当前位置: 仪器信息网 > 行业主题 > >

材料表征

仪器信息网材料表征专题为您整合材料表征相关的最新文章,在材料表征专题,您不仅可以免费浏览材料表征的资讯, 同时您还可以浏览材料表征的相关资料、解决方案,参与社区材料表征话题讨论。

材料表征相关的资讯

  • 先进材料表征方法
    先进材料表征方法利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式 。
  • “材料表征与检测技术”主题约稿函
    材料是社会进步的重要物质条件,材料的创新不仅是发展各种颠覆性技术的核心,更是国家科技发展水平的重要体现。而在材料的研究过程中,设计和制备的每一个阶段都需要应用不同的表征与检测方法去了解其多样化结构、评价其特殊性能及物理化学性质,从而为生产工艺的改进提供科学依据,满足使用的要求。可以说,材料的研究进展极大地依赖材料表征与检测技术的发展水平。当前,材料的表征与检测技术多元,涉及的仪器和设备多样,常见的如成分分析(质谱、色谱);结构与形貌(扫描电镜、透射电镜);粒度/表界面(粒度仪、比表面分析仪);表面分析(X射线光电子能谱、俄歇电子能谱);物相分析(X射线衍射、红外);热性能(热重、差热);机械性能(拉力试验机、疲劳试验机)、无损检测(X射线成像、超声成像);几何测量(三维扫描、影像测量)等等。此外,随着新型材料的研究深入,材料表征与检测技术的应用范围愈广,新的表征与检测手段也层出不穷。为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿。相关稿件将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们投稿。一、主办单位:仪器信息网二、专家约稿主题聚焦材料表征与检测仪器或技术,可选择以下主题(但不限于)其中之一:1、仪器专家(1)某类仪器或技术的研究进展(包括国内外研究现状、存在的问题、发展趋势等);(2)某类在研仪器的最新研究成果(包括项目概述、结构和功能、取得成果等);(3)某类仪器或技术的相关标准/法规概况及解读;(4)某类仪器的操作技术要点、数据分析技巧;(5)某类仪器国产与进口的差别、亟待解决的问题、未来发展的建议;2、应用专家(1)基于某类仪器取得的最新研究成果(研究背景、研究过程、取得成果等) (2)其它相关经验之谈。参考样文及链接:【研究成果】借助电镜/光谱之单原子催化最新成果【技术要点】金属材料的微观结构分析——用合适的样品制备获得最佳结果【技术经验】安徽大学林中清谈扫描电镜系列约稿【技术经验】张承青老师谈电镜实验室环境系列约稿【综述】超微量紫外可见分光光度计仪器及应用现状分析三、厂商约稿提纲1、请问贵司在材料表征与检测领域主要推出的仪器产品是什么?具有什么技术优势?2、请问该类仪器产品国内外发展现状如何?3、当前,国内用户是否对此类仪器提出了更高的技术要求(可举例说明)?贵司对此是否有相关应对之策?4、贵司现下比较关注的细分材料领域有哪些,是否会推出相关的仪器产品或解决方案?可以为用户解决什么科研难题?5、请展望材料领域市场前景,预测材料表征与检测技术发展方向。此外,厂商还可聚焦【面向某类仪器,用户在日常操作中需要注意的技术要点,以及相关数据分析技巧】主题,撰写成文。参考样文及链接:力试总经理王斌谈国产力学性能试验设备的挑战与机遇日立工程师谈手机镜头等光学元件如何测?紫外分光光度法应用详解安捷伦原子光谱应用专家解析锂电材料元素分析难点真理光学董事长张福根谈谈国内外激光粒度仪技术现状及行业亟需解决的问题QD中国销售总监苗雁鸣博士谈热电材料的测试需求四、稿件要求1、文章为原创作品,尚未公开发表;2、观点明确,数据可靠,文字准确简练,中心思想积极向上;3、正文不少于1500字符,图片或照片务必清晰;4、请在稿件末尾注明供稿者姓名、单位、个人简介。五、回稿邮箱:gaolj@instrument.com.cn六、活动时间:2022年6月-8月仪器信息网2022年6月8日
  • 大科学装置助力材料高通量表征
    仪器信息网讯 2014年10月20日,材料基因组计划&mdash 高通量表征报告会在北京国际会议中心举行。与会的数位科学家介绍了材料基因组计划,以及散裂中子源和同步辐射光源等大科学装置在材料高通量表征中的应用及其在我国的建设情况。 会议现场 北京科技大学刘国权教授   材料基因组计划(又名Materials Genome Initiative),简称MGI,最早在2011年由美国政府提出。北京科技大学刘国权教授介绍说:&ldquo 今年5月,王崇愚院士、南策文院士等数十名专家组成的咨询专家组撰写了《材料基因组计划与高端制造业先进材料咨询建议报告》。另外,中国工程院撰写了《材料科学系统工程发展战略研究》,堪称中国版的材料基因组计划咨询报告。&rdquo 中国科学院高能物理研究所董宇辉研究员   中国科学院高能物理研究所董宇辉研究员介绍说:&ldquo 以往材料的研发,由于缺乏足够的参考数据,更多的是采用&ldquo 试错法&rdquo 。不断的试验各种化学配比、各种制备条件,检验制备的材料性能如何,然后考察这些材料在服役过程中的性能。之所以采取这种方式来探索新型材料,主要是因为我们对上述决定材料性能的环节了解的太少,而且没有系统的认识,只好根据经验来摸索,凭借努力和运气来发现合适的新材料,这无疑得花费很高的时间和成本。&rdquo   材料基因组的核心目标是将新材料的研发周期缩短,降低成本,因此需要高通量计算、高通量合成与快速表征以及数据信息库三部分之间的有效结合,其中高通量表征在材料基因组计划的重要部分。同步辐射光源和中子源由于其自身的特点和优势,无疑在材料的高通量表征中发挥举足轻重的作用。 中国科学技术大学国家同步辐射实验室副主任高琛教授   中国科学技术大学国家同步辐射实验室副主任高琛教授介绍说:&ldquo 同步辐射光源具有高亮度,特别是高亮度的X射线能够给出精确的原子结构信息 同步辐射具有从红外到硬X射线的宽能谱,使得探测原子、电子、声子多种结构都有可能 同步辐射具有很好的准直性,可以获得纳米、微米、毫米各种尺寸的光斑,因而使得探测埃-纳米-微米,直到毫米级的多尺度成为可能。同步辐射光源的这些特点能为实现材料样品的高通量快速检测提供了条件。&rdquo   据介绍,目前,我国在北京、上海和合肥等地建有同步辐射光源装置。其中上海同步辐射光源装置首批7条光束线站已经对用户开放,其中6条线站可用于材料研究和表征。在未来线站工程规划中,微束白光劳厄衍射等光束线将能够进一步提升高通量材料芯片的表征能力。 中科院能量转换材料重点实验室主任陆亚林教授   中科院能量转换材料重点实验室主任陆亚林教授介绍了合肥同步辐射光源装置的建设情况。他说:&ldquo 合肥的同步辐射光源装置始建于1984年,总投资6400万,建有5条光束线和实验站 1998-2004年,投资11800万,用于提高光源亮度和运行可靠性,并增建8条光束线和8个实验站 2012-2014年,再次投资18900万,增加安装波荡器的直线节,降低束流发射度,大幅度提高亮度,新建3台波荡器和10个光束线前端。&rdquo   此外,董宇辉介绍说,中科院还将计划在北京周边建设高能同步辐射光源,材料科学研究是该光源的首要目标之一,特别是高通量、原位实时的实验技术,将为材料基因组的高通量、多尺度分析提供重要技术支撑。 中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员   中子不带电,穿透性强,有磁矩。因此,中子散射具有许多独一无二的特点,成为探测研究材料的微观结构与动力学的强有力工具之一,与同步辐射互为补充。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员介绍说:&ldquo 散裂中子源是中子散射研究和应用的主要平台,具有脉冲中子通量高,中子波段宽,及脉冲时间结构。这些特点为高通量、高分辨率、复合体系的微观结构和动态测量(特别是在固态量子材料、生物软物质材料和工程结构材料等领域)带来新的契机。&rdquo   王芳卫介绍说,我国于2011年10月在广东省东莞市开始建设散裂中子源。中国散裂中子源(CSNS,China Spallation Neutron Source)是发展中国家拥有的第一台散裂中子源,目前关键设备设计均已完成,预计2018年3月完成实验验收并对用户开放。   CSNS一期设计的束流功率为100kW,脉冲中子通量将大于2*105/(cm2/s),进入世界四大散裂中子源行列,将来升级到500kW后中子通量将提高到~1016/(cm2/s)。   CSNS设计拥有3个中子慢化器,能产生4种不同脉冲特性的中子束流,提供20条束道用于中子散射研究。不过由于项目建设经费的限制,一期工程仅建有3台谱仪,严重制约CSNS的应用范围。CSNS科技委员会和461次香山会议的专家都呼吁加紧规划和申请剩余束道的谱仪建设。因此特申请在国家&ldquo 十三五&rdquo 计划期间,增资建设其余17台特色中子散射谱仪,使CSNS高效、全面地服务于我国科学技术前沿研究。
  • 岛津材料化学研究表征技术研讨会成功举办
    2023年12月22日,岛津材料化学研究表征技术研讨会在湖南大学成功举办,会议邀请了各大高校专家老师参与了此次会议。会议现场湖南大学化工学院书记王双印教授首先致辞,他对参会的各位嘉宾表示了欢迎,岛津公司和湖南大学化学化工学院建有合作实验室,和电催化与电合成实验室亦有很多的互动交流沟通,之前,我们合作有在这举办电催化相关研究的技术交流会,今天我们在这就材料化学研究表征进行技术交流,报告专家会分享材料研究中的表征技术及仪器使用,希望能对各位嘉宾的科研有所助力,也预祝本次会议能圆满成功。湖南大学化工学院书记王双印教授中南大学粉末冶金国家重点实验室沈茹娟副研究员做了题为《试验机在材料分析和矿物分析中的解决方案》的发表。报告分享了:电子万能试验机基础介绍和应用实例、扫描电镜中的原位力学测试系统、力学性能微观测试。中南大学粉末冶金国家重点实验室沈茹娟副研究员岛津分析计测事业部营业部售前支持团队王文龙先生做了题为《X射线光电子能谱 (XPS) 在材料研究中的应用进展》的分享。报告分享了:XPS作为一种表面成分及化学状态分析的表征手段,可应用于研究表面反应、薄膜及涂层成分和结构,在材料科学研究中越来越受到大家的重视。王文龙先生在报告中介绍了XPS的原理、基本功能及在材料科学中的应用进展,包括XPS(准)原位测试、成像XPS、角分辨XPS及XPS深度剖析等。岛津分析计测事业部营业部售前支持团队王文龙先生岛津分析计测事业部市场部 石欲容女士岛津分析计测事业部市场部石欲容女士做了题为《岛津在材料研究中的典型解决方案及应用》的分享。报告分享了:岛津在材料研究中的整体解决方案,在材料研究中化合物、金属元素定性定量用到的有机、无机测定分析仪器,结构性能表征中XPS、EPMA、SPM、UV、SALD、试验机等分析仪器;在典型应用中重点介绍了EPMA标配的波谱测定功能在定性和面分析能力上比能谱更优异的应用,同时介绍了岛津的典型客户使用带扫描的试验机在氧化物弥散强化钢板高温蠕变性能的影响中的应用,以及岛津粒度仪的应用及特点。本文内容非商业广告,仅供专业人士参考。
