当前位置: 仪器信息网 > 行业主题 > >

材料纤维

仪器信息网材料纤维专题为您整合材料纤维相关的最新文章,在材料纤维专题,您不仅可以免费浏览材料纤维的资讯, 同时您还可以浏览材料纤维的相关资料、解决方案,参与社区材料纤维话题讨论。

材料纤维相关的资讯

  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 复合纤维材料开启高端微波化学仪器的新时空
    复合材料一般泛指由两种或两种以上不同物质以不同方式组合而成的材料,在性能上互相取长补短,产生协同效应,使材料的综合性能优于原组成材料而满足各种不同的要求。复合纤维材料的出现堪称材料史上的一次革命。由于复合纤维材料具有高强质轻、耐高温、耐疲劳、优良的减振性、耐化学腐蚀和热膨胀系数小等特点,广泛应用于航空航天、现代工业、体育器材等领域,如神舟7号、嫦娥探月工程以及C919大飞机等重大项目中均见其身影。 目前,微波化学仪器已成为分析化学、材料科学等应用领域中一种高效的样品前处理和制备设备,然而反应容器的材质直接决定仪器承受高温、高压的性能。市场上流行的微波消解仪通常采用PTFE、PFA以及TFM加工成消解内罐,高端产品更青睐于TFM材质用作消解内罐(最高耐温315℃,最大承受压力12MPa),因此消解外罐的各项性能成为仪器发展和技术创新的&ldquo 瓶颈&rdquo 。早期的聚砜(PSF)或聚苯硫醚(PPS)消解外罐普遍用在普及型和低端微波消解仪上,但在使用过程中因反应条件或机械损伤很容易造成消解罐发生酸腐蚀、变形、产生裂缝,甚至爆裂,现在中高端微波消解仪中已很难见到了。大约在2005年初,国内一代微波消解系统逐渐采用耐高温、高压,尺寸稳定性以及良好耐化学性的聚醚醚酮(PEEK)设计制造压力反应罐外罐,其使用寿命和安全性得到大幅提高。随着用户对微波反应的要求越高(反应温度高于250℃,反应压力高达4MPa,反应罐体耐压能力超过6MPa),PEEK材料的外罐存在如此高温下易熔易燃,且易受高压损伤等缺陷;特别是高温硫酸蒸汽对其的影响而导致罐体开裂,从而大大降低了仪器设备的安全性能和提升了运行维护的成本。 上海新仪公司对目前市场上已有的国外高端产品经过长时间的市场调研和咨询国内先进材料专家,凝聚公司科研技术人员克服多重难关,引进并自主开发出全封闭防腐超强复合纤维材料,在2008奥运年一举攻克外罐材料的&ldquo 瓶颈&rdquo ,奠定开发高端微波化学仪器的技术基础。新型复合纤维材料外罐采用纤维一体化缠绕并外裹PFA材料工艺制作而成,强度高(80MPa)、耐高温(400℃)、质量轻巧和极低的热膨胀系数,耐受各种酸碱、有机溶剂,由于全封闭防腐技术的应用克服了国外同类现有产品的怕水或水蒸气浸蚀、不耐腐蚀等缺点。复合纤维材料的抗疲劳强度为其抗拉强度的60%左右,即使因疲劳断裂也是从基体开始,逐渐扩展到纤维和基体的界面上。因此,具备破坏前的预兆,可以及时检查发现,材料寿命比一般金属的长数倍。同时,复合纤维材料的基体中有成千上万根独立的纤维,当用这种材料制成的外罐即便因反应产生爆炸也能在极短时间内将载荷重新分配并传递到未破坏的纤维上,故整个外罐不至于在短时间内丧失承载能力,其安全性能超越目前已知的所有高分子工程塑料。经实际产品测验结果表明,爆不破炸不裂撕不碎的复合纤维材料外罐完全消除横向炸裂的可能,安全系数大大超过目前市场通用的有机改性PEEK材料,耐用性能为PEEK材质的20~100倍。 MDS-10高通量密闭微波消解· 萃取· 合成工作站和MASTER 40罐高通量密闭微波消解/萃取工作站均采用超高强度的复合纤维材料制成的外罐,同时配合专利的垂直爆破泄压结构,从真正意义上实现了&ldquo 垂直爆破&rdquo 理论,杜绝了由于反应罐的横向破裂造成仪器和人员伤害,极大限度地提高了操作人员的安全性,开启了微波化学超高温高压的新时空。有关仪器详情请浏览我公司网站:www.sineo.cn.
  • 三思聚焦碳纤维材料科学最前沿
    2016年4月15日,“第二届碳纤维及其复合材料技术与应用研讨会”在深圳召开,此次应用研讨会以“构建中国绿色碳纤维产业链”为主题,行业内近三百家企业将齐聚此次研讨会,共同讨论解决我国目前碳纤维发展问题及部分解决方案。 会议现场,国家973项目首席科学家、东华大学纤维材料改性国家重点实验室副主任余木火教授、碳纤维及复合材料研究所党部支书记赵冬林教授等人针对纤维行业发展、碳纤维复合材料在工业领域应用的产业化之路等问题进行了深刻的探讨。 作为中国领先的材料试验设备和材料,碳纤维行业内举足轻重的试验解决方案的服务商,三思纵横接受主办方邀请,携三思独家研创的新品“风暴”系列电子万能试验机和自主研发碳纤维专用夹具全力聚焦该会议,现场分享碳纤维及其复合材料测试方面的最前沿科技。三思纵横致力于为建立有中国特色的碳纤维制备及应用产业链结构,实现碳纤维在交通运输、能源、建筑、航天航空兵器核等领域的应用完全自主贡献一份民族试验机龙头企业的力量。 碳纤维材料是典型的高科技领域中的新型工业材料,是发展国防、军工与国民经济的重要战略物资,碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。在要求高温,物理稳定性高的场合,碳纤维复合材料具备不可替代的优势,碳纤维碳材料已在军事及民用工业的各个领域取得广泛应用。高性能碳纤维材料还是制造先进复合材料最重要的增强材料。 既坚如磐石,又韧如发丝。它是自古以来人类在材料领域孜孜以求的品质,也是三思在前进发展道路上追求的品格。
  • 新型超强韧石墨烯材料有望替代碳纤维
    p style=" text-indent: 2em " 发表在最新一期美国《国家科学院学报》上的研究显示,北京航空航天大学程群峰教授课题组和美国得克萨斯大学达拉斯分校雷· 鲍曼团队受到天然珍珠母力学结构的启发,制备出微观结构类似于珍珠母的有序层状石墨烯结构。 /p p style=" text-indent: 2em " 程群峰对新华社记者说,此前将石墨烯单片机械堆叠成较厚的宏观材料耗时费力。例如制备人头发厚度的石墨烯薄膜,需要堆叠15万层单片石墨烯,且片层间界面作用较弱,力学性能较差。 /p p style=" text-indent: 2em " 珍珠母具有高强度、高韧性的力学性能,主要得益于内部规整的层状结构和离子键、共价键、氢键等丰富的界面作用。研究人员采用化学制备法而非机械堆叠制备出这种材料。他们借鉴了珍珠母的层状连接方式,通过在氧化石墨烯层间引入共价键、共轭键等不同键连的交联分子,将石墨烯纳米片牢固地“缝合”在一起,制造出强韧一体化的高导电石墨烯薄膜。 /p p style=" text-indent: 2em " 程群峰说,这种薄膜材料的拉伸断裂强度是普通石墨烯薄膜的4.5倍,韧性是后者的7.9倍。 /p p style=" text-indent: 2em " 研究人员介绍,传统碳纤维材料的制备条件需超过2500摄氏度,但新材料可在45摄氏度以下的室温进行制备,强度与碳纤维复合材料相当,成本更加低廉,易实现商业规模化制备。 /p p style=" text-indent: 2em " 程群峰说,这种廉价、低温的高性能多功能石墨烯纳米复合材料在航空航天、汽车、柔性电子器件等领域具有广泛应用前景。 /p p style=" text-indent: 2em " 论文通讯作者鲍曼说,薄膜有望最终取代飞机、汽车等设备使用的碳纤维复合材料。 /p
  • 岛津原子力显微镜——多维度纳米材料测试
    纳米材料是近十余年来新兴的功能材料类型,一般而言纳米材料在指在三维空间中至少有一维处于纳米尺度,即100 nm以下,或是由此尺度的单元构成的材料。100nm相当于不到1000个原子紧密排列在一起,在这个尺度下,材料表现出了不同于宏观状态的力、光、电、磁、热等属性。因此成为化学和材料学科中研究非常广泛,进展很快的领域。 在纳米尺度下,对此类材料的形貌表征普通的光学观察方式不再适用。因此常用的是电子显微镜和原子力显微镜。而原子力显微镜因为具备三维高分辨表征能力而且环境适用范围广,被广泛运用于纳米材料的分析与检测。 纳米材料按维度可以分为零维材料、一维材料、二维材料、三维材料。 零维材料是指电子无法自由运动的材料,如量子点、纳米颗粒与粉末等。 硅量子点太阳能电池形貌及粒度分布 GaAs (100)衬底上生长的In0.7Ga0.3As量子点 对于零维材料,普遍关注的是颗粒的粒径以及粒径分布情况。从以上两个用案例可以看出,原子力显微镜可以很方便地获得图像及粒径统计数据。 一维材料是指电子只能在一个方向上自由运动的材料,如纳米线、量子线。早期研究较为深入的一维材料是碳纳米管。 单壁碳纳米管 上图是对单壁碳纳米管的观测。不仅可以直观地看到其形貌,而且可以通过断面测量获得管径数值。 同样的,如果视野中观察到了多条纤维,原子力显微镜的分析处理软件也可以对其进行统计分析。 2004年曼彻斯特大学Geim 小组成功分离出单原子层的石墨材料——石墨烯,由此带动了对二维材料的研究。主要包括石墨烯、拓扑绝缘体、过渡金属硫系化合物、黑磷等。 其中研究较为深入的是石墨烯。由于其各种优良属性均依赖于单层或少数几层。所以对石墨烯的基本且重要的测试要求就是对层数的测量。 在这一点上,原子力显微镜具有很好的优势,也因此被列入了国家标准(GBT 40066—2021 纳米技术氧化石墨烯厚度测量——原子力显微镜法)。 氧化石墨烯图像 GBT 40066—2021中规定的厚度计算公式 上图计算得到的计算数据,可知该片氧化石墨烯厚度为0.630±0.039nm,由此可推测这片氧化石墨烯为单层石墨烯。 综上所述,在纳米材料领域,原子力显微镜因其高分辨而且是三维成像的属性,成为各类纳米材料常用的分析工具。 岛津原子力显微镜历经三十余年的发展与积累,应对各种需求,不断推出新型号和新功能,为科学研究和技术发展提供得力的工具。本文中所有图片均为岛津原子力显微镜获得。 本文内容非商业广告,仅供专业人士参考。
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 电子显微学在结构材料、功能性材料、生命科学中的应用(一)
    p style=" text-align: center " a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/bf49b4f2-1cbf-41ec-9025-83c67c780ab4.jpg" title=" 系列报道.jpg" / /a /p p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 10月18日下午,成都,2017年中国电子显微学术年会分会场开幕。仪器信息网编辑对3个分会场进行跟踪报道:结构材料及缺陷、界面、表面,相变与扩散 能源、环境和信息等功能材料的微结构表征 生命科学研究。3个分会场共安排了30场学术报告交流,会场座无虚席。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/1419cd0e-c152-48d1-aea0-ed6e1fa04e6b.jpg" title=" 4会场.jpg" / /p p style=" text-align: center "   结构材料相关分会场现场 /p p   结构材料及其相关研究分会场内容丰富多彩,第一个报告就是中国电子显微学会理事长韩晓东作《原位和非原位电子显微学在精确表征界面、表面、缺陷与结构等研究中的机遇与挑战》报告。报告中介绍 了“原子尺度材料力学性能实验系统”和相关技术,以及该技术在在原子尺度上对晶界和孪晶界的稳定性和不稳定性进行原位研究研究实例 报告中也以“揭示出单晶金属纳米线的塑性极限以单原子链终结”等实例,展示了Cs校正的HREM原位成像技术,ARMM的未来让人充满期待。韩晓东在报告中说到,只有电镜才能真正用于研究晶界处发生了什么,引起与会者共鸣。另一个令人瞩目的报告是“拿下了80后能拿下的所有荣誉”(主持人语)来自北京大学物理学院教授高鹏的《Atomic structure and chemistry of grain boundaries in complex oxides》。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/179f911c-59c1-4be2-80ec-b9a98da971c1.jpg" title=" 4-hxd.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国电子显微学会理事长韩晓东在分会场作《原位和非原位电子显微学在精确表征界面、表面、缺陷与结构等研究中的机遇与挑战》报告 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/dff8589d-df06-4f95-8e89-aa81e3d0787f.jpg" title=" 3会场.jpg" / /p p style=" text-align: center "   功能性材料相关分会场现场 /p p   能源、环境和信息等功能材料的微结构表征分会场精彩纷呈,“球差”、“原位”同样不容错过。代尔夫特理工大学徐强博士作《原位电镜显微解决方案》报告,报告中分享了提供不同环境的芯片实验室原位解决方案,如热-电一体芯片等。以可控原子层石墨烯生长原子级高清动态电影,展示芯片实验室原位检测超高的稳定性。报告中特别说到,从工艺、结构、性质、性能的价值链呈现一条“微笑曲线”,两端价值高,中间价值低 原位的价值所在,就是让电子显微镜从结构研究延伸到“工艺、结构、性质、性能”全价值链。“球差”也是第一天报告的重要关键词,南京大学教授王鹏作《球差电镜对在氧化物异质结微结构表征》报告,南方科技大学教授何佳清作《南科大环境球差电镜在能源材料中的应用》报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/443ea5de-e7f1-4aa3-90e0-29f5cab257b3.jpg" title=" 3-xuqiang.