当前位置: 仪器信息网 > 行业主题 > >

醇基燃料

仪器信息网醇基燃料专题为您整合醇基燃料相关的最新文章,在醇基燃料专题,您不仅可以免费浏览醇基燃料的资讯, 同时您还可以浏览醇基燃料的相关资料、解决方案,参与社区醇基燃料话题讨论。

醇基燃料相关的资讯

  • 全国首家醇醚燃料检测中心落户山西
    全国第一家煤基醇醚燃料与醇基生物燃料研发检测中心近日全面落成。它的建成和投入使用,将成为我国集煤基醇醚燃料新品开发、检验检测、技术咨询、产业孵化等多种功能为一体的现代新型醇醚产品生产科技创新基地。   由山西华顿实业有限公司投资的醇醚燃料检测中心位于太原高新技术产业开发区煤化工研发基地,项目占地面积5800平方米,总建筑面积14360平方米,项目总投资2992万元。目前已经建成2幢12层高的科研、办公楼以及1座实验室、中试车间楼。   据中国工程院副院长、中国科协副主席、中国工程院院士谢克昌介绍,该中心将承担醇醚燃料和生物燃料共性、关键技术的研究开发及检测任务,制定有关行业标准和国家标准,为行业发展提供技术平台与技术支持。   醇醚燃料检测中心有三大任务:一是科研、开发,包括替代汽柴油的醇基生物燃料的研究与开发,主要是基本特性研究、应用技术开发及醇醚燃料行业共性和关键性技术问题攻关,每年重大研究课题不低于10个 二是检验、检测,包括对醇基生物燃料的化学成分进行分析,对醇基生物燃料的实用性能进行检测,进行醇基生物燃料产品鉴定检测和委托质量检验,年检测量不小于1万个 三是中试、生产,包括科研成果产品中试(甲醇燃料试验),为工业化推广积累经验,中试产品(甲醇汽油、柴油)每年2~3个。
  • 中国石油燃料乙醇研发中心成立
    12月1日,从吉林石化研究院获悉,中国石油燃料乙醇研发中心在吉林石化研究院成立。此举为适应燃料乙醇生产基地建设需要,形成科研、生产一体化发展大格局奠定了基础。   近年来,随着我国乙醇汽油的推广和应用,国内市场对燃料乙醇的需求大幅提升。然而,为避免消耗过多粮食,国家限制以粮食或糖作原料生产燃料乙醇的措施陆续出台,非粮物质生产燃料乙醇技术成为国内各企业发展的重点。有关资料显示,我国仅农林废弃物每年就有15亿吨左右,具有生产乙醇近4亿吨的潜力。   吉林石化研究院院长王勋章介绍,为在非粮生产燃料乙醇技术上取得大的突破,新成立的研发中心正在对国内外非粮乙醇生产技术开展调研,选择主攻方向。   目前,吉林石化乙醇燃料有限公司以陈化粮为原料,拥有年60万吨燃料乙醇的生产能力。吉林石化将在此基础上,加快非粮乙醇基地建设速度,在先进性、可行性、经济性三者统一的基础上,做大非粮乙醇产业。   中国石油十分重视非粮乙醇技术的开发,要求吉林石化在“十二五”期间以现有生产装置为依托,在非粮乙醇生产上形成规模。   燃料乙醇研究院研发中心负责人刘海军博士介绍说,吉林石化研究院从1974年就开始从事环保与生物工程方面的研究工作,有一定的技术积累。此次燃料乙醇研发中心的组建,将综合国内外非粮乙醇技术特点,在引进、消化、吸收中形成自己的技术优势。
  • 车用燃料甲醇国家标准发布
    5月20日,国家标准化管理委员会在其网站上对外发布公告,《车用燃料甲醇》已获得批准,将于2009年11月1日起实施。该标准将全面推进和规范我国甲醇燃料使用,扩大甲醇市场需求,缓解当前我国甲醇生产企业面临的生产经营困境。   甲醇燃料被国家发改委颁布的《我国醇醚燃料及醇醚清洁汽车发展专题报告(征求意见稿)》确定为今后20~30年过渡性车用替代燃料。即将实施的《车用燃料甲醇》标准,规定了车用燃料甲醇的技术要求、试验方法、检验规则及标志、包装、运输、贮存和安全等,适用于车用燃料甲醇的生产、检验和销售。《车用燃料甲醇》标准规定的产品是用作车用甲醇燃料的原料,全国醇醚燃料标准化技术委员会副秘书长降连葆介绍,这个标准是把甲醇从化工产品向燃料转变的合法依据,以车用燃料甲醇为基础调配各种比例的甲醇汽油。   受全球性金融危机和国际油价暴跌影响,从去年9月份以来,国内甲醇价格持续下跌,主要下游应用领域市场萎缩,整个行业面临前所未有的困境,扩大需求无疑是化解甲醇产业危机最好的办法。
  • 浙江首家醇醚燃料研发机构成立
    浙江第一家专业从事醇醚燃料研发的研究机构——浙江久然醇醚燃料研究所2010年12月19日在杭成立。   该研究所是浙江久然能源集团公司投资成立的专业从事醇醚燃料研发、推广的非赢利机构。主要从事醇醚类燃料的开发、研究和产业化推广应用、技术服务等相关业务,拥有国内一流的检测仪器和一批具有较强专业水平的科研人员。该所的成立对我省甲醇汽油技术的提升具有重要意义。
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 美国博纯燃料电池专利加湿器在广州亚运会继续大显身手
    2010年上海世博会上,有100辆燃料电池车为游客提供了便捷的服务,现在,这些电池车又为亚运会提供了服务。这些燃料电池车都配备美国博纯(perma pure)**加湿器产品。技术先进、节能环保、安全可靠等卓越性能使这批燃料电池车成为上海世博会的一道亮丽风景线。世博园开园至今,观光车先后经受了恶劣天气、超大客流等重重考验,高负荷长时间的运行,总体运行情况平稳,至今行驶里程已达到164.86万公里,出车64.36万车次,运送客流383.79万人次。在接送完最后一批世博游客后,很快它们又远赴广州“转战”亚运会。此次在广州亚运会上继续“大显身手”的燃料电池观光车共有60辆,都是从世博园内100辆燃料电池观光车中所挑选出来的。(图片标题:图为博纯fc?系列燃料电池加湿器)对于一个良好的燃料电池系统来说,nafion膜的加湿是最具挑战性的问题之一。博纯领先的加湿技术为这一过程提供了完美的解决方案。与焓轮和喷水加湿系统相比,博纯**加湿器具备了更耐用,更高效,抗振动和免维护的特性。博纯加湿器已是燃料电池产业界公认地最好的加湿设备。世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等。
  • 美国博纯将参加2019中国国际氢能与燃料电池技术应用展览暨产业发展大会
