当前位置: 仪器信息网 > 行业主题 > >

病毒基因

仪器信息网病毒基因专题为您整合病毒基因相关的最新文章,在病毒基因专题,您不仅可以免费浏览病毒基因的资讯, 同时您还可以浏览病毒基因的相关资料、解决方案,参与社区病毒基因话题讨论。

病毒基因相关的资讯

  • H7N9病毒基因仍在演变
    据路透社报道,近日国际流感专家表示,H7N9病毒仍然可能在同其他病毒株交换基因,寻找令它变得更加强大的基因。如果基因交换成功,世界可能将面临致死性禽流感大流行的威胁,但是它也可能失败,然后不了了之。   据报道,这种病毒的不稳定性也引发有关是否H7N9可能对罗氏公司的达菲变得具有抗药性的疑问,对该病毒基因数据的分析已经表明这种可能性。   英国伦敦帝国学院流感病毒学家温迪.巴克莱(Wendy Barclay)说,即使我们手上只有三个基因序列,有证据显示,其中一个序列跟其他两个不太吻合。所以我们可能认为,这种病毒仍然在四处寻觅它喜欢的基因类型。   据报道,迄今为止来自于三名H7N9死亡感染者的样本的基因序列数据显示,H7N9病毒是所谓的"三重重组"病毒,混合了来自亚洲鸟类中发现的三种流感病毒基因。   研究人员在上周出版的《新英格兰医学杂志》中对该病毒的来源进行了仔细分析。   研究人员称,迄今为止,这种病毒重组似乎发生在鸟类身上,而不是在人类或其他哺乳动物身上,这是一个稍微令人安心的迹象。这个过程可能将继续,并可能意味着距离病毒发现一种可以令它在鸟类迅速传播的形式还有一段距离。   据报道,最近的大流行病毒包括2009年爆发的H1N1"猪流感"病毒,是哺乳动物和鸟类流感的混合物。专家说这些杂种更可能症状轻微,因为哺乳动物流感倾向于让人类患病不如禽流感那么严重。   而纯粹的禽流感病毒,比如新的H7N9和自从2003年以来杀死622个患者当中371人的H5N1病毒,通常对人类更加致命。   据外媒报道,荷兰和中国的研究人员分析H7N9禽流感病毒后发现,病毒基因正在大范围传播,并出现基因变异。而且这种变异在未来可能继续,使得人传人的风险变大。   据报道,研究人员就基因数据进行分析,称该病毒的基因多样性程度,已与之前在禽类中大范围爆发的其它H7病毒株相仿。   荷兰国立公共卫生和环境研究所(RIVM)的病毒专家吉柏曼斯(MarionKoopmans)表示,我们采样研究来自中国的病毒,发现其基因多样性堪比数年前在荷兰大爆发的病毒,以及在意大利爆发过的病毒。   他说,这意味着H7N9将能传播更广,现在的重点是搞清楚如何传播。   从病毒的基因多样性看,该病毒有能力实现重复变异,因此在人与人之间传播的机率升高。   吉柏曼斯说,这种病毒传播也许是在鸟类之间、也许是在哺乳动物之间完成的,但现在还不清楚它跟哪些动物有关。   吉柏曼斯领导的团队将H7N9病毒数据与2003年在荷兰禽类和人类大规模爆发的H7N7病毒、以及1999和2000年在意大利禽类中大规模爆发的H7N1病毒作了比较。   研究报告指出,H7N9病毒肯定已经广泛传播,并达成了基因多样化。病毒已经完成了一些演变,且未来可能继续变异,升高大规模人际感染的风险。   中国流感专家和世界卫生组织则称,目前还没有证据表明该病毒容易在人与人之间传播。
  • 多家知名机构联合发表病毒基因组测序“通用语”
    美国军队传染性疾病医疗研究中心(USAMRIID)牵头多家知名机构,在美国微生物学会旗下的mBio杂志上发布了病毒基因组测序的一系列标准,为从事病毒基因组测序的研究者们提供了一个通用&ldquo 语言&rdquo 。   文章的资深作者,USAMRIID的Gustavo Palacios博士介绍道,这些标准是多家研究机构的科学家共同协作的结果,包括Broad研究所、J. Craig Venter研究所、Los Alamos国家实验室、国家过敏和传染病研究所、马里兰大学和Johns Hopkins大学。   &ldquo 我们让大家坐在一起,讨论出来一个有意义的结果,这是一个重要的成就,&rdquo 他解释道。   作者们指出,基因组是生物体内的遗传物质,以DNA或RNA的形式编码。病毒基因组包括基因和一些非编码的DNA或RNA序列,含有病毒复制和传播所必需的信息。因此,确定这些序列可以获得宝贵的信息,可以应用于各种医学和科研领域。   &ldquo 多亏了高通量测序技术的飞速发展,现在几乎所有的病毒研究方向都涉及了测序,包括分子流行病学、药物和疫苗开发、病毒的监控与诊断等等,&rdquo Palacios说。&ldquo 近来,不管是已测序的基因组还是正在投身测序的研究机构都在迅速增多。&rdquo   虽然有大量的病毒基因组正在被测序,但&ldquo 目前还没有一个统一的框架,也没有通用的词汇来描述特定病毒基因组的&lsquo 完成&rsquo 程度,&rdquo 文章的第一作者,USAMRIID的Jason Ladner博士说。测序的完成程度,决定着基因组的下游应用,包括设计诊断产品、反向遗传系统以及开发治疗对策等。   研究团队希望能够通过五条标准来填补这样的空白,这些标准涵盖了完成病毒基因组的整个阶段,使用不依赖测序技术的简单条件规定了五个类别。   &ldquo 不同的测序技术可能会很快淘汰更新,因此我们这些标准没有关联任何特定的测序平台,可以长时间的使用下去,&rdquo Ladner解释道。   研究人员指出,这些基因组测序的新标准,为所有涉及病毒的研究领域提供了一个基本框架,其分类法也可以被用在公共的序列数据库中。此外,联邦机构还可以根据这些标准,审批和调控与病毒有关的产品,例如诊断产品、疫苗和治疗药物。   文献来源:Standards for sequencing viral genomes in the era of high-throughput sequencing.
  • 如何选择新冠病毒基因组测序的方法和策略?
    高通量测序之于病毒基因组,在检测和研究中的意义和价值已得到广泛验证。但在开展具体的高通量测序工作时,可能会面临很多实际的操作问题,譬如:方法上选择宏基因组测序还是靶向测序?测序策略上选择多少数据量、何种读长?哪些测序平台的通量和数据量更能满足实验室检测要求?以新冠病毒为例,本文对高通量测序在检测和研究中可能面临的问题与选择进行一一剖析。图1 在检测和研究中可能面临的问题与选择测序目的:快速检测or序列组装?高通量测序技术应用于新型冠状病毒的检测和研究,可以实现快速检测以及病毒序列组装。测序目的不同,需要选择合适的方法和策略:如需对qPCR检测呈阴性的疑似病例进行确诊,或对复合性感染、继发性感染等进行鉴别诊断,或对大量待测样本进行大规模筛查,可以利用高通量测序技术进行快速检测;如果需要实现病毒序列组装,以进行未知病原的检测、分析和研究,可以利用高通量测序技术进行更高深度更高覆盖度的测序,获得完整的病毒基因组序列。测序方法:宏基因组测序or靶向测序?对病毒基因组进行高通量测序,可以采取宏基因组测序或靶向测序(包括探针捕获测序和多重PCR扩增子测序)。不同的方法各有优势,可根据实际应用进行选择。图2 不同高通量测序方法的比较可供参考的建议如下:1. 对未知病原的发现及确认,首选宏基因组测序;2. 如需检测或研究样本中所有可能感染的微生物,比如诊断不明原因感染、混合感染、继发感染等,可以选择宏基因组测序;3. 如只需针对目的病毒进行检测,希望以较少的数据量获得目的病毒全长序列,可以选择靶向测序。测序数据量关于测序数据量,需结合具体的测序目的、测序方法、样本病毒载量等因素进行综合评估。通常,提高测序数据量,可以提高检测灵敏度,改善临床检测的阳性率。另外,提高测序数据量,可以提高数据覆盖度,病毒序列组装效果更好。以满足病毒基因组覆盖度95%,且单碱基深度10x为条件:如采用宏基因组测序,可根据使用的研究材料(即待检样本)的情况,选择测序数据量。病毒载量在104 copies/ml以上或qPCR定量CT值qPCR定量CT值在24.5~28.7范围的样本,推荐数据量为100Gb(PE100,500M reads)。对于病毒载量极低的样本(CT值>28.7),不建议使用宏基因组测序,可以采用多重PCR扩增子测序。如采用多重PCR扩增子测序,推荐数据量为5-20M。该方法也适用于病毒载量极低(<102copies/ml)的极端样本检测。注:推荐样本数据量仅供参考图3 基于测序方法及样本病毒载量的测序数据量选择测序读长如进行快速检测,可采用单端测序,推荐SE50/SE100读长,快速、经济;如需要进行病毒全长序列组装,建议使用双端测序,推荐PE100/PE150读长,测序数据质量高、Reads比对更好。图4 测序读长选择测序文库的处理针对病毒RNA测序,在文库制备过程中是否去除核糖体RNA(rRNA)也是一个值得探讨的问题。rRNA占总RNA的80%以上,去除人类rRNA可以提高有效数据利用率。同时也需要考虑样本情况:如果病毒核酸投入量低,以及放置时间久、降解严重的样本,去除rRNA可能会影响建库效果,可以选择不去rRNA,以提高建库成功率。图5 MGIEasy rRNA去除试剂盒测序平台的选择根据实验室样本规模,选择合适的测序平台。每个平台单次运行的样本数与测序方法、测序数据量相关。其中,宏基因组测序方法,一般以单个样本的数据通量100M reads为参考;多重PCR扩增子测序方法,以单个样本的数据通量>5M reads为参考。注1.以单个样本的数据通量100M reads为例;注2.以单个样本的数据通量>5M reads为例。图6 测序平台单次运行的样本数估算小贴士基于DNBSEQ平台的已发表文章目前,已有多篇基于DNBSEQ平台的新冠科研文章在Lancet、nature、Cell等顶级期刊获发。基于DNBSEQ平台的高通量测序技术助力新冠病毒科研攻关,得到了越来越多科研学者的认可。参考文献Multiple approaches for massively parallel sequencing of HCoV-19(SARS-CoV-2) genomes directly from clinical samples.
