当前位置: 仪器信息网 > 行业主题 > >

测序成本

仪器信息网测序成本专题为您整合测序成本相关的最新文章,在测序成本专题,您不仅可以免费浏览测序成本的资讯, 同时您还可以浏览测序成本的相关资料、解决方案,参与社区测序成本话题讨论。

测序成本相关的资讯

  • “这是足以撼动测序产业格局的成本水平”——国产四代基因测序仪再出新品
    DNA结构的发现极大加速了生物遗传学的发展进程,从器官、组织、细胞的研究层面一举迈向了更为微观的分子层面。基因测序正是一项可破译当中所蕴含遗传信息的重要技术,从科研到临床,从医学到农业等其他应用范畴,均可见到基因测序的身影,其广阔发展前景对改善人类生活的影响不亚于脑科学、人工智能等前沿技术。基因测序仪是实现该过程的核心工具。目前测序仪技术已经发展到第四代,又称为纳米孔测序技术。继英国公司Oxford Nanopore Technologies(ONT)率先推出商业化纳米孔测序仪后,我国也有多家企业投入这一技术领域,且近两年不断有国产纳米孔测序仪推出的消息。近期,第四代基因测序企业安序源宣布推出纳米孔测序仪新品AXP100-RS,在其介绍手册上,显示该产品主要亮点为“超低成本”和“长读长”。那么,相较于其他代际测序技术,第四代测序技术有何技术特色?安序源发布的这款测序仪相较于其他同类产品有何不同?能够解决测序产业存在的哪些痛点?就以上问题,仪器信息网向安序源进行约稿。以下内容为安序源产品总监涂浩波撰写。5月28日,超低成本纳米孔测序仪AXP100-RS发布现场半导体×基因测序,创新价值仍有巨大的发挥空间将半导体技术引入基因测序领域,安序源并非是第一个“吃螃蟹”的。这种将芯片检测取代光学检测的技术思路有别于二代测序(NGS),是一种经济、快速、简单、规模可扩展的测序方法学,近些年已被科研界所采用。然而能让测序技术如同生化免疫一样获得大范围普及,这些突破远远不够。开机成本降至多低可以摊薄用户使用成本使其应用至基层乃至社区?测序读长、精度、效率如何同时兼顾?这些难题既是测序从业者的桎梏,更是测序创业者的动力。安序源创始人也正是如此。作为半导体专业出身,并在职业生涯中深耕基因测序十余年的安序源创始人田晖博士,其跨界的复合型产业积淀,更深刻体会到了测序产业的发展痛点和瓶颈,希望进一步借助半导体技术实现真正意义上的测序技术革新,推动测序产业加速普及。这也是安序源创立的初衷。定义第四代测序技术,测序成本直线下降从创立至今,安序源明确以创新研发为创业根本,数年来几乎都在埋头苦干。芯片的反复测试升级,纳米孔电信号检测的性能验证,仪器整体的结构设计……这些难点正在逐一被攻克。也为此,安序源在中美两地建立了三大研发中心,建立了一支人员占比超过70%的专业研发团队,以奠定研发重要根基。春种一粒粟,秋收万颗子。刚刚在CACLP重磅发布的超低成本测序平台AXP100-RS,正是安序源AXP100系列产品的拳头产品,其使用的硅基芯片作为承载基质,通过独创的交流电阻抗的方式检测信号,这是安序源有别于主流二三代测序产品的技术路径,可有效降低成本。据涂浩波介绍,安序源之所以能喊出“超低成本”这个口号,源自于对芯片技术的底气,目前安序源推出了全球唯一量产的12英寸纳米孔测序晶圆,单芯片数据产出高达100G,测序成本可直线下降至0.3美元/Gb数据的水平,这是一个足以撼动测序产业格局的成本水平。12英寸纳米孔测序晶圆除了成本这一关键因素之外,安序源蓄力开创第四代测序独特技术路线,以打造低成本、长读长、高精度、检测快、高通量一体的五边形产品,全力满足测序产业未来发展需求。测序终局革命性解决方案极力推动测序应用合作,加速测序应用拓展基于第四代测序平台取得的突破性成果,其在生殖遗传、传染病防控、个体化治疗、肠道微生物等均具备深厚的应用价值,安序源也正勠力推动应用性的拓展范围,希望加速科研及产业界成果的诞生。据悉,安序源与国内外各大高校研究机构等合作方均保持紧密联系,未来有望孵育出良好的应用空间,以充分发挥四代测序重要作用。打破技术壁垒,让测序无国界近年来,国产替代成为诊断行业的大势所趋,测序仪作为一款高端精密仪器更是行业焦点。安序源作为一家创立于美国、成长于中国的生命科技企业,未来希望能在全球化浪潮中迎来更多元化的前进方向,让高可及性测序技术在全球落地发芽。最后,涂浩波表示,安序源目前取得了一点成绩,但测序创新之路漫漫,持续升级测序芯片通量并进一步降低成本、打造测序全流程一体机、开发多组学检测解决方案等均为安序源的长期规划,安序源也欢迎关注测序产业发展的人士,持续支持、共同让这些发展方向早日实现。“万物测序,想测就测”——这是安序源正在描绘的测序未来图景,相信也是所有测序从业者的共同心声。第六届基因测序仪网络大会预告!7月12-14日,六大主题,呼朋唤友,一起报名吧!点击图片免费报名点击链接进入会议官网:https://www.instrument.com.cn/webinar/meetings/geneseq2023/
  • 微滴单分子测序仪:设备成本仅1万美金
    今年年初,以剑桥大学为依托的Base4公司宣布他们成功利用微滴中包裹的核苷酸荧光级联反应技术清楚的分辨出每个碱基的类型。   每一个核苷酸包裹在一个微滴中,每个微滴按照顺序放在每个小的微孔中,大大的增加微孔的数量,即可进行大规模测序。去年该公司和日立公司进行合作,通过固态的纳米系统直接读取碱基产生的信号,而不是读取碱基通过纳米孔是发射的电子信号。   微滴方法使用一个焦磷酸水解酶可以使DNA单链上的核苷酸水解下来并包裹在微滴中。微滴将通过一个微米级的管道,通过管道时级联反应促使每一个碱基产生自己特有的信号。   Base4的创始人兼CEO Frayling 说:&ldquo 在实验室里,团队对每一步都做了很多处理,现在我们正在致力于把每一步结合起来做成一个独立的测序系统。每个微滴都要单独的孵育,所以找到合适的芯片来确定微滴的顺序是关键。我们已经把所有的步骤放在同一张芯片上了,并且已经开始测试,估计2到6个月内第一批测序结果就会产生。&rdquo   除了单分子测序技术,Base4 也致力于微滴测序技术其他方面的技术,他们正在尝试着通过减弱级联反应的化学反应来增强DNA的荧光信号。通过实验他们发现用价格便宜LEDs光源来激发荧光看起来是可行的,而且他们相信用普通的光学成像摄像机也可以记录分辨碱基的类型。   剑桥的研发团队说虽然目前还没有找到合作公司,但是他们希望能够和一些公司合作来加速测速设备的发展,目标是开发一款价格低廉的测序设备。如果能够像预期的一样利用普通的电子设备,那么微滴测序设备成本将会降到10000美元。   &ldquo 人们希望的无疑是高通量、低成本、高精度,我相信我们的微滴技术肯定能实现这个愿望。&rdquo Frayling说。&ldquo 另一方面固态纳米的测序系统在未来可能会有一定的优势,因为它不仅能够检测进行DNA测序、甲基化测序,还能检测传统的测序所遗漏的低频DNA修饰。我们希望能够快速推荐微滴测序的商业化。&rdquo
  • 基因测序技术的发展、成本和技术壁垒
    忽如一夜春风来,基因测序公司在中美两国资本市场均获得狂热的追捧,或许,基因测序是一个革命性技术,是一片未开发的蓝海领域,但监管、技术的进步决定了这一领域的发展是曲折向前的。   所谓的基因药物是指两类:一种是利用基因技术生产的蛋白类药物,如利用水稻生产的人类血清蛋白 另一种是针对人体发病基因片段的靶向药物,即个性化药物。个性化药物是利用患者信息,通常是遗传或生物学特征,为单个患者&ldquo 量身打造&rdquo 的药物。早在2009年,普华永道的一份报告就指出该挂钩领域的市场价值达到了2320亿美元,到2015年更是预计将达到4520亿美元。   以Illumina、Life Technologies公司(LIFE)等公司为代表的新的快速和具有成本效益的DNA测序技术的发展,标志着个性化医疗的时代已然来临,但每次大的变革都会带来行业的大洗牌,许多公司将飞速前进,而另一些则会很快消亡,因为他们的技术不再是现代科技的先锋。   基因药物的美国生存土壤   由于美国的医疗保健预算迫使人们使用更加合理和有效的药物,想象这样一个场景,一个医生可以采取血液样本,并很快找到与患者基因相匹配的药物,却能产生量最少的副作用,最终节省了宝贵的治疗时间,降低成本达到最大效益。   根据麦肯锡公司的数据,医疗保健费用在过去40年一直超越GDP的增长。而这一趋势很难继续下去&mdash 付款人(保险(放心保)公司和医疗保险/医疗补助)的越来越不愿意支付额外费用。未来的医疗体系将继续允许付款人拥有更多的发言权。当然,是在成本控制与维持治疗的高品质的前提下。   黑斯廷斯中心的一份报告表明,慢性疾病患者的相关成本正在显著增加。该报告预测糖尿病,和阿尔茨海默氏的门诊费用将在2015年和2020年间达到4000亿美元,因此,就美国的医改趋势而言,预防用途的个性化药物将主导市场,以抵消医疗保健预算的负担。   在此背景下,个性化医疗和基因检测在美国迅速找到了发展的土壤。   过去的几年里,人类对蛋白质组和代谢途径的了解和认识已大大增加。医学已经认识到,所有的实体肿瘤都是不一样的,即使他们可能在如乳房一样的器官被发现。个性化药物的最终目标是利用一个人的遗传信息,提供最有效的治疗方法,从而提高医疗效率。   事实上,医生已经使用个性化药物相当长一段时间了。例如,用乳腺肿瘤表达的雌激素受体(ER阳性)的患者,可给予一种雌激素拮抗剂药物阻止雌激素与肿瘤结合的活性。相反,如果没有可以阻断的受体,则没有必要来使用该药物。可见个性化药物不仅加速了处理时间,也有可能减少副作用。当前医生开的药都是确定治疗的好处会大于副作用,然而副作用也是令人不安的。在更严重的疾病,如癌症的情况下,副作用可能是巨大的。一种药物可能是最有效和最适当的,但是,如果病人不能耐受副作用,治疗必须提前结束。很多时候,这些负面效应可能会潜伏很长时间才表现出来。   基因是DNA序列,其编码的蛋白质,多在药物代谢通路中发挥重要作用。如果了解了患者的基因片段的遗传突变或单核苷酸多态性,医生就可以筛选低或高于正常代谢情况下的药物效力,实现最佳的药物反应。临床上使用个性化药物方法需要很多许多方面的基础,包括基因和蛋白质、代谢物和基因突变等大型数据库的建立。进一步需要发现药物和食物与基因及其突变的互动。   个性化医疗主要依靠基因组学的研究来预测特定病人的药物反应,靶向治疗药物也可以属于这一类,因为很多时候药物的目的是针对一个特定的受体或病变组织的生理特性。然而,基因组、蛋白质组和代谢组如浩瀚江海,很难获得和运用信息的使用方法。   测序技术的发展和成本   测序技术的突破(如LifeTech的离子质子基因测序技术),将允许快速识别不同的患者,肿瘤和其他疾病状态的基因序列。然而在未来几年,即使有这些突破但还有很长的路要走,难点在于临床收集的数据,以及临床效果。中国人口众多,要搜集大样本中国的医院就是一个非常好的目的地。   这方面的专家乔纳森· 劳拉博士认为:&ldquo 作为一名医生和前分子遗传学研究学者,我一直看到靶向治疗药物的潜力。这在我的研究领域&mdash 头部和颈部癌症的治疗发挥越来越重要的作用,通常是有针对性的同步化疗结合手术。实现mRNA和蛋白的预测矩阵有很长的路要走,虽然可以针对测序结果合成临床使用的蛋白质,现在的障碍是具体用药疗效的大规模临床试验的落实,中国也很好的样本来源。&rdquo   致力于这方面的国外领先的机构,都在大力扩大和中国各地的医院合作,以获得特性基因、蛋白序列和临床表现等的数据。不过,如果要个性化药物发挥除了全部潜力,真如人类探索宇宙一样是没有边际的,而且个人表现非常不一样,很难想象有人花大成本去实现它。所以更现实的情况是,通过大数据库的建立,筛选出人类最常见的病症和相应基因片段和蛋白质序列,这已经是个性化药物发展的最好前景了。   目前甚至相当长一段时间内,测序技术的发展的应用仍主要在于新生儿的基因测序和图谱分析之上,很多留学人士都愿意回国来以此创业。   先&ldquo 吃螃蟹&rdquo 的不赚钱   现实中相关公司如何呢?人类基因组计划始于1990年,到目前为止,已经圆满完成。个性化药物应用与医疗保健应该很快到来。但不幸的是,在投资早期仍然意味着错误。   Myriad(MYGN)是美国一家分子诊断公司,主要业务预测医学、个性化医学和临床药物检测。其中最知名的测试包括用于遗传性乳腺癌和卵巢癌的BRACAnalysis,以及用于检测遗传性结肠癌和其他多种癌症 的COLARIS。但Myriad最近则被当地法院裁定,分离BRCA1和BRCA2基因的专有权不属于Myriad。于是两家竞争者Ambry和Gene-by-Gene也宣布他们将提供BRCA基因测试,包括BART基金分析。虽然Myriad对两家公司进行了专利侵权诉讼,但毫无疑问,行业的门槛在降低,其市场领导者的测试将继续受到竞争对手的挑战。此外,政府的举措将继续蚕食以DNA测序为基础的诊断业务的利润。   虽然这类基因检测技术已经非常成熟,且应用广泛,但也逐渐显现出专业化和专业认证的趋势。比如近期基因检测买方公司信诺决定,他们不会支付任何BRACAnalysis测试的费用,除非由一个委员会认证的遗传学家亲自检测,必须是由经过独立专业训练的遗传学专业,如医学遗传学家或顾问且拥有美国遗传学委员会认证的检测实验室。   在美国,只有2700个认证的遗传学顾问,以及1400位被认证的遗传学家,其中有近四分之三在医院工作,有近一半工作在大型学术中心。信诺公司的举动意味着,患者的检测必须求助于学术机构。目前,一些学术中心已宣布计划开始BRCA基因的内部测试。另外,FDA归类分子诊断测试(MDX)为外诊断医疗器械。这些测试都需要经过FDA的复杂和高难度评估,评估过程中需要由专家了解测试的复杂性。   目前,妇女保健部门占Myriad销售额约40%。但不幸的是,这些销售皆非来自遗认证的传学家或顾问。第三方公司像信诺公司一旦停止向非认证遗传学家的BRCA测试购买服务。那么像Myriad公司就将受到来自这方面的业务压力。   真正的壁垒是&ldquo 大数据库&rdquo 和高端人才。   必须承认,这个行业仍然存在很高的技术壁垒。换句话说,基因检测手段很成熟,很多实验室都能实现,然而检测结果的解读却非常困难,因为这依赖于基于大数据上的数据库。   比如,Myriad最值得骄傲的就是拥有专有数据库,它用来解释不确定的遗传检测结果。如果其他公司不被允许在BRCA基因测试中使用Myriad的私有数据库,这道屏障和战略优势将非常显著。当然,随着时间的推移这种优势会慢慢减弱,但是无论如何,这从侧面说明了数据库在基因检测中的核心作用。   一些主做基因检测试剂盒的跨国公司的转型的事实非常有说服力,据悉它们已经开始把未来的业务重点放在了基因信息学之上,虽然短时期内还未能带来任何利润,但已经成为&ldquo 行业进化&rdquo 中的必须环节。临床验证是在需要大量的时间和金钱花费,而更广泛的验证才能构建真正的数据库,因为这些新设备和新技术变得更便宜和可用。但如何将转化为生物或临床结果还是很难。而且,很多国家的医院医生并没有更多的遗传性和信息学知识,对遗传密码更是一无所知。
  • 华大智造发布超高通量测序仪 单例成本低于100美元
    美国当地时间2月7日,在AGBT(Advances in Genome Biology and Technology,基因组生物学技术进展会)上,华大智造重磅发布超高通量测序仪DNBSEQ-T20×2。该产品每年可完成高达5万例人全基因组测序,创造了全球基因测序仪通量的新纪录;单例成本低于100美元,实现了最佳的规模成本,为行业构筑了一款超强生产规模的“超级测序工厂”。华大智造首席科学家Rade Drmanac博士(左一)2003年“人类基因组计划”宣告完成,这二十年间,伴随着核心工具自主可控与核心技术的不断进步,基因测序通量及成本以 “超摩尔定律”的速度发展。华大智造DNBSEQ-T20×2的诞生,也标志着:一个人的全基因组测序成本从30多亿美元降至100美元以下,基因科技普惠人人真正照进了现实。华大智造首席科学家Rade Drmanac博士在发布现场表示:“华大智造始终秉持‘创新智造引领生命科技’的愿景。今天,我们正式推出开创性的‘超级测序工厂’——DNBSEQ-T20×2超高通量测序仪,我们衷心希望它能够为全球基因科技的发展和普及赋能,加速人类在基因组学领域的理解和医学应用的进展,造福人类健康。”超高通量!每年完成高达5万例人全基因组测序在DNBSEQ-T20×2所构建的“超级测序工厂”中,配备了开放式的并行处理系统,它可以在短时间内将测序生产规模提升至新的量级,同时支持6张超大尺寸的测序载片上机运行,每张测序载片既能独立运行不同的测序读长和测序应用,还能够支持混合测序,最大程度提高测序效率和测序规模。一台DNBSEQ-T20×2单次运行通量达42Tb(PE100)或72Tb(PE150),是常规超高通量测序仪的4.5倍至7倍。以PE100为例,单次运行可产生最高42Tb的数据、相当于420例人全基因组(WGS,30× Coverage)。按照全年300个工作日计算,DNBSEQ-T20×2每年可完成高达5万例人全基因组测序。超低成本!单个人全基因组测序成本低于100美元基于华大智造独有的DNBSEQ原理,DNBSEQ-T20×2采用了创新的浸没式生化反应技术,即直接将载片浸没在试剂槽中进行生化反应,反应均匀且稳定;同时试剂槽中的测序试剂可以支持载片的多次浸泡,从而实现了将耗材成本降到极致的目标。在完成5万例人全基因组测序基础上,将单个人全基因测序成本降低至100美元以内。延续DNBSEQ测序平台的技术优势,再加上高准确性的碱基识别和拷贝数校正算法,DNBSEQ-T20×2的测序质量表现优异,测序准确性高,数据序列重复率低、有效数据利用率高。超大规模!快速启用的一站式“超级测序工厂”DNBSEQ-T20×2作为一款具备超强生产能力的测序设备,如何满足大人群基因组,尤其是百万级别国家基因组项目快速启用的需求呢?在朝着“生命科技核心工具缔造者”目标迈进的过程中,基于对测序全流程的理解与深耕,华大智造DNBSEQ-T20×2为超大规模的基因组项目提供可选的一站式工具包,包括样本制备系统及试剂、自动化建库设备、建库试剂,以及一系列支撑海量数据处理的工具和模块,如:具备Pb级数据存储和生信分析加速处理能力的ZTRON Pro,以及可实现样本管理、实验室生产、基因数据管理的ZLIMS Pro+。目前,基于T20平台可展开WGS、WGBS、单细胞测序和时空组学测序等多种应用,能更好地满足基于超高通量测序的科学研究与临床研究的需求,推动基因组学、多组学和时空组学的大规模测序研究项目的展开,为基因科技的未来提供更多可能。基于独有的DNBSEQ测序技术打造的超高通量测序平台,华大智造在全球范围内支撑、赋能多个国家级别基因组项目顺利开展,包括助力阿联酋启动全球首个 “全民基因组计划”、印度尼西亚首个“国家基因组计划”、和“泰国基因组学综合行动计划”等。DNBSEQ-T20×2 的诞生,也将进一步满足更多大人群基因组项目对更高通量、更低成本以及更大规模的需求。速度王者!中小通量DNBSEQ-G99在美发布值得一提的是,华大智造在AGBT现场宣布在美发布G系列的最新型号测序仪DNBSEQ-G99,该款基因测序仪是全球同等通量测序仪中速度最快的机型之一,特别适用于靶向基因测序和小型基因组测序,数据产出速度快、质量高。整机通量8-48Gb,突破性地实现了12小时、PE150测序数据的产出。生命时代,未来已来。华大智造此次发布超高通量测序仪DNBSEQ-T20×2,进一步夯实、丰富了其覆盖高中低通量的全测序产品线。同时,在超高通量领域,它打破了常规测序仪的生产能力,旨在为全球用户提供超高通量、超低成本、智慧集成的强大工具,秉承着造福人类卫生健康共同体的理念,加速人人基因组时代的到来。
  • Illumina首席执行官:测序成本的降低与竞争无关
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/329f306a-e4ee-4590-8c80-4b0ffd7ae224.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center width: 509px height: 339px " width=" 509" height=" 339" / /p p style=" text-indent: 2em " 基因测序市场的比拼永远是以技术为王,Illumina的二代测序技术(NGS)平台凭借前所未有的规模,出色的数据质量和准确性,占据了全球70%的基因测序市场(2016年)。据统计,全球约90%的基因数据是基于Illumina平台产生,Illumina毫无疑问已经是基因测序产业的巨无霸。中国作为Illumina第二大市场,在其发展中举足轻重。近日,Illumina首席执行官Francis deSouza和全球首席商务官Mark Van Oene到访中国,并接受了测序中国的采访。采访中,deSouza和Van Oene分析了收购PacBio对双方技术与市场发展的影响,并对Illumina的未来发展进行了分享。 br/ /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 强强互补,双赢局面即将打开 /span /strong /p p   Illumina作为全球基因测序行业的巨头公司,在短读长测序技术和市场渠道上都有着绝对的优势。随着基因测序企业的蓬勃发展,基因测序技术也不断革新,除了应对设备价格、测序速度、设备便携度等方面的竞争外,测序技术的更迭才是Illumina更大的挑战。11月1日,Illumina收购PacBio的消息在整个基因测序行业引起了轰动,12亿美元的大手笔收购也显示了Illumina进军长读长测序市场的决心。有人预计,Illumina收购PacBio后,未来全球绝大部分基因组信息都将由这两个公司产生,可以说在长短读长测序领域独占鳌头。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0bc8586a-440d-45b1-b376-4ff1a0fd6616.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 570" height=" 380" style=" width: 570px height: 380px " / /p p style=" text-align: center " span style=" text-align: center color: rgb(127, 127, 127) " Illumina首席执行官Francis deSouza /span /p p   提及该收购案,Francis deSouza表示:“我们非常兴奋能够与PacBio签订收购协议。PacBio在长读长测序的市场有很多优势,Illumina则拥有强大的短读长测序技术与市场,两个技术互补公司的联合将开创基因测序的新应用,赋予其更多价值。” /p p   随着全球逐步进入全基因组测序时代,市场对长度长测序技术的需求日益强烈。PacBio在长读长测序技术的明显优势可以填补Illumina当前技术与市场的空白,为双方带来极大地帮助。deSouza告诉测序中国:“通过合作,Illumina可以为PacBio带来很多价值。PacBio在单细胞长读长测序应用方面有着强大的创新和专业能力,并且拥有质量近乎最好的长读长测序设备 我们有完整的临床团队做支持,在临床市场推进方面更有经验。综合双方优势,我们可以帮助加速PacBio测序技术在特定市场的应用,帮助其不断降低工作的运作成本,并在注册、生产、运营方面提供支持。” /p p   “与此同时,我们也能加深对临床市场的了解,扩展市场并从中获益。无论是生物科学研究还是临床应用,Illumina与PacBio的结合都可以在基因检测、生殖健康、生物制药和肿瘤方面为用户提供更广泛的产品组合,最终实现强强互补的双赢局面。” /p p   同时,Van Oene补充道:“从技术上来说,PacBio和Illumina是凭借各自优势实现互补。在我们帮助PacBio扩大规模,降低成本的同时,PacBio也能帮助Illumina的用户扩展更多的应用,如在基因结构研究中,我们将更关注单细胞转录组、生物药物及后期的临床转化等。通过合作我们也有更多机会发现新的东西,完成此前未能完成的研究。” /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/8e81f0af-eb2b-4624-b8f4-b4145f9c6cb1.jpg" title=" 3.jpg" alt=" 3.jpg" style=" text-align: center width: 524px height: 349px " width=" 524" height=" 349" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " Illumina全球首席商务官Mark Van Oene /span /p p   二代测序技术(NGS)是Illumina的主打技术。凭借高通量、成本低的优点,NGS在众多应用中大展身手。但在全基因组测序中,NGS显得心有余而力不足了。长读长测序技术的出现不仅解决了上述难题,长读长、快速与高准确性的优势也使其成为测序巨头们的“必争之地”。全球长读长与短读长测序市场的竞争越来越激烈,对于Illumina来说,收购PacBio不仅仅是弥补了自身技术的不足,推进长读长测序技术向临床应用场景迈进的过程,也为Illumina向临床市场进军提供了一个良好契机与技术支持。 /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 测序成本的降低与竞争无关 /span /strong /p p   近年来,虽然基因研究领域的科研人员在生物科技、卫生健康、疾病发现、微生物控制等方面获得了巨大的研究成果,但事实上,整个基因行业还处于萌芽阶段,基因领域有更多的未知等待探索。 /p p   随着全球基因测序产业的崛起,Illumina将目光投向了具有广阔发展空间的中国市场。近期,MiSeq& #8482 Dx与其配套肿瘤基因检测试剂盒的相继获批,堪称Illumina开拓中国市场的一大里程碑。“这不仅能够为中国肿瘤患者和医护人员提供有效的帮助,也为后续的设备研发和临床试验提供了宝贵的经验。”deSouza表示,“MiSeq& #8482 Dx的成功获批是多方努力的结果,除了与优秀的中国合作伙伴通力合作,也离不开我们对测序技术的精益求精。基因测序走向临床应用是大势所趋。随着医疗水平的不断提升,临床对精确度的要求和门槛也会越来越高。为在高通量情况下,能够持续提供最高等级精确度的测序数据,我们在技术研发中投入了很大的精力。” /p p   这一点可以从Illumina不断增加的研发成本看出,2015年、2016年度、2017年该公司的年度研发投入总额分别为4.1亿美元、5.04亿和5.46亿美元。增加研发投入提高测序质量与速度,是目前Illumina应对来自整体市场和其他公司竞争压力所采取的一个策略。随着研发投入的逐年上调,测序成本逐步降低,2014年,Illumina推出HiSeq X Ten测序仪后,率先将基因测序的价格降到了1000美元以下,但这不是终点。在2017年在新品发布会上,他们又提出了新的口号:向100美金的全基因组测序进军。deSouza坦言:“一直以来,Illumina都在不断主动降低测序成本。但并不是竞争迫使我们这样做,我们的目标是扩大基因测序使用范围,让更多人受益,这与竞争无关。最重要的是,无论怎样降成本,我们都决不会牺牲质量,这是底线。” /p p   Van Oene同样表示:“众多基因测序企业都有着一个共同目标,就是让更多的人消费得起基因测序产品,解放基因组的力量,实现基因测序的价值。想要达到这一目标,就必须降低测序成本。竞争的存在与否并不能改变Illumina在降低测序成本方面的努力与投入,我们是在主动在做这件事情。” /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 慢病管理也是未来增长点 /span /strong /p p   在基因测序产业的发展历程中,Illumina的贡献毋庸置疑。Illumina是以产品和技术驱动的公司,面对全球基因测序市场的激烈竞争,deSouza表示,公司会继续保持并不断提升在测序速度与质量方面的优势。对于用户来说,更多的竞争意味着更多的选择,这对基因测序的普及与整个行业发展来说是一件好事。 br/ /p p   近年来,Illumina的业绩不断增长,对于未来的增长点,deSouza分析道:“我们会继续关注临床和消费级基因检测这两个市场,它们都会有很大的增长,包括新生儿和产前基因检测以及肿瘤、携带者筛查等应用。政府的大规模人群检测也是很大的一个市场,增速很明显。”此外,他还强调:“慢性病管理也是我们未来的发展方向。慢性病方面的基因研究非常吸引人,如利用多基因评体系,我们可以对心脏病、糖尿病、脑部疾病等进行早期风险评估或预测,以帮助高风险人群在早期进行有意识地预防。”相信随着对慢病基因检测应用研究的深入,Illumina将在疾病预防、治疗的整个流程中发挥越来越重要的作用。 /p p   “解放基因组力量,造福人类福祉”是Illumina的愿景。deSouza表示,Illumina从未改变这一理念,未来公司将与合作伙伴共同推进生态圈的建立,开发优质的基因测序上下游产品,为科研与临床用户提供更多的选择。 /p
  • 首个国产三代测序仪投产 将再次大幅降低成本
