当前位置: 仪器信息网 > 行业主题 > >

超导材料

仪器信息网超导材料专题为您整合超导材料相关的最新文章,在超导材料专题,您不仅可以免费浏览超导材料的资讯, 同时您还可以浏览超导材料的相关资料、解决方案,参与社区超导材料话题讨论。

超导材料相关的论坛

  • 【前沿科技】临界高温超导材料具有金属特性

    科学网2007年6月8日讯 高温超导研究的一个终极目标就是要找到在常温下具有超导特性的材料。如果能够实现,人类将在多个领域广泛受益。最近,科学家又朝着这个目标迈进了一步。他们发现,临界高温超导材料具有类似金属的特性。这一成果有望加深科学家对于超导现象和整个超导理论的理解。相关论文发表在5月31日的《自然》杂志上。1911年,利用液氦的低温,科学在-269°C时发现了超导电性现象。具有超导特性的物体自身电阻为零,而且磁场不能穿过。不过,超导现象只能在极低的温度下发生,这大大限制了它在能量传输和医学成像等方面的应用。 1987年,研究人员得到了所谓的“高温超导材料”,它们的临界温度高于77K(-196°C)。这与常温相比还是很低的,到目前为止,高温超导材料的临界温度纪录是138K(-135°C)。高温超导材料的发现大大激发了科学家进一步寻找常温超导材料的热情,不过,由于受一些基础性问题的困扰,相关研究屡屡受挫,其中很重要的一个问题就是超导材料中的电子运动。 在最新的研究中,来自法国国家科学研究中心(CNRS)脉冲磁场国家实验室(National Laboratory for Pulsed Magnetic Fields)的研究人员与加拿大Sherbrooke大学的科学家一道,观测到了临界高温超导体的“量子振动”。他们在极低的温度下(1.5K—4.2K),将实验样品置于62特斯拉(地磁场强度的100万倍)的超强磁场之中,结果发现,磁场破坏了样品的超导状态,而恢复到常态的样本由于受磁场的影响,表现出了电阻的振动。鉴于这种振动正是金属的特性,研究人员认为,他们所研究的临界高温超导样品中电子的运动方式与一般金属类似。 研究人员为了这个结论,足足等了20年。它无疑将加深人们对于临界高温超导电性的认识,此外,新的发现也有助于一些超导理论脱颖而出,为构建新的理论打下坚实的基础。

  • 物理所铜氧化物材料超导能隙和赝能隙性质研究取得进展

    铜氧化物材料中的超导电性自1986年发现以来,其超导机制就一直是人们关心的中心问题。这类材料的一个普遍特性是在超导转变温度TC以上很宽的温度范围内有赝能隙及费米弧的存在,而对这些现象的正确理解是寻找超导配对机理的重要方面。目前通过角分辩光电子谱(ARPES)和扫描隧道显微镜(STM)等重要的谱学手段得到的对赝能隙与超导能隙的认识尚不一致,主要存在着两种不同的观点:一是单能隙或预配对观点,即赝能隙起源于超导预配对,另一则是两能隙观点,即赝能隙的起源与超导电性无关。 对于经典BCS超导体的研究,Giaever的平面型隧道结曾发挥了重要作用。通过隧道谱,人们可以方便地确定超导能隙、电子态密度、准粒子寿命以及导致配对的电声相互作用(有效声子谱)等重要参数。Bi2Sr2CaCu2O8+δ本征约瑟夫森结是目前质量最好的铜氧化物材料的平面型隧道结,此类结是以晶体内的CuO2双层作为电极、BiO/SrO作为隧道势垒层所形成(见图一中的插图),因此可以避免所有外在的实验不确定因素,提供各种稳定、重复的温度依赖的测量,但早期利用此类隧道结进行的研究受到了自热效应的影响,以致测量的本征隧道谱出现严重的变形。 最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)赵士平研究组和王楠林研究组、顾长志研究组合作,优化了Bi2Sr2CaCu2O8+δ本征约瑟夫森结表面层的接触并将结的面积减小到深亚微米尺度,从而成功解决了自热效应,获得了多种掺杂的Bi2Sr2CaCu2O8+δ材料在全温区的本征隧道谱(图一)。采用隧道实验中常用的处理方法对这些隧道谱的分析发现,在T* 温度赝能隙出现后,随着温度的降低,超导能隙会在某个温度Tc0开始打开,其中Tc0明显高于超导转变温度Tc,而超导能隙随温度的变化与d-波BCS能隙规律完全符合。这些结果也得到了零压电导随温度的变化规律的证实。分析给出了超导态与赝隙态的基本参数(图二),同时表明在动量空间赝能隙主导反节点区域,而超导能隙主导节点区域。随着温度下降到Tc0,超导配对首先出现在节点附近的费米弧上,到了Tc以下,超导配对由节点区逐渐扩展到反节点区,最后在远远低于Tc时形成全费米面的d波超导能隙。计算也得到了超导相由于准粒子和库柏对的有限寿命所导致的费米弧,其中弧长对温度显示了常见的线性依赖关系。 这些结果为高Tc超导电性的探索提供了新的实验事实 【详见Sci. Rep. 2, 248(2012)】。 上述研究得到国家自然科学基金委、科技部和中国科学院相关项目的资助。http://www.cas.cn/ky/kyjz/201205/W020120517361959073689.png图一、不同掺杂的Bi2Sr2CaCu2O8+δ超导体的本征电子隧道谱,插图为晶体内部隧道结的形成情况。http://www.cas.cn/ky/kyjz/201205/W020120517361959086333.png图二、超导和赝隙态的(a)特征温度和(b)能隙随掺杂的变化,插图为2Δs/kTc0值。http://www.cas.cn/images/fj.gifEnergy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors

  • 美国证实磁性和超导性可共处 有望研制出新材料

    据美国物理学家组织网9月6日(北京时间)报道,美国科学家将两块不具有磁性的绝缘体粘合在一起,结果发现,它们相遇的接口层既有磁性又有超导性。这一结果令人吃惊,因为在正常情况下,磁性和超导性无法共存,科学家有望据此研制出新奇的电子材料。研究论文发表在9月5日出版的《自然-物理学》杂志上。  斯坦福材料和能源科学研究所(SIMES)、美国能源部下属的斯坦福直线加速器中心和斯坦福大学的科学家携手进行了这项研究。该论文的第一作者、SIMES的研究生朱丽·伯特和同事与来自日本东京大学的应用物理学家哈罗德·黄一起,将一薄层铝酸镧放置在一个钛酸锶基座上,结果发现,这两种复合氧化物相遇的原子层变得具有磁性,同时在接近绝对零度的温度下,电流能毫无电阻地流过该处,这表明,该原子层也具有超导性。