    全球环境监测、医疗和科研应用气体预处理解决方供应商美国博纯将于2019年5月5日至8日参加在北京中国国际展览中心(静安庄馆)举行的2019中国国际氢能与燃料电池技术应用展览暨产业发展大会。在这一年一度氢能与燃料电池技术盛会上,主办方组织呈现产业链上全系产品及各种燃料电池终端应用产品,特别是在交通、电力和能源系统中的应用提供一站式“氢能与燃料电池”解决方案。众所周知,燃料电池系统工作时,电堆对反应气体的相对湿度具有较高要求。一般来说,电池堆的性能随着反应气体相对湿度的增大而提高。如果反应气体湿度达不到湿度要求,电池堆的性能会降低,同时会缩短运行寿命;如果反应气体湿度超过100%,则极容易夹杂液态水进入电池堆,容易影响电池堆的运行稳定性。因此,对氢燃料中的H2及空气中的O2加湿控制成为至关重要的一步。届时,美国博纯会带来具有卓越的湿度管理解决方案。使用Nafion技术,博纯开发出独特的FC系列加湿器,可为不同功率的燃料电池电堆及实验平台提供个性化技术支持,为客户大大提高燃料电池性能及运行时间。博纯展台设在6号馆6601号,欢迎各位业内专家的莅临参观!美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、高质量和可靠性产品,博纯是医疗、科研和环境监测市场先行者们的信赖之选。公司产品有助于全球数百万人的健康,安全和幸福。博纯通过了ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • 博纯燃料电池专利加湿器在广州亚运会继续大显身手
    2010年上海世博会上,有100辆燃料电池车为游客提供了便捷的服务,现在,这些电池车又为亚运会提供了服务。这些燃料电池车都配备美国博纯(Perma Pure)专利加湿器产品。 技术先进、节能环保、安全可靠等卓越性能使这批燃料电池车成为上海世博会的一道亮丽风景线。世博园开园至今,观光车先后经受了恶劣天气、超大客流等重重考验,高负荷长时间的运行,总体运行情况平稳,至今行驶里程已达到164.86万公里,出车64.36万车次,运送客流383.79万人次。在接送完最后一批世博游客后,很快它们又远赴广州&ldquo 转战&rdquo 亚运会。此次在广州亚运会上继续&ldquo 大显身手&rdquo 的燃料电池观光车共有60辆,都是从世博园内100辆燃料电池观光车中所挑选出来的。 图为博纯FC&trade 系列燃料电池加湿器 对于一个良好的燃料电池系统来说,Nafion膜的加湿是最具挑战性的问题之一。博纯领先的加湿技术为这一过程提供了完美的解决方案。与焓轮和喷水加湿系统相比,博纯专利加湿器具备了更耐用,更高效,抗振动和免维护的特性。博纯加湿器已是燃料电池产业界公认地最好的加湿设备。世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等。 更多信息请登陆: http://www.permapure.com.cn http://www.instrument.com.cn/netshow/SH102137 关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. &ndash www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。   销售联系方式   夏黎明先生 中国区销售经理   上海市长宁区仙霞路137号盛高国际大厦1801室   邮编:200051   电话:021-52068686-113   传真:021-52068191   电子信箱: fxia@permapure.com   网址:http://www.permapure.com
  • 博纯燃料电池专利加湿器服务世博会
    关注世博——博纯Perma Pure燃料电池专利加湿器服务2010年世博会   2010年上海世博会上,将会有100辆燃料电池车驶入世博园,为游客提供便捷的服务。这些燃料电池车都配备博纯专利加湿器产品。   对于一个良好的燃料电池系统来说,Nafion膜的加湿是最具挑战性的问题之一。博纯领先的加湿技术为这一过程提供了完美的解决方案。与焓轮和喷水加湿系统相比,博纯专利加湿器具备了更耐用,更高效,抗振动和免维护的特性。博纯加湿器已是燃料电池产业界公认地最好的加湿设备。   在世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等。 查看产品图片http://www.instrument.com.cn/netshow/SH101541/C95010.htm   更多产品信息,请登录www.permapure.com   关于博纯:   成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。   博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。   博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。   拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。   关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。 销售联系方式夏黎明先生 中国区销售经理上海市长宁区仙霞路137号盛高国际大厦1801室 邮编:200051 电话:021-52068686-113 传真:021-52068191 电子信箱: fxia@permapure.com 网址:http://www.permapure.com
  • 宋春山博士获燃料化学领域最高学术奖
    2010年8月,“千人计划”入选者博士由于在燃料科学,特别是清洁燃料、催化、二氧化碳捕集和转化领域的杰出贡献被美国化学会授予燃料化学领域的最高学术奖——亨利斯托奇奖。宋春山博士是斯托奇奖设立50余年来入选的唯一一位华人科学家,也是此奖最年轻的获奖者。   在美国化学会2010年秋季年会上,在美国化学会主席主持的第二届会士(ACS Fellow)颁奖大会上,由于宋春山博士在化学科学和美国化学会的杰出贡献,当选为2010年美国化学会会士(Fellow)。   宋春山博士现为美国宾夕法尼亚州立大学能源研究所所长,地球与矿物科学学院能源与矿物工程系燃料学科终身教授,同时还是化学工程系教授和能源与环境研究院副院长。2010年2月被美国宾夕法尼亚州立大学选为该校杰出教授。   宋春山教授由于在清洁燃料、催化和二氧化碳捕集和利用方面的原创性工作而闻名国际学术界。他设计了由萘出发合成高性能聚合物的择形烷基化催化剂,开发了纳米级超高表面积硫化物催化剂水热合成新方法。对于超洁净燃料和燃料电池,设计了在固体表面从烃类燃料中脱除硫的选择吸附新方法,不使用氢气。