    p   中国首个应用于临床的第三代测序仪投产,有望把一个人的全基因测序成本从1000美元降至100美元,但仍需进一步完善相关技术。 /p p   7月31日,南方科技大学生物系80后教授、瀚海基因创始人贺建奎宣布,自主研发的第三代基因测序仪GenoCare正式投产,首笔订单达到700台测序仪。 /p p   21世纪经济报道记者独家获悉,该笔订单合同期三年,购买方包括国内外研究机构和医疗机构。目前测序仪已在科研市场应用,但投入临床市场所需的批文还在申报中。 /p p   贺建奎表示:“我们使用单分子测序,不需要扩增,并可大幅降低试剂消耗量,同时,所有试剂、仪器都在国内生产、集成和组装,成本因此降低,一个人的全基因组测序价格可降到100美元。” /p p   strong  截至目前,全球自主研发三代测序仪的企业只有三家,另外两家分别是美国Pacific Biosciences和英国Oxford Nanopore Technologies。 /strong /p p   过去的十余年里,三代测序主要在科研市场崭露头角,但因错误率高、成本高等原因始终未能进入临床市场,更谈不上产业化。 /p p   目前,基因测序市场的主流是二代测序,三代测序的样本量、数据量需要积累,中下游应用开发也刚起步。即便是应用相对广泛的二代测序,在各病种的覆盖率也不算高,三代测序的普及之路更为漫长。 /p p strong   研发破壁 估值15亿 /strong /p p   瀚海基因已开始在罗湖莲塘工业园建设1万平米的第三代测序仪生产线,建成之后产能将达到每年1000台,产生50亿元价值。 /p p   “除团体订单外,我们的测序仪没有公开发售,价格还不能透露,”贺建奎表示,“目前已进入小批量试产阶段,年底生产线建好后可以大批量生产,年终可接受国内外医院、科研机构订单,到明年年初,群众就能用到三代测序服务了。” /p p   深圳一名熟悉瀚海基因的投资机构合伙人告诉21世纪经济报道记者:“瀚海基因的技术是吸收后创新。” /p p   记者了解,贺建奎在斯坦福大学的导师斯蒂芬· 奎克教授是一位拥有12家公司的企业家,也是世界上首个第三代单分子测序仪Helicos的发明人。资料显示,Helicos公司于2004年创办,并于2012年破产。 /p p   也是在2012年,贺建奎完成斯坦福大学博士后研究员的工作,回国入职南方科技大学,成为该校生物系第一位教师。同年,他创办了瀚海基因,启动国产三代测序仪研发。 /p p   起初行业内外对这一项目并不看好,瀚海基因前4年也一直没有销售收入,研发遭遇资金危机,两次险些关门倒闭。贺建奎直言:“一开始见了20多位风险投资人,无一例外都被拒绝,理由之一是当时还没有在职教授创业的例子。” /p p   另外,测序仪研发难度非常大,国产三代测序仪更是首次尝试。贺建奎指出:“基因测序的样品前处理非常复杂,耗费时间、人力,还需要有后续的生物信息及专业人才。三代测序仪要把这些集成在一起,改变二代测序的半自动场景,测完自动完成生物信息学分析,难度不小。” /p p   测序仪研发对人才要求很高,其涉及光学、流体、化学、分子生物学、生物信息学和精密机械等,需要多学科交叉知识和人才。 /p p   即便到了今天,瀚海对人才的渴求依旧跃然纸上。记者获悉,与生产线同时启动的是瀚海研究院计划,预计未来5年引入至少50名遗传解读分析专家以及50名医学专家(包括生殖、肿瘤、传染病等各学科)。 /p p   2015年,瀚海基因终于拿到第一笔大额融资——南京中正科技投资1700万元,同年,瀚海基因发布了GenoCare原理样机。此后,公司身价一路水涨船高,目前共获得5轮、2亿元风险投资,测序仪虽未真正走向市场,但估值已达15亿元。 /p p   深圳一名中小企业投资机构负责人告诉21世纪经济报道记者:“去年11月我们去看的时候,估值已经10亿元了,项目还很早期,对我们来说太贵,投不起。” /p p    strong 产业化起步 大幅降低成本 /strong /p p   采访过程中,贺建奎多次提到,降低临床基因测序成本,这也是二代测序仪的发力方向。 /p p   原中国科学院北京基因组研究所副所长于军指出:“第一代测序仪测一个人的基因组测序接近30亿美元,第二代降到1000美元,第三代使用单分子测序,不需要扩增,价格有望降到100美元。”业内将其称为摩尔定律,以说明价格急剧下降趋势。 /p p   翻看基因测序成长史,第一代测序技术主要基于Sanger双脱氧终止法的测序原理,结合荧光标记和毛细管阵列电泳技术来实现测序自动化,基本方法是链终止或降解法,人类基因组计划就是基于一代测序技术。 /p p   第二代测序技术设备供应商主要是Illumina,业内普遍认为,其市场占有率达到70%。今年年初,Illumina公司宣布推出NovaSeq系列测序仪,据称,其简捷操作、低成本及灵活性有望将基因组测序成本降至100美元。 /p p   根据Illumina2017年第一季度财报,Illumina共收到135个NovaSeq测序仪订单。不过,中国科学院院士陈润生指出:“NovaSeq系列测序仪的使用窗口目前没有开放。” /p p   国内基因企业也在通过技术合作、收购等方式破壁测序仪国产化。如Illumina和贝瑞和康、安诺优达开发了一款适用于无创产前检测的二代测序仪NextSeq CN500和NextSeq 550AR,并已获得CFDA批准。 /p p   华大基因通过收购的方式布局,先后推出三款国产二代测序仪。华大基因CEO尹烨此前向21世纪经济报道记者透露:“算上临床机构、科研机构和友商,国内应该已经超过两百多台我们的测序仪在‘服役’了。” /p p   第三代测序技术原理最早发表于2003年,后来,Pacific Biosciences和Oxford Nanopore相继入局,Pacific Biosciences于2015年10月推出小型单分子测序仪Sequel。一名基因测序公司技术总监告诉记者:“中国市场目前唯一的三代测序仪就是这家公司提供,也是针对科研市场。” /p p   英美测序仪的研发起步虽早,但进展一直缓慢,临床应用更谈不上。瀚海基因化学部副总监赵陆洋告诉21世纪经济报道记者:“三代测序仪很受科研市场欢迎,因其提供了RNA直接测序的可能性,这是二代测序做不到的。” /p p   上述投资机构合伙人表示:“科研型测序仪对易用性、可靠性要求低一些,对可调节因素要求高一些,也不需要申请注册证。相比之下,临床市场的门槛高很多,空间也比较大。” /p p   虽然瀚海基因对自己的测序仪信心满满,但在评价一款基因测序仪的三大核心指标:通量、读长、准确度方面,瀚海基因却三缄其口。 /p p   据贺建奎介绍,GenoCare第三代基因测序仪的核心技术为单分子荧光测序,此项技术使用全内反射荧光成像方法,能够检测单个荧光分子,无需PCR扩增。 /p p   资料显示,二代基因测序技术在上机测序前需要对样本进行PCR扩增,可以在试管里、在很短的时间内,将待测基因扩增50万倍乃至上百万倍,这能提高基因诊断的灵敏度,但带来问题是实验要求比较高,成本也居高不下。 /p p   同时,贺建奎团队联合中美两国科学家协作使用Genocare对大肠杆菌测序。数据结果显示,Genocare与测序行业龙头Illumina生产的MiSeq二代基因测序仪的一致性达到99.7%。 /p p   “预计明年年初会公开发售价格。临床实验也已经启动了,在走试验、申报流程。其他领域如科研市场不需要医疗器械证就可以使用,这些领域已经有我们的测序仪在应用了。”贺建奎说。 /p p    strong 应用存短板核心部件依赖进口 /strong /p p   研发出三代测序仪后,瀚海基因一面要推动大批量生产,一面要开拓中下游。 /p p   目前,基因测序已形成了明确的产业链分工:上游为设备和耗材供应商 中游为第三方测序服务供应商,需依赖设备投入、运营管理与终端维护开发 下游为生物信息分析服务商。 /p p   贺建奎阐述了瀚海基因的商业模式:“中游的应用开发比如肿瘤基因检测、遗传基因检测、传染病检测,通过合作伙伴来完成。希望越来越多的测序服务公司和相关的机构在我们测序仪上开发各类疾病检测,形成生态圈,并且通过他们或者其他人把测序仪销售到医院。” /p p strong   上下游企业的互相“成全”,也是Illumina和华大基因成长的路子。 /strong /p p   前述投资机构合伙人指出:“华大基因向Illumina购买了100多台测序仪才成为第一,华大基因也通过这些测序仪开发出了很多服务。测序仪未来的销售量如何,可能要依靠整个行业,包括合作伙伴、临床以及科研机构有没有充分地把临床意义和科研意义发挥出来。” /p p   记者在瀚海基因测序仪上市发布现场注意到,华大基因、北科生物、从事体外诊断的安图生物等都有相关负责人到场,这些都是瀚海的潜在合作伙伴。 /p p   不过,是否牵手瀚海基因还需要考量。一家生物技术公司产品部负责人告诉21世纪经济报道记者:“瀚海的测序仪一次只能测一个人的全基因组,Illumina的人数会多一点。另外,现在体外诊断主要还是对已知疾病的检测,瀚海基因主要是早期筛查,这虽然是趋势,但目前市场有限,二代测序也很早就在做了,样本和数据更多。” /p p strong   而更多的挑战还是来自老问题:错误率高。 /strong /p p   兴证医药研报指出,第三代基因测序单读长错误率依然偏高,在15%-40%,二代测序的错误率低于1%。前述中小企业投资机构负责人告诉记者:“单分子测序不需要切断DNA和RNA序列,看重对碱基对一下子读下去能读多长,而影响读长的一个是机器,一个是生物合成酶。” /p p   广发证券也指出,单分子测序可收集到的信号非常弱,这对光电元件提出很高要求,虽然目前部分仪器已经实现商业化,但离理想状态还有较大距离。另外,还有测序通量不高、插入缺失错误等不足之处,这都影响了三代测序的推广。 /p p   值得一提的是,与其他国产测序仪一样,瀚海基因测序仪核心零部件依旧需要进口,例如光学系统中的部分核心器件来自日本、德国,测序芯片和微流控系统需来自新加坡、美国。 /p p & nbsp /p
  • 奇点大牛爆料:五年后基因测序成本只需1毛钱
    11月24日,奇点大学生物技术和信息学项目负责人Raymond McCauley在太庙正殿举行的百度BIG课堂上,向大家讲述生物技术的现实和可预期的未来应用。McCauley的主要研究方向是低成本生物技术应用,在他的研究里,生物技术并不只属于科研人员,每个普通人都可以使用它,而随着生物技术成本的降低,未来的普通人用生物技术来提升生活质量,可能就像今天我们用抽水马桶冲水、用电脑编程或者上网购物一样平常。   首先这依赖成本的降低。在摩尔定律下发展十几年的测序技术已经不是被封在实验室的新鲜玩意了。2001年完成人类基因组测序的成本是30亿美金,到了2007年就只需要100万美金,这个价格在当时大概可以买一栋不错的别墅。但到了2013年2500美元就可以做一次基因组测序了,今年1月份这个成本下降到了1000美元以下,在美国这约等于一次肺部胸片的价格。这还不算完,根据McCauley的预测,2年后这个成本会比买四张披萨的钱还少,而到了2020年,完成一次人类基因组测序的成本可能只需要1毛钱,大概是现在我们冲一次马桶的耗水量成本。   设备的进步也是一方面。2014年1月美国生物研究上市公司Illumina(它也是McCauley的前前任雇主)推出一组叫HiSeq X TEN 的设备,可以实现工厂规模的基因测序每周至少完成320人次的基因组测序。3D打印技术也给生物科技的普及带来无限想像力。   事实上,现在阻滞生物技术进一步普及的瓶颈不是生物技术的发展速度,而是信息科学。基因测序后的解读和破解需要巨大的计算能力。由华大基因研究院院长王俊牵头在深圳建立的&ldquo 生命之树&rdquo 项目组,可以贡献全世界DNA数据的20%,他们每一天产生的数据就有6T。McCauley觉得在生物技术的应用中,可能不再需要懂艰深的生物技术,我们可能像现在工程师编程一样应用生物技术。   McCauley在美国建立了一个叫Biocurious的类似生物创客空间的组织,他们跟美国政府及IBM之类的大公司等都有密切的合作,会员每个月只需要付100美金就能去实验室做各种生物实验。McCauley说未来还会出现一种通过扫描测定基因的设备,可能不到手掌大小,扫描后直接连接到电脑usb口就可读取结果。   现在医学、农业和能源制造等领域都与生物技术密不可分,在McCauley眼里生物技术会像现在的计算机技术一样渗入未来生活的方方面面。除了现在已经在农业和医疗上的广泛应用,在McCauley描述不远的未来,你可以用你的基因数据来指导日常饮食(一家叫Second Genome的公司已经在这么做了)或选择生活方式。   比如McCauley在阅读自己的基因后发现他患一种叫AMD的老年黄斑病变(其实这在国人认知里是衰老中发生的自然症状),这种病一旦发生便会视力下降直到失明,没有好的治愈良方。但可以通过日常多摄入维生素等来预防,McCauley说他也可以积极关注和参与相关的实验和治疗。   未来我们也许会像现在从亚马逊上买东西一样,普通人即使不懂生物技术,也可以利用它来满足生活需求。我们可能通过基因来寻找爱人、选择职业方向。生物技术可能继水电煤计算机和网络后,又一个人类离不开的基础技术。McCauley说,甚至当你想要一个实木书柜时,可以到基因商店去,选择一段合适的基因序列,把它加入到你的购物车,然后你直接得到一个长成方形的树木躯干。   McCauley提到的生物技术公司   1、Illumina:美国知名度最高的生物技术公司,也是McCauley的前雇主。成立于1998年,已在纳斯达克上市,手握大量现金,时刻准备买下新冒头的小公司,在市场中具有一定垄断地位。今年1月分推出一组新的测序设备HiSeq X Ten,每周至少能完成320个人的基因测序,测出全基因组序列的成本不到1000美金。国内已有公司引进这组设备。   2.23andme :成立于2006年,主要提供低成本的个人基因组测序服务,吐口吐沫就告诉你基因的秘密。可能服务面向个人更注重对外宣传,所以是目前国内科普度最高的生物技术公司。   3.Biocurious 实验室:McCauley是创建者之一,它类似一个生物技术的创客空间,非营利组织,与美国政府和IBM等公司有密切的合作。会员每个月付100美金,可以去实验室里做各种实验。   4.Second Genome:一家研究微生物领域的公司,他们喜欢把研究成果转为普通人的生活指南。比如推崇像古人那样饮食,不用把生活环境弄得太干净,更明智使用抗生素等。McCauley介绍可能在不久的将来,人类可以做到对自己身体里的微生物做一次人口普查。
  • 科学家改良基因组组装流程 提高测序成本效益
    据物理学家组织网5月5日报道,最近,美国能源部联合基因组研究所(DOE JGI)、太平洋生物科学公司(PacBio)与华盛顿大学合作,开发出一种改良的基因组组装工艺流程,生成的读取片段达到数万个核苷酸长度,最终的组装序列准确率大于99.999%。以往的桑格技术只有700个核苷酸,新工艺大大提高了测序组装和分析的成本效益。相关论文在线发表于5月5日的《自然· 方法学》上。   人们在降低成本和DNA测序通量上已取得巨大进步,但在重建基因组过程中,仍面临很大挑战。现有技术擅于造出短DNA字母片段(读取片段),经过计算把它们拼一起(组装)成为长链,以此来确定目标序列中这些字母的序列和功能。基因组装就好比把几百万的&ldquo 拼图&rdquo 拼在一起,而事先不知道原图是什么样子。由于DNA片段非常小而数量却极大,用目前流行方法来组装非常困难。   研究小组描述这一工艺为&ldquo 从DNA样品制备到最终基因组确定的全自动过程&rdquo ,所用技术叫做HGAP(分级基因组组装过程)。利用太平洋生物科学公司的单分子实时DNA测序平台,生成的读取片段达到数万个核苷酸长度,比人类基因组计划时期的主力技术&mdash &mdash 桑格测序技术还要长。   桑格技术只能产出约700个核苷酸的读取片段,而且要建多个DNA库控制多种运行,结合数据分析才能填补碱基编码空缺。后桑格法也需要多个库,但结合了优选技术。据研究小组报告,HGAP则相反, &ldquo 只需准备一个DNA库,就会自动连续不断地读取单分子实时测序完成组装,而不需要循环一致测序。&rdquo 他们还用DOE JGI以往测序过的3种细菌对新方法进行了测试,收集数据进行了对比,发现HGAP方法最终组装好的序列准确率大于99.999%。   &ldquo 我们一直在寻找新做法,在产出高质量数据的同时提高效率。&rdquo DOE JGI基因组技术副主管兰恩· 潘那奇奥说,&ldquo 我们在研究多种改良技术以实现规模经济效益,这只是其中之一。&rdquo 在全世界已完成或正在进行的两万多个基因组项目中,超过20%在使用DOE JGI的测序技术,大多集中在环境生物学、能源和碳处理方面。目前,研究小组正在进一步扩展这种新方法的应用范围,以研究更复杂有机生物的基因组。   太平洋生物科学公司首席科学官乔纳斯· 克拉奇也表示,通过与JGI微生物和微生物基因组组装与注释领域的科学家合作,他们才能改变单分子测序组装方法,使组装结果质量更高,而且在速度和价格方面能与下一代测序与组装方法竞争。
  • 纳米孔单分子检测技术新进展 有望大幅度降低DNA测序成本
    p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp DNA测序能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,同时可以帮助患者精准治疗。但目前的DNA测序技术,昂贵的价格让普通大众望其项背。寻找低成本、快速的DNA测序技术,成为科学家们研究的热点,生物纳米孔单分子分析技术因其低成本、快速和无需荧光标记等优点被视为最具前景的DNA测序技术之一。 /p p style=" LINE-HEIGHT: 1.75em"   近期,华东理工大学化学与分子工程学院的龙亿涛科研团队在生物纳米孔超灵敏单核苷酸分辨领域取得独创性突破,该研究成果以华东理工大学作为独立研究单位,于4月25日在《Nature Nanotechnology》(自然-纳米技术)发表了题为“Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore”的研究论文。 /p p style=" LINE-HEIGHT: 1.75em"   生物纳米孔单分子分析技术的原理是通过电场力驱动单链DNA穿过纳米尺寸的孔道,由于不同的脱氧核苷酸通过纳米孔道时产生了不同阻断程度和阻断时间的电流信号,由此可根据电流信号读出每条DNA序列上的碱基信息。但在实际实验过程中,单链DNA穿过纳米孔的速度极快(约1微秒/碱基),造成了的电流阻断信号极小(皮安级),阻碍了纳米孔测序技术发展。 /p p style=" LINE-HEIGHT: 1.75em"   基于自主研制的超低电流检测装置,龙亿涛课题组首次使用野生型且无任何修饰的Aerolysin(气单胞菌溶素)生物孔,将单链DNA的过孔速度降低了三个数量级(2.0毫秒/碱基),从而极大地提高了电流检测的灵敏度,完成了对仅有单个碱基差异DNA分子的超灵敏识别,并实现了混合复杂体系的超灵敏检测和核酸外切酶“分步降解”单链DNA过程的实时观测。此外,该研究还通过改变检测体系的酸碱度,调节了气单胞菌溶素孔道内腔的电荷分布,同时结合单链DNA在孔内有效电荷数的计算,获得了纳米孔表/界面上电荷的分布信息,促进了对DNA与气单胞菌溶素孔道内腔表面氨基酸残基相互作用的深入理解。 /p p style=" LINE-HEIGHT: 1.75em"   据介绍,气单胞菌溶素来源于嗜水气单胞菌,主要存在于水生环境包括海水、湖泊、蓄水池和供水系统中,是一种天然的纳米蛋白孔,具有成本低、简单易得的特点。早在2006年,龙亿涛教授就发现气单胞菌溶素能够作为一种纳米蛋白孔,并具有实现高灵敏单分子检测的潜力。该论文的第一作者曹婵,于2011年进入龙亿涛课题组以来一直从事生物纳米孔的相关研究,通过大量的实验尝试和经验积累,实现了气单胞菌溶素纳米通道的成功制备和单分子信号的获取。 /p p style=" LINE-HEIGHT: 1.75em"   “这一独创性研究成果不仅进一步降低纳米孔单碱基分辨的成本,同时也将大大提高纳米孔DNA测序的精确度。”据龙亿涛介绍,未来,结合高带宽低噪音的电流检测仪器,气单胞菌溶素纳米孔有望实现单碱基直接分辨以及对DNA损伤的检测,这将大大推动DNA测序技术以及个性化医疗的发展。 /p p br/ /p
  • 国产测序仪BGISeq-500问世 使用成本比同行低1/3
    p   2015年10月24日,在第十届国际基因组学大会(ICG-10)上,全球最大的基因组学研发机构华大基因发布了其自主研发的新型桌面化测序系统BGISEQ-500。该仪器是华大基因继今年6月推出“超级测序仪”―Revolocity之后的第二款测序系统。华大基因2013年全资并购Complete Genomics (CG),经过两年的攻坚,于今年连续发布多款测序系统,展现了其并购整合之后,迅速实现技术转化及再创新,建立起了生命科学领域高端仪器研发和制造的雄厚实力。 /p p style=" text-align: center " img style=" width: 450px height: 300px " title=" mp38282964_1446010647444_2.jpeg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/9798f87a-be22-4cd6-9f97-3b15e479600c.jpg" width=" 450" height=" 300" / /p p   BGISEQ-500系统采用探针锚定聚合技术(cPAS)以及改进的DNA纳米球技术(DNB),配备双芯片平台,可适配FCL和FCS两种芯片类型,通过不同设置可实现16种测序模式。 /p p   此系统一出,行业人士也有感叹,这以前购买了illumina的NextSeq 500系统的岂不是亏大了。华大继6月份发布的“超级测序仪”Revolocity后,华大基因就华丽丽地从一个测序服务商一举站到了与illumina相同的高度,成为了illumina在中国甚至可能会在其他发展中国家最强劲的对手。 /p p   下表对比了BGISeq-500和NestSeq 500在通量、读长、质量以及运行时间上的一些特性。 /p p style=" text-align: center " img title=" mp38282964_1446010647444_4.png" src=" http://img1.17img.cn/17img/images/201511/noimg/c61d4563-a8a1-49ee-b6b3-740538083ed6.jpg" / /p p    strong 1.目标定位不同 /strong /p p   NextSeq 500的主要目标客户就是医院、检验所级别的中小型规模应用场景,有别于Hiseq定位于测序工厂,Miseq定位于实验室高精度快速的科研用途。通量可上可下,可以做人类全基因组测序,也可以做Nifty。 /p p    strong 2. 通量与读长不同 /strong /p p   从官方数据上看,两家500各领风骚,各有千秋。BGISeq-500 通量(FCL、FCS两种芯片高低通量搭配)达8-200G,范围比Illumina广。对于读长从数据上看Illumina家更有优势。 /p p   strong  3.碱基错误率(质量) /strong /p p   Illumina家的测序质量经过市场检验,虽然BGISeq官方给出Q30以上的碱基达到85%,但并未根据读长、PE/SE模式给出具体数据,所以看到真正的raw data之前,对测序质量暂且不进行评论。 /p p strong   4.运行时间 /strong /p p   从运行时间来看,两款系统相当。NextSeq 500的运行时间大概为12-30小时,BGISeq-500的运行时间大概为24小时,对于要求快速产出的医学检验有非常大的吸引力。 /p p   对于华大基因的这款BGISEQ-500系统,业内人士还是充满了期待。 /p p   据华大基因研究院院长、首席科学家徐讯介绍,BGISEQ-500系统基于原有CG技术基础优化而成,个人基因组检测精度达到了99.99%,完全满足临床需求,达到了国际领先水平。该测序仪的样品制备和测序操作都可通过配件自动完成,配备了无线射频识别(RFID)的样本追踪系统,可监控并记录实验全流程,结合其简洁的触控式操作界面,可真正实现一键测序。对于临床使用,可以通过其内置的应用软件直接生成分析报告,从DNA样本到数据分析结果的全过程最快可在24小时内完成。 /p p style=" text-align: center " img style=" width: 450px height: 281px " title=" mp38282964_1446010647444_4.png" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/efe123e2-655d-4d6b-ad2b-72bf2ad7647a.jpg" width=" 450" height=" 281" / /p p   BGISEQ-500配备双芯片平台,可适配FCL和FCS两种芯片类型,通过不同设置可实现16种测序模式,数据产出通量在8Gb—200Gb之间自由选择,可满足实验室和临床不同应用情景的测序需求,而无需同时购置低中高三种不同通量测序仪。在发布会上,华大基因还同时展示了个人基因组测序、农业基因组测序、转录组测序等应用的实际测试数据,以及在产前诊断、遗传病检测、肿瘤基因检测等临床应用方面的实例,在准确度和一致性方面均达到甚至超过一线成熟商业测序系统的水平。 /p p   strong  一、技术惊艳 /strong /p p   BGISeq-500核心技术不是“边合成边测序”,而是探针锚定与纳米球“珠联璧合” 。曾经以为BGISeq-500是基于边合成边测序(SBS)技术,然而如今官方竟然公布核心技术不是SBS,而是采用探针锚定聚合技术(cPAS)以及DNA纳米球技术(DNB)。 /p p   读到这里,你心中是否有这样的疑惑:SBL怎么能做到100的读长而且运行时间这么短呢? /p p   从华大基因的官方网站上得知,BGISeq-500使用优化的联合探针锚定聚合技术(cPAS)和改进的DNA纳米球(DNB)技术。首先DNA分子锚和荧光探针在纳米球上进行聚合,随后高分辨率成像系统对光信号进行采集,光信号经过数字化处理后即可获得待测序列。其中DNB通过线性扩展增强信号,降低单拷贝的错误率。此外,DNB大小与芯片上的活性位点的大小匹配,每个位点结合一个DNA纳米球,在保证了测序精度的情况下提高了测序芯片的利用效率。 /p p    strong 二、价格惊艳 /strong /p p   对于客户而言,除了通量、读长、质量和运行时间外,最关心还是价格。华大官方声称BGISeq-500仪器使用成本比同行低三分之一,个人基因组价格为6699,甚至低于X ten的8000左右。虽然还不知道后续维护成本,但运行成本一定会大杀illumina的气势。据悉,该系统将于今年12月25日开始接受预定,并计划于2016年2月15日实现交付。 /p p style=" text-align: center " img style=" width: 450px height: 300px " title=" mp38282964_1446010647444_5.jpeg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/1b2057cf-e248-4395-b4e0-bda284a60e98.jpg" width=" 450" height=" 300" / /p p style=" text-align: center " 汪建高度赞扬BGISEQ-500 /p p   华大基因董事长汪建表示,BGISEQ-500见证了人类基因组计划以来一个新时代的开启,将推动以基因作为支撑的生命科学、生物产业甚至生命经济发展,用低廉的成本、高质量、高通量的测序平台,真正实现人类基因组计划以来科学家们的梦想和希望。 /p p   众所周知,中国具有大样本量、大人群、大病源的优势,那么华大基因能否利用BGISeq-500的低成本、高质量,共享数据,推进精准医学事业的发展,让全人类的农业和医学进入一个全新的阶段呢?我们拭目以待! /p
  • 首份DNBSEQ-T7测序仪独立研究结果出炉!性能与Illumina平台相当且具成本优势