  • 超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    [size=16px][color=#990000][b]摘要:根据近期LK-99超导材料研究报道,我们分析此材料制备采用了真空烧结工艺。由于目前大部分复现研究所用的真空烧结技术和设备都非常简陋,使得LK-99的复现性很差。为此我们提出了真空度准确控制解决方案,其目的第一是实现烧结初期真空度线性控制避免粉体材料出现扬尘以及烧结过程中的真空度稳定,第二是多通道进气的控制以实现烧结结束前的快速冷却和提供不同的烧结气氛,第三是为后续致密化和大尺寸制备提供支撑。[/b][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]1. 背景介绍[/b][/color][/size][size=16px] 随着近期韩国科学家提出LK-99超导材料可在常压室温下出现超导现象,国内外对此作出了积极的响应,广泛开展了制备LK-99材料和超导现象复现的工作,但绝大多数都以失败告终。通过对各种报道的分析,我们发现LK-99材料的制备过程中存在以下两方面的工艺特点:[/size][size=16px] (1)根据韩国科学家的报道,他们在超导材料制备中采用了固态合成工艺(synthesized using the solid-state method),且工艺条件为10-3Pa的高真空和接近一千度的高温环境,制备出的LK-99材料为晶体结构。由此可见,高真空和高温是制备过程的必要条件,此制备工艺与真空烧结工艺非常相似,那么很多在常压高温炉里制备出的材料自然无法复现LK-99超导现象。[/size][size=16px] (2)在韩国科学家的最新报道中给出了更详细的LK-99材料制备细节,要求在材料制备的最后阶段需打破高温炉石英管放入氧气,摇动样品使氧气能与硫更充分结合,减少或者清除硫杂质,同时提高氧元素占比,更有利于材料晶体的稳定性。尽管打破石英管(也有报道提到是石英管偶然出现裂纹)显着烧结设备十分简陋甚至不专业,但这更加突显出整个烧结过程是一个标准的真空烧结工艺,最后阶段加入氧气除了清除杂质作用外,更是一个真空烧结工艺中必须的快速冷却工序。[/size][size=16px] 根据上述所报道的制备工艺,可以大致分析出LK-99超导材料制备是真空烧结工艺,整个烧结工艺中除了温度之外,关键是对真空度和气氛的控制,这在后续致密化和大尺寸LK-99超导材料制备中尤为重要。为此,有客户针对LK-99超导材料的复现制备,明确提出了真空烧结炉升级改造的技术指标,具体内容如下:[/size][size=16px] (1)真空度控制范围:5×10-4Pa~0.1MPa。[/size][size=16px] (2)进气通道:4路。[/size][size=16px] (3)控制方式:5×10-4Pa~1kPa范围定点控制,1kPa~0.1MPa程序控制。[/size][size=16px] (4)控制精度:采用电容真空计时为±1%,采用皮拉尼计时为±20%。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 针对上述客户提出的LK-99超导材料真空烧结炉技术指标,本文提出的解决方案基于动态平衡法实现全量程的真空度准确控制,整个真空度控制系统结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=LK-99超导材料真空烧结炉真空度控制系统结构示意图,650,265]https://ng1.17img.cn/bbsfiles/images/2023/08/202308091718134629_330_3221506_3.jpg!w690x282.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 用于LK-99超导材料的真空烧结炉真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 图1所示的真空度控制系统主要由四部分组成:进气混气装置、真空泵排气装置、真空度测量装置、低真空进气调节装置和高真空进气调节装置,详细说明如下:[/size][size=16px] (1)在进气混气装置中,布置了四路进气通道,每路气体由气体质量流量控制器(图1中并未绘出)进行控制并形成设计配比,具有一定配比的混合气体进入混气罐后成为工作气体,使烧结炉内在此气氛环境下对材料进行烧结。[/size][size=16px] (2)在真空泵排气装置中,配置了干泵和分子泵,为管式真空烧结炉提供不同的真空源。[/size][size=16px] (3)在真空度测量装置中,配备电容规和皮拉尼计以满足不同真空度范围的测量,在低真空区间采用电容规,在高真空区间采用皮拉尼计。如果对真空度控制精度要求不高,可仅采用一只皮拉尼计来覆盖整个真空度范围的测量。 [/size][size=16px] (4)在低真空进气调节装置中,包含了手动减压阀、电动针阀、低真空度控制器和电动球阀。手动减压阀是将进气控制在一个较低的压力水平上避免进气流量波动的影响。低真空控制器根据电容真空计(或皮拉尼计)采集信号,分别调节电动针阀和电动球阀的开度来实现真空度的定点控制和程序控制。在低真空(如1kPa~101kPa)范围内必须进行真空度的程序控制,必须使烧结炉内的气压线性缓慢减小,以避免LK-99超导材料在烧结初期由于气压突变产生粉末扬尘现象,在气压低于1kPa后,可以采用定点控制方式。[/size][size=16px] (5)在高真空进气调节装置中,包含了压力调节器、微流量阀、电动针阀和高真空度控制器。在进行高真空度控制时,电动球阀和排气装置需要全部开启,仅靠调节进气端的微小流量变化来实现高真空度控制。在微小流量的调节过程中,高真空控制器根据真空计采集信号和设定值之差,驱动压力调节器和电动针阀进行压力和流量变化,最终与排气流量达到平衡而达到恒定。[/size][size=16px] 在烧结炉真空度控制中,还存在相应的温度控制以及材料放气等因素,这些都会影响真空度的控制精度和稳定性。因此在本文的解决方案中,相关部件的配置需要具有以下特性:[/size][size=16px] (1)在真空度测量过程中,皮拉尼计输出的电信号与真空度呈指数关系,因此为了准确进行高真空度的测量和控制,高真空度控制器必须具有输入信号分段线性化处理功能。[/size][size=16px] (2)真空度控制系统中的所有阀门和调节器,都必须具有较快的响应速度,所配的电动针阀、电动球阀以及压力调节器,都具有一秒以内的开闭调节速度。较快的响应速度,一方面是为了实现真空度的准确控制,避免温度波动等其他因素对控制稳定性的影响,另一方面主要是可以实现烧结炉的快速充气,以对LK-99超导材料进行快速冷却。[/size][size=16px] (3)真空度控制器需具有PID自整定功能和通讯接口,并配置有计算机软件,通过计算机可直接对控制器参数进行设置和驱动控制器执行真空度控制过程,可使真空控制系统很快与现有的真空烧结炉对接并开始烧结试验,无需进行复杂的控制程序编写,更是消除了控制器按键上繁复的手动操作。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过本解决方案的真空度控制系统,可在全量程范围内实现真空度的准确控制,整个解决方案表现出以下特点:[/size][size=16px] (1)真空度的准确控制,保证了烧结过程中环境条件的稳定性和重复性,避免了真空环境变化对材料烧结的影响。[/size][size=16px] (2)烧结超期的真空度程序控制,避免了粉体材料在气压突变时带来的扬尘现象,有效保证了烧结材料整体质量等相关性能的稳定性。[/size][size=16px] (3)多通道进气气体的配比控制和混合功能,结合相应的真空度控制,为超导材料烧结工艺的进一步探索提供了便利条件。[/size][size=16px] 总之,通过本解决方案,可使LK-99超导材料的制备工艺水平得到保证和提高,并为后续致密化和大尺寸LK-99超导材料的指标提供了工艺保障。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 疑似石墨室温超导性发现:或颠覆现有超导技术

    2012年10月02日 08:59 新浪科技 http://i2.sinaimg.cn/IT/2012/1002/U5385P2DT20121002084835.jpg  悬浮中的超导体:物理学家们对于超低温超导,即所谓“标准超导”背后的原理已经基本搞清,但是对于“高温超导”领域,比如室温环境下如何实现超导的原理仍然知之甚少  新浪科技讯 北京时间10月2日消息,最近科学家们在室温超导研究方面取得了一项发现,这一结果如果得到证实,将大大加快无损远距离输电和磁悬浮列车的研制的进程。  尽管物理学家们已经搞清楚了在超低温超导,即所谓“标准超导”,比如零下275摄氏度低温环境下实现超导背后的原理,在“高温超导”领域,比如在高出绝对零度140度的环境下如何实现超导的原理仍然知之甚少。研究人员们仍然不清楚为何这些“温暖”的物质可以实现零电阻导电,科学家们也无法知道在相对高温的环境下,如室温环境下物质是否可以实现超导。而这正是此次的这项发现所要解答的。  根据一份发表在《先进材料》杂志上的文章,价格便宜且容易获取的石墨粉似乎显示出超导特性的信号。并且这一切并不需要价格昂贵的低温冷却设备——让石墨粉显示超导性所需的材料仅仅是一盆水即可。  德国来比锡大学的帕布罗·艾斯奎纳兹(Pablo Esquinazi)和其它物理学家最先于2012年发表在arXiv网站上的一篇文章中探讨了石墨的超导性。这些石墨材料中的一部分表现出约瑟夫逊效应,也就是在隔绝两块超导体之间的障碍中形成电子隧道的现象。这一效应说明这些石墨样本中包含具有超导特性的区域。  艾斯奎纳兹表示:“基于这项工作,以及在过去3年间我们所做的工作,我们坚信这其中蕴藏着超导区域的可能性是存在的。”为了验证这种想法,研究人员用水处理石墨粉:他们将其与水混合23小时,将其取出过滤,并在100摄氏度环境中干燥。随后他们将这一经过水处理的石墨粉样本在改变的磁场环境中进行实验,观察其反应。  石墨和其它一些材料在此之前便代表着室温超导研究的希望。在过去也曾有一些文章报告在经过硫或氧处理后的石墨粉中检测到微弱的,间接的超导信号。但是没有任何人,包括报告这些现象的科学家们,没有任何人能够真正制造出一个室温环境下的超导体——一种符合教科书定义的真正的超导体——可以实现零电阻导电的特性。  然而超导体还有其它一些特征:一种材料。当其温度低于某一阈值,并经历某种相变时一般就会显示出超导性。而约瑟夫逊效应也是超导性的另一种信号,除此之外还有麦士纳效应,一般也被称为“反磁性”。当暴露于外部磁场中时,超导体会会推开这一磁场,从而阻止该磁场通过材料体内部。而超导体内部的磁场会比外部磁场更弱一些。这一特性让超导体得以悬浮半空,同时在外部磁场中形成可探测到的变化,同时也提供了一种对于超导性的可探测性信号。  物理学家们此次正是利用了这一特点:他们将经过处理的石墨粉置于变化中的外部磁场,并测量其反磁性特征。结果显示样本的一小部分确实显示出超导性特征,但是这样的比例非常小,大约仅占0.01%。  这样的比例可是一点都不让人感到振奋。艾斯奎纳兹表示:“这样的量实在太少了,这让我们很难进行进一步的研究。然而这一实验中给出了这样一种理念,那就是任何材料都可能在室温下实现超导,尤其是那些便宜而又容易获取的材料,如石墨和水。这一点具有重要意义。”  加州大学圣迭戈分校物理学家伊凡·舒尔(Ivan Schuller)表示:“如果你能制造出一种零电阻材料,而且这种材料的原料非常容易获取,制造出来之后也不需要将其用液氮冷却。超导材料可以改变能量的传导量,将列车悬浮半空,还有其它很多很多事情。”它们迅速且高效的导电能力将让远距离无损输电甚至手持式电子设备从中受益。但是很难想象超导体被应用于电网结构之中,因为当下的超导技术还需要在低温下进行,而电网或是你的电脑是不太可能经常浸泡在液氮之中的。而如果石墨粉这样一种便宜而容易获得的材料果真能在室温下实现超导,那么这将彻底革新我们的现有技术。  舒尔表示:“可以说,这一发现一旦证实,就将是一项重大发现。但问题就在于这究竟是不是真实的。这一点首先需要进行科学的判定。”舒尔认为由于这项发现意义重大,因此它更加需要更多的证据。研究人员目前还尚未能展示出这些样本具备了零电阻的特性,转变温度,甚至是约瑟夫逊效应。这些石墨粉样本所展示出的目前还仅仅是轻微的反磁性而已。  舒尔表示:“这一现象必须在同样的样本中被重现,然后是从实验室的不同样本之间进行验证,再然后是在不同的实验室中进行验证。科学家们必须相互讨论和争论,以便最终确认这究竟是否真实。这就是科学运作的方式。如此一来,或许会有人得出正确的结论。”  著名物理学家,美国斯坦福大学荣誉退休教授特雷多·加布雷尔(Theodore Geballe)同意这样的说法,即:当涉及室温超导问题时,仍然存在诸多的不确定性,仍然有很多工作需要去完成。尽管此次石墨粉材料表现出了初步的超导特性,他的意见是“在它们被证实之前,需要进行确认工作。我希望在本次报告之后就会有所突破,但是我对此一点都不感到乐观。”  事实上,研究人员自己也认为石墨粉室温超导材料的研究还需要更多的证据才能得出结论。艾斯奎纳兹表示:“其它人必须进行相类似的实验并最终证明这一超导现象是确实存在的。这是一项非常精细的实验,信号非常微弱。”在此之后,他本人的研究小组将致力于增加石墨材料中具有超导属性的部分所占比重,并以此实现对其属性性质的分析。他说:“这样一来,如果这些超导材料的性质在室温下表现的足够好,足够稳定,这将是一场革命。我们真的只是刚刚起步。”(晨风)