  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 浅谈纳米材料的表征与测试方法
    p style=" text-align: justify text-indent: 2em " 纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。 /p p style=" text-align: justify text-indent: 2em " strong 1 纳米材料的表征 /strong /p p style=" text-align: justify text-indent: 2em " 纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 纳米材料的表征 /span /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title=" 纳.png" alt=" 纳.png" / /strong /p p style=" text-align: justify text-indent: 2em " strong 2 纳米材料的测试技术 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 光子相关光谱法(photo correlation spectroscopy,PCS) /p p style=" text-align: justify text-indent: 2em " PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。 /p p style=" text-align: justify text-indent: 2em " 2.2 X 射线衍射法(X-ray diffraction,XRD) /p p style=" text-align: justify text-indent: 2em " X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。 /p p style=" text-align: justify text-indent: 2em " 2.3 X 射线小角散射法(small angle X-ray scattering,SAXS) /p p style=" text-align: justify text-indent: 2em " SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。 /p p style=" text-align: justify text-indent: 2em " 2.4 电子显微镜法(electron microscopy) /p p style=" text-align: justify text-indent: 2em " 电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。 /p p style=" text-align: justify text-indent: 2em " SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。 /p p style=" text-align: justify text-indent: 2em " TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。 /p p style=" text-align: justify text-indent: 2em " 由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。 /p p style=" text-align: justify text-indent: 2em " 2.5 扫描探针显微镜法(scanning probe microscopy,SPM) /p p style=" text-align: justify text-indent: 2em " SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。 /p p style=" text-align: justify text-indent: 2em " 近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。 /p p style=" text-align: justify text-indent: 2em " 2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS) /p p style=" text-align: justify text-indent: 2em " XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。 /p p style=" text-align: justify text-indent: 2em " 2.7 俄歇电子能谱法(aguer electron spectroscopy,AES) /p p style=" text-align: justify text-indent: 2em " AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。 /p p style=" text-align: justify text-indent: 2em " 2.8 其他方法 /p p style=" text-align: justify text-indent: 2em " 除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " 纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于 span style=" color: rgb(255, 0, 0) " 2019年12月18日 /span 组织举办 strong 第二届“纳米表征与检测技术”主题网络研讨会 /strong ( a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 免费报名中" i span style=" color: rgb(255, 0, 0) " 免费报名中 /span /i i span style=" color: rgb(255, 0, 0) " /span /i /a ),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" / /a /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 报名链接:第二届“纳米表征与检测技术”主题网络研讨会" strong span style=" color: rgb(255, 0, 0) " 报名链接 /span /strong : i strong span style=" color: rgb(112, 48, 160) " 第二届“纳米表征与检测技术”主题网络研讨会 /span /strong /i /a /p p style=" text-align: center " strong 扫一扫,参与报名 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title=" 报名.PNG" alt=" 报名.PNG" / /p p style=" text-align: center " strong 扫一扫,进入纳米表征与检测技术群 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title=" 群.PNG" alt=" 群.PNG" / /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " 文章摘自: /i /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " span style=" font-family: " microsoft=" " font-size:=" " background-color:=" " 谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21. /span /i /strong /p
  • 六种表面分析技术与材料表征方法简介
    利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式。
  • 新材料表征技术研究专题研讨会在京召开
    仪器信息网讯 2011年11月1日,大昌华嘉商业(中国)有限公司(以下简称:大昌华嘉)与清华大学化学系徐柏庆教授课题组联合举办的新材料表征技术研究专题研讨会在清华大学化学馆301报告厅召开;30余位业内的专家学者出席了会议,仪器信息网作为特邀媒体亦参会。 会议现场   本次会议分为上下两场,主题分别为“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。 大昌华嘉公司科技事业部产品经理严秀英女士与樊润先生分别主持会议   大昌华嘉是一家总部位于瑞士的全球性企业,2009年收益总额高达86亿瑞士法郎,在亚太、欧洲和美洲地区的35个国家有560个营业网点,自2002年至今,大昌华嘉在全球已拥有22000名专业员工。其中,大昌华嘉科学仪器部分为市场、销售、维修及应用4个部门,其仪器设备产品主要应用领域包括材料科学、物理性质、化学反应、化学分析和食品分析等。   此外,大昌华嘉目前在中国已有49名员工,并设立了11个办事处,拥有超过20000名中国客户;同时大昌华嘉为众多的中国客户专门在上海建立了应用开发实验室,还积极参与或组织各种相关的会议展览、用户培训等活动。 美国麦奇克有限公司副总裁 Mr. Paul Cloake   Mr. Paul Cloake首先介绍到,自Leeds & Northrup研究所成功推出第一台商用激光粒度分析仪(Microtrac Model 7991)到现在,麦奇克几经坎坷,但是公司一直致力于颗粒表征方面的科技创新和仪器开发。