当前位置: 仪器信息网 > 行业主题 > >

表面改性

仪器信息网表面改性专题为您整合表面改性相关的最新文章,在表面改性专题,您不仅可以免费浏览表面改性的资讯, 同时您还可以浏览表面改性的相关资料、解决方案,参与社区表面改性话题讨论。

表面改性相关的论坛

  • 改性固体材料表面的磷酸根形态分析?拉曼可以吗?

    改性固体材料表面的磷酸根形态分析?拉曼可以吗?是碳铁改性材料,吸附了水里面的磷酸根磷酸都应该在表面的,和材料表面官能团形成了不同的物质,有可能以磷酸二氢根,磷酸氢根,磷酸根形式存在。各位大侠有什么高招吗?帮帮忙[img]http://simg.instrument.com.cn/bbs/images/default/em09512.gif[/img]

  • 【原创大赛】阴离子表面活性剂改性膨润土对铜离子吸附性能优化

    【原创大赛】阴离子表面活性剂改性膨润土对铜离子吸附性能优化

    [align=center][b]阴离子表面活性剂改性膨润土对铜离子吸附性能优化[/b][/align]摘要:研究阴离子表面活性剂十二烷基磺酸钠、十二烷基硫酸钠和十二烷基苯磺酸钠等三种阴离子表面活性剂有机改性膨润土。通过改变改性膨润土的量,反应的温度,pH,时间等条件研究最佳的吸附条件。实验结果表明:十二烷基磺酸钠改性的膨润土在投土量0.2g、温度60℃、pH为7,反应20min,吸附性能最好,铜离子的去除率可以达到95%以上。关键词:阴离子表面活性剂;改性;钠基膨润土;铜离子;吸附在我国,膨润土具有储量大、价格低廉等优点,另外由于其具有比表面积大、吸附性能好等特点,使得其在污水处理行业具有极大的应用。文章利用三种阴离子表面将膨润土进行改性,然后研究其对于模拟废水中铜离子的吸附性能,争取使其在污水处理中得到广泛的应用。一、实验部分(一)实验材料1.实验药品钠基膨润土、硝酸银、十二烷基苯磺酸钠、十二烷基硫酸钠、十二烷基磺酸钠、氨水、盐酸,以上试剂均为分析纯。2.仪器设备分析天平(BSA124S)、磁力搅拌器(H03-B)、真空干燥箱(DZF-6050)、高速离心机(TDL-5MC)、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(TAS990),其他玻璃器皿。(二)实验步骤1.铜标准溶液的配置称取0.9820g 硫酸铜溶入去离子水中,加入 5 滴浓硫酸冷却后移入 250 ml容量瓶,用蒸馏水定容得 1000 mg/L的铜标准储备液。2.膨润土改性实验(1)称取5.0g钠基膨润土与200ml去离子水混合,电磁搅拌(油浴60℃)6h。(2)用盐酸调节pH搅拌3h,再加入2g十二烷基苯磺酸钠,恒温反应搅拌3h。(3)自然冷却后取出,离心分离,用乙醇洗涤3次后于80度的烘箱烘干,研磨。3.吸附性能实验实验主要是通过控制变量法进行的,主要探究了改性剂种类,投土量,吸附时间,温度,pH等变量对吸附实验的影响,进行了下面的5组实验。(1)三种改性剂对铜离子的吸附在相同条件下,温度为60℃,pH=7,分边取3只锥形瓶加入0.20g改好的膨润土,在加入50ml浓度为100mg/l的铜溶液在60℃下反应30min,边反应。边搅拌。反应结束后,取3种不同阴离子表面活性剂改性的膨润土吸附完成的溶液,离心机离心20min。离心结束后去上清液2ml于100ml的容量瓶中,定溶。然后用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定铜的浓度。(2)投土量对铜离子的吸附分边取0.05g,0.10g,0.15g,0.20g,0.25g改性好的膨润土。加入到100ml的锥形瓶中,在加入50ml的100mg/l的铜溶液。反应于60℃下,pH=7的条件下进行,反应时间为30min边反应边搅拌。反应结束后,对反应液进行离心,在离心机中离心20min。取离心后的上清液2ml于100ml的容量瓶中定溶。(3)吸附时间对铜离子的吸附取5组0.20g改性好的膨润土加入到5个100ml的锥形瓶中,在加入50ml的100mg/l的铜溶液。反应于60℃下,pH=7的条件下进行。反应时间分别是5min,10min,20min,30min,40min,边反应边搅拌。反应结束后,对反应液进行离心,在离心机中离心20min。取离心后的上清液2ml于100ml的容量瓶中定溶。(4)吸附温度对铜离子的吸附取5组0.20g改性好的膨润土加入到5个100ml的锥形瓶中,在加入50ml的100mg/l的铜溶液,反应于pH=7,温度分别为20,40,50,60,80℃的条件下反应30min边反应边搅拌。反应结束后,对反应液进行离心,在离心机中离心20min。取离心后的上清液2ml于100ml的容量瓶中定溶。(5)吸附pH对铜离子的吸附 取5组0.20g改性好的膨润土加入到5个100ml的锥形瓶中,在加入50ml的100mg/l的铜溶液。反应在温度为60℃下pH分别为5,6,7,8,9的条件下反应30min边反应边搅拌。反应结束后,对反应液进行离心,在离心机中离心20min。取离心后的上清液2ml于100ml的容量瓶中定溶。然后用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定铜的浓度,由数据得出最佳吸附pH。三、结果与讨论(一) 膨润土的有机化结构表征1.红外吸收光谱[img=,552,408]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261119104813_1592_2352694_3.png!w552x408.jpg[/img]在图3-1中1040 cm[sup]-1[/sup]和1203.4 cm[sup]-1[/sup]处为十二烷基磺酸钠的磺酸基团的特征吸收峰,在2850.8 cm[sup]-1[/sup]和2919.8 cm[sup]-1[/sup]处为十二烷基磺酸钠的C-H的伸缩振动峰,峰面积尖锐且大表明了十二烷基磺酸钠插入到膨润土层间,说明改性膨润土是成功的。