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   代尔夫特理工大学徐强博士作《原位电镜显微解决方案》 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/2fe944a2-d586-4e8e-83f0-e5d08e998ccd.jpg" title=" 8会场.jpg" / /p p style=" text-align: center "   生命科学研究分会场现场 /p p   生命科学研究分会场中,中国科学院生物物理研究所研究员孙飞作《HOPE:a new solution for non-integrated cryo correlative fluorescence and electron microscopy》报告。报告中介绍了所开发的基于高真空光学平台(HOPE)的非集成cryo-CLEM系统以及相关定位软件(ColorView)的新解决方案,以及建立的两种生物样品的基于HOPE的cryo-CLEM分析流程。与常见cryo-CLEM系统相比,HOPE系统具有高稳定性、减少污染、并在传输过程中最小化样品损伤的优点,更加适应cryo-CLEM实验。此外,该高真空光学平台可适用于各种荧光显微镜和电子显微镜。报告中还提到,下一步,将把HOPE系统与cryo-FIB技术结合,以扩大cryo-CLEM对较厚样品的分析能力;此外,将把HOPE技术与cryo-SIM成像技术适配,从而提高光学分辨率。“植物”是第一天生命科学研究分会场的一个重要关键词,共安排了中国科学院植物研究所教授张辉《植物材料中的金属元素亚细胞结构中的定性和定量分析技术探索》、中国科学院植物研究所研究员金京波《SUMO 化修饰调控植物免疫反应的分子机制研究 》、北京大学生命科学学院教授贺新强《植物管状分子分化的分子机制》、云南省农科院生物所研究员张仲凯《植物病毒超微形态组的构建》、河南师范大学生命科学学院教授李景原《植物叶表皮角质层与花青素消长发育生物学意义探讨》5个报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/883b17cb-a23c-4506-90d3-1efa1f8b4b9c.jpg" title=" 8-sunfei.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国科学院生物物理研究所研究员孙飞作《HOPE:a new solution for non-integrated cryo correlative fluorescence and electron microscopy》 /p p   此外,学术年会还组织部分企业代表与学术代表进行产品、技术交流。泰思肯公司顾群博士作《拉曼图像一体化在扫描显微分析上的应用》报告,Thermo Fisher Scientific/FEI潘锡江博士作《生命科学最新进展》报告,岛津公司陈强博士作《调频模式原子力显微镜在液体环境下对生物样品的高分辨观察》报告。 /p p   19日下午、20日全天,更多的分会场精彩报告将依次登场,后续详细报道敬请关注! /p
  • 电子显微学在结构材料、功能性材料、生命科学中的应用(二)
    p style=" text-align: center " a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/5c4a7b5f-758b-471b-b1fa-37e1db7f5f21.jpg" title=" 系列报道.jpg" / /a /p p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 10月19日下午, a href=" http://www.instrument.com.cn/zt/microscope" target=" _blank" title=" 中国电子显微学术年会" strong span style=" color: rgb(0, 112, 192) " 2017年中国电子显微学术年会 /span /strong /a 4个分会场继续举行:结构材料及缺陷、界面、表面,相变与扩散 能源、环境和信息等功能材料的微结构表征 生命科学研究 生物电镜技术。4个分会场共安排了24场学术报告交流,并在学术交流结束后,增加了参观Poster及与公司互动环节。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/60540dd8-f932-40d8-9c19-da6915c7fd65.jpg" title=" 8-huich.jpg" / /p p style=" text-align: center "   生物电镜技术分会场现场 /p p   冷冻电镜因2017年诺贝尔奖,成为了关注的热点,但冷冻传输系统也没有让人忘记。在《扫描电镜冷冻传输系统的应用》报告中,东北农业大学研究员王学东以6个方面的应用实例比较了这两种技术的优势、劣势,如:植物叶片、茎表面的结构,植物花粉,微生物菌体、鞭毛、孢子,淀粉为主要成分的种子,蛋白脂肪为主要成分的种子,食品、化妆品。冷冻传输系统有利于植物叶片、茎表皮毛,有利于放线菌、孢子的鞭毛形态保留等。王学东说到,高压冷冻和冷冻传输系统相结合的方向让人期待。纽约大学医学院显微镜电镜中心主任梁凤霞认为,新一代电子显微镜具备更好的用户友好度,如TEM的冷冻水合的或相对较厚的生物切片图像的低电子对比度,SEM的背散射电子收集等 计算机的硬件和软件进一步的提高,强化处理电子显微数据的能力 实现3D可视化切削和观察 冷冻样品制备将更普及:HPF-FS和冷冻超薄切片 实现关联复杂生物系统的结构和功能。梁凤霞也和与会者分享了自己在冷冻电镜应用方面的心得和体会。现在是冷冻电镜的时代,但是梁凤霞认为,冷冻电镜有很大的局限性,它只适合于解决大分子复合体的结构 如果光电共联做好了,用处非常非常大,对整个生物学界都有很大的帮助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/5a73660b-7027-4c47-a1b9-732e72d1403c.jpg" title=" 8-wangxued.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   东北农业大学研究员王学东作《扫描电镜冷冻传输系统的应用》 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/65b276e6-222a-4a1e-95d8-791c5a58b644.jpg" title=" 8-梁凤霞.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   纽约大学医学院显微镜电镜中心主任梁凤霞作《Advanced Biomoleular Electron Microscopy Techniques and Applications》报告 /p p   功能性材料相关分会场现场,清华大学教授张跃刚作《锰基锂离子电池电极材料的原位及准原位电镜表征》报告。报告中强调,做好电池的原位及准原位电镜表征,原位微电池的设计师实验成功的必要环节 原位TEM需结合其他的实验,以进一步提高实验数据的可靠性。张跃刚认为,原在锂离子电池电极材料的微观结构表征上,原位TEM是强有力的实验证明手段 原位TEM未来可用于锰基正负极的长期循环性能研究。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/1b3b02dc-9bd7-41b4-8d4f-802a09d8b6a0.jpg" title=" 3-zhangyuegang.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   清华大学教授张跃刚作《锰基锂离子电池电极材料的原位及准原位电镜表征》报告 /p p   结构材料相关分会场现场,安排了中国科学院金属研究所研究员杨志卿作《镁合金中的位错及其与其他缺陷的交互作用》等6个报告。在生命科学研究分会场安排了山西大学生命科学学院教授邢树平作《GET通路在植物中的功能研究》等6个报告。 /p p   分会场还吸引了很多青年学者,分会场不仅是学术交流的场所,也成为了电子显微学学界优秀治学、良好学术作风传承的平台。北京大学生命科学学院教授丁明孝在《怎样做好电镜样品——从编写生物样品制备一书谈起》报告中,不仅传授做好电镜样品的知识,更以风趣幽默的话语、切身的体会、展现良好学术作风的故事,把电子显微学学界老一辈优良传统传承给更多的青年学子。梁凤霞也和青年学子分享求学历程及工作中的一些治学经验和感受。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f3644905-7ac7-45fe-803c-e0031f97e649.jpg" title=" 8-dingmingxiao.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   北京大学生命科学学院教授丁明孝谈《怎样做好电镜样品——从编写生物样品制备一书谈起》 /p p   此外,今天的分会场交流中,学术年会还组织部分企业代表与学术代表进行产品、技术交流:飞纳电镜-复纳科学仪器(上海)有限公司张传杰做《飞纳电镜——Free to achieve》报告,徕卡显微系统生命科学应用主管方策作《徕卡STED纯光学超高分辨——洞悉活细胞内部乾坤》报告,天美-日立公司刘哲作《日立电镜最新进展及应用》报告。 /p p   20日全天的分会场精彩报告将依次登场,后续详细报道敬请关注! br/ /p p   了解学术会议全部报道内容,请点击: span style=" color: rgb(0, 112, 192) text-decoration: underline " strong a href=" http://www.instrument.com.cn/zt/microscope" target=" _blank" title=" 中国电子显微学术年会" style=" color: rgb(0, 112, 192) text-decoration: underline " 2017年中国电子显微学术年 /a 专题报导 /strong /span /p p br/ /p
  • 卓祥科技参加“第十届先进纤维与聚合物材料国际会议”并做演讲
    10月17日,杭州卓祥科技有限公司赴上海富悦酒店参加第十届先进纤维与聚合物材料国际会议。会议现场先进纤维与聚合物材料国际会议(ICAFPM)由东华大学发起举办并主办,每两年举行一次,已成为世界上以“纤维”为主题的规模巨大的学术盛会之一。会议期间,来自海内外的800余名专家学者围绕“纤维让世界更美好”这一主题,聚焦先进纤维和聚合物材料相关领域的基础理论研究和进展,面向世界性共同重大需求,深度把握国际学术前沿,积极拓展纤维研究领域,开展深入而广泛的学术研讨交流。演讲现场解答疑问
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • 电子显微学在结构材料、功能性材料、生命科学中的应用(三)
    p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 10月20日, 2017年中国电子显微学术年会4个分会场一天的学术报告交流顺利举行:结构材料及缺陷、界面、表面,相变与扩散 能源、环境和信息等功能材料的微结构表征 生命科学研究 生物电镜技术。4个分会场安排60多个学术、技术、经验交流报告。 br/ /p p style=" text-align: center " a href=" http://www.instrument.com.cn/zt/microscope" target=" _blank" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/0af06a4d-ceca-4b57-91d9-d068b3ae8305.jpg" title=" 系列报道.jpg" / /a /p p   功能材料相关会场,中国科学院金属研究所研究员马秀良作《铁电异质界面极化巨大增强的像差校正电镜研究》报告,报告中分享了铁电异质界面相关科研成果和经验。马秀良还谈到,球差电镜在中国数量很多,球差电镜可能在功能材料领域发挥作用的空间更大一些。功能材料存在阴阳离子,这就存在价态,这就让球差电镜高的空间分辨率发挥作用 但是,这些和价态相关的信息,在结构材料中就很少提及。对功能材料领域而言,球差电镜能解决许多以前以为不能解决的问题 有了球差电镜,除了阳离子,还能看见阴离子,氢元素都可以成像。但是ABF、HAADF成像不能解决氧空位成像的问题,这对于透射电镜来说,很难 也许负球差电镜可能成功。此外,结构材料相关分会场安排了中国科学院物理研究所禹日成教授作《纳米材料及器件的电子显微学研究》、中国科学院宁波材料技术与工程研究所研究员夏卫星作《洛伦兹电镜和电子全息技术对材料磁畴结构的表征》等21个报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/ce2e72e1-aa43-42d3-a904-51e98f41301e.jpg" title=" 3-maxiuliang.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国科学院金属研究所研究员马秀良作《铁电异质界面极化巨大增强的像差校正电镜研究》报告 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/5fc5de15-0304-4df2-bf77-a0aac990a89f.jpg" title=" 4-huichang.jpg" / /p p style=" text-align: center "   结构材料及缺陷、界面、表面,相变与扩散分会场现场 /p p   生命科学研究分会场依然是今天的热点之一。既有丰富的学术交流,也有各技术平台人员进行了精彩的工作经验交流。如:华南农业大学生命科学学院教授吴鸿的《钙离子参与化橘红分泌囊细胞凋亡的调控机制研究》、扬州大学园艺学院教授金飚的《银杏古树年龄效应的研究》、南方医科大学副教授路艳蒙的《Endosome & amp lysosome》等。 /p p   对于分泌囊的生产发育方式的认识,多年来一直存在三种不同的看法:裂生、溶生、裂溶生。