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 2em " 在测序产业链中,基因测序仪作为起点,为整个中下游测序服务提供最基本的支撑。在测序仪的研制生产上,以华大智造(MGI)为代表的中国企业近年来开始崭露头角。2015年至2018年,华大智造相继推出了拥有完全自主知识产权、具有国际先进水平的桌面型测序仪BGISEQ-500、BGISEQ-50、MGISEQ-2000、MGISEQ-200以及DNBSEQ-T7,实现了我国基因科技布局产业上游的突破。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 338px " src=" https://img1.17img.cn/17img/images/202003/uepic/56e75744-7b2f-40c0-a650-e8df0871237f.jpg" title=" 1.测序仪.jpg" alt=" 1.测序仪.jpg" width=" 600" height=" 338" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 其中,DNBSEQ-T7(原名MGISEQ-T7)作为“全球日生产能力最强”的基因测序仪,自发布之日便备受业内关注。该平台利用DNA纳米球核心测序技术和联合探针锚定聚合技术,具有高通量特点——1天最多可完成60例人类全基因组测序(30X)。今年1月,华大智造发布了DNBSEQ-T7首批测序数据,显示数据表现优秀,质量稳定,符合预期。但此前,DNBSEQ-T7测序仪还未与Illumina公司所生产的短读长测序仪进行过系统比较。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 近日,来自韩国Clinomics公司、蔚山国家科学与技术研究所下属韩国基因组学中心(KOGIC)等机构的研究人员于预印本网站BioRxiv发布了首个基于华大智造DNBSEQ-T7测序仪的独立验证结果。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 380px " src=" https://img1.17img.cn/17img/images/202003/uepic/8355826b-5fec-41ec-93d4-fccf8bef21f4.jpg" title=" 2. 研究结果.png" alt=" 2. 研究结果.png" width=" 600" height=" 380" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 研究人员通过使用相同的KOREF(韩国人参考基因组)样本以及相同的韩国参考基因组,对来自华大智造和Illumina的7款不同测序平台进行了系统比较,包括BGISEQ-500、DNBSEQ-T7、HiSeq2000、HiSeq2500、HiSeq4000、HiSeqX10以及NovaSeq6000。通过比较测序统计数据(base质量、重复率和随机错误率)、比对统计数据(比对率、深度分布、GC 含量)、变异统计(转换/颠换比、dbSNP注释率和SNP基因分型芯片一致性率),研究人员发现MGI和Illumina测序平台在测序质量、覆盖均匀性、GC覆盖度和变异准确性方面均有可比性,因此认为MGI平台可大范围的用于基因领域研究,而其成本仅约为Illumina平台的一半。相关论文题为“Comparative analysis of seven short-reads sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing ”。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 下面,就让我们详细解读一下这项研究。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " span style=" color: rgb(255, 0, 0) " strong span style=" background-color: rgb(250, 192, 143) " 一、材料和方法& nbsp & nbsp /span /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" text-indent: 2em color: rgb(255, 0, 0) " 样本和全基因组测序 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" text-indent: 2em " 样本 /span /strong span style=" text-indent: 2em " : /span span style=" text-indent: 2em " 韩国男性捐赠者(KOREF)的外周血样本中提取DNA进行WGS测序。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" text-indent: 2em " 测序平台 /span /strong span style=" text-indent: 2em " :BGISEQ-500、DNBSEQ-T7、HiSeq2000、HiSeq2500、HiSeq4000、HiSeqX10、NovaSeq6000。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" text-indent: 2em " 文库构建 /span /strong span style=" text-indent: 2em " :从KOREF样本中构建了7个不同测序平台的测序文库。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 表1. 7款测序平台插入片段长度与测序类型统计 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 330px " src=" https://img1.17img.cn/17img/images/202003/uepic/e31dd95b-65a3-4c88-93ed-4100513f0064.jpg" title=" 3. 表1. 7款测序平台插入片段长度与测序类型统计.png" alt=" 3. 表1. 7款测序平台插入片段长度与测序类型统计.png" width=" 600" height=" 330" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong 原始数据预处理 /strong :使用FastQC(版本v0.11.8)评估MGI和Illumina测序平台的整体测序质量,使用PRINSEQ(版本 v0.20.4)检测PCR 重复。使用NGS QC Toolkit (版本v2.3.3)进行原始数据的过滤。去掉低质量以及携带接头的数据后剩下的数据将进行下一个分析步骤——比对。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 2.& nbsp 比对、变异检测以及覆盖分析 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 该研究使用BWA(版本 v0.7.12)的mem模块进行将过滤后的数据比对到人类基因组(版本GRCh38),使用Picard(版本v2.6.0)进行重复标记,使用GATK(版本v3.3)对bam文件进行局部重新比对和重新校正碱基质量值。并且使用GATK进行SNP和InDel变异检测,产生的变异文件将和dbSNP库进行注释分析。使用SAMtools(版本v1.9)进行覆盖分析。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 3.& nbsp 变异比较与SNP基因分型的一致性 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 利用每个测序平台调用的每个变异的染色体位置和基因型来确定7款测序平台之间的关系。在一个或多个平台上发现的1,034,447个位点与在所有平台上都确定了基因型的位置进行了比较。使用FastTree(版本v2.1.10)软件的generalized time-reversible模型生成无根树。所用数据已删除未比对上数据以及InDel等,仅保留常染色体数据。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " strong span style=" background-color: rgb(250, 192, 143) color: rgb(255, 0, 0) " 二、分析结果& nbsp & nbsp /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 1. 测序数据总结 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " KOREF测序自2010年以来已经进行了9年,因此,血液样品、文库构建和测序条件都不尽相同。该研究所使用的Illumina平台数据为2014年至2019年,而MGI平台数据为2017年至2019年。测序长度因平台而异,数据量也有所不同,针对HiSeq2500和NovaSeq6000选择35X的覆盖度。HiSeq2000、HiSeq4000、和DNBSEQ-T7 选择30X的覆盖度。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 2.& nbsp 评价原始数据测序质量和测序错误率 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 碱基质量和原始read测序错误率评估是评价测序平台性能的比较重要因素,研究人员首先使用FastQC软件检测了原始数据的base质量分布。所有7款平台都显示,每个核苷酸的质量在read末尾时逐渐下降。此外,HiSeq4000和HiSeqX10 reads的质量值在读取结束时有迅速下降的趋势。而NovaSeq6000和DNBSEO-T7的低质量reads比例最低(分别为2.8%和4.2%)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 1039px " src=" https://img1.17img.cn/17img/images/202003/uepic/8838ce2e-9403-42af-9806-a04660c942fc.jpg" title=" 4. 图1. 7款平台数据质量统计.png" alt=" 4. 图1. 7款平台数据质量统计.png" width=" 500" height=" 1039" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 图1. 7款平台数据质量统计 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 除此之外,随机测序错误(N)也是评价测序平台质量的一个重要指标。研究人员分析发现,HiSeq2000、HiSeq4000和HiSeqX10在部分cycles的测序反应中出现了较高的测序错误率(0.01%左右),而BGISEQ-500和DNBSEQ-T7在所有cycles中的测序错误率基本保持在一个平稳的水平(0.001%左右)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/5acea81c-91f8-45cd-bb0e-e7a430641d99.jpg" title=" 5. 图2. 7款平台随机测序错误率表现.png" alt=" 5. 图2. 7款平台随机测序错误率表现.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 图2. 7款平台随机测序错误率表现 br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 在PCR 重复序列率(Duplicate rate)和接头污染率(Adapter rate)方面:HiSeq2000的重复序列率最高(8.71%),DNBSEQ-T7次之(3.04%);而HiSeq4000、HiSeqX10和NovaSeq6000相比其他平台显示出更高的接头污染率(均在2%以上)。研究人员分析,这可能是由于以上几款平台的序列长度更长所导致。此外,文库制备方法可能也会影响不同平台的重复序列率和接头污染率。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 表2. 7款平台reads重复率,随机性错误率和接头污染率统计 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 225px " src=" https://img1.17img.cn/17img/images/202003/uepic/40b50f94-8ba2-41a3-b2a4-08e8bf373754.jpg" title=" 表2. 7款平台reads重复率,随机性错误率和接头污染率统计.png" alt=" 表2. 7款平台reads重复率,随机性错误率和接头污染率统计.png" width=" 600" height=" 225" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 2em " & nbsp strong span style=" text-indent: 2em color: rgb(255, 0, 0) " 3.& nbsp 基因组覆盖和测序一致性 /span /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 2em " 所有平台显示比对率均超过99.98%,基因组覆盖率超过99.6%。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 表3. 7款测序平台比对和覆盖度统计 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 294px " src=" https://img1.17img.cn/17img/images/202003/uepic/580223b8-c321-4839-a77f-07ff67e23707.jpg" title=" 6. 表3. 7款测序平台比对和覆盖度统计.png" alt=" 6. 表3. 7款测序平台比对和覆盖度统计.png" width=" 600" height=" 294" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " & nbsp 为了评估测序的均匀性,研究人员还分析了染色体的深度分布,所有7款平台都显示了类似的深度分布模式。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 505px " src=" https://img1.17img.cn/17img/images/202003/uepic/dc80638b-92ef-4a70-8d42-2e11e39febbe.jpg" title=" 7 图3. 7款平台覆盖深度分布表现.png" alt=" 7 图3. 7款平台覆盖深度分布表现.png" width=" 600" height=" 505" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 图3. 7款平台覆盖深度分布表现 br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " GC Bias分析同样也是重要指标之一。研究人员通过检测测序reads中GC含量的分布,发现7款测序平台的原始reads均与人类参考基因组的GC含量分布相似,并通过生成GC bias图,显示每个GC百分比的相对覆盖。没有Bias的结果是一条平坦的线,相对覆盖率为1。研究人员发现,在中等-GC范围内,所有7款平台提供的覆盖率几乎都在20%~60%。另一方面,与其他平台相比,HiSeq2000平台的相对覆盖范围在60% GC以上的下降幅度更大, NovaSeq6000的相对覆盖范围远远超过60% GC。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 772px " src=" https://img1.17img.cn/17img/images/202003/uepic/e5408b69-81e0-4bb0-b431-a520235b7e6a.jpg" title=" 8 图4. (A) 人基因组(GRCH38组装版本)的GC含量分布 (B) 7款平台GC含量分布表现.png" alt=" 8 图4. (A) 人基因组(GRCH38组装版本)的GC含量分布 (B) 7款平台GC含量分布表现.png" width=" 500" height=" 772" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 图4.& nbsp (A)& nbsp 人基因组(GRCH38组装版本)的GC含量分布 & nbsp (B) 7款平台GC含量分布表现 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 485px " src=" https://img1.17img.cn/17img/images/202003/uepic/4fda2bf1-8743-49cb-96ec-6946037b0c0a.jpg" title=" 9. 图5. 7款平台GC bias图.png" alt=" 9. 图5. 7款平台GC bias图.png" width=" 600" height=" 485" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 图5. 7款平台GC bias图 br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 4.& nbsp 7款平台中检测到的变异比较 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 研究人员分析发现,7个平台平均检出418万个SNVs位点和66万个InDel位点。研究人员还分析了7款平台中发现的SNV的数量,数据显示HiSeq2000在7款平台中假阴性数量最多。两款MGI平台(DNBSEQ-T7和BGISEQ-500)分别有16328和10595个假阴性的位点,而NovaSeq6000平台的假阴性位点个数最少,为4,237个。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 表4. MGI测序平台和Illumina测序平台变异检测统计 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 309px " src=" https://img1.17img.cn/17img/images/202003/uepic/1f8eb85b-a6b2-4a15-b382-75767057767f.jpg" title=" 10. 表4. MGI测序平台和Illumina测序平台变异检测统计.png" alt=" 10. 表4. MGI测序平台和Illumina测序平台变异检测统计.png" width=" 600" height=" 309" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 研究人员还将七个全基因组序列所测的变异与一个SNP基因分型芯片作为独立平台进行了比较,在950,637个可比较的位置中,超过99.3%的基因型与来自7款平台的基于WGS的基因型相匹配。此外,在所有7款基于WGS的基因分型结果中,SNP基因分型中的4,376个位点不一致,表明这些位点可能是SNP基因分型芯片中的错误。除HiSeq2000和HiSeq4000平台外,其他平台的数据也呈现出相似的一致性。这可能是因为HiSeq2000 (28x)和HiSeq4000 (25.8x)的平均覆盖深度相对较低的原因。 br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " 表5. SNP基因分型芯片数据与全基因组数据的基因型比较 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 246px " src=" https://img1.17img.cn/17img/images/202003/uepic/10fd0f2e-407f-40c2-98f1-f818dc17e091.jpg" title=" 11.表5. SNP基因分型芯片数据与全基因组数据的基因型比较.png" alt=" 11.表5. SNP基因分型芯片数据与全基因组数据的基因型比较.png" width=" 600" height=" 246" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em text-align: center " strong span style=" background-color: rgb(250, 192, 143) color: rgb(255, 0, 0) " 三、结语& nbsp & nbsp /span /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 研究人员最后表示,尽管他们使用了所有七款测序仪对相同的样本进行了测序,但仅仅单个人的样本可能不能证明发生在不同个体、DNA分子和整体测序质量中的变异。这为这项研究带来了一定的局限性。不过对于那些考虑购买这些测序仪来生成大量数据的机构来说,以上研究数据仍则可以作为直观的参考指标。研究人员在文章最后强调,总体而言,华大智造平台和Illumina测序平台在测序质量、覆盖均匀性、GC覆盖度和变异准确性方面均有可比性,因此可以大体得出结论,即华大智造平台可以与Illumina平台一样大范围地应用于基因组学研究,而其成本仅约为Illumina平台的一半。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 以上数据表现对华大智造测序平台在性能、稳定性和成熟度上进行了充分肯定,也为广大的科研及临床机构提供一种更为经济的选择,将有助于推动全球基因测序行业大幅降低测序成本。值得关注的是,DNBSEQ-T7在各项性能上都表现不俗,结合其超高的测序通量和全面自动化能力,相信该平台将继续帮助中国基因测序产业进一步打破海外公司技术壁垒,实现在测序设备技术和性价比上的引领,并成为推动全球基因产业发展的重要力量。也让我们共同期待,未来DNBSEQ-T7能在行业中有更多优异表现,让国产基因测序仪走进更多实验室,最终造福人类健康。 /p p br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 参考资料: /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 1. Comparative analysis of seven short-reads sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " doi:& nbsp https://doi.org/10.1101/2020.03.22.002840 /p
  • 单分子测序:基因测序不再遥不可及
    如果说二代测序的使命是使成本降低到1000美元/基因组的话,那么三代测序的使命就是使成本降低到100美元/基因组,进一步促进测序发展为临床的常规检测技术,在临床诊疗上发挥更大的作用。在年初的J.P.Morgan健康医疗大会上,美国基因测序公司Illumina宣布将创建一个新公司——Grail,致力于开发一种不超过1000美元的血液检测,用于多类型癌症的早期筛查。这种肿瘤DNA测序的主要目的是在无症状的个体中诊断各种各样的癌症,从而实现提前预防或治疗。  随着技术的不断进步,基因测序的成本正变得越来越“亲民”。不过,人们认为1000美元仍然不能使基因测序成为一个“飞入寻常百姓家”的临床诊断价格,人们的下一个目标是100美元。  “如果说二代测序的使命是使成本降低到1000美元/基因组的话,那么三代测序的使命就是使成本降低到100美元/基因组,进一步促进测序发展为临床的常规检测技术,在临床诊疗上发挥更大的作用。”南方科技大学副教授、深圳市瀚海基因生物科技有限公司(以下简称“瀚海基因”)创始人兼CEO贺建奎告诉《中国科学报》记者,随着第三代测序技术(即“单分子测序技术”)的发展,人们距离这个目标正越来越近。  第三代测序更易临床推广  在世界范围内,基因测序仪一度被几家主要的公司所垄断,著名的测序公司有Illumina、Life Tech、罗氏(Roche)、太平洋生物等,我国99%以上的测序仪和试剂都依赖于进口。而在单分子测序方面,此前也仅有美国和英国推出了第三代测序仪。  “业界对第三代测序仪非常关注。太平洋生物于2014年推出一款小型化的单分子测序仪Sequel,在短短一个月的时间内,他们公司股价就上涨了一倍。”瀚海基因化学部总监高雁介绍说,在临床应用方面,第三代测序仪有着比二代测序仪更大的优势。  “二代测序需要一个比较复杂的样品制备过程,同时为了建库,还需要匹配十余台设备,光这些设备就需要一百多万元。”高雁告诉《中国科学报》记者,二代测序技术很难在医院推广——医生并不愿意进行烦琐的、需要相对专业水平的样品制备等操作,他们更期待一键式、自动化的操作仪器:待测样品放进去,自动运行,隔天之后就得到一个非常直接的报告,而不是将测序结果交由第三方的生物信息学的专业人员进行分析,再给医生反馈。  贺建奎认为,相比二代测序,第三代测序技术在临床上的应用有明显优势:第三代测序技术不需要PCR扩增,可直接对单个分子进行测序 样品制备简单,测序成本进一步降低 可直接读取RNA的序列和包括甲基化在内的DNA修饰。这些优势可以大大改善临床基因测序的成本、速度和质量。  瀚海基因2014年5月份立项,致力于开发一款面向临床应用、可供医生直接使用的第三代基因测序仪。2015年10月底,瀚海基因率先在国内研发出第三代测序仪的原理样机“GenoCare”,引起了国内外的广泛关注。贺建奎预计,工程样机将于2016年下半年制成。  精准医疗的入口  基因测序作为精准医疗的重要一环,随着技术的进步以及成本的下降,近年来发展迅速。  精准医疗主要包括精准诊断和精准治疗两部分。作为精准诊断的关键,基因测序已成为当仁不让的精准医疗的入口。如今,医疗部门通过基因测序及分析技术对病人分子层面信息进行收集,再利用生物信息学分析工具对所有信息进行整合并分析,医生可以早期预测疾病的发生、可能的发展方向和疾病可能的结局,以帮助作出诊断。  贺建奎介绍说,目前,单分子测序平台可以广泛应用于无创产前诊断、肿瘤早期无创诊断、胚胎植入前遗传学筛查、病原体检测和遗传病基因变异检测等。  “已有文献报道证明,对唐氏综合征的筛查,单分子测序技术比Illumina测序技术对检测21号染色体异常更为灵敏。”高雁告诉记者,他们的实验设计还显示,单分子测序能够检测到3%的低频突变。  对于病患而言,如果切除癌症的肿瘤组织,其中大概只有40%是真正的癌症组织,其余60%则是正常的血管等组织。而在40%的癌症组织中,大约只有50%发生了癌细胞突变,另外一半正常。这样算下来,需要真正检测的有突变的癌症细胞只占所要切除的癌症组织的20%左右。  “我们研究团队将靶向基因捕获和测序融合在一步完成,实现了单分子靶向测序。经过实验设计,证实了可以检测到3%低频突变。所以我们认为,这个原理将来有可能用到癌症的早期检测。”高雁说。  此外,贺建奎告诉记者,对于诸如埃博拉等重大暴发性传染病的应用领域,第三代或第四代(纳米孔分子测序)测序技术的应用,更是能够第一时间让病毒现出原形,从而为重大传染病防控提供科学依据。  “测序技术不能仅仅用于科研,更要用于临床,这样才拥有更广阔的市场和更长久的生命力。”高雁说。  并非取代二代测序  尽管第三代测序技术优势多多,但并不意味着单分子测序无所不能,也并非毫无瑕疵。贺建奎告诉记者,目前第三代测序并不能取代二代测序,而是作为对其的一种补充共同发展。  “单分子测序有通量限制,普遍不如二代测序仪高。这限定了其在全基因组测序方面‘拼’不过二代测序仪。”贺建奎说,单分子测序仪并不适合独立做全基因组测序,更适于针对有限的、个性化的、目标性的应用。  此外,第三代测序仪尽管节省了人力和物料成本,但它的硬件成本还相对较高。贺建奎举例说,太平洋生物公司一款单分子测序仪的成本约为150万美元,其最新版本尽管降低了1/3的成本,其“身价”仍令人咋舌。  “总体来讲,第三代测序仪还处于起步的发展阶段,仍有未知的空间等待进一步探索。比如三代测序仪提供了一个强大功能,它或能发现潜在遗传信息。”贺建奎说,基因测序技术作为生物大产业的金字塔顶尖的技术,需要国家大力支持。  “三代测序技术的发展需要国家像支持国产CPU、国产大飞机那样的力度去支持。”贺建奎认为,基因测序技术涉及多学科领域的交叉,这一行业的快速发展,势必带来光学、表面化学等工业品质的提升,这些方面的共同进步最终将推动“中国制造”走向“中国创造”。
  • DNA测序界还在等待纳米孔测序技术的到来