2.扫描电镜[img=,483,350]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261121088453_7873_2352694_3.png!w483x350.jpg[/img][align=center]图3-2 原膨润土扫描电镜[/align][img=,485,349]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261121332653_7205_2352694_3.png!w485x349.jpg[/img][align=center]图3-3 十二烷基磺酸钠改性膨润土扫描电镜[/align]从上2图中可以看到改性后的膨润土形态发生了较大的变化,原土有较强的吸水性。但改性后膨润土层间距变大,表明十二烷基磺酸钠成功插入到膨润土层间,吸附性能大大提高。(二)Cu标准工作曲线的绘制铜溶液标准曲线的制作:取5组配置的浓度为0.20,0.40,0.60,0.80,1.00mg/l的铜溶液。用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定吸光度,以吸光度为纵坐标,浓度为横坐标建立曲线。[img=,561,263]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261122293718_1035_2352694_3.png!w561x263.jpg[/img](三)数据分析与讨论1.不同改性剂改性膨润土对铜离子的吸附性能研究由图可知(1十二烷基磺酸钠、2十二烷基苯磺酸钠、3十二烷基硫酸钠)十二烷基磺酸钠改性的膨润土的去除效果明显好于其他两种改性剂改性膨润土。[img=,569,277]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261122594363_678_2352694_3.png!w569x277.jpg[/img]2.投土量对铜离子吸附性能的影响控制搅拌温度60℃、吸附作用时间60min,考察改性膨润土用量对改性膨润土吸附能力的影响,结果见图8。由图8可以看出随着用量的增加,对Cu[sup]2+[/sup]的去除率先增加后有所减小,当投加量为4g/L时,去除率达到最大。其原因可能是膨润土投加过量,导致有效吸附面积(膨润土颗粒与被吸附溶液的接触面积)减小,吸附能力下降。[img=,570,272]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261123384883_7289_2352694_3.png!w570x272.jpg[/img]3.吸附时间对Cu[sup]2+[/sup]吸附的影响控制搅拌温度60℃、膨润土投加量为4g/L,考察吸附时间对改性膨润土吸附能力的影响,结果见图9。由图9可以看出随着吸附时间的增加,对Cu2+的去除率先增加后基本保持不变,在实际作业可选择吸附时间为20min,此时吸附达到饱和,去除率达到最大。[img=,563,279]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261124250743_8881_2352694_3.png!w563x279.jpg[/img]4.搅拌温度对Cu[sup]2+[/sup]吸附的影响控制吸附时间60min、膨润土投加量为4g/L,考察搅拌温度对改性膨润土吸附能力的影响,结果见图10。由图10可以看出随着搅拌温度的增加,对Cu2+的去除率先也随之增加,当搅拌温度为60℃时去除效果达到最佳;当搅拌时间大于60℃后,吸附效果反而下降,若在增加温度反而不利于吸附的进行,因此可将60℃作为最佳吸附温度。[img=,564,279]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261124549773_3887_2352694_3.png!w564x279.jpg[/img]5.溶液pH对Cu[sup]2+[/sup]吸附的影响控制搅拌温度60℃、吸附时间60min、膨润土投加量为4g/L,考察溶液pH对改性膨润土吸附能力的影响,结果见图11。由图11可以看出随着溶液pH的增大,对Cu2+的去除率先也随之增加,这是由于在碱性条件下Cu2+与OH-结合生成Cu(OH)[sub]2[/sub]沉淀,使铜离子去除率显著增大。[img=,577,277]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261125399383_6429_2352694_3.png!w577x277.jpg[/img]结论本文用利用十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠等三种阴离子表面活性剂改性膨润土,改变膨润土中的微化学环境,使其吸附性能得到很大的改进。探究改性的膨润土在不同温度、pH、吸附时间等因素下对铜离子的的吸附性能。通过实验可得:经阴离子表面活性剂改性过后的膨润土对铜离子的吸附均达到了较好的效果,比较好的吸附条件是采用十二烷基磺酸钠进行改性,改性膨润土投加量0.2g,吸附温度和吸附时间分别为60℃、20min,在此条件下铜离子的去除率达到了95%以上。