  • 【分享】自主研发出百米级高温超导带材

    【分享】自主研发出百米级高温超导带材

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104071758_287623_2185349_3.jpg上海交通大学1月23日宣布,物理系李贻杰教授领导的科研团队历时3年,采用独特的技术路线,成功研发了一整套具有我国自主知识产权的百米级第二代高温超导带材,实现了国内超导带材领域的新突破。国产百米级第二代高温超导带材像一层薄膜,金属基带的宽度为1厘米、厚度为80 微米,而用于传输超导电流的稀土氧化物超导层的厚度还不到1微米。与传统的铜导线相比,相同横截面积超导带材的载流能力是铜导线的几百倍。

  • 【分享】我国成功自主研发百米级第二代高温超导带材

    上海交通大学23日宣布,物理系李贻杰教授领导的科研团队历时3年,采用独特的技术路线,成功研发一整套具有我国自主知识产权的百米级第二代高温超导带材,实现了国内超导带材领域的新突破。  国产百米级第二代高温超导带材像一层薄膜,金属基带的宽度为1厘米、厚度为80微米,而用于传输超导电流的稀土氧化物超导层的厚度还不到1微米。与传统的铜导线相比,相同横截面积超导带材的载流能力是铜导线的几百倍。

  • 室温超导离我们还有多远

    在极端高压下变成金属态的氢元素极可能是室温超导体2013年08月08日 来源: 科技日报 作者: 罗会仟http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130807/051375868865125_change_wtt3837_b.jpg图为超导悬浮滑板http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130807/051375868865125_change_wtt3836_b.jpg生活中处处都是超导材料,如铝、钙、锡、铅等,一些非金属材料在高压下也是超导体,如硅、硫、磷等。 科幻电影《阿凡达》不仅仅给我们带来了3D的震撼视觉享受,也为我们构想出了一个奇幻美丽的潘多拉世界。其中最令人难忘的场景莫过于一座座悬浮在云端的哈利路亚山,山上爬满粗壮的藤蔓,还有壁挂飞天的瀑布和神秘的大鸟,神奇的哈利路亚悬浮山还时常在空中发生移动! 究竟是什么神秘的力量能够悬空“托起”这一座座大山呢?电影中解释道,是因为山中蕴藏着一种叫做“Unobtanium”的神奇室温超导矿石,它借助母树附近的强大磁场悬托起了哈利路亚山。为了掠夺这种奇珍异宝,疯狂的人类甚至不惜一切代价欲摧毁那威人的家园。 那么,什么是超导材料?它为何有如此强大的磁悬浮力量?我们现实中的地球是否存在室温超导体呢? 超导的力量 一块超导板甚至可以悬浮起相扑选手 超导,顾名思义就是超级导电的意思。超导材料具有许多独特的电、磁、热等物理特性,其中最典型的就是当降到足够低温度(该温度点称作超导临界温度)的时候,超导材料的电阻会突然变为零,假如在超导环中诱导出电流的话,电流将永久环流而几乎不衰减,而且也不会有任何发热现象。如果将超导体置于磁场环境下,超导感应电流的存在将使超导体内自动形成一个如“金钟罩”、“铁布衫”一样的屏蔽磁场,这有效抵消了外界磁场,导致超导体内磁场为零。这便是超导体的另一种特性——完全抗磁性。 超导体对外磁场的“抗拒”会产生作用力,同时磁场对超导体也存在反作用力,而且越靠近磁体,该作用力增加得越多,因此将超导体置于磁场上方的合适高度就可以达到抗磁力与重力的平衡,从而把超导体悬浮在空中——这就是超导磁悬浮的原理。尽管悬浮现象在生活中比比皆是,但来自完全抗磁性的超导磁悬浮无疑是最强的悬浮力量之一,一块见方大小的超导板甚至可以悬浮起重量级的相扑选手。 超导的条件 临界温度“低得可怜” 超导材料具有如此奇特的物理性质,它们很罕见吗?其实生活中处处都是超导材料,因为元素周期表中的大部分单质金属元素都是超导体,如铝、钙、锡、铅等,一些非金属材料在高压下也是超导体,如硅、硫、磷等。可是生活中却很少用到它们的超导特性,关键问题在于要实现超导,就必须将温度降到超导临界温度之下。遗憾的是,金属单质和合金超导体的临界温度都低得可怜。 例如1911年发现的第一个超导体——金属汞的临界温度在4K(热力学温标,相当于-269℃)左右,可以说它已经接近宇宙中的最低温度——绝对零度0K(-273℃),直到1986年以前,科学家发现的最高临界温度的超导体是Nb3Ge(中文名铌三锗),也仅为23K(-250℃)。要达到如此低的温度,用空调、冰箱来制冷是绝对不行的,它们顶多到-100℃左右,这需要依赖昂贵的液氦来制冷,就算在科研实验中也存在诸多局限,更何况大规模应用到生活中。 一个预言曾让高温超导研究陷入迷茫 超导体的零电阻和抗磁性让人们对其应用充满渴望,因为它将大大节约电力传输和使用过程中的损耗、可以提供持续稳定的强磁场、实现安全快捷的高速磁悬浮运输等等。因此,寻找到更高超导临界温度的超导体,乃至室温(300K或25℃左右)下的超导材料,势必将对人类未来的生活带来翻天覆地的革新。 1957年,物理学家巴丁、库伯和施里弗成功建立理论解释了传统金属单质和合金中的超导现象。他们认为:实现超导的关键在于低温下材料中的电子会“两两牵手配对”并且所有电子对能够和谐一致地运动,从而相互抵消了各自运动过程的能量损耗而实现超级导电的目的。据此理论,人们预言超导临界温度将不可能超越40 K(-233℃),这个预言曾经一度让寻找更高临界温度的超导体之路陷入迷茫。 超导的希望 高温超导家族正在壮大 然而实验物理学家并没有放弃对更高转变温度超导体的探索。功夫不负有心人,1986年,IBM的工程师柏诺兹和穆勒在La-Ba-Cu-O陶瓷材料中发现了35K(-238℃)的超导电性。随后,华人科学家朱经武、吴茂坤以及中国科学家赵忠贤等人发现了具有93K(-180℃)超导的Y-Ba-Cu-O体系。最终,这类铜氧化物超导体最高临界温度提高到了165K(-108℃)附近,从而被称为高温超导体(这里的高温,只是相对常规金属超导体的低超导临界温度而言的)。 高温超导体的临界温度迈入了液氮温区,大大降低的研究和应用成本。然而,高临界温度只是超导应用中的重要指标之一,为大规模应用,超导材料还需要具有良好的可塑性和承载大电流的本领等,为寻找到更多更适合应用的超导材料,科学家加快了超导探索的脚步,陆续发现了许多超导新家族。例如:2001年,日本科学家发现临界温度高达39K的MgB2超导体;2008年,日、中、美、德等多国科学家在铁砷族化合物中发现55K以上的超导电性,这类超导体被称为铁基超导体,是个极其庞大的家族。 氢元素被“寄予厚望” 如今,超导体的种类已经覆盖各种金属、合金、非金属化合物、氧化物,乃至有机物等多种物质形态,似乎暗示“条条大路通超导”。随着诸多新超导体的不断涌现,超导研究领域高潮迭起,人类对超导的不断深入认识也极大地推进了现代基础物理的前沿研究,人们对室温超导体的发现更加充满期待和厚望。 从理论上,已经预言在极端高压下的氢元素将变成金属态,它就极可能是室温超导体。从实验上,人们在各种化学形态物质开展深入探索和研究,已经在寻找更高临界温度超导体积累了丰富的经验。 相信在不久的将来,只要我们不断努力前行,现实中的哈利路亚山——室温超导体也许不再是梦想。到那时,你或许可以用超导磁悬浮技术在云彩之中练瑜伽或在悬空的“白云”沙发上酣睡,那是何等地惬意和美妙!(文·罗会仟) (作者系中科院物理研究所理学博士,中科院物理研究所副研究员,主要从事高温超导体的中子散射研究。本文转自蝌蚪五线谱网站) 《科技日报》(2013-8-8 五版)

