,活性位点密度大。[/font][align=center][img=,437,132]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056204036_2347_3237657_3.png!w437x132.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]2.高温裂解法示意图[/font][/align][font=微软雅黑]三、[/font][font=微软雅黑][font=微软雅黑]实例分析:单原子[/font]Fe-Nx-C作为锌空气电池的高效电催化剂[/font][font=微软雅黑]1.制备[/font][align=center][img=,385,244]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056513914_4988_3237657_3.jpg!w385x244.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]3.制备流程示意图[/font][/align][font=微软雅黑]如图[/font][font=微软雅黑]3[/font][font=微软雅黑][font=微软雅黑]所示,首先通过[/font]Fe[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]离子与[/font]1,10-菲咯啉(Phen)配合形成Fe-Phen复合物,接着通过Zn[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]和[/font]2-甲基咪唑(2-MI)的组装,将Fe-Phen复合物原位封装在沸石咪唑酯骨架(ZIF-8)的笼子中,获得的样品称为Fe-Phen @ ZIF-8。[/font][font=微软雅黑][font=微软雅黑]最后在氩气氛下于[/font]900°C的温度下热解后,Fe-Phen @ ZIF-8在氮掺杂碳骨架(Fe-N x - C)上转化为孤立的单原子铁。[/font][font=微软雅黑]2.表征[/font][align=center][img=,497,349]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161057058977_5382_3237657_3.jpg!w497x349.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]4.各表征谱图[/font][/align][font=微软雅黑]对图[/font][font=微软雅黑]4[/font][font=微软雅黑]阐述分析:[/font][font=微软雅黑][font=微软雅黑]图[/font]a:Fe-Phen @ ZIF-8的X射线衍射(XRD)图与纯ZIF-8的X射线衍射图非常匹配,表明其高结晶度和类似的沸石型结构。图b-d:扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像显示,热处理后Fe‐Nx‐C保持其初始十二面体形状,而表面变得更粗糙。图e:高分辨率透射电子显微镜(HRTEM)图像中,石墨碳层的晶向间距为0.34nm。图f:选择区域电子衍射(SAED)图像示出了环,指示整个碳骨架的结晶性差,在900℃热处理过程中形成无结晶的铁。(g,h在Fe - Nx - C的红圈区域,经过像差校正的HAADF‐STEM图像和EELS点谱)。图g:显示出单个的铁原子。图h:表明Fe和N以Fe‐Nx形式共存。之后XPS结果一致,证实了分散良好的Fe原子与N配位。图i:Fe‐Nx ‐C的拉曼光谱在1347和1572 cm [/font][sup][font=微软雅黑][font=微软雅黑]-1[/font][/font][/sup][font=微软雅黑][font=微软雅黑]处显示两个峰,其[/font]I D / I G值为2.51,低于N‐C(I D/ I G = 1.86)。D峰表示晶格的缺陷。该结果表明,在碳骨架中引入铁原子诱导了碳基质的缺陷位点的形成,据报道该缺陷位点是氧电极的活性位点。[/font][font=微软雅黑]四、总结与展望[/font][font=微软雅黑]单[/font][font=微软雅黑][font=微软雅黑]原子催化剂的发展,是科技进步的结果,它的诞生,为科学家们寻找高效的[/font]Pt[/font][font=微软雅黑]/C[/font][font=微软雅黑]催化剂替代品提供了可行的思路。目前,科学家们正致力于提高催化剂的比表面积与催化活性,为此开发出了许多新奇的催化剂结构[/font][font=微软雅黑];[/font][font=微软雅黑]同时,不同的催化载体也被开发出来,从胶体[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]到负载,从金属氧化物[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑][font=微软雅黑]到[/font]M[/font][font=微软雅黑]OF[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑],合成的方法越来越简便。此外,也有一些使我们感到新颖的合成思路,比如[/font]Yin[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人利用[/font]Zn占位来控制Co的间隔,以及用外加电势[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]的方法活化[/font]N[/font][font=微软雅黑]i[/font][font=微软雅黑]-[/font][font=微软雅黑]C[/font][font=微软雅黑]催化剂等。[/font][font=微软雅黑]但是,在催化剂的制备领域还有许多亟待解决的问题。如诸多的合成方式都存在一定的缺陷,在合成的可控性上还有提升的空间。