  • 【文献】最新有关毛细管表面改性的综述

    该文章较系统的总结了毛细管表面处理的方法。个人觉得很有参考价值。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25141]表面处理[/url]

  • 【求助】炭黑的表面处理

    请问有那位大校做过炭黑改性等表面处理实验,我现在想让炭黑在液态硫化硅橡胶中均匀分散,不知有何妙招?谢谢。

  • 初来乍到:请教固体样品表面有机膜层如何用核磁测定?

    我做的是金属材料表面改性,现在想看看表面膜层化合物结构,主要看氢键的结合情况。学校没有固体核磁。有没有办法将膜层溶解下来?但是又担心膜层含量太少(纳米级厚度),而且溶解时基体金属可能会反应。怎么解决呢?欢迎讨论~

  • 【原创】要构建一个表面处理的校际平台,需要提交购置清单

    学校要搞平台建设,那位大牛能帮我构思一下 表面处理的校级平台 主要包括 表面改性(磁控溅射、离子注入、PCVD、热浸镀等)等一系列设备和试样制备、表面性能检测、性质检测(如高温高压釜350-600度,10.3-25MPa)一系列设备 最好给相关设备的特点和报价 谢谢哈邮箱 :[email]srwangjun@163.com[/email]

  • 【资料 】钛的表面处理技术工艺

    钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、 表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1. 喷砂: 钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时,砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗: 酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5%左右,HNO3的浓度在15%~30%左右为宜。 二、铸造缺陷的处理 内部气孔和缩孔内部缺陷:可等热静压技术(hot isostatic pressing)去除, 但对义齿的精度会产生影响,最好用X线探伤后,表面磨除暴露气孔,用激光补焊。表面气孔缺陷可直接用激光局部焊接修补。 三、研磨与抛光 1. 机械研磨: 钛的化学反应性高,导热系数低,粘性大,机械研磨研削比低,且易于磨料磨具发生反应,普通磨料不宜用于钛的研磨与抛光,最好采用导热性好的超硬磨料,如金刚石、立方氮化硼等,抛光线速度一般为900~1800m/min.为宜,否则,钛表面易发生研削烧伤和微裂纹。 2. 超声波研磨: 通过超声振动作用,使磨头和被研磨面间的磨粒与被研磨面产生相对运动而达到研磨、抛光的目的。其优点在于常规旋转工具研磨不到的沟、窝和狭窄部位变得容易了,但较大的铸件研磨效果还不能令人满意。 3. 电解机械复合研磨: 采用导电磨具,在磨具与研磨面之间施加电解液和电压,通过机械和电化学抛光的共同作用下,降低表面粗糙度提高表面光泽度。