吴鸿的研究结果表明,化橘红分泌囊发育方式为裂溶生型 化橘红分泌囊形成过程中的细胞降解属于典型的细胞程序性死亡 钙离子的时空变化特点与化橘红分泌囊发育过程中核染色质以及核仁降解密切相关 化橘红中存在的钙离子依赖的核酸内切酶,钙离子信号通过调控核酸内切酶基因的表达,参与了分泌囊细胞程序性死亡过程中核DNA的降解。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/090d3a8e-fb5a-4641-960e-1c6c71685a08.jpg" title=" 7-wuhong.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   华南农业大学教授吴鸿作《钙离子参与化橘红分泌囊细胞凋亡的调控机制研究》报告 /p p   北京大学医学部教授何其华分享了《倒置双光子活体微血管血流成像系列方法的建立》。报告中提及,目前双光子显微镜活体成像技术多采用正置显微镜,普遍存在缩水难的问题,采用倒置双光子显微镜很好地解决了这一难题 这一技术在心脑血管疾病、血栓、高血压等方面应用前景广泛,In vivo活体成像变得越来越重要。 何其华认为,生物光学成像的未来发展趋势包含以下几个方面:超高分辨成像,快速大尺度3D(活体模式动物成像),高速在体双(三)光子深度成像(活体深度成像),透明化组织成像,单分子成像与检测。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/946869dc-c735-44f5-a9ab-6588fccb5c49.jpg" title=" 7-heqihua.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   北京大学医学部教授何其华作《倒置双光子活体微血管血流成像系列方法的建立》报告 /p p   《冷冻超分辨光电融合成像研究蛋白的定位》,为中国科学院生物物理研究所高级工程师薛艳红所作。报告中说到,光镜和电镜具有尺度和信息互补的特点,借助自制的冷冻PALM系统,利用超分辨显微镜和冷冻电镜,创建了“基于单分子定位的超分辨成像技术”。荧光成像具有光学特异性标记和精确分子定位优势,电镜具有高分辨和结构解析的优势,二者结合衍生的光电融合成像技术有望为生命科学研究提供新的手段,未来可用于光学导向的原位结构解析、单点生物分子在细胞内的精确定位和分布。会议代表就该技术的技术要点、难点及未来发展进行热烈的讨论交流。编辑从会场了解的信息来看,生物物理研究所这一光镜-电镜融合成像技术平台尚未完全成熟 但作为中国NO.1的光-电共联平台(主持人语),是否能引领中国光-电共联的蓬勃发展,需要后续高度关注。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/216f3300-dc69-49c9-965a-d27414026212.jpg" title=" 7-xueyanh.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国科学院生物物理研究所高级工程师薛艳红作《冷冻超分辨光电融合成像研究蛋白的定位》报告 /p p   生物样品制样作为生物电镜技术的重要组成部分,生物电镜技术分会场安排了华东师范大学教授级高级工程师倪兵作《生物扫描电镜制样技术要点》报告,清华大学生命科学学院博士李英在也分享了扫描、透射电镜的制样及光镜-电镜联用成像方面的经验。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/98c7032a-c1f0-4697-9075-e2a3fb41cc8e.jpg" title=" 8-liying.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   清华大学生命科学学院博士李英作《样品制备方法探讨》报告 /p p   学术年会历时3天,欲了解学术会议更多报道内容,请点击: a href=" http://www.instrument.com.cn/zt/microscope" target=" _blank" title=" " 2017年中国电子显微学术年会 /a /p p br/ /p
  • 万测出席中国复合材料行业年会暨第五届碳纤维复合材料产业发展高峰论坛
    2023年11月17日-18日,中国复合材料行业年会暨第五届碳纤维复合材料产业发展论坛在上海成功举办。万测作为国内知名的材料力学测试解决方案供应商参加了本次论坛。 论坛期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 作为国家级专精特新重点“小巨人”企业,万测一直以来都关注着复合材料的发展,承担着为国内复合材料发展做出贡献的责任和义务。为了更好地服务行业,万测将继续加大复合材料力学测试领域的研发投入,为广大用户带来更多专业的测试解决方案。未来,随着复合材料行业的持续发展和创新,万测将继续发挥其专业优势和技术实力,为我国复合材料行业的繁荣发展做出更大的贡献。
  • 量子扭转显微镜可视材料内电子波
    据最新一期《自然》杂志发表的研究,以色列魏茨曼科学研究所的研究人员开发了一种新型扫描探针显微镜,即量子扭转显微镜(QTM),它可以创造出新的量子材料,同时观察其电子最基本的量子性质。这项研究为量子材料的新型实验开辟了道路。  大约40年前,扫描探针显微镜的发明彻底改变了电子现象的可视化方式。尽管当今的探针可在空间的单个位置获取各种电子特性,但迄今为止扫描显微镜无法实现的是,在多个位置直接探测电子的量子力学存在,并提供对电子系统的关键量子特性的直接存取。  QTM原理涉及两层原子般薄的材料相互“扭曲”或旋转。事实证明,扭转角度是控制电子行为的最关键参数:仅将其改变十分之一度,就可将材料从奇异的超导体转变为非常规的绝缘体,但这个参数在实验中也是最难控制的。  基于独特的范德华尖端,QTM可创建原始的二维异质结,这为电子隧穿进入样品提供了大量相干干涉路径。由于在针尖和样品之间增加了一个连续扫描的扭转角,这种显微镜可沿着动量空间的一条线探测电子,类似于扫描隧道显微镜沿着真实空间的一条线探测电子。  实验演示证明了针尖的室温量子相干性,研究人员还施加了较大的局域压力,观察扭曲的双层石墨烯的低能带逐渐平坦化。  研究人员称,新工具可直接将量子电子波可视化,可观察它们在材料内部表演的量子“舞蹈”,其还为科学家提供一种新“透镜”来观察和测量量子材料的性质。  如此深入地窥探量子世界,可帮助揭示关于自然的基本真相。未来,QTM将为研究人员提供前所未有的新量子界面光谱,以及发现其中量子现象的新“眼睛”。
  • 层状材料的原子力显微镜
    • James Keerfot• Vladimir V Korolkov原子力显微镜(AFM)是一种测量探针和样品之间作用力的技术,它不仅可用于测量纳米级分辨率的表面形貌,还可用于绘制和操作可使用纳米级探针处理的一系列性能。在这里,我们只谈到了最先进的AFM在层状材料研究中的一些能力。我们希望探索的第一个例子是如何使用AFM来研究垂直异质结构中的层的注册表,这会产生许多有趣的现象[1,2]。根据层间和层内的结合、晶格周期和两个重叠薄片角度的对称性和失配,可以观察到单层石墨烯(SLG)和六方氮化硼(hBN)[3]之间的莫尔图案或扭曲控制的双层二硫化钼(2L-MoS2(0°))[4]中的原子重建等特征。在图1中,我们展示了我们的FX40自动AFM如何使用导电AFM(C-AFM)和侧向力显微镜(LFM)来测量这些特征。这两种技术都源于接触模式AFM,其中悬臂由于排斥力而产生的偏转用于通过反馈回路跟踪表面形貌。LFM测量探针在垂直于悬臂梁的方向上扫描时的横向偏转,而C-AFM绘制尖端样品结处恒定电压和力下的电流图。除了传统的形貌通道外,AFM还使用这些模式,为研究垂直异质结构中层间扭曲和应变影响的研究人员提供了“莫尔测量”。图1:Park Systems的FX40自动AFM(a)用于使用LFM(c)和c-AFM(d)测量hBN和单层石墨烯(b)之间的莫尔图案。对于具有边缘扭曲角和有利的层间结合的样品,可以测量原子重建,这是石墨上平行堆叠的双层MoS2的情况(e)。与莫尔图案一样,在这种情况下,由于重建,可以使用LFM(f)和C-AFM(g)测量不同配准的区域。除了探索层状材料的形态和注册,原子力显微镜还具有一系列功能模式,可以用纳米尺度的分辨率测量诸如功函数、压电性、铁电性和纳米机械性能等性能。在图2中,我们展示了如何使用单程边带开尔文探针力显微镜(SB-KPFM)[5]来同时绘制尖端和具有不同层厚度的MoS2薄片之间的形态和接触电势差(CPD)。MoS2薄片从聚二甲基硅氧烷(PDMS)转移到Si上,在MoS2和Si之间留下截留的界面污染气泡。通过比较形貌(见图2b)和CPD(见图2c),我们看到由于MoS2层厚度和截留的界面污染物气泡的大小,CPD发生了变化。通过从地形数据中提取相对应变的估计值,该估计值基于尖端水泡相对于平坦基底的行进距离,可以直接将CPD和一系列层厚度的应变关联起来[6]。图2:KPFM是用Multi75E探针和5V的电驱动(VAC)和5kHz的频率(fAC)在硅(天然氧化物)上的MoS2上进行的(a)。对于多层MoS2薄片,同时绘制了形貌图(b)和CPD(c),揭示了由于层厚度和捕获污染物的气泡的存在而导致的CPD对比度。通过从地形图像中提取相对应变的估计值,我们绘制了各种泡罩尺寸和MoS2厚度的相关应变和CPD(d),如图图例所示。在我们的最后一个例子中,我们将研究如何使用原子力显微镜来决定性地操纵层状材料。在图3 a-c中,我们比较了90 nm SiO2/Si中2-3层(L)石墨烯薄片在使用阳极氧化切割之前(见图3b)和之后(见图3c)的横向力显微镜图像,其中尖端使用接触模式保持接触,同时施加40 kHz的10 V AC偏压[7]。除了阳极氧化,原子力显微镜还能够对层状材料进行机械改性。图3d-f中给出了一个这样的例子,其中使用Olympus AC160探针(刚度~26N/m)将聚苯乙烯上的3L-MoS2薄片缩进不同的深度。如图3f的插图所示,压痕深度(使用非接触模式监测)与压痕力密切相关。以这种方式修改局部应变已被证明可以决定性地产生表现出单光子发射的位点[8]。图3:在接触模式(a)下,通过向探针施加AC偏压,对少层石墨烯进行阳极氧化。通过比较(b)之前和(c)之后的LFM图像来证明薄片的确定性切割。也可以在聚苯乙烯上进行几层MoS2的压痕,证明了机械操作(d)。通过非接触模式AFM监测的压痕深度显示,压痕力范围高达~7.2µN。总之,我们已经展示了AFM如何能够提供比表面形貌多得多的信息,并且可以执行的一套功能测量和样品操作过程为关联测量提供了新的机会。易于使用的功能以及使用最佳探针自动重新配置硬件进行功能测量的能力,使Park的FX40特别适合此类调查。References[1] R. Ribeiro-Palau et al. Science 361, 6403, 690 (2018).[2]Y. Cao et al. Nature 556, 80 (2018).[3] C. Woods et al. Nature Phys. 10, 451 (2014).[4]A. Weston et al. Nat. Nanotechnol. 15, 592 (2020).[5] A. Axt et al. Beilstein J. Nanotechnol. 9, 1809–1819 (2018)[6] E. Alexeev et al. ACS Nano 14, 9, 11110 (2020)[7] H. Li et al. Nano Lett., 18, 12, 8011 (2018)[8] M. R. Rosenberger et al. ACS Nano, 13, 1, 904–912 (2019)原文:Atomic force microscopy for layered materials,Wiley Analytical Science作者简介• 詹姆斯基尔福(James Keerfot)Park Systems UK Ltd, MediCity Nottingham, Nottingham, UK.弗拉基米尔科罗尔科夫(Vladimir V. Korolkov)Park Systems UK Ltd., MediCity Nottingham, UK.弗拉基米尔于2008年获得莫斯科大学化学博士学位。随后,他进入海德堡大学,专攻薄膜的X射线光电子能谱学,随后在诺丁汉大学任职,在那里他发现了自己对扫描探针显微镜(SPM)的热情,并成为SPM技术的坚定拥护者,以揭示纳米级的结构和性能。他率先使用标准悬臂的更高本征模来常规实现分辨率,而以前人们认为分辨率仅限于STM和UHV-STM。弗拉基米尔目前发表了40多篇科学论文,其中包括几篇在《自然》杂志上发表的论文。尽管截至2018年,他的专业知识为SPM技术的产业发展做出了贡献,但他的工作仍在激励和影响该领域的学术冒险。
  • 如虎添翼!当锂电研发联手材料显微分析
    8月27日,为期三天的第三届中国(国际)能源材料化学研讨会在北京国际会议中心落下帷幕。本届研讨会由中国化学会主办,围绕“能源材料与化学”的主题,以高端学术交流为重点,强调前沿探索,针对当前新能源材料领域的热点问题展开研讨,吸引了国内外千余人参会。欧波同(中国)有限公司作为实验室系统解决方案服务商参加了此次会议。图1:大会会场会议涵盖的主题包括锂/钠离子电池、锂硫电池、锂空气电池、超级电容器、燃料电池、电催化、太阳能、生物质能、能源转换材料、能源材料资源及回收化学等相关材料、化学问题、材料表征等。26日,欧波同分析测试事业部总监出席能源材料表征技术论坛,并作《材料显微分析技术在锂电行业表征中的应用》的技术报告。 图2:欧波同分析测试事业部总监作技术报告材料微观结构的差异与其所经历的生产工艺息息相关,通过分析材料内部的特殊微观结构,可以预测有先进材料的生产及合成工艺。报告重点介绍了材料显微分析技术在电池研究中的应用。电池截面分析技术:粉末颗粒截面微观形貌分析、粉末颗粒截面微观成分分析,电极材料颗粒晶向分布情况分析,可应用于材料一致性评价、梯度材料工艺优化等方向。电池极片截面表征技术:通过电池极片截面观察,涂布均匀性分析,可对极片整体或单一特定添加剂的分布均匀性进行量化评估。图3:正常充放电极片表面图4:性能衰减后极片表面图5:欧波同展台欧波同一直非常注重专业技术水平的提升,致力于促进能源与材料学科的发展与科技创新,积极为企业、高校和科研院所提供材料检测咨询建议,力求推进我国能源材料与能源化学产业的进步。