2000年,Microtrac正式成立Microtrac Inc.;2003年,公司隆重推出Microtrac S3500系列激光粒分析仪;2004年推出全新设计的干粉递送系统Turbotrac;2005年,Microtrac S3500系列仪器全面升级;2007年,公司在仪器中引进Zetatrac和蓝波技术等。   随后,Mr.Paul Cloake主要谈到了激光散射技术的原理和最新的技术进展,并特别提到了采用三激光技术的激光粒分析仪S3500、S3500SI及其相应的图像分析软件。S3500系列激光粒分析仪采用固定位置的三激光固体光源设计及“Bluewave” 技术,配合双接受透镜,可以实时大角度的接受颗粒的衍射/散射光信号(0-165度),信号稳定,重复性好。在S3500的基础上,2011年麦奇克公司推出了S3500SI激光粒度粒形分析仪,实现了一台仪器具有两种技术(静态激光衍射法和动态图像分析法)能同时测量12种粒径和14种粒形的参数。   最后,Mr.Paul Cloake还讲到,麦奇克公司凭借其在激光衍射/散射技术和颗粒表征方面的独到见解,开发了最新一代Nanotrac Wave 纳米粒度及Zeta电位分析仪。该款仪器采用先进的“Y”型光纤探针光路设计和先进的动态光背散射技术,融纳米颗粒的力度分布和Zeta电位测量于一体,操作简单,测量迅速,结果准确可靠,重现性好。 Mr. Paul Cloake 给大家介绍仪器的操作及维护技巧   研讨会下半场,日本Gifu大学的Yoshihiro SUGI教授和日本拜尔公司的Keita Tsuji博士分别给参会人员作了有关介孔分子筛的合成、表征和催化及吸附技术最新进展等方面的精彩报告。 日本Gifu大学 Yoshihiro SUGI 教授   Yoshihiro SUGI教授从微孔、介孔材料谈起,介绍了不同材料的划分区域及其相关的应用情况,并向大家展示了不同种类分子筛的孔径大小和结构模型。随后介绍了以CTMABr和TEAOH为模板合成具有β沸石结构单元的介孔硅铝分子筛的过程,并对所合成的材料进行了X射线衍射(XRD)、核磁(NMR)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等多方面的性能表征,结果表明,所合成的材料具有很好的耐热性及稳定的机械加工性能等优良的特性。最后Yoshihiro SUGI教授通过维他命E的合成形象说明了介孔材料在催化方面所表现出的高活性和高选择性。 日本拜尔有限公司 Keita Tsuji 博士   日本拜尔成立于1988年,是一家研究生产容量法/重量法气体吸附分析仪的专业制造厂商。其产品主要包括比表面和孔隙分析仪、化学吸附仪、金属分散度分析仪等一系列高品质的仪器。   Keita Tsuji博士结合日本拜尔多款表面吸附产品,在报告中介绍了表面吸附技术的最新进展。例如,日本拜尔BELSORP-max是一款高性能容量法气体吸附仪,可以实现原位脱气功能,在极宽的压力范围内对被测多孔材料进行吸附/脱附等温线分析。同时,针对近年来低温吸附要求越来越多的情况,日本拜尔开发的BELCryo低温控制系统,配合BELSORP系列吸附仪器的使用,可以将相关的应用领域延伸至极低的温度范围,为吸附表征打开了一扇通往低温方向的大门。   此外,Keita Tsuji博士重点讲到,日本拜尔吸附仪产品与X射线衍射技术(XRD)相结合可实现结构和数据两方面信息的同时检测;还有如果BELCAT 系列程序升温化学吸附仪选配CATCryo低温控制装置,可以增加低温化学吸附功能,控温范围能从-100℃到1100℃。 与会代表与Keita Tsuji 博士沟通交流
  • 提升教学科研水平 | 必备材料表征仪器选型指南
    日前,在国务院印发的《推动大规模设备更新和消费品以旧换新行动方案》通知中,教育科研的设备更新置换再次被提及。为进一步提高高校、研究院所的教学科研水平,马尔文帕纳科汇总涵盖结构、物理、化学等分析技术的高端材料表征仪器设备,为科研工作者设备更新换代的选型工作,提供技术支持和测样服务。
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments.Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°.heng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:
  • 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!
    p style=" text-align: justify text-indent: 2em " 在听课路上,我们总是不停地重复后悔。小时候享受义务教育,我们嫌老师一遍遍的念经,上大学找不到人答疑时,开始后悔以前给中学老师起的“唐僧”绰号。走上社会后,才发现原来听课竟然变成了奢侈品,动辄成千上万的成本,只能能换来寥寥数节的生拉硬凑,于是又后悔起大学课堂上打瞌睡的自己。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/201909/uepic/ca38feef-0f3a-42e4-afaa-f8d7397f05b6.jpg" title=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!.jpg" alt=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 后悔,后悔错过,后悔不珍惜,现在我们终于明白不花钱的才是最贵的,但已付出了时间的筹码。不过,幸好我们学会了珍惜,而这次由仪器信息网组织的 span style=" color: rgb(0, 176, 240) " strong 材料表征与评价 /strong /span “公益学堂”,或许就是你最好的救赎! /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/60c8f277-91d7-4b27-8b71-cd48f53a8dd0.jpg" title=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!1.jpg" alt=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!1.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" background-color: rgb(255, 255, 255) " & #8230 & #8230 /span br/ /p p style=" text-align: justify text-indent: 2em " 从高楼大厦到笔尖书钉,从锅碗瓢盆到精密器械,从纸张书籍到集成芯片& #8230 & #8230 人类社会的一切创造发明,都需以材料为基才能实现。可以说,人类学习如何运用、改变、创造材料的历史,就是人类文明发展的历史。现如今随着科学技术日益向着精细化、尖端化、高效能、产业化等方向深入,对作为根基的材料进行有效、精准、多方位、多纵深的“表征与评价”,不仅在生产应用中发挥着越来越重要的作用,更是科技前沿取得突破的主要方向之一。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 277px " src=" https://img1.17img.cn/17img/images/201909/uepic/95060050-369f-4a53-8877-cbe54d0a31f2.jpg" title=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔4!.jpg" alt=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔4!.jpg" width=" 500" height=" 277" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 基于此仪器信息网特组织“材料表征与评价主题网络研讨会”,邀请7位专家,就诸般热点材料的前沿表征方法及各维度评价进行深入剖析,并从检测角度分享科学仪器在表征与评价材料过程中的最新应用方法。 /p p style=" text-align: justify text-indent: 2em " 是的,这次课堂充满了能量密度,不收费,但是& #8230 & #8230 请务必带好心来参加,不要再让我们的人生后悔。 /p p style=" text-align: justify text-indent: 2em " strong 会议主题: /strong 材料表征与评价 /p p style=" text-align: justify text-indent: 2em " strong 会议时间: /strong 9月27日全天 /p p style=" text-align: justify text-indent: 2em " strong 会议日程: /strong span style=" text-align: center text-indent: 2em " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201909/uepic/df5cf357-cb3d-420e-b700-84c0b3c09a2b.jpg" title=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!2.jpg" alt=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!2.jpg" width=" 600" height=" 320" border=" 0" vspace=" 0" style=" text-indent: 2em text-align: center max-width: 100% max-height: 100% width: 600px height: 320px " / /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em text-align: justify " 部分专家介绍: /strong br/ /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 100px height: 129px float: left " src=" https://img1.17img.cn/17img/images/201909/uepic/edf1e529-b3ee-43ab-8ad7-a0091850b099.jpg" title=" 高翔.jpg" alt=" 高翔.jpg" width=" 100" height=" 129" border=" 0" vspace=" 0" / /strong strong span style=" text-indent: 2em " 高翔: /span /strong span style=" text-indent: 2em " 2011年7月年毕业于中科院上海硅酸盐研究所, 获得材料物理与化学专业博士学位。