  • 透明胶带在半导体内诱发出高温超导现象

    中国科技网讯 据物理学家组织网9月12日(北京时间)报道,由多伦多大学物理学家领导的国际研究小组利用透明胶带首次在半导体内诱发出了高温超导现象。这一方法为研制可用于量子计算机和提升能效的新型设备铺平了道路。相关论文发表在9月11日出版的《自然—通讯》杂志上。 高温超导是一种物理现象,通常指一些具有比其他超导物质更高临界温度的物质在液氮环境下产生的超导现象。而高温超导体是指无需加热就能够在液氮温度下导电且不会损失能量的材料,其通常也指在液氮温度以上超导的材料。它们目前被用于低损耗输电,并可作为量子计算机等下一代设备的基础构件。 人们在1911年发现超导体的时候,就被其奇特的性质,即零电阻、反磁性和量子隧道效应所吸引。但在此后长达75年的时间内,所有已发现的超导体都只能在极低的温度下才显示超导。另外,只有特定的铁化合物和铜氧化物才显示出高温超导特性,但铜氧化物却具有完全不同的结构以及复杂的化学组成,使其无法与一般的半导体相结合,因此这种化合物的实际应用也深受限制,而探索它们所能产生的新效应也变得尤为重要。例如,观察材料的邻近效应,即一种材料中的超导性会引发其他邻近的普通半导体也能产生超导现象。由于基本的量子力学要求两种材料要进行近乎完美的接触,因此上述情况很难发生。 研究小组负责人、该校的物理学家肯尼斯·博奇谈道:“通常情况下,半导体和超导体之间的交界面材料需经过复杂的生长过程才能形成,制造的工具也要比人的头发更为精细。而这个界面正是此次试验中透明胶带的附着地。”研究团队使用了透明胶带和玻璃载片来放置高温超导体,使其接近一种特殊类型的半导体——拓扑绝缘体。拓扑绝缘体能像大部分的半导体一样,其表面十分具有金属质感,允许电荷移动。这是因为在拓扑绝缘体的内部,电子能带结构和常规的绝缘体相似,其费米能级位于导带和价带之间。而在拓扑绝缘体的表面存在一些特殊的量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。因此也在这种新奇的半导体内首次诱发了高温超导现象。(记者 张巍巍) 总编辑圈点: 透明胶带和高温超导,这两个看似风牛马不相及的东西,却神奇地联系到了一起,让我们不得不惊叹科学家的非凡想像力。超导技术作为21世纪的宠儿,其发展、应用和普及将在世界能源方面发挥不朽的作用,将为世界免去大量不必要的边缘耗散。如果这些能量被合理利用,对人类的发展不可谓不大。超导材料的普及必将是一场材料大革命,其意义并不会亚于其他科技革命。而文中所述的研究发现,或将超导材料的应用普及引入“快车道”。 《科技日报》(2012-9-13 一版)

  • 美首次观察到超导体中重电子形成过程 有助于解释物质为何具有超导性

    2012年06月29日 来源: 中国科技网 作者: 常丽君 本报讯在 某些超导体中,运动电子的性质极为奇特。它们好像比真空中的自由电子重1000倍,但同时电子运动却是毫无阻力的。据物理学家组织网近日报道,美国普林斯顿大学领导的一项最新研究显示,产生这种现象是由于“量子纠缠”的过程,该过程决定了晶体中运动电子的质量。这一发现有助于人们理解超导性的成因,并有望在提高电网效率、加快计算速度等方面获得应用。相关论文发表在近日出版的《自然》杂志上。 将电子冷却到超低温形成某种固体物质时,这些极轻的粒子就会增加质量,好像变成了重粒。把它们冷却到接近绝对零度时,这种固体就有了超导性。其中的电子尽管很重,却能毫无阻力地流动,不会浪费任何电能。 研究小组还包括洛斯阿拉莫斯国家实验室(LANL)和加州大学欧文分校的科学家,他们利用专门设计的低温扫描隧道显微镜(STM)拍摄晶体中的电子波。晶体经过了处理,表面包含一些原子瑕疵。他们将温度降低到实验需要,观察到了电子波纹,这些波纹围绕着瑕疵之处扩散开来,就像在池塘里投入石头散开的涟漪。 “这是首次获得重电子形成的精确画面。在降低温度时,我们看到晶体中的运动电子演变成了更重的粒子。”领导该研究的普林斯顿大学物理学教授阿里·雅兹达尼说。他们通过直接拍摄的电子波图像,不仅看到了电子质量是怎样增加的,还看到了重电子是由两个纠缠电子构成的复合体。 他们还把实验观察和理论计算数据进行了对比,解释了电子为何会出现这种性质。由于量子纠缠,电子糅合两种截然相反的行为。在晶体中,重电子产生于两个行为相反的电子的纠缠,其中一个被困住绕着一个原子,而另一个在各个原子之间自由地跳跃。 研究人员解释说,量子力学原理控制着微小粒子的行为,形成了量子纠缠,这一过程决定了晶体中运动电子的质量。轻微调整这种纠缠,就能极大地改变材料的性质。而纠缠度是决定重电子形成和进一步冷却时行为表现的关键。调整晶体的成分或结构,就能调整纠缠度和电子重量。如果让电子太重,它们就会被冻成磁化状态,黏在每个原子旁边,以相同的方向自旋。但如果只是轻微调整,让电子获得合适的纠缠数量,这些重电子就会在冷却时变成超导体。“我们的研究证明了,只有当处在‘迟缓’和‘迅速’这两种行为的边界时,才能获得超导性。这是最有利于产生重电子超导性的条件。”雅兹达尼说。 许多磁性材料在它们的成分或晶体结构发生了微妙改变之后,变成了超导体。哈佛大学理论物理学家苏伯·萨奇戴伍说,该实验有助于揭开高温超导的秘密,理解这种磁性和超导性之间的转变,即量子临界点,有助于解释物质为何会具有超导性。(常丽君) 《科技日报》(2012-06-29 二版)

  • 【转帖】美研制出新式超导场效应晶体管

    2011年04月29日 来源: 科技日报 作者: 刘霞  本报讯(记者刘霞)据美国物理学家组织网4月28日(北京时间)报道,美国科学家使用自主设计的、精确的原子逐层排列技术,构造出了一个超薄的超导场效应晶体管,以洞悉绝缘材料变成高温超导体的环境细节。发表于当日出版的《自然》杂志上的该突破将使科学家能更好地理解高温超导性,加速无电阻电子设备的研发进程。  普通绝缘材料铜酸盐在何种情况下从绝缘态跃迁到超导态?这种跃迁发生时,会发生什么?这些问题一直困扰着物理学家。探究这种跃迁的一种方法是,施加外电场来增加或减少该材料中的自由电子浓度,并观察其对材料负载电流能力的影响。但要想在铜酸盐超导体中做到这一点,还需要构建成分始终如一的超薄薄膜以及高达100亿伏/米的电场。  美国能源部物理学家伊万·博若维奇领导的布鲁克海文薄膜研究小组之前曾使用分子束外延技术制造出这种超导薄膜,该技术在一次制造一个原子层时还能精确控制每层的厚度。他们最近证明,用分子束外延方法制造出的薄膜内,单层酮酸盐能展示出未衰减的高温超导性,他们用该方法制造出了超薄的超导场效应晶体管。  作为所有现代电子设备基础的标准场效应晶体管内部,一个半导体材料将电流从设备一端的“源”电极运送至另一端的“耗”电极;一个薄的绝缘体则作为第三电极“门”电极负责控制场效应晶体管。当在绝缘体上施加特定的门电压时,该门电极会打开或关闭。但没有已知的绝缘体能对抗诱导该酮酸盐内部高温超导性所需的高电场,因此,标准场效应晶体管的设计并不适用于高温超导场效应晶体管。  博若维奇团队用一种能导电的液体电解质来分离电荷。当朝电解液施加外电压时,电解质中的正电荷离子朝负电极移动,负电荷离子朝正电极移动,但当到达电极时,离子会突然停止移动,就像撞到“南墙”一样。电极“墙”负载的等量相反电荷之间的电场能超过100亿伏/米。  新研制的超导场效应晶体管中,高温超导体化合物模型(镧-锶-铜-氧)的临界温度可达30开氏度左右,为其最大值的80%,是以前纪录的10倍。科学家可使用该晶体管来研究与高温超导性有关的物理学基本原理。  超导场效应晶体管的应用范围很广泛。基于半导体的场效应晶体管能耗大,而超导体没有电阻也无能耗。另外,原子逐层排列制造出的超薄结构也使科学家能更好地使用外电场来控制超导性。  博若维奇表示,这仅仅只是一个开始,高温超导体还有很多秘密有待探寻,随着其神秘“面纱”逐一揭开,将来能制造出超快节能的高温超导体。   总编辑圈点:  辛亥革命爆发、乔治五世加冕、普利策逝世……这是历史书上的1911年。但同年,一个平常的4月天里,荷兰一所实验室内人类首次发现了超导体,于今恰好百年。这种进入超导态就会电阻趋0的材料,尚未露真容,却承载了一个世纪的无热损和强磁场之梦,直接涉及超导电性的诺奖就有4起,1987年临界温度的速提甚至成为了科技史之奇迹。于是,人们谈起那年4月的荷兰小城,会说:超导百年,对人类社会的影响,不亚于和它同年发生之事。