  • 向“新”而生,EVIDENT工业显微镜亮相中国材料大会
    新材料是传统产业升级和战略性新兴产业发展的基石。近年来,中国新材料产业蓬勃发展,关键材料取得突破、前沿技术不断涌现。7月8日-11日,中国材料大会2024于广州白云国际会议中心举行,大会致力于面向国家重大需求、推动新材料前沿重大突破,Evident携带多款创新工业显微镜产品亮相,与行业同仁一同探索材料的微观世界,为新材料的发展贡献力量。当前,高新产业的发展不断催生对于新材料的需求,进而对材料的微观结构设计和性能优化研究提出了更具前瞻性的要求。作为专业的光学仪器和解决方案提供商,Evident致力于提供材料学领域整体解决方案,其显微镜产品广泛应用于金属、陶瓷、半导体、化学材料等领域的微观形貌观察,助力实现精准的质量分析与控制。OLS5100 3D激光显微镜:亚微米级测量标杆OLS5100激光显微镜以其卓越的测量精度和光学性能,在亚微米级测量方面树立了标杆。在电子材料领域,新材料向更高性能、更小尺寸和更高集成度发展。Evident OLS5100显微镜以其精细的亚微米级三维成像能力,可深入观察半导体材料的微观结构,帮助提高电子元件性能。此外,其专用的LEXT物镜和Smart Lens Advisor(智能镜头顾问)的结合,确保了测量的准确性,为用户提供值得信赖的检测结果。随着全球对可持续能源解决方案的需求不断增长,新能源材料、储能材料和节能材料的研究变得尤为关键。在锂电池电极材料的生产中,为了保障电子在集流体与电极材料之间有效转移,生产中材料表面的粗糙度控制十分重要。作为非接触式工具,OLS5100显微镜在不损失样品的情况下获得精准数据,清晰捕获传统显微镜难以获得的精细图案和缺陷。值得一提的是,OLS5100配备智能实验管理助手,能够简化工作流程并提供高质量数据,让材料检测的流程更加快速、高效。激光显微镜OLS5100可同时获得样品的激光图、真彩色图和高度图DSX1000数码显微镜:多功能、一体化创新工具DSX1000数码显微镜则是Evident在数字化显微技术领域的又一力作。它将光学技术与数字技术有机融合,成为一台集体视镜、工具显微镜、金相显微镜、偏光显微镜等功能于一体的多功能高度自动化的显微系统,集成明场、暗场、偏斜、偏光、MIX、微分干涉等六种观察模式,多款物镜支持23X-8220X放大倍率,为研究人员提供综合性成像和显微镜解决方案。在汽车、航空航天及其他制造领域,轻质材料、高温材料和耐腐蚀材料的需求日益增长。DSX1000显微镜配备的PRECiV软件提供多种选配模块,包括符合行规和国际标准的材料解决方案,如晶粒度、铸铁分析、最恶劣视场、孔隙率、相分析、非金属夹杂物等。此外,DSX1000的远心光学系统有效降低在整个放大范围内的图像失真率,保证了测量的准确度和重复性。其丰富的观察方法和灵活的载物台设计,使得研究人员能够轻松应对各种复杂外形的样品。一键式呈现样品的明场、暗场、斜射、偏振、MIX(明场和暗场)、偏光和微分干涉的图像在同一界面中,即使是初学者也能快速找到合适的观察方式。活动现场,Evident展台吸引了众多行业专家、研究人员及合作伙伴,Evident光学技术的创新应用引发了关注与热议。在制造大国向制造强国迈进的征程上,新材料的突破性进展对于加速产业升级具有重要作用,展望未来,Evident仍将顺应时代发展浪潮,以高质量的解决方案推动产业向“新”发展,为中国制造业的发展筑牢基石。
  • 直播预告!iCEM 2023之电子显微学技术在材料领域应用篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国电子显微镜学会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023 或扫描二维码报名“电子显微学技术在材料领域应用”专场预告(注:最终日程以会议官网为准)专场五:电子显微学技术在材料领域应用(上)(6月29日上午)材料专场召集人暨上半场主持人:明文全 海南大学 副教授报告题目演讲嘉宾LPBF成形高性能医用钴铬钼合金的组织与性能研究倪颂(中南大学粉末冶金研究院 研究员)拓扑磁结构原位观测及电操纵宋东升(安徽大学 教授)待定卡尔蔡司原子分辨的电子三维重构技术周继寒(北京大学 研究员)钛合金中的相变机制研究符晓倩(海南大学材料与工程学院 副研究员)专场六:电子显微学技术在材料领域应用(下)(6月29日下午)材料专场下半场主持人:周继寒 北京大学 研究员Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructuresFlorian Vogel(海南大学 研究员)纳克微束FE-1050系列电镜及其在材料表征中的应用卢毓华(纳克微束(北京)有限公司 高级应用工程师)氧化物薄膜畴界器件的探索及研究刘中然(浙江大学 助理研究员)稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究王双宝(云南大学 副教授)基于原位透射电镜的少层石墨烯场发射特性研究唐帅(中山大学电子与信息工程学院 副教授)嘉宾简介及报告摘要(按分享顺序)材料专场召集人暨主持人:明文全 海南大学 副教授 【个人简介】明文全长期从事先进电子显微学技术理论和方法学研究,并将其应用于研究先进铝合金纳米析出相结构和性能的关系。研究内容包括:(1)先进电子显微学理论和方法;(2)铝合金工艺、性能和微结构的关系调控。在Ultramicroscopy、IEEE Transactions on Image Processing、Acta Materialia、Journal of Material Science and Technology等期刊上发表研究论文30余篇,其中第一作者和通讯作者论文十余篇,授权发明专利3项,主持了国家自然科学基金创新联合发展基金重点支持项目课题、国家自然科学基金青年项目,并作为骨干成员参与了国家基金重大科研仪器项目和国家自然科学基金重点项目。倪颂 中南大学粉末冶金研究院 研究员【个人简介】倪颂,教授、博士生导师。湖南省湖湘青年科技创新人才,中南大学创新驱动青年人才。主持国家自然科学基金面上项目、青年项目、湖南省自然科学基金、中国博士后科学基金海外引进项目、特别资助等10余项。指导硕士、博士研究生10余名,多人获评国家奖学金、湖南省优秀硕士学位论文、中国冶金教育学会优秀硕士学位论文。研究方向包括金属材料(钛、钴、镁及其合金)的塑性变形机制、马氏体相变机制,3D打印制备高性能金属材料及组织结构表征。报告题目:LPBF成形高性能医用钴铬钼合金的组织与性能研究【摘要】Cobalt-chromium-molybdenum (CCM) alloy is an attractive class of metal materials for biological applications that require superior mechanical properties. The initial phase and in-situ precipitation have long been known as critical in determining their mechanical performances, yet they are still not well understood and further not feasibly manipulated. In this study, by applying additive manufacturing, i.e., laser powder bed fusion (LPBF), we successfully endowed a classical Co25Cr5Mo5W alloy with a single face-centered cubic (FCC) structure, and realized controllable precipitation behavior at 900 ℃ that leads to better strength-ductility combination than most known CCM alloys prepared by traditional routes. State-of-the-art characterizations show that in the as-built state, the Co25Cr5Mo5W alloy features integrated networks of dense cell boundaries and stacking faults, which together contribute majorly to the yield strength of ~820 MPa. The full FCC matrix, which is ductile and metastable, is responsible for the plausible ductility of ~22.3 % Upon heat treatment, the heavy decoration of solutes Cr, Mo, W, and Si at cell boundaries triggers heterogeneous nucleation of Laves precipitates, which in turn deteriorates the overall ductility. It is not until the global onset of the intercellular precipitation after 15 mins of heat treatment does the strength increase rapidly, further boosting the yield strength to ~1170 MPa at a decent ductility of ~7.5 % when heat treated for60 mins.宋东升 安徽大学 教授【个人简介】宋东升,安徽大学教授,博士生导师,国家海外高层次青年人才计划获得者(2021)。2012年本科毕业于北京科技大学材料学院,2017年博士毕业于清华大学材料学院,获评清华大学优秀博士论文,师从朱静院士。2017年-2020年先后在新加坡国立大学和德国于利希研究中心(Ernst-Ruska电镜中心),从事博士后研究,2020年11月任教于安徽大学。主要从事透射电镜磁性表征技术的开发,以及在磁性材料与器件中的应用。相关研究工作以第一和通讯作者发表在Physical Review Letters, Nature Communications, Advanced Materials, Advanced Functional Materials, Ultramicroscopy等期刊上。报告题目:拓扑磁结构原位观测及电操纵【摘要】拓扑磁结构(如斯格明子)是未来磁存储或磁逻辑器件的优良载体,因为它们具有纳米级尺寸、高稳定性和低临界电流密度。这里,我们利用高分辨定量透射电镜磁成像技术,研究并揭示了手性磁体中一些拓扑磁结构的形成和稳定机制。进一步,结合原位磁场-温度-电流的磁成像平台,研究了拓扑磁结构在电流驱动下的动力学行为,构建了拓扑磁结构速度、维度与电流密度、霍尔角之间的定量关系。周继寒 北京大学 研究员【个人简介】分别于2009年和2014年在北京大学获得化学学士和高分子化学与物理博士学位。其后在加州大学洛杉矶分校物理与天文学院从事博士后(2014-2019)以及助理项目科学家(2019-2020)研究。2020年11月加入北京大学化学与分子工程学院任助理教授、研究员,课题组组长(PI)。主要研究兴趣是发展高精尖的化学测量学技术,特别是原子分辨多维成像技术,用于精准获取物质在三维原子分辨尺度下组成、分布、结构与性质及其时空变化规律,从而解决物理、化学以及材料科学领域的传统难题。研究成果以第一作者或通讯作者发表于Nature (2),Nat. Mater.,Nat. Commun.等国际学术期刊。报告题目:原子分辨的电子三维重构技术【摘要】精确定位原子的三维位置,是认识物质原子分辨尺度结构与功能的关键。很多材料的功能直接与缺陷结构甚至完全无序的非晶结构有关。本报告将介绍原子三维重构成像技术,一种近期发展迅速的无需晶体学假设的通用重构成像技术。这种方法已经在研究晶体原子分辨早期成核以及非晶原子结构确定等领域取得了一系列的进展。符晓倩 海南大学材料与工程学院 副研究员【个人简介】符晓倩,海南大学材料科学与工程学院副研究员,硕士研究生导师。2020年毕业于浙江大学材料学专业,获博士学位,2020年10月至2022年9月在浙江大学电子显微镜中心进行博士后研究工作。主要从事先进结构材料的微观结构与性能研究,包括多尺度及多维度显微结构表征,显微结构演化等,揭示材料中缺陷结构、缺陷行为及其与材料性能的关联性。目前在Nature Materials、Materials Today Nano、Scripta Materialia等国际知名期刊发表论文十余篇;主持国家自然科学基金1项。报告题目:钛合金中的相变机制研究【摘要】利用原位电镜表征和计算机模拟技术研究两相TiMo合金中α-β相变过程,发现在相变初期α相中首先发生Mo的扩散形成纳米尺度的亚稳态超晶格结构团簇,其成分和结构既不同于α相,又不同于β相;随着超晶格结构中Mo浓度的升高,α相密排六方结构失稳,瞬间转变为体心立方结构,实现非经典形核导致的从α相到β相的结构转变。Florian Vogel 海南大学 研究员【个人简介】Dr. Florian Vogel为国家自然科学基金委外国优秀青年学者获得者,海南大学研究员。2014年获得德国柏林工业大学材料科学与工程博士学位,曾担任亥姆霍兹科学联合会-柏林材料与能源研究所三维原子探针(APT)实验室负责人。在三维原子探针、透射电镜等高分辨表征领域以及高温合金材料研究方面积累了13年多的经验。 以第一作者/通讯作者在 Nature Communications, Acta Materialia 等知名国际期刊发表SCI论文20余篇。