  • 中国:MERS病毒基因组测序已宣告完成
    6月10日信息显示,韩国目前中东呼吸综合征(MERS)确诊病例为108人,死亡9人,死亡率在7%左右。韩国病例数仅次于沙特,列世界第二。近期MERS在韩国连续报告多例病例,被隔离人员一天增加百余人,超1300所学校停课,民众如临大敌。而中国广州也确诊了首例韩籍MERS患者,中国赴韩旅行团出现退团潮。   MERS致死率高于SARS   在首例MERS确诊病例入境中国的消息披露后,这个在公众眼中显得颇为神秘的病毒引起了诸多关注甚至担忧。   据悉,引发MERS的是一种冠状病毒,可能来自骆驼。其临床表现和非典(SARS)很相似,都会出现发烧、咳嗽和急性呼吸窘迫综合症,有时还会伴有肾衰竭。令人惊讶的是MERS致死率竟比SARS高,大约为37%,2003年SARS流行时致死率大概是10%,低于禽流感和埃博拉的热出血。幸运的是,目前MERS与SARS相比,流行强度仍然很弱。   中国疾控中心近日透露,该中心病毒病所与广东省及惠州市疾控中心合作,已完成我国首例MERS病例的病毒全基因组序列测定。   序列分析结果表明,该病毒与当前中东地区MERS&mdash CoV(引起MERS的新型冠状病毒)流行株高度同源,根据遗传学相关分析初步推测,该毒株最终可能来源于中东地区的沙特阿拉伯。目前尚未发现与病毒传染性增强相关的明显证据,对于病毒基因组上少量基因变异和重组的生物学意义正在进一步分析。   专家介绍,通过检测、对比细菌或病毒的基因序列,可以追寻疫情发展的踪迹,破解细菌或病毒的性质、来源、传播力和毒力,从而找到有效的防控和治疗措施。   世卫在韩成立联合调查组   世卫组织总干事陈冯富珍近日表示,虽然韩国MERS疫情在医疗机构内扩散,导致确诊病例增多,但韩国可以采取有效措施防止疫情进一步蔓延。   陈冯富珍指出,韩国拥有先进的医疗设备,医务工作者水平较高,因此能迅速掌握MERS疫情动态。她说,世卫组织和韩国政府携手成立的调查组,从6月9日起对韩国政府的MERS防控措施进行评估,还将研究新的防控措施。   对于有效应对MERS疫情的方法,陈冯富珍指出,民众不要轻信谣言,要正确认识疫情和防控信息。韩政府需要减少收治MERS患者的医院数,减少民众与MERS患者的接触几率,降低疫情扩散风险。   陈冯富珍表示,韩国病人在医院住院治疗时,其家属时常到病房探望。她认为,这可能是MERS疫情在韩国医院内迅速扩散的主要原因之一。   对于世卫组织认为,韩国不必因MERS疫情作为限制旅行或封锁边境,陈冯富珍指出,目前没有证据表明MERS疫情已经在韩国社区内迅速或广泛扩散。   就针对MERS病毒的疫苗研发情况,她表示,世卫组织没有直接参与传染病疫苗的研发工作,但部分疫苗已处于临床试验阶段,世卫组织将积极鼓励研发机构开发针对MERS病毒的疫苗。   如何做好个人防护   目前尚无特效药和疫苗可以应对这种新型冠状病毒,不过,世卫组织呼吁大家不要恐慌,因为该病毒目前尚不具备持续人际传播能力。在个人防护方面,要注意以下几点:   首先,赴中东旅行时尽量避免与患病骆驼接触;进入骆驼棚、相关农场或市场的人,切记要在事后洗手;骆驼奶要加热饮用,骆驼肉也要烹熟再吃。   其次,勤洗手,避免用手直接触摸眼睛、鼻、口;外出时戴口罩,尽量避免密切接触有呼吸道感染症的人;老人及病人尤其要注意自身健康状况。   第三,旅行期间应注意保持均衡饮食,充足休息,不要过度劳累。尽量避免前往动物饲养、屠宰场所及野生动物栖息地。   第四,出现呼吸道异常症状要及时就医,打喷嚏、咳嗽或清洁鼻子后应彻底洗手。   第五,入境时有发热、咳嗽、呼吸急促等症状者,应主动说明并配合开展调查及相应医学检查。回国14天内,如果出现急性呼吸道感染症状应当及时就医,就诊时应戴口罩并避免乘坐公共交通工具前往医院。同时,主动告知近期旅行史,以便及时得到诊断和治疗。   我国首例韩籍病患情况渐稳   据广东省卫生计生委6月9日通报,在广东境内的75名中东呼吸综合征密切接触者无人出现不适,近日可全部结束隔离观察。同时,广东5月29日发布的确诊患者已连续4天无发热,血液及咽拭子标本检测中东呼吸综合征病毒核酸为阴性,病情逐渐稳定好转。   专家表示,目前,病人间中咳嗽,无明显咳痰,吸氧情况下无明显气促,胸片显示双肺仍然有炎症,渗出较前减少。病情整体趋于稳定,但仍需警惕合并感染及出现变化。治疗上根据中国工程院院士、呼吸道疾病专家钟南山等专家组意见适时调整治疗方案。   赴惠州指导救治的广州市第八人民医院传染病专科主任邓西龙表示,如果目前的情况能够持续好转,大约两周病人可以出院。   针对韩国近期以来疫情有扩散趋势,钟南山说,从已有病例看,中东呼吸综合征致死率较高。韩国首例病患的传染性很强,目前多数确诊病例都是被其传染的,后续如果再出现更多传染病例,那就值得高度警惕。   钟南山表示,从现阶段所掌握的情况看,MERS主要通过呼吸道传染,传染途径类似非典的喷嚏、飞沫传播,但通过空气传染的证据仍不充分。为此,做好输入性病例疫情防控,需要口岸部门和旅客两方面的共同努力。他说:&ldquo 各国来华人员应本着诚实负责的态度,入境时主动申报健康状况,不应该隐瞒任何信息,只有这样才能真正减少疫情在全球扩散传播的风险。&rdquo (MERS)
  • 国家生物中心:与美国同步共享5株新冠病毒基因组序列
    p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 国家生物信息中心(CNCB)/国家基因组科学数据中心(NGDC)首批自主收录的5株2019新型冠状病毒基因组序列实现与美国NCBI核酸数据库GenBank数据同步与共享。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " CNCB/NGDC建立的2019新型冠状病毒信息库(2019nCoVR)已汇交并整合全球范围内产出的82株病毒的87条非冗余基因组序列信息,是目前收录2019新型冠状病毒基因组数目最多的数据库。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 为了进一步扩大2019-nCoV基因组序列应用范围,CNCB/NGDC与国际生物信息数据库建立了数据同步共享机制,第一批自主收录的5个2019-nCoV全基因组序列(序列编号为GWHABKF00000000-GWHABKJ00000000)已经在NCBI发布。通过共享机制,国内研究人员只需将数据递交一次,即可实现数据在CNBC/NGDC和NCBI同时发布。 /span br/ /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 据悉,从2020年1月以来,陆续有30余株2019新型冠状病毒的基因组序列被国内外科学家破译,绝大部分数据都递交到由德国建立的全球流感序列数据库(GISAID)系统。而2020年1月22日,我国搭建的新型冠状病毒信息库正式上线。国家生物信息中心/国家基因组科学数据中心一直致力于构建国家级组学数据存储与共享公共平台,力争第一时间为国内乃至全球科学家提供基因组数据的存管用服务。此次疫情爆发后,新型冠状病毒信息库上线,保持该病毒基因组数据发布动态,持续为国内外科研人员提供方便快捷的数据检索及下载资源。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " & nbsp /span /p p br/ /p
  • 首个猴痘病毒基因组序列公布,mRNA疫苗开始研发
    然而,近期猴痘开始在欧洲和北美地区传播,自5月初欧洲报告猴痘病例以来,截至5月24日,已有19个国家报告了131例猴痘确诊病例和106例疑似病例。英国的首例病例确诊前曾前往尼日利亚旅游,但许多新增的确诊病例并未去过那里,这说明猴痘病毒已经开始社区传播。世界卫生组织(WHO)表示,此次猴痘疫情虽不寻常,但仍可控。WHO 也表示将进一步召开会议,为世界各国提供更多应对猴痘疫情的建议。猴痘是一种人畜共患病毒,主要在动物中传播,但多年来一直在非洲一些国家流行,到目前为止,欧美出现的病例大体上与旅行直接相关。而近期,猴痘病毒正在非洲以外国家开始传播。2022年5月19日,葡萄牙里斯本国立卫生研究院的 João Paulo Gomes 博士领导的研究团队向 virological.org 上传了首个猴痘病毒基因组序列,该病毒提取自当地猴痘确诊病例,并使用了牛津纳米孔公司的 MinION 进行测序。猴痘病毒属于痘病毒科的正痘病毒属,是一种有包膜的双链 DNA 病毒,基因组大小约为190kb。猴痘病毒基因组序列的确定有助于更好地了解其流行病学、感染源和传播模式,以及疫苗的研发。猴痘病毒电镜照片João Paulo Gomes 博士领导的研究团队还对猴痘病毒进行了系统发育分析,分析结果显示,此次欧美等地暴发的猴痘病毒属于西非进化支。目前猴痘病毒有两个进化支:西非进化支和中非进化支,其中中非进化支的死亡率高达10%,而西非进化支的死亡率约为1%。猴痘病毒系统发育分析系统发育分析还表明,此次疫情中传播的猴痘病毒与2018年和2019年从尼日利亚向英国、以色列和新加坡等几个国家传播的猴痘病毒关系最为密切。与此同时,世界领先的 mRNA 疫苗研发企业 Moderna 公司宣布将利用其 mRNA 疫苗研发平台开展猴痘 mRNA 疫苗的研发工作。Moderna 公司 Stéphane Bancel 表示,Moderna 在数字化、机器人和机器学习方面投入了大量资金,下一次暴发新疫情,能够将开发一款新疫苗的时间减半,只需20天时间。此外,国内已经有多家企业发布了猴痘病毒核酸检测试剂盒,可以快速检测出猴痘病毒。详情点击:猴痘或成为下一个“天花”?多家检测公司做出应对
  • 岛津着手研发“新型冠状病毒基因检测试剂盒”,为实现高效快捷检测做贡献
    岛津制作所已经着手研发“新型冠状病毒基因检测试剂盒”,本试剂盒可省去从样品中提取RNA的工序,因此,能实现高效快捷节省人力的检测。现在,正在为早日确立月产能数万人份的供应体制而努力。 当前利用基因扩增法(PCR法)的新型冠状病毒的检测,从鼻咽擦拭液等样品中提取RNA后进行提炼的工序不可或缺。人工提炼RNA的作业十分繁杂,约耗时30分钟,成为快速检测的一大障碍。我公司正在研发的“新型冠状病毒检测试剂盒”无需对RNA进行提炼,只需将样品与前处理液混合在一起,添加RT-PCR※1用反应试剂,让其发生反应,就能判定是否有病毒。 “新型冠状病毒基因检测试剂盒”是基于我公司独创的Ampdirect技术,遵循国立传染病研究所手册※2中的记载研发的。Ampdirect技术是一种“可解除蛋白质和多糖类等PCR阻碍物质的抑制作用,无需抽取、提炼DNA和RNA,即可将生物样品直接添加到PCR反应液中”的技术。目前,我公司已成功利用Ampdirect技术,研发出肠出血性大肠杆菌和沙门氏菌属、赤痢菌、诺瓦克病毒的检测试剂,并已投放市场,用于食品领域从业人员中的携带者筛查(化验大便)。今后,我们将在“实现检测省力化”、“缩短检测时间”、“降低检测成本”方面努力进行病原体检测试剂的研发,为防治传染病做贡献。 ※ 1逆转录-聚合酶链反应。是一种使用逆转录进行RNA扩增的手法。※ 2国立传染病研究所《病原体检测手册2019-nCoV》 注意:研发中的试剂为研究用试剂。未获得医药品医疗器械法规定的体外诊断用药的批准和认证。使用本试剂,需要具备用于基因扩增和检测的PCR装置及样品基因的操作技术,因此,未计划向个人和药店等零售店销售。Ampdirect技术的相关信息请参考:https://www.an.shimadzu.co.jp/bio/reagent/index.htm
  • 新一代基因测序仪器亮相进博!因美纳技术平台曾完成首个新冠病毒基因组序列测序
    2021年,是人类基因组计划草图首次发布的第20个年头,也恰逢中国“十四五”规划的开局之年。过去两年,基因测序技术在全球抗击新冠疫情中的重要作用揭示了生命科学时代的真正到来。与此同时,中国“十四五”规划将生物基因科技发展,公共卫生建设以及健康预防等内容提到了极为重要的位置,基因测序技术和应用均贯穿其中。自因美纳创立之初,公司即通过持续的技术创新不断推动测序成本的下降。如今,因美纳的技术已使测序成本下降了99%。此次进博会上,因美纳展示其主要的测序仪系列产品,让参观者得以了解基因检测的奥秘。图说:因美纳在进博会上展示其主要的测序仪系列产品 新民晚报记者 陶磊 摄(下同)去年,中国科学家向全球第一时间分享的首个新冠病毒基因组序列就是在因美纳的技术平台上完成测序的,为后续的疫情防控、疫苗研发奠定了基础。此次进博会展出的NextSeqTM 550Dx,是因美纳在全球最多国家和地区通过临床注册的中通量新一代测序平台(NGS),迄今为止已在超过40个国家和地区获得临床认证,是一款久经考验的临床测序平台。记者在展台看到,获得2021年红点设计大奖的基因测序平台——NextSeqTM 2000也收获了不少关注。这也是因美纳首个将文库扩增、测序以及快速基因组分析整合在一个平台上的测序仪。图说:参观者有机会获得互动纪念品——基因测序产品模型的盲盒去年进博会前夕,因美纳NextSeq 550Dx获得中国国家药品监督管理局的批准,用于临床人源样本的人类DNA检测诊断,成为因美纳在中国第二款获临床应用批准的测序产品。随着该产品在进博会的成功展出,在不到三个月内,首台NextSeq 550Dx即在上海复旦大学附属华山医院成功安装开机。未来,因美纳计划将包括测序试剂以及测序仪在内的产品逐步推进本土化生产制造。目前,位于上海浦东的因美纳中国生产基地正在积极筹备,预计将于明年第三季度投入生产。
  • 新冠病毒变化多端,基因测序怎么跟节奏?