    即插即用型的测序仪。科研人员们很快就可以用到这种便携式的DNA测序仪了。 美国佛罗里达州的Marco岛(Marco Island, Florida)是基因组测序者们的圣地,十几年来,这里每年都会举行一次基因组测序盛会,全世界的基因组测序仪制造商们都会在会上拿出他们最先进的技术 和产品,其中有很多都是革命性的创新技术。最近最吸引人的就是英国牛津纳米孔技术公司(Oxford Nanopore Technologies)在两年前发布的技术,他们能够进行实时测序,而且拥有非常长的读长,这项技术只需要让待测DNA分子通过一个纳米级的孔道就行 了(Science, 4 May 2012, p. 534),在此之前很多人都认为这是不可能完成的任务。牛津纳米孔技术公司表示他们会尽快推出原型机,让广大科研工作者都享受到技术进步带来的便利。 经过了两年多的沉寂,他们最终给出了答卷。虽然该公司并没有派人参加这次的大会,但是据一位与该公司有合作的科研人员介绍,他们已经用这种新技术对 一种细菌进行了基因组测序,而他本人也使用测序结果组装出了细菌的完整基因组序列。并且牛津纳米孔技术公司也在积极兑现承诺,通知科研人员们对他们的新设 备进行测试。不过并不是所有人都认可该公司的这第二步棋,因为他们得到的测序数据的质量并不高,单单靠这些数据是不可能获得完整基因组序列的。 与此同时,传统的测序仪也在飞速地发展,希望进一步降低测序服务的成本。比如全世界最大的测序仪制造商Illumina公司就在今年1月登上了头 条,因为他们宣称将推出一台新产品,能够将个人基因组测序的成本降低到1000美元这个具有重要意义的分界线,因为很多人都认为如果个人基因组测序的费用 能够降低到这个水平,将使测序成为一项临床常规检测手段(Science, 17 March 2006, p. 1544)。 Illumina公司推出的这台新设备与其它新一代测序仪(next-gen sequencers)一样,采用的也都是合成测序策略,即在新DNA链合成的时候检测出被添加上的碱基。这些碱基必须加上化学标签(修饰物),以方便辨 认。采用这种技术测得的片段读长都很短,需要进行后续拼接。而牛津纳米孔技术公司采用的测序策略则完全不同,他们使用的是实时测序方法,让一根DNA长链 穿过纳米级别的孔径来完成测序。当DNA链上的碱基通过纳米孔时,它们会阻断纳米孔中的离子流,而每一种碱基引起的变化都不相同,因此就可以判断出碱基的 序列。从理论上来说,这种技术的测序读长可以达到数千bp,不会产生延迟,也不需要进行事后的序列拼接。这项技术提出距今已经过去了接近20年,最终于 2012年成为了现实。当时牛津纳米孔技术公司提交了一份病毒基因组序列,据称就是使用纳米孔技术测得的。 但为什么后来就没动静了呢? 基因组测序成本经过了多年的下降,目前已经达到了一个平台期,不过也有可能会继续跳水,如图中虚线所示,只要Illumina公司宣传的1000美元个人基因组测序目标能够实现。(M:百万美元 K:一千美元) 据牛津纳米孔技术公司介绍,这两年来他们一直在寻找一种新型的基质膜来为纳米孔提供支撑,因为最开始使用的基质膜不适宜进行大规模制造。他们也调整 了产品开发策略,放弃了最开始计划的大型测序仪开发计划,转而投向开发小型手持式、一次性测序设备,因为他们感觉这块市场需求更大。 美国马萨诸塞州博大研究所(Broad Institute in Cambridge, Massachusetts)的David Jaffe在今年也透露一些新进展。他们课题组对大肠杆菌(Escherichia coli)这种常见的细菌和Scardovia wiggsiae(这是一种与牙齿腐烂相关的细菌)细菌进行了基因组测序,由他们提供DNA样品,牛津纳米孔技术公司完成了测序工作。这两种细菌的基因组长度分别为460万bp和155万bp。该工作表明牛津纳米孔技术公司的测序技术已经从两年前的病毒基因组水平提升到了细菌基因组水平。 但是Jaffe的内幕消息也证实牛津纳米孔技术公司还有很长的一段路需要走。该公司提供的数据证明纳米孔测序技术的确拥有相当大的读长优势,几乎可 以对一段DNA样品进行完整测序,一次最多能够得到10kb的序列。不过虽然有如此完美的数据,但是系统误差却让Jaffe等人无法将这些大片段拼接成完 整的基因组序列,而这也是纳米孔测序技术的终极目标。不过Jaffe等人发现,可以使用这些纳米孔测序数据对常见的Illumina测序仪获得的基因组序 列进行优化。美国马里兰州美国国立人类基因组研究院(National Human Genome Research Institute in Bethesda, Maryland)的Jeffery Schloss表示,虽然这种技术还处于初级阶段,但是在某些方面已经表现出了很强的应用优势。不过其他人却没有这么乐观,比如加拿大蒙特利尔麦基尔大学 (McGill University in Montreal, Canada)的基因组学家Ken Dewar就指出,如果纳米孔技术只能够对现有技术起到修补作用,那么开发一台手持式的纳米孔测序仪有什么意义呢? 牛津纳米孔技术公司目前正在邀请科研人员们自己来验证纳米孔测序技术的实力。就在Jaffe透露消息的当天,该公司就向全世界发出了电子邮件,邀请 数百位申请者来体验他们的便携式测序仪MinION,只需要缴纳1000美元押金即可。首先这些试用者需要先用牛津纳米孔技术公司提供的DNA样品进行预 试验,熟悉仪器操作等流程,然后就可以对任意的DNA进行测序。 美国加州大学圣克鲁兹分校(University of California, Santa Cruz)的David Deamer是纳米孔测序技术的先驱,他可早就等不及了,他指出,大家可以有很多样品拿来试用。我们可要好好地&lsquo 虐&rsquo 一下这台仪器。比如有人会用来对食品 进行快速检测,看看是否存在有害微生物污染,也有人会想看看MinION能否测出古老的DNA。Deamer还想看看这台仪器是不是能够一次读出16kb 的序列。就在牛津纳米孔技术公司大肆推介这种低成本的手持式测序仪的同时,Illumina公司也没有坐以待毙,他们决定反其道而行,推出了一款专门供超大 型测序中心使用的最高级的测序仪。就在上个月,Illumina公司推出了价值数百万美元的HiSeq X,这台测序仪在一年的时间内能够测得1800个人的基因组序列,据该公司介绍,这将使个人基因组测序成本下探到1000美元以下,而且耗费的人工、仪器 折旧和试剂成本都将大幅度降低。据Illumina公司的市场部高级经理Joel Fellis介绍:&ldquo 我们看到大规模测序的需求在逐年上升。比如英国就计划到2017年时为全英国10万人进行个人基因组测序。&rdquo 不过事情可没有这么简单。任何有计划购买HiSeq X的客户必须一次订购10台以上的设备,而且必须承诺只能将这些设备用于个人基因组测序。美国加州大学圣克鲁兹分校的生物工程师Zak Wescoe表示,这已经超出了绝大部分科研人员能够承受的费用。而且这些设备只有满负荷运转时才能够将个人基因组测序的成本压低到1000美元的水平。 美国华盛顿大学基因组研究院(The Genome Institute at Washington University in St. Louis)的副主席Elaine Mardis也认为,可没有太多地方每年都能够提供1.8万人的个人基因组测序需求,也没有这么大的数据分析能力,所以Mardis这样评价道:&ldquo 我不知 道有谁会买这些测序仪。&rdquo Deanna Church是美国加利福尼亚州门罗公园Personalis公司(Personalis in Menlo Park, California)的基因组学家,他对技术进步带来的成本降低非常欢迎。他说道:&ldquo 在这块市场中将出现好几个竞争者,总有一些技术会最终胜出。&rdquo
  • 高效测序仪问世 1天绘个人完整基因测序
    2012年1月10日,在第30届摩根大通医疗卫生年会上,Life Technologies公司与Illumina公司纷纷以&ldquo 1天内绘制出人类基因组序列&rdquo 为品牌宣言,先后推出了最新的高效测序仪产品。就目前了解情况来看,这两款最新测序仪之间的最大差异主要集中在成本与质量两方面。 Ion Proton 基因测序仪   PGM测序平台是Life Technologies公司2010年底推出的首款半导体个人化操作基因组测序仪(Ion Personal Genome Machine,简称:PGM)。而此次,Life Technologies公司隆重推出的Ion Proton测序仪正是PGM测序平台的新一代产品。   Ion Proton测序仪是一台新型台式测序仪,体积如办公室打印机般大小,标价约为14.9万美元。Ion Proton测序仪仅需1天便可完成个人完整基因测序,而费用仅为1000美元,今后人们根据基因资料得到个性化医疗的愿望或将成真。   该公司总裁兼首席执行官Greg Lucier先生表示,Ion Proton第一代芯片技术将使外显子组测序成本降低至500美元,成为外显子组测序工作者的理想选择,预计将于2012年中期对外供应;而Ion Proton第二代芯片产品则主要应用于人类基因组测序领域,大概在6个月后将会向用户提供。目前,贝勒医学院、耶鲁大学医学院和Broad研究院作为Ion Proton Sequencers的第一批用户,已经与Life Technologies分别签署了多张订单。 HiSeq 2500基因测序仪   巧合的是,在同一天,Life Technologies公司的竞争对手Illumina公司也推出了最新版本的HiSeq测序仪,该仪器同样能够在1天内绘制出人类基因组序列,但Illumina公司并未透露其成本。此次,Illumina公司推出的HiSeq 2500基因测序仪将HiSeq 2000和MiSeq平台的先进技术进行了有效的整合,并加入了最新概念,可以帮助研究员和临床学者在24小时内对整个基因图谱进行排序。   据了解,Illumina公司的Hiseq 2500标价74万美元,若从69万美元的HiSeq 2000升级就只需花费5万美元。目前,HiSeq 2500测序仪已在一些从事诊断业务的公司得到使用,例如Genomic Health公司、Sequenom公司等。   同时,Illumina公司在内部也已使用该仪器,并在2012年第一季度对外服务,预计在2012年下半年可以将HiSeq 2500商业化,开始向用户发货。而从2012年中期开始,全部新用户和老用户的MiSeq性能都能得到提升。
  • 基因测序,风口上的思考(三):基因测序的护城河,以及对未来的预测和建议
    继《基因测序,风口上的思考(一):基因测序市场格局介绍》、《基因测序,风口上的思考(二):基因测序的误区和瓶颈》两篇文章后,本系列文章迎来了第三篇,也是最后一篇。接上文,内容如下:  三、什么才是护城河?  护城河是指企业在短期内无法被模仿和替代的竞争优势。目前看到的不同公司的技术差异,不外乎是在运行成本、操作的自动化、数据分析的优化这几个角度,在市场终端的经济意义到底有多少,还需要综合评估和检验。建议企业从以下几个地方考虑护城河的投资:  1. 在上游实现突破  目前的基因测序应用商,基本上无法摆脱上游厂家对成本的控制。即便开发了自己的临床应用试剂盒,按照现在的规定属于III类注册证,要注明试剂盒核心组分和用途,这里就包括了上游供应商的试剂耗材成分,无法更换为另一家。  目前国内有厂家在自主研发高通量测序仪,效果如何这里不适合评价,但这种努力值得敬佩。长远来看,这是非常值得的一步。降低了自身的成本,也避免将来来自上游厂商向下游拓展的竞争。在发展方向上,更长的读长可以减少很多生物信息学的成本负担,是高通量测序仪的出路所在。  不是每个企业都有能力自己研发高通量测序仪,那么如果能致力于用各种方式优化流程中的试剂耗材包括国产化,提高上游议价能力,也是一条出路。  2. 占有产品终端使用者的直接通道  大部分基因测序应用商一开始不能直接建立与产品使用者的联系,需要借助不同通道,比如说目前的高通量测序试点单位,因此增加了通道成本。近期试点单位再增加的可能性很小,因此短期内这个通道成本随着新入者的增加还可能进一步上升。  一种办法是先找一个不大的细分市场深耕,市场里也有这样的公司。由于市场暂时不大,它进入之后竞争者不大愿意再来争夺,保证了其一段时间内通道的优势,有时间树立自己的无形资产。  有公司的做法是在各地的医院内建立自己的实验室,但实验室所有成本自付。这样一来很难被代替。一旦试点全面放开,将直接具有源源不断的销售来源。  另外就是寻找新的商业模式,比如说试图改变支付模式,直接建立起与支付方的通道联系。由于中国各地情况有很大差异,不一定能在所有地方通行。  3. 与其他成熟业务整合,降低成本  每一个临床客户,都可以带来多方面的临床市场。基因测序在临床诊疗中更多的是揭示问题,而不是解决问题。将企业自身其他的产品及业务(如果有的话)和基因测序相结合,更容易融入客户的常规工作, 被替代的风险减小,同时渠道、物流、市场等成本因为被分担而下降,这种成本战略在竞争中不容易为对手复制。如果没有自身其他业务,就应该尽快寻找面向同一客户的其他商业伙伴进行合作。  4. 拓展数据价值的客户体验,抬高客户转换成本  这个可能还需要比较长一点时间,因为涉及到数据库的设计和积累、是否能冒风险帮临床医生解读、外部网络建设等等。目前基因测序的应用价值仍然以大量数据为输出形式,数据带给客户的价值经过二次加工以后有可能以更高的定价出售,同时如果为客户如何使用该数据价值设计出临床路径,将会是非常独特的。打个通俗比方说,就是大家都在市场里卖菜,客户需要买回去自己决定哪些能吃哪些不能吃,怎么来吃。如果有人把菜替客户洗好拣好,做成各种菜肴,告诉客户减肥需要吃这道菜,长身体需要吃那道菜,甚至吃菜的时候应该用什么方式、礼仪,那么有价值的就是这后面的部分。目前很多基因测序应用商只做到了“洗菜拣菜”的工作,后面都做的不够,所谓的数据解读方案都尚停留在技术层面。在中国,医院和医生永远都是稀缺资源,主动为他们提供更多层次解决方案,将大大抬高竞争对手客户转换成本。  以下方面不是护城河:  1. 新的某一专利技术  目前没有看到任何一个技术专利能比别的技术好10倍以上,或是能产生独断市场。强调自己的专利技术来要求过高投资,对企业本身发展和投资者长远来说都不可取。  2. 目前的高市场份额  在一个不断发展的新市场,目前的高市场份额也有可能被取代。由于大部分基因测序仪都还没有在医院被完全充分地使用,因此现有的份额被替代也是很容易的。  3.产品在科研方面的特点  基因测序原先是科研领域的产品,因此有些产品是按照科研思路设计出来的,并不符合临床应用。性能过度超过了客户的实际需求,带来的是成本多余浪费。科研上的优点不等同临床应用上的优点。  4.“数据解读方案”  有些公司强调自己有独特的生物信息学算法或数据解读方案,但要成为护城河还远远不够。这种独特性在临床应用上能带来多少差异,医生和患者是否真切地体验到这种方案带来的好处,都很模糊。如何变为临床医生的语言,如何整合入临床的日常诊疗,如何验证解读结果的可靠性,都需要探索。  四、对未来的预测和建议  未来的发展趋势:  1. 整合入医疗记录  我们必须知道,基因检测结果不会改变成年人自身的健康行为,解决方案才会。如果不能够打通从数据到方案的工作链,未来我们会看到越来越多基因测序无用的负面报道。虽然渐渐也有人意识到要把测序结果转变为“actionable information”,但言之无物。由于领域的跨度,提供者往往不理解这解决方案应该是什么,在临床上,基因测序最终应该无缝连接到医疗病历中去,逐步地改变医生和病人的诊治参与方式。  2. 基因组流行病学  未来基因组流行病学对政府卫生决策部门可能有很强的意义,目前感觉在这个方面工作的人不多。通过分析社会人群基因变化规律,监测疾病谱和基因-环境交互作用的变化,有助于提出流行病学干预措施,评估新的诊断试验的有效性及成本效益分析,甚至可能为保险公司做决策顾问。这个方面将来可能会出现商业机会。  3. 药物研发市场  基因测序值得用于药物研发市场的原因在于:1)有更多的国内国外药厂开始进行靶向药物的研发 2)药物研发市场近年面临成本控制、缩短时间、更加高效的压力 3)基因测序对药物研发中靶点选择和临床试验病人的选择优化都有很好的意义 4)新的药物和基因关联的研究在增加,如现在认为肿瘤的错配基因突变对今年很热的PD-1药物会更加敏感 5)不像临床诊断那样会受到监管政策的影响。  4. 与其他临床诊断治疗手段结合成为新方案  基因测序只是发现问题,并不能解决问题。最终基因测序只是临床诊断中的一个环节中的一部分。它最好能跟其他的临床诊疗手段结合起来成为完整的工作流程,这样才可能真正进入临床市场。现行其他诊断技术若是跟基因测序结合,可能带来意想不到的市场扩大。提供基因测序应用的企业,也要随时关注新的技术是否可能与基因测序结合出现新的方向,如肿瘤的免疫疗法,如CHRISPR技术,如合成生物学,等等。另外,RNA测序可能较DNA测序有更多临床应用方向。  5. 行业并购整合,提高行业集中度  基因测序对行业外人士来看似乎很有门槛,但对于行业内人士来说,门槛其实并非很高,所以才有这么多大大小小的基因测序应用商,不见得大部分都能在未来生存下去,美国也是一样。但在中国,随着本届政府的改革,可能很多传统行业谋求转型,或是医疗公司谋求新的技术突破,届时未来一两年内会有不少基因测序商被这些上市公司收购整合,也是一条生存出路。另外,上游供应商很可能参与到下游竞争中来。如果传统医疗诊断公司或医药公司对基因测序进行整合,成为自身提供的整体医疗方案的一部分,会好于基因测序试图独立作为一个解决方案,在前期将有助于引导基因测序快速发展。  6. 保险业介入  由于人们总希望提前了解健康,因此基因测序对健康变化判断的不确定性,即概率性还是会产生市场。世界上只有两种生意与概率有关:赌博和保险。在国外,商业保险和基因测序结合已经很常见,在中国政府大力发展商业保险的现在,有可能保险业的介入可为基因测序带来支付问题的解决。这种结合不一定是保险为客户免费基因测序,因为客户未来会质疑保险公司做基因检测的专业性以及基因信息泄露问题。有可能是基因测序应用商结合医疗机构在收费层面与保险公司的合作,保险公司会根据自己的精算方式来做出参与判断。  7. 大数据解读平台  如果未来能够解决标准数据库统一建立的问题,有可能出现大数据分析的市场。数据解读的结果用于诊疗过程,可以不受制于于任何上游仪器供应商,前提是这一标准数据库能够为所有人所共享。这一点可能需要更加久远的时间。  对基因测序应用商的建议:  1. 回归商业本源  既然是做商业市场,就并非天天讲故事去圈钱,做讲座去扬名,最终还是要选择一个客户群的问题去解决,而不是选择一个技术去找市场和客户。虽然现在资本市场很热,但没有自己的定位,没有自己的客户群,没有自己的盈利和管理能力,如何度过前进路上终将经过的冬天?产品、渠道和服务才是根本,不能沉醉在自己的世界里不把客户的思路当回事。最先进的技术常常并非最好的现实综合解决之道。技术固然重要,但并非一成不变,特别是一个新技术,还有待在解决客户问题的实践中,根据客户的问题去找基因测序技术的细节,反复锤炼,最终盈利方式完全可能和当初的设想有很大区别。  另外就是应该在成熟市场发展成本优势战略,在不成熟市场寻找差异化定位。过热的市场总会冷却,企业还是要尽快找到自己生存的模式才是正道。  2. 从现有业务出发为客户提供基因测序应用服务  医学是一个实践和经验的积累,临床客户在工作中存在很多缺口。解决问题最终是一项产品,而不是一个技术。基因测序是一个创造产品的技术而非产品本身。如果眼光专注于目标客户的整个流程,就会找到很多可以应用的地方,会发现不止一个细分市场。目前来看单靠基因测序盈利不容易,如果企业能有其他业务服务于目标客户,在现有业务上增加基因测序进行增值,有助于基因测序行业的健康发展。建议做临床市场的基因测序应用商管理团队中一定要有懂得医学的人。  3. 有一个第三方临检中心  医疗技术一定要有明确的实施主体和责任承担主体。基因测序同时具备明确的临床需求和不确定的临床价值,给目前政策制定者出了个难题。因此,将来很有可能是明确的应用在临床医院进行,不明确的应用在另外的医疗机构限制进行,而这很可能就是第三方临检中心。目前国家大力发展第三方临检中心,牌照限制已经取消,自建或收购的成本都下降。因此,建议基因测序应用商能够有自己的第三方临检中心,为迎接未来的可能政策提前做布局。对于目前的比较有规模的第三方临检中心来说,会面临竞争带来的成本提高问题。  4. 非理性消费存在,但不应该以它为基因测序的盈利目标  任何企业都应该有社会责任心,新的技术,应该致力于将它应用到解决社会问题中去,而并非纯粹以投机获利为首要目的。非理性消费,灰色地带,并不能让一个公司走的长远。套用默沙东公司的名言:“我们应当永远铭记,药物是为人类而生产,不是为追求利润而制造的。只要坚守这一信念,利润必将随之而来。”在医疗健康领域,基因测序应该用来创造帮助医生解决某一类病人的痛苦的产品,或是帮助医疗机构提高工作效率,它必将在这一过程中找到自己真正的价值。  本系列前两篇文章:  基因测序,风口上的思考(一):基因测序市场格局介绍  基因测序,风口上的思考(二):基因测序的误区和瓶颈
  • 基因测序,风口上的思考(一):基因测序市场格局介绍
    基因测序无疑是未来看好的技术之一,但其真实价值几何?什么样的创业项目不值得投资?什么样的技术才有护城河?什么样的应用方向才可能正确?基因测序的前景还有哪些瓶颈?作为基因测序领域的资深从业者,Life Technologies(现为Thermo Fisher收购)公司全国临床与科研事业部销售总监、Thermo Fisher公司全国临床市场战略总监柴映爽写了一系列文章,对上述问题进行了深入剖析。以下为柴映爽系列文章的第一篇:  有一家无创产筛基因测序创业公司寻求1000万的融资,A和B两家投资者来洽谈。投前估值6000万,投后估值7000万。由于有多家感兴趣,因此公司持有人觉得有必要抬高价格以利谈判,把全国预计该做无创产筛的孕妇人数上升一些,把预计收费价格上抬一些,市场容量算出来有千亿,最后改为投前估值9000万,投后估值一个亿。  由于基因测序是一个新的投资方向,又是资源稀缺性项目,对很多投资机构来说很难确定真实估值,恰巧市场有一家融资成功的同类公司估值两个亿,于是大家就以这家公司作为参比。最后认定一个亿的估值,A和B放弃对赌协议,各投资了500万。  这就是国内目前不少基因测序项目在投资时发生的类似情况。基因测序属于小众的知识领域,对于投资者来说,存在知识理解的门槛,因此面对多个投资标的,投资机构很难鉴别哪个是优质项目。  现实情况中,优质项目的创业者往往会考虑限制自己项目的估值,以利下一轮融资时有更多市场主动权。另外由于中国社会的复杂关系,基因测序的相关法规也不完善,创业者为了实现事业目标,以及融资后保证自己的股权话语权,也会邀请多个投资者参与,因此A和B可能都会得到机会。僧多粥少的结果是A和B还会去寻找其他项目,一些非优质项目也一样被纳入视野,后续其他优质项目估值会因此继续水涨船高,一定程度上促成了市场泡沫的形成。  随着时间的进展,投资者逐渐积累了行业知识,鉴别无创产筛项目的能力上升,然而已得到投资的无创产筛基因测序公司在市场中的行为导致环境竞争上升,市场空间变小,新的无创产筛项目不再受到追捧,技术人才还在,投资的冲动也在,大家开始转向肿瘤领域,觉得可能比产筛市场还大,反正也算不清楚。在中国2014年开始加强反腐和新三板改革之后,加上传统产业亟待新的业务增长点,对于基因测序这样一个有很多想象空间的方向,有更多的创业者、资金、传统企业加入,热闹非凡,股市里各路公司都号称自己跟基因测序沾点边,股票都在大涨,这就是2015年开始的中国基因测序行业市场。  基因测序无疑是未来看好的技术之一,医疗和健康,是基因测序最大的应用市场。从社会的角度来说,有更多的人关注基因测序是好事,有助于整个社会共同思考其合理的模式和创造它的真正价值。但是如同任何新技术曲线(下图)一样,基因测序正处于高峰前期的炒作阶段,高峰过后得不到回报的资金撤离,必然会制造一个下跌时期,就像2002年前后出现的互联网冬天一样。什么样的创业项目不值得投资?什么样的技术才有护城河?什么样的应用方向才可能正确?基因测序的前景还有哪些瓶颈?作为这个领域的市场从业者,在这里贡献一些个人看法,供创业者和投资者参考,也希望基因测序在正确的呵护下成长,在未来真正可以为中国的老百姓带来价值。  一、市场格局介绍  我们用个简单的波特模型分析一下目前基因测序行业的市场:  1. 对上游供应厂家议价能力很低  目前基因测序行业内的公司(我们暂把它们称为基因测序应用商)都存在一个问题,就是上游厂商只有Thermo Fisher(收购了Life Technologies)和Illumina两家能够选择,且选择了其中之一作为产品开发平台,就几乎不可能再更改到另外一家,除了仪器外,还必须向该厂商购买仪器运行所需耗材如测序芯片,即便是得到授权在国内生产的,也要购买关键部件。在这方面,应用商全部受制于上游制造企业,基本上谈不上有议价能力,采购的比例越高,议价能力越弱。  当然,上游厂家处于初期市场竞争的考虑,在市场未饱和时,一般不会涨价反而有可能继续降价,但面对亲密程度不同的合作者,价格有可能不同。以无创产筛为例,从公开资料来看,基因测序应用商每个检测的成本中必须向上游厂家采购的试剂要占到至少20-30%,因此,市场不断扩大,对上游厂商是很有利的,因为其中的20-30%都是自己的,随着应用商优化工作流程降低其他成本,这个比例还可能进一步增高,届时只要一涨价,这些基因测序应用商就只能够接受。这一点和另一分子诊断目前的主流平台定量PCR不同,定量PCR的试剂盒厂家已经完全不受制于任何一家上游制造企业。  2. 对下游客户议价能力有限  在医疗健康领域,基因测序应用商的产品,基本上还是通过医院到达消费者手中。也有一些公司在探索引导个人基因组数据的另类消费,如做高端基因体检等等。基本上基因测序应用商都没有自己的医院资源,很多还需要依赖渠道商去打开终端市场,由于医院的数量有限,目前有高通量测序试点资质的医院更少,面对同一家医院入口,市场中同类的基因测序应用商的数量,远远高于有实力的渠道商数量,因此在下游采购者方面的议价能力也显得不那么强,何况中国医疗环境一直倡导低水平广覆盖的原则,终端定价还要受到地方经济水平和物价收费的制约。  3. 新的进入者分割有限的市场资源  基因测序应用市场以临床医院为主,基于中国医院的实际情况,每一个市场在起步阶段如果两种模式并存的话,集中收样模式基本上会输给投放模式。限于各种条件,三级医院是目前看得见的高通量基因测序市场,全部加起来大概在1400家左右,但目前高通量测序临床上只开展了四个专业方向的应用,因此实际能应用的医院还不够多,再加上试点单位的限制,商业通路环节的成本升高,短期来看市场资源还是有限的,但新的进入者还很多,资本市场比较充沛,除了从科研转型的国内国外创业者以外,传统医疗企业、非医疗企业都在琢磨进入,而基因测序的技术人才以及不得不具备的生物信息学人员显得比较有限,大部分公司很难同时拥有优秀的技术人才+生物信息学人才+基因领域市场营销人才的组合团队。未来不排除上游厂商也进入这一领域分享蛋糕,会给现有的应用商带来很大的威胁。  4. 同业竞争格局  2015年之前,多数基因测序应用商重点关注无创产筛领域,随着几家公司拿到CFDA注册证,市场格局大体形成,不具备下游控制力的小型公司很难后来居上,因此从2014年下半年起,很多应用商转向肿瘤领域,同质化的现象比较重,这里一个问题是终端资源有限,大家基本策略都是买仪器—投放医院合作收样本—自己建黄种人肿瘤数据库—用数据库评估药物疗效或患者风险。而全国拿到无创产筛试点的也就108家,肿瘤试点20多家,遗传病试点没公开,基本也在10-20家左右,辅助生殖试点更少。在临床市场份额方面,Thermo(Life)确实走在了Illumina之前,医院的装机量已经大大超过了Illumina,试点单位中更是如此。试点单位已有了仪器,且目前国家开放二次试点的可能性很小,加上目前非试点医院中已经不少已经有了高通量测序仪,使得再次投放的市场空间和利润空间都变得有限,市场上至少有20家以上测序应用商,部分手中还有仪器没有投放出去,因此在试点政策取消之前,如今单指望投放仪器来掌握终端医院市场已经很困难,即使能成功投放,可能多家供应商不得不同时分享一家医院有限的样本量,企业固定资产很高而回报现金流很有限甚至收不回投放成本。  同业竞争格局产生的一个负面影响是基因测序应用商的利润下降,为了竞争有限的医院资源,大家不断降低下游价格,甚至出现亏本竞争。有些大幅降价实质是暗中牺牲了质量。正面影响是部分测序应用商开始尝试新的思路降低成本,比如从外周血里捕获胎儿有核红细胞或是检测游离甲基化DNA以减少测序深度和通量,客观上带动了技术层面的探索。或是通过更好的数据解读服务来强化对医生的指导以增加下游话语权,客观上加深了临床对基因测序的理解,使得基因测序能更加正确地应用于临床工作。  5. 新的替代方法目前不具备威胁  基因测序是分子诊断的金标准,目前无法取代。高通量测序的最大优势是将几十个上百个基因检测一次性完成,并精确检测突变类型和结构变化细节,非常适合需要短时间内完成多种鉴别诊断的临床应用领域(前提是这些基因检测都具备临床意义)。PCR方法方便快速,但在检测更多靶点时,多重PCR的条件很难优化。基因芯片比测序好的地方是可提供高度一致性的数据,但易出现假阳性,往往还要测序或定量PCR进行验证。质谱方法快速且便宜,但基本还是检测蛋白质和代谢物,应用到检测核酸还有困难。也有人在尝试开发用常规一代测序检测大量基因位点的方法,效果还不得而知。当下出现了一些新的技术探索,如从外周血里寻找循环肿瘤细胞(CTC),或是用数字PCR检测外周血里的游离DNA片段(cfDNA)等等,这些技术都还在很早期的阶段,仪器的检测精度有限,另外临床价值不清晰,肿瘤细胞进入血液的时间和比率是多少,检测到的细胞能代表什么肿瘤,细胞数量或cfDNA含量和实体肿瘤大小关联程度有无标准,如何去除大量生物学计算带来的误差,都还在研究之中。目前来看,能代替基因测序的概率偏小,更多出路是和基因测序联用。  未完待续,精彩内容请关注后续系列报道:  基因测序,风口上的思考(二):基因测序的误区和瓶颈  基因测序,风口上的思考(三):什么才是护城河?  基因测序,风口上的思考(四):对未来的预测和建议  作者介绍:  本文作者柴映爽,上海医科大学预防医学专业学士和国家CDC病毒所基因工程学硕士。曾在欧美制药公司工作,2004年初进入Life Technologies 的前身Applied Biosystems公司工作至今,见证了十年来中国基因科学和分子诊断的飞速发展。个人兴趣在于研究基因科学的最新成就,致力于推动成熟的基因科学成果进入中国分子诊断市场并得到健康持续的发展,使得中国的患者能够受益于最新的分子诊断技术。  本文仅代表作者个人观点,与作者所供职机构无关。
  • 基因测序“摩尔定律”初现,“三代测序”要革“二代”的命?