主持有国家级项目3项,省级项目4项,参与1项三维原子探针(APT)国际标准的国际合作研究。报告题目:Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructures【摘要】Understanding phase separation phenomena enables tailoring microstructures of high-temperature structural materials to develop better materials with improved properties. High resolution characterization techniques are used to understand the link between structure-property relationships and the 3D nanochemistry of hierarchical microstructures in high temperature structural materials. Hierarchical microstructures form when additional γ particles form within γ’ precipitates and pose a novel concept to strengthen high-temperature structural materials. However, these γ particles are metastable and two possible metastability pathways have been indentified: (1) continuous growth and split of γ’ and (2) Growth and dissolution, both resulting in a loss of the strengthening effect. This talk presents how high-resolution characterization techniques such as TEM, APT and synchrotron XRD are used to gain insight into microstructural behavior and phase stability. The combined results inform alloy design strategies to tailor fundamental properties of γ particles to enhance their temporal stability and thereby retain the strengthening effect. APT offers unique insights into the 3D nanochemistry of phases in hierarchical microstructures with γ’ precipitates only ~100 nm in size and nanoscale γ particles (~8 nm). The results suggest that by phase targeted alloying, supersaturation and evolution of phase separation can be controlled to tune the properties of such materials. To create new materials strengthened by hierarchical micrsotructures, the phase stability of γ particles needs to be enhanced.卢毓华 纳克微束(北京)有限公司 高级应用工程师【个人简介】卢毓华,男,博士,就职于纳克微束(北京)有限公司,进行扫描电镜的研发应用及表征方法研究。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,方向为材料高通量表征方法的研究和应用,期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历。报告题目:纳克微束FE-1050系列电镜及其在材料表征中的应用【摘要】首先对纳克微束(北京)有限公司的基本概况展开报告,介绍了纳克微束这一品牌及公司的发展方向。随后重点引出纳克微束FE-1050系列国产旗舰电镜,围绕低电压下高分辨、兼容性强可扩展和操作智能易使用这三大特点对纳克微束FE-1050系列阐述,并展示了典型案例。最后以上市央企控股公司的担当和产品的稳定应用,体现安心稳定的服务质量。刘中然 浙江大学 助理研究员【个人简介】刘中然,浙江大学博士后,2015年本科毕业于浙江大学竺可桢学院、材料科学与工程学院,2021年博士毕业于浙江大学材料学专业。主要从事铁性材料的设计制备和微结构表征研究,针对铁性氧化物薄膜材料的微观机理,设计异质结构,开发原位观测、电荷探测等方法,研究铁电及多铁氧化物微结构变化与外场响应的耦合,调控薄膜中的铁电畴及畴壁。近5年发表SCI论文14篇,其中Nature第一作者1篇、Nature Communications共一作者1篇、Science 1篇、Advanced Materials 2篇;获批中国博士后科学基金第72批面上项目资助。报告题目:氧化物薄膜畴界器件的探索及研究【摘要】铁电、多铁等铁性材料,由于具有铁电、铁磁、压电、庞磁电阻等丰富可调的物理性质,在高性能存储领域展现了巨大潜力。结合异质结构与原位外场调控,带电畴壁等铁畴结构展现出了可被调控的导电性等物理特性,能够构筑新型量化晶胞级忆阻器,为高密度铁性存储器的设计提供了新的科学依据。王双宝 云南大学 副教授【个人简介】王双宝,博士,副教授,云南省“兴滇英才”支持计划-青年人才,硕士研究生导师。主要专长包括球差校正环境(原位)透射电子显微术及应用、轻质高强铝合金的微合金化、结构和性能调控、合金其催化剂表界面反应的原位电镜研究等。在Cell子刊CRPS、Acta Mater. 等核心期刊发表论文64篇 (第一/通讯作者31篇),他引1547次,H因子20,授权国家发明专利9件 (第一发明人7件)。报告题目:稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究【摘要】针对微合金化有效调控合金微观结构和性能的策略,设计开发了含稀土元素Sc的多组元轻质高强铝合金系统,研究了Sc对铝合金性能及析出强化的影响。以6000系Al-Mg-Si合金为例,研究结果表明:在时效硬化Al-Mg-Si(-Sc)合金中,B'相参与的β/β′相变,以及在硬化初期Sc时效动力学的加速。在无Sc合金中,随着时效时间的延长,峰值硬化β′′逐渐减少。B′相亚结构中Sc的存在有效地抑制了β′′/β′转变以及β′′和溶质团簇的横截面粗化,导致了峰值时效和过时效含Sc合金中以β′基针状物的主要析出组织。这最终导致在过时效含Sc合金中,针状物尺寸显著变长,析出物直径分布减小,热稳定性提高。唐帅 中山大学电子与信息工程学院 副教授【个人简介】唐帅,中山大学电子与信息工程学院副教授,光电材料与技术国家重点实验室—“微纳结构电子光子与器件”团队成员。分别于2012年和2017年在中山大学取得学士和博士学位。2018年4月-2022年5月任日本国立物质材料研究所博士后研究员。2022年6月加入中山大学。主要从事纳米结构场发射点电子源的制备与应用及基于原位TEM的纳米材料电学/场发射特性研究,近期开发的高亮度、低能散、超高稳定六硼化镧纳米锥场发射点电子源已在电子显微镜知名企业日本电子机器上取得应用验证。迄今发表36篇论文,其中以第一作者在Materials Today、Nano Research、Carbon等期刊发表论文17篇。申请国内外专利8项,其中2项已授权,另有1项申请中专利已获得相关企业使用许可预付费。多次在IVNC(国际真空纳电子会议)、中国电子学会真空电子学分会、中国电子显微学会等本研究领域国内外学术会议作邀请、口头及张贴报告,并获优秀报告奖和最佳张贴海报奖。2022年6月入选中山大学百人引进计划,兼任Nanomaterials期刊专题客座编辑,入选中国真空学会高级会员。报告题目:基于原位透射电镜的少层石墨烯场发射特性研究【摘要】石墨烯具有优异的导电、导热性能,原子级别的尖端以及二维结构的散热面积,有潜力应用在场发射器件中。但石墨烯的结构在高温、高电场下会发生变化,进而影响电子发射性能。我们实现了钨针尖衬底上单片直立少层石墨烯的可控生长,并基于原位TEM测试技术,揭示了焦耳热及强电场主导的少层石墨烯场发射过程的结构演化规律,厘清了实现场发射大电流的尖端单层及界面石墨层等关键结构因素及对应物理机制,获得了单个纳米材料最高级别的发射电流及电流密度,有效推进了石墨烯场发射器件的研究。会议联系会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会汪老师:13637966635,1437849457@qq.com会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 中国高性能纤维要做到“领跑”就必须主动创新——访东华大学材料科学与工程学院院长朱美芳教授
    p    span style=" font-family: 楷体,楷体_GB2312,SimKai " 2017年7月,“中国材料大会2017暨银川国际材料周”在宁夏国际会堂隆重召开。大会盛况空前,参会人员近5500人。作为大会组织委员会主任之一及“先进纤维与纳米复合材料”分会场的分会主席,朱美芳教授在大会报告及分会场均作了发言致辞。会议期间,仪器信息网编辑有幸就大会概况与朱美芳教授进行了简单交流,受益良多,在时间有限的情况下,会后以电话及邮件形式,请朱美芳教授就本次大会、先进纤维与纳米复合材料领域最新的发展动态、该领域涉及的分析仪器及表征手段、即将牵头成立纤维材料二级学会等进行了详细介绍与解读。 /span /p p style=" text-align: center" img style=" width: 300px height: 423px " src=" http://img1.17img.cn/17img/images/201708/insimg/dbaf8a26-f3e7-435d-8ff0-fb7e77ae815d.jpg" title=" " height=" 423" hspace=" 0" border=" 0" vspace=" 0" width=" 300" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312,SimKai " /span span style=" font-family: 宋体,SimSun " strong 东华大学材料科学与工程学院院长朱美芳教授 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 首次落地西北,带动地方经济;大众参与办会,激发青年学者责任感 /strong /span /p p   以“新材料,新技术,新发展”为主题的“中国材料大会2017暨银川国际材料周”(以下简称大会)在银川宁夏国际会堂盛大开幕。本次大会由中国材料研究学会主办,宁夏旅游投资集团有限公司承办。大会得到了中国科协、中国科学技术部、中国科学院、中国工程院、国家自然科学基金委员会,宁夏回族自治区科协、经信委、科技厅等部门的大力支持。大会盛况空前,是中国材料研究学会组织的历年来规模最大的一届会议。会议在线注册人数5100余人,实际参会人数近5500人,共收到4000余篇论文摘要。 /p p   大会落地银川市,是大会首次在我国西北地区举办,为地方经济发展注入活力和新的增长动力,对推广宁夏新材料、新技术、新工艺等“宁夏制造”具有重大意义。 /p p   中国材料研究学会本着开放包容的办会理念,吸引和鼓励国内外优秀的材料科技工作者参与办会,通过办会,培养出了一大批具有社会责任感、长期活跃于国内外高端学术交流的中青年学者,激发了青年学生的创造力和对材料研究的热忱与责任感。本届大会从材料前沿交流到产业对接互动,都是一次内容丰硕,时间紧凑,富有成效的大会! /p p   “中国材料大会2017”设置有37个分会、1个材料教育专业论坛和2个国际分论坛:“2017中日韩纳米功能材料研讨会”和“一带一路材料论坛”。大会主题主要涵盖了能源材料、环境材料、先进结构材料、功能材料、材料基础研究等材料领域。共呈现2200余场口头报告,其中930人为邀请报告。 /p p    span style=" color: rgb(255, 0, 0) " strong 纤维是老百姓未来“智能生活”的保障,中国高性能纤维要 “领跑”就必须主动创新 /strong /span /p p   提到纤维,人们首先想到的肯定是衣服、纺织品等。实际上,纤维是当今人类不可或缺的最重要的材料之一。从航天器、导弹、飞机、高铁、汽车等高精尖装备,到衣服、帽子、袜子、手套等日常生活物品无一离得开纤维。“ strong 全世界70%的纤维由中国产出,而全国70%的纤维由长三角地区产出。纤维是国家经济发展的基础材料,是老百姓未来‘智能生活’的保障 /strong 。”东华大学材料科学与工程学院院长朱美芳如是说。 /p p    strong 东华大学材料科学与工程学院源于1954年我国著名纤维科学家和教育家钱宝钧、方柏容先生创建的新中国第一个“化学纤维”专业 /strong ,历经化学纤维研究室、研究所及化学纤维系的建立和发展,于1994年成立,可谓为国内材料学院中的“老字号”。拥有我国首批博士学位授予点(1981年)、首批国家重点学科(1986年)、首个纤维材料领域国家重点实验室(1992年)。 /p p   学院依托纤维材料改性国家重点实验室等13个国家和省部级基地,坚持产学研用结合,在国防军工急需的三大高性能纤维材料,关乎民生的功能共聚酯、纳米复合功能纤维、大容量聚酯熔体直纺等通用纤维领域取得了系列标志性成果 在民用航空及汽车轻量化复合材料和光、电、热等能量转换功能材料领域已形成新的增长点。