    1月8日,在法国巴黎附近的阿尔福维尔专门设立的新冠疫苗接种中心,工作人员准备为医护人员接种新冠疫苗。本周法国加快疫苗注射,法卫生部长韦朗说,本周超过8万名老人和医护人员接种了新冠疫苗。 新华社发(奥雷利安莫里萨尔摄)在受到大规模全球紧急情况的挑战时,如何科学有效应对是全球面临的共同现实。新冠肺炎大流行为科学开启了巨大的机遇,并让科学在这之中充分发挥了作用。其中,以闪电般的速度开发疫苗就是核心技术能力的体现,基因组测序亦然。1月11日,世界卫生组织举行新冠肺炎例行发布会,总干事谭德塞表示,病毒传播得越广,变异的可能性就会增加。最关键的是,我们可以有效地对病毒进行测序,从而了解病毒是如何变化的以及我们该如何应对。虽然诊断工具和疫苗对当前的病毒仍然有效,但未来我们有可能需要进行调整。上周,世卫组织发布了一项全面的实施指南和风险监测框架,以帮助各国建立具有影响力的基因测序方案。基因测序利于追踪病毒和疫情防控这份针对基因测试实施的指南称,新冠病毒基因测序可以用于许多不同的领域,包括改进诊断、制定对策和疾病流行病学调查。疫情暴发早期,新冠病毒基因组序列的共享使分子诊断分析得以迅速发展,这提高了全球针对疫情的防备能力,并有助于各国制定对策。快速、大规模的病毒基因组测序有助于理解病毒流行的动态和评估防控措施的有效性。现在,科学的发展已经允许我们在病例确诊后数小时或数天内对新冠病毒进行测序。实时基因组测序能够为公共卫生部门对大流行的反应提供信息。越来越多的人认识到病毒基因组测序有助于促进公众健康。因此,也有更多国家的实验室在这一领域进行投资。然而,指南表示,基因测序涉及的成本和工作量是巨大的,各国实验室需要对这项投资的预期公共卫生回报有一个清晰的想法。指南还警示称,尽管基因测序有“把关人”的存在,但重要的是,那些制定目标、进行基因组分析和使用结果数据的人要意识到基因测序受某些力量主导而存在的局限性,以及潜在的偏见来源。基因测序实施需周密考虑和详细规划这份指南对各国如何实施基因测序给出了详细指导。指南称,在开始基因测序计划之前,重要的是要清楚地了解测序的目标、分析战略和如何利用研究结果为公共卫生反应提供信息的计划。新冠肺炎大流行的每个阶段都会提出对公共卫生至关重要的不同挑战,要想应对其中某些挑战,需要我们采取不同的基因组采样策略。关于实施基因测序的相关注意事项,指南称,基因测序目标的决定应该在包括所有利益相关者的高级代表的多学科框架内做出。同时,为确保可持续的支撑,应确定测序所需资金来源,包括专家人员、测序设备和消耗品的成本,以及处理和存储数据所需的计算架构。实验室也应仔细评估是否存在伦理方面的问题。此外,实验室还应对其选定方案中的每一步骤进行生物安全风险评估。在基因测序的目标方面,实验室应说明有关用于基因测序和样本选择方法的技术考虑。当前,有几种设备可用于新冠病毒基因组测序。由于每次读取数据的准确性、产生的数据量和周转时间的不同,每种设备在特定情况下或许都有一定的适用性。为实现基因测序目标,大多数情况下,病毒序列数据和样本元数据都是必需的。获取此类数据并将其转换为正确的分析格式可能需要大量资源,但是也有助于最大限度地发挥测序的潜在影响。此外,指南还提到,基因样本在运输、存储、检测中如何保存完整性、对数据结果如何科学分析和解释以避免误解都是需要考虑的。指南还表示,无论产生多少新冠病毒基因组序列,只有为随后产生和传播有用和及时的结果制定战略,它们才会对公共卫生产生积极影响。基因测序网络离不开全球共享与互补合作“如果我们想要更好地为未来的威胁做好准备,就必须将基因组测序加速整合到全球卫生界的实践中。”世卫组织传染病危害管理部门主管西尔维布莱恩德在这份指南的前言中称,“我们希望这一指导将有助于为准备工作铺平道路。”指南表示,许多分析依赖于将本地获得的病毒序列与全球病毒基因组多样性进行比较的能力。因此,适当地共享病毒基因组序列是至关重要的,例如在GISAID和GenBank等资料库中,全球共享数据正在进行时。指南鼓励各国加大互补合作,以确保最大限度地发挥现有能力。例如,一些国家可能需要提高建设相应实验室的能力,而另一些国家可能决定将实际基因测序工作外包,并将重点放在生物信息学、数据管理和数据解释上。“建立一个强大和有弹性的全球基因测序网络可以最大限度地提高测序对公众健康的影响,不仅对新冠病毒,对未来出现的病原体也是如此。”指南中写道。在11日的例行发布会上,谭德塞也表示,世卫组织呼吁所有国家增加对新冠病毒的基因测序并在全球范围内共享这些数据,以补充正在进行的监控、检查和检测工作。病毒无国界,它是我们全人类面临的共同挑战。世界各国是命运共同体,无人能置身其外,独善其身,只有联合起来,才能战胜困难。
  • Nature子刊:AAV病毒基因治疗艾滋病的首个临床试验结果公布
    艾滋病(HIV)是获得性免疫缺陷综合征的简称,由感染HIV病毒引起。HIV是一种能攻击人体免疫系统的病毒,它把人体免疫系统中最重要的CD4+T细胞作为主要攻击目标,大量破坏该细胞,经过数年、甚至长达10年或更长的潜伏期后发展成艾滋病病人,使人体丧失免疫功能,因抵抗力极度下降会出现多种感染,后期常常发生恶性肿瘤,以至全身衰竭而死亡。据联合国艾滋病规划署数据,目前全球范围内现存HIV携带者和艾滋病患者人数高达3800万人,且数量仍在快速增长中。2022年4月11日,美国国立卫生研究院(NIH)的研究团队在国际顶尖医学期刊 Nature Medicine 上发表了题为:Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial 的研究论文。诱导产生广泛中和抗体(bnAbs),是预防和治疗艾滋病的利器。该研究对8名感染了 HIV 的患者进行 AAV 病毒介导的基因治疗,通过 AAV 病毒递送编码强效广泛中和抗体(bnAbs)的 DNA,能够在体内长效产生广泛中和抗体,为艾滋病等疾病治疗带来新的有力工具。这也是首次通过 AAV 递送在人体内产生单克隆抗体。该研究招募了8名感染了HIV的患者,他们接受了至少3个月的抗逆转录病毒治疗。然后他们接受肌肉注射的 AAV8 递送的广泛中和抗体(AAV8-VRC07)治疗,治疗分三个给药剂量:5×10E10vg/kg、5×10E11vg/kg、2.5×10E12vg/kg。这项1期临床试验,主要终点是评估 AAV8-VRC07 治疗的安全性和耐受性,确定体内的药代动力学和免疫原性,并描述患者对 AAV8-VRC07 载体及其产物的免疫反应。次要终点是评估 AAV8-VRC07 对 CD4 T 细胞计数和 HIV 病毒载量的影响,并评估参与者体内产生的广泛中和抗体的持久性。结果显示,肌肉注射 AAV8-VRC07 是安全的且耐受性良好。1-3年随访期间,患者 CD4 T 细胞计数或病毒载量未发生临床显著变化。8名患者在注射后第6周和第52周时广泛中和抗体均增加,8人都产生了可测量的血清广泛中和抗体,其中有3人的最大抗体浓度超过1µg/ml。有4人的血清广泛中和抗体浓度在长达3年的随访中接近最大浓度并保持稳定。体内产生的广泛中和抗体的中和活性与体外产生的活性相似。这项研究表明,AAV 载体可以在体内持久产生具有生物活性、且难以诱导产生的广泛中和抗体,这位抗击艾滋病等传染性疾病增加了新的有力工具。更重要的是,这一 AAV 递送平台能够单次注射长时间产生抗体,可以使用 AAV 递任何所需的抗体的编码 DNA,从而用于治疗疟疾、新冠、艾滋病等各种传染性疾病,还可用作其他生物药的递送,治疗自身免疫病、癌症等各种疾病。
  • 16亿美元!拜登政府斥巨资加大新冠病毒检测和基因组测序力度
    白宫COVID-19应急小组周三宣布,拜登政府将提供16亿美元,用于扩大和改进新型冠状病毒检测和新冠病毒基因组测序。据美国白宫网站,白宫新冠检测协调员卡罗尔约翰逊(Carole Johnson)在当地时间17日举行的记者会上表示,美国卫生与公共服务部将斥资6.5亿美元用于测试,帮助学校重新开放,并覆盖此前接受服务不足的人群。白宫还将投资近2亿美元识别和跟踪新出现的变异新冠病毒,并投入8.15亿美元提高检测用品的生产力度。Carole Johnson指出,在非医疗环境下很难实施检测。该机构还将建立区域协调中心,以提高实验室检测能力,并将其与特定需要领域相匹配,帮助弥合这一差距。协调中心将与实验室合作,包括学术和商业实验室,收集标本、进行测试、并报告结果。美国卫生和公众服务部和国防部还将投资8.15亿美元,用于国内制造和增加测试用品,如吸液管尖端、含有测试试剂的注塑塑料和用于即时抗原测试的硝化纤维素。与此同时,美国疾病控制和预防中心将投资近2亿美元,扩大病毒的基因组测序,并检测新出现的变种。白宫表示,这笔资金将使测序工作增加三倍,从每周7,000个样本增加到每周约25,000个样本。约翰逊说,随着人数的增加,美国疾控中心将能够更快地识别出SARS-CoV-2的变种。疾病预防控制中心主任罗谢尔华伦斯基说,该机构每天都在加大测序的力度,达到2.5万份样本的目标不会立即实现。Walensky 说,该机构正在与各州、商业实验室和学术界合作,以增加测序样品的数量和地理多样性。除了更多的样本,华伦斯基说,该机构还需要计算和分析能力,以了解传入的信息。
  • 美格基因:低滴度新型冠状病毒样品的强化NGS技术助力轻症病例检测
    p style=" margin: 10px 0px line-height: 1.5em text-indent: 2em " 摘要:针对新型冠状病毒潜伏期和轻症病例,尤其是上呼吸道低滴度病毒的样品,经典的宏转录组测序方法仅能得到非常少的病毒序列。美格基因快速研发了针对新型冠状病毒高通量测序的优化技术(强化NGS技术)方案,可极显著地增加测序结果中目标病毒序列的占比,甚至可达到50%以上,部分样本可获得超过90%完整度的基因组。本项技术(强化NGS技术)不仅有助于疑似病例的筛查,更为重要的是,对于新型冠状病毒的溯源、变异和进化等研究具有重要价值。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2019新型冠状病毒疫情牵动了亿万人民的心,各行各业众志成城,共同抗击疫情。美格基因不断优化检测方法,快速响应研发了针对新型冠状病毒高通量测序的优化技术(强化NGS技术)方案。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(79, 129, 189) " strong 〖低滴度新型冠状病毒样品的强化NGS技术〗 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 对一种新病毒进行鉴定和检测,其中非常关键的步骤就是获得病毒的全基因组信息,在此次疫情中,推进确诊人数提升的节点也是根据2019-nCoV全基因组序列迅速建立起被称为金标准的核酸检测方法。除了使用核酸检测的方法对病例进行确诊之外,新型冠状病毒随着人群的传播是否会发生基因组变异也是防控部门密切关注的一个重要问题,因为基因组的变异可能会导致毒株的传播能力、致病能力和耐药性发生变化。从目前已经公布的早期样本的基因组数据来看,不同样本病毒序列之间的相似性超过99%,并未发生明显的变异。但是,对病毒基因组持续的跟踪监控必不可少。& nbsp /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 根据最新发表在《新英格兰医学杂志》的文章,通过高通量测序获得病毒全基因组使用了肺泡灌洗液和培养后的病毒样本。与新型冠状病毒结合的受体分布于人的下呼吸道,因此与上呼吸道样本(鼻拭子、咽拭子等)相比,下呼吸道样本尤其是肺泡灌洗液中的病毒滴度更高,有利于直接对RNA核酸样本进行高通量测序获取全基因组序列。培养后的病毒更是进行全基因组测序最理想的样本。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 608px " src=" https://img1.17img.cn/17img/images/202001/uepic/4e9fb4a1-aca4-4141-b328-6aa6d6b4bf03.jpg" title=" 99.jpg" alt=" 99.jpg" width=" 550" height=" 608" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 图1.& nbsp 2019-nCoV示意图和2019-nCoV和其他Betacoronavirus基因组系统发育分析,来源新英格兰医学杂志 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 从现有情况看,新型冠状病毒导致的症状轻重不一,重症和危重症的比例显著少于SARS。对基于RT-PCR技术的定性检测来说,上呼吸道样本和下呼吸道样本都可以用来提取核酸进行检测,官方指南建议优先使用下呼吸道样本,准确性更高。但是,并不是每个病例都能够采集到下呼吸道样本,处于潜伏期的人员或轻症病人,一般仅能采集到少量的上呼吸道临床样本。如果需要获得新型冠状病毒的全基因组序列,使用上呼吸道样本来做宏转录组测序,就会面临一定的困难,因为病毒核酸在总核酸中的含量可能非常低,按照随机测序的原理,导致测序结果覆盖到基因组的比例较低,甚至检测不到目标病毒序列。即使显著加大测序量,也无法得到理想的结果。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 针对这种情况,美格基因根据以往丰富的病毒基因组测序经验,快速研发了针对新型冠状病毒高通量测序的优化技术方案,先对核酸样本进行特殊的处理,对病毒序列进行特异性富集,再进行建库测序。根据实际样本的测试结果,优化的方案显著增加了测序结果中病毒序列的占比,甚至可达到50%以上,相较于经典的宏转录组测序方法,相同样本的基因组覆盖度也极大地得到了提升,理想的情况下可获得全基因组。而获得的病毒基因组越完整,越有利于后续的溯源、变异和进化等各种数据分析。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " *****************公司介绍*********************** /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " & nbsp & nbsp 广东美格基因科技有限公司成立于2016年8月,是一家专注于生命科学和前沿生物技术应用的国家高新技术企业。美格基因专注微生物组学领域,不断拓展基因组学在环境、生态、农业和医学健康领域的应用,持续开发国际领先的产品和服务,致力于成为全球领先的微生物组学产品和服务提供者。& nbsp /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(79, 129, 189) " strong 〖应对肺炎疫情,我们一直在努力〗 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 美格基因在国家应急部门公布2019-nCoV的全基因组序列之后,第一时间组织研发骨干力量,仅用5天时间即研制成功“新型冠状病毒(2019-nCoV)核酸检测试剂盒(基于Q-PCR法)”。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 目前,结合前期的系列技术与产品储备,美格基因已建立了基于快速检测试剂到检测配套的设备、仪器和物联网的荧光定量检测新型冠状病毒的整体解决方案。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 美格基因新型冠状病毒检测整体解决方案具有以下创新优势: /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " (1)一步法核酸提取试剂盒,样品前处理时间进一步优化;优化试剂配方和分装体系,简化配试剂流程(图2),仅需40分钟即可完成检测,同时兼具高特异性和高灵敏度的优势;自主研发生产仪器,大幅度降低仪器价格;简化仪器UI界面,统一程序设定,做到一键检测(图3);开发客户端,手机端APP,实现检测结果多端口推送,查看简便(图4)。解决检测系统下基层困难问题,可将检测服务覆盖到社区、村落。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " (2)将qPCR仪采集的数据信息,通过互联网技术及时上传至服务器,通过建立的监管系统可实现以下目的:①随时随地查看检测结果;②通过设置预警阈值,系统会自动提醒阳性的检测结果,便于及早发现危害;③系统实现多层级权限管理,可建立省市县镇多层级监管系统,实现检测结果的实时监管和数据的自动上报,便于疫病防控的便捷化管理;④系统自动生成系列报表,充分发挥大数据在疫病防控监管中作用,实现疫病检测的数字化管理(图5)。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " (3)易用:全自动化检测,只需人工加入样品,一键式全程自动化检测及判读结果。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 283px " src=" https://img1.17img.cn/17img/images/202001/uepic/146b6b22-a7f0-4476-9e46-7ba523d9c6b4.jpg" title=" 88.jpg" alt=" 88.jpg" width=" 550" height=" 283" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 图2. 新型冠状病毒(2019-nCoV)核酸检测试剂盒(Q-PCR法) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/d35147ba-9579-4742-89b1-0bacf4a5743c.jpg" title=" 77.png" alt=" 77.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 图3. 新型冠状病毒(2019-nCoV)核酸检测设备 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 186px " src=" https://img1.17img.cn/17img/images/202001/uepic/8bc1a097-c61a-43c2-a488-e12633068c42.jpg" title=" 66.png" alt=" 66.png" width=" 550" height=" 186" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 图4. 新型冠状病毒(2019-nCoV)核酸检测手机监测端 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 295px " src=" https://img1.17img.cn/17img/images/202001/uepic/30ec997a-df7d-4666-bdf7-5115cf8fc33a.jpg" title=" 55.png" alt=" 55.png" width=" 550" height=" 295" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 图5. 新型冠状病毒(2019-nCoV)核酸检测物联网监测平台(示意图)& nbsp /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 美格基因自成立以来始终聚焦于微生物领域,专注以高科技的解决方案为人类健康、生态环境保护创造一流的产品。正值新型冠状病毒感染的肺炎疫情防控关键时期,美格基因立即行动、众志成城,现公司的新冠状病毒检测试剂盒与设备已进行批量生产,将全力保障供应,与奋战在一线的医护人员、科研人员一起开展各类防治工作,共同抗击疫情。 /p
  • 【时事新闻】赛默飞助力完成两例寨卡病毒全基因组序列测定
    2016年2月26日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日凭借Ion Torrent半导体测序平台在高通量测序上的领先技术和卓越性能,先后帮助中国疾控中心和解放军军事科技院从血液和尿液中成功获得寨卡病毒全基因组序列。这两例病毒全基因组序列的测定为寨卡病毒的溯源和进化提供了重要证据;同时对于后续诊断试剂、药物和疫苗的研发具有深刻意义。 “从先前的H1N1禽流感、埃博拉,到现在的寨卡疫情,赛默飞一直坚守在疫情检测的第一防线。我们很高兴可以与中国科学家们一起率先在全球寨卡疫情防控中取得重大突破,” 赛默飞中国区总裁江志成表示:“通过赛默飞的高通量测序Ion Torrent平台及超高重扩增技术-AmpliSeq技术,我们成功帮助科学家加速实现了病毒基因组序列的测定,为这一疫病的有效治疗奠定了基础。今后,赛默飞将继续通过创新科技服务中国疾病诊断领域,实践对中国市场的承诺。” 寨卡病毒目前引起国际社会的广泛关注,截至目前,中国已确诊五例输入性寨卡病毒感染病例。目前有本地传播病例的国家和地区已达36个,包括2016年奥运会承办国巴西和其他多个美洲国家。---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 【安捷伦】鉴定新型冠状病毒,宏基因组二代测序(mNGS)技术十分关键!