    在“二代测序”(NGS)尚未迎来投资热潮的情况下,技术突破捷报连连的“三代测序”(3GS)又进入到了投资人的视野中。1986年,第一台商用基因测序设备正式出现,到第二代测序设备出现,期间间隔了19年时间。而第二代设备问世,到第三代设备的诞生,仅仅用了5年,基因测序设备的更新换代速度正在不断加快。这就好比“2G”手机跳过“3G”,直接跨越到了“4G”时代。  报告通过四个方面对第三代基因测试技术进行分析:  1、第三代基因测试技术的发展现状   2、第三代基因测试方法原理   3、第三代极影测试技术优势和劣势   4、国内外布局第三代基因测试技术的公司情况。  1、第三代基因测试技术的发展现状  以Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术和Oxford Nanopore Technologies公司的纳米孔单分子技术为代表的三代测序技术在经过了多年发展后,已经逐步趋于成熟。  尽管当下该技术还有成本偏高、错误率较高、生物信息学分析软件不够丰富的问题,但其在读长、测序速度等方面都具有明显优势。  三代测序设备已实现稳定性、小型化,未来随着准确度提升、平行测序能力和酶活性等问题的解决,第三代测序技术将成为未来发展的重要技术趋势,实现大规模商业化将是大势所趋。  2、第三代基因测序方法原理  Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术和Oxford Nanopore Technologies公司的纳米孔单分子技术,被认为是第三代测序技术。  与前两代技术相比,他们最大的特点是单分子测序,其中,Heliscope技术和SMRT技术利用荧光信号进行测序,而纳米孔单分子测序技术利用不同碱基产生的电信号进行测序。  PacBio SMRT技术应用了边合成边测序的思想,并以SMRT芯片为测序载体,芯片上有很多小孔,每个孔中均有DNA聚合酶。  测序基本原理是:DNA聚合酶和模板结合,4色荧光标记4种碱基(即是dNTP),在碱基配对阶段,不同碱基的加入,会发出不同光,根据光的波长与峰值可判断进入的碱基类型。DNA聚合酶是实现超长读长的关键之一,读长主要跟酶的活性保持有关,它主要受激光对其造成的损伤所影响。  另外,可以通过检测相邻两个碱基之间的测序时间,来检测一些碱基修饰情况,既如果碱基存在修饰,则通过聚合酶时的速度会减慢,相邻两峰之间的距离增大,可以通过这个来之间检测甲基化等信息。SMRT技术的测序速度很快,每秒约数个dNTP。  但是,同时其测序错误率比较高(这几乎是目前单分子测序技术的通病),达到15%。但好在它的出错是随机的,并不会像第二代测序技术那样存在测序错误的偏向,因而可以通过多次测序来进行有效的纠错(代价是重复测序,也就是成本会增加)。SMRT技术原理图  Oxford Nanopore Technologies公司所开发的纳米单分子测序技术与以往的测序技术皆不同,它是基于电信号而不是光信号的测序技术。  该技术的关键之一是,设计了一种特殊的纳米孔(只能容纳单分子通过),孔内共价结合有分子接头。当DNA碱基通过纳米孔时,它们使电荷发生变化,从而短暂地影响流过纳米孔的电流强度(每种碱基所影响的电流变化幅度是不同的),灵敏的电子设备检测到这些变化从而鉴定所通过的碱基。Nanopore技术原理图  3、第三代基因测序技术的优势和劣势  相比于二代测序,三代测序具有如下优势:  1、第三代基因测序读长较长。如Pacific Biosciences公司的PACBIO RS II 的平均读长达到10kb,可以减少生物信息学中的拼接成本,也节省了内存和计算时间。  2、直接对原始DNA样本进行测序,从作用原理上避免了PCR扩增带来的出错。  3、拓展了测序技术的应用领域。二代测序技术大部分应用基于DNA,三代测序还有两个应用是二代测序所不具备的:第一个是直接测RNA的序列,RNA的直接测序,将大大降低体外逆转录产生的系统误差。第二个是直接测甲基化的DNA序列。实际上DNA聚合酶复制A、T、C、G的速度是不一样的。正常的C或者甲基化的C为模板,DNA聚合酶停顿的时间不同,根据这个不同的时间,可以判断模板的C是否甲基化。  4、三代测序在ctDNA,单细胞测序中具有很大的优势:ctDNA含量非常低,三代测序技术灵敏度高,能够对于1ng以下做到监测 在单细胞级别:二代测序要把DNA提取出来打碎测序,三代测序直接对原始DNA测序,细胞裂解原位测序,是三代测序的杀手应用。  同时,第三代基因测序也存在一定的缺陷:  1、总体上单读长的错误率依然偏高,成为限制其商业应用开展的重要原因 第三代基因测序技术目前的错误率在15%-40%,极大地高于二代测序技术NGS的错误率(低于1%)。不过好在三代的错误是完全随机发生的,可以靠覆盖度来纠错(但这要增加测序成本)。  2、三代测序技术依赖DNA聚合酶的活性。  3、成本较高,二代Illumina的测序成本是每100万个碱基0.05-0.15美元,三代测序成本是每100万个碱基0.33-1.00美元。  4、生信分析软件也不够丰富(如图所示):一、二、三代基因测序技术对比图  4、国内外布局三代测序的公司情况  国外布局三代测序的主要有Pacific Biosciences、Oxford Nanopore Technologies等公司,2015年10月27日,国内公司瀚海基因(Direct Genomics)公布了基于Helicos技术研发的专门用于临床的第三代单分子测序仪GenoCare 原理样机。  中科院北京基因组研究所与浪潮基因组科学也在共同研制国产第三代基因测序仪。在测序仪价格方面,PACBIO 2011年的第一台三代测序仪PacBioRS在美国价格80万美金,2015年生产的sequel测序仪价格35万美金,大幅下降。在测序成本方面,预计未来5年内三代测序能达到100美元全基因组测序的价格。国内外布局三代测序的公司  第三代测序技术是大势所趋  从兴证医药健康这份报告中可以看到:目前,第三代测序在技术上相对于二代在读长和测序速度等方面有明显优势,但在成本和准确率等方面还有待提升。目前国内只有瀚海基因在三代测序上有临床成果,而国外已经初步实现技术商业化。总体而言,第三代测序技术是未来发展趋势,实现大规模商业化将是大势所趋。  本篇报告内容由动脉网整理自兴证医药健康投资报告
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
  • 基因测序仪新品盘点|突破!国产新一代测序仪创新提速
    ——2022上半年生命科学仪器新品盘点系列基因测序是指利用血液、组织、细胞等生物样品,对DNA进行检测的技术,迄今为止已历经四代发展,是实现精准医疗的重要手段之一。齐碳科技在今年6月份发布了纳米孔基因测序仪家族新成员QNome-3841hex,作为一款桌面式测序仪,其最大的特点在于更为灵活的通量,支持最多6个测序任务独立运行;铭毅智造在5月推出了自主研发的单色荧光高通量基因测序仪UniSeq2000TM,采用微流控芯片技术,能够实现对不同类型的科研和临床样品进行基因测序;赛默飞基于成熟的Applied Biosystems技术推出了新型SeqStudio Flex系列基因分析仪,可进行Sanger测序和多重荧光片段分析;赛纳生物在今年1月线上发布了S100测序仪。为了方便大家熟悉了解基因测序仪新品的看点与亮点,小编特别进行了一期简评,供大家学习了解。齐碳科技:换新升级 纳米孔基因测序仪家族再添新成员2022年6月6月28,齐碳科技发布国产自研量产纳米孔基因测序仪升级版QNome-3841hex,作为一款桌面式测序仪,其最大的特点在于更为灵活的通量,支持最多6个测序任务独立运行,测序过程中可自由组合测序芯片,灵活可控,无需凑样,最大程度上降低开机成本。升级版测序仪QNome-3841hex还搭载全新升级测序芯片QCell-384,单张芯片可产出3G数据量,在6张芯片同时运行的环境下,一次测序可获取18G数据,满足了更高通量的测序需求。齐碳科技 QNome-3841hex基因测序仪小编点评:作为齐碳QNome家族的新成员,QNome-3841hex的成功发布,标志着国产纳米孔基因测序仪开始矩阵化发展,将满足市场更多元的测序需求,为各领域的研究及应用提供核心支持。铭毅智造:新品UniSeq2000TM 微流控与单色荧光发光测序结合2022年5月5月9日,铭毅智造科技有限公司发布了自主研发的单色荧光高通量基因测序仪UniSeq2000TM。根据产品介绍,UniSeq2000TM采用微流控芯片技术,结合单色荧光发光测序化学技术,可以实现对不同类型的科研和临床样品进行基因测序,目前设计最大芯片数量为2张,每张芯片通量为160-320M Reads,可提供SE50/75/100/150,PE75/100/150等多种读长模式,测序数据质量Q3080%,测序周期为12-24小时,具有测序精度高、效率快、成本低、操作简单等优势。铭毅智造 UniSeq2000TM高通量基因测序仪小编点评:铭毅智造发布的新品UniSeq2000TM是一款针对临床应用的测序设备,操作简单,无需值守,适合医院本地化检测使用。高通量测序技术这个关键技术过去一直被国外公司垄断,国产单色荧光高通量基因测序仪UniSeq2000TM的发布,代表着国产基因测序仪新势力的崛起,期待越来越多的国产高端科学仪器的诞生。赛默飞:推出新品SeqStudio Flex基因分析仪 兼备测序和片段分析2022年4月2022年4月,赛默飞世尔科技推出了新型Applied Biosystem SeqStudio Flex系列基因分析仪,基于成熟的Applied Biosystems技术,通过改进优化设计和技术,使其高效灵活、简单易用且智能连接。该新品也是市面上第一款具备远程服务功能的毛细管电泳基因分析仪,打破了物理距离的限制并简化了数据传输、分析和科研协作过程,帮助科研工作者把更多的时间集中在重要工作上。SeqStudio Flex基因分析仪可进行高水平的Sanger测序和多重荧光片段分析,应用广泛,从简单的靶向测序到识别最新SARS-CoV-2病毒变异株,为科研人员提供所需的高质量数据和可靠性能。赛默飞 SeqStudio Flex基因分析仪小编简评:赛默飞推出的新一代中通量SeqStudio Flex基因分析仪,进一步扩展了Applied Biosystems产品组合,凭借成熟的Applied Biosystems的技术和智能化设计将继续引领Sanger测序和多重荧光片段分析未来的发展方向。赛纳生物: S100测序仪 采用荧光发生和纠错编码测序技术2022年1月2022年1月12日,赛纳生物线上发布S100测序仪,它是一款高通量测序平台,具有检测速度快、灵活部署、无需凑样的特点。赛纳生物测序仪采用了独创的基于荧光发生原理的边合成边测序(Fluorogenic SBS)技术。处于暗态的Fluorogenic核苷酸分子无荧光发出,当被DNA聚合酶识别并结合进入待测DNA模板时放出荧光,通过依次参与反应的核苷酸种类及荧光强度可判断DNA序列信息。该技术将发光集团修饰在磷酸键上,使用天然碱基和简单常用的聚合酶及磷酸酶,没有分子疤痕和测序偏差,降低测序过程的复杂度,可在短时间内完成天然状态DNA合成并获得精确的荧光信号,测序过程快速、结果准确,易于获得长读长。赛纳生物 S100测序仪小编简评:赛纳生物发布的S100测序仪,体型小,操作简单,具有通量灵活、准确度高、多场景适用的特点。该新品于6月获得欧盟CE-IVDR认证,在一定程度上证明了赛纳生物的研发能力和产品质量得到国际机构的认可与肯定。后记:国产企业在生命科学上游高端仪器设备持续发力,4款新品基因测序仪中,国产品牌占据3席。今年国家发改委印发的《“十四五”生物经济发展规划》提出,加快发展高通量基因测序技术,推动以单分子测序为标志的新一代测序技术创新,不断提高基因测序效率、降低测序成本。可以说,测序技术的创新已上升至国家战略层面,希望国产厂商能够乘势而上,奋勇向前。
  • 测序黑马齐碳科技获4亿B轮融资 国产纳米孔测序仪产业化加速
    6月8日,齐碳科技正式对外宣布完成超4亿人民币B轮融资,由高瓴创投和鼎晖VGC(创新与成长基金)联合领投,博远资本、华盖资本及阳光融汇资本跟投,老股东高榕资本、中关村协同创新基金、银杏谷资本、雅惠投资及BV百度风投持续加码。齐碳科技专注于纳米孔单分子基因测序仪及配套试剂、芯片的自主研发、制造及应用开发。据了解,本轮融资完成后,齐碳将进一步加大科研投入,加速产业化进程,计划于今年内完成定型产品量产并推向市场。单分子纳米孔测序技术备受青睐纳米孔技术因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔DNA测序的基本原理图与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。总体而言,相较于主流二代测序仪,纳米孔测序仪具有长读长、小巧便携、实时输出结果等优势,特别适合病原微生物快速检测、基因组结构变异以及重复序列变异检测。美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。齐碳科技为国内唯一实现纳米孔测序仪产品化的企业齐碳科技创立于2016年,致力于纳米孔基因测序仪及配套试剂耗材的自主研发、制造与应用,是目前全球唯二、国内唯一通过自主研发实现纳米孔基因测序仪产品化的高科技企业。2020年9月,齐碳科技成功发布我国第一台纳米孔单分子基因测序仪QNome-9604,填补了国内新一代基因测序技术领域的空白。该款测序仪可直接检测过孔核酸,无需PCR扩增,读长可达150Kbp以上,8小时可稳定产出500Mbp数据,单次准确率达90%,设备小巧便携,可突破中心实验室使用限制,应用场景更为灵活。目前该产品已通过TÜV莱茵第三方检测,认定QNome-9604在基因测序通路数量、准确率、读长等方面的检测数据全部达标。投资人观点齐碳科技联合创始人&董事长胡庚博士表示,非常感谢齐碳科技的新老股东们对我们的长期关注与支持。齐碳科技成立至今不到五年,高效的完成了首款国产纳米孔基因测序仪的技术研发和产品定型,并将于今年实现产品量产,这一切都离不开团队的努力、股东的支持和市场的关注。本轮融资完成后,齐碳科技将投入更多的资源到团队扩充、产品升级、产能提升及商业拓展中,努力将更快更好的基因测序技术推广到更广阔的应用场景中。高瓴联席首席投资官、高瓴创投生物医药与医疗器械负责人易诺青表示:“齐碳科技研发了国内首台纳米孔基因测序仪,成功打破了基因测序设备、配套芯片及试剂研发领域的高壁垒和海外垄断,攻克了国内基因测序‘卡脖子’的技术难题。在市场应用空间中,微生物病原检测、癌症检测等细分领域适合成为纳米孔基因测序仪的首选应用方向。我们将长期支持国家重点领域科技研发,推动高水平科技自立自强。”鼎晖创始合伙人、鼎晖投资创始合伙人王霖表示:“基因测序行业增长迅速,传统二代测序技术在应用中存在一定的局限。作为下一代长读长测序技术中壁垒最高的产业链上游,齐碳科技具有强大的研发实力,产品迭代升级、性能提升速度快,公司目前在纳米孔基因测序仪方面的技术已达到全球领先水平。我们很高兴可以和齐碳科技这类硬科技公司携手同行,并期待公司产品早日实现在科研端和临床端的大规模应用。”博远资本创始合伙人陈鹏辉表示:纳米孔测序技术近年来快速发展,准确度、通量、成本等各方面都有了极大提升,科研和临床的应用场景持续拓宽,照亮了过去从未看到的基因组的黑暗角落。齐碳科技在具有强大战斗力的创始人团队带领下,成功突破纳米孔测序仪的超高技术门槛,产品顺利进入商业化阶段,公司也成为了国内该领域毫无疑问的龙头企业。博远资本非常高兴能够参与本轮融资,将持续赋能公司未来发展,在生命科学和精准医疗领域贡献更大价值。华盖资本医疗基金执行总经理孟楠认为,基因检测技术开发与应用在全球范围内已经进入高速发展期,齐碳科技创始团队具有全球视野及高效的研发能力,其拥有纳米孔基因测序方面的技术已达到全球领先水平。“我们高度认可齐碳科技团队的产品研发能力和开拓能力,相信在白净卫博士的带领下,公司将获得长足发展。华盖未来将助力公司成为测序领域的领导者,持续为社会创造价值。”阳光融汇资本合伙人石晟昊表示:第四代基因测序技术在读长,测序时间等方面有天然优势,齐碳科技团队的技术扎实、完整。作为这一技术路线国内产品化和商业化最快的公司,齐碳科技具有显著的投资价值。阳光融汇非常荣幸参与本轮融资,相信公司未来将在创始团队的带领下持续拓展第四代基因测序的技术和应用边界,成为基因测序行业龙头企业。
  • 超2亿元C+轮融资!国产基因测序仪厂商赛纳生物专注自主研发测序技术
    2022年8月,专注于国产基因测序仪研发的赛纳生物科技(北京)有限公司(以下简称:赛纳生物)宣布完成超2亿元人民币C+轮融资。本轮融资由中国国有企业结构调整基金二期(国调基金)领投,无锡国联国康健康产业投资中心(有限合伙)(无锡国联)跟投。依托原创的荧光发生(Fluorogenic)测序化学和纠错编码(ECC)测序策略两项核心测序技术,北京大学的陈子天博士联合国际著名科学家谢晓亮院士、北京大学黄岩谊教授团队创立了赛纳生物。赛纳生物专注测序技术,通过底层测序方法和工程技术革新,为行业提供高性能测序仪产品,成为服务全球市场的基因技术创新企业。赛纳生物CEO陈子天博士认为,测序领域被外资企业的技术和市场双重垄断下,研发自主的测序技术和产品,是国内企业扭转该局面的关键路径。赛纳生物首款S100基因测序仪于2022年正式发布,NMPA三类医疗器械注册证申报已启动,2022年6月,赛纳生物的S100基因测序仪及其配套测序试剂盒荣获欧盟CE-IVDR认证。赛纳生物的研发能力和产品质量均得到了国内国际权威机构的认可与肯定,也标志着赛纳生物测序仪即将迈向国际市场。作为一家拥有全自主知识产权技术的上游平台型公司,赛纳生物本着合作开放的态度,期待与业界同行进行更为广泛的交流合作,共同开创基因产业更加美好的未来。在自身技术实现持续突破的同时,赛纳生物也致力于通过底层技术优势,满足合作伙伴更多样化的产品和服务需求,推动高通量测序技术实现更为广泛的应用,助力合作伙伴共同探索国际市场。CEO陈子天博士表示:开发出全自主知识产权的国产基因测序平台仅仅是入门,不断地迭代研发、推进国产测序平台产业化才是重中之重。制造工程机的过程耗时且漫长,需要根据用户的需求及反馈信息不断进行产品的改进完善,促使测序平台从“可用”向“好用”发展。赛纳生物的目标就是基于全自主研发的国产测序平台,构建中国主导的测序新生态。国调基金表示:本次投资是国调基金作为国家级股权投资基金在生命科学技术领域的又一重要布局,基因组信息是生物安全的重要组成部分,拥有自主知识产权测序设备对维护国家信息安全具有重大意义。国调基金战略投资赛纳生物,看好公司具有自主知识产权的国际首创测序技术,与现有组合被投企业形成产业链互补和协同,打造中国自己的测序生态测序平台。无锡国联表示:很高兴能和国调基金一起投资国内基因测序领域的明星企业。基因测序是目前分子诊断中增速较快的领域之一,广泛运用于肿瘤、病原微生物感染以及遗传病的检测。然而,基因测序行业上游的测序仪和耗材仍面临着核心技术受制于外、测序成本过高等问题。赛纳生物独创的底层测序技术,拥有完全自主知识产权的测序仪和配套耗材专利技术,同时还具备测序结果准确性更高、测序成本更低、测序时间更短等优势。我们对于公司未来的发展充满信心。
  • 基因测序,风口上的思考(二):基因测序的误区和瓶颈