研究成果和专利转化效益惠及年产值达万亿的纤维材料行业,材料学科获得国家技术发明奖和国家科技进步奖16项、省部级科技奖项170余项,为我国跃升世界纤维生产第一大国并向世界强国迈进做出重大贡献。 /p p   中国的纤维产业从无到有、从小到大,现在到了从大到强的转变阶段。在功能性纤维方面,源于70%的产量和广阔的市场潜力,中国的实力比较强,质和量上处于“并跑”和“领跑”地位 在生物质纤维方面,与国外处于“齐头并进”初步发展阶段,而 strong 在高性能纤维方面,中国还处于“跟跑”和“并跑”阶段,将来要做到“领跑”就必须主动创新。 /strong 高性能纤维的研发能力如何,直接关系到国与国之间的竞争实力。从上世纪80年代起至今, strong 东华一代又一代的材料人围绕国家对高性能纤维与复合材料的迫切需求,海、陆、空全面出击,持续系统展开科研攻关 /strong 。功能性纤维方面,“行业急需依托大容量工程基础,促进常规产品优质化,提升产品附加值,实现通用纤维高品质多重功能化。”朱美芳认为。 /p p   目前,纤维新材料目前已远远超出传统化学纤维的范畴,纤维成分应由单一向复合、简单向多重构筑发展,纤维功能研究应由被动适应向主动创新设计直至智能化方向发展,同时加强基础研究,为产品研发注入原动力,支持原创关键技术开发,加大多学科的交叉与融合。因此我们分会的名称为“先进纤维与纳米复合材料”,这也在参加分会的老师所作报告中得到了体现,如复旦大学彭慧胜教授在可发电储电供电的新能源纤维上取得了一系列进展,我们预计从事这个领域研究的科研工作者还会继续快速增加,从而带动传统纤维行业转型升级同时其中也孕育着无穷的创新创业机会。 /p p    strong span style=" color: rgb(255, 0, 0) " 科研是不断攀登高峰的过程,仪器设备则是认识者和认识对象之间的纽带 /span /strong /p p   先进纤维与纳米复合材料领域是纤维材料改性国家重点实验室的研究内容之一,实验室建有仪器设备公共平台,拥有大精测试仪器48台(套)、工程试验线17条,实现24小时预约开放。为相关科学研究提供支撑,比如扫描电子显微镜、X-射线衍射仪、透射电镜、原子力显微镜、激光拉曼光谱仪、激光光散射仪、红外光谱仪等对纤维与复合材料微观结构的表征设备,以及热重分析仪、动态热机械分析仪、差示扫描量热仪、毛细管流变仪、电子万能材料试验机、单丝纱线强伸度仪等测试设备,另外,还开发了纤维声速仪、结晶动力学、小型湿法纺丝机、微型共混仪、微型注塑仪等自制设备。 /p p   科学研究是一个不断攀登高峰的过程,为了提高先进纤维与纳米复合材料的研究水平,需进一步加强低维材料和先进纤维开发、复合材料表界面、微观结构与性能分析表征等多方面的仪器设备建设,完善纤维生物材料表征及微纳器件制备超净平台建设等。一些新型仪器设备也逐渐成为未来需求,如:基质辅助激光解析电离飞行时间串联质谱联用仪、多功能光热诱导纳米红外显微镜系统、高温旋转流变仪、纳米压痕仪、超景深三维显微镜、微流变仪、3D生物材料打印机、介电常数测试仪以及模块化功能型纺丝设备系统等。 /p p   仪器设备,是为了实现科学认识目的而制造和使用的工具,它作为认识者和认识对象之间的纽带,在科学研究中是不可缺少的重要条件。仪器设备和科学研究两者相辅相成、密不可分,科学研究如果不依靠仪器设备提供的大量的客观材料,即使研究方法正确,也出不了好的成果,而仪器设备是观察现象的一种手段,只有在正确科学研究方向的指导下,才能对材料进行全面、客观、准确的认识,从而找出过程的本质和规律,对获得的结果做出正确的评价。 /p p    strong span style=" color: rgb(255, 0, 0) " 成立纤维材料二级学会,为纤维材料工作者提供学术交流的平台 /span /strong /p p   材料是科技的先导,纤维材料领域的科技革新正推动纤维产业的颠覆性发展,催生新一代纤维。具有绿色、智能、多功能及超高性能、超高性价比、超高附加值的纤维材料将引领未来发展方向 纤维材料应用领域超越传统纤维,成为先进制造业、智能与功能消费品、医疗与健康、环保与防护、现代建筑业与农业、新能源等领域的关键基础和核心材料,成为国家供给侧结构性改革的重要突破口。材料作为现代文明的三大支柱之一,发达国家竞相在新一代纤维产业发展上布局谋篇,美国革命性纤维发展注重以智能纤维研发与生产为核心,并在纤维材料应用领域拓展与军转民等方面进行全面部署 欧盟着力于纤维产品高质化、专业化、可持续发展及技术创新机制 日本注重以高性能纤维材料为核心的整个产业链的研发。我国的传统纤维产量虽然占世界第一,但在高技术纤维、新一代纤维方面的研发相对滞后,导致部分纤维及高技术领域的相关零部件被发达国家垄断,极大地减缓了我国在未来纤维材料领域的发展动力,限制了我国科技和经济的持续高速发展。在“十三五”期间,纤维新材料的发展趋势是通过纤维学科与生物、电子、纳米技术等相关学科的交叉和渗透,研制与信息技术、生命科学、环保技术、新能源相关,且低碳、环保的新纤维、新技术,以满足服装、家用、产业用等各领域的需求。这种发展趋势主要体现在以下几个方向:纤维性能向高性能化、智能化发展,纤维品种向生态化、高功能化及结构功能一体化方向发展,纤维技术向高速、高效、短流程、全自动、规模化、清洁化方向发展,纤维成分由单一向复合、简单向多重构筑方向发展,纤维尺度向纳米化发展,功能智能与产业用纤维由被动适应向主动创新设计方向发展,成纤聚合物合成和成形技术向生物、仿生技术等方向发展,纤维原料向绿色化方向发展。 /p p   纤维材料的发展为信息、能源、生物医用等高新技术提供关键性新材料,对我国整体技术水平的提高和整体实力的增强有着不可替代的作用。实现我国纤维材料产业向“大纤维”新材料的转型升级,将对我国能源、资源、环境、生态和国民经济相关领域的发展和科技进步产生重要影响,对国民经济的产业结构调整和升级,对国家的经济和国防安全以及我国人们生活质量的改善都具有重要的战略意义。纤维材料分会的成立将有助于提升我国在“大纤维”材料领域的基础研究与应用研究水平,有助于推动我国相关行业的快速发展。 /p p   中国材料研究学会是致力于推进材料科学与工程领域的研发与产业化的国家一级学会,纤维材料是新材料的一种,也是充满活力的基础研究和产业应用方向,纤维材料的发展也为其它材料的发展和应用提供了强有力的支撑。当今正是纤维材料发展的高潮阶段,成立纤维材料二级学会不仅能为广大纤维材料工作者建立联系纽带,提供学术交流的平台,促进我国纤维材料的发展 而且能契合国家“十三五”在新材料、新能源、新型光电多个领域的重点支持。目前纤维材料分会成立的前期准备工作已经就绪,已经将相关材料报送至中国材料研究学会,等待学会根据章程及相关程序审批。 /p p   span style=" color: rgb(255, 0, 0) " strong  第八届ICAFPM十月上海召开,“中日韩女科学家论坛”成亮点 /strong /span /p p   先进纤维与聚合物材料国际会议(ICAFPM)由东华大学纤维材料改性国家重点实验室发起举办,旨在探讨与先进纤维和聚合物材料相关的各个领域的最新研究和进展,开拓纤维和聚合物研究领域前沿。自2002年举办第一届以来,已成功举办七届。 /p p   第八届先进纤维与聚合物材料国际会议定于2017年10月8-10日在东华大学松江校区举办,会议由纤维材料改性国家重点实验室、纤维材料先进制造技术与科学创新引智基地、东华大学先进低维材料中心、东华大学材料科学与工程学院联合主办并承办,中国自然科学基金委、中国材料研究学会纤维材料分会(筹)、中国材料研究学会高分子材料与工程分会、中国女科技工作者协会、聚烯烃催化技术与高性能材料国家重点实验室协办。本次会议的主题是:下一代纤维:改变我们的生活(Next generation fibers:Changing our life)。并将围绕“新一代纤维”这一主题及相关子议题开展多项学术交流活动,其中包含学术会议、学术论文宣讲和墙展活动。此次分会主题包括A. 高性能纤维与复合材料、B. 纤维与纺织品中的化学与物理、C. 纳米技术在纤维和聚合物中的应用、D. 智能纤维、智能纺织品与可穿戴智能设备、E. 环保纤维与聚合物、F. 医用纤维与聚合物、G. 能源用纤维与聚合物、H. 天然纤维与仿生聚合物、I. 低维材料、J. 多功能与多组分纤维、K. 第八届中日韩女科学家论坛暨国际材料科技女性研讨会 。预计会议将有200余位来自美国、日本、德国、英国、法国、瑞士、印度、澳大利亚、瑞典、新加坡、葡萄牙等世界各国的知名学者参会,包括4名美国工程院院士、1名英国皇家工程院院士、1名欧洲科学与艺术学院院士、1名美国国家发明家科学院院士,以及亚洲聚合物协会主席、欧洲高分子联合会前任主席、日本纤维学会会长等。 /p p   中日韩女科学家论坛于2008年由韩国女科技团体联合会发起,中国女科技工作者协会、日本女工程师和科学家国际网络组织以及韩国女科技团体联合会共同签署了关于三国轮值举办该论坛的备忘录。论坛至今已举办了七届,每届由中日韩三方分别轮流主办。围绕科技女性的发展状况、女性在科技领域的领导力、如何平衡女性事业与家庭关系以及各国政府在重视和积极开发女性科技人力资源的政策举措等方面进行广泛交流,相互借鉴经验 同时也进一步加强了中日韩三国女科技工作者间的创新与合作。 /p p   在中国科协常委会女科技工作者专门委员会的支持下,第八届中日韩女科学家论坛暨国际材料科技女性研讨会作为2017年第八届ICAFPM第11个分会,将于10月7日召开。此次论坛由中国女科技工作者协会主办,东华大学纤维材料改性国家重点实验室、东华大学先进低维材料中心和东华大学材料科学与工程学院承办,主题为“科学中的女性:合作与创新”(Women in science: cooperation and innovation)。论坛分领导力、示范力、创新力三个分会,报告人有中日韩三方等知名女科学家和有关人员。届时,也将邀请出席2017年第八届ICAFPM其它分会有关代表到会参与讨论交流。 /p p style=" text-align: right " strong 采访编辑 /strong strong : /strong 杨厉哲 br/ /p p   strong  附:朱美芳简历 /strong /p p   朱美芳,女,1965年生,博士、教授、博士生导师,教育部长江学者特聘教授。现任东华大学材料科学与工程学院院长,纤维材料改性国家重点实验室主任,纤维材料先进制造技术与科学创新引智基地主任。是国家杰出青年科学基金、首届全国创新争先奖、中国青年科技奖、中国青年女科学家奖、国家级有突出贡献中青年专家、新世纪“百千万人才工程”国家级人选获得者。作为团队带头人入选教育部创新团队、科技部创新人才推进计划重点领域创新团队。主要研究方向包括:聚合物纤维及纳米复合功能材料、有机/无机纳米杂化材料的应用基础和关键技术研究。近年主持及完成国家自然科学基金重点项目、国家重点研发计划等项目30余项。在Advanced Materials、Chemical Communication、Macromolecules等国内外著名期刊发表论文260余篇,编写专著6部(章) 授权国家发明专利100余件,成果在多家企业得到推广应用。以第一完成人曾获国家科技进步二等奖、上海市科技进步一等奖等10余项科技奖励。现(曾)任教育部高等学校材料科学与工程教学指导委员会委员、高分子材料与工程专业教学指导分委员会副主任委员,科技部十五“863”高技术计划新材料领域纳米材料专项总体组专家成员,中国材料研究学会副理事长,中国纺织工程学会化纤专业委员会副主任委员,上海新材料协会副会长,中国化学会高分子学科委员会委员 Progress in Natural Science: Materials International、Journal of Fiber Bioengineering and informatics、《高分子学报》、《纺织学报》、《合成纤维》等期刊编委。组织国际国内会议20余次,100余次作国际国内会议大会报告、邀请报告或担任会议主席。 /p
  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
  • 万测受邀参加2022年中国(第八届)碳纤维及复合材料技术创新与应用发展论坛
    7月22日,主题为“创新驱动发展,材料助力‘碳中和’”的中国(第八届)碳纤维及复合材料技术创新与应用发展论坛在常州市顺利召开,近500位来自知名院校、科研单位和碳纤维企业的学术专家、企业代表共聚一堂,围绕碳纤维及复合材料的产业应用研讨创新发展之路,为促进碳纤维及复合材料产业发展建言献策。万测作为知名的碳纤维及复合材料力学性能检测方案供应商,受邀出席了此次行业盛会。 据悉,此次论坛邀请到多位行业专家和企业代表进行主题报告,内容包括“‘双碳’格局之下,碳纤维市场的前景和主要驱动力、新动向、新活力”、“‘碳中和’背景下,炭炭复合材料行业在新能源、航空航天方面的研究现状及发展趋势”、“高模量碳纤维产业化进展”等最新发展干货,现场学习气氛浓厚,讨论热烈。 近年来,碳纤维及复合材料以其优异的理化性能已成为目前世界首选的高性能材料。碳纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在汽车工业、轨道交通、机械、电子、建筑、化工、医疗、海洋开发、体育休闲等国民经济各个领域具有无可比拟的应用优势,世界各国均把发展高性能碳纤维产业放在极其重要的位置。 作为立足客户市场需求,深耕试验技术研发的国内试验机行业先锋企业,万测近年来也积极投入碳纤维及复合材料力学性能测试方案的研制工作,经过一段时间的全力研发和层层评审验证,我司在复合材料测试系统上取得了丰富的技术成果,可为碳纤维及复合材料的质量控制、研究应用和产品设计工作提供良好的数据支撑。此次受邀参加复合材料技术创新与应用发展论坛,万测也带来了丰富的碳纤维及复合材料的静态与动态力学测试整体解决方案,先进的产品技术和优秀的实践成果受到了与会嘉宾们的关注与肯定。 本次论坛为广大碳纤维及复合材料上下游产业链搭建了一个合作交流平台,汇报了前沿技术研究及创新技术应用等方面的新进展,促进了行业关键技术的融合与交流。通过本次活动,万测也了解到了碳纤维及复合材料行业的新发展及新工艺,这也为我司日后不断提升研发能力和开拓新领域带来了新思路。未来万测也会积极参加各种行业交流展览会,为中国复合材料技术的发展贡献自己的力量!