2011-2018年先后加入日本精细陶瓷中心和美国橡树岭国家实验室,开展博士后研究工作。回国后加入北京高压科学研究中心,任研究员,超微界面课题组组长。主要以先进分析电镜为主要研究手段,从事新型功能和能源氧化物材料的微观界面科学研究。在Advanced Materials, Advanced Materials Interfaces, Advanced Functional Materials, Nature Communications, Chemistry of Materials, Journal of Materials Chemistry A等知名期刊发表学术论文50余篇。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 100px height: 129px float: left " src=" https://img1.17img.cn/17img/images/201909/uepic/70da13a7-79aa-4a27-ad0d-d74ccdcdecdf.jpg" title=" 任凯亮.jpg" alt=" 任凯亮.jpg" width=" 100" height=" 129" border=" 0" vspace=" 0" / /span strong span style=" text-indent: 2em " 任凯亮: /span /strong span style=" text-indent: 2em " 男,中科院北京纳米能源与系统研究所研究员,博士生导师,中组部青年千人计划入选者, 北京市海聚工程专家。2007年获得美国宾夕法尼亚州立大学电子工程系博士学位。2009-2014,先后在美国宾夕法尼亚州立大学,约翰霍普金斯大学任博士后及助理研究科学家等工作。从2015年起担任中国科学院北京纳米能源与系统研究所研究员。& nbsp /span span style=" text-indent: 2em " 他在聚合物介电材料、陶瓷/聚合物纳米复合材料、利用压电聚合物进行可穿戴能量收集材料等领域做出了具有国际影响力的重要研究成果。包括布莱叶盲文驱动器,基于压电聚合物的能量收获器件,基于MEMS的红外以及生物传感器,以及聚合物纳米纤维传感器等。 /span /p p style=" text-align: justify text-indent: 2em " 任凯亮博士在国际著名期刊上,包括Science, Advanced Materials, Nano Energy, Advanced Functional Materials, Advanced Sustainable Systems, Applied Physics Letters, IEEE Transactions等发表论文超过40篇,全部被SCI/EI收录,并有授权美国专利2篇,美国专利申请 1篇,中国专利申请10篇。任凯亮博士受邀在国际国内会议进行邀请报告20余次。任凯亮的文章被引用次数超过2600余次,h-index为19。另外,任凯亮博士还担任电子元器件关键材料与技术专委会资深委员,天津大学微电子学院校友会常任理事等职务。同时,任凯亮博士还担任国际杂志的审稿人,比如Nature Communications, Nano Energy, Applied Physics Letters, IEEE Transaction on Dielectrics and Electrical Insulation, IEEE sensors,等。 /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 100px height: 145px float: left " src=" https://img1.17img.cn/17img/images/201909/uepic/897e3d8d-de4b-4ed9-81e1-77cac6b1adfc.jpg" title=" 李照磊.jpg" alt=" 李照磊.jpg" width=" 100" height=" 145" border=" 0" vspace=" 0" / strong 李照磊: /strong 1984年1月生,中共党员,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。2016年10月至今南京大学在站博士后。目前任教于江苏科技大学材料科学与工程学院,主要从事大分子凝聚态结构转变的热分析研究,尤其是快速扫描量热技术表征高分子结晶与成核动力学研究。在ACS Macro Letters、Electrochimica Acta、Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Polymer International、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文30余篇,获授权专利10项。 /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 100px height: 154px float: left " src=" https://img1.17img.cn/17img/images/201909/uepic/9149866e-6f4b-4210-84e3-109daa69e289.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 100" height=" 154" border=" 0" vspace=" 0" / strong 林中清: /strong 1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。1989年管理上光所DX-10型扫描电镜至1998年仪器报废,2009年起接手日立冷场扫描电镜S-4800。 span style=" text-indent: 2em " 长期的电镜操作经历,特别是接手S-4800后的大量样品测试经验,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》 等杂志所收录,在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " 报名入口及更多专家介绍,请点击左侧链接( a href=" https://www.instrument.com.cn/webinar/meetings/clbz/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 材料表征与评价主题网络研讨会 /span /strong /a )或下方图片直达。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/clbz/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/abdcff82-c98f-42a1-a3a2-97260923e6c6.jpg" title=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!3.jpg" alt=" 不花钱的最贵 这次材料表征与评价大咖学堂别再后悔!3.jpg" / /a /p p style=" text-align: center " strong 欢迎扫描下方二维码添加仪器信息网小材子官方微信好友咨询更多详情 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 150px height: 150px " src=" https://img1.17img.cn/17img/images/201909/uepic/e2aa4aea-c9ae-44e9-a1dc-678d9249bddf.jpg" title=" 小材子.jpg" alt=" 小材子.jpg" width=" 150" height=" 150" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 欢迎扫描进入仪器信息网“材料表征与评价”同仁交流群,与业内同仁交流互动 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 150px height: 261px " src=" https://img1.17img.cn/17img/images/201909/uepic/434b8ac0-f2af-4eb8-b924-73da3c3694b4.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 150" height=" 261" border=" 0" vspace=" 0" / /p
  • 热分析和流变技术在材料表征及加工方面应用研讨会
    中国,上海 (2010年6月13日)----服务全球,世界领先的赛默飞世尔科技有限公司与德国耐驰公司密切合作,携手进一步拓展中国地区的销售业务,并将于6月25日举办各种流变学和热分析领域的应用技术交流会。 交流会由两个公司的资深技术专家进行深入全面的讲解,不仅向您展示最新的热分析和流变技术,更重要的是帮助您从实验数据中获得最有价值的材料信息。内容丰富实用、图例精彩,相信一定会为您的工作提供有效的帮助。在此,我们热诚的邀请您的参与,相信您绝对不枉此行! 会议注册请点击www.thermo.com.cn/mcseminar。 德国耐驰仪器公司作为全球热分析技术的领导者,秉承专业、专注的精神长达半个世纪之久,一贯为客户提供品质一流、技术领先、工艺精湛的热分析仪器,在各行业赢得了广泛认可,公司也取得了长足的发展! 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。 日程安排 6月25日(周五) 成都市一环路南三段66号 四川雅乐大酒店 附楼B座二楼凯旋厅 08:30 ~ 09:00 签到、领取资料 09:00 ~ 10:10 热分析技术进展 10:30 ~ 12:00 热分析技术在材料表征方面的应用 12:15 ~ 13:15 午餐. 13:30 ~ 15:30 流变技术及其在材料表征、加工方面的应用 15:30 ~ 17:00 自由讨论 详情咨询: 耐驰科学仪器商贸(上海)有限公司成都分公司 联系人:姜丽丽 电话:028-86528518 传真:028-86528718 Email: lili.jiang@nsi.netzsch.cn 赛默飞世尔科技(中国)有限公司 联系人:冯敏 电话:021-68654588-2257 传真:021-64451101 Email:info.mc.china@thermo.com 敬请在6月21日前网上注册页面提交您的回执,或与我们取得联系,以便我们进行安排。谢谢! 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。欲获取更多信息,请访问公司网站: www.thermoscientific.com (英文) 或 www.thermo.com.cn www.fishersci.com.cn (中文) 关于耐驰 德国耐驰仪器制造有限公司(NETZSCH-Gerä tebau GmbH)是德国耐驰集团旗下子公司,总部位于德国北巴伐利亚塞尔布,全球员工人数超过2200人,年营业额2.92亿欧元。耐驰分析与测试产品系列包括各种用于研发和质量控制的热分析仪器,品种齐全,涉及塑料、化学、无机材料和建筑材料以及环境分析等多个行业和领域。产品线中还包括用于确定固体、熔体和液体的热分析特性的仪器。欲了解更多信息,请访问耐驰公司网站:www.netzsch-thermal-analysis.com