    自 2019 新型冠状病毒(2019-nCoV)肺炎疫情爆发以来,相关科研单位便紧锣密鼓地开展病毒研究工作,并取得了一系列重要的研究成果。2 月 3 日,Nature 在线发布了复旦大学张永振教授团队的一项重要研究成果,该团队对患者支气管肺泡灌洗液进行了宏基因组二代测序(mNGS),鉴定出了一种新型冠状病毒,并发现该病毒基因组与蝙蝠体内发现的 SARS 样冠状病毒基因组有 89.1% 的相似性[1]。张永振教授团队发表的文章截图 | 图源:Nature2 月 20 日,bioRxiv 预印本平台发布了华南农业大学沈永义教授、肖立华教授团队关于新冠病毒中间宿主的研究成果。通过对穿山甲样品进行宏基因组分析,该团队发现穿山甲为新型冠状病毒潜在中间宿主[2]。沈永义教授、肖立华教授团队发表的文章截图 | 图源:bioRxiv可以说,宏基因组测序在新病原体的诊断、监测、跟踪,以及溯源方面具有关键作用,更是新冠病毒研究的一大助力。宏基因组测序:病原体检测的新风口1998 年,威斯康辛大学的 Jo Handelsman 提出宏基因组学(Metagenomics)的概念,并将其定义为:一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系、以及与环境之间的关系为研究目的的新的微生物研究方法[3]。包括宏基因组学在内的各类组学研究(右)相较传统遗传学与生物化学方法(左)在全基因水平的研究上效率更高 | 图源:Science2014 年,新英格兰医学杂志发表宏基因组二代测序(mNGS)确诊钩体病的首例临床应用案例[4],打响了病原体 mNGS 的第一枪。新英格兰医学杂志发表宏基因组二代测序(mNGS)确诊钩体病的文章截图 | 图源:NEJM短短 5 年来,mNGS 在新发病原体鉴定、罕见重要病原体诊断和临床大数据研究等方面取得诸多进展。例如在 2018 年,Clinical and Research in Hepatology and Gastroenterology 发布了上海华山医院感染科张文宏教授团队使用 mNGS 协助临床诊断肝结核的案例,mNGS 的适时使用,准确快速地帮助临床明确了患者的发热病因,推动了临床的精准诊断[5]。张文宏教授团队发表文章截图 | 图源:ScienceDirect2019 年,中国临床专家也达成共识,认可了宏基因组分析和诊断技术在急危重症感染领域的临床应用[6]。临床专家共识文章截图 | 图源:万方宏基因组二代测序的流程及原理宏基因组二代测序的检测流程可以大致分为5个步骤:核酸提取、文库构建、上机测序、生物信息学分析与报告解读[7]。具体来看,对于不同的临床样本,核酸提取前需要进行不同的前处理,比如痰液液化、破壁、去宿主等以提高病原体检出率。RNA 病毒需要在文库构建前进行逆转录,生成 cDNA。文库构建的目的在于给未知序列的核酸片段两端加上已知序列信息的接头以便于测序,单样本文库构建完成后需要经历 PCR 扩增、再将多个文库样本混合后进行测序。测序完成后,数据会自动进入搭建好的病原体自动分析流程,该流程包括去除人源宿主序列和低质量序列、以及微生物数据库比对注释等步骤。最后,解读专家根据自动化系统产生的初步结果,再结合部分临床指标、样本类型、病原体种类等因素进行综合分析解读。宏基因组工作流程示意图 | 图源:Nature Biotechnology样本文库质量是宏基因组测序的关键由于环境中的微生物种类五花八门,相对复杂,构建一个高质量的宏基因组文库在整个检测流程中便显得十分重要。故而在取样时,我们要严格遵循取样规则,在取样中应尽量避免对样本的干扰,缩短保存和运输的时间,使样品尽可能代表自然状态下的微生物原貌。并且要采用合适的方法,既要尽可能地完全抽提出环境样品中的 DNA/RNA,又要保持较大的片段以获得完整的目的基因或基因簇。在构建 RNA 文库之前需要对 RNA 样本进行完整性评估[8],只有达标的样本才能进入下一阶段反转录及文库构建。宏基因组文库的质量直接关系到测序的数据量,在影响成本的同时也影响了测序时间,因此,为了提高测序准确性、减少测序过程中的风险,测序前需要测定文库样品的浓度和片段大小分布,确定合适的上机 pooling 方案和测序深度。可见样本的质量控制对于宏基因组测序的重要性。安捷伦自动化样本质控解决方案安捷伦在核酸蛋白质量控制领域拥有愈二十年的经验,针对不同来源样本,分析靶标和通量需求提供全套的自动化解决方案。安捷伦的 2100 生物分析仪是目前最为普遍使用的二代测序质控设备。安捷伦在 2100 生物分析仪上最早开发出了 RNA 完整性参数(RIN),它已成为全世界公认的 RNA 质控指标,它以 0-10 的数值直观反应 RNA 样本的完整性程度,为标准化的实验操作提供了样本质量评估的参考标准。在本次新冠病毒(RNA 病毒)的序列确定中,安捷伦 2100 生物分析仪发挥了重要作用。随着测序样本量的增加,特别是随着后续病毒变异监测以及病毒溯源工作的逐步展开,安捷伦中-高-超高通量自动化核酸质控平台(4200 tapestation 和 AATI FA)将发挥它们的优势。参考文献[1] Yong-Zhen Zhang , Edward C. Holmes,Lin Xu,et al. A new coronavirus associated with human respiratory disease in China[J].nature,2020.[2] Xiao K, Zhai J, Feng Y, et al. Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins[J]. bioRxiv, 2020.[3] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chemistry & biology, 1998, 5(10): R245-R249.[4] Wilson M R, Naccache S N, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. New England Journal of Medicine, 2014, 370(25): 2408-2417.[5] Jing-Wen A , Yang L , Qi C , et al. Diagnosis of local hepatic tuberculosis through next-generation sequencing: Smarter, faster and better[J]. Clinics and Research in Hepatology and Gastroenterology, 2018, 42(3):178-181.[6] 宏基因组分析和诊断技术在急危重症感染应用专家共识组. 宏基因组分析和诊断技术在急危重症感染应用的专家共识[J]. 中华急诊医学杂志, 2019, 28(2):151-155.[7] Quince C, Walker A W, Simpson J T, et al. Shotgun metagenomics, from sampling to analysis[J]. Nature biotechnology, 2017, 35(9): 833.[8] Fan W, Su Z, Bin Yu, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature. 2020 Feb 3. [Epub ahead of print]推荐阅读:1. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手!https://www.instrument.com.cn/netshow/SH100320/news_521879.htm2. Agilent 2100 生物分析仪https://www.agilent.com/zh-cn/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument/2100-bioanalyzer-instrument-228250关注“安捷伦视界”公众号,获取更多资讯。
  • 基因测序让新型冠状病毒现出原形!华大智造携多款超高通量测序仪助力疫情研究
    p style=" user-select: text text-indent: 2em " span style=" text-indent: 2em user-select: text " 武汉新型冠状病毒肺炎疫情当前,速度就是生命。2020年1月26日,国家药品监督管理局应急审批通过4家企业新型冠状病毒检测产品。其中,华大智造超高通量测序仪DNBSEQ-T7获得国家三类医疗器械许可。 /span /p p style=" text-indent: 2em user-select: text " MGISEQ-2000助力发现新型冠状病毒踪迹 span style=" color: rgb(192, 0, 0) user-select: text " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 436px " src=" https://img1.17img.cn/17img/images/202001/uepic/541650b8-83b6-4cc9-b28d-220472d707fe.jpg" title=" mmexport1580214452357.jpg" alt=" mmexport1580214452357.jpg" width=" 600" height=" 436" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em user-select: text " 2018年6月,华大智造MGISEQ-2000测序仪获得国家药品监督管理局批准,此后被广泛应用于临床疾病基因检测。MGISEQ-2000是一款全面灵活型的测序平台,能够灵活支持多种不同的测序模式,能够在较短时间内完成完整的测序流程。2019年12月,武汉华大也成为最早检测到新型冠状病毒(2019-nCoV)感染肺炎病例的机构之一,为后续病毒基因组序列组装以及快速检测试剂盒研发提供了重要依据。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 800px " src=" https://img1.17img.cn/17img/images/202001/uepic/01df501a-6fe0-4ef0-ba47-96db81f367e1.jpg" title=" mmexport1580214447053.jpg" alt=" mmexport1580214447053.jpg" width=" 600" height=" 800" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em user-select: text " DNBSEQ-T7获批,超高通量支援疫情& nbsp /p p style=" user-select: text text-indent: 2em " 基因测序,是让病毒“现出原形”最为准确可靠的办法,也是能够动态追踪病毒变异的唯一方法。在疫情攻坚的特殊时期下,DNBSEQ- T7测序系统准确,快速,超高通量的特点,在特殊时期发挥了关键作用——正是依托DNBSEQ-T7高效、准确的测序能力,华大第一时间获得病毒的全基因组,这也为后续开发出敏感特异的RT-PCR试剂盒提供了有效依据。此前,DNBSEQ-T7已获得CE-IVD认证,在科研市场也已批量投入使用,此次DNBSEQ-T7通过应急审批获得国家三类医疗器械许可能够有利支持未来疫情防控。当下随着疫情发展,新型冠状病毒待确诊样本量骤增,DNBSEQ-T7测序仪作为目前全世界日通量最高的测序仪,能够快速检测并获得病毒基因组完整序列信息。 /p p style=" text-indent: 2em user-select: text " 从性能上看,DNBSEQ-T7可在20小时内完成PMseq-新型冠状病毒整个检测流程(从样本提取到结果报告),每次运行样本检测通量为50-200个,每个样本可获得平均100M以上数据产出,以此确保高准确度的新冠状病毒检测结果。此外,基于宏基因组测序的检测能监测病毒可能发生的变异,为深入研究病毒致病机理和传播途径,更好指导后续防控和疫苗开发提供支持。 /p p style=" text-indent: 2em user-select: text " 基于DNBSEQ-T7平台,搭配生信分析系统实现多重感染或继发感染病原并行检测,提供更完整的感染的病原信息,能够更快速全面对患者致病原因进行检测;搭载华大智造相关自动化样本制备系统,则可进一步提升送检样本检测效率。 /p p style=" text-indent: 2em user-select: text " 目前华大智造已紧急部署2台DNBSEQ-T7运达武汉,用于应急检测病原。在国家疾病预防控制中心以及湖北省疾病预防控制中心组织协调下,DNBSEQ-T7已在武汉完成数百例样本检测,协助武汉新冠肺炎防控以及病毒变异追踪。& nbsp /p p br/ /p p style=" text-indent: 2em user-select: text " 多款测序仪有力出击,为新型冠状病毒检测提供检测利器 /p p style=" user-select: text text-indent: 2em " 为应对疫情防控,目前华大智造也积极和各地疾控中心紧密合作,通种地通量测序系统MGISEQ-2000和MGISEQ-200,快速对各地疑似患者进行宏基因组测序分析,凭借数据质量准确稳定和通量灵活等特点,在多地为新冠状病毒疫情的科学临床防控提供有力的平台支撑。在疫情发生期间,物流运输和技术支持不间断提供服务,确保各地检测第一时间顺利开展,在最短时间产出高质量的测序数据。 /p p style=" text-indent: 2em user-select: text " 疫情攻坚,需要多方力量共同努力,作为国产生命科学仪器设备研发生产制造的新生力量,华大智造作将为疫病防控,包括科学研究和临床检测提供全力支持,尽最大努力,以最快速度提供测序设备和试剂支援支持,战胜疫情,共克时艰。 /p