    基因测序无疑是未来看好的技术之一,但其真实价值几何?什么样的创业项目不值得投资?什么样的技术才有护城河?什么样的应用方向才可能正确?基因测序的前景还有哪些瓶颈?作为基因测序领域的资深从业者,Life Technologies(现为Thermo Fisher收购)公司全国临床与科研事业部销售总监、Thermo Fisher公司全国临床市场战略总监柴映爽写了一系列文章,对上述问题进行了深入剖析。继第一篇文章《基因测序市场格局介绍》之后,以下为柴映爽系列文章的第二篇:  二、基因测序的误区和瓶颈  1.水晶球只是童话——风险评估预测为何不靠谱  人类对不确定性的恐惧和好奇一直存在,基因测序可否用来做患病风险评估,成为一个预测未来的水晶球?理论上来讲是可以的,反正人生都是在各种概率中前行。但实际上能用于指导实践还是有很多疑问。首先要确定个体基因测序的结果是否偏离了正常人群,就要有一个统一、科学、标准的数据库,遗憾的是现在还没有。大部分公司的做法是自己构建数据库,加入临床上确认的和科研上研究比较多的一些突变位点,受检者测序后和这个数据库进行比对,看看有没有出现这些突变。然后根据这些突变发生的情况,给出一个患病的百分比概率。但是,问题在于:1)这个数据库是否可靠,很难证明。有相关性也不代表就是因果 2)已明确和临床疾病有关的突变实际上是相当少的,很多突变即使有了也不一定就意味着会发病 3)除了遗传病(如罕见病)以外,大部分疾病是多基因相关,并且和后天环境也很有关系,单靠基因测序并不能够完全模拟发病的所有相关因素 4)这个百分比概率是用什么软件模型算出来的,软件是否靠谱,很难说。即便说个体的患病风险比正常人群高了5个百分点,是否说该个体就有更高的患病可能,很值得商榷,对临床也没有任何指导意义,概率并不能用于进入临床诊疗标准。基于上述原因,目前几乎每一家公司测出来的疾病风险都不同。目前的风险评估预测,除了影响心情以外,没什么实际意义。  至于一些什么儿童性格基因和天赋基因商业检测,更加荒唐。学术界至今没有公认哪个基因跟天赋有必然联系,拿着一些发表的探索性研究文章,就说是业界证实的结果,忽悠行业外的老百姓赚钱,既不科学,也不道德。  2. 是否应该进行全基因组测序?  从科研角度来说,完全没有问题,但在临床应用方面就不是了。除了遗传病以外,目前很多基因和疾病的关系都只是“可能”,还没有定论,即便是BRCA1,也只能说近乎“公认”跟遗传性的乳腺癌有关。一堆解释不清的测序结果,对医生和病人来说都没有意义,病人却因此要承担更高的检测成本,未来不会得到卫生政策部门的赞同。检测某肿瘤,是否一定要测一大群基因?和肿瘤的关系都明确相关吗?这些基因对该肿瘤的诊治意义有多大?临床诊断指标,“多”不重要,“明确”才最重要,有多个明确相关指标,则是好上加好,利于综合判断,而做多少检测,还要从临床实际判断出发。这就好像你发烧咳嗽到医院去看病,医生除了给你验血常规以外,又给你查生化全套,又给你查SARS病毒,又让你去做包括PET CT在内的所有影像学检查看看是不是癌症,末了再来个骨髓穿刺查白血病,因为癌症和白血病也可能引起发热,会不会有人接受呢?具体工作中,医生还是会结合病人主诉、流行病学资料、病人经济能力、生活行为、前期治疗观察等因素,确定首选检查手段,根据经验分步进行鉴别诊断。所以,全基因组测序的结果,目前给临床带来的无所适从要多于指导意义。更不用说应该测多少倍的深度,这方面连个标准都没有。各种全基因组测序数据库,跟大量的重要临床数据(如肿瘤大小,家族史,药物使用,其他诊断数据)没有足够关联,因此未来也不一定有用。  医生的诊疗,会包括通行的标准诊疗和标准流程之外的探索性诊疗两部分。后者是医学进步的动力,但在当前中国的医患环境下越来越少。尽管如此,对于标准诊疗无解的病人,医生会尝试非常规的诊疗寻找突破,这种极端情况下全基因组测序是有一定价值的。我们有时会见到这样的例子,无法确诊或治愈的病例,通过测全基因组后发现了某个突变,根据该基因突变对应的蛋白质功能和表观性状,最终得到确诊或是找到了某种对应的药物(用于其他疾病的或是还没上市的)。但是也有测了全基因组什么办法也没找到的,比如说乔布斯同志。这种诊疗不能成为目前医疗的主体,因为不确定性太多,它没有办法替代现行的医疗模式。  3. 任重而道远——生物信息学的瓶颈  高通量测序是通过把提取的样品DNA打成小片段,在机器上进行大量平行测序,然后将读取的序列信息拼接成完整序列,和参考序列进行比对,这里需要很多的生物信息学工作。因此,在拼接的过程中难免有算法误差,另外打碎DNA片段的实验步骤也有重复性的问题。由于突变位点不是每一次测序都能测到,因此需要测很多次,有时候甚至测到上千次,这也是高通量测序会产生海量数据的原因。测到目标区域的平均次数称为测序深度,如测100次就称为100×(倍)的测序深度,专业一点来说是测到的碱基总量除以基因组碱基数量的的大小。患者得到的数据,到底是30×还是100×还是2000×测序来的,一般人不知道。而测序后通过生物信息学分析出的突变,是真实存在还是测序产生的误差,也见仁见智。目前来说,到底要测多少倍才算比较准,都是按照业界通行的理解来进行的,在临床应用上尚没有法定的标准,也给如何统一各家公司自己的数据库出了个难题。如果这个数据库要用于治疗目的,那么是在什么临床环境下测的数据,也很少有人提及。  另一个是海量数据带来的计算机存储问题。人类基因组3.2个G,测50倍的通量就要160G,光数据存储一个小硬盘就用掉了,想发展大数据,搞云计算来比对,以现在的网络传递起来还是很慢的。做科研还好,但在临床上,基因组数据带来的效果还不足以无视这些额外产生的计算机集群负担,有点像互联网之初要用Modem等待漫长的滴答音后才能接通Internet一样,影响了公众对互联网的接受度。这方面的瓶颈也许要等到新的技术出现才会突破,如新的图形存储格式,新的算法,新的通信协议,等等。或是新的测序技术出现将现有的生物信息学过程彻底抛弃。  目前的生物信息学解读主要还是侧重于测序结果的解读,随着HTML5协议的出现,可视化的基因组学浏览器已经有了很多发展,界面更加直观,也减轻了很多后台服务器的负荷,但是还是面向专业技术人员的,并没有完全发展到临床信息的解读,因为这个同时需要很深的临床专业知识。仅仅是基因测序的结果拿给临床医生看,可以说几乎没有人看得懂,在临床的应用程度可想而知,更不用提医生如何向病人解释他为何根据基因测序结果要采取某种临床干预。大多数临床医生更希望把基因测序作为一种标准化操作工具,而非了解该工具本身。而目前基因测序的数据结果到临床医生工作中的直观指导,还存在相当的距离,基因组数据无法被医生搜索、共享和理解。临床客户的两个基本诉求:“安全”和“标准”,基因测序尚不能实现。数据格式标准不能统一,临床指征与基因检测结果关系的专业数据库的缺失,使得基因测序在临床应用上受到生物信息学的很大束缚。  4. 肿瘤基因测序难以大范围推广  肿瘤的基因测序是当下的一个热点。由于肿瘤和基因组有一定的关系,使得行业外产生了很高的期望值。但它有两方面的主要瓶颈:临床机理和临床操作。目前市场上肿瘤基因测序有肿瘤的靶向治疗指导和肿瘤的易感性基因检测。肿瘤的易感性基因检测存在相当大的争议,严格来说没有临床价值,因为肿瘤与基因关系的基础理论仍然不足,可临床确认为高度肿瘤相关生物标记物的基因几乎没有,单是“肿瘤易感性基因”这个有因果意味的定义就很有问题,作为肿瘤的大面积常规筛查说服力有限,即便做了,基因结果和肿瘤的确切关系也根本说不清楚。从这个角度来说,所谓肿瘤易感性基因检测不是一个合理的方向。肿瘤的的家族史倒是跟遗传有关,但像遗传性乳腺癌检测与其说是肿瘤基因检测,不如说是广义的遗传病基因检测更好解释些。相对而言,用于靶向用药指导的意义比较明确,但这个市场会被定量PCR和常规一代测序分走一些,另外人种和地域可能会影响对同一基因的突变位点的选择,没有标准。现在的靶向药物类别不多,进入标准指南的就是肺癌的EGFR和ALK基因,转移性结直肠癌的kras基因,和黑色素瘤的braf基因检测,其他的基因靶点检测都属于医院自行开展,测算市场刚性需求时比较容易有水分。一个与学术无关的现象是,即便基因检测结果表明该药物可能无效,病人若没有其他选择,还是可能会抱着试一试的心态使用该药物,使得基因检测的意义可有可无,导致医生做基因检测的动力下降或动机改变。  在临床操作层面,目前肿瘤基因测序没有专门的收费标准,基本上都是套用按位点做基因测试的收费标准来的,各省物价,一个位点在250-600元不等,这个价格对高通量基因测序来说不合算,但由于高通量测序可在成本不变的情况下一次性测很多位点,因此一般来说是按照多个位点进行收费,限于病人经济承受能力,一般市场收费在4000-8000元不等。这方面该测多少位点,收费怎么计算,还缺少相关的政策。另外,肿瘤基因检测临床实施并不方便(血液肿瘤除外),区别正常突变和肿瘤基因突变对人员技术能力要求较高。由于肿瘤的基因组不稳定,常产生耐药突变,作为疗效检测的话,需对肿瘤病人多次肿瘤部位取样活检,无疑增加了病人的痛苦和操作难度。而且,是否要同时取癌旁正常组织一同测序,这部分收费是否要病人承担,政策上都没有定论。  最近液体活检受到重视,是指在外周血中寻找脱落或凋亡释放的肿瘤细胞DNA(ctDNA)进行基因测序。这种取样方式大大好于组织取样,长远来说可能适合癌症复发的早期检测,但距离临床应用还比较遥远。循环肿瘤细胞DNA是不完整的DNA碎片,需要大量基因测序,大量的生物计算拼接,误差不好控制。还有怎样确保减少假阳性,和肿瘤目前的TNM分期如何对应,这些技术问题都需要时间。一个现实问题是:如果ctDNA结果提示肿瘤,但病人去做了PET-CT也没有发现病灶,病人该怎么办。相对而言,寻找循环肿瘤细胞(CTC)辅助以基因测序验证可能是一个比较有希望的方案。CTC可以得到完整的肿瘤基因组,作为诊断指标在临床上也容易界定,不过如何保证CTC的捕获效率,目前没有最理想的方法。  总之,肿瘤的机理过于复杂,基因测序和实施临床干预还不能顺利对接,操作层面和政策层面还有很多困难,远非理想的应用状态。从远景来说,随着靶向药物的开发和肿瘤免疫的进展,基因检测的需求长期存在。但目前还受制于大数据如何积累,如何搜集标准标本,如何建立大分析平台,短期内无法解决。一部分临床需要的基因检测用更简单便宜的PCR或FISH即可解决问题,并不需要高通量测序。当下很多人热衷于用科研思路去解决临床问题,但医疗不同于科研,必须考虑很多的社会人文因素。而肿瘤这样一个热点市场,作为一个公司要长期生存的话单纯依赖这方面业务需要谨慎。等到这些瓶颈解决有希望盈利的时候可能又出现新的替代技术了,这是一个受到很多关注但技术路线变化可能性非常大的市场。  4.最大的瓶颈—全社会的认知和现行医疗体制  医学本身并不是面向大众的科学,基因科学更加小众。基因与疾病的关联的社会认识程度还不高。大部分患者、医生、政策部门、投资人,都不是很了解基因测序的知识。普通老百姓很难说清楚基因是怎么回事,有些人还以为遗传病就是精神病,大量临床医生对基因测序的理论基础也很难理解,何况这个技术还在不断更新。在这样一个现实环境下,基因测序在未被充分检验之前就投入了医疗这个高度监管行业的应用,某种程度上讲是危险的,对基因测序技术应用的误读误用,会影响其本身健康发展,损害它作为一种新的技术所需要成长的空间,会出现劣币驱逐良币的现象。全社会还需要更多参与到基因科技的普及中。  由于互联网的发展带来信息量的大增,今天患者越来越参与到对他们自身诊疗的决策过程中,知识程度的不对称和诊疗话语权的分配无法协调,也是今天医患矛盾的原因之一。这是一个传统医疗体制正在变化的时代,基因测序若得不到正确的理解和实施,会被拔苗助长,最终和体制不能结合而失去发展。基因测序用于临床干预来说很多结果还很模糊,又不能带来健康行为的根本改变,相关的法规也还缺失。临床诊疗过程需要的是基因测序的临床解读而非技术解读,但目前实施医疗的主体——医院和临床医生,对这一传统医学知识体系之外的技术还需要学习,而基因测序的检测提供者只提供技术,临床应用责任因为缺乏相应法律保护而没有承担主体,这一体制瓶颈约束了基因测序的发展,需要政策制定者的智慧。  为了解决基因测序结果到临床应用的连接问题,2015年成立了中国遗传学会遗传咨询分会,开始了遗传咨询师的定期培训班,迈出了开拓性的一步。但如何应用于医疗实践,还缺少合理的制度支持。如何对临床标本的基因检测结果进行标准化描述、评估和溯源,是当下医疗体制的瓶颈。生老病死是人类最重要的问题,在相应的瓶颈没有突破之前,基因测序只适合少部分地用于医疗实践,绝不适合在全社会推广应用。  未完待续,精彩内容请关注后续系列报道:  基因测序,风口上的思考(三):什么才是护城河?  基因测序,风口上的思考(四):对未来的预测和建议  作者介绍:  本文作者柴映爽,上海医科大学预防医学专业学士和国家CDC病毒所基因工程学硕士。曾在欧美制药公司工作,2004年初进入Life Technologies 的前身Applied Biosystems公司工作至今,见证了十年来中国基因科学和分子诊断的飞速发展。个人兴趣在于研究基因科学的最新成就,致力于推动成熟的基因科学成果进入中国分子诊断市场并得到健康持续的发展,使得中国的患者能够受益于最新的分子诊断技术。  本文仅代表作者个人观点,与作者所供职机构无关。
  • Nature:1000$全基因测序的问与答
    1月14日,Illumina公司总裁兼CEO Jay Flatley在第32届摩根大通保健大会(JP Morgan Healthcare Conference)上宣布,该公司推出一款新的HiSeq X 10测序仪,它能够实现全基因组测序不到1000美元的目标。这引起了外界广泛的关注,有研究者甚至评论这项突破技术可同显微技术和微处理器相媲美。Nature杂志也在第一时间关注了这个事件。   我们不是已经进入千元基因组时代了吗?   其它公司也曾宣称自己的产品能够将基因组测序的成本降到一千美元以下,例如 Ion Torrent 测序平台的制造者 Life Technologies 公司,以及测序新秀 Oxford Nanopore 公司。然而,实际上这些技术还难以实现这样的承诺,千元基因组被证明仍是根难啃的骨头。   千元基因组为何这么重要?   人们首次测序人类基因组花了将近三十亿美元。不过,随着测序成本的大幅下降,医生们已经开始在患者基因组序列的帮助下进行更好的治疗。但是对于科学家们来说,可能需要测序百万人的基因组,才能真正理解基因对疾病的影响,更好的开发治疗药物,实现个性化医疗的真正突破。要进行如此大规模的测序研究,就需要基因组测序成本降到一千美元以下。   HiSeq X Ten 能干什么?   HiSeq X 能够在三天时间内生成 1.8 terabases 的数据,相当于 16 个人类基因组。据 Illumina 介绍,每台 HiSeq X Ten 每年将能够测序 18,000 个人类基因组。每个基因组都能够达到覆盖度 30x 的金标准,这意味着每个碱基平均被读取 30 次。我们这里谈的可是整个人类基因组,而不是仅指蛋白编码区域或者外显子组。   这有什么大不了的?   一些基因组研究者们将这一技术称为一个里程碑。&ldquo 这是可以与望远镜或微处理器相提并论的重要成就,&rdquo 冷泉港实验室的定量生物学家Michael Schatz说。&ldquo 也许之前人们还在怀疑,基因组测序是否能使平头百姓获益。但以这样的价格和测序效率,我们的答案绝对是肯定的。&rdquo   人人都测基因组吗?   很可惜,答案是否定的。 HiSeq X Ten 系统至少由十个 HiSeq X 系统组成,总价至少要一千万美金。很少有人的样本量能与如此大的投资向符。&ldquo 如果能玩得起,这还是个不错的交易,&rdquo Broad 研究所的 Chad Nusbaum 说,该研究所隶属于 MIT 和哈佛,是已经登记购买 HiSeq X Ten 的三个用户之一。   Illumina 真能实现千元基因组么?   尽管已经非常接近,但 HiSeq X Ten 可能还无法立刻把测序人类基因组的成本降到1,000美元以下。 Flatley 是这样分解 HiSeq X Ten 的测序成本的:仪器运行所需的试剂成本($797/基因组),仪器的折旧成本($137/基因组),技术人员准备样品进行测序的工资($55?65/基因组)。但他忽略了研究中心的日常开销,例如运行仪器所需的电费。   Illumina 是怎么做到的?   据 Illumina 的 Christian Henry 介绍,在 HiSeq 2500 系统的基础上, HiSeq X 进行了四大改进。 HiSeq 2500 采用的是流动槽(flow cell), DNA 模板附着其上以便进行测序。该系统对 DNA 进行荧光染料标记,并通过相机对其成像,最后进行图像分析。   HiSeq 2500 中的 DNA 模板随机分散在流动槽上,而 HiSeq X 采用的是有序的&ldquo nanowell&rdquo 阵列。这意味着模板可以更为密集,仪器的每次运行可以产生更多的数据。 Illumina 还加强了相同 DNA 模板的聚集,以进一步提高测序速度。另外,该系统还整合了更快速的相机和新的聚合酶。   这对测序市场有何影响?   HiSeq X Ten 的发布无疑会对华大基因(BGI-Shenzhen) 产生不小的影响。 BGI 一直希望成为测序服务的巨头,2013 年他们收购了提供外包基因组测序的 Complete Genomics 公司。 Nusbaum 估计, BGI 将有能力能为客户提供低至 1000 美元的基因组。   昨天 Flatley 还发布了一款新的台式测序仪 NextSeq 500。该仪器价格约为 $250,000,与 Ion Torrent 的台式测序仪相当(Ion Proton),似乎有意与其一争高低。据称 Oxford Nanopore 公司即将上市的新产品,不仅能以低廉的价格快速测序人类基因组,还可以实现微生物的宏基因组测序。而 Illumina 暂时还没能推出类似的技术。   我们可以看到, HiSeq X Ten 进一步巩固了 Illumina 在中高端测序市场的地位。但科学家们仍在渴望有一台低成本仪器,能够快速实现所有的测序应用。
  • 人类基因组测序先驱进军生物医疗测序领域
    美国人类基因组测序先驱J. Craig Venter将和其新创立的公司Human Longevity Inc.(HLI)进军生物医疗测序领域。HLI是&ldquo 基因组学和细胞的诊断与治疗公司&rdquo ,计划于今年夏季启动,终极目标是推进健康老龄化。 J. Craig Venter(中)希望通过利用基因组学实现对抗衰老的目标。图片来源:Brett Shipe   近日,J. Craig Venter研究所创始人兼首席执行官Venter宣布,新公司将以7000万美元的启动资金,建立世界上最大的人类基因组测序中心。Venter称,公司计划从Illumina公司购买20个新的价值百万美元的测序机器。&ldquo 新技术将最终使设备越过质量、体积和成本的障碍,达到我一直期待的效果。&rdquo Venter表示。   迄今为止,除了获得将特定肿瘤的基因信息用于预测和治疗的有限成功外,个人基因测序很少能为医生提供清晰的指示。不过通过将&ldquo 一切我们可以测量的信息&rdquo 与临床数据结合,Venter希望最有益的治疗或者预防模式可以出现。&ldquo 基因组学只是全景的一小部分。&rdquo Venter强调。不过,HLI公司计划在开始时每年测序4万个基因组,目标是在5年内达到50万个。   一些人担心,Venter试图一下子解决的事情太多。该公司的计划&ldquo 遍布各领域&rdquo ,哈佛大学的George Church说道,其他的商业企业往往更为专注。&ldquo 将大量资源投注于一个领域可以保持竞争力。&rdquo Church指出。   &ldquo 测量和建设如此大规模的数据集难度很大,将其进行有效整合的复杂性更大。&rdquo 英国帝国理工学院生物化学家Jeremy Nicholson也持这种看法,&ldquo 在生物学上,这将是一个伟大的科学事业和冒险,但实际上,这就好像是在盲目地攀登珠穆朗玛峰。&rdquo
  • Sanger测序仪再添利器||德诺杰亿加速基因测序国产化进展(政策篇)
    基因测序技术作为“颠覆式创新”技术,自诞生以来给生命科学、医学、农业、食品安全等多个领域带来了巨大影响。测序仪是融合各行各业高精尖技术和设备的巅峰产品,其中包含机械、工程、电子、自动化、物理学的声光电、数学、化学、生物学、计算机科学等前沿科学知识,功能作用极其精密,研发的技术壁垒极高。长期以来,外资品牌在测序行业的上游处于垄断地位。自2011年“十二五”规划鼓励发展高端医疗器械国产化以来,国家多部委以及地方各部门陆续出台相关扶持政策,从鼓励研发创新、产品采购和加快产品上市等多方面来支持国产医疗器械自主创新,大力推进医疗设备的国产化替代。随着我国科技的进步和相关利好政策的出台,近几年国产设备替代成为诊断行业的大势所趋,基因测序仪作为一款高端精密仪器更是行业焦点。2015年国务院在发布的《中国制造2025》规划中将“生物医药及高性能医疗器械”纳入制造业发展的10大重点领域,鼓励国产企业加强创新,攻坚克难。2016年中共中央、国务院印发《“健康中国2030”规划纲要》,明确需加强高端医疗器械等创新能力建设,加快医疗器械转型升级,提高具有自主知识产权的医学诊疗设备、医用材料的国际竞争力,并提出到2030年,实现医疗器械质量标准全面与国际接轨的目标。国务院办公厅在《关于促进医药产业健康发展的指导意见》中强调,国产药品和医疗器械能够满足要求的,政府采购项目原则上须采购国产产品,要逐步提高公立医疗机构国产设备配置水平。2017年科技部办公厅发布《“十三五”医疗器械科技创新专项规划》,提出医疗器械朝国产化、高端化、品牌化、国际化方向迈进,致力于推动医疗器械科技生产的跨越式发展。2018年国务院办公厅印发《深化医药卫生体制改革下半年重点工作任务的通知》指出,推进医疗器械国产化,加速国产医疗器械崛起是深化医改的重中之重。《增强制造业核心竞争力三年行动计划(2018—2020年)》把加速创新医疗器械审批和高端医疗器械产业发展作为一个重点。2019年国家发展改革委印发《促进健康产业高质量发展行动纲要 (2019-2022年)》指出,加快新一代基因测序、肿瘤免疫治疗、干细胞与再生医学,生物医学大数据分析等关键技术研究和转化。推动重大疾病的早期筛查、个体化治疗等精准化应用。国家卫健委发布《2018—2020年大型医用设备配置规划》中明确大型医用设备配置要根据医院的功能定位,临床服务需求来定。二级及以下医院和非临床急救型的医院科室,要引导优先配置国产医疗设备。2020年《广东省财政厅关于规范省级单一来源采购方式审批和进口产品核准管理有关事项通知》指出,严格落实过“紧日子”的要求,从严核准政府采购进口产品。拟采购的产品有国产同类产品的,原则上不允许采购进口产品。十三届全国人大常委会第二十二次会议表决通过了《中华人民共和国生物安全法》,该法律从2021年4月15日起施行。生物安全法是我国生物安全领域的基础性、综合性、系统性、统领性法律,该法的出台,有助于从法律制度层面解决我国生物安全管理领域存在的问题,有助于确保生物技术健康发展,保护人民生命健康,维护国家生物安全。2021年国务院印发《计量发展规划(2021—2035年)》指出,加强高端仪器设备核心器件、核心算法和核心溯源技术研究,推动关键计量测试设备国产化。建立仪器仪表产业发展集聚区,培育具有核心技术和核心竞争力的国产仪器仪表品牌。广东卫健委发布的《省级卫生健康机构进口产品目录清单的公示》,明确可采购进口的医疗设备数量仅46种,相比于2019年132种,大幅削减包括基因测序仪在内的86种医疗器械设备。此前,浙江省也发文要求数十种医疗设备移出进口清单,明确支持国产优先。2022年国家发改委印发的《“十四五”生物经济发展规划》,明确“基因与生物技术”作为七大科技前沿领域攻关领域之一,“生物技术”作为九大战略性新兴产业之一。其中“基因技术为未来产业,更提出要不断提高基因测序效率、降低测序成本。2023年中共中央政治局就加强基础研究进行第三次集体学习,提出要打好科技仪器设备、操作系统和基础软件国产化攻坚战,鼓励科研机构、高校同企业开展联合攻关,提升国产化替代水平和应用规模,争取早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题。财政部、商务部、税务总局3部门发布《关于研发机构采购设备zengzhi税政策的公告》明确,为鼓励科学研究和技术开发,促进科技进步,继续对内资研发机构和外资研发中心采购国产设备全额退还。可以说,测序技术的创新已上升至国家战略层面。面对激烈的国际科技竞争,实现科技自主,从源头和底层解决关键技术问题, 保障我国生物信息安全,实现真正意义上的国产自主可控至关重要。在实现“国产化”和“自主可控”的基础上,如何获取更高的通量?如何实现更便捷的操作体验?如何进一步降低测序成本?成为目前市面上最关注的难点和痛点。Sanger测序仪U8000德诺杰亿从创立至今,始终以市场端需求为发展战略,坚持创新是企业未来发展的动力,深耕底层技术,致力于“金标准”测序技术国产化,通过组件打造标准化柔性模块技术体系,夯实比较优势,降低使用成本和维保成本,测序数据安全可靠,保障国家生物信息安全。经过多年的持续奋战,德诺杰亿先后自主研发了单通道和四通道的Sanger测序仪U3600/U4000,并于2023年4月份正式获得第二类医疗器械产品注册证(京械注准20232220238)。近期,德诺杰亿成功研发Sanger测序仪U8000,在延续了U3600/U4000优势的基础上,实现了通量再次升级,是一款易用、方便的台式系统,采用了八通道集成式一体化可替换式耗材,可在最大限度减少仪器操作时间,轻松开展基因片段分析及Sanger测序实验,无需进行预运行校准或更换凝胶聚合物、缓冲液或毛细管,独特的集成式U盒设计可在同一块板上同时进行测序和片段分析,加速基因测序国产化进展。
  • 华因康重磅发布临床应用型测序仪 测序仅需10小时