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 2011广州多孔材料表征分析技术研讨会圆满举行
    2011年5月25日,由美国康塔仪器公司主办,华南理工大学承办“2011多孔材料表征分析技术研讨会”在广州华南理工大学五山校区顺利召开,近八十位业内人士参加了此次大会。   本次大会围绕“吸附理论”、“气体吸附法测量比表面与孔径大小” 、“如何正确应用BET理论计算比表面”、“非定域密度函数理论在孔径分析中的应用”、“化学吸附仪器在催化剂活性表征中的应用”、“压汞法在孔径分析中的应用”等议题展开培训和讨论,旨在为积极应对材料发展的各种挑战献计献策,尤其是新能源材料。   与会者对报告反响热烈,认为研讨会涉及内容正是他们迫切需要的,解决了他们在科研中长期困惑的问题,为今后把握正确分析方法指明了方向。研讨会延长至晚上6时余才得以结束。
  • 多孔材料表征分析技术研讨会于天津成功举行
    为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术、更准确地使用物理吸附方法对材料性质进行表征,美国康塔仪器公司于2012 年06月15日在天津大学天南联合大厦报告厅成功举办&ldquo 多孔材料表征分析技术研讨会&rdquo 。 主持此次会议的是美国康塔仪器公司中国区应用专家张哲泠老师。张老师详细讲述了多孔材料比表面积和孔径分析技术原理及最新的科研进展, 并结合仪器原理系统分析了如何测好样品,包括参数的意义和分析过程中的注意事项以及高端应用,同时通过详细的理论分析解答了科研工作者在数据分析中的困惑。与会学者对此做出了极高评价。 美国康塔仪器公司是著名的当代颗粒技术开创者。致力于粉体及多孔物质的测试分析技术四十余年,康塔公司将继续本着恪尽职责、服务于客户的理念,推动材料分析技术的发展。
  • HORIBA:多种分析技术在半导体材料表征中的应用
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。 /p p style=" text-align: justify text-indent: 2em " 会议期间,来自HORIBA Scientific的工业销售经理熊洪武做了《HORIBA Scientific多种分析技术在半导体材料表征中的应用》的报告。 /p p style=" text-align: center " script src=" https://p.bokecc.com/player?vid=6AB4F86C1108F04C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: justify text-indent: 2em " 据介绍,HORIBA集团有五大事业部,包括汽车测试系统、过程&环境、医疗、半导体和科学仪器事业部。其中,半导体事业部主要提供质量流量控制(气体/液体流量控制技术)、药液浓度监控(监测不同药液浓度)和异物颗粒探测(光掩模颗粒检测与去除);科学仪器事业部则提供各种分析仪器,主要包括分子光谱、表面分析、粒度表征、元素分析和光学光谱仪器。本次报告,熊洪武分享了HORIBA技术在半导体材料中的应用。 /p p style=" text-align: justify text-indent: 2em " 熊洪武表示,HORIBA分析技术可广泛应用于半导体材料相关检测项目中。晶圆制程中,拉曼光谱仪可检测半导体材料的应力、晶型、成分、载流子浓度、温度和SiC单晶衬底晶型等;光致发光光谱仪可用于B、P、Al、As等杂质含量测试和GaAs、InP、GaN、SiC等材料PL;阴极射线发光光谱仪可用于GaN、SiC晶圆等材料的缺陷、杂质、包裹体等分析;氧分析仪可测试重掺硅单晶中氧含量。沉积制程中,椭圆偏振仪可用于膜厚、膜质量和膜均匀性的检测;辉光放电光谱仪可检测膜层/镀层元素在深度上的分布变化ICP-OES可测量Mo源中杂质元素含量。抛光制程中,激光粒度仪可用于CMP研磨液粒径测量。封装制程中,显微X射线荧光可用于集成电路封装布线中的离子迁移、缺陷、短路分析等。 /p p style=" text-align: justify text-indent: 2em " 报告中,熊洪武还详细介绍了一些半导体材料表征的应用实例。除以上科学仪器外,HORIBA还可为半导体设备制造商提供多种类型光栅、光谱仪。 /p
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 精彩回顾丨2022全国表面分析技术及新材料表征研讨会圆满召开!
    材料工业是国民经济的基础产业,新材料是材料工业发展的先导,是重要的战略性新兴产业。材料的表面性能对新材料的研究和应用至关重要,近年来新材料的快速发展刺激了科学家对材料表面性能的深入研究。2022年8月17日至8月19日,赛默飞联合多家高校和科研机构共同举办的 “2022全国表面分析技术及新材料表征研讨会” 成功召开,国内外专家齐聚贵阳,共同交流电子能谱(XPS、UPS、AES)、电子显微术、激光拉曼光谱等表面分析技术的最新研究成果及应用。会议伊始,赛默飞材料与结构分析业务高级商务总监陈厅行,为本次大会发表了开幕致辞。 陈厅行表示:非常感谢大家对赛默飞一直以来的支持,我们很多的客户朋友多年来一直和我们一起前行,给了我们莫大的信任和支持。今年也是赛默飞进入中国的40周年,我们扎根中国,服务中国,将一直践行我们的使命,携手客户,让世界更健康,更清洁,更安全。本次会议报告内容集锦如下: 大会第一日中科院大连化物所的盛世善老师首先为我们详细介绍了商业化XPS设备的准原位技术以及近常压的原位技术。同时,也比较介绍了两种原位技术的优缺点。随着商业化XPS设备的普及和成熟,设备的拓展性能也越来越多元。其中,原位技术便是XPS设备比较重要的一个拓展功能。XPS作为一种表面分析技术,在催化材料研究中有广泛的应用。清华大学姚文清教授在报告中详细介绍了通过不同的表面改性方式,来对光催化型催化剂进行改性,以提升其光催化性能。同时,也对相关的机理进行研究。中山大学的陈建教授介绍了通过N、S元素掺杂,将二维Ti3C2Tx材料转化三维材料,进一步提升其电化学性能。Ti3C2Tx作为一种新型的二维纳米材料,具有良好的导电性、亲水性、大比表面积及丰富的表面修饰基团等优点;在催化、电化学等领域有广泛的应用前景。北京化工大学的程斌教授在报告中详细介绍了通过XPS设备研究聚乙烯吡咯烷酮(PVP)在高电场下的行为。在电池浆料材料制备过程中,不可避免的会用到分散剂材料。不同分散剂材料可以影响电池材料的分散,从而影响电池性能。近年来,中国在航空航天领域取得了快速发展。特别是嫦娥工程,取得了举世瞩目的成就。对于嫦娥五号取回来的月壤样品,中国科学院地球化学研究所的李阳研究员为我们介绍了通过TEM+EELS技术联用对月壤样品进行综合表征分析。赛默飞Nexsa系列最新型号Nexsa G2可选配拉曼光谱,实现XPS与拉曼技术原位联用。赛默飞国外资深XPS应用专家Robin Simpson为我们介绍了通过XPS与拉曼多技术联用在法医鉴定各环节中的应用。氧化镓材料作为一种宽禁带半导体材料,在光电子器件方面有广阔的应用前景。厦门大学张洪良教授在报告中详细介绍了通过不同元素掺杂,来实现对氮化镓材料的不同性能调控。通过X射线光电子能谱来表征分析其电子结构,来辅助研究相关调控机理。中国科学技术大学麻茂生教授主要就化学位移基础理论及XPS谱峰拟合实际问题两个方面进行详细介绍。元素化学态分析是XPS的最主要的应用之一,常被用来作氧化态的测定和价态分析以及研究成键形式和分子结构。原位测试分析手段可以实时跟踪结构变化,在目前的科研工作中扮演着越来越重要的角色。上海科技大学杨永教授在报告中详细介绍了XPS加热台的设计,及原位加热分析在XPS研究中的相关应用。黄铁矿的氧化过程涉及氧气的消耗、铁矿物的演化、硫酸盐的还原等,影响着光合作用和微生物新陈代谢。中科院广州地化所鲜海洋教授就详细介绍了黄铁矿氧化还原反应的各向异性和原电池效应等特点,及黄铁矿表面氧化还原反应的成矿效应。对于层结构已知的纳米多层器件可用相对确定的测试参数进行分析,而准确获得未知样品层结构等信息成为研究者们的挑战之一。季华实验室范燕工程师此次报告简要介绍了未知层结构样品深度剖析测试的测试优化方向,并结合实际案例进行分享。生物质是唯一一种含碳可再生资源,其有效利用能够部分替代化石能源。安徽理工大学李唱老师简要介绍了木质素解聚应用实例和相关成果,并就XPS在生物质转化领域中的应用进行了展望。山西煤炭化学研究所严文君工程师介绍了XPS和原位XPS及其在碳基材料及催化中的相关应用,将XPS与AES技术相互结合,为研究催化反应机理及催化剂设计改进等提供了理论依据。赛默飞业务拓展经理王慧敏介绍了针对空气敏感样品研发的完整惰性气体/真空互联解决方案,实现样品从手套箱到XPS、SEM/FIB/PFIB、TEM完全隔绝空气的转移,确保用户可以观察到样品的本征形貌与化学信息。 大会第二日在日常XPS测试中,经常会遇到各种类型材料的分析测试。对于一些类型样品,测试过程中由于射线束的照射,会使样品表面发生变化。比如,X射线照射、刻蚀等,引起样品中元素的还原、破坏。北京师范大学吴正龙教授在报告中详细介绍了XPS测试中常见的一些射线束效应以及在测试中如何避免或减小这些效应。中科院化学所赵志娟工程师介绍了通过XPS设备分析不同类型的纳米材料。对于纳米材料,由于尺度的影响,表面结构及其化学组成具有决定其功能特性的重要作用,XPS逐渐成为纳米材料研究中不可或缺的一种表征手段。材料中氧空位的存在,对材料性能有重要影响。