  • 中国科学家发现新冠病毒mRNA合成、基因组复制矫正等分子机制
    新冠病毒肺炎疫情至今已造成全球1.4亿人感染和300余万人死亡。随着疫情进展,突变病毒株不断出现,对中和抗体和疫苗的防护效果提出了严重挑战,迫切需要针对各型突变株中高度保守的转录复制过程开展深入研究,阐明关键药物靶点的工作机制,发现能够有效应对各种突变株的抗病毒药物。 新冠病毒是目前已知RNA病毒中基因组最大的一种病毒(约30 kb),其基因组编码了一系列非结构蛋白,并按照一定的空间和时间顺序,形成复杂的超分子蛋白质机器“转录复制复合体”(RTC),负责病毒转录复制的核心过程,包含了众多保守的抗病毒药物设计的关键靶点。由于基因组极大,同时聚合酶复制保守性较差,新冠病毒进化出一种独特的“复制矫正”(proofreading)机制,利用转录复制复合体中关键的nsp14蛋白对复制过程进行矫正,一旦发现聚合酶合成了错误配对的碱基,立刻通过nsp14具有的外切核酸酶(ExoN)将错误碱基处理掉,保证复制的准确进行,这也是病毒逃逸核苷类抗病毒药物的关键途径。同时,nsp14是一个独特的双功能蛋白,除负责复制矫正的外切核酸酶外,还拥有一个N7甲基化酶(N7-MTase),负责mRNA加帽过程关键的第三步催化反应。复制矫正和加帽过程如何进行,特别是两个截然不同的生化过程如何在一个nsp14蛋白中协同作用,是20多年来冠状病毒研究领域中最关键的几个“未解之谜”之一。 2021年5月24日,清华大学饶子和院士、娄智勇教授团队与上科大高岩博士合作在Cell发表研究论文Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis,解析了新冠病毒超分子蛋白质机器“转录复制复合体”关键状态的三维结构,揭示了病毒mRNA加帽、基因组复制矫正、逃逸核苷类抗病毒药物的分子机制。这是该团队在新冠病毒转录复制复合体研究中,继在Science、Cell等期刊上连续发表4项成果后的又一重要工作。 新冠疫情爆发后,清华大学饶子和院士、娄智勇教授团队针对新冠病毒转录复制机制开展的深入研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在此基础上,研究团队成功解析了Cap(-1)’-RTC与nsp10/nsp14形成的超级复合体Cap(0)-RTC的三维结构(图1)。 图1 新冠病毒Cap(0)-RTC的工作机制 在该复合体中,nsp9蛋白发挥了“适配器”(adaptor)的作用,通过与nsp14蛋白相互作用,将nsp10/nsp14复合体招募到Cap(-1)’-RTC中,从而利用nsp14的N7甲基化酶结构域完成mRNA加帽过程的第三步关键反应。尤为重要的是,研究团队发现Cap(0)-RTC在溶液状态下会形成稳定的同源二聚体。在二聚体中,解旋酶nsp13通过其1B结构域的重大构象变化,引导模板核酸链反向移动,引发产物链backtracking机制,从而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心,完成错配碱基的矫正过程(图2)。 图2新冠病毒复制矫正的in trans backtracking机制 这一发现所提出的in trans backtracking的复制矫正机制,与真核/原核细胞RNA聚合酶Pol II的复制矫正机制具有一定的类似性,表明作为基因组最复杂的RNA病毒,新冠病毒的转录复制过程已与高等生物具有一定的类似性,阐明了冠状病毒研究领域20多年来悬而未决的关键科学问题。同时,复制矫正机制是新冠病毒逃逸核苷类抗病毒药物(如瑞德西韦)的关键机制,一旦核苷类药物被加入RNA产物链中,即会被病毒的复制矫正过程去除,从而丧失抑制活性,目前仅有NHC及其衍生物可以逃逸该过程。该成果也将对未来进一步优化和发展新型核苷类抗病毒药物提供关键的结构基础。 该成果的获得得益于研究团队在冠状病毒转录复制领域中17年多的长期积累。自新冠疫情发生后,研究团队系统研究了新冠病毒转录复制过程,阐明了关键药物靶点蛋白主蛋白酶Mpro和转录复制复合体多个状态三维结构,为认识病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell上[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 清华大学饶子和院士、娄智勇教授/ChangJiang学者特聘教授和上海科技大学的高岩博士为共同通讯作者,清华大学医学院和生命学院的闫利明博士、杨云翔博士,以及博士生李明宇、张盈、郑礼涛、葛基、黄雨岑、刘震宇为共同第一作者。 专家点评(一) 钟南山(中国工程院院士) 从“非典”到“新冠”,科学依靠坚守 基础研究是科技创新的源头,是人类认识自然、适应和改造自然的知识源泉,需要科学家长期的坚守和耕耘。 自2003年“非典”开始,在不到20年的时间里,全球已经出现了3次由冠状病毒导致的传染病。尤其是此次新冠疫情,在全球已经造成超过1亿多人感染,而且随着疫情发展,突变病毒不断出现,一些已有的中和抗体不能很好的中和突变病毒,部分疫苗针对突变病毒的保护效果也有一定程度下降。深入认识病毒的生命周期,开发能够有效应对各种突变病毒的广谱抗病毒药物,将成为今后一段时间抗疫工作的重点内容之一。 目前针对新冠病毒的抗病毒药物研究,主要针对的是病毒转录复制过程的关键靶点蛋白,如蛋白酶和聚合酶等。针对这两个靶点的抑制剂已有相当数量的进入临床实验,例如瑞德西韦(Remdesivir)等。以瑞德西韦为代表的核苷类抗病毒药物主要作用于病毒的聚合酶,在被掺入产物核酸链后,阻断病毒核酸的合成,进而抑制病毒的转录复制过程。然而,在此类抑制剂进入临床研究后,其抗病毒效果与预期有一定差距。除药物代谢等问题外,冠状病毒通过特有的“复制矫正”(proofreading)机制逃逸核苷类抗病毒药物的抑制,可能是此类抗病毒药物抑制效果不佳的一个重要原因,目前仅有NHC及其衍生物能够躲避病毒复制矫正机制的干扰。对这个机制开展深入研究,将为今后发展广谱、高效的抗冠状病毒药物提供关键的科学信息。 子和教授及其团队在新冠疫情爆发后,针对新冠病毒转录复制机制开展了系统研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在这些工作的基础上,他们又在世界上第一次成功组装成含有形式复制矫正功能的nsp14蛋白的超分子机器Cap(0)-RTC。通过结构分析,他们发现在Cap(0)-RTC形成的同源二聚体中,解旋酶通过自身构象改变,引导模板核酸链反向移动,引发产物链“回溯”(backtracking)机制,进而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心。复制矫正机制是新冠病毒逃逸核苷类抗病毒药物的关键机制,一旦核苷类药物被加入RNA产物链中,在其被聚合酶感知为“错配碱基”后,立刻会被病毒的复制矫正过程去除,从而丧失抑制活性。他们的研究工作,为我们生动展现了这一过程的可能机制。复制矫正的回溯机制,是从低等到高等生物细胞保证基因复制准确性的重要机制,但在病毒中以往还没有发现此类机制。这一研究成果不但发现病毒中的类似机制,是认识生命进化的重要成果,而且为进一步优化和发展新型核苷类抗病毒药物提供了关键的结构基础。 子和教授自2003年SARS爆发后,就一直在冠状病毒转录复制机制研究领域开展工作,至今已坚持了18年。2003年SARS疫情爆发期间,我当时即已了解子和教授在SARS病毒的一系列成果,智勇教授那时才刚刚开始博士阶段的学习。子和教授的研究组在国际上率先解析了SARS-CoV主蛋白酶的三维结构[6],并研发了一系列高效抑制剂[7],他们当时在转录复制复合体上的研究[8]至今仍被国际同行认为是冠状病毒转录复制复合体机制研究的“开篇之作”。这些积累,为新冠疫情爆发后他们在新冠病毒基础研究中取得的一系列重要成果奠定了坚实的基础,通过阐明新冠病毒主蛋白酶和转录复制复合体多个状态的三维结构,为认识该病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 2020年9月11日,习近平总书记在科学家座谈会上总结了新时代科学家精神,强调要有勇攀高峰、敢为人先的创新精神,追求真理、严谨治学的求实精神,淡泊名利、潜心研究的奉献精神,集智攻关、团结协作的协同精神,甘为人梯、奖掖后学的育人精神。18年来,子和教授的团队中有100多人先后参与冠状病毒研究,累计发表50余篇研究论文,引用超过6000余次,均篇引用超过100次,一批早期参与的俊彦陆续成长为国家科研骨干。科学依靠坚守,子和教授团队在冠状病毒的奋斗历程,对科学家精神做了一个很好的诠释。 专家点评(二) 康乐(中国科学院院士) 从结构生物学角度认识新冠病毒的转录复制机制 新冠病毒造成的疫情,是近一个世纪以来人类面对的最大的一次公共卫生事件,深入研究病毒生命周期的分子机制,是认识病毒特征、研发抗病毒手段的关键所在。新冠病毒非常特殊,它的基因组是目前已知RNA病毒中基因组最大的一种,其生命过程所涉及的分子机制也非常复杂。新冠病毒通过两个机制保证蛋白质翻译和相对准确的转录复制过程,一是要在病毒mRNA前端加上一个帽结构(cap),用于维持mRNA的稳定性和蛋白翻译的有效进行;二是通过一个独特的“复制矫正”(proofreading)机制,对病毒基因组的复制实施控制,一旦发现核酸中的错配碱基,随时进行修正。病毒转录复制复合体上的nsp14蛋白参与了这两个关键过程,可通过其C端的N7甲基化酶完成mRNA加帽过程的第三步催化反应,同时还可通过其N端的外切核酸酶完成复制矫正过程。这一现象在“非典”病毒(SARS-CoV)即已发现,但20年来一直无法回答两个截然不同的过程如何由一个蛋白来协同执行,是冠状病毒研究领域中多年来关注的核心基础生物学问题之一。 清华大学饶子和教授、娄智勇教授团队与上海科技大学合作在Cell发表的这一工作,解析了两种不同状态的“Cap(0)转录复制复合体”Cap(0)-RTC的三维结构,发现在转录复制复合体中,病毒编码的nsp9蛋白发挥了“适配器”(adaptor)的作用,将nsp10/nsp14形成的复合体招募到聚合酶上,与聚合酶上的NiRAN结构域共同形成一个“共转录加帽复合体”(Co-transcriptional Capping Complex, CCC),展示了mRNA加帽过程中,mRNA 5’端在多个关键酶分子之间的传输路径,第一次明确揭示了基因组超大的RNA病毒是如何将以聚合酶为中心的“延伸复合体”(Elongation Complex, EC)与“加帽复合体”连接起来。更加重要的是,他们在研究中发现Cap(0)转录复制复合体在溶液状态下会形成稳定的同源二聚体,通过深入研究该二聚体的结构,提出了冠状病毒复制矫正中称之为反式回溯(in trans backtracking)的机制。进一步的研究发现,在二聚体中,一个Cap(0)转录复制复合体的聚合酶催化中心与另一个Cap(0)转录复制复合体的nsp14外切核酸酶结构域催化中心相对,使合成的产物RNA 3’末端能够通过回溯的方式传输到nsp14外切核酸酶结构域进行加工。同时,他们还发现解旋酶nsp13的1B结构域发生了重大构象变化,并通过与模板核酸链的作用,引导模板核酸链反向移动,引发产物链回溯机制。值得指出的是,通过回溯的方式进行复制矫正,在真核/原核细胞中广泛存在,但是在病毒中还是第一次观察到此类机制。虽然该过程与真核/原核细胞Pol II转录过程的复制矫正机制具有一定类似性,但在Pol II的研究中,并未观测到蛋白具有巨大的构象变化,因而Pol II中回溯的驱动力也不是十分明确,而该工作表明解旋酶通过构象变化提供了回溯的驱动力,为深入理解这一基础生物学过程提供了重要的范例。
  • H7N9禽流感病毒来源初定