  • 物理前沿分享:研究证实磁性和超导性可共存

    研究证实磁性和超导性可共存据美国物理学家组织网9月6日(北京时间)报道,美国科学家将两块不具有磁性的绝缘体粘合在一起,结果发现,它们相遇的接口层既有磁性又有超导性。这一结果令人吃惊,因为在正常情况下,磁性和超导性无法共存,科学家有望据此研制出新奇的电子材料。研究论文发表在9月5日出版的《自然—物理学》杂志上。斯坦福材料和能源科学研究所(SIMES)、美国能源部下属的斯坦福直线加速器中心和斯坦福大学的科学家携手进行了这项研究。该论文的第一作者、SIMES的研究生朱丽·伯特和同事与来自日本东京大学的应用物理学家哈罗德·黄一起,将一薄层铝酸镧放置在一个钛酸锶基座上,结果发现,这两种复合氧化物相遇的原子层变得具有磁性,同时在接近绝对零度的温度下,电流能毫无电阻地流过该处,这表明,该原子层也具有超导性。该研究的领导者、斯坦福直线加速器中心的凯瑟琳·默勒表示,科学家们一直希望能找到方法,让铝酸镧和钛酸锶等复合氧化物材料具有磁性,以研制出新的计算存储设备。最新研究为科学家们“研制出具有令人惊奇新特性的新材料以及研究磁性和超导性等在正常情况下不兼容状态之间的相互作用提供了新的可能性”。在一般情况下,超导材料的导电性为100%,也会排斥周围的任何磁场。默勒说:“接下来的研究非常关键,我们需要弄明白,这种材料内的磁性和超导性之间是相互对抗还是相互辅助。”无独有偶,美国麻省理工学院(MIT)的科学家也在《自然—物理学》杂志上独立撰文指出,他们使用另一种测量方法,也证实了磁性能存在于两个材料的接口处。英国剑桥大学的物理学家安德鲁·米勒斯并没有参与上述研究。他表示,最新研究有望让科学家研制出新的材料类型,其具有“可控的、新奇有用的导电性”。不过,他也表示,尽管要实现这一目标还有很长的路要走,但新发现表明,“该研究领域已经度过一个关键的里程碑”。默勒表示,科学家们正在进行试验,以便查看当对这种材料进行压缩或在其上施加电场时,磁性和导电性是否会出现变化。他们也必须进行其他研究,以找出对形成这些氧化物内的磁性和超导性有帮助的物理属性。(来源:科技日报 刘霞)

  • 【转帖】新材料产业发展热点和趋势

    新材料产业发展热点和趋势1、信息材料:信息材料是最活跃的新材料领域,微电子材料在未来10~15年仍是最基本的信息材料,集成电路及半导体材料将以硅材料为主体,化合物半导体材料及新一代高温半导体材料共同发展。光电子材料将成为发展最快和最有前途的信息材料,主要集中在激光材料、高亮度发光二极管材料、红外探测器材料、液晶显示材料、光纤材料等领域。2004年,在“国家半导体照明工程”计划的推动下,我国半导体照明产业发展加速,关键技术取得突破,蓝光功率型LED芯片发光效率达到90mW,处于国际先进水平;封装的功率型白光LED发光效率超过30lm/W,达到国际先进水平。建立了上海、大连、厦门、南昌4个国家半导体照明产业化基地,民营资本投资近37亿元人民币,我国LED产业迎来了快速发展的时期。2004年我国推出了激光电视样机,技术水平达到国际先进。在激光显示DPL晶体材料研究方面取得重要成果。例如,全固态激光材料的生长、后加工和镀膜技术,高功率光学元件的镀膜技术,镀膜的直接检测技术等。 2.新能源材料:新能源材料是发展新能源的核心和基础,发展方向是开发绿色二次电池、氢能、燃料电池、太阳能电池和核能的关键材料。当前的研究热点和技术前沿包括高能储氢材料、聚合物锂离子电池材料、质子交换膜燃料电池材料、多晶薄膜太阳能电池材料等。 2004年,我国在高性能锂电池材料方面取得重大进展,为我国锂电池产业更大发展,特别是锂电池动力电池的发展创造了有利条件,打破了日本一统天下的局面,成为世界第二生产大国。我国自主开发的钴镍锰酸锂成本仅为钴酸锂的一半,高温稳定性也大幅度改善,改性天然石墨球负极材料已研制开发并投入批量生产。近年来,我国太阳能电池发展很快,纳晶太阳能电池材料研究取得了重要进展,其成本估算0.5-1$/pW。如果效率达到5%,性能价格比将超过非晶硅,有很强的市场竞争能力,成为值得关注的新型太阳能电池。 3.生物医用材料 随着生物技术、医药技术、信息技术、制造技术、纳米技术和材料科学技术的迅猛发展与交互融合,新型和新概念生物医用材料层出不穷。药物控制释放材料、组织工程材料、纳米生物材料、生物活性材料、介入诊断和治疗材料、可降解和吸收生物材料、新型人造器官、人造血液等代表了新的发展趋势和方. 在国家科技政策和计划资助下,我国生物医用材料已取得了长足进步,主要集中在骨科修复材料、药物控释材料、介入材料、组织工程支架材料等。我国组织工程材料以骨材料研究为主,形成了以四川、上海、武汉、北京等多家单位为代表的格局。随着安泰科技股份、法尔胜等一些上市公司的介入及留学归国人员的创业活动,我国介入诊疗材料与器械产业化取得了较大进展。国内年产值达到25―30亿人民币,国内市场占有率也有了较大提升,其中非血管和心血管介入治疗产品国内市场分别达到70%和50%以上。4.纳米材料与技术: 纳米材料与技术发展趋势一方面是开展纳米加工、纳米电子、纳米医疗以及机器人等未来能形成新兴主导产业领域的基础研究;一方面是对现在的信息高科技产业和传统产业进行改造和提升。目前,国内规模较大的纳米产业主要包括特种纳米碳材料、纳米粉体材料、纳米复合材料、纳米改性的纺织品及医疗保健等领域。纳米材料的应用尚处于初级阶段,主要是利用纳米粉体材料的功能特性,对传统产品进行升级。在纺织行业,纳米材料改性的功能纤维产品相继问世;抗菌抑菌、红外保温、负离子释放、自清洁、阻燃和防水防静电产品已进入市场;纳米涂料市场份额进一步扩大。在最新的纳米技术研究领域,我国也取得了重要突破,如我国研制出高稳定、可擦写的有机分子纳米存储材料,存储点尺寸为2个纳米,存储密度在1013比特/厘米2,是传统存储密度的105倍;在国际上首次创新提出GaAsSb/InGaAs非对称双量子阱结构,并在实验上获得室温1.3微米发光纳米材料在国内首次成功研制出性能良好的1.21-1.28微米室温工作边发射激光器。 5.超导材料与技术: 超导材料与技术的发展趋势是不断探求更高温度超导体,实现高温超导材料产业化技术在能源、电力、移动通讯、国防领域的应用。从目前国际上高温超导产业化应用的趋势来看,在继续改善BSCCO带材(也称为第一代带材)的同时,各国正在努力研究开发一种在柔性金属基带上涂以YBCO厚膜的涂层导体(第二代高温超导带材)。铋系高温超导线材目前已实现商品化,主要产业化核心技术被美国、日本、中国、德国等少数国家所掌握。我国铋系高温超导线材已实现了产业化,在超导材料的应用方面如超导电缆、超导滤波器等方面取得了突破性进展。 2004年7月,北京云电英纳超导电缆有限公司的三相交流33.5米35kV/2kA高温超导电缆系统在云南昆明普吉变电站挂网运行成功,标志着我国已经掌握了超导电缆实用化的关键技术。这是全球第三组并网运行的超导电缆系统,综合性能优于前两组,多方面拥有自主关键技术。 2004年3月,清华大学研制的超导滤波器系统在中国联通CDMA移动通信基站上现场试验获得圆满成功。这是我国高温超导技术在移动通信中的首次实际应用,各关键技术指标达到国际先进水平,成为继美国之后、第二个拥有此类实用核心技术的国家。6.化工新材料: 化工新材料向高性能化、多功能化、精细化、低成本化、生产全球化、工艺无害化、装置大型化、应用普及化、创新持续化、竞争激烈化方向发展。随着催化剂技术、生物技术、纳米技术、组合化学技术的发展,增强了技术人员对于微观化学合成领域的控制能力,使得化工新材料新产品的合成更为灵活,速度不断加快,效率也大为提高。专用性、功能性产品日益成为化工新材料领域中发展最快、研究最活跃的领域。化工新材料由于涉及面广,与下游应用结合紧密,因而成为边缘学科活跃的领域。如纳米技术与材料技术的结合,生物技术、医疗技术与材料技术的结合,膜材料技术与过程控制的结合等等为新学科的不断涌现提供了机会。 7.高性能结构材料: 从世界上新材料的发展趋势看,钢铁材料和有色金属材料的生产一直在向短流程、高效率、节能降耗、洁净化、高性能化、多功能化的方向发展;高性能结构陶瓷在保持原有耐高温、高强度的前提下向强韧化、易成形加工方向发展;高分子材料向材料的微观设计、多层次结构调控、集成化、智能化、多功能化方向发展;复合材料以高性能、低成本制造技术为发展重点,向材料设计-制造-评价一体化、功能化、智能化的方向发展。

  • LK-99引发室温超导热潮,给我们什么启示?