国家纳米中心徐鹏工程师在报告中详细介绍了通过不同表征方式来分析表征氧空位;着重讲解了通过XPS设备表征分析不同材料中的氧空位及氧空位材料的应用。能源电池材料因其清洁、能源转化效率高等特点,得到快速发展。对于空气敏感性的锂电池材料,XPS常规样品台满足不了其测试需求。国联汽车动力电池研究院袁敏娟工程师在报告中主要就真空转移仓的使用、XPS表面分析技术在锂电池材料中的应用进行了详细介绍。随着社会的发展,目前材料学的发展很多集中在将体材料平面化或者开发新型的二维材料,因此维持住表面的性状稳定是个需要处理的问题。费勉仪器马成华工程师就原位与准原位XPS分析技术、常见准原位真空互联设备等进行了详细介绍。赛默飞应用专家Paul Mack主要介绍和分享XPS与UPS、REELS等分析技术联用,在SiO2/Si薄膜、MAPbI3等材料的表征中提供全方位的多功能性应用。自上世纪80年代,赛默飞XPS产品就已经进入中国市场,目前已经深深的扎根中国市场。其中,ESCALAB系列是其中一款经典的XPS设备。赛默飞资深技术专家寿林在报告中从产品历史、硬件原理、维护等方面在详细介绍了ESCALAB系列型号结构特点。赛默飞拉曼应用专家王冬梅为我们介绍了针对材料多维表征、原位电化学和原位催化等各领域的应用方案,以及拉曼光谱技术结合XPS、SEM和流变的完整结构分析方案。赛默飞红外应用专家辛明简述了傅里叶变换红外光谱技术在原位监测中的应用,特别类举了如XPS的超高真空环境的联机检测案例。介绍了赛默飞FTIR产品结合原位监测应用需求的针对性设计。同时此次大会还进行了同步直播,线上的近1000名观众在云端参与会议,同我们一起见证了活动的成功召开!‍最后感谢所有国内外专家的参与,与我们共同交流XPS、电镜、拉曼、红外等分析手段在表面分析领域的最新研究进展及应用。希望能够为中国科研及工业发展做出贡献!‍
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht,S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 多孔材料表征分析技术研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年9 月15 日在哈尔滨市黑龙江大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2011 年9 月15 日(星期四)  时 间:9:30 ~ 16:00  地 点:黑龙江省哈尔滨市黑龙江大学化工学院2楼报告厅  内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  气体吸附法测量比表面和孔径大小  如何正确应用BET 理论计算微孔样品比表面  孔分析模型及非定域密度函数理论在孔径分析中的应用  化学吸附的应用以及对仪器的要求  新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析(NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表) 诚邀相关领域的专家、同行莅临交流! 联系报名方式: 黑龙江大学化工学院 吴伟教授 13936133828 美国康塔仪器公司北京代表处 宋绪东先生 18611382329 邮箱: songxudong@quantachrome-china.com 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理 毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。 1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。 2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。 虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 回放视频|材料表征领域千人盛会 第四届材料表征与分析检测技术网络会议(iCMC 2022)回放视频发布
    仪器信息网2022年12月14-15日举办第四届材料表征与分析检测技术网络会议(iCMC 2022),本届会议报告聚焦于材料表征与分析测试技术,邀请国内材料表征领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术。会议设置了成分分析、表界面分析、结构与形貌分析、热性能4个主题会场 。直播两日间会议报名观众超1100人,现场提问踊跃。仪器信息网上线了各分会场报告的回放视频以供读者查阅。全部会议回放视频链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/报告题目报告人锂电池中的磁共振华东师范大学研究员 胡炳文沃特世材料分析中的色谱质谱技术特点、发展和应用沃特世科技(上海)有限公司材料科学市场部高级应用工程师 李欣蔚固体核磁共振研究MOF缺陷结构浙江大学教授 孔学谦物理吸附仪和化学吸附仪在催化领域的应用北京精微高博仪器有限公司市场部经理 牛宇鑫X射线荧光光谱在高温合金成分检测中的应用钢研纳克检测技术股份有限公司主任 孙晓飞激光质谱用于材料中元素的分析厦门大学教授 杭纬X射线荧光分析法测定水泥及原料中重金属中国国检测试控股集团股份有限公司中央研究院总工/教授级高工 刘玉兵XPS谱峰拟合中国科学技术大学理化科学实验中心高级工程师 姜志全分辨率、液相、物性测试——原子力显微镜在表界面分析中的应用牛津仪器科技(上海)有限公司AFM应用工程师 竺仁电池中的表界面分析中国科学院苏州纳米技术与纳米仿生研究所研究员 沈炎宾钕铁硼磁性材料的电子探针表征岛津企业管理(中国)有限公司应用工程师 赵同新铜基金属催化剂表界面的原位环境透射电镜研究天津大学教授 罗浪里应用非线性光学技术探测物质表界面东南大学研究员 卢晓林电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏4D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮
  • 2019年全国表面分析方法及新能源与新材料表征研讨会圆满召开
    5月29日-6月1日, 由云南大学和赛默飞世尔科技(中国)有限公司共同主办的“2019年全国表面分析方法及新能源与新材料表征研讨会“在云南昆明圆满召开。来自国内外的120多名专家学者齐聚昆明,对XPS、Raman、电镜等在表面分析技术等交叉领域的最新研究进展及应用进行了交流和讨论。随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域的作用日益增长。“2019年全国表面分析方法及新能源与新材料表征研讨会”正是在这一背景下召开的一个多学科交叉的学术交流会议。大会伊始,来自云南大学的吕正红院士为研讨会做了开幕致辞。吕院士首先向参加本次研讨会的与会者表示欢迎和感谢,然后介绍了云南三所高校的历史发展,之后就XPS和UPS在OLED科研领域的应用作了详细的介绍。云南大学吕正红院士会议现场气氛热烈,互动频繁。台上,各位专家分享自己的工作内容及成果。台下,每一位与会者都听得津津有味,并做了认真记录。提问环节,台上台下就表面分析的研究进行了交流和探讨。据赛默飞表面分析及常量元素分析中国区商务经理范春明先生介绍,赛默飞从2014年起坚持每年举行全国表面分析技术研讨会,为仪器分析方法研究人员与科研人员搭建良好的交流平台。仪器分析方法研究人员在此开拓了眼界,为未来的科研工作埋下伏笔。科研人员借此可以了解更多关于表征方法的新进展,为未来在科研工作中获得更好的研究成果打下基础。本次会议聚焦的是新能源与新材料表征,明年将会聚焦其他热门领域。此次会议的举办也是赛默飞作为一家大型企业承担社会责任、促进相关技术交流的体现。会议合影
  • 多孔材料的比表面和孔分析理论及颗粒表征技术进展研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012年11月29日在武汉市武昌区湖滨花园酒店举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。 日 期:2012 年11 月29日 时 间:9:00 ~ 17:00 地 点:湖滨花园酒店(武汉市武昌洪山区珞瑜路115号) 内 容:多孔材料的比表面和孔分析理论及颗粒表征技术进展 背景知识、吸附理论 气体吸附法测量比表面和孔径大小 如何正确应用BET 理论计算微孔样品比表面 孔分析模型及非定域密度函数理论在孔径分析中的应用 新一代颗粒、形貌表征技术&mdash &mdash Occhio粒度粒形分析仪技术及应用 如有不详之处,敬请联系美国康塔仪器公司上海代表处 朱蕾娜:021-52828278, zhuleina@quantachrome-china.com
  • 马尔文和帕纳科宣布合并 材料分析表征强强联合
    p    strong 仪器信息网讯 /strong 近日,同属英国思百吉(Spectris)集团材料分析部门旗下成员的马尔文和帕纳科先后在各自官网对外公布了双方合并的信息。消息称,2017年1月1日起,双方将合并活动。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201612/insimg/09849595-bb85-4642-b7e9-be5769956db1.jpg" title=" 0.jpg" / /p p & nbsp & nbsp & nbsp 11月22日,马尔文官网发布了“马尔文和帕纳科合并”的公司公告。紧接着,11月24日,帕纳科官网也发布了同一篇公告,肯定了合并的消息。 /p p & nbsp & nbsp & nbsp strong 以下为公告译文: /strong /p p    span style=" color: rgb(112, 48, 160) font-size: 20px " strong “ /strong /span 马尔文和帕纳科很高兴地宣布,自2017年1月1日起,他们将合并其活动。这两家公司同属英国思百吉集团材料分析部门旗下运营公司。 /p p   帕纳科在用于材料分析的X射线衍射分析仪器和软件等方面,以及马尔文在材料和生物物理表征技术的分析仪器等方面,两者都是世界领先的分析仪器供应商。此次合并,可以充分整合利用双方在各自终端市场中从建筑材料到医药材料、从冶金和矿石再到纳米材料的独到优势,从而使合并后的整合体成为材料表征分析仪器市场中的强有力的竞争者。 /p p   合并愿景:通过这种更协作的关系,利用马尔文和帕纳科各自强大的品牌和专业队伍的整合协作,实现向更广泛的客户提供更全面的产品、解决方案和市场服务。 /p p   马尔文和帕纳科将共同努力,以确保顺利和有效的整合,并保持向所有新老客户提供不变的高水平专业支持。合并后的集团也将继续向马尔文和帕纳科相关产品研发及专业团队建设加大投入。 /p p   思百吉集团材料分析部门业务负责人Eoghan O& #39 Lionaird说:“这对马尔文和帕纳科来说是一个激动人心的时刻。双方合并将帮助我们利用新的资源为客户提供更多的产品、服务以及更多的价值。我们也将积极参与到客户中,了解合并后的实体以及客户新的需求,以便确保此次整合的顺利。 span style=" color: rgb(112, 48, 160) font-size: 18px " strong ” /strong /span /p p style=" text-align: center" img style=" width: 134px height: 68px " src=" http://img1.17img.cn/17img/images/201612/insimg/7280cd2b-e3df-41a8-abdb-2a9e52420cf1.jpg" title=" 0.gif" height=" 68" hspace=" 0" border=" 0" vspace=" 0" width=" 134" / /p p span style=" font-size: 16px color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp 英国马尔文仪器有限公司成立于1963年,位于英国知识密度最高的马尔文城。公司前身是英国国防工业实验室。马尔文是世界著名的激光粒度仪专业生产厂家,其产品分布于石化、石油、陶瓷、粉体、涂料、制药、水泥、军工等各个领域,占有世界绝大部分激光粒度仪市场。 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201612/insimg/08ce3bdd-b34c-4831-8261-0d778a89484a.jpg" title=" 2.png" / /p p span style=" font-size: 16px color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp 帕纳科公司总部位于荷兰的Almelo,并分别在中国、日本、美国和荷兰建立了设备齐全的应用实验室。帕纳科是全球X射线衍射分析仪器和X射线荧光光谱分析仪器及软件的主要供应商之一。分析仪器主要应用于科学的研究和发展、工业过程控制以及半导体材料的物性测量领域。 br/ /span /p
  • HORIBA先进材料表征应用交流会圆满结束
    HORIBA光谱学在先进材料表征中的应用交流会圆满结束
  • 视频回放|“复合材料性能表征与评价”网络研讨会
    p style=" text-align: justify text-indent: 2em " 2020年6月15日,仪器信息网 “复合材料性能表征与评价”网络研讨会成功召开,8位专家围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来了精彩的报告。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse " tbody tr class=" firstRow" td width=" 259" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:宋体" 报告题目 /span /strong /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:宋体 color:black" 报告嘉宾 /span /strong /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 聚合物基复合材料疲劳试验方法 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陈新文 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国航发北京航空材料研究院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 复合材料力学性能试验解决方案 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 王斌 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 力试(上海)科学仪器有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陶瓷涂层膨胀系数与残余应力测定 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 包亦望 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国建筑材料科学研究总院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 磁电弹复合材料多物理场耦合光滑有限元计算与表征 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 周立明 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 吉林大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 面向未来——联用技术在材料表征中的应用 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 刘文广 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 珀金埃尔默企业管理(上海)有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 湿热环境下复合材料机械连接结构破坏行为 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 程小全 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 北京航空航天大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 特种复合材料的研究 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 黄培 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 重庆大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 基于分级测试数据校验的大型复合材料结构失效行为的预测方法 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 白瑞祥 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 大连理工大学 /span span style=" color:black" ) /span /p /td /tr /tbody /table p style=" text-indent: 2em " 为方便更多复合材料领域的用户学习了解相关技术内容,现特将会议内容剪辑整理,点击报告题目即可进入视频回放页面。 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c14a4f27-97a1-4dbf-aaa9-5c341bf5dc1f.jpg" title=" 程小全.jpg" alt=" 程小全.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:程小全((北京航空航天大学教授) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112798.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《湿热环境下复合材料机械连接结构的破坏行为》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 由于设计及使用维护的限制,机械连接成为复合材料结构中不可缺少的关键环节。随着多功能、多用途飞行器的发展,对复合材料机械连接结构在复杂环境中的承载能力提出新的要求,其中吸湿和高温环境的影响最为显著。湿热环境对复合材料机械连接结构机械性能的必须加以关注。本报告将介绍碳纤维复合材料连接结构在常温干态、常温湿态、高温干态和高温湿态等四种环境条件下的拉伸挤压力学特性,通过试验和数值模拟方法给出了单钉双搭、单搭连接结构的拉伸破坏行为和损伤机理,分析了湿热环境对复合材料机械连接结构性能的影响。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ded99010-1d56-4c12-b44c-032a665d0d09.jpg" title=" 陈新文.jpg" alt=" 陈新文.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:陈新文(中国航发北京航空材料研究院高级工程师) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112794.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《聚合物基复合材料疲劳试验方法》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 概述了开展复合材料疲劳试验的目的,从疲劳S-N曲线、条件疲劳极限、试验频率、迟滞效应、刚度变化和失效模式几个方面阐述了聚合物基复合材料的疲劳行为,比较分析了国内外聚合物基复合材料疲劳标准试验方法,指出了每个标准试验方法存在的技术缺陷,最后给出了疲劳试验方法改进的方向。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/761494d8-b830-453d-8701-3bd77fb82a57.jpg" title=" 包亦望.jpg" alt=" 包亦望.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:包亦望((中国建筑材料科学研究总院高级工程师) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112796.