  • 赛默飞新型显微拉曼成像技术引领材料的高分辨快速分析
    ——拉曼显微成像光谱仪快速提供分子结构的研究级图像 2014年2月19日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于北京时间2月26日在上海发布新品新型显微拉曼成像光谱仪DXRxi。使用这款产品,将帮助科学家、工程师以及科研工作者加速在材料领域的相关应用研究,其覆盖范围涉及药物科学、生命科学、半导体制造以及地质学等。该新型显微拉曼成像光谱仪易于操作,任何人利用它都能获取出色的化学成像结果,而无需重新学习一门新的技术。 赛默飞DXRxi显微拉曼成像光谱仪的新型设计致力于快速准确显示分子结构、化学组份以及样品形貌等信息,为研究开发、材料缺陷和产品质控等应用带来高可信度。通过操作便捷的、以图像为中心的软件界面,用户可以快速采集丰富的光谱信息并创建某一特征分布的化学成像。 与其他拉曼成像技术不同,赛默飞DXRxi显微拉曼成像光谱仪采用实时图像反馈和以图像为中心的驱动方式,能够实现大面积区域的快速扫描,在数秒钟内就能提供详细的光谱信息。对于跨学科的研究团队来说,DXRxi显微拉曼成像光谱仪更能发挥其设计简便、易于操作的特点,有利于科研成果的快速产生。 赛默飞拉曼光谱产品经理Ryan Kershner说:“DXRxi显微拉曼成像光谱仪是一款能让科学家从一堆干草中找到一根针的仪器。该仪器功能强大、操作方便,所以不管是学生还是专业技术人员都能够轻松操作仪器,快速地采集数据。为不同领域的复杂问题寻找答案,覆盖从生物组织到碳纳米管的研究范围。” DXRxi显微拉曼成像光谱仪具有以下特点:采用新型以图象为中心的赛默飞OMNICxi 软件,实现可视化快速采集、直观精准的样品定位以及直观参数优化界面自动准直与校标功能将为用户节省大量的时间与精力快速实现样品化学信息的可视化成像,无需专业光谱专家解析超强的大面积区域快速扫描功能欲了解更多信息,请点击链接 www.thermoscientific.com/DXRxi 或 www.thermoscientific.com 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 有一种摄影比赛叫用电子显微镜拍材料
    一群文艺腔十足的工科生给我们展示了不一样的景浙江大学 吴杭隆 《守望》浙江大学 刘雯 《海的女儿》——胶原壳聚糖海绵状三维骨架  日前,浙大结束了一个特殊的摄影比赛。之所以特殊,一来是参赛人员都是工科生,二来是拍照所用的“相机”不是普通单反机,拍的也不是风景或人像,而是用电子显微镜等高科技手段拍摄材料微观世界。  这个世界是我们常人肉眼所看不见的,当然有人用电子显微镜去看也未必能见到。因为需要有想象力,也需要有一颗善于发现的心。  “我们理工科学生不仅有文化,也很文艺的嘛!”浙大材料科学与工程学院院长韩高荣说,他们是全国高校中率先举办材料微结构探索大赛的,至今已举办了6年。办这样的比赛,其实是想改变大家对理工科学生的印象,他们不是只会做研究的书呆子,其实也是挺有艺术气息和人文情怀的。“有些图是黑白的,不能很直观地看出来是什么,所以我们允许学生上色,并且给图片赋予新的含义。”  为此,很多作品都做成了中国画的样子,同学们还亲自作诗,衬托图画的意境。看上去,真的是一件件艺术作品。  最打动人心的特等奖作品  两只小鸡在草地上无忧无虑地嬉戏,它们的身后,是妈妈默默守望,担心它们会不会摔倒,会不会因为抢一条虫子而吵架,会不人有黄鼠狼出没,而两只小鸡全然不知远处的守望。  这是这次获得特等奖的作品《守望》。作者是浙大材料学院研究生吴杭隆。他说,孩子在长大的过程中,母亲都会在一旁或者远处默默守望。就算孩子长大了,母亲口头上说对我们有一百个放心,但在母亲眼中孩子永远是长不大的。就像王菲在《传奇》中唱的那句,“我一直在你身边从未走远”。  吴杭隆展示了电子显微镜下的原图,由于是黑白的,并没能像呈现的作品那样将寓意表达得那么明显。他说,他是在研究曲面单晶的生长机制时拍摄的。曲面上附有锐钛矿型氧化钛纳米颗粒,揭示了曲面晶体可能由非传统的定向团聚体相变得到。在得到科研上发现的同时,他还看到了浓浓的亲情。  “2月8日,春节前,我窝在实验里做实验,当时,看到这个图时,就不知不觉地想到了妈妈和哥哥。我和哥哥是双胞胎。小时候经常会打架,我们在院子里玩的时候,妈妈都会远远地望着我们,生怕我们打起来。”看到电子显微镜下的呈像时,吴杭隆就把图像拍下来给哥哥,并且得到了哥哥的认可。“而且我哥说,站在稍高位置的小鸡就是他。”  这位工科男还很较真地量了一下母鸡与小鸡之间的距离。“真的很巧。电镜中,一微米的距离等于实际距离200多公里,而这个距离正是我与哥哥所在的杭州离妈妈所在的老家的距离。顿时有一种感觉,我要回家了。”  这幅作品所表达的赤子之心,打动了在场所有的评委和观众。据了解,这幅作品参加全国电镜比赛也获了奖。
  • 中国材料显微镜网第三届“蔡司杯”有奖征文大赛公告(通知)
    随着我国材料学研究的不断进步与发展,材料显微镜正在得到广泛的应用与重视,作为材料显微镜领域最具权威的门户网站,中国材料显微镜网已经成功地举办了两届材料显微镜征文大赛,并取得了良好的反响与效果。为了继续助力我国材料学的科研与学术研讨,加强相关从业者的技术水平,并为广大学者提供一个相互交流的互动平台。网站决定于2013年3月11日正式开始启动&ldquo 第三届蔡司杯材料显微镜征文大赛&rdquo ,欢迎广大显微镜的使用者与科研工作者踊跃参赛,我们会为优秀作品的投稿者提供丰厚的奖品。诚挚期待您的加入! 一、参赛对象 科研工作者;各企事业单位显微镜相关从业人员;在校大学生、研究生以及材料学、金属热处理等相关领域的从业者及爱好者。 二、参赛要求 1. 参赛文章为参赛者原创 2. 投稿范畴为材料领域显微镜及扫描电镜相关的技术文章、论文、实验心得、使用维护心得、选型常识等(带有使用显微镜及扫描电镜拍摄的图片的文章优先入选) 3. 本次比赛只接受电子版的参赛文章,文件格式必须为.pdf或.doc 4. 投稿数量不限,多投稿者奖项及礼品的发放以参赛者所获的最高奖项为准;一篇作品只有一份礼品,文章有多个作者的礼品发放以投稿者为准。 5. 参赛文章可以为已经发表过的文章,但不得使用在其他大赛中曾获奖的作品参赛 6. 参赛文章要求格式标准、工整。 三、参赛方式 投稿者请先自行在中国材料显微镜网进行注册,然后将参赛作品发送至邮箱1759108479@qq.com或2641755448@qq.com,并以以下形式组织邮件标题:&ldquo 第三届蔡司杯征文大赛+真实姓名+中国材料显微镜网站注册名;邮件正文请写明:网站注册名、真实姓名、工作单位、手机号码、真实详细的地址与邮编、有效邮箱等信息&rdquo ,这些将作为您获奖后联系您及为您邮寄奖品的重要信息。 四、评选标准 1. 技术难度; 2. 实用性; 3. 显微镜图片质量; 4. 创新点; 5. 网络关注度。 五、日程安排 1. 投稿:2013年03月11日&mdash 2013年04月30日 2. 作品展示、评选:2013年04月30日&mdash 2013年05月28日 3. 网络评选平台开放:2013年05月08日&mdash 2013年05月28日 4. 公布评选结果:2013年05月30日 六、 活动奖项 本次大赛的奖品将采用奖励网站&ldquo 礼金&rdquo 积分的形式,您可以使用所获得的&ldquo 礼金&rdquo 积分到我们网站的积分商城换取您心仪的等值实物礼品。 一等奖 1名 1000礼金 + 荣誉证书 二等奖 5名 500礼金 + 荣誉证书 三等奖 20名 300礼金 + 荣誉证书 优秀奖 30名 100礼金+ 荣誉证书 网络人气奖 3名 100礼金+ 荣誉证书 所有参与本次大赛的投稿者均可获得30礼金+ 荣誉证书(与所获奖项不可兼得) 七、 主办方声明: 1. 解释权声明:本次大赛的一切解释权归主办方中国材料显微镜网所有,主办方有权根据具体情况对大赛规程进行调整,调整内容将第一时间在中国材料显微镜网网站论坛进行公布。如有疑问请发送邮件至1759108479@qq.com或致电400-7096-155进行咨询。 2. 免责声明:中国材料显微镜网提倡推崇原创作品评选,因此在比赛中因版权、著作权不明确而产生的法律纠纷等,由参赛者个人全权负责,中国材料显微镜网不承担任何责任。 3. 权利声明:所有参赛作品都将被视为授权大赛主办方无偿用于大赛及相关活动的宣传和推广。主办方有权取消违反大赛规则选手的参赛资格。 4. 本次征文大赛征集赞助商,有意向者请致电400-7096-155进行咨询。 中国材料显微镜网管理中心 2013年03月11日
  • 赛默飞世尔科技显微红外在复合材料方面的应用
    傅立叶变换显微红外光谱仪在各个化学相关领域,如材料、法医、化工、医学、电子等行业已得到越来越广泛的应用。尤在物证鉴定、失效分析、材料分析和研究、倒置工程等领域已成首选的分析工具之一,其作用不可替代。 刚刚上传了我公司沈怡博士的文章:傅立叶变换显微红外光谱仪Nicolet iN10TM 在复合材料分析上的应用,欢迎有兴趣的广大客户朋友浏览下载。
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 电子显微镜在制药行业的应用之包装材料篇
    电子显微镜助力药品检测包装材料的可靠性药包材是药品的重要组成部分,它伴随着药品生产、流通及使用全过程。药包材有可能与药品中的某些组分发生迁移、渗透、腐蚀、吸附等诸多情况,从而影响药品质量,甚至某些有害物质可能侵入药品,成为临床用药的隐患。而相容性实验正是为了考察药包材与药物之间是否发生这些现象,其目的在于保证药物的安全性、有效性和均一性。药品包装材料“意见稿”明确提出:“应根据药品的特性和临床使用情况选择能保证药品质量的包装材料和容器,提供包装材料的选择依据。吸入溶液/吸入混悬液/吸入用溶液常见的包装系统为半渗透性塑料包装(例如低密度聚乙烯安瓿),并采用保护性材料进行外包装(例如铝箔袋);吸入用粉末常见的包装形式为西林瓶+胶塞铝盖。对于仿制药,包材质量和性能原则上不得低于参比制剂,以保证药品质量与参比制剂一致。直接接触药品的包装材料和容器应符合国家药监局颁布的包材标准,或 USP、EP、JP 的要求。可参照《化学药品注射剂与塑料包装材料相容性研究技术指导原则(试行)》《化学药品注射剂与药用玻璃包装容器相容性研究技术指导原则(试行)》《化学药品与弹性体密封件相容性研究技术指导原则(试行)》等相关技术指导原则开展包装材料和容器的相容性研究。”安瓿瓶内壁脱片位置形貌上图显示了常用作药品包装的容器——安瓿瓶的脱片形貌。可以看出,图中的两个位置都出现了数十微米宽,数百微米长的脱片情况,在一般的研究中,往往采用加速实验对包装瓶进行强力腐蚀,以推测实际使用中的表现。较大的脱片如存在于注射针剂的玻璃瓶内,很有可能在对病人进行注射时,随着针管注入人体静脉血管,造成血管堵塞或损伤,甚至引发其他疾病。由于脱片研究中主要关注的是微米级以上的目标物直径,因此用常规的钨灯丝SEM即可满足大部分使用要求。由于玻璃制品的导电性较差,所以一般都要喷镀导电膜进行表面导电处理,以便拍摄到更清晰、无荷电的照片。日立的钨灯丝电镜一般都标配低真空功能,无需镀膜,即可拍摄理想分辨率的无荷电图片。安瓿瓶内壁腐蚀坑和铝包材的多层结构如上图中左图就是采用了不喷金直接拍照的方法拍得的玻璃瓶内壁腐蚀坑,清晰地反映了实验中溶液对玻璃瓶身地腐蚀严重程度。有些需要避光、防潮保存的药物,常用铝制包装材料,一般由PVC塑料和泡罩铝箔构成。泡罩铝箔的截面形貌如右图所示,离子研磨处理之后,在扫描电镜下看到并非只有一层铝箔,还有很多层高分子材料,每一层的厚度都清晰可见。而铝箔的厚度影响了透光性,如果太薄,虽然可以节省生产成本,但是暴露于更多光照,可能导致药物提早失效。铝箔外表面的高分子材料有效避免了铝箔的腐蚀,增强了耐磨、抗皱性能,起到了保护层的作用。在药品的研发过程中,日立扫描电镜助力研究人员解决研究过程中出现的难题,找到新的研究方向。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 显微学启迪新希望|BCEIA 2023电子显微学及材料科学分会在京开幕!