    [font='calibri'][size=18px][color=#000000] [/color][/size][/font][font='calibri'][size=18px]7月22日,韩国量子能源研究所等机构的研究人员在预印本网站arXiv上[/size][/font][font='calibri'][size=18px]发布两篇论文[/size][/font][font='calibri'][size=18px],[/size][/font][font='calibri'][size=18px]他们通过在铅-磷灰石晶体中掺入铜元素[/size][/font][font='calibri'][size=18px]合成的“LK-99”材料具备超导性,超导临界温度在127摄氏度左右,而且在常压下就具备超导性。[/size][/font][align=left][font='calibri'][size=18px] 韩国团队宣称的成果引起科学界极大关注的同时,也受到不少学者的质疑;[/size][/font][/align][align=left][size=18px][font='calibri'] 印度国家物理实验室和中国北京航空航天大学的团队开展的两项独立的实验合成了“LK-99”,但没有观察到超导的迹象;[/font][/size][/align][align=left][size=18px][font='calibri'] 中国[/font][font='calibri']东南大学教授孙悦发布“室温超导复现实验-全流程”实验视频,视频中表示无超导磁悬浮现象[/font][font='calibri'],但[/font][font='calibri']在110 K(-163.15 ℃)以下,常压观测到LK-99材料出现零电阻;[/font][font='calibri'][/font][/size][/align][align=left][font='calibri'][size=18px] 14日中科院物理所发布了题为《那些年室温超导的疑云后来都怎么样了》的文章,对近期“LK-99”事件进行总结,截至目前所有宣称过的室温超导材料均处于未被验证或争议状态,但是学界[b][color=#cc0000]对于室温超导持续探索是有意义的,这是工程学的期盼,也是科学的追求[/color][/b],从元素超导体到铜基到铁基超导体,我们对超导的认识正在一步一步深入。随着实验技术的进步和基础理论的突破,未来会有更多的“室温超导材料”出现。[/size][/font][/align][align=left][size=18px][/size][/align][align=left][/align][align=left][/align][align=left][/align]

  • 【原创大赛】超导量子干涉仪SQUID磁性测量的基本功练习

    【原创大赛】超导量子干涉仪SQUID磁性测量的基本功练习

    [align=center][color=#3366FF][b]超导量子干涉仪SQUID磁性测量的基本功练习[/b][/color][/align][align=center][color=#00b050]原创:王利晨 博士,美国Quantum Design公司[/color][/align][align=center][color=#00b050]推荐:陆俊 工程师,中科院物理所磁学室[/color][/align][align=center][color=#00b050]2017年7月27日[/color][/align][align=left][color=#00b0f0]一、引言[/color][/align][align=left]当今直流磁矩测量最精确的技术是SQUID(superconductor quantum interference devices, 超导量子干涉仪),尤其是DC-SQUID(直流超导量子干涉仪)最低可探测 1e-10 Oe数量级的磁场,即地磁场的百亿分之一,与胎儿的大脑产生的磁场相当。DC-SQUID的工作原理由两个完全一样的超导体-绝缘体-超导体组成的约瑟夫逊结(SIS Josephson junction,简称约结,如Nb-Al2O3-Nb,)并联而成,在没有外场的情形下,超导电流在两个约结中无差别的隧穿(tunneling of Cooper pairs),似乎绝缘体的阻挡并不存在。而当垂直SQUID环面方向存在外加磁通量时,假设SQUID自身电感不计,这两个约结因为在感应电流环路中分处磁通两侧而对外加磁通的响应电流刚好相反,于是引起超导电流在两个约结中的相位产生差异,该相位差随外加磁通量的变化线性变化。SQUID的总超导电流根据基尔霍夫定律(Kirchhoff's law)等于两个约结超导电流之和: I = I1+I2,在特定外磁通大小比如等于磁通量子(flux quantum, Φ0=h/2e=2.07×10-15 Wb)半奇数倍的情况下I1 和I2相位相差π/2,总超导电流I将恒为零,除非SQUID脱离超导态而变成普通导体,也就是说此时不存在贯穿SQUID的超导电流;而在外磁通为量子磁通的整数倍时I1 和I2相位一致,此时可贯穿SQUID的最大超导电流和单个约结能够传导的超导电流一致;这样,在外磁通变化时可贯穿SQUID的最大超导电流(SQUID两端电压保持为 0)与外磁通的依赖关系相当于形成干涉(Fraunhofer diffraction),这种相干干涉的结果是SQUID的有效最大超导电流随外场微小变化而剧烈震荡,如图01所示,因而可以实现超灵敏磁探测。前面简单介绍了DC-SQUID的工作原理,实际上还有一类射频超导量子干涉仪RF-SQUID,它与DC-SQUID的不同在于它只有一个约结,在单约结环路中不可能象DC-SQUID那样可通过贯穿电流来应用,而只能通过电磁感应引入交变电流加以应用。RF-SQUID在使用过程中同样通过磁通变换器和磁通锁相技术提高测量灵敏度,但由于其自身不存在象DC-SQUID的本征差分结构,其灵敏度相比没有DC-SQUID高(相差约一个数量级),不过由于RF-SQUID制作简单且成本较低,它在商用设备中常被应用。对于纳米磁性材料与反铁磁材料等磁矩较弱的样品,SQUID通常是不可替代的磁性测量仪器。目前国际上商用SQUID磁性测量仪器主要由美国的Quantum Design公司与英国的Cryogenic公司,在国内市场份额100%由前者占领,中国有几家单位做SQUID器件,但可惜尚未见整套SQUID磁性测量仪器产品推向市场。[/align][align=left]因为SQUID属于高冷的小众化产品,其制样、测量过程鲜见有人公开,本文考虑到制样过程涉及到磁性测量注意事项不仅仅用于SQUID,而且适合其他类似磁测量仪器比如振动样品磁强计VSM,进行详细的讨论和分享。[/align][align=center][img=,690,520]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_01_1611921_3.png[/img][/align][align=center]图01 SQUID器件高灵敏磁测量原理图[/align][align=left][color=#00b0f0]二、开关机[/color][/align][align=left]开关机是任何设备操作的必要过程,需要注意次序合乎规范,分别简介如下。[/align][align=left]1. 开机:开总电源开关(主机背面左侧)→开系统控制开关(主机正面右侧)→开计算机控制开关(主机正面左侧)→ 登陆计算机(初始密码为空)双击桌面上的MultiVu 图标进入测量操作系统系统→初始化过程大约1~2分钟→关闭自检结果提示消息框,准备测量。[/align][align=left][/align][align=left]2. 电网停电前,进行关机操作:关闭MultiVu测试系统关闭过程,1~2分钟自动完成关计算机→关系统控制电源(主机正面右侧)→ 关总电源(主机背面左侧)。[/align][align=left][/align][align=left]3.怀疑是信号端口等软件问题时,执行重启操作:退出MultiVu操作系统→关计算机→关系统控制电源→开系统控制电源→开计算机→进入MultiVu操作系统,此过程不需要关闭总电源。[/align][align=left][color=#00b0f0]三、样品制备[/color][/align][align=left]制备过程分为以下几步。[/align][align=left]1、取样称量,需要mg级精度,铁磁性样品最好少于1mg(否则较高磁场下SQUID探测器容易饱和失真),形状接近球形或正方形。[/align][align=left]2、做实验前准备好各种工具,如图02所示,需要注意:自己洗手,防止油性物质;擦洗剪刀等工具上的脏东西;尽量使用塑料镊子。[/align][align=center][img=,304,538]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_02_1611921_3.jpeg[/img][/align][align=center]图02 制样工具图片[/align][align=left]3、样品固定架尺寸很重要,为避免样品在测量过程中移动或晃动,需要有较稳固的固定措施,最方便的是借助胶管自身做固定支架,如图03所示,胶管内径6毫米,所以中间插的横向胶管尺寸7毫米最合适,太小容易卡不紧,太大做交流磁化率测量的时候放不进腔体。[/align][align=center][img=,287,509]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_03_1611921_3.png[/img][/align][align=center]图03 样品固定支架示意[/align][align=left]4、张飞也得会穿针,使用胶带将样品与固定支架绑劳,将胶带一头折叠,这样避免了胶带到处粘东西的问题,在穿过空管的时候也不会粘到空管,如图04所示。[/align][align=center][img=,526,290]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_04_1611921_3.png[/img][/align][align=center]图04 胶带穿过固定支架[/align][align=left]5、固定样品,排除胶带与样品之间的空气,如图05所示。[/align][align=center][img=,290,437]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_05_1611921_3.png[/img][/align][align=center]图05 将样品封进胶带[/align][align=left]6、使用另一片胶带固定样品,保证样品在测试过程中不会乱动,平行垂直皆可实现,如图06所示。[/align][align=center][img=,267,449]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_06_1611921_3.png[/img][/align][align=center]图06 将样品通过固定支架安装进测量柱[/align][align=center][img=,669,528]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281810_01_1611921_3.png[/img][/align][align=center]图07 薄膜样品垂直膜面样品安装示意图[/align][align=left]7、样品也要透透气,样品卡入胶管中,为了快速实现热平衡,在胶管上下各开几个小洞,如图07所示。此处需要非常注意,小洞尽量开在胶管两段,这样在震动或者提拉测试的过程中小洞不会出现在鞍区。测试过程中要保证测试区域内背景一致,这样才可以减小误差。[/align][align=center][img=,296,444]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_07_1611921_3.png[/img][/align][align=center]图08 在样品柱上扎热、气交换孔[/align][align=left]8、腰杆要摆直。要保证胶管和所连接的测试杆两截成一条直线,否则在测试过程中非常容易碰壁。如图08所示。[/align][align=center][img=,265,470]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_08_1611921_3.png[/img][/align][align=center]图09 确认样品柱与测量杆准直[/align][align=left][/align][align=left][color=#c24f4a]注意:使用[/color][color=#c24f4a]SQUID[/color][color=#c24f4a]磁性测量杆时,无论安装样品托还是卸载样品托,均应将样品杆放置好,一只手固定住蓝色的接头部分,另一只手拧石英或铜样品托的塑料接头部分。不合理用力容易导致其折损,此杆属于特制无磁纤维材料制成,质脆,一旦造成损坏,修复起来有难度,买根新的需要人民币约[/color][color=#c24f4a]7000[/color][color=#c24f4a]元。[/color][/align][align=left][color=#00b0f0]四、样品安装[/color][/align][align=left]保证测量数据的正确性,样品的安装调试尤为重要。即待测样品正确安装固定在样品托(sample holder)上后,主要要做到以下几点:[/align][align=left]1、样品在杆上:要同心[/align][align=left]样品托(sample holder)固定到样品杆(sample rod)上后,要保证两者在一条直线上。[/align][align=left]2、样品在腔内:别偏心[/align][align=left]样品放入样品室后,进行水平方向360度旋转测量,找一最小值,对应的位置就是样品在水平方向最靠近样品室中心的位置。[/align][align=left]3、样品测量前:调中心[/align][align=left]样品杆在300K~5K时,杆的长度变化大约有1.4mm,故请在起始测量的温度点上再调一把中心。[/align][align=left]4、注意测量杆的关节:别松动[/align][align=left]所谓关节就是可以拆卸连接的地方。测量杆上一共有4处:①样品杆顶端与柔性接头的连接、②柔性接头与磁性碰锁的连接、③样品杆底端与蓝色接头的连接、④蓝色接头与样品托的连接。[/align][align=left]测量杆放入样品室前一定要检查这4处连接的地方是否固定牢靠,不能松动。[/align][align=left]5、注意样品的磁矩:别太大[/align][align=left]样品的磁矩最好在10emu以下,太大容易产生跳点。[/align][align=left]6、总结:为了便于记忆,以上几点归纳为四个字“三心二意”。五个关键词,十个字:“同心、偏心、中心、松动、大小”。[/align][align=left][color=#00b0f0]五、开始测量[/color][/align][align=left]测量控制过程的序列文件编写注意事项[/align][align=left]1、测M-H曲线,低温高场下磁矩跳动特别厉害的情况,可以在测试过程中进行改善。具体如下[/align][align=left] i) VSM振幅不宜调的过大,因为振幅过大虽然有利于测试小信号,会机械的引入误差。对于样品信号较小的情况,一般也建议调到4就可以。[/align][align=left]ii) 建议修改大家之前用的普遍的程序,MH测量扫场的过程中,每一个磁场点停顿(3-5)秒钟,具体根据自己的样品测试决定。[/align][align=left]iii) 加长平均测量时间,系统默认是2s,可以改为4s,这个时间也是根据自己的样品来决定。这样的话测量时间就会变长,所以应根据自己的样品和需要选择等待和采点的时间,尽量用较短的时间测量出可靠的数据。[/align][align=left][/align][align=left]附上一张工程师的调试图,左图为大家普遍用的程序做出来的。左图上方是MH曲线,下方是测量中的Standard error。右图是在每个磁场点等待5s,平均时间为4s,振幅为4时的数据,可以看到有明显的改善。[/align][align=left] [/align][align=center][img=,649,487]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_09_1611921_3.jpeg[/img][/align][align=center]图10 测量平均时间效果对比图[/align][align=left]2、高级设置:调整完中心以后记得在advanced选项里设置auto tracking选项。设备调中心的时候是在300K,但实际测试的时候会根据自己的样品特性来选择合适的温度。材料都有热胀冷缩,测试杆也不例外,但Quantum Design公司的测试杆出厂之前都对杆子的热胀冷缩系数进行了标定,在测试过程中会根据温度的不同来自动修正中心位置,如图11所示。[/align][align=center][img=,334,445]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_01_1611921_3.png[/img][/align][align=center]图11 调中心设置[/align][align=left]3、选择合适的量程:杀鸡焉用牛刀。根据自己样品的特性来选择振幅的大小,如果超过量程太多会造成误差,量程设置界面如图12。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_02_1611921_3.png[/img][/align][align=center]图12 测量振幅设置[/align][align=left]4、统一度量衡:秦始皇统一了度量衡,而Quantum Design的程序中为了满足大家对不同单位的使用,提供了emu和Am2的单位选择,设置入口如图13所示。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_03_1611921_3.png[/img][/align][align=center]图13 单位制切换[/align][align=left]5、量体裁衣:测试过程中需要根据自己样品磁性的强弱和特殊温区或者磁场区间来进行程序的编写。如果磁性较弱,建议采取Stable模式,反之可采用sweep模式,如图14所示。[/align][align=center][img=,690,531]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281814_01_1611921_3.png[/img][/align][align=center]图14 温度磁场设定[/align][align=left]6、漂亮收尾: 因为SQUID用的是超导磁体,会存在剩磁,而减少剩磁的方法就是在程序结束后将磁场振荡到0场。注意:需要从2T以上磁场开始振荡降磁场,不然几乎没有效果。测试过程中大家可以根据测试的需要使用Linear或者No Overshoot模式,如图15所示。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281814_02_1611921_3.png[/img][/align][align=center]图15 程序结束关场设置[/align][color=#ff00ff]注意:每次测量要养成客观登记的习惯,有任何问题或异常都要有书面登记并向维护人员报告。[/color][align=left][color=#00b0f0]六、致谢[/color][/align][align=left]感谢磁学实验室胡明高级工程师在实验过程中提供的帮助和讨论。[/align][align=left][color=#00b0f0]七、参考文献[/color][/align][align=left]【1】 Tinkham M. Introduction to superconductivity (2nd edition) . 2ed. New York: McGraw-Hill Inc, 1996.[/align][align=left]【2】Fossheim K, Sudbo A. Superconductivity: physics and applications . Hoboken, New Jersey: John Wiley, 2004.[/align][align=left]【3】Quantum Design. San Diego: MPMS XL User's Manual, 2000.[/align]