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《陶瓷涂层膨胀系数与残余应力测定及其设备》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 从四个方面进行讲述:(1)研究背景;(2)传统Stoney法分析残余应力;(3)同温涂层残余应力分析与计算;(4)涂层膨胀系数与残余应力测试仪。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/83670c96-b56a-4b42-8cc9-0c5b26468fcc.jpg" title=" 周立明.jpg" alt=" 周立明.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:周立明(吉林大学副教授) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112802.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《磁电弹复合材料多物理场耦合光滑有限元计算与表征》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 磁电弹复合材料具有机械能、电能和磁能相互转换的独特性能,被广泛应用于新型传感元件、新型换能器和能量收集技术中,备受国内外学者的关注。为提升磁电复合材料结构性能计算与表征的准确性,将新加坡学者G.R. LIU等提出的光滑有限元技术拓展至磁-电-热-弹多物理场耦合问题的求解,提出了磁-电-热-弹多物理场耦合光滑有限元法,并自主研发了相关软件和多场耦合测试仪器,对典型磁电传感器、磁电俘能器等智能元件的力学特性进行了分析,验证了方法的正确性和有效性,为完整、真实和丰富的获取磁电弹复合材料的性能、制备及使用提供重要的基础数据。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aa3fb032-fac0-470e-8c7b-78dc1c755a84.jpg" title=" 刘文广.jpg" alt=" 刘文广.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:刘文广(珀金埃尔默企业管理(上海)有限公司) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112797.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《面向未来——联用技术在材料表征中的应用》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 主要从三个方面进行讲述:(1)在新时代背景下,联用分析技术的发展与特点;(2)PerkinElmer在材料表征领域的联用方案;(3) 联用分析技术的应用案例。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bc2c5a0b-0b2e-4ae9-9b33-b4b5d73d972c.jpg" title=" 王斌.jpg" alt=" 王斌.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:王斌(力试(上海)科学仪器有限公司总经理) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112795.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《复合材料力学性能试验解决方案》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 主要从两方面进行讲述:(1)解决方案概述与设备介绍;(2)试验介绍。 /p p style=" text-align: justify text-indent: 2em " 点击底部链接观看全部“复合材料性能表征与评价”网络会议回放视频: /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10565" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/Video/Video/Collection/10565 /span /a /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 华嘉公司材料表征新技术全国巡讲会拉开序幕
    真诚邀请广大用户参加瑞士华嘉公司于2010年4月28-29日在全国同期举办的“华嘉公司材料表征新技术研讨会”。此次交流会特邀德国Kruss公司的资深专家和负责Microtrac公司产品销售的产品专家魏延喜经理对相关新的研究技术和产品进行介绍,此外,本次交流会致力成为一个互动的平台,特邀请周边地区的专家和研究人员,以达到沟通技术,增进了解,相互合作的目的。   德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率60%以上,是当之无愧的第一品牌。   美国麦奇克有限公司(Microtrac Inc.):1970年成立,是世界上最著名的激光粒度研究和制造厂商,在美国和日本拥有30%以上的占有率,自2004年底进入中国市场以来,其极高的性价比,在材料科学,石油石化,冶金地质等领域享有很高的声望,目前在国内拥有各种型号设备超过400台。   华嘉(香港)有限公司:具有200年历史的瑞士国际贸易公司,作为Kruss产品、Microtrac产品在国内的总代理,负责其所有产品、技术的推广销售和服务。   时间:2010年4月28日9:00-15:00,星期三   地点:广州,武汉   时间:2010年4月29日9:00-15:00,星期四   地点:成都,西安
  • 多孔材料表征分析技术研讨会将在天津举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012 年06月15日在天南联合大厦A座四层报告厅举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2012年6月15日(星期五) 举行技术研讨会  时 间:8:30 ~ 12:00  地 点:天南联合大厦A座4楼会议室  内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  如何判定实验结果是否准确? 如何更好地设定分析条件? 如何解读等温线? 如何扩展实验方法?  化学吸附的应用以及交流 主讲人:张哲泠(美国康塔仪器公司 中国区应用专家)
  • 传承智慧,照亮未来:TESCAN在郭可信材料表征中心的使命与愿景
    传承智慧,照亮未来:TESCAN在郭可信材料表征中心的使命与愿景导语在缅怀中国电子显微学界巨擘郭可信先生的同时,TESCAN公司荣幸地参与了2024年6月12-15日在辽宁材料实验室举行的“郭可信表征中心”与“郭可信纪念馆”的揭牌仪式。我们对能够见证并支持这一里程碑事件感到自豪,TESCAN的科研仪器被选为该中心的关键工具,标志着我们在推动材料科学研究方面的承诺和贡献。回顾重要时刻辽宁材料实验室理事会理事长王健、辽宁材料实验室主任卢柯院士、北京大学彭练矛院士、北京科技大学毛新平院士为郭可信材料表征中心揭牌。辽宁材料实验室主任卢柯院士、浙江大学张泽院士、郭桦女士、张飙先生先生为郭可信纪念馆揭牌。TESCAN 在研讨会上在同期举行的学术研讨会上,TESCAN展示了包括TESCAN AMBER X、TESCAN TENSOR 4D-STEM以及Raman-SEM电镜-拉曼一体化显微镜在内的创新技术。这些尖端设备不仅展示了TESCAN在材料表征领域的领先地位,也体现了公司不断创新和追求卓越的精神。TESCAN 在郭可信材料表征中心郭可信材料表征中心(K.H. Kuo Center for Material Characterization,KCMC),承载着建设国家级材料科学研究与技术创新基础表征平台的宏伟目标。中心致力于构建一个体系完备、设施先进、运行高效、开放共享的全要素“一站式”分析测试基地,以促进材料科学领域的深入研究与技术突破。自2023年9月启动试运行以来,TESCAN提供的三台先进扫描电镜——TESCAN AMBER X、TESCAN CLARA和TESCAN VEGA——已稳定运行超过287天,成为中心研究工作不可或缺的核心工具。这些设备的稳定运行不仅证明了TESCAN技术的可靠性,也为中心的科研人员提供了深入探索材料微观世界的强大支持。随着TESCAN扫描电镜在郭可信材料表征中心的稳定运行,我们见证了一个以科技创新为驱动力的科研平台的崛起。这些设备不仅代表了高端科技的力量,更是承载着推动材料科学发展的重要使命。它们在这里的作用远不止于工具,更是科研探索旅程中的伙伴,为科研人员提供了一扇深入材料微观世界的窗口,助力发现新知,推动科学进步。TESCAN设备介绍TESCAN AMBER X PFIB-SEM以其卓越的性能,已在材料表征中心被使用385次,累计机时达到3582小时。TESCAN CLARA和TESCAN VEGA也以其超高分辨率和稳定性,成为科研人员探索材料微观世界的重要工具。TESCAN AMBER X PFIB-SEM氙离子聚焦离子束电子束双束电镜TECAN AMBER X 在材料表征中心已使用 385 次,总机时 3582 小时。TESCAN CLARA超高分辨率场发射扫描电镜郭可信材料表征中心导览屏幕上的仪器列表呈现了高分辨率场发射电子显微镜 TESCAN CLARA 的信息。TESCAN VEGA钨灯丝扫描电镜TESCAN VEGA 钨灯丝扫描电镜在郭可信材料表征中心的实验室使命与愿景作为郭可信材料表征中心的重要合作伙伴,TESCAN深感荣幸。我们的使命是通过提供最先进的扫描电镜技术,助力科研人员深入探索材料的微观世界,推动材料科学的发展。我们相信TESCAN的设备将成为连接过去与未来的桥梁,帮助科研人员继承先贤的智慧,开创属于我们自己的辉煌。关于TESCANTESCAN公司成立于1991年,是一家专注于微观形貌、结构和成分分析的科学仪器的跨国公司,是全球知名的电子显微仪器制造商,总部位于全球最大的电镜制造基地-捷克布尔诺,产品主要有电子显微镜、聚焦离子束、X射线显微CT、电镜和拉曼、双束电镜和二次离子质谱的一体化联用系统及相关附件和软件,正被广泛应用于材料科学、生命科学、地球科学、半导体和电子器件等领域中。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制