他的研究组最近发明了由纳米孔基质和功能聚合物组成的分子筐吸附剂捕集二氧化碳新方法,容量大,选择性高。此外,他的研究组还开创了利用二氧化碳的三重整制造合成气的催化转化新工艺,用于液体燃料的低温水蒸气重整的耐硫和抗积炭的多金属催化剂,氧辅助的水汽变换反应的双金属催化剂,煤的低温催化加氢液化,及由煤炭制取化工产品和有机材料以及合成航空燃料的新研究方向。最近,他又提出了用于低温加氢处理和脱芳烃的耐硫贵金属催化剂新概念。   宋春山教授获得了许多有影响的荣誉,由于在催化领域的杰出成就获得北美催化协会芝加哥分会颁发的赫尔曼磐因斯(Herman Pines)催化杰出研究奖 美国-英国政府颁发的福布莱特(Fulbright)杰出学者奖 中科院海外杰出学者奖 教育部长江学者讲座教授 中组部海外高层次人才“千人计划” 催化领域引频最高作者奖 美国太平洋西北国家实验室杰出催化学者讲座 加拿大阿尔波特大学罗宾逊(Robinson)杰出学者讲座 日本NEDO学者奖和AIST学者奖 美国化学会燃料化学分会和石油化学分会杰出贡献奖 国际匹兹堡煤科学会议杰出贡献奖 美国宾夕法尼亚州立大学颁发的威尔逊(Wilson)杰出研究奖,优秀导师奖,发明创新奖以及材料科学与工程贡献奖。   除了在研究方面的成就,宋春山教授对宾夕法尼亚州立大学的教学、咨询、服务也做出了重要贡献,他教授多门课程,指导了40个硕士、博士研究生。在学校、学院、系各个层次的委员会任职,在推动宾夕法尼亚州立大学和Chevron、ConocoPhillips以及美国能源部(DOE)国家能源技术实验室(NETL)的合作联盟中起到重要作用。多年来他还为中美和中日学术交流作出了很多贡献。最近他推动了宾夕法尼亚州立大学-大连理工大学的校际合作协议备忘录的签署,并促成两校国际联合能源研究中心的建立。
  • 赛默飞发布变性乙醇燃料中氯离子和硫酸根的测定方案
    2014年5月13日,上海 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布变性乙醇燃料中氯离子和硫酸根的测定方案。该方法选择性较好,氯离子和硫酸盐的分离不受样品基质的影响,其定量结果更加准确。 绿色能源的开发随着石油资源的逐渐枯竭越来越收到关注。乙醇由于其生产原料来源广、生产过程简单、燃烧释放能量高以及燃烧排污小等诸多优点而日益得到重视。众所周知,乙醇经过燃烧后转变为水和二氧化碳,但作为燃料的乙醇中如含有氯、硫等化合物时,将会腐蚀内燃机,降低发动机使用寿命。ASTMD4806对变性乙醇燃料中氯、硫化合物的含量进行了严格限制,并推荐以ASTM D7319或ASTM D7328为其含量检测方法。赛默飞离子色谱可实现对这些离子的有效检测,参照ASTM D7328对变性乙醇燃料样品进行前处理后,选用高容量IonPac AS22高效阴离子交换分离柱完成了样品中痕量游离氯化物和硫酸盐及总硫的含量测定。ICS-1600离子色谱系统 下载应用纪要请点击:http://www.thermo.com.cn/Resources/201404/3113151140.pdf 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 吉林燃料乙醇公司突破性研发DDGS中两种成分的分析检测方法
    吉林燃料乙醇公司质检车间的分析人员经过不断摸索、反复试验、多次验证,用于检测产品DDGS(干酒槽及其可溶物)中的黄曲霉毒素和赤霉西酮两种成分试剂盒成功上线,这一重要突破填补了该公司的检测空白。DDGS,是酒糟中蛋白饲料的商品名,即含有可溶固形物的干酒糟。在以玉米为原料发酵制取乙醇过程中,其中的淀粉被转化成乙醇和二氧化碳,其他营养成分如蛋白质、脂肪、纤维等均留在酒糟中。同时由于微生物的作用,酒糟中蛋白质、B族维生素及氨基酸含量均比玉米有所增加,并含有发酵中生成的未知促生长因子。黄曲霉毒素和赤霉西酮两种成分,是DDGS产品中的常见的霉菌毒素。此前在产品销售过程中并不需要出具分析数据。但随着客户对产品质量要求越来越严格,需要增加上述两种成分的检测数据。为此,分析人员深化能力作风建设,加强自主攻关,组织技术人员制定实施方案,从产品样品的采集、实验分析、数理统计、结果验证、实际分析等全面开展,经过反复测试,成功形成了一套完整的试剂盒检测方法,展示了过硬的技术素质和勇于创新的宝贵精神。该方法出具数据优点是分析准确、简捷高效,完全能够满足企业DDGS产品大量出厂的需求,目前已经完成57批黄曲霉毒素和赤霉西酮成分的检测。负责人表示,此次黄曲霉毒素和赤霉西酮检测方法上线,不仅提高了我们在DDGS领域内的检测水平,同时也为提高了产品市场竞争提供了坚实保障。
  • 表现卓越的瑞士万通燃料乙醇pH测量专用电极
    瑞士万通针对乙醇介质开发的EtOH-Trode电极,在燃料乙醇的pH测定方面,突显出非常卓越的性能。为了评估不同的复合pH玻璃酸碱电极,我们在多个实验室之间展开了对比,瑞士万通的乙醇相专用电极得益于独特的固定磨口隔膜设计,在测量的准确性测试方面展现了杰出的性能。KCl水溶液作为电极内冲液,大部分pH玻璃酸碱电极采用的是单液接方式作为盐桥,这样的电极在乙醇相pH测定的对比实验中,重复性表现一般,而万通独有的双液接盐桥设计的电极重复性测试结果完全符合标准。 本次实验评估由Mary Ane Gonç alves 等人组织,评估结果发表在Sensors and Actuators B 158 (2011), p. 327-332上。评估中将瑞士万通EtOH-Trode 电极被定义为《C 类传感器》并附加说明:&ldquo 需要值得一提的是,仅有C类传感器的复现性限较低,符合美国标准ASTM D 6423,C类电极准确性也非常好,属于重复性和准确性指标都很完美的结合。&rdquo 根据ASTM D 6423标准和EN 15490标准规定,pH值测定的时间是有严格要求的,所以电极必须具有好的灵敏度和迅速的响应。瑞士万通EtOH-Trode电极独特的玻璃膜和精细的固定磨口隔膜设计特别适合于燃料乙醇pH值的测定。
  • 美国博纯将参加2018中国国际氢能与燃料电池产业发展大会暨展览会 CHFCE