    导读:2015年10月18日,华因康基因重磅发布了一款自主研发、获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA。在基因测序技术受关注的今天,HYK-PSTAR-IIA基因测序仪的正式发布,对中国基因测序技术发展具有怎样的影响?会给NGS的临床应用市场带来怎样的冲击?又能为临床用户带来怎样的体验?华因康基因测序仪产品发布会,带您一同观看一场正在改变中国基因测序临床应用的发布会。  2015年10月18日,作为中国高通量基因测序仪首创企业,华因康携863项目重要成果--自主创新且获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA,亮相第74届中国国际医疗器械博览会,并举办了“863项目成果交流会暨华因康基因测序仪产品发布会”,与863项目相关领导和专家进行了深入交流,全面系统展示了该款产品的核心专利、技术优势及临床应用等方面,分享和探讨了临床及科研领域的应用经验。  国家产业支持,固筑中华健康梦想  完全依赖进口,将使我们无法即时得到最新、最先进的测序设备,而且设备、软件、试剂价格不菲,不利于临床应用的开展,中国需要自己的测序仪,需要这种核心平台技术。盛司潼博士指出,前沿生命科技要更好的造福人类,就要为大众的医疗健康带来新的价值。在国家科技部863重大课题的支持下,华因康实现了将最初的科研型测序仪升级成为临床型测序仪,并于2014年获得国家药监局医疗器械注册证。这将开启基因测序在临床应用的新时代,将为我们日益增长的精准医疗需求提供解决方案,同时也将极大的推动基因检测临床市场的迅速发展。  匠心设计,打造中华首创  任何一个自主品牌产品的诞生,都必然有一条曲折的道路,华因康HYK-PSTAR-IIA基因测序仪也不例外。华因康产品总监谭辉标指出,早在2011年之初,华因康就已经瞄准临床应用这个潜力巨大的市场,并开启了设备的精心设计。他还透露了一组关于该产品的重要数据:11项核心算法,16次重大技术攻关,274名技术人员,360种零部件,1007次测试,1095天,1200例临床试验 115件中国及国际PCT专利,10项全球领先的核心技术,8项国家标准,6篇SCI学术论文,2项创新医疗器械特别审批。其中,基于200多项涵盖试剂供给、测序反应、自动化控制、光学成像、数据处理等5大系统核心专利,HYK-PSTAR-IIA得以成为首个通过创新医疗器械特别审批程序的基因测序仪。  我国十分重视基因测序技术的发展与推进,作为863项目重要成果--获CFDA医疗器械注册证的基因测序仪HYK-PSTAR-IIA的正式发布,意味着我国真正拥有了首个临床诊疗领域独立自主的基因测序仪品牌。  核心专利技术,实现临床精准诊疗  会议期间,华因康医学总监李花特别针对临床医师广为关注的,应该如何选择测序仪进行了阐述。她指出,国外厂商的设备并不完全适合于临床应用,存在测序成本高、操作复杂、测序周期长等问题。而HYK-PSTAR-IIA是一款专为临床应用而设计的基因测序仪,具有灵活、快速、准确等特点,成为临床精准医疗的最佳选择。  HYK-PSTAR-IIA四大特点--灵活、快速、方便、准确  李花指出HYK-PSTAR-IIA除了配备4种规格反应体系模块,还可以根据用户需求定制反应模块,极大方便临床测序的应用,最低上机样本数低至4个,同时最大上机样本量达几百,尤其适用于临床样本不固定的医疗机构。HYK-PSTAR-IIA检测快速,单轮测序时间仅10小时,充分满足临床对检测周期短的要求。HYK-PSTAR-IIA配备了自动化的数据分析软件,使得数据分析更加简单易行,一键即可开启大规模数据分析,临床使用更简便。高灵敏度、大尺度、CCD成像系统联合DICT图像精准识别专利技术,实现精准对焦,自动化采图,经多个权威平台对比验证,准确性达99.9%以上。  以HYK-PSTAR-IIA基因测序仪为核心的PSTAR基因测序系统,已获得14个医疗器械注册证,包括测序配套、试剂及分析软件,其中试剂盒已获得8个,而且新试剂盒将不断上市,新应用将不断拓展,能为基因测序解析工作提供全套系统解决方案。  市场精心布局,临床应用展翅翱翔  会议期间,上海瑞金医院、浙江省肿瘤医院以及深圳市南山区慢性病防治院的测序仪用户,均对各自的应用案例进行了深入的剖析与分享,让广大与会人员看到中国自主创新品牌的测序仪在临床领域开展的众多应用。浙江省肿瘤研究所的凌志强教授更是坦言,基因测序最重要的是时机,如果测序报告不及时,一旦肿瘤发生转移,个性化用药或其它治疗的效果就会大打折扣。华因康的设备最大的优势就是灵活,快速,成本低,很适合在临床上使用,并且准确率与国外的设备不相上下。  HYK-PSTAR-IIA基因测序仪应用范围极为广泛,从基础研究到产品开发,从临床科研到健康产业,涵盖了疾病早期筛查、精准用药指导、疾病分子机制研究、药物开发、等众多领域,得到国内多家科研机构、医疗机构等的高度认可,并获得行业内的多项荣誉资质。  目前,华因康基因已与国内顶级医院及科研机构如上海瑞金医院、浙江省肿瘤医院等携手,进行了全方位合作,成立了合作应用示范点,形成了以点带面逐级扩展的辐射效应,这将极大拓宽在我国生命科学领域的应用空间,开拓了高通量基因测序技术在生命科学与健康医疗领域中的广阔应用。  总结与展望  华因康绕开了长期被Illumina、Life Technology等国外测序厂商垄断的科研测序仪市场,大举进军医用基因测序仪,因此HYK-PSTAR-IIA基因测序仪的正式发布将对中国基因测序产业带来产生深远的影响。当天上午,在武汉光谷领导们的大力支持下,华因康完成了试剂研发生产华中基地落户武汉光谷,由此华因康全国市场布局真正打开,华因康将以此为一个新的起点,再接再厉,谱写新的篇章。
  • 一文读懂基因测序技术的前世今生
    p   测序技术的每一次变革,都是对基因组研究,疾病医疗研究,药物研发等领域的巨大推动作用。从1977年第一代DNA测序技术(Sanger法),发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三测序技术也已在这一两年的时间中快速发展着。 /p p   根据原理的不同,人们将测序技术发展分为三个阶段,第一代,sanger测序。第二代,高通量测序(NGS)。第三代,单分子/纳米孔测序。由于三代测序技术各有优缺点,应用的领域也不尽相同,第一代测序技术仍未被淘汰,目前的测序市场是三代测序技术并存的局面。 /p p style=" text-align: center " strong 第一代:sanger测序 /strong /p p   第一代测序技术,主要基于 Sanger双脱氧终止法的测序原理,结合荧光标记和毛细管阵列电泳技术来实现测序的自动化,基本方法是链终止或降解法,人类基因组计划就是基于一代测序技术。第一代的Sanger测序技术的优点是,测序读长长,能达到800-1K bp,且测序用时短,只需要几十分钟即可完成一次测序,测序准确度高准确性高达99.999%,目前仍是测序的金标准 缺点是通量低、成本高,影响了其真正大规模的应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/c42dc54f-dd66-44ff-b704-d7ae009f055b.jpg" title=" 1.jpeg" / /p p   因而第一代测序技术并不是最理想的测序方法。经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa,Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。第二代测序技术大大降低了测序成本的同时,还大幅提高了测序速度,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多。 /p p style=" text-align: center " strong 第二代:高通量测序(NGS) /strong /p p   高通量测序技术(又称为下一代测序,Next Generation Sequencing,NGS)自2005年454公司推出第一台基于焦磷酸测序二代测序仪开始,到2017年Illumina推出NovaSeqTM系列,高通量测序技术经历了十几年的技术发展过程,NGS测序平台也经历了一系列的收购和合并,最终形成主要三家测序平台,包括:Illumina的Solexa平台、Life Technologies的 Ion Torrent平台和华大基因的Complete Genomics平台。 /p p   span style=" color: rgb(0, 176, 240) " strong  1.Illumina平台 /strong /span /p p   由于其技术成熟,平台之间高度互补性与交叉性,使得其在短读长测序上大占优势,是目前应用最广泛的NGS平台。目前其占据了测序仪市场约70%的市场份额。 /p p    span style=" color: rgb(0, 176, 240) " strong 2.Life Technologie平台 /strong /span /p p   Life公司Ion Torrent测序平台采用的为半导体测序原理,其在非碱基多聚体(non-homopolymer)的测序上正确率与其它NGS平台相差无几,而对于连续碱基的检测还不够完善,在检测同一碱基连续出现时的数量可能会有所误差。相对于其他平台,测序通量较小,平台数量也较少。 /p p    span style=" color: rgb(0, 176, 240) " strong 3.Complete Genomics平台 /strong /span /p p   Complete Genomics平台采用了高密度DNA纳米芯片技术,在芯片上嵌入DNA纳米球,然后用复合探针-锚定分子连接(cPAL)技术来读取碱基序列。虽然这些技术非常准确,但该技术在应用上最大的限制可能就是其过短的读长。 /p p   高通量测序技术经历了十几年的飞速发展,人类基因组测序成本已经从人类基因组计划的约30亿美元降到了1000美元左右。目前二代测序设备在通量、准确度上都有了较大的提高,同时测序成本也随之大幅度下降,成为商用测序的主流。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/179d5f56-cfcc-48c2-a654-d53e05adb76b.jpg" title=" 2.jpeg" / /p p style=" text-align: center " strong 第三代:单分子/纳米孔测序 /strong /p p   测序技术在近两年中又有新的里程碑,Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术和Oxford Nanopore Technologies公司的纳米孔单分子技术,被认为是第三代测序技术。与前两代技术相比,他们最大的特点是单分子测序,测序过程无需进行PCR扩增,其中,Heliscope技术和SMRT技术利用荧光信号进行测序,而纳米孔单分子测序技术利用不同碱基产生的电信号进行测序。 /p p   由于第二代技术存在短读长和耗时长的缺陷,人们希望第三代测序技术能解决这些缺陷,第三代测序技术通过现代光学、高分子、纳米技术等手段来区分碱基信号差异的原理,以达到直接读取序列信息的目的,三代测序设备在DNA 序列片段读长上优于二代设备,但在准确度上较二代设备差,目前尚未完全成熟,市场应用面还不算广,未来随着技术的改善,三代测序设备将更为稳定和成熟。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/cc5887e2-9c01-4a0b-8a42-128f991dee7d.jpg" title=" 3.jpeg" / /p p    span style=" color: rgb(0, 176, 240) " strong 第三代测序优势: /strong /span /p p   1)第三代基因测序读长较长,如Pacific Biosciences 公司的 PACBIO RS II 的平均读长达到 10kb,可以减少生物信息学中的拼接成本,也节省了内存和计算时间。 /p p   2)直接对原始DNA样本进行测序,从作用原理上避免了 PCR 扩增带来的出错。 /p p   3)拓展了测序技术的应用领域,二代测序技术大部分应用基于DNA,三代测序还有两个应用是二代测序所不具备的:第一个是直接测RNA的序列,RNA的直接测序,将大大降低体外逆转录产生的系统误差。第二个是直接测甲基化的DNA序列。实际上DNA聚合酶复制A、T、C、G的速度是不一样的。正常的C或者甲基化的C为模板,DNA聚合酶停顿的时间不同,根据这个不同的时间,可以判断模板的C是否甲基化。 /p p   4)三代测序在ctDNA,单细胞测序中具有很大的优势:ctDNA含量非常低,三代测序技术灵敏度高,能够对于1ng以下做到监测 在单细胞级别:二代测序要把DNA提取出来打碎测序,三代测序直接对原始DNA测序,细胞裂解原位测序,是三代测序的杀手应用。 /p p   span style=" color: rgb(0, 176, 240) " strong  第三代测序缺陷: /strong /span /p p   1)总体上单读长的错误率依然偏高,成为限制其商业应用开展的重要原因 第三代基因测序技术目前的错误率在15%-40%,极大地高于二代测序技术NGS的错误率(低于1%)。不过好在三代的错误是完全随机发生的,可以靠覆盖度来纠错(但这要增加测序成本)。 /p p   2)三代测序技术依赖DNA聚合酶的活性。 /p p   3)成本较高,二代Illumina的测序成本是每100万个碱基0.05-0.15美元,三代测序成本是每100万个碱基0.33-1.00美元。 /p p   4)生信分析软件也不够丰富。 /p p   三代测序和二代测序相比较,第二代测序技术的优点是成本较之一代大大下降,通量大大提升,但缺点是所引入PCR过程会在一定程度上增加测序的错误率,并且具有系统偏向性,同时读长也比较短。第三代测序技术是为了解决第二代所存在的缺点而开发的,它的根本特点是单分子测序,不需要任何PCR的过程,这是为了能有效避免因PCR偏向性而导致的系统错误,三代读长超长,准确低,费用高,但因读长长,利于组装和发现unique reads潜在优势明显,但是劣势也限制了三代测序的商业应用。 /p p    strong 未来前景 /strong /p p   目前,第二代的基因测序技术高通量测序(NGS)是市场商用主流。第三代的单分子/纳米孔测序将是未来的大势所趋,但是预计在将来5-10年内二、三代基因测序会共存,但二代测序仍将是测序市场商业应用主流。 /p
  • 站在风口上的基因测序产业
    医药学界和资本市场多年前就曾预测,基因,这一揭示人类生命奥秘的学科,未来可能孕育出全世界最大、最重要的产业市场。   现在,一个以基因测序为代表的市场已然到达产业突破的临界点。   BBCResearch的数据显示,2013年,整个基因测序市场的规模约为45亿美元,而随着基因技术的飞跃发展,检测技术成本大幅下降,新一代基因测序技术的应用范围正在迅速拓展,到2018年,整个基因测序市场的规模将猛增到117亿美元,年均增长率达25%。   互联网行业有一句流行的话,"站在风口上,猪都能飞起来",而现在,基因测序产业就已经走到风口。   技术演变下的"多极化"   近年来,基因科学频频进入大众的视野,但真正了解基因测序技术的人并不多。   通俗而言,基因测序就是给基因做"体检"的技术。   众所周知,基因是由A、T、C、G4个碱基组成的序列片段,正是这4个碱基千变万化的排列组合,造就了生物的多样性。而基因测序,就是要分析出各种排列组合,为下一步研究和改造基因打下基础,它将比传统的检测方式更加安全、准确和便宜。   比如,给癌细胞做基因测序,就能知道是其中哪个基因的排列组合出了问题导致正常细胞癌变,从而为预防和治疗癌症提供更精准的方案。   再比如,给准妈妈做基因测序,就能知道腹中宝宝是否有患上某些先天性疾病的基因,与目前一些常规的检测手段6成左右的精准度相比,基因测序的准确度能高达99%以上。   农业方面也有一些容易理解的例子,比如给水稻做基因测序,分析出抗病能力强的水稻与容易病变的水稻的基因排列组合差异,为水稻杂交选种提供参考,效率远远高于传统的人工栽培育种。   按照公认说法,到目前为止,这种给基因"体检"的测序技术,以及相应测序仪器设备,经历了三个大的发展阶段。   第一代测序技术是获得过诺贝尔奖的桑格(Sanger)测序法 第二代是2005年左右逐渐发展起来的,基于大规模平行测序的技术 第三代技术刚刚兴起,目前还处于实验室研究或小规模推广阶段。   在三代测序技术中,高通量的第二代是目前的主流技术,其中的从业公司,因为技术问题或市场竞争,目前仅存的,只有Illumina、CompleteGenomics(以下简称CG)以及LifeTechnologies三家主要公司。   在这三家公司中,实力最强的是Illumina。   Illumina组建于1998年,由于发展较早,再加上娴熟的商业手段操作,成功打垮了众多竞争对手,成为目前全球最大的基因测序设备供应商。   凭借几乎垄断的商业地位,Illumina已开始限制其试剂仪器的使用范围,以保护自己下游应用开发的红利。同时在中国国内,Illumina也在扶持少数下游服务商直接进入服务市场,甚至和自己的测序仪客户竞争,以最大程度控制市场。   第二家公司是LifeTechnologies,2013年被ThermoFisher并购。它的测序技术具有快速(4个小时完成测序)、仪器结构简单、小巧、造价便宜的优点。   不过,由于整个技术设备市场基本被Illumina占有,即使短时间内LifeTechnologies凭借技术特点在市场获得一定优势,但未能形成与Illumina的对等竞争态势。   两大公司之外,还有一个业内人士都觉得神秘的CG公司。如果要定位,CG可以说是二代测序市场的搅局者。正是由于其平台具有比Illumina更高通量和更准确质量的特点,在数年前,曾和Illumina形成制衡并分庭抗礼,带动了测序标准的提高以及测序价格的显著下降。   但是CG毕竟是初创公司,在商业运作、市场渠道等方面远远比不上Illumina。在竞争对手各种市场和法律手段的运作下,商业压力剧增,运营陷入困境。2013年,中国的华大基因利用了这一契机,并购了CG公司。   依靠这起并购,中国获得了和美国一样的比较优势,促使Illumina等跨国企业不得不授权仪器给中国企业参与国内市场竞争,极大地推动了技术进步和成本降低,促进了全球基因产业格局的"多极化"发展。   同时,基因数据亦属于国家安全的一部分,如果核心技术都掌握在跨国公司手中存在数据风险隐患,国家发改委也明文规定基因检测是外商禁止投资的领域。从这个意义上看,CG技术国产化也确保了中国基因数据的安全性,具有重大的战略意义。   前景不容小觑   从全球发展趋势来看,目前全球基因测序领域正处于一个快速向应用转化的产业化、民用化发展阶段,这个产业的广阔未来已经毋庸置疑。   目前,在科研、生殖医学、肿瘤个性化、生物大数据等几大主要方向上,基因检测都已在逐步从纯粹的仪器和试剂销售,向公众服务发展。   这带来的一个直接影响是基因测序从业公司的估值,都将随着产业的爆发而水涨船高,ThermoFisher并购LifeTechnologies,并购费用超过百亿美元 罗氏为了收购Illumina,更导致Illumina股票PE达到了100倍以上,市值超过了200亿美元。该领域应用前景受到投资者和资本市场的广泛关注和热烈追捧。   在中国市场,这个行业的市场潜力同样不可小觑。   从市场成熟度、从业人员规模以及接受程度来看,目前中国基因测序仪器市场在全球具有领先地位,基本能够同步于美国的步伐,甚至在某些领域超过了美国。   一个典型的超越案例是胎儿染色体无创诊断技术,美国还在各种专利纠纷和实验室测试阶(所谓的CLIA实验室阶段),中国已经完成了大规模临床研究,在临床研究论文、该检测的技术标准、行业标准等方面已经具有非常高的临床成熟度和产业成熟度。   同时,由于华大基因在全球推出了2000元人民币左右的终端价格(而美国的价格是2000美元),使得该检测在民用领域迅速推广,具有非常好的群众基础,各大医院也都逐渐启动了高通量测序用于遗传诊断方面的应用。   不过风险还是存在,目前全球只有前文提到的3家公司完整拥有测序技术核心知识产权。而这3家公司都是通过收购来实现,其余依靠授权或者自称研发出测序仪的国内公司,在临床应用的技术、成本和商务层面,会受到较大限制。   技术与监管变量   再看具体的市场格局,由于各家公司的技术各有优劣势,谁先在风口上起飞不好下定论,但有一点可以确定,目前已经占据先机的三家公司,Illumina、LifeTechnologies以及华大基因等,肯定是最早起飞的那一批。   但更关键的问题是,谁会飞得更稳更高?   Illumina坐拥市场规模优势,率先享受产业爆发的红利已经是大概率事件,这也是近年以来,Illumina动作频频,高管访华,与贝瑞和康等中国代理商合作,积极争抢中国市场的重要原因。   LifeTechnologies虽然没有Illumina所具备的市场规模优势,但正如前文所述,其技术特点使其在某些特定市场具有独到的优势,乘着产业爆发的飓风,势必也会迎来黄金发展机遇。   唯一的变量是CG以及华大基因。当然这种变量不是指起飞与否,作为全球测序服务市场的航母,背靠最大的中国市场,华大基因以及CG的起飞同样板上钉钉。这里的变量,是指飞到最高点的可能性。   技术层面的可能性已经被业界所公认。华大基因并购CG后,保留了CG在硅谷的研发团队,并将团队规模扩大了一倍,同时结合中国本土的经验丰富的研发团队共同合作,已经开发出在精度、可重现性和稳定性上提高几个数量级的临床测序技术。   技术之外,更显著的变量来自认知。因为是一项前沿的高新技术,又涉及人类生命健康,所以公众潜意识里会因不了解而产生抵触情绪。一直以来,即使是国家监管部门,对于基因测序这项新兴技术和市场的监管,也始终难以着手。   而由于基因测序产业蕴含巨大的商业价值,市场上也确实存在良莠不齐的问题,很多没有资质、技术不过关的小公司或体检中心都在开展基因测序业务,影响了产业的健康发展。   不过,从监管部门的反馈来看,现在国家已经意识到基因测序技术的重要性,以及技术从实验室向临床应用演变的趋势,正在计划出台一系列针对设备、试剂和方法的准入机制,比如基因测序的仪器设备和配套试剂必须获得医疗器械准入,从而保证相关检测的安全有效。   在监管难题解决后,市场竞争格局的最终走向也将更加明朗。
  • 新生儿测序:开启基因测序市场的新蓝海!