以及从我在网上浏览的资[/font][font=微软雅黑]料来看,似乎部分催化剂的载体和催化原子很廉价,但是其余的合成试剂甚至是实验所需的催化剂原子的特定形态价格昂贵,我想这也是单原子目前还停留在实验室阶段的重要原因之一。想要将合成的成本降下来,可以从以更廉价的方式合成载体及反应所需催化剂原子特定形态入手,也可以尝试从一些含目标原子的其他化合物入手,通过调控合成步骤达到与昂贵反应试剂近似的效果。[/font][b][font=微软雅黑][font=微软雅黑]参考文献[/font]:[/font][/b][font=微软雅黑][1] Haruta M. Size-and support-dependency in the catalysis of gold[J]. 1997, 36(1): 153-166.[/font][font=微软雅黑][font=微软雅黑][2] Sakurai H, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides[J]. Catalysis Today, 1996, 29(1/4): p. 361-365.[/font] [/font][font=微软雅黑][3] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-41.[/font][font=微软雅黑][4] Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: a concise review[J]. Science China Materials, 2020, 63(06): 903-920.[/font][font=微软雅黑][5] Liang H W, Wei W, Wu Z S, et al. Mesoporous Metal-Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.[/font][font=微软雅黑][6] Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7: 5758-5764.[/font][font=微软雅黑][7] Fan L, Liu P, Yan X, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis[J]. Nature communications, 2016, 7: 10667[/font][font=微软雅黑][8] 王兵, 曲雅男, 安灏, 王金凯, 郭振美, 吕志果. 高性能纳米Cu/SiO[/font][sub][font=微软雅黑][font=微软雅黑]2[/font][/font][/sub][font=微软雅黑][font=微软雅黑]催化剂制备及其催化芳酮加氢性能[/font][J]. 青岛科技大学学报(自然科学版), 2020, 41(03): 48-55.[/font][font=微软雅黑][9][/font][font=微软雅黑] [/font][font=微软雅黑]Yin P, Yao T, Wu Y, et al. [/font][font=微软雅黑]Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. [/font][font=微软雅黑]Angewandte Chemie, 2016, 55: 10800-10805.[/font][font=微软雅黑][10] Deng J, Li H, Wang S, et al. [/font][font=微软雅黑]Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. [/font][font=微软雅黑]Nat Commun, 2017, 8: 14430.[/font][font=微软雅黑][11] Zhang H, Kawashima K, Okumura M, et al. [/font][font=微软雅黑]Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498.[/font][font=微软雅黑] [/font][font=微软雅黑] [/font]

  • 高顺式聚丁二烯橡胶催化体系的分析研究

    [align=center][b][/b][/align][align=center][b]高顺式聚丁二烯橡胶催化体系的分析研究[/b][/align]2012年11月1日欧盟轮胎标签法规—EC1222/2009实施,要求出口欧盟的轮胎必须标示出轮胎的燃油效率、滑动噪声和湿抓着力等级。高顺式顺丁橡胶是生产高性能绿色轮胎的重要原材料,常见用于子午线轮胎、斜交轮胎胎侧和胎面配方中。不同催化体系的顺丁橡胶应用性能差异较大,尤其是稀土顺丁橡胶。橡胶行业对不同催化体系的高顺式顺丁橡胶的应用非常关注。主要基于以下诉求:1、轮胎厂急欲了解品牌轮胎中不同催化体系高顺式顺丁橡胶的应用方向,以便采购生胶原材料,提高自我品牌轮胎性能。2、合成橡胶生产厂急欲知道不同催化体系高顺式顺丁橡胶在轮胎中的应用现状与前景。3、合成橡胶应用技术研究人员急欲掌握不同催化体系高顺式顺丁橡胶的应用性能。采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url](FAAS、GAAS)可以对高顺式聚丁二烯橡胶生胶及硫化胶催化体系进行定性、定量分析。1、采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]对高顺式顺丁胶(单用和并用)进行定性。2、进行样品处理,样品处理有三种方法:A、干法灰化,B、湿法消解,C、半降解。3、采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]测试样品中的钕、镍、钴、铝。优化测试条件,消除存在干扰。检测限能达到ppb级。4、根据检测结果,总结国内外轮胎用高顺式顺丁橡胶催化体系的不同及应用方向。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制