    全球燃料电池、医疗、科研和环境监测应用气体预处理解决方案的供应商美国博纯,将参加于2018年7月26–28日在北京中国国际展览中心(静安庄馆)举办的“第三届中国国际氢能与燃料电池产业发展大会暨展览会(CHFCE 2018)”。展会将着重在氢能燃料电池的产业链如何构建和发展、氢能燃料电池与汽车融合与发展及氢能燃料电池在电力和能源系统中的应用,特别在微网发电,储能,通信基站等特定领域中的应用方案和技术产品展开。氢能与燃料电池被公认为是清洁的能源,近年来正在得到日益广泛和深入的关注。而如何超越传统能源行业也是目前最重要的研究课题。在历经多年研究,专家们发现在整套燃料电池系统中,影响电堆性能的关键因素之一则是“湿度”! 美国博纯Nafion™ 膜渗透技术可为这一过程提供完美的方案!基于Nafion™ 技术的FC系列产品能为客户指定流量范围内的空气和氢提供可持续且重复的加湿,低压降,运行不需电力,并能大大减少系统的实际负载。与传统焓轮和喷水加湿系统相比,博纯加湿器具备了更耐用,更高效,抗振动和免维护的特性。目前,博纯FC加湿器产品已成功应用在燃料电池汽车、基站、燃料电池实验室测试平台和固定式发电上。本次展会,美国博纯将展出FC系列大流量加湿器、MH系列小流量加湿器及ME水分交换器,并将分享各行业中的成熟案例。博纯展位号B34,我们期待您莅临现场指导! 关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。关键词:美国博纯 样气预处理 燃料电池 氢能 燃料电池加湿 加湿器
  • 和杰科技获世博会燃料电池汽车用纯水器合同
    2010年1月我公司-上海和杰科技有限公司获得上海世博会燃料电池汽车用纯水器合同,共计两套,日供水量500升。有关燃料电池汽车在上海世博会上的应用,请见以下新闻链接:http://auto.sina.com.cn/news/2009-10-21/1350531891.shtml。   2005年以来我公司一直在为燃料电池汽车项目提供纯水方面的产品和服务,此次获得世博会的纯水合同,说明我公司的产品和服务经得起时间的检验,得到了客户的认可。
  • 美国博纯燃料电池专利加湿器备战2011世界大学生运动会
    在2010年上海世博会和广州亚运会上,博纯燃料电池加湿器以稳定的专业表现通过了复杂天气及满负荷运载等多重考验。并因拥有比传统焓轮和喷水加湿系统更加高效、抗震,以及免维护等一系列优点赢得了用户的一致好评。今年8月即将在深圳举行的第26届世界大学生运动会上,60辆氢燃料电池场地车,2辆燃料电池大客车将加入新能源汽车示范运行行列。届时博纯将继续为这些燃料电池车提供性能卓越的专利加湿器,为世界大学生运动会的顺利进行提供可靠的保障服务。 燃料电池场地车应用 博纯FC™ 系列燃料电池加湿器 目前,博纯加湿器已是燃料电池产业界公认地最好的加湿设备。在世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等应用中。需了解更多信息,请访问美国博纯官方网站:www.permapure.com.cn 或联系我们fxia@permapure.com。
  • 美国博纯燃料电池专利加湿器备战2011世界大学生运动会
    在2010年上海世博会和广州亚运会上,博纯燃料电池加湿器以稳定的专业表现通过了复杂天气及满负荷运载等多重考验。并因拥有比传统焓轮和喷水加湿系统更加高效、抗震,以及免维护等一系列优点赢得了用户的一致好评。今年8月即将在深圳举行的第26届世界大学生运动会上,60辆氢燃料电池场地车,2辆燃料电池大客车将加入新能源汽车示范运行行列。届时博纯将继续为这些燃料电池车提供性能卓越的专利加湿器,为世界大学生运动会的顺利进行提供可靠的保障服务。 燃料电池场地车应用 博纯fc?系列燃料电池加湿器 目前,博纯加湿器已是燃料电池产业界公认地优质的加湿设备。在世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等应用中。需了解更多信息,请访问美国博纯官方网站:www.permapure.com.cn。
  • 孩子误服火锅燃料中毒 全国网友帮找解毒剂
    有网友曝料,昨天下午4点左右,黄女士的儿子小宝(化名)因误服了家中的火锅液体燃料导致中毒,急需解毒剂甲吡挫而在网上求助。  黄女士表示,家人误把无色的火锅燃料液体当作水使用而使小宝误食。昨天下午5点左右,家人发现小宝头痛后,将其送到医院。经军事医学科学院附属307医院化验,小宝血液中检测到二乙二醇(浓度为1020ng/ml)和乙二醇(浓度为540ng/ml),急需解毒剂进行治疗。“知道这个消息后,很多朋友帮忙转发求药,今天我们接到了全国多地的帮助电话。”  黄女士称,经过洗胃、血液净化等治疗,小宝血液中的毒素含量已经降低。医院王医生表示,这种的病例十分少见。目前,小宝仍需在儿童重症监护室接受治疗。今天晚上8点左右,黄女士告诉记者,经朋友帮助,解毒剂将会在明早从日本空运至北京。
  • 科技部:继续加强氢能与燃料电池技术攻关
    p style=" text-indent: 2em " 针对这份《关于加快推动燃料电池商用车发展的建议》,答复文件明确,科技部将结合国家中长期科技发展规划研究和“十四五”国家重点研发计划重点专项凝练等工作,继续加强氢能与燃料电池技术攻关,加快关键核心技术取得实质性突破,提升燃料电池技术成熟度,为燃料电池商用车技术进步和产业发展提供强有力技术支撑。 /p p style=" text-indent: 2em " 不仅如此,目前,财政部正联合科技部等部门,通过“以奖代补”方式,重点在积极性高、经济条件和政策基础好、具备氢能和燃料电池汽车产业基础、有市场需求的地区进行燃料电池汽车示范推广。 /p p style=" text-indent: 2em " 值得关注的是,科技部高度重视燃料电池汽车技术研发。“十五”期间,科技部启动实施电动汽车重大科技专项,确立“三纵三横”(三纵:纯电动汽车、混合动力汽车、燃料电池汽车,三横:电池、电机、电控)研发布局,燃料电池汽车技术作为“三纵”之一得到重点研发部署,并在“十一五”到“十三五”期间持续进行科技攻关。 /p p style=" text-indent: 2em " “十三五”期间,科技部牵头组织实施国家重点研发计划“新能源汽车”和“可再生能源与氢能技术”两个重点专项,氢能和燃料电池技术持续得到重点部署。具体来说,“新能源汽车”重点专项在车用燃料电池技术方面启动项目13项,重点在燃料电池乘用车及商用车应用领域,对面向产业化的和未来前瞻性的关键核心技术进行了针对性研发部署,其中,重大共性关键技术项目主要由整车企业牵头,将极大带动燃料电池系统技术和产业快速发展。“可再生能源与氢能技术”重点专项已启动项目17项,重点在高效电解水制氢、先进制氢技术,高压储运氢、固态储运氢、加氢站及安全评价技术,燃料电池发电、长寿命电堆及关键组件、分布式热电联供系统技术,膜电极、空压机、循环泵、氢气纯化、催化剂技术加强研发部署。 /p p style=" text-indent: 2em " 答复文件指出,经过四个五年国家科技计划的组织实施,我国燃料电池从电堆、系统到关键部件技术研发均取得一系列关键突破,形成了涵盖制氢、储氢、氢安全及燃料电池及整车应用等技术的产学研用研发体系,培育了一批从事燃料电池及关键零部件研发生产的企业,以分布式能源领域、移动通信基站以及城市客运、物流等商用车型为先导开展了规模化示范运行,并以资本为纽带,带动广东、江苏、湖北等多地初步形成了产业集群,开展一定规模的示范应用。 /p p style=" text-indent: 2em " 在加强技术研发的同时,科技部积极推动燃料电池汽车示范运行考核工作。2008年北京奥运会投入燃料电池轿车作为马拉松先导车和燃料电池客车作为运动员收容车开始,燃料电池汽车示范运行拉开序幕。到2020年,在北京、上海、郑州、佛山、盐城等地开展累计百辆级的燃料电池客车、轿车、物流车商业化示范运行工作。  /p p br/ /p
  • 中国车用燃料电池的现状:几乎为空白
    p   前段时间,国务院总理李克强在日本丰田汽车北海道工厂参观考察了氢燃料电池车。这一举动,被解读为对氢燃料电池车产业释放出利好信号。 /p p   一个有些尴尬的现实是,国外的燃料电池车已实现量产,但我国车用燃料电池还处在技术验证阶段。南方科技大学机械与能源工程系教授王海江指出,我国车用燃料电池的现状是——几乎无部件生产商,无车用电堆生产公司,只有极少量商业运行燃料电池车。 /p p style=" text-align: center " strong   燃料电池是“一支队伍” /strong /p p   一般来说,单节燃料电池的电压偏低、电流偏大,在实际应用中需要由多节燃料电池串联形成电堆,以提升输出电压。 /p p   氢燃料电池的动力来源是氢气和氧气,两者会在燃料电池中开始它们的“奇幻”旅程:氢在阳极催化作用下氧化,生成质子和电子 电子经外电路做功,到达阴极 而质子通过质子交换膜从电池内部传输到阴极,质子与电子在阴极汇合并在催化作用下与氧反应生成水。 /p p   看起来似乎只是初中化学知识。但实际上,燃料电池的运作,是一个系统工程。 /p p   燃料电池不像普通蓄电池,反而更像发电机——把燃料和氧化剂“喝”进去,将电发出来。所以,除了电堆,燃料电池还有燃料供应子系统,氧化剂供应子系统,水热管理子系统以及热管理和控制系统……总之,人家是团队作战。 /p p   “燃料电池车是新能源车的一种,它是未来的发展方向之一。”中科院大连化物所燃料电池研究部部长邵志刚告诉科技日报记者,2014年年底,日本丰田公司宣布实现燃料电池车的商业化 而在国内,一切尚处于起步阶段。 /p p style=" text-align: center "   strong  关键材料还缺批量生产线 /strong /p p   车用燃料电池,一般为质子交换膜燃料电池。 /p p   它有两大关键部件,一个叫膜电极组件,一个叫双极板。前者其实是由“三兄弟”构成:质子交换膜、催化层和气体扩散层。 /p p   质子交换膜的主要功能是传输质子,分隔反应气体以及电子绝缘。它负责“把门”,把质子放过去,把电子拦下来 催化层主要搭载的是催化剂,催化剂可以促进氢、氧在电极上的氧化还原过程并产生电流 气体扩散层则由基底层和微孔层组成,它要求具有高导电性、导热性和疏水性。 /p p style=" text-align: center "   strong  这些关键材料,决定着燃料电池的寿命和性能。 /strong /p p   “巧妇难为无米之炊。我们的关键材料长期依赖国外,一旦国外禁售,我国的燃料电池产业便没有了材料基础支撑。”清华大学氢燃料电池实验室主任王诚说。 /p p   其实,这些材料我国并非完全没有,有些实验室成果甚至已达到国际水平。但是,没有批量生产线,燃料电池产业链依然梗阻。特别是在气体扩散层量产技术方面,我国还是空白。“这是因为气体扩散层的石墨化工序需要经过2000℃以上的高温才能制备,但关键设备高温炉技术还掌握在国外手中。”王诚解释。 /p p   要实现材料的批量生产,就得解决一致性和成本控制问题。它和实验室制备的难度不可同日而语。以催化剂为例,王诚告诉科技日报记者,目前商用的燃料电池催化剂仍是铂基催化剂,实验室制备水平一般为毫克级,量产技术需公斤级水平。批量生产要突破三项关键技术:一是反应条件的均一,确保批次稳定性 二是铂颗粒纳米尺寸控制,确保催化活性比表面积 三是提升碳载体的稳定性,达到车用工况下的使用寿命。 /p p   将实验室成果进行工业化放大是一项关键技术,需要企业介入。“长期以来,我国燃料电池的研发主要由高校和科研院所进行。企业持观望态度,参与得少,加入得晚。”邵志刚所在的大连化物所从1994年就开始开展车用燃料电池研究。但基础研究和应用之间的断裂,使得关键材料的工业化成为一道坎。 /p p style=" text-align: center " strong   要商业化,还得强链、补链 /strong /p p   王海江此番回国,就是想带着在燃料电池领域深耕多年的经验,和团队在深圳建成燃料电池产业链。 /p p   先有了南科燃料电池有限公司,主要做电堆关键部分生产、电堆集成和测试。但如果电堆原材料均需从国外进口,成本太高。于是,团队又成立了一家公司,主攻气体扩散层、质子交换膜和催化剂三种关键材料的国产化。“到时,燃料电池的成本能下降三分之一。”王海江说。 /p p   目前,我国电堆及产业链企业数量逐渐增长,预计2018年国内电堆产能将超过40万kW。“纯电动汽车近几年有很大进步,为燃料电池的应用创造了非常好的条件。”王诚表示,“此时,我们就更需要聚焦燃料电池内核创新。” /p p   要打破发达国家的长期技术垄断,就得加大对燃料电池核心材料产业化的投入。接受采访的专家均指出,燃料电池产业链“非常长”,涉及到氢能系统、燃料电池发电系统以及汽车等终端产品。“国内零部件、氢基础设施以及标准规范还不健全,需要强链、补链,带动新材料、新能源、汽车高端装备制造成长,才能促进燃料电池商业化提速。”王诚强调。 /p p br/ /p
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 日立应用|燃料电池的电镜观察
    燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。燃料电池的能量利用效率高,环境污染小,是最有发展前途的发电技术之一。燃料电池按照电解质的种类不同,可分为碱性燃料电池(AFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。按照燃料的类型可分为氢燃料电池,甲烷燃料电池,甲醇燃料电池,乙醇燃料电池。目前各类燃料电池电动车主要使用的是质子交换膜燃料电池(PEMFC)。质子交换膜燃料电池的结构和化学反应上图是PEMFC的结构和化学反应。PEMFC由膜电极(membrane-electrode assembly,MEA)和带气体流动通道的双极板组成。其核心部件膜电极是采用一片聚合物电解质膜和位于其两侧的两片电极热压而成,中间的固体电解质膜起到了离子传递和分割燃料和氧化剂的双重作用,而两侧的电极是燃料和氧化剂进行电化学反应的场所。PEMFC通常以全氟磺酸型质子交换膜为电解质,Pt/C或PtRu/C为电催化剂,氢或净化重整气为燃料,空气和纯氧为氧化剂,带有气体流动通道的石墨或表面改性金属板为双极板。膜电极(MEA)的截面SEM图片Sample: Courtesy of Prof. Takeo Yamaguchi, Tokyo Institute of Technology膜电极(Membrane Electrode Assembly ,MEA)是燃料电池的主要部分,它每层的结合情况以及颗粒的聚集状态会影响发电性能。MEA截面的结构观测非常重要。上图显示了一个聚合物膜样品在冷却时的横截面离子研磨后的结果,为减少离子束的热损伤使用了-100 ℃的条件进行加工。MEA横截面的整个图像显示各层接触时没有分层。在高倍放大时的阳极图像可以观察到纳米尺寸的铂粒子,碳粒子和其中的空隙。阴极层是纳米胶囊催化剂与铂铁纳米颗粒结合,从它的横截面可以看到,催化剂胶囊被紧密地包装在中空空间中。因此,离子研磨法可以在没有应力的情况下进行加工,能够通过冷却功能加工截面样品来减少热损伤,产生具有减少热损伤的横截面样品,进而可以有效的理解MEA的整体结构和分析催化剂颗粒的纳米结构。燃料电池催化电极材料高倍图像和三维重构结构from Prof. Chihiro Kaito, Ritsumeikan University上图左图是使用日立HT7830得到的燃料电池催化电极材料高倍图像,加速电压使用120kV,高分辨模式(HR mode),放大倍数为×50,000。C基底上的Pt颗粒的分散状态可以很清晰的看到。上图右图是同样的样品从+60°~-60°每2°拍照一次得到一系列图片后做三维重构后的结果,可以清楚的看到三维结构的Pt颗粒的分散情况。CNT和PTFE复合膜的SEM图像Sample:courtesy of Prof. Yoshinori SHOW Department of Electrical and Electronic Engineering,School of Engineering, Tokai University由于导电性和耐腐蚀性好,碳纳米管(CNT)和聚四氟乙烯(PTFE)复合膜有时会作为 MEA 的保护膜使用。CNT 在PTFE 中分散的均匀性非常重要,因为膜的导电性会受此影响。上图中,左图为0.2eV时观察CNT和PTFE的表面形貌,由于电压非常低,所以样品没有被电子束损伤。 右图为0.2eV时观察CNT和PTFE的电位衬度,CNT的亮度比PTFE明显要高,这是因为CNT的导电性更好。利用电位衬度就可以非常清晰的区分成分衬度相差不大的CNT和PTFE。燃料电池气体扩散层的电镜观察气体扩散层(Gas diffusion Layer,GDL)作为连接催化层和流动区域的桥梁,一般具有多孔性,导电性,疏水性,化学稳定性和可靠性。常用的支撑材料有碳纤维和聚四氟乙烯/碳膜组成的微孔层(MPL),目前碳纤维布附着MPL可以达到气体扩散层的要求。上图就是碳纤维布及附着MPL的SEM图片,可以观察到二者之间的紧密接触,各自空隙及厚度。高分辨观察自组装Fe3O4纳米颗粒Sample:courtesy of Electrical Computer Engineering department, National University of Singapore过渡金属基材料比如自组装Fe3O4纳米颗粒现在被作为储氢材料,这对氢能的利用来说是非常关键的。上图是高分辨观察自组装Fe3O4纳米颗粒,所用的着陆电压为1.5 kV,使用了电子束减速功能。纳米颗粒非常有规则的组装在一起,每个颗粒的直径约为12nm。利用电镜观察燃料电池各部分的形貌和结构,有助于高性能燃料电池的研发。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 2024年中国及31省市生物燃料行业政策汇总及解读(全)
    1、政策历程图我国生物燃料政策的发展历程呈现出从初步探索到逐步发展发展的过程。“十一五”规划中,鼓励燃料乙醇和生物柴油的生产 “十二五”规划提出加强下一代生物燃料技术的开发,新增生物燃气、生物制氢等生物能源支持政策 “十三五”规划强调低成本生物燃料的制备 “十四五”提出大力发展纤维素燃料乙醇等非粮生物燃料。2、国家层面生物燃料行业政策汇总及解读——国家层面生物燃料行业政策汇总随着环保意识的增强,政府鼓励使用清洁能源,减少对传统能源的依赖。生物燃料作为一种可再生能源,具有零排放和低碳特点,受到政府的高度重视。政府通过政策引导,推动生物燃料在交通运输、航空航天等领域的应用。——《关于组织开展生物柴油推广应用试点示范的通知》解读2023年11月,国家能源局发布《关于组织开展生物柴油推广应用试点示范的通知》。通知提出,通过组织开展生物柴油推广应用试点示范,拓展国内生物柴油的应用场景,探索建立可复制、可推广的政策体系、发展路径,逐步形成示范效应和规模效应,为继续扩大生物柴油等绿色液体燃料推广应用积累经验。政策扶持方面,将对符合条件的试点示范项目优先纳入制造业中长期贷款项目予以支持,并积极推进建立生物柴油碳减排方法学,推动将生物柴油纳入国家核证自愿减排量(CCER)机制,加快实现生物柴油的绿色价值。同时,国家能源局将会同有关部门,统筹现有资金,对符合条件的试点示范项目研究予以支持。——《国家能源局综合司关于公示生物柴油推广应用试点的通知》解读为贯彻新发展理念,推进废弃物循环利用,加快能源绿色低碳转型,拓展国内生物柴油的应用场景,探索建立可复制、可推广的发展路径、政策体系,逐步形成示范效应和规模效应,2024年3月,国家能源局综合司发布关于公示生物柴油推广应用试点的通知。