电解液为0.9NaCl,电压为5v,转速为3000rpm/min.,此方法只能研磨平面,对复杂的义齿支架的研磨还处于研究阶段。 4. 桶研磨: 利用研磨桶的公转与自转所产生的离心力,使桶内的义齿与磨料相对摩擦运动而起到降低表面粗糙度的研磨目的。研磨自动化、效率高,但只能降低表面粗糙度而不能提高表面光泽度,研磨的精度较差,可用与义齿精抛光前的去毛刺和粗研磨。 5. 化学抛光: 化学抛光是通过金属在化学介质中的氧化还原反应而达到整平抛光的目的。其优点是化学抛光与金属的硬度、抛光面积与结构形状无关,凡与抛光液接触的部位均被抛光,不须特殊复杂设备,操作简便,较适合于复杂结构钛义齿支架的抛光。但化学抛光的工艺参数较难控制,要求在不影响义齿精度的情况下能够对义齿有良好的抛光效果。较好的钛化学抛光液是HF和HNO3 按一定比例配制,HF是还原剂,能溶解钛金属,起到整平作用,浓度10%, HNO3起氧化作用,防止钛的溶解过度和吸氢,同时可产生光亮作用。钛抛光液要求浓度高,温度低,抛光时间短(1~2min.)。 6. 电解抛光: 又称为电化学抛光或者阳极溶解抛光,由于钛的电导率较低,氧化性能极强,采用有水酸性电解液如HF—H3PO4、HF—H2SO系电解液对钛几乎不能抛光,施加外电压后,钛阳极立刻发生氧化,而使阳极溶解不能进行。但采用无水氯化物电解液在低电压下,对钛有良好的抛光效果,小型试件可得到镜面抛光,但对于复杂修复体仍不能达到完全抛光的目的,也许采用改变阴极形状和附加阴极的方法能解决这一难题,还有待于进一步研究。 四、钛的表面改性 1. 氮化: 采用等离子体渗氮、多弧离子镀、离子注入和激光氮化的等化学热处理技术, 在钛义齿表面形成金黄色TiN渗镀层,从而提高钛的耐磨性、耐腐蚀性和耐疲劳性。但技术复杂,设备昂贵,用于钛义齿的表面改性很难达到临床实用化。 2. 阳极氧化: 钛的阳极氧化技术较为容易,在一些氧化性介质中,外加电压的作用下,钛阳极可形成较厚的氧化膜,从而提高其耐腐蚀性和耐磨性和耐候性。阳极氧化的电解液一般采用H2SO4、H3PO4和有机酸水溶液。 3. 大气氧化: 钛在高温大气中可形成较厚坚固的无水氧化膜,对钛的全面腐蚀、间隙腐蚀都有效,方法比较简便。 五、 着色 为了增加钛义齿的美感、防止钛义齿在自然条件下的继续氧化的变色,可采用表面氮化处理、大气氧化和阳极氧化法表面着色处理,使表面形成淡黄色或金黄色,提高钛义齿的美感。 阳极氧化法利用钛的氧化膜对光的干涉作用,自然发色,可通过改变槽电压在钛表面形成多彩的颜色。 六、 其他表面处理 1: 表面粗化: 为了提高钛与饰面树脂的粘结性能,必须对钛表面进行粗化处理,提高其粘结面积。临床上常采用喷砂粗化处理,但喷砂会造成钛表面的氧化铝的污染,我们采用草酸刻蚀的方法,得到良好的粗化效果,刻蚀1h表面粗糙度(Ra)可达到1.50±0.30μm,刻蚀2h Ra为2.99±0.57μm,比单独喷砂的Ra(1.42±0.14μm)提高一倍多,其粘结强度提高了30%。 2: 抗高温氧化的表面处理: 为了防止钛在高温下的急剧氧化,在钛表面形成钛硅化合物及钛铝化合物,可防止钛在700℃以上温度下的氧化。这种表面处理对钛的高温氧化非常有效,也许钛表面涂覆这类化合物,对钛瓷结合有利,仍须进一步研究。