    仪器信息网讯 2023年9月6-8日,第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 在北京 中国国际展览中心(顺义馆)盛大召开。浓郁的学术氛围是BCEIA的一大特色,作为BCEIA的重要组成部分,学术报告会邀请来自海内外众多著名科学家,为与会者带来精彩的学术报告。学术报告会分为大会报告和分会报告,分会报告包括电子显微学与材料科学、质谱学、光谱学、色谱学、磁共振波谱学、电分析化学、生命科学中的分析技术、环境分析、化学计量与标准物质、标记免疫分析、微全分析等11个分会报告会。 会场掠影9月7日上午,电子显微学及材料学分会以“显微学启迪新希望”为主题,结合电子显微学理论研究、仪器技术进展,及最新应用前沿,围绕透射电镜方法学与应用进展、电子显微学在结构与功能材料学中的应用、电子显微学在能源与催化材料中的应用等专题方向,邀请到国内外电子显微学领域资深科学家及青年才俊,展示了各自近年来在电子显微学领域的新方法、新应用及仪器技术方面取得的突破与进展。北京工业大学/南方科技大学韩晓东教授 致辞韩晓东教授在致辞中回顾了1985年首届BCEIA举办以来,电子显微学分会与BCEIA的历史渊源和BCEIA的发展历程。接着,韩晓东总结了我国当前电子显微学的研究进展和发展水平。韩晓东表示,电子显微学在空间分辨率、能量分辨率等方面的研究取得了很大的进步,很多新技术突飞猛进,最具代表性的就是原位实验技术。在原位动态显微学发展的过程中,我国在一些方面的研究走在国际前沿。同时,国产电镜近年来取得了非常大的进步,尤其以扫描电镜、高端电镜的功能附件为主,部分功能、技术处于国际前沿。这些应用研究和仪器技术方面取得的喜人成果都有力推动着电子显微学与材料学科不断向前发展。首日开展的部分报告如下:报告人:西安交通大学解德刚教授报告题目:《用原位环境透射电镜技术研究铝和铁中氢对位错的影响》氢是理想的洁净能源,氢能是我国战略性新兴产业。氢脆和氢损伤是安全事故的罪魁祸首,是限制氢能推广的主要瓶颈之一。当长久以来,氢脆机理的研究都未成达成共识,主要是氢对单根位错、界面行为的影响规律不清楚,缺乏围观证据。解德刚教授所在团队通过多年的探索,建立了研究氢-缺陷相互作用问题的微纳尺度原位定量实验方法。原位电镜直接观察到氢促进铁的位错运动,为当前氢脆机制的争论提供了关键见解。报告人:中国科学院金属研究所陈春林研究员报告题目:《氮化铝晶格缺陷的结构与发光特性》当前半导体器件正向着高集成化、微小型化、多功能化、高功率化的方向发展,而宽禁带半导体具有耐高温、高压,高载流子饱和漂移速度以及优异的导热性等优势。氮化铝、氮化硼等宽禁带半导体材料具有重要的应用前景。针对相关材料,陈春林团队研究了AlN/Al2O3界面交互作用和AlN薄膜单根位错发光。报告人:南方科技大学林君浩副教授报告题目:《水氧敏感二维材料的原子结构表征与原位物性研究》二维材料表现出与常规三维块状晶体截然不同的优异物理化学特性。其中,表面形貌和晶格缺陷等结构特征极大地影响了材料的外在物性。然而,在单分子层厚度的影响下,大多数二维材料对空气中的氧气、水分子等非常敏感,极易氧化变质导致结构瓦解。为此,课题组搭建了一套特色的手套箱互联系统,从低维敏感样品的生长、转移、高分辨电镜表征到器件制造,该系统为整个实验过程提供了惰性氛围保护,保证了水氧敏感低维样品的晶格完整度和表面洁净度。报告人:北京大学陈清教授报告题目:《Characterizing the interlayer interaction of 2D materials by in situ SEM》利用原位电镜平台和纳米操纵装置平台,陈清课题组发展了几种研究二维材料层间、面外和与基底之间力学和力电性质的方法,并实验测量了二维材料的一些重要力学、力电参数。具体来讲,陈清团队开发了一种研究2D材料原子层间摩擦特性的通用方法,报道了2D材料单层、异质结和同质结的摩擦测试。非公度的 MoS2单层在超润滑状态下的摩擦系数为≈10-4,为MoS2单层的超润滑性提供了第一个实验证据,并为研究2D材料的摩擦特性开辟了新途径;提出了一种利用SEM对2D材料施加大面积轴应力并同时进行电测量的新方法,在0~亚GPa的较小压力范围内观察到c轴压阻率的非线性演变,利用有限元分析讨论了影响压痕的因素并定义了等效压痕半径;使用PTP(pull to peel)方法实现了纳米尺度上2D材料的弹性和黏附性的同时测量,揭示了2D材料的拉力剥离响应的弱非线性胡克关系,该关系可用于纳米级力传感器的设计或研究其他薄膜系统的力学特性;使用原位SEM研究扭转石墨烯层之间的电传输,当旋转角从0增加到30°,层间电阻率单调增加三个数量级,通过机械旋转实现了层间电阻率的大幅可调,意味着旋转石墨烯层在纳米机电系统中的潜在应用。报告人:清华大学姚文清研究员报告题目:《表面修饰增强光催化性能机制》人类的活动带来一系列生态问题,包括大气污染、水污染、土地沙漠化、人工合成物持久性污染等。环境污染控制已成为全球关注的焦点。而光催化是实现太阳能-化学能转化的重要途径,关键问题是如何提高光催化材料的光能利用效率。姚文清团队通过调控纳米结构和能带结构,提高了光生电荷分离迁移效率,增强降解污染物降解活性和提高可见光利用率。相关研究表明,晶胞内偶极增强和晶胞间隙掺杂提升内建电场,促进了光生电荷迁移,增强了降解活性。报告人:中国科学院生物物理研究所章新政研究员报告题目:《Methodology developments on in-situ 3D reconstruction of protein structure by cryo-EM》报告人:北京大学高宁教授报告题目:《Structural insights into the organization of membrane skeleton in red blood cells》报告人:中国科学院物理研究所禹日成研究员报告题目:《TEM studies on Functional Materials》报告人:北京工业大学王立华教授报告题目:《In situ atomic-scale deformation mechanism of metallic materials》报告人:清华大学于荣教授报告题目:《Atomic-resolution magnetic imaging》报告人:武汉大学王建波教授报告题目:《纳米材料微结构演变原子尺度电子显微学研究》报告人:北京工业大学王金淑教授报告题目:《难熔金属钨基功能材料结构调控及性能》报告人:西北工业大学李炫华教授报告题目:《全解水光催化材料与多功能器件》报告人:浙江大学王江伟教授报告题目:《体心立方金属的反常孪生生行为》报告人:中国科学院生物物理研究所孙飞研究员报告题目:《生物医学电镜自主研制》报告人:百实创(北京)科技有限公司蔡吉祥 报告题目:《原子尺度多场耦合透射电镜原位技术发展和应用》报告人:GATAN中国应用科学家陆畅报告题目:《原位电镜表征方案》以上仅摘取部分报告。颁发最佳POSTER奖合影留念分会首日报告结束后,会议颁发了最佳POSTER奖。之后与会嘉宾合影留念。
  • CSTM发布《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准
    近日,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM 00653—2022《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准,并将于2022年8月27日起正式实施。该团体标准规定了纤维增强聚合物基复合材料超低温力学性能试验的试验原理、试验设备、试样、试验步骤、试验结果和试验报告;适用于连续纤维增强聚合物基复合材料在-183 ℃~-269 ℃超低温下进行拉伸、面内压缩、弯曲和剪切等力学性能试验,超出上述温度范围及树脂浇铸体和塑料的超低温力学性能试验可参照使用。该标准起草人:渠成兵、肖红梅、黄传军、刘玉、付绍云、刘德博、张健、左小彪、史汉桥、李元庆、矫维成、杨帆、蔡浩鹏、张红菊、陈超。起草单位:中国科学院理化技术研究所、北京玻璃钢研究设计院有限公司、北京宇航系统工程研究所、航天材料及工艺研究所、重庆大学、哈尔滨工业大学、武汉理工大学、国标(北京)检验认证有限公司、山东省标准化研究院。标准文本:标准下载链接:https://www.instrument.com.cn/download/shtml/1091668.shtml
  • 上海交大引进LEICA DM2500材料显微镜
    上海交大汽车工程研究院引进LEICA DM2500材料显微镜   近日,上海交通大学汽车工程研究院从上海江文信息技术有限公司引进了德国LEICA公司的DM2500M研究级材料显微镜和S6立体显微镜。徕卡DM2500M是真正的高性能金相显微镜- 可为您提供水晶般晶莹剔透的高质量图像,满足您对材料研究的任何需求 .   上海交通大学汽车工程研究院成立于2006年4月8日上海交通大学110周年华诞,是瞄准国际汽车科技前沿,在政府、企业的支持下,整合和优化汽车工程的相关学科和研究方向,组建的具有上海交大特色的汽车学科大平台。   汽车工程研究院拥有一支事业心强、富于创新精神的科研团队和10000m2的汽车实验楼,下设四个研究中心:汽车车身技术中心、汽车底盘与控制技术中心、汽车发动机技术中心、汽车电子技术中心。汽车工程研究院与智能车辆技术、车用空调技术、知识工程、快速成型与制造等研究所联合承担课题。“官产学研”合作建立的研究平台有:   上海市数字化汽车车身工程重点实验室   美国通用汽车公司车身制造技术上海交大卫星实验室   上海交大—宝钢汽车板使用技术联合实验室   GM EDS SUN—上海交大PACE中心   上海交大—飞思卡尔汽车电子联合实验室   上海交大—NEC汽车电子联合实验室   上海交大-上海汽车集团车用发动机工程中心   面向快速发展的我国汽车工业的需要,围绕上海交大传统优势和新兴学科,通过官产学研合作,汽车工程研究院将重点开展汽车数字化工程、汽车轻量化、先进底盘、汽车发动机、 混合动力、燃料电池、汽车电子等核心技术的研究与开发,形成特色实验平台,为汽车工业发展提供有力支撑。   汽车车身技术中心   汽车车身技术中心致力于汽车车身的设计与制造技术研发,拥有一支富有创新精神的科研团队,包括8名教授,8名副教授,5名讲师,5名工程师和在校研究生130余人,其中博士生超过60人。主要研究方向有:车身设计与结构分析、车身轻量化开发、薄板成形技术、薄板焊接技术、车身制造质量控制和微制造技术等。车身中心拥有的主要设备有:轿车整车三坐标测量系统、变压边力压机、液压胀形实验台、伺服焊枪点焊实验系统、液压伺服疲劳实验机、微铣削实验台、X射线衍射残余应力分析仪等,以及UG NX、Nastran、DYNA-Form、ADAMS、Marc、HyperWorks等CAD/CAE/CAM工程软件100多套。   汽车底盘与控制技术中心   汽车底盘与控制技术中心拥有教授4位、副教授5位、讲师2位,博士生和硕士生62名。主要研究方向有:车辆动力学与控制、先进汽车传动与控制技术、汽车NVH控制匹配与优化、汽车主动安全与舒适技术、汽车动态性能测试与试验技术。中心拥有的主要设备有:传动试验台、底盘测功机、半消声室、ANSYS有限元分析软件、ADAMS多体动力学软件、dSPACE控制系统开发平台等。   汽车发动机技术中心   汽车发动机技术中心主要从事汽车发动机的先进技术研究和开发工作。现有教授和博士生导师2人,副教授和高级工程师3人,工程师3人,数十名博士生和硕士生。主要研究方向有:节能环保发动机、先进发动机设计与制造技术、发动机虚拟设计和虚拟试验技术、发动机工程化开发、发动机流动/传热/燃烧/振动噪声分析、车用发动机机增压技术等。中心拥有配备电涡流测功机和电力测功机发动机台架6套、AVL、Ricardo全套发动机模拟分析软件。   汽车电子技术中心   汽车电子技术中心教学、科研并重,拥有教授3名,副教授5名,讲师和工程师10名,博士生和硕士生50多人。主要研究方向:电动汽车及其电控系统、 混合动力汽车及其电控系统、汽车发动机电控系统、车载总线、车载控制器ECU关键技术、车载信息与主动安全控制系统等。主要设备有:EFS喷油测试系统,基于VectorCAN的ECU标定监测系统,TargetLink自动代码生成开发工具,硬件在环仿真系统,混和动力前向仿真平台等。   院 长:许敏   教授 E-mail:mxu@sjtu.edu.cn   电话:021-34206670   常务副院长:陈关龙   教授 E-mail:glchen@sjtu.edu.cn   电话:021-34206068
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制