试点名单显示此次共22个项目获批。——国家生物燃料行业发展目标解读《“十四五”可再生能源发展规划》提出要优化发展方式,大规模开发可再生能源,稳步推进生物质能多元化开发。在生物质能、生物质能清洁供暖、生物天然气、非粮生物质液体燃料等方面作出了发展规划目标。3、各省市层面的政策汇总及解读——重点省市生物燃料行业政策汇总《“十四五”生物经济发展规划》和《“十四五”可再生能源发展规划》指出,开展新型生物质能技术研发与培育,推动生物燃料与生物化工融合发展,建立生物质燃烧掺混标准。加快生物天然气、纤维素乙醇、藻类生物燃料等关键技术研发和设备制造。各省市也围绕《“十四五”生物经济发展规划》和《生物柴油产业发展政策》,纷纷出台地方生物燃料发展政策。——重点省市生物燃料行业发展目标解读“十四五”期间,我国主要省份也提出了生物燃料行业的发展目标,安徽明确统筹布局生物燃料乙醇项目,适度发展先进生物质液体燃料。到2025年,非化石能源占能源消费总量比重达到15.5%以上。贵州表示积极推动将废弃动物油和植物油作为生物柴油、工业级混合油的原料资源,鼓励和支持有关企业开展综合利用。其他省市也在鼓励发展生物柴油、餐厨废弃物资源化利用等方面做出规划:
  • 甲醇汽油国家标准亟待出台
    “我们将恪守职业道德,不做误导消费者或虚假不实的广告宣传 严格执行国家标准,不将未经时效检验,未经省级以上政府主管部门正式评审鉴定的产品及技术推入市场 不做假、不制假,绝不在醇醚燃料调配过程中超比例任意勾兑,不在添加剂中夹杂苯、酚等芳烃类物质。”这是醇醚燃料及醇醚清洁汽车专业委员会第二次会员代表大会近日向社会发出的庄严承诺,也是醇醚专委会140个会员企业的自律宣言。   据了解,近两年,石油价格的大幅上涨,拉大了甲醇与汽柴油价格的差距。即便在目前甲醇价格相对高位、石油价格相对低位的情况下,93#汽油的价格也比精甲醇高出3000元/吨,甲醇掺烧汽油的利润十分可观。虽然《M15甲醇汽油》国家标准尚未出台,但受利益驱使,各地加油站私自向汽油中掺加甲醇的现象十分普遍。   根据醇醚专委会通报的情况,2008年我国甲醇燃料替代汽油达300万吨。2009年上半年,全国用于车用燃料的甲醇已经达到300万吨,全年可能超过600万吨。由于低比例甲醇汽油无须改动发动机,只需添加一定的防溶胀、防腐蚀、防醇油相分层等助剂,就可将甲醇掺混于汽油中使用。而目前包括低比例甲醇汽油的掺混标准、调和标准、产品质量标准、储存与使用标准均未出台,致使甲醇汽油生产、使用环节十分混乱。在一些省区,使用含有苯、酚等有害物质的添加剂,随意向汽油中勾兑甲醇的事件时有发生,不仅损害了消费者权益,也严重影响了甲醇燃料的声誉,为甲醇燃料下一步在全国推广埋下了隐患,增加了阻力。   醇醚专委会名誉会长何光远、谭竹洲等告诫说,在人们对醇醚燃料的认识还未完全统一、醇醚燃料尚未获得全面推广的情况下,少数甲醇汽油添加剂生产企业和甲醇汽油生产销售企业,不讲诚信地向汽油中超量掺加甲醇,或者生产、销售、使用对人体和环境有害的添加剂,无异于“自毁长城”,最终将阻碍甲醇燃料的推广。因此,应加强行业自律,整顿市场秩序,为消费者提供安全可靠的产品,不断扩大甲醇汽油的消费群体和消费区域,最终实现大面积推广。   国家化工行业生产力促进中心副总工程师孙振苓在接受记者采访时表示:目前全国甲醇汽油添加剂生产厂家上百家,由于没有统一的标准,导致鱼龙混杂,消费者经常上当受骗。这种状况如果不能很快改变,别说《M15甲醇汽油》没有出台,就是出台了,消费者也会因产品真假难辨、质量良莠不齐而不敢问津。届时,即便有政策支持,恐怕也很难推广。   陕西延长中立新能源有限公司总经理唐琛向记者透露:延长中立公司目前正在建设7个累计150万吨/年M15低比例甲醇汽油调配中心,计划于今年6月底全部建成,为陕西省今年10月1日推广M15甲醇汽油提供质优量足的油品保证。   “为确保甲醇汽油质量,我们将采用优质的汽油原料和甲醇汽油添加剂,采用先进工艺技术,全流程封闭生产。同时严格登记产品的批次、流向,加贴防伪标识,防止不法分子假冒。”唐琛说。他同时建议:所有甲醇汽油生产企业应加强信息共享与沟通,做好产品防伪与追溯工作,不给不法分子假冒之机。   国务院参事石定寰、中国工程院院士倪维斗等专家则建议:在制定、审核、出台《M15甲醇汽油》标准的同时,应制定、审核、出台甲醇汽油添加剂、甲醇汽油生产、运输、储存、加注、使用等配套标准和规范,明确政府、醇醚燃料生产企业、甲醇汽油储存与销售企业的职责,严格市场监管,确保甲醇汽油的推广使用有法可依。必要时,可制定并提高甲醇汽油生产销售企业准入门槛,实行行业准入,将那些没有规模、没有实力、没有信誉的小企业拒之门外,促进醇醚燃料产业健康发展。
  • 美国研究人员利用纳米技术生产生物燃料
    美国路易斯安那理工大学日前发表新闻公报说,该大学研究人员在生产生物燃料工艺过程中采用纳米技术,从而大大节省了生产成本。   公报说,秸秆等农林废弃物作为生物燃料的原料具有巨大潜力,用它们生产的生物燃料被称为第二代生物燃料。但是将这些生物原料转化成可以燃烧的乙醇等需要多种酶对其中的纤维素进行分解,成本很高。路易斯安那理工大学从事化学工程研究的帕尔梅及其同事最近开发出一种纳米技术,能将参与反应的多种酶固定成几种酶,并且这些酶能重复使用多次,这大大降低了第二代生物质燃料的生产成本。这一技术可以被应用到大规模商业生产中。   第二代生物燃料包括利用秸秆、稻草等农林废弃物生产的燃料乙醇和生物柴油,它可以替代传统的汽油和柴油,能大大减少温室气体排放,同时避免了第一代生物燃料以玉米等粮食作物为原料,因此受到广泛青睐。
  • 科学家合成出可替代柴油的生物燃料