    基因重配模式初步揭示,病毒可能来自于欧亚大陆迁徙至东亚地区的野鸟所携带的禽流感病毒和中国上海、浙江、江苏等地的鸭群和鸡群所携带禽流感病毒发生的基因重配。   近日,中国科学院微生物研究所病原微生物与免疫学重点实验室(CASPMI)研究人员对人感染H7N9禽流感病毒基因进行分析,初步揭示了病毒可能来自于欧亚大陆迁徙至东亚地区的野鸟所携带的禽流感病毒和中国上海、浙江、江苏等地的鸭群和鸡群所携带禽流感病毒发生的基因重配。   祸起鸟禽病毒基因重配   “病毒重配是自然界很常见的现象,不同病毒可以通过宿主之间的接触交换其基因片段。”4月9日,中国科学院微生物研究所病原微生物与免疫学重点实验室副主任刘文军在接受《中国科学报》记者采访时说。   该实验室对中国疾病预防控制中心(CDC)提供的H7N9病毒基因数据进行的分析结果显示,在H7N9病毒的8个基因片段中,H7片段来源于浙江鸭群中分离的禽流感病毒,并可追溯至东亚地区野鸟中分离的相似病毒 N9片段与东亚地区野鸟中分离的禽流感病毒同源。其余6个基因片段(PB2、PB1、PA、NP、M、NS)来源于H9N2禽流感病毒。据病毒基因组比对和亲缘分析显示,H9N2禽流感病毒来源于中国上海、浙江、江苏等地的鸡群。   “此次疫情之所以发生在长三角地区,可能是因为欧亚大陆迁徙至韩国等东亚地区的携带H亚型(包括H7N3和H7N9亚型禽流感病毒)的野鸟经过中国长三角地区时,接触到浙江鸭群,病毒产生重配使鸭群携带H7亚型病毒,并和浙江、上海等地携带H9N2禽流感病毒的鸡群接触,最终基因重配成为新型禽流感病毒H7N9。”CASPMI从事生物信息分析的副研究员刘翟在接受《中国科学报》记者采访时说。   对于此前有媒体称H7N9病毒是“中韩混血”,刘文军纠正说,野鸟是不断迁徙的,没有国籍,不能说H7N9病毒是两国混血。   该团队的研究结果还显示,H7N9禽流感病毒暂未发现在猪群中进化的痕迹,猪在这次病毒基因重配中未发挥中间宿主作用。这一结果也否定了此前一些人关于H7N9病毒可能来源于黄浦江死猪的猜疑。   死亡率高或因病毒变异   这种在禽类身上呈现低致病性的病毒,在人身上却极具破坏力,病毒会在人的肺部疯狂复制,导致病情发展迅速,死亡率也很高。   “血凝素(HA)像一把钥匙,使病毒获得入侵人类或牲畜细胞的通道 神经氨酸酶(NA)帮助病毒破坏细胞受体,并使新复制合成的病毒扩散 剩余的6个基因片段协作,完成病毒大量在细胞体内复制的过程。”刘翟解释说。   刘翟表示,三个步骤的配合缺一不可,哪一个失衡,都可造成病毒力量弱化,不足以对人体起到杀伤作用。但不幸的是,在新型的H7N9禽流感病毒中,这三个步骤高效配合,也因此对人体造成了极大破坏。   该实验室研究人员表示,新型H7N9禽流感病毒感染人类,并导致高死亡率,可能源于病毒变异。目前已观察到N9的变异,其基因片段比一般的N9基因片段短一些,但尚不知这种变异导致何种具体后果。   而在此次的研究过程中,H7基因片段和惯常的H7并未有太大不同。但在决定人—禽受体结合的特异性上,出现了关键氨基酸的变化。这种变化对人的影响有待进一步的科学评估,因为此前H7亚型禽流感病毒感染人的案例曾有发生。   疫苗不能滥用   据了解,禽类中HA共有16种亚型,NA有9种亚型,两者可以组合成144种不同的病毒亚型,目前已发现130余种。   刘文军指出,要想研究出针对各类流感的疫苗仍存在困难。因为流感变异速度非常快,很难预测会发生哪些变异。同时,疫苗也不能滥用,否则可能会加快病毒变异速度。   然而,他指出,流感病毒研究的重要性并不亚于艾滋病或乙肝。流感病毒可能通过飞禽、家畜家禽等多种宿主来传播,很难切断其中任何一种传播途径,主动预防非常困难。   流感病毒对人类危害非常大。如1918年至1919年西班牙型流行性感冒就曾导致全世界约10亿人感染、2500万到4000万人死亡。   对于下一步的研究,刘文军表示,CASPMI将继续追踪研究H7N9的感染机制,为下一步防控工作提供理论基础。
  • 国内埃博拉病毒检测试剂问世
    8月13日讯 记者今天从华大基因科技有限公司(以下简称华大基因)获悉,该公司联合军事医学科学院微生物流行病研究所,成功研制出埃博拉病毒核酸检测试剂,现已向国家食品药品监督管理总局申请应急审批,供防治埃博拉疫情使用。   埃博拉出血热是由埃博拉病毒引起的一种急性出血性传染病,临床表现主要为突起发热、出血和多脏器损害。埃博拉病毒可分为扎伊尔型、苏丹型、本迪布焦型、塔伊森林型和莱斯顿型。除莱斯顿型对人不致病外,其他4种亚型感染后均可致人发病。今年,西非暴发了史上最严重的埃博拉疫情,并且有蔓延趋势。据世卫组织统计,截至8月11日,在几内亚、利比里亚、塞拉利昂、尼日利亚等国暴发的埃博拉疫情已致1013人死亡。   虽然此次疫情还未波及我国,但我国与疫区国家人员交往、贸易往来活动频繁,要防止埃博拉病毒进入我国形成蔓延,第一时间提供准确、特异的检测试剂盒非常重要。   据了解,华大基因此前多次参与国家突发公共卫生事件应急处理,与合作单位完成了中国第一例SARS病毒基因组序列、第一例感染人的高致病性禽流感病毒基因组序列、第一株感染人的猪链球菌基因组序列、新型布尼亚病毒致发热伴血小板减少综合征的发现与诊断,并研制出人感染H7N9禽流感诊断试剂。
  • 大幅提升病毒阳性检出率 武汉大学研发纳米孔靶向测序检测方法
    p   据多家媒体报道,武汉大学药学院教授刘天罡,武汉大学人民医院教授李艳、余锂镭,武汉臻熙医学检验实验室有限公司总负责人付爱思博士等组建的联合团队开发了纳米孔靶向测序检测方法(Nanopore Targeted Sequencing, NTS),能够大幅提升病毒阳性检出率,并能实现当天同时检测新冠病毒和其他10类40种常见呼吸道病毒并监测病毒突变,有助于破解临床疑似病例难以确诊的问题。 br/ /p p   据介绍,NTS技术不局限于中国或美国疾病控制中心(CDC)目前在qPCR方法中推荐的位点,而是将检测范围扩大到9个基因、12个位点,近10 kb区域,全面覆盖病毒基因组上主要基因区域,100%覆盖病毒基因组上毒力相关的重要基因,检测病毒基因组范围提升100倍,从而显著提高检测敏感性和准确性。而qPCR方法仅针对病毒基因组上2-3个位点进行检测分析,覆盖& lt 0.5%病毒基因组,样本在采样、存储、检测过程发生中稍有偏差,会导致仅针对少数基因位点的PCR检测手段的效率降低,甚至漏检,造成“假阴性”,且检测区域一旦发生变异,会造成检测结果失效。 /p p   “核酸检测好比是用狙击枪瞄准样本中的病毒核酸,有可能击不中,而新方法则是撒十几张网,捕获病毒核酸的概率大大增加,而且在捕获的同时读出序列。”刘天罡说:“从收到样本到出具结果,全程控制在6—10小时”,首次实现测序后4小时内高敏感性、高准确性检测新型冠状病毒。 /p p   此外,新的检测方法还可以检测其他10类呼吸道病毒,包括博卡病毒、鼻病毒、人间质肺病毒、呼吸道合胞病毒、冠状病毒、腺病毒、副流感病毒、甲型流感病毒、乙型流感病毒和丙型流感病毒等。这样便于分类管理,快速确定诊疗方案。据介绍,该检测方法还有一个优势就是能够监测病毒突变情况,为疫情监测提供可进行诠释和实时的流行病学信息。该技术所需的纳米孔测序平台对实验室要求不高,适合在医院和CDC等实验室开展。 /p p   据悉,团队将在预印版平台medRxiv发表题为Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses(《纳米孔靶向测序精准全面检测新冠病毒以及其他呼吸道病毒》)的研究论文。 /p p br/ /p p br/ /p
  • “夜光”蛋白能快速分析检测病毒
    尽管针对病毒感染的高度敏感诊断测试取得了很大进展,但其仍需要复杂的技术来准备样本或解释结果,这使得它们在医疗资源稀缺地区的推广变得不切实际。发表在15日《ACS中心科学》杂志上的一种灵敏的方法,可在短短20分钟内分析病毒核酸,且可使用“夜光”蛋白质一步完成。萤火虫的闪光,琵琶鱼发光的“诱饵”,浮游植物覆盖的海滩出现幽灵般的蓝色,都是由同一种被称为生物发光的科学现象驱动的。涉及萤光素酶蛋白的化学反应会产生发光的效果。这种萤光素酶蛋白已被整合到传感器中,当它们找到目标时,这些传感器会发出易于观察的光。这种简便操作性使这些类型的传感器成为现场即时诊断测试的理想选择,但到目前为止,它们还缺乏高灵敏度,而CRISPR基因编辑技术需要许多步骤和额外的专门设备来检测复杂、噪音样本中的低信号。荷兰埃因霍温理工大学研究小组使用CRISPR系统相关的蛋白质,将它们与一种生物发光技术结合起来,这种技术的信号只需一台数码相机就能检测到。为了确保有足够的RNA或DNA样本进行分析,研究人员进行了重组酶聚合酶扩增(RPA),这是一种在大约38℃的恒温下工作的简单方法。使用发光核酸传感器(LUNAS)的新技术,两个CRISPR/Cas9 蛋白对病毒基因组的不同相邻部分具有特异性,每个蛋白都有一个独特的萤光素酶片段附着在它们上面。如果研究人员正在测试的特定病毒基因组,这两个CRISPR/Cas9蛋白将与目标核酸序列结合并相互靠近,从而使完整的萤光素酶蛋白在化学底物存在的情况下形成并发出蓝光。当对从鼻拭子收集的临床样本进行测试时,RPA-LUNAS在20分钟内成功检测到新冠病毒RNA,即使在每微升200份拷贝的浓度下也是如此。
  • 通过突变特征分析发现新冠病毒的起源与自然过程相符
    目前,与新冠病毒基因组序列最相似是从菊头蝠分离得到的RaTG13,其与新冠病毒的进化分歧大约发生在50年前。此后,直到疫情暴发前,新冠病毒已经积累了500多个突变。  中国科学院遗传与发育生物学研究所钱文峰研究组提出一种新的溯源策略——通过鉴定新冠病毒这500多个突变的频谱特征推测新冠病毒的历史宿主。作者首先确认了这一策略运用所需要满足的三个前提假设:第一,细胞环境在不同宿主之间存在差异,会在其携带的病毒基因组上产生宿主特异性的突变;第二,病毒基因组的新生突变主要是由宿主细胞内环境造成的;第三,病毒在进化中积累的突变特征主要是由新生突变决定的。  作者们在建立了该策略的理论基础后,构建了非典病毒、中东呼吸综合征病毒、新冠病毒以及与其相关的16种冠状病毒的进化树。这些病毒是前人从人、蝙蝠、骆驼、果子狸、穿山甲和刺猬等不同物种中分离得到并测序的。作者们鉴定了病毒进化历史上不同时期积累的突变,发现来源于不同宿主的病毒带有不同的突变特征。宿主物种的差异越小,病毒的突变特征越相似。这一结果进一步确认了根据突变特征推测历史宿主这一计算生物学策略的可行性。  为了推测新冠病毒的进化历史,作者们对新冠病毒在这段时间产生的突变特征开展了主成分分析,发现新冠病毒在疫情暴发前积累的突变特征与野生蝙蝠(尤其是菊头蝠)细胞环境高度相符,这为新冠病毒的自然起源提供了公开透明和实证性的数据支持。  上述研究结果于2021年8月30日在线发表于The Innovation杂志(DOI:10.1016/j.xinn.2021.100159)。博士研究生单科家与魏昌硕为该论文共同第一作者,郇庆副研究员与钱文峰研究员为共同通讯作者。该研究得到了国家自然科学基金委的资助。
  • 徕卡超高分辨显微技术-病毒学相关研究应用
    引言2020年注定是不平凡的一年,也将是载入史册的一年。一个不太热门的研究,一下子进入了公众视野,给我们上了一堂沉重的课。那么如何有效防范病毒传播,如何进行专业防控和疫苗研发,这都需要对病毒基本特征和机理深入研究。 然而,由于受到光学衍射极限的限制,普通光学显微镜分辨率只能达到200nm,而通常病毒和亚细胞结构的尺寸只有几十到200多纳米,远远小于普通光镜的分辨率。超高分辨显微技术的出现,为观测这类精细结构提供了可能,因此也得到了越来越广泛的应用。作为超高分辨技术的先驱,受激发射损耗(STimulated Emission Depletion, STED)技术更是在生命科学领域尤其是病毒学相关研究中发挥着重要作用。 本次为大家分享STED技术在病毒学研究中的应用和新进展,助力生命科学研究和发展。 STED基本原理2014年诺贝尔化学奖授予三位科学家,以表彰他们发明超高分辨显微技术。其中Stefan Hell发明了STED技术,而徕卡公司也是第一个将其商业化。从2007年开始,徕卡STED产品不断创新和优化,已经拥有近13年的STED技术积累。2014年首次推出SP8 STED 3X,即荣获当年的R&D100大奖。2019年更是创新性的推出了τ-STED,进一步在提升分辨率的同时降低了激光功率,更适合活细胞超高分辨成像。2014年诺贝尔化学奖获得者,左起分别是:Eric Betzig、Stefan W. Hell、William E. Moerner说了这么多,STED技术原理到底是什么呢?很简单。我们想象一下,一个点发射出的荧光信号,被检测后通常是一个衍射斑;如果我们同时使用一个甜甜圈样的激光将其周围的信号擦除掉,只允许中心很小的荧光信号发射出来,这样分辨率不就提高了吗。这个起擦除作用的激光便是STED激光,也叫损耗光,利用的是荧光的受激发射损耗原理。之后,通过对图像的扫描,即可直接呈现超高分辨图像,无需任何后续计算过程。同时,根据公式,可通过增加STED激光功率来提升图像分辨率。STED原理示意图:STED通过受激发射损耗去除衍射环上的荧光信号,大大缩小有效的激发区域,从而改写了分辨率公式,提高了光学分辨率 STED技术在病毒学研究中的应用实例 01第一个应用实例,是对病毒精细结构的观察。2012年发表在国际顶级期刊science上,标题为:荧光纳米显微镜(STED)揭示成熟依赖的HIV-1病毒表面蛋白的再分布特征【1】。图中绿色代表HIV-1病毒粒子,红色表示病毒表面的膜蛋白。可以看到,通过普通共聚焦无法分辨膜蛋白的具体定位位置,很模糊。包膜糖蛋白gp120(红色)与病毒粒子(绿色)90%共定位,信号模糊,分辨不出细节。而STED成像可以发现,大多数成熟病毒粒子表现出单一的包膜蛋白Env信号或焦点(图1B),而大多数未成熟粒子表现出两个或两个以上的包膜蛋白Env信号(图1D)。 02第二个应用实例,是对病毒成熟过程的观察。标题为:STED纳米显微镜揭示HIV病毒蛋白水解成熟的时间过程【2】。利用STED显微镜发现在HIV-1病毒成熟和未成熟条件下,可非常清晰区分其Gag蛋白的不同结构特征。未成熟病毒的Gag蛋白呈中空环状(图a),而成熟病毒中呈实心固缩状(图b)。作者巧妙的利用光控方法,进行STED时间序列成像。在400nm紫外光照后,PDI(光催化降解的蛋白酶抑制剂)降解,Gag蛋白能够被蛋白酶水解切割,进而病毒成熟。STED时间序列成像可轻松捕获病毒从未成熟到成熟过程,Gag蛋白重排的结构变化过程。03第三个应用实例,是对病毒基因组示踪。标题为:以单分子分辨率示踪宿主细胞中的病毒基因组【3】。腺病毒DNA通过AF594标记的叠氮点击反应显示,衣壳蛋白通过抗hexon的抗体识别,并且只有在脱壳后,病毒DNA才可以被反应检测到荧光信号。 通过gated STED超高分辨显微成像,可显著提高分辨率,清晰呈现病毒衣壳和DNA的真实尺寸大小。腺病毒衣壳实际大小约80nm,gSTED显示约110nm(包含一二抗尺寸),与实际一致。