  • "室温常压超导体"LK-99可能的3D晶体结构

    "室温常压超导体"LK-99可能的3D晶体结构

    最近韩国人发表了"室温常压超导体"LK-99的文章:[url]https://arxiv.org/abs/2307.12008[/url]根据文中的描述:LK-99是一种"Lead Apatite"(铅磷灰石结构)。其实磷灰石结构并不新鲜,骨头的主要成分就是羟基磷灰石。我在找到一个类似的结构: (Sr,Pb)[sub]10[sub]?[/sub][/sub]?(PO[sub]?4[/sub])[sub]?6 [sup]?[/sup]?[/sub]?(OH)[sub]?2 [sup]?(这张PDF卡的原文在这:https://www.sciencedirect.com/science/article/pii/S0025540808004194?via%3Dihub。 作者是南京航空航天大学的朱孔军(音),文中未提到任何材料超导性)。我将该结构的Sr位代回Pb, 用TOPAS 计算出XRD衍射图,跟韩国人的原文LK-99的XRD相差无几:[img=,690,533]https://ng1.17img.cn/bbsfiles/images/2023/07/202307302226389758_5524_1986542_3.png!w690x533.jpg[/img]本帖视频是这个Pb[sub]10[sub]?[/sub][/sub]?(PO[sub]?4[/sub])[sub]?6 [sup]?[/sup]?[/sub]?O[sub]?2[/sub]可能的3D晶体结构,与原文中发表的LK-99的二维晶体结构类似。附件是本贴猜测的LK-99的晶体结构。下面贴出原文中提到的两种中间体的XRD图,以及它们的cif,方便大家重复实验的时候对照。[img=,690,328]https://ng1.17img.cn/bbsfiles/images/2023/07/202307302253060227_3167_1986542_3.png!w690x328.jpg[/img]-- Cu3P[/sup][img=,690,331]https://ng1.17img.cn/bbsfiles/images/2023/07/202307302308045959_8586_1986542_3.png!w690x331.jpg[/img]--Pb2(SO4)O[/sub]