    据美国物理学家组织网近日报道,美国科学家们使用合成生物学方法,修改了大肠杆菌和一个酿酒酵母的菌株,制造出了没药烷的前体物没药烯。测试表明,对没药烯进行加氢反应生成的没药烷是一种“绿色”的生物燃料,有潜力替代D2柴油。研究发表在《自然通讯》杂志上。   “这是科学家们首次报告称没药烷可替代D2柴油,也是首次报告称可通过大肠杆菌和酿酒酵母生产出没药烷。”该研究的主要作者、美国能源部下属的联合生物能源研究所(JBEI)代谢工程(通过基因工程方法改变细胞的代谢途径)项目主管李淳太(音译)说。   与日俱增的燃料成本以及对燃烧化石燃料会加剧全球变暖趋势的担忧等,驱使科学家想尽一切办法寻找碳中和的可再生能源。从多年生牧草和其他非食品植物以及农业废物的纤维素生物质中提取出的液态生物燃料一直被认为有潜力替代汽油、柴油和航空煤油。   不过,现有占主流的生物燃料乙醇只能有限地用于汽油发动机中,而无法用于柴油机或航空喷气式发动机内 另外,乙醇也会腐蚀石油管道和油罐,人们急需可与现有发动机、运输和存储设备兼容的高级生物燃料。   联合生物能源研究所是美国能源部于2007年建立的三个生物能源研究中心之一,他们正在加紧研制从国家层面来讲性价比高的生物燃料。其中一个研究对象是拥有15个碳原子(柴油燃料一般有10到24个碳原子)的倍半萜烯。   该研究的合作者、联合生物能源研究所所长杰伊科斯林表示:“倍半萜烯的能源含量特别高,其物理化学性质也与柴油和航空燃油一样,尽管植物是其天然来源,但对细菌进行转基因修改是最方便且性价比最高的大规模制造高级生物燃料的方法。”   在此前的研究中,李淳太团队对大肠杆菌和酿酒酵母的一个新的甲羟戊酸途径(对生物合成至关重要的代谢反应)进行了基因修改,使这两个微生物过度生产出了化学物质尼基二磷酸(FPP),使用酶可将其合成为理想的萜烯。在最新研究中,李淳太和同事使用该甲羟戊酸途径制造出了没药烷(萜烯类化合物家族的一员)的前体物没药烯,并通过加氢反应制造出没药烷。   科学家们对没药烷进行的燃料性能方面的测试表明,其拥有作为生物燃料的潜能。李淳太说:“没药烷和D2柴油的性能几乎一样,但其有分叉的环式化学结构,这使其凝固点和浊点更低,作为生物燃料使用,这是一大优势。我们可设计一个甲羟戊酸途径来产生没药烯,该平台几乎与制造防蚊虫药物青蒿素的平台一样,我们唯一需要做的修改是引入一个烯萜类合成酶并对该途径进行进一步修改以提高大肠杆菌和酿酒酵母产生没药烯的数量。”   李淳太团队想将烯属烃还原酶编入大肠杆菌和酿酒酵母体内,以取代没药烯加氢反应的化学处理步骤,使所有化学反应都在微生物体内进行。他说:“这类用酶促进的加氢反应极具挑战性,也是我们的长期目标。我们也将研究使用生物质中提取出来的糖作为碳源生产没药烯的可行性。”
  • 2018年全球生物燃料消费将达5110亿升
    全球行业分析有限公司( GIA,Global Industry Analysts Inc. )近日发布了全球生物燃料(生物乙醇与生物柴油)的全球综合报告。报告称,到2018年,全球生物燃料消费量将达到5110亿升。由于化石燃料使用带来环境问题越来越受到重视,快速发展的生物燃料成为重要的替代能源。此外,化石燃料资源的有限性、完全依靠石油出口国的供应、能源价格日趋见涨以及其他的因素也促进了生物燃料的生产与消费。   全球一些国家的经济持续快速发展——尤其是发展中国家——也导致对可替代能源或燃料的需求,包括生物燃料。这就为在减少化石燃料依赖性的同时提高能源安全提供了机会。尽管目前生物燃料在总的能源中所占比例很小,但是它们有望在接下来几年中作为清洁可替代能源占据更为重要的地位。   由于生物燃料相比化石燃料的优越性,全球许多国家正在上马生物燃料项目。生物燃料研发和大规模生产目前正吸引着相当大的政府资助。一些国家也出台了相关的规章制度与政策,在交通运输部门指导和促进生物燃料的使用。
  • 欧盟出台最严格生物燃料标准
    欧盟能源专员欧廷格在布鲁塞尔宣布,将启动对生物柴油、生物乙醇等生物燃料的质量认证程序,对产自“敏感地区”的生物燃料进行更严格的控制,希望借此来拯救其饱受困扰的生物燃料政策。这些敏感地区包括森林、未完全干涸的泥炭地等。生物燃料公司不应将欧盟的现有规定理解为可以在牺牲这些敏感地区的条件下生产生物燃料。所有在欧盟生产或销往欧盟的生物燃料生产商都必须达到严格的环境标准。有媒体称,这是世界上最为严厉的生物燃料认证标准。 在此套标准之下,生物燃料生产商要想进入欧盟市场,就必须证明他们在生产过程中没有产生二氧化碳,也没有砍伐森林、破坏湿地。欧盟官员表示,这些新措施不会与国际贸易条例相违背,因为其法律效力对欧盟内、外的生物燃料生产商都是相同的。标准即时生效。   生产商们预测,欧盟将成立专门的认证管理体制,确保所有在欧盟销售的生物燃料的绿色性。同时,燃料生产过程将由独立机构进行监管,主要监督生产商在种植燃料作物时所使用的肥料量,以及在将燃料作物加工成燃料,以及运输过程中的碳排量。新规则规定,只有二氧化碳排放总量低于化石燃料至少35%的生物燃料才能获得认证,进入欧盟市场,同时得到政府的财政补助。一旦发现供应商提供的不真实信息,就将立即撤销其合格证书。2007年,欧盟27%的生物柴油,31%的生物乙醇依赖进口,主要的进口国为巴西和美国。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 低碳燃料标准制定全面启动
    低碳燃料标准制定全面启动  两项“低碳燃料”国标草稿 预计8月前报批   低碳燃料一般指与传统化石燃料(如柴油、汽油、航空煤油)相比,单位能量能源具有更低的碳强度(或者说温室气体排放强度),这种比较是建立在燃料生命周期评价的基础上。也就是说,燃料的碳强度应从能源原料的获取开始计算,包括开采(种植)、生产、运输以及最后汽车发动机燃烧,整个过程的温室气体排放都应包括在燃料碳度内,并不是只考虑汽车发动机的燃烧排放。而且,温室气体的排放可能因其中任何环节的改变而产生较大的变化,同一种燃料的碳强度是可以通过工艺改进、技术创新来降低的。从国内外研究成果来看,废弃油生物柴油、纤维素乙醇、可再生电力等具有更低的碳强度和减排潜力,被认为是低碳燃料。   那么,我国应如何实现交通燃料的低碳化呢?中国标准化研究院资源与环境标准化研究所的陈亮博士指出:“要摸清家底,开展交通燃料生命周期温室气体排放评价,首先要具备一套标准的评价方法学。”据悉,由中国标准化研究院、能源与交通创新中心、中粮集团等七家单位共同研究起草的两项“低碳燃料”国家标准。   其中,《交通燃料生命周期温室气体排放评价 原则和要求》已经完成了广泛征求意见稿并在广泛征求意见中 《交通燃料生命周期温室气体排放 报告与审核》处于标准起草阶段,有望于7月初完成标准征求意见稿。两项“低碳燃料”国家标准草稿计划于8月前报批国家标准化委员会。这两项国家标准不仅可以帮助企业评价交通燃料生命周期温室气体排放,也可以帮助各级政府决策部门根据评价结果制定相关的政策法规。   国家发改委相关人士表示,低碳燃料的研究工作能从定量角度对如何降低碳排放做了有益的探索,提出了思路。同时,还可以用科学的方法对当前的一些热点作出判断,不能说开发的产品是低碳的,就认定整个产业链就是低碳的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制