gSTED显示被衣壳蛋白包裹的病毒DNA尺寸略小于80nm,也与衣壳尺寸符合。 04第四个应用实例,是对病毒基因组复制的观察。标题为:利用STED超高分辨显微镜观察复制的HSV-1病毒【4】。值得一提的是,本文由中科院昆明动物所周巨民老师课题组与徕卡公司合作完成。病毒基因组复制是单纯疱疹病毒 1 (HSV-1) 溶解感染周期的重要事件。目前由于检测和观察方法的局限,病毒复制过程的细节仍难以捕捉。为了获得更加详细的 HSV-1 复制机制,本文使用了STED受激发射损耗显微镜,结合荧光原位杂交 (FISH) 和免疫荧光,对HSV-1 复制过程进行了精细观察。 作者设计了位于HSV-1病毒基因组两端的探针,分别以DIG(绿色)和Biotin(红色)进行标记,在病毒复制的早期和晚期,分别成像观察。STED成像发现,在复制的早期,红绿两色信号的共定位程度较高;而在复制后期,两个系数均发生了明显降低,表明HSV-1 基因组在复制过程中经历了从紧凑到松弛的动态结构变化,同时需要占用较大的空间进行复制。 05第五个应用实例,是对病毒侵染和传播过程捕获的研究。标题为:ARP2和病毒诱导的丝状伪足促进了人类呼吸道合胞体病毒的传播【5】。利用STED超高分辨显微镜进行成像,发现感染了RSV病毒的细胞(图A第一行,标记为A和C)外存在大量的丝状伪足(红色),且富集有大量病毒颗粒(绿色);暗示可通过丝状伪足将RSV病毒传递给邻近细胞。而在ARP2敲除的细胞中(图A第二行),即便感染了RSV病毒,细胞的丝状伪足数量都大量减少,病毒在细胞间的传播不明显。放大图像(图B),可观察到RSV病毒主要分布在丝状伪足的尖端,进一步验证了病毒可通过诱导丝状伪足的产生来促进其在细胞间的传播。 如何进一步提高STED分辨率?根据公式我们可以知道,通过增加STED激光功率就可直接增加图像的分辨率,这个方法最为简单;但问题是不利于活细胞成像。那么如何在不提高激光功率的前提下,进一步提高STED分辨率呢?有以下三种方法,分别是gated STED,gated STED + Lightning,和徕卡新推出的τ-STED。 01以两个距离76nm的DNA Origami为例,gated STED在不改变STED激光功率的前提下,逐步缩小荧光寿命的检测范围,可逐步提高分辨率,清晰地分辨两个点信号。02对中心粒的gated STED + Lightning成像结果,分辨率(半高宽)可达22nm!03新一代STED:τ-STED,即将STED和超快速的荧光寿命相结合,实时呈现超高清分辨图像。它在已有STED优势的基础上,可以更低激光功率获得更高图像分辨率,进一步拓展荧光染料的选择,非常适合长时间的活细胞成像。结语徕卡STED拥有13年的研发、技术和服务经验,也具有以下突出优势特点,是病毒学研究的绝佳利器:“纯光学”超高分辨显微技术,所见即所得全光谱、多色超高分辨成像,提供592nm/660nm/775nm三根 STED谱线专为STED设计的多款满足不同应用需求的物镜使用常规荧光染料及荧光蛋白,制样简单、方便τ-STED低光毒性,更适合活细胞超高分辨成像快速扫描头能够更好的保护样品LAS X Navigator能够轻松寻找目标视野 此外,整个STED是搭载在徕卡共聚焦平台上的,因此也拥有共聚焦的所有优点。相信徕卡STED超高分辨显微镜能够更多地贡献超高清图像结果,助力病毒学和生命科学研究发展。 参考文献:【1】Chojnacki J, Staudt T, Glass B, et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy.[J]. Science, 2012, 338(6106): 524-528.【2】Hanne J, Gottfert F, Schimer J, et al. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation[J]. ACS Nano, 2016, 10(9): 8215-8222.【3】Wang IH, Suomalainen M, Andriasyan V, et al. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe. 2013 14(4):468–480. 【4】Li Z, Fang C, Su Y, et al. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy[J]. Virology Journal, 2016, 13(1): 65-65.【5】Mehedi M, Mccarty T, Martin S E, et al. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread[J]. PLOS Pathogens, 2016, 12(12).
  • Science:自然界存在与新冠病毒密切相关的病毒
    英国《自然》杂志的预印本平台“研究广场”日前登载的一项研究显示,在老挝北部某些洞穴中栖息的菊头蝠所携带的冠状病毒与新冠病毒具有共同关键特征,这表明自然界存在与新冠病毒密切相关的病毒。 在这项新研究中,法国巴斯德研究所和老挝大学的研究人员于2020年7月至2021年1月间在老挝北部石灰岩“岩溶地带”捕获了46种共计645只蝙蝠,并就这些蝙蝠携带的冠状病毒是否与新冠病毒相似展开采样研究。  研究者发现,新冠病毒刺突蛋白的受体结合域(RBD)通过与人类细胞受体“血管紧张素转化酶2(ACE2)”结合来侵入人体。自然界存在的蝙蝠冠状病毒能否与人类细胞受体ACE2结合,该病毒有无与新冠病毒类似的RBD,是判断蝙蝠冠状病毒能否跨物种传播的重要依据。  论文显示,科研人员从栖息于老挝北部某些洞穴的上述菊头蝠身上采集了样本,并在这些样本中发现了3种与新冠病毒RBD高度相似的蝙蝠冠状病毒。研究人员指出,代号为BANAL-52、BANAL-103和BANAL-236的病毒是“迄今已知的与新冠病毒最接近的”蝙蝠冠状病毒。其中BANAL-236病毒具有与新冠病毒几乎相同的RBD。论文作者之一、巴斯德研究所病原体探索领域的负责人马克艾利奥特说,这3种蝙蝠冠状病毒可能是新冠病毒的源头,并可能构成直接传播给人类的实质风险。  此前曾有西方媒体称,RaTG13冠状病毒最接近新冠病毒。但新研究表明,与在云南发现的蝙蝠冠状病毒RaTG13相比,上述菊头蝠所携带的这3种冠状病毒的RBD与新冠病毒更为接近。英国格拉斯哥大学病毒研究中心病毒基因组学负责人戴维罗伯逊教授此前接受新华社记者采访时表示,“RaTG13冠状病毒最接近新冠病毒”这种说法容易误导人,因为自然界中有很多冠状病毒在传播,还有很多冠状病毒未被采样,在已知冠状病毒中这两者关系比较接近,其实它们之间有几十年的进化距离。  未参与巴斯德研究所和老挝大学上述研究的澳大利亚悉尼大学病毒学研究人员爱德华霍姆斯指出,持续采集样本是了解病毒起源的唯一途径。这项研究强调自然界存在的蝙蝠冠状病毒极易感染人类,这是未来面临的明确风险。
  • 我国科学家首次解析病毒RNA与宿主蛋白质互作网络
    以流感为代表的由RNA病毒引发的疾病严重威胁人类健康,甚至影响社会经济发展。RNA作为RNA病毒的遗传物质,在致病过程中发挥着关键作用,但很少有研究报道病毒RNA与宿主蛋白间的相互作用。近期,我国科学家首次解析了多种病毒RNA与宿主蛋白质互作的关系网络,研究成果发表在《Cell Research》,标题为“Comparison of viral RNA–host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2”。  研究人员采用RNA结合蛋白综合鉴定(Comprehensive identification of RNA-binding proteins by mass spectrometry)技术,全面解析了新冠病毒(SARS-CoV-2)、寨卡病毒(ZIKV)和埃博拉病毒(EBOV)这3种RNA病毒在侵染状态下病毒基因组RNA与宿主蛋白的互作网络。基于病毒基因组RNA-宿主蛋白互作网络,研究人员鉴定出一系列参与不同病毒感染的宿主蛋白质复合物,并深入解析多种宿主因子在病毒感染过程中的功能。在此基础上,研究人员建立了靶向宿主蛋白质的抗病毒药物筛选方法,并筛选出多个具有广谱抗病毒活性的药物。  该研究不仅绘制了不同病毒RNA-宿主蛋白质的互作网络,为病毒学和抗病毒研究提供了重要的研究资源,还为抗病毒药物的研发提供了新的视角。   论文链接:  https://www.nature.com/articles/s41422-021-00581-y  注:此研究成果摘自《Cell Research》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。
  • 陕西一药企研发出埃博拉病毒快速检测试剂
    陕西一医药企业近日成功研制出埃博拉病毒快速检测试剂,可作为实验室对埃博拉病毒感染程度的检测、抗病毒药物疗效的评估依据。   据药企负责人介绍,该产品根据世界卫生组织公布的埃博拉病毒基因结构,利用全自动核酸提取仪及配套提取试剂盒对含有病毒的血清或分泌物进行提取,使用埃博拉病毒R N A检测试剂盒结合该公司自己研制的检测系统,可进行病毒核酸的定量检测,整个检测过程最快可在2小时内完成。目前该产品已正式推向市场。   据了解,研发出该产品的西安天隆科技有限公司是陕西省具有SFD A医疗器械及体外诊断试剂生产和经营许可证资质的生物医药企业,曾在甲型H 1N 1流感、H 7N 9禽流感等疫情爆发期间研发过相关病毒检测试剂。
  • 病毒学家:关于新冠病毒COVID-19的8个问答探讨
    p style=" text-indent: 2em " span style=" text-indent: 2em " 2020年2月23日,外媒消息,美国病毒学家Kurt Williamson对于正在爆发新冠状病毒COVID-19展开一些知识性讨论,文中视频David Dafashy也谈了对COVID-19的看法,整理如下,以供参考。 /span /p p style=" text-indent: 2em " Kurt Williamson是一名病毒学家,是美国公立常春藤名校之一——威廉与玛丽学院(College of William & amp Mary)生物学系的副教授,主要从事病毒研究。David Dafashy是威廉与玛丽学院内科医疗主任。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 251px " src=" https://img1.17img.cn/17img/images/202002/uepic/d81ec9c6-e320-43e8-81af-4edb3ef897bc.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " Kurt Williamson /span /p p style=" text-indent: 2em " strong 首先,什么是“冠状病毒”? /strong /p p style=" text-indent: 2em " “冠状病毒”是基因相关的病毒家族之一。该名称源于其在电子显微镜下的颗粒外观,颗粒表层带有类似节状突起,类似于“冠”(Corona在拉丁语中译为“冠”)。 /p p style=" text-indent: 2em " strong 冠状病毒与流感或感冒病毒有何不同? /strong /p p style=" text-indent: 2em " 这三种都是我们所说的RNA病毒(它们的基因组是由RNA组成,而不是DNA),而且三种都是呼吸道病毒。但是,这三者在基因遗、粒子的排列组合方式以及它们可能引起疾病的严重程度是截然不同的。病毒学家利用多种特征对病毒进行分类。 /p p style=" text-indent: 2em " 例如,冠状病毒和流感病毒在衣壳(蛋白质壳)周围有一层脂质包膜,而引起普通感冒的病毒却没有。以下是其他一些差异的简要概述。 /p p style=" text-indent: 2em " 冠状病毒具有由单链RNA组成的RNA基因组,即单链正链RNA基因组,这意味着病毒基因组可以通过细胞的蛋白质制造机器——核糖体立即转化为病毒蛋白质。 /p p style=" text-indent: 2em " 流感病毒也具有RNA基因组-但它具有8个单独的单链负链RNA,这意味着该病毒必须携带自己的一套酶才能将负向基因组片段转化为正向,这样病毒的RNA才能被细胞的核糖体翻译成蛋白质。 /p p style=" text-indent: 2em " 人鼻病毒是人患普通感冒的主要病原。人鼻病毒的基因组类似于冠状病毒,为单链正链RNA基因组。基因组被包装成二十面体的蛋白质外壳,类似于在棋盘游戏中使用的20面骰子。 /p script src=" https://p.bokecc.com/player?vid=C2E3D13882F550599C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" text-indent: 2em " strong 冠状病毒是否倾向于人畜共患病——感染已从动物转移到人类? /strong /p p style=" text-indent: 2em " 是的,冠状病毒确实倾向于是人畜共患病。人畜共患疾病的来源称为宿主。 2002年,起源于中国的SARS(严重急性呼吸系统综合症)暴发是由冠状病毒引起的,后来确定该蓄积宿主为果子狸,最终是蝙蝠。人畜共患病在进入人类之前,可以通过一个以上的中间宿主传播。 /p p style=" text-indent: 2em " MERS(中东呼吸综合症)起源于2012年,起源于沙特阿拉伯,是由另一种冠状病毒引起的,而且该宿主似乎又是通过骆驼媒介传播的蝙蝠。 /p p style=" text-indent: 2em " 近来爆发的新冠状病毒COVID-19与先前暴发的病毒一样会引起类似的呼吸道症状,并被认为是另一种人畜共患病,但是这次爆发的源头和宿主还没有得到确认。蝙蝠再次受到怀疑。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/0634ad53-7e38-4046-9aee-543cd1d285d7.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" text-indent: 0em color: rgb(0, 176, 240) " 显微镜下MERS冠状病毒结构 /span span style=" text-indent: 0em color: rgb(127, 127, 127) " (图自美国疾病控制与预防中心) /span /p p style=" text-indent: 2em " strong 为什么冠状病毒倾向于是人畜共患病? /strong /p p style=" text-indent: 2em " 有几点要注意: /p p style=" text-indent: 2em " 1)受体似乎很容易改变。许多病毒都具有识别特定细胞的蛋白质受体 (就像锁上的钥匙),因此病毒只能进入特定种类的细胞。这就限制了哪些宿主可以被感染(例如,人类或蝙蝠),以及哪些宿主组织可以被感染(例如,皮肤或肺)。对冠状病毒,似乎相对较小的受体蛋白质的基因序列的改变可以导致大的病毒受体蛋白的变化, 从而使冠状病毒能够与多种物种的细胞表面蛋白发生相互作用,从而使其更易于从动物传递到人类。 /p p style=" text-indent: 2em " 2)RNA病毒变化很快。与复制DNA的酶相比,复制RNA的酶本质上是粗糙的。每次细胞分裂时,我们的细胞都会复制出几乎完全相同的染色体。但由于这种用于RNA复制的松散酶,RNA病毒每复制一次至少会犯一个“错误”。将这些“错误”乘以受感染细胞中的病毒基因组数量,再乘以受感染生物体中的细胞数量,再乘以受感染生物体中的受感染生物体数量& #8230 & #8230 这些错误就开始累积放大。这种变异为选择和进化提供了新的机会——例如,新的突变体可能会更容易感染人类宿主。 /p p style=" text-indent: 2em " 3)冠状病毒的基因组复制机制很奇特,可以产生更多的变异。冠状病毒使用这种奇特的机制,它们可以从一个基因组模板开始复制,然后在复制过程中切换到另一个模板。在被一种病毒感染的细胞中,这种机制很有趣,但作用不大。但这种机制在联合感染中成为一个大问题:当一个有机体同时感染同一病毒的多个毒株(变体)时。当病毒的两个不同版本出现在同一个细胞中时,这种模板转换允许产生具有混合特性的新变种,甚至比在前面提到的突变机制更快。因此,这种病毒可以混合蝙蝠病毒和人类病毒的特性,制造出一种我们的免疫系统可能从未见过的新病毒。 /p p style=" text-indent: 2em " 4)高密度的人和动物支持了病毒的传播。在大多数城市中,可能的宿主(或人类)密度很高。与动物生活在一起的人类,或者通过砍伐森林进行农耕等活动侵占动物栖息地,增加了病毒从动物传播给人类的机会。它还增加了合并感染和产生新变异的机会。也增加了人与人之间传播的机会,并选择了越来越好的变异,在人体内复制(并传播给人)。 /p p style=" text-indent: 2em " strong 现在,这种“新型冠状病毒”现在有了自己的名字,很像SARS。与SARS等其它疫情相比,这次的COVID-19疫情如何? /strong /p p style=" text-indent: 2em " 美国疾病控制与预防中心(CDC)的数据显示,SARS在2003年的爆发中达到了约8400例的峰值。根据世卫组织的数据,所谓的第19批经实验室确诊的病例(截至2月12日)已达47100例,这还没有结束。与SARS相比,COVID-19在全球范围内的传播范围更广,涉及的国家也更多。 /p p style=" text-indent: 2em " strong 在传染的方式上有什么不同? /strong /p p style=" text-indent: 2em " SARS主要通过医护人员传播,而COVID-19的人际传播似乎在普通人群中发生得更快。 /p p style=" text-indent: 2em " strong 如何解释这种差异? /strong /p p style=" text-indent: 2em " “冠状病毒”描述了一组基因上有联系但不完全相同的病毒。冠状病毒有四种,不同的毒株可以感染蝙蝠、老鼠、雪貂、猪、老鼠、刺猬、骆驼、鸟类和人类。 /p p style=" text-indent: 2em " SARS和COVID-19之间的一些区别可以用病毒的来源来解释:什么是宿主,什么是最初的毒株。其中的一些差异可以用病毒进入人体后发生的特定突变来解释——突变使病毒能够在人体宿主中复制良好,并使病毒能够更有效地在人与人之间传播。 /p p style=" text-indent: 2em " strong 给公众的建议? /strong /p p style=" text-indent: 2em " Kurt认为,目前情况而言,在美国,人们不必隔离自己,也不必生活在害怕出门的恐惧中。但是那些在世界各地从事公共卫生和医疗保健服务的人员应该引起注意。目前还不清楚这种情况会发展到什么程度。随着航空旅行的迅速发展,以及COVID-19病例已经在美国和其他国家产生这一事实,病毒在最终得到控制之前进一步传播的风险任然存在。 /p p style=" text-indent: 2em " 最严重的影响和最迅速的传播似乎发生在疫情爆发中心附近。Kurt认为在美国不必太过恐慌,但它应该被非常严肃地对待。预防传染病的最好方法就是经常用肥皂和温水洗手,尽量避免触摸你的脸(眼睛、嘴巴、鼻子)。 /p
  • “大海捞针”,其实没那么难 ——如何从废水中快速检测新冠病毒
    全球性的新冠疫情已经延续了近两年的时间,多项研究已证明,在新冠肺炎患者排泄物中存在大量病毒基因组,病毒基因最终会混入废水中,这就是基于废水研究新冠流行病学的理论依据。从污水处理厂废水中检测新冠病毒,无异于把大量的城市居民样本进行混检,与实验室的5-10个样本混检相比,废水检测是超级大混检,能为疫情防控提供早期预警,以及病毒的早期溯源,考虑到无症状群体的存在,能将无症状群体纳入监测范围的废水检测显得尤为重要,可以提供更多的更早的溯源信息。自11月传染性更强的新冠病毒变异株“奥密克戎”(Omicron)首次在南非被发现至今,这一变异株已传播到上百个国家,我国也在入境人员样品中检测到了奥密克戎毒株。如何能在早期监测到奥密克戎毒株,尽可能减少其传播的可能,显得尤为重要,而废水检测毫无疑问是一个有效的监控项目。近日,德国慕尼黑一个研究所的科学家在12月7日采集的慕尼黑废水样本中检测出了大量奥密克戎毒株,这表明这种新的变异新冠病毒早已在当地传播,比在人群中检测到奥密克戎毒株更早。污水成分复杂,病毒含量低,对其进行新冠病毒检测无异于“大海捞针”,是个巨大挑战,但如果方法得当,检测手段先进,这“大海捞针”其实并不难。下面我们一起来看一下,如何从污水中高灵敏度地快速检测到新冠病毒。该方案已经成功应用在德国Emschergenossenschaft / Lippeverband水务公司实验室。 一、 样品采集和富集二、 新冠病毒核酸提取采用自动核酸提取仪InnuPure C16 touch,加上配套的InnuPREP AniPath DNA/RNA kit-IPC16提取试剂盒,无需太多人工参与,可标准化地来快速完成病毒核酸的提取,每份样品的最终产物洗脱体积为100 μl。三、 荧光定量PCR检测在德国耶拿快速荧光定量PCR仪qTOWER3G 上来进行新冠病毒核酸检测,如果待检的废水样品很多,还可选择更高通量的qTOWER384来高效完成新冠病毒的检测。德国水务公司采用的是IDEXX公司的Water SARS-CoV-2 RT-PCR Test检测试剂盒,耶拿的仪器是一个开放的平台,可匹配国内众多新冠病毒检测试剂盒,其运行速度快,温控精准度好,检测灵敏度高,还能为用户提供标配的中文软件,是检测废水中新冠病毒的重要工具。现在全球新冠疫情还未得到完全有效控制,国内疫情也有多点散发的情况,德国耶拿的“从污水中检测新冠病毒的高效解决方案”能为极具挑战性的污水新冠病毒检测带来有力保障,助力新冠疫情的早期预警和溯源监控。
  • 新冠病毒检测试剂盒又上新!
    近日,欧蒙医学(珀金埃尔默)推出一款新型抗原ELISA试剂盒。它以咽拭子为检测样本,利用新型冠状病毒基因编码多个结构蛋白的特性,以抗原抗体特异性结合原理为基础,通过抗体检测抗原,能有效的检测出新冠肺炎急性感染者或疑似感染者体内的新冠病毒。 随着全球新冠感染人数不断增加,PCR检测试剂的有效性不断的受到挑战。新的ELISA抗原检测方法,以其灵敏度高,检测时间快,在识别新冠急性患者方面,展现了自身的价值。它和实时PCR检测新冠病毒的结果之间的阳性一致性(灵敏度)为93.6%,阴性一致性(特异性)为100%。 珀金埃尔默于2017年12月19日在美国发布公告,已完成对欧蒙100%股权的收购,此次收购不仅促进自身收入增长,扩展公司产品线,还帮助公司进军自身免疫和过敏性疾病诊断市场。其一直致力于为诊断、生命科学、食品和应用市场提供独特的解决方案。作为临床诊断、科研仪器和服务提供商,公司产品领域覆盖医学诊断、检测、成像、信息学和科研服务,目前在全球约有14000名员工,为190个国家和地区提供服务。
  • 赛默飞Ion半导体测序系统在抗击埃博拉病毒的第一线
    2015年5月22日,上海&mdash &mdash 2014年年初以来,在利比里亚、塞拉利昂和几内亚等西非国家,埃博拉病毒杀死了超过10000人,造成近25000人受感染 。中国积极响应WHO(World Health Organization,世界卫生组织)呼吁,援助西非抗击埃博拉疫情,派出公共卫生专家组前往疫区。 病原微生物生物安全国家重点实验室童贻刚教授及其团队在西非塞拉利昂抗击埃博拉病毒的第一线,利用 赛默飞Ion半导体测序系统对埃博拉病毒进行深度测序。测序工作具有非常重要的意义,通过测序可以确认流行的病毒株系,用以进行溯源分析和了解传播路径;由于现有实验室诊断方法(定量PCR)、治疗药物与疫苗研发都与埃博拉病毒基因组序列密切相关,病毒基因突变可能导致定量PCR检测时引物不匹配从而发生漏检,也可能因为突变位点涉及药物或者疫苗作用靶点而产生耐药或者导致疫苗无效,因此通过测序了解病毒的变异对于病毒检测及疫苗、药物的研发都具有重要意义。 此次测序对从去年疫情高峰期9月至11月间收集的175个埃博拉病毒样本进行全基因组序列测定。基于此次测序数据,确定目前在塞拉利昂流行的埃博拉病毒主要株系是由早前发表于《Science》文章中提出的三个主要的流行株中的第三分支进一步演变而产生。此外,此次测序也确认埃博拉病毒的突变速度并没有加快。与之前《Science》测序数据相比,此次测序数据取样时间跨度更长,样本量更大,因此结果更为翔实可靠。 针对此次测序工作,童贻刚教授肯定了赛默飞Ion半导体测序平台的测序速度具有非常明显的优势,能够在24小时内完成从核酸提取到获得测序结果的整个过程;教授同时赞赏半导体试剂具有非常好的性价比,测序芯片多样化,可适用于不同的应用需求。童贻刚教授及其团队在抗击埃博拉病毒的第一线,通过半导体测序平台所完成的埃博拉病毒深度测序的研究成果&ldquo Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone&rdquo 已于5月13日在《Nature》杂志在线发表(http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14490.html)。 --------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 科学家研发出便携式埃博拉病毒检测“实验室”
    把埃博拉病毒基因组测序监测系统装进行李箱实现实时监测并不是梦。英国伯明翰大学Nicholas Loman团队开发了一个基因组监测系统,可以用标准的航空行李运送到疾病检测现场,并在样本收集24小时内得出检测结果。近日发表于《自然》的一项研究介绍了在西非几内亚最近的埃博拉疫情中,成功使用该系统进行的实时监测。  西非埃博拉病毒新玛可拉(Makona)毒株已导致超过 11000人死亡,该病毒平均每个基因组中有16~27个遗传变异。基因组测序可以用来追踪这种变化,且日益受到医护工作者的欢迎,因为只要测序结果分析得足够快,就可以给他们提供信息并采取病毒控制措施。然而,由于当地缺少测序能力,且远距离运输样本测序有难度,西非埃博拉疫情期间采取基因组监控十分零散。  Loman团队开发的基因组监测系统使用一个重量不足100克的DNA测序装置,既可以用标准航空行李运送,也可以插入笔记本电脑的USB接口。研究团队使用该系统测序并且分析了2015年3~10月收集的142例埃博拉病毒样本,并可在24小时内得到分析结果,测序过程需要的时间尚不到1小时。研究者认为,这显示出在资源缺乏的情况下进行实时基因组监控是可行的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制