  • 第十届环太平洋先进材料与工艺国际会议

    由中国金属学会(CSM)、日本金属学会(JIM)、韩国金属学会(KIM)、澳大利亚材料学会(MA)和美国矿物金属材料学会(TMS)共同主办的“第十届环太平洋先进材料与工艺国际会议”(PRICM10)将于2019 年8 月18-22 日在陕西省西安市召开。参展内容及展品范围 第一部分:先进材料部分  高性能金属材料——特种金属功能材料、高端金属结构材料:稀土功能材料、稀有金属材料、半导体材料、高品质特殊钢、新型铝镁钛、其他高端功能和金属材料 前沿新材料:纳米材料、生物材料、智能材料、超导材料 高性能纤维及复合材料:高性能纤维及材料、树脂基复合材料、陶瓷基复合材料、碳/碳复合材料、金属基复合材料 新能源材料:先进储能材料、风电材料、太阳能光伏材料、锂离子电池材料、新光源材料等第二部分:材料工艺、成型设备技术部分  材料工艺设备:实验电炉、小型塑料机械、激光设备、3D打印、其他材料工艺设备; 物性测试仪器及设备:粒度仪、热分析仪器、流变仪/粘度计、试验机、表界面物性测试、无损检测仪器、测厚仪、材料力学性能试验设备、其他仪器设备等; 光学仪器及设备:电子显微镜、光学显微镜、光学测量仪、光学实验设备、光学成像设备、其他光学仪器设备及设备; 化学分析仪器:色谱、光谱、质谱、X射线仪器、元素分析仪、波谱、LIMS / 软件、其他通用分析仪器等; 实验室设备及服务:清洗/消毒设备、制样/消解设备、分离/萃取设备、混合/分散设备、恒温/加热/干燥设备、粉碎设备、合成/反应设备、制冷设备、实验室家具、其它实验室常用设备等;仪器安装调试、技术咨询、认证校准、软件开发、数据处理; 化学试剂和标准物质、相关零配件、耗材等 第三部分:其他  先进材料科学研究院所、国家重点实验室  产业园区、投融资机构、第三方平台

  • 【汇总、分享】超声波扫描电镜在材料科学、半导体封装上的应用

    超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等) · 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等 ;材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 超导核磁共振波谱NMR测试技术

    [font=黑体, SimHei][size=16px][font=等线]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-14046.html[/url]型号:[/font]AVANCE ⅢHD 400 MHz[/size][/font][font=等线][size=16px]生产厂家:德国Bruker公司[/size][/font][font=黑体, SimHei][size=16px]主要技术指标:[/size][/font][font=等线][size=16px]1.超屏蔽超导磁体,磁场强度为9.4特斯拉,2组数字化射频通道[/size][/font][font=黑体, SimHei][size=16px]2.BLAXH 500/300-高性能线性功放系统[/size][/font][font=黑体, SimHei][size=16px]3.B-SVT 高精度变温控制单元 温度设置幅度:+/-0.1oC[/size][/font][font=黑体, SimHei][size=16px]4.4mm CP/MAS 宽带固体探头 标准腔 温度范围: -50?C ~ +80?C [/size][/font][font=黑体, SimHei][size=16px][font=等线]频率范围:[/font]15N-31P+1H 13C灵敏度≥75:1 最高转速:15KHz[/size][/font][font=黑体, SimHei][size=16px]5.7mm CP/MAS 宽带固体探头 标准腔 温度范围: -50?C ~ +80?C [/size][/font][font=黑体, SimHei][size=16px][font=等线]频率范围:[/font]15N-109Ag+1H 15N灵敏度≥22.7:1 最高转速:7KHz[/size][/font][font=黑体, SimHei][size=16px]6.4mm高分辨魔角微量探头(HR/MAS):变温范围:-20?C~+80?C,容量50μl,魔角旋转。[/size][/font][font=黑体, SimHei][size=16px]应用范围:[/size][/font][font=等线][size=16px]CP/MAS可分析不溶固体物质以及一些虽能溶解但溶解后其结构发生变化的固体物质,了解样品在固体状态下的结构信息。用于各种材料的结构与性能方面的研究,如固体催化剂、玻璃、陶瓷、高分子、膜白质、骨头、羟基磷灰石等;在无机及聚合物材料化学、医药中间体及活性分子、沸石分子筛、有机发光中间体、表面化学及催化等研究领域广泛运用。[/size][/font]

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 【其食无关】日本科学家发现一种高温超导新物质

    日本科学家最近发现一种新的高温超导物质,它是一种含铁化合物,在零下241摄氏度的环境中其电阻变为零。  日本科学技术振兴机构和东京工业大学18日联合发布新闻公报说,东京工业大学教授细野秀雄的研究小组合成的这种化合物名为“LaOFeAs”,是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质并没有超导性能,但如果把“LaOFeAs”中的一部分氧离子置换成氟离子,它就开始表现出超导性,通过调节氟离子的浓度,该化合物的超导临界温度最高可上升到零下241摄氏度。 来源:中国新闻网

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 【转帖】未来材料的发展方向

    [em04] 贴一篇国家高科技部高新司司长邵立勤在首届中国高校材料院长论坛暨新材料产学研交流会上的发言: 日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。 1.半导体材料   随着高科技发展的需要,半导体及其应用研究的中心正向直接影响市场的微型或低维量子器件、改善传输质量和效率、增大功率和距离等方向发展,半导体化合物(GaAs、InAs、GaN、SiC等)具有重要的应用前景。半导体材料领域的重要研究主题有: (1)Si基积分电路设计,就材料物性而言涉及用于门(gates)电路控制的纳米尺寸电介质制造及特性研究。 (2)大能隙材料则在光电子学领域中具有关键的作用。可以预期,Ⅲ―V族化合物材料具有重要应用前景。 (3)纳米电子学及纳米物理学研究是微电子及光电子材料和器件发展的基础,涉及半导体与有机或生物分子耦合,低维器件的量子尺寸效应,半导体与超导体或磁性材料界面以及原子或分子尺度的存储问题。建立原子学模拟与连续介质力学及量子力学跨层次―跨尺度关联应是该领域中的一个重要的研究方向。 2.结构材料   Fe基、Al基、Ti基以及Mg基合金作为力学材料的主体,构成了系列结构材料,其主要功能是承担负载(如火车、汽车、飞机)。汽车用钢近年来已从一般钢铁发展为使用灿合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。进一步还需要发展碳纤维增强复合材料或Al基复合材料。结构材料的主体有: (1)钢铁:钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。 (2)Al合金:Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为"沉淀科学",它涉及"相"间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。 (3)Mg合金:镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型"绿色工程材料"、21世纪的"时代金属"。 (4)Ti合金:Ti合金在军用或民用航空工业的发展中有重要位置,多相纳米尺度层状微结构问题对高强Ti基合金的特性具有重要意义,它将成为设计新Ti基合金的关键因素。 (5)结构陶瓷及陶瓷基复合材料:提高陶瓷材料的韧性和可靠性,降低陶瓷材料的制造成本是直接关系到陶瓷材料在高技术领域中应用的关键。先进结构陶瓷近年的主要发展趋势是:高延展性、超高强、超高韧、超高硬和耐高温的新材料探索。具体说来主要有:   ●向多层次、多相复合陶瓷方向发展;强韧化从纤维增韧、晶须增韧、颗粒弥散强化、相变增韧等发展到协同增韧;   ●向纳米陶瓷方向发展;   ●加强陶瓷材料的剪裁与设计,如晶界和界面设计、晶粒取向设计、多相之间的复合设计、仿生结构设计等;   ●Ti3SiC2和们Ti3AlC2等为代表的新型层状三元碳化物和氮化物陶瓷;   ●高性能多孔陶瓷材料;   ●突破低成本、高性能先进陶瓷制备工艺技术。 3.有机/高分子材料   有机/高分子材料是现代工业和高新技术的重要基石,已成为国民经济基础产业以及国家安全不可或缺的重要材料。一方面量大面广的通用高分子材料需要不断地升级改造,以降低成本、提高材料的使用性能;另一方面各类新型的高分子材料将应运而生,尤其是有机及聚合物分子或少数分子组合体的光、电和磁特性将成为高分子向功能化以及微型器件化发展的重要方向。 (1)分子材料与分子电子器件研究:该领域的主要研究方向是:新型功能分子的设计、合成与组装;分子纳米结构的构筑;分子的组装、自组装以及自组装技术在分子电子器件上的应用研究。这些分子电子器件主要包括分子电开关、分子光开关和分子电光开关的设计、分子导线、分子整流器、分子开关、分子晶体管、分子马达及分子逻辑器等。 (2)光电信息功能高分子材料研究重点主要在:   ●有机/高分子光子晶体材料:探索有机/高分子形成光子材料的途径;   ●超高密度高分子存储材料:开发存储密度高的高分子材料;   ●高分子传输材料:研究和开发应用于通讯传输的具有较高光学透过性,光学均匀,且高折射率、低光损耗的高分子塑料光纤;   ●高分子显示材料:有机/高分子电致发光材料、高分子液晶材料等,其发展方向为开发出具有高的电致发光效率、低驱动电压,具有不同发光波长(彩色)和长寿命的各种发光器件。 (3)生物医用高分子材料包括:   ●药物载体与控释材料:研究适于各类药物的新型生物降解高分子载体和控释材料的设计与合成,药物与载体的相互作用以及药物载体体系的生物医学性能(注射、口服、吸收、分布、排泄等)评价;   ●诱导组织自修复与再生材料:研究能够诱导组织自修复与再生新型生物降解材料的设计与制备,材料的形态、孔度、降解速度等与组织自修复和再生过程的相互作用关系;   ●生物医用材料的表面修饰以及生物相容性研究:研究不同结构的生物医用材料表面修饰新方法以解决材料的生物相容性问题等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制