    一个致力于改善生活和助力个性化治疗的伟大蓝图正在开启   基因测序新蓝海&mdash &mdash 新生儿基因测序   在美国,基因测序技术的春风不仅吹向了生命科学领域的各个行业,而且吹响了人们对美好健康新生活方式向往的新号角。   这不,当二代测序正逐渐成熟地在胎儿产前检测中的运用和新一代基因测序技术及其在肿瘤研究中的应逐渐火热 科学家们现在对基因测序技术又提出了新的应用领域&mdash &mdash 新生儿全基因组测序项目,这将为开启细分领域的新蓝海!   美国医院的医生们普遍认为:政府应该资助一项新的医学项目&mdash &mdash 对新出生的健康婴儿进行全基因组测序,测得的数据将有助于基因科学在人的一生中的深入运用,譬如助力开发个性化的治疗,帮助哮喘患者选择最有效的药物。   拥有150余年历史、位于波士顿的布莱根妇女医院(Brigham and Women&rsquo s Hospital)是美国联盟医疗体系(PHS)创始医院,也是全球产生诺贝尔奖最多的医院,该医院遗传学家Robert C. Green表示:&ldquo 我们正进入一个新的时代,所有的医学研究将发展为与基因组学相关的医学研究,在未来5到10年,不仅测序成本会更低,而且科学对基因组数据的解释会更加成熟,每个人的基因序列信息将变得越来越重要&rdquo 。   我们知道,疾病的早期识别能够拯救一个孩子的生命或对可能孩子可能出现的遗传学疾病进行早期干预。   通过全基因组测序、全外显子组测序等技术,发现人体有1%到2%的基因组是大多数遗传病的导火索,通过特特定位点的基因测序可以帮助识别一些与突变相关的疾病。   在美国,有一些医院已经对部分患有疾病或发育障碍迹象的新生儿进行测序,发现该种技术可以帮助医生判断一些潜在的疾病问题。   新细分行业:面临三大挑战   尽管对新生儿进行全基因组测序具有诸多优势,但是许多问题依然存在。   首先,大部分的全基因组仍是一个谜,甚至大多数医生不知道该道如何解释测序结果提供的信息。   其次,尽管基因组测序的价格已经大幅下降,目前已经低至1000美元,但是这个价格仍远高于传统的针刺样本技术(25美元)。   第三,对新生儿进行全基因组测序使得医生也面临伦理困境:假设通过基因测序发现新生儿存在某些基因突变的风险,而医生却不确定这种风险是否会导致疾病时,这是否应该告知父母?   研究者对新生儿全基因组测序的态度   通过调查发现,一些家庭因对孩子的遗传信息感到不安,而不愿意让婴儿进行该项测试,他们认为推广该项测试应该是建立在自愿选择的基础上。因此密苏里州堪萨斯市仁慈儿童医院的新生儿基因组主任Joshua E. Petrikin 表示,若使民众普遍接受新生儿全基因组测序这项技术的话,需要进行全民教育,这可能比解决技术本身问题耗时更多。   2013年,美国国立卫生研究院(NIH)累计拨款2500万美元资助了4个不同的新生儿基因测序技术项目。预计到2015年,包括北卡罗莱纳大学教堂山分校、加州大学旧金山分校及一些医院将会展开健康新生儿和患病新生儿的基因测序筛查,并同时将通过基因测序技术测试的结果与传统针刺样本技术进行对比,旨在提高新生儿筛查的准确性。   同时,布莱根妇女医院和波士顿儿童医院已经在2014年提交了新生儿测序项目(BabySeq Project.),且在等待最后的批准,预计从今年开始为一些父母健康的患病婴儿提供基因测序服务。   去年12月,堪萨斯市仁慈儿童医院将其对患病婴儿的基因测序结果发表在《科学转化医学》杂志上。 在这项研究中,对100个家庭中患有神经系统发育障碍的孩子进行全基因组或外显子组测序。 这些参与研究的样本中,有的家庭多年来一直在为他们的患儿寻求诊断方式,有的是婴儿一出生就患有很严重的疾病。数据分析发现,45%的家庭使用过基因诊断测试,在先天性患病的新生儿中,接受基因诊断测试的婴儿人数更高,达73%。   仁慈儿童医院基因组医学中心主任儿科医生、上述研究的领导者Stephen F. Kingsmore希望全基因组测序计划能够扩大到美国每年降临的400万新生儿中降临在ICU病房(重症监护室)的大约14%的婴儿身上。他表示基因组测序可以帮助已经患病的婴儿接受更深入的治疗,以及帮助一些新生儿预知罕见的或者未知的遗传疾病。   Kingsmore博士还说,尽管目前还不能证明对健康新生儿进行基因测序是有意义的,但是有足够的数据和强大的逻辑证明对先天性患病婴儿是有利的。   Petrikin博士还举例说明:他们医院的医生曾在诊断一个血糖极低的女婴时拟采取切除女婴的整个胰腺,然而通过全基因组测序发现只需要切除胰腺中的一小部分,这使患者避免了长期依赖胰岛素。 在这种情况下,假设通过基因检测确定的疾病没有治愈方法,医生还可以为家庭提供治疗指导,以及为想再次生育的患者父母提供一些妊娠信息咨询。   新生儿家庭对待全基因组测序的态度:支持者远多于反对者   美国的研究人员也正在探索家庭的态度基因组测序。去年12月,他们对布莱根妇女医院优生育儿中心48小时内降临的514名健康新生儿的父母进行了医学遗传学调查,旨在了解初为父母的人群对婴儿基因组信息、遗传风险和遗传信息含义的认知情况,并询问他们是否愿意让宝宝参与新生儿全基因组测序这项计划,结果显示大约83%的父母很有兴趣参与新生儿基因测试。   除此之外,已为人父17个月的Donald Chaplin of Acton也对该项测试非常感兴趣。作为一位药剂师,他表示尽管很担心基因数据被滥用的潜在风险,但是还是希望可以获知儿子更多的基因信息数据。   然而,来自牙买加Nicholas Catella是一名工程师,他表示除非筛查结果显示新生儿患有严重疾病的风险,否则他不会太在意测序结果。 Catella先生有2个孩子,一个3岁,另一个16个月。他表示:尽管基因测序能够揭示患有像阿尔茨海默氏症等慢性疾病的风险,但是目前仍然没有良好的干预手段。在确定自己的孩子是否健康之前,他需要一个很好的理由要了解这些信息。
  • 【盘点】基因测序发展现状
    一项新技术或产品的问世,给人们带来欣喜的同时,也必然会引起担忧,基因测序技术便是其中之一。基因测序技术被看作自疫苗问世以来疾病预防最重要的科技突破,它不仅可以大大降低遗传相关的疾病发生率,减少出生缺陷,还可以实现对疾病预测、预防、预警以及个体化诊疗 但目前,国内的基因测序市场却并不让人满意,甚至乱得已无章可循。   研究表明,人体内总共约有3万多个基因,除外伤,人类的疾病大多与基因相关,基因异常、基因受损都会引起对应的蛋白质或酶的功能变化,从而引起疾病。基因检测就是通过血液以及其他体液或细胞中的DNA或RNA进行检测的技术,从而使人们能了解自己的基因信息,预知身体患疾病的风险,通过改善生活环境和生活习惯,避免或延缓疾病的发生。而基因测序是基因检测的方法之一。   相关统计数据显示:目前约有2500多种疾病已经有了对应的基因检测方法,并在美国临床合法应用,甚至基因检测已成为美国疾病预防的常规手段之一。在我国,基因测序被人们广为熟知,应该归功于无创产前筛查高通量测序这一项目,即通过化验孕妇的血液,结合其他临床信息,来综合判断胎儿患有唐氏症的危险程度。   本文中小编对当前基因测序的发展情况进行了汇总。   【1】百多家医疗机构试点 基因测序临床应用起航   国家卫计委近日下发《关于产前诊断机构开展高通量基因测序产前筛查与诊断临床应用试点工作的通知》(下称《通知》),此举被业界解读为二代基因测序放开临床试点的信号。2014年2月被叫停临床应用的二代基因测序,时隔一年终于再次开闸,共有100多家医疗机构入选临床试点。   业内人士分析,从市场规模和增长情况来看,设备和耗材市场仍是基因测序产业链最大的一环,但测序服务的增速最为迅猛,以生物信息分析为主的工作流产品,基数小上升空间大。但基于第二代高通量测序技术平台的基因测序从硬件和软件两方面来说,都还未达到可以面向消费市场的条件,商业化推广尚需时间。   根据《通知》,中国医学科学院北京协和医院等100多家医疗机构入选为开展高通量基因测序产前筛查与诊断的临床试点单位。卫计委还组织制定了《高通量基因测序产前筛查与诊断技术规范》。   《通知》明确,高通量基因测序产前筛查与诊断试点的工作内容包括:产前筛查与诊断前咨询,知情同意书签署,临床资料收集和标本采集,检测报告审核使用,检测后临床咨询,高风险孕妇的后续临床服务,追踪随访,信息统计上报等。   《通知》要求,试点产前诊断机构可择优与承担高通量基因测序检验试点任务的医疗机构建立合作关系。未纳入试点的产前诊断机构和不具备产前诊断技术资质的医疗保健机构,不得擅自开展高通量基因测序产前筛查与诊断临床应用,或向任何机构递送样本开展高通量基因测序产前筛查与诊断临床服务。严禁任何机构采用技术手段进行非医学需要的胎儿性别鉴定。   【2】基因测序行业如何赚钱?   2014年2月,食药总局和卫计委一纸通知叫停了临床基因测序,原因是相关产品和技术并没有通过审批。未经审批就做诊疗,算是非法行医,属于严重违法行为。   但仅仅过了4个月,去年6月30日,食药总局就批准了二代基因测序产品上市。其中,华大基因的两款二代基因测序仪和检测试剂盒通过审批。   2014年12月22日,卫计委又评估公布了第一批高通量测序技术临床应用试点单位,此前两家获得二代测序注册证的华大基因和达安基因再次入选,即将开展产前筛查与诊断专业试点。   在临床基因测序应用被叫停之前,我国无创产检主要集中于一线城市的三甲医院或高端民营医院。数据显示,近三年来我国共有20万孕妇接受产前基因检测,市场规模约为10亿元。业内人士预计,如果无创产检针对30岁以上孕妇实现100%渗透,将为该行业带来76亿元市场容量 若针对全部孕妇实现50%渗透率,那么将带来140亿元市场容量。   虽然基因检测临床应用的市场巨大,但是想要加入这场竞争却并非那么简单。目前只有少数企业的少数产品获得了CFDA批文,那么其他优秀的企业是否可以后来居上?面对诸如华大、达安这样的竞争对手,又是否可以占得一片江山呢?目前看来仍是个未知数。   【3】基因测序产品今年进医疗系统 价格或降至万元   近日,有媒体公布了国家卫计委通过的第一批高通量测序技术临床应用试点单位名单,此前已经获得二代测序注册证的华大基因和达安基因(002030.SZ)再次入选。   尽管目前卫计委网站上还未正式公布此消息,但在去年12月底,华大基因董事长汪建在接受《第一财经日报》记者采访时曾印证过此消息。   &ldquo 有关全基因组测序的批文估计最近会出来,预计会涉及20家医院以及七个临床检测实验室的试点,华大都在这几个名单内。&rdquo 汪建告知记者。   据了解,此次批准共分三个专业,分别是遗传病诊断专业、产前筛查与诊断专业、植入前胚胎遗传学诊断专业。华大基因均位列此三个专业的获准试点单位名单中,而达安基因则中标产前筛查与诊断专业。   基因测组作为目前生物学领域最炙手可热的专业门类之一,近几年在国内外均得到了快速的发展,它不仅能够追踪传染病途径,还能预测个体化疾病风险,有效预测癌症、糖尿病、唐氏综合征等多种疾病,从而为后期的防御和治疗提供有效的帮助。   【4】美媒盘点2014年八大创新 基因测序居首位   美国《赫芬顿邮报》网站12月17日刊文盘点2014年八大创新,基因测序居首位。今年1月,伊卢米纳公司宣布,他们的最新款基因测序仪可以每年破译1.8万个基因组,每次花费仅1000美元&mdash &mdash 十年前的费用是几十亿美元。   【5】日本企业纷纷进军基因测序领域   日本NHK电视台报道,日本大型电机制造商和通讯公司等考虑到基因领域有足够的发展空间,正纷纷利用自身技术优势,加强在基因分析等医疗相关领域的活动。其中,东芝集团已和日本东北大学共同开发出一种新系统,可以缩短基因分析的时间,只需一周左右便可完成分析。   据报道,东芝集团在2014年内面向研究机构和医院推出基因分析服务,希望该服务能有助于研究人员们找到各种各样的病症与基因之间存在的关联。   与此同时,日本电报电话公司(NTT)也开发出了一款手表式传感器,可以测定佩戴者的睡眠时间和运动量等数据。利用这一技术,日本电报电话公司也于2014年11月开始同东北大学联合,利用基因分析技术展开研究。该研究旨在帮助人们预防因生活习惯引起的病症,同时希望能够将商业与疾病预防相结合。   【6】奇点大牛再爆料:5年后基因测序成本仅1毛   11月24日,奇点大学生物技术和信息学项目负责人Raymond McCauley在太庙正殿举行的百度BIG课堂上,向大家讲述生物技术的现实和可预期的未来应用。McCauley的主要研究方向是低成本生物技术应用,在他的研究里,生物技术并不只属于科研人员,每个普通人都可以使用它,而随着生物技术成本的降低,未来的普通人用生物技术来提升生活质量,可能就像今天我们用抽水马桶冲水、用电脑编程或者上网购物一样平常。   首先这依赖成本的降低。在摩尔定律下发展十几年的测序技术已经不是被封在实验室的新鲜玩意了。2001年完成人类基因组测序的成本是30亿美金,到了2007年就只需要100万美金,这个价格在当时大概可以买一栋不错的别墅。但到了2013年2500美元就可以做一次基因组测序了,今年1月份这个成本下降到了1000美元以下,在美国这约等于一次肺部胸片的价格。这还不算完,根据McCauley的预测,2年后这个成本会比买四张披萨的钱还少,而到了2020年,完成一次人类基因组测序的成本可能只需要1毛钱,大概是现在我们冲一次马桶的耗水量成本。   【7】深圳:无偿献血血液不能用于基因测序   &ldquo 无偿献血者所献血液只能用于临床输血,除了不得买卖外,也不得用于包括基因测序等科学研究在内的其他用途。&rdquo 28日,深圳市人大常委会再次审议了《深圳经济特区无偿献血条例(草案)》(以下简称&ldquo 条例&rdquo )。记者注意到,此次修改对献血者予以更多优惠和鼓励,而对所献血液的用途则作出明确限定。   由于深圳是一个流动城市,除了本市居民,还有外省市居民及外国公民、华人和港澳台居民。市人大为此明确表示,&ldquo 条例&rdquo 不对无偿献血者设立任何身份条件,只要符合献血要求的任何人均可献血。   为了方便无偿献血者献血,&ldquo 条例&rdquo 拟规定,规划部门应当将无偿献血站(点)建设纳入城市建设规划,在卫生行政部门提出献血站(点)设置意见的基础上,综合交通、人流量等因素,规划献血站(点)或者在建成区合理设置献血站(点)。   而为方便无偿献血者临床用血,市人大则将此前&ldquo 条例&rdquo 中仅给予无偿献血者或者其配偶、子女、父母在深圳以外地区临床用血报销的制度,扩大为只要未在就诊的医疗机构办理免交临床用血费用手续的,均可在采供血机构报销。   【8】快速基因测序救命于襁褓   患病新生儿的基因组将在24小时内测序获得,从而为临床医生提供快速诊断依据。   在只有两个月大时,这个男孩就已命悬一线。他整个暂短的人生是在美国密苏里州堪萨斯城儿童慈善医院新生儿重症监护室里度过的,内科医生们绞尽脑汁地寻找导致其异常状况的病因所在。2013年4月,这名男婴的肝脏开始衰竭,医护人员告诉他的父母前景不容乐观。   随后,来自儿童慈善医院的遗传学家Stephen Kingsmore和他的团队接手了这位病人。在3天的时间里,他们对这个男婴及其父母的基因组进行测序,并确认了一个在他和父母双方身体中共有的罕见突变。该突变被证实同一种可损害肝脏和脾脏的过度反应免疫系统引发的疾病有关。有了这样的诊断,男婴的内科医生对症下药,以降低其免疫反应。如今,这位病人已回到家中,而且身体健康。   【9】从二代到四代:基因测序颠覆你对世界的想象力   如今,基因测序概念在国内已经并不陌生。   从科研领域的全基因组测序(WGS)到临床应用的无创产前基因检测以及高血压个体化治疗检测,基因的作用和重要性日益凸显,正在不经意间以其巨大的力量改变着人们的生活,使人类对自然和自身的认知进入到了一个新的层面。同时,个体化医疗概念的兴起,激发了人们对基因测序的需求,也使得基因测序商业化、大众化的意愿成为了科研界和临床应用界的共识。   【10】基因测序:现金奶牛还是潘多拉的盒子?   基因测序结果的解读成了目前最大的难题,这也是众多科学家不愿意推进其商业化的原因之一。   基因测序越来越具有两面性,一面是被投资者看好,被认为是未来的现金奶牛。另一面则好像潘多拉的盒子,基因测序结果解读不成熟,一旦商业化,解读对用户是陷阱?是误导?目前还能难说。   国家食品药品监督管理总局批准第二代基因测序诊断产品上市,让投资者看到这个市场的希望。基因测序的主要业务板块是仪器、试剂和服务。仪器上由Illumina和LifeTechnologies两家公司垄断,占市场份额的90%以上。中国基因测序公司瞄准的主要是试剂和服务。以达安基因为例,目前主要收入板块为生物制品试剂,占总收入的45%,也是毛利最高的板块,达到了61%,服务收入和仪器类收入的规模相差不大,分别占主营收入的29%和25%。服务业务的毛利非常高,达到了56%,相比之下仪器类毛利最低,只有18%。   比较有可能发展起来的应用包括两个方面,一个是无创产前检查,用基因测序评估遗传性疾病的风险。另一个是肿瘤基因筛查,未来有希望用于个性化治疗方案。   【11】基因测序有望用于辅助生育医疗 PGS助力试管婴儿成功率   基因测序的应用,除了在我们熟知的无创产前检测方面获得应用 其另一重大应用&mdash &mdash 胚胎植入前遗传学筛查技术(Preimplantation Genetic Screening, PGS)将在辅助生育医疗领域应用。   9月5日,美国斯坦福大学生育和生殖医学中心与中国国内最大的试管婴儿连锁品牌爱维艾夫医疗集团在深圳签约战略合作协议,双方共同筹建中国国内最先进的PGS中心,试管婴儿单次成功率有望突破80%,并实现操作流程的规范统一。   【12】南方周末:基因测序的灰色江湖   如果不是医生的建议,27岁的李若不会去体验风靡当下的高科技检测技术&mdash &mdash 基因测序。   2014年5月,一次例行体检中,李若发现自己患乳腺疾病的风险较高。为进一步确定,医生建议她做一次肿瘤易感基因测序。   基因测序,通过对被测者细胞中的DNA分子进行检测,既可诊断疾病,亦可以用于疾病风险的预测和评估使用某些药物的疗效和副反应。   一个熟知的例子是,2013年,美国著名影星安吉丽娜· 朱莉根据基因测序结果选择手术切除双侧乳腺以降低患乳腺癌风险。在中国,更为大众熟知的应用是无创产前基因检测术。   &ldquo 基因测序是疾病鉴定的金标准,而癌症的发生和抑癌基因、致癌基因等多种因素相关。&rdquo 中山大学中山医学院遗传学与分子诊断副教授郭奕斌解释。   【13】英国推进基因测序治癌症 化疗或退历史舞台   英国政府近日推出了一个名叫&ldquo 十万基因组计划&rdquo 的医学科研项目,拟通过对基因组进行测序,以有效确定引发癌症和其他疑难疾病的基因。当地媒体评论称,如果这一计划顺利实施并获得成功,将是医学领域的重大突破,今后对癌症的治疗将不必再通过化疗来进行。   据了解,&ldquo 十万基因组计划&rdquo 需投入资金3亿英镑,将把科研得出的大量数据整合进英国公共医疗体系当中。英国将参与总共10万个基因组中的7万个基因组的有关测序工作。可以说,此次&ldquo 十万基因组计划&rdquo 是此前英国推出的&ldquo 千人基因组计划&rdquo 的&ldquo 升级版&rdquo 。新的&ldquo 十万基因组计划&rdquo 并非只对癌症患者特定的&ldquo 癌症基因&rdquo 进行测序,而是要对其进行&ldquo 全基因组测序&rdquo 。从今年5月起,英国已在伦敦、剑桥等地医院开始研究,英国各地的高校、科研机构等也在协助英国卫生部推进这一计划。报道说,英国目前已完成了100个基因组测序,年内将达1000多个,2015年达到1万个,2017年将全部完成。   【14】基因测序终获通行证:市场千亿 抢滩战鸣枪   此前,著名影星安吉丽娜朱莉的乳腺切除手术让基因测序一下成为全球热点,不过,出于谨慎考虑,国家食品药品监督管理总局(下称&ldquo 食药监总局&rdquo )与国家卫生和计划生育委员会(下称&ldquo 卫计委&rdquo )在今年年初曾叫停基因检测的临床应用,并明确表示,在相关的准入标准、管理规范出台以前,任何医疗机构不得开展基因测序临床应用,已经开展的,要立即停止。   7月,食药监总局公布了四款基因测序产品获得注册证,这预示着冰封了半年的国内基因测序市场正式放开。这也是食药监总局首次批准注册的第二代基因测序诊断产品,在此之前的几年时间里,政府主管部门对这一科技和市场的态度保守而谨慎。   而突然放开的动作透露出的信息更意味深长,对于已经成为科技与市场双热点的基因测序来说,早在几年前就有粗略估计,中国市场规模超过千亿元,而对目前已聚焦于这一产业链的数十家上市公司而言,更多竞争者的火速入场已经拉开激烈的抢滩战。   【15】NIH 1450万美元资助新一代基因测序技术研究   美国国立卫生研究院(NIH)近日宣布,它将向开发新型测序技术的8支研究团队资助1450万美元。NIH将利用这些资金支持多种技术,包括纳米孔测序技术和微流体技术,资助时间为两年到四年。   这一资助属于国家人类基因组研究所(NHGRI)的先进DNA测序技术项目(Advanced DNA Sequencing Technology program)的一部分,它在2004年启动,目标是降低测序成本。   NHGRI基因组技术项目主管Jeffery Schloss表示:&ldquo 尽管以1000美元测序基因组的目标已接近,但关于控制成本和实现高质量的DNA测序数据,仍然存在许多挑战。&rdquo   大部分的资助被五所大学的研究人员获得。斯克里普斯研究所将在三年内获得440万美元。这个团队将由M. Reza Ghadiri领导,目标是开发蛋白纳米孔芯片,以便平行测序数万个DNA分子,而最终目标是在10分钟内测序人类基因组。   【16】用基因测序治未病   在中国两部委(食品药品监督管理局、国家卫生计生委)用一纸禁令将基因测序打入&ldquo 冷宫&rdquo 仅两个月,世界最大的基因测序仪器制造商Illumina的掌门人Jay Flatley先生就急冲冲跑来中国,并高调表示:&ldquo 我十分看好中国基因测序市场。&rdquo   可能有人会怀疑Jay Flatley这一逆风言论,但没有人会怀疑Illumina在基因测序行业的霸主地位。这家总部位于美国加利福尼亚圣迭戈市的上市公司,被麻省理工学院主办的《技术评论》杂志评为全球最聪明的50家公司之首,其身后站着的可是特斯拉和谷歌。   这家全世界最聪明的公司在今年初宣布,可在24小时内将个人全基因组测序完毕,而费用仅需1000美元。能够完成这一壮举的机器叫Hiseq X Ten,每套由10台机器组成,每台售价100万美元。当Hiseq X Ten在全球售出9套以后,Illumina骄傲地宣布:我不卖了。   【17】细胞免疫治疗:基因测序后的下一个万亿市场   瑞银证券日前发布研报认为,免疫治疗产品有望成为肿瘤领域的下一座金矿。临床实验结果显示了肿瘤免疫治疗的良好应用前景:利用人体自身的免疫系统治疗肿瘤,即肿瘤免疫治疗,已成为国际药企的研发热点。肿瘤免疫治疗主要包括:非特异性免疫刺激、免疫检验点单克隆抗体、过继T细胞疗法、肿瘤疫苗等方法。肿瘤的免疫治疗方法有望治疗60%以上肿瘤种类,有望带来250亿美元以上的市场机遇,或是肿瘤治疗领域的下一座金矿。   瑞银证券认为,过继T细胞疗法(ACT疗法)是肿瘤免疫疗法的一种,现有的临床实验结果均显示了其难以比拟的优势:治愈多例晚期黑色素瘤患者,而不仅仅是延长生存期。在ACT疗法中,嵌合抗原受体修饰的T细胞疗法(CAR)由于具备更好的特异性,前景最为看好。诺华开发的CART-19,已完成临床2期试验。研报认为CART-19产品理论市场规模能够达到80-100亿美元。(注意这仅仅是一家公司的产品所达到的市场规模人民币几百亿,并不是整个行业的市场估值)   【18】基因测序首次获准用于出生缺陷筛查   中国首次批准第二代基因测序诊断产品作为医疗器械注册,用于为孕产妇检测唐氏综合征等染色体疾病风险,以避免新生儿出生缺陷。   国家食药总局昨日表示,经审查,批准BGISEQ-1000基因测序仪、BGISEQ-100基因测序仪和胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(联合探针锚定连接测序法)、胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)医疗器械注册。   据介绍,该批产品可通过对孕周12周以上的&ldquo 高危孕妇&rdquo 外周血血浆中的游离基因片段进行基因测序,对部分胎儿染色体异常进行无创产前检查和辅助诊断。   不久后,35岁以上,或初次血清学筛查证实有&ldquo 唐氏高危&rdquo 风险的孕妇,可在医院选择接受无创产前基因检测,避免&ldquo 羊水穿刺&rdquo 、&ldquo 脐血穿刺&rdquo 等效率较低、风险较高的产前诊断。   【19】罗氏欲借收购Genia进一步扩大基因测序市场份额   基因测序业近期成为市场投资热点,不仅在国内,海外市场相关个股表现也是可圈可点,加州大学伯克利分校生物方向一在读博士曾向记者表示,&ldquo 基因组测序可以说是2000年以后,生物学最重大的历史性革命。&rdquo   目前,这股生物学热潮也吸引到众多知名公司加入这场革命中来,记者留意到,瑞士制药商罗氏控股公司周一(6月2日)发布声明称,愿意以至多3.5亿美元的出价购买总部位于美国的基因测序企业Genia技术公司,以期获得更低成本破译人类基因的技术。   &ldquo 拥有Genia利用纳米孔技术的单分子半导体DNA测序平台后,我们的下一代测序产品将得到增强。&rdquo 罗氏诊断部门首席运营官罗兰-迪吉尔曼(RolandDiggelmann)在周一的声明中称。   记者了解到,基因测序平台通常需要依靠昂贵的光学传感器,而Genia技术公司正在开发的技术仅使用成本较低的,被广泛使用在手机和电脑中的电子半导体元件来测量电流变化,从而确认DNA的序列。来探测DNA序列(图1)。此项技术凭借快速、精确、低成本的优势,有望完成美国国立卫生研究院(NIH)设定的只用1000美元完成个人基因组测序的目标。然而目前仍有一些关键问题亟需解决:例如弯曲缠绕的DNA分子难以进入纳米孔 过快的过孔速度使电流信号的检测更加困难。因此,DNA分子的构象及其与纳米孔孔壁间的作用力对测序过程有着重要影响,研究盐浓度及链长对DNA分子构象及其摩擦学行为的影响十分必要。   【24】基因测序迎接挑战   无论是农业育种,还是出生缺陷检测,或是其他常见疾病预防,基因检测技术都面临着巨大的挑战。   古语有云:&ldquo 民以食为天。&rdquo 这说明食物很重要,基因测序也进入到了这一领域。此前我跟袁隆平合作进行水稻基因组计划时,因为这和国家计划、全球计划有部分冲突,不符合国际水稻基因组计划的主流,也不符合国家战略,差点&ldquo 被打死&rdquo 在路上,当时在国内外引起了很大的争议。   从农业育种到人类健康,我们走过了哪些路程?   从一个完整的基因组检测到3000株水稻的测序,我们从野生水稻中找到了很多有益的数据,通过挑选好的基因,进行杂交育种,创造了新的水稻品种。   我们最近又针对小米开展了研究工作。上世纪70年代以来,玉米的快速发展使小米基本退出了农业主战场。但在今年,虽然河南大旱,小米却取得了大丰收。因此,在干旱和半干旱地区占中国土地面积60%的情况下,如果能够解决这类地区的粮食生产问题,中国的粮食安全就可以得到保障,这也是将基因组科学应用于实践的非常有前景的项目案例,我们有把握让中国未来的粮食生产发生根本变化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制