  • 【资料】比表面测试应用

    比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是指每克物质中所有颗粒总外表面积之和,国际单位是:m2/g ,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。比表面及孔径分析仪的应用领域 吸附剂(如活性碳,硅胶,活性氧化铝,分子筛,活性炭,硅酸钙,海泡石,沸石等);陶瓷原材料(如氧化铝,氧化锆,硅酸盐,氮化铝,二氧化硅,氧化钇,氮化硅,石英,碳化硅等);橡塑材料补强剂(如炭黑,白碳黑,纳米碳酸钙,碳黑,白炭黑等);电池材料(如钴酸锂,锰酸锂,石墨,镍钴酸锂,氧化钴,磷酸铁锂,钛酸锂,三元素,三元素材料,聚合物,聚合物材料,聚合物电池材料,碱锰材料,锂离子材料,锂锰材料,碱性材料,锌锰材料,石英粉,镁锰材料,碳性材料,锌空材料,锌汞材料,乙炔黑,镍氢材料,镍镉材料,隔膜,活性物资,添加剂,导电剂,缓蚀剂,锰粉,电解二氧化锰,石墨粉,氢氧化亚镍,泡沫镍,改性石墨材料,正极活性物质,负极活性物质,锌粉等);金属氧化物(如氧化锌,氧化钙,氧化钠,氧化镁,氧化钡,氧化铁,氧化铜等);磁性粉末材料(如四氧化三铁,铁氧体,氧化亚铁等);纳米金属材料(如纳米银粉,铁粉,铜粉,钨粉,镍粉,铝粉,钴粉等);环保行业(如颜填料,柱填料,无机颜料,碳酸钙,氧化硅,矿物粉,沉积物,悬浮物等);无机粉体材料(如氧化钛,钛白粉,二氧化钛等);纳米材料(如纳米粉体材料,纳米陶瓷材料等);[co

  • 急切求教:纳米氧化硅表面的羟基在红外谱图上能表现出来吗?

    [img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601121509_12983_1678476_3.gif[/img] 纳米氧化硅是经过硅烷偶联剂改性过的。偶联剂中含有-NH2,-CH2,-CH3O。不知从图中能否判断出:偶联剂已经键合到氧化硅粒子表面了 ?氧化硅表面的羟基在红外谱图上能表现出来吗? 真心求教,请大家帮忙 :)

  • 【原创】电池原材料为什么一定要进行比表面测试?

    比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是指每克物质中所有颗粒总外表面积之和,国际单位是:m2/g,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 电池材料(如钴酸锂,锰酸锂,石墨,镍钴酸锂,氧化钴,磷酸铁锂,钛酸锂,三元素,三元素材料,聚合物,聚合物材料,聚合物电池材料,碱锰材料,锂离子材料,锂锰材料,碱性材料,锌锰材料,石英粉,镁锰材料,碳性材料,锌空材料,锌汞材料,乙炔黑,镍氢材料,镍镉材料,隔膜,活性物资,添加剂,导电剂,缓蚀剂,锰粉,电解二氧化锰,石墨粉,氢氧化亚镍,泡沫镍,改性石墨材料,正极活性物质,负极活性物质,锌粉等); 电池原材料的比表面积对浆料的配制、极片的涂布影响较大,对电池首次库仑效率和循环性能有较大影响。原材料的孔隙率大小会对高倍率充放电产生极其重要的影响。

  • 【原创】比表面积测定仪在以下行业中得到应用

    电池行业 随着工业技术的发展,能源问题越来越成为社会关注的焦点,不可再生能源枯竭和造成的环境污染迫使人类寻找新的替代能源。电能,特别是储能型电池,由于其低污染,可再生等特性被人们普遍看好,最有可能成为未来替代型能源,有着广阔的发展前景。储能电池中的关键部分-储能材料,由于其储能的特殊要求,对材料的比表面积性能要求非常严格,过大或过小都对电池的性能不利,因此比表面积成为电极材料最重要的物理性能指标。 化工行业 化工行业中很多的产品生产过程都需用到催化剂,催化剂发展也因此由来已久。随着材料技术的发展,催化剂的性能也越来越强大。材料的催化性能除其化学成分外,最主要的决定因素是其比表面积和孔容积的大小及其表面形貌结构。催化材料一般比表面积都很大,且为多孔物质,两者皆能增加催化剂与反应物质的接触面积,因此大大提高催化效能。比表面积和孔容积的大小是衡量催化剂性能好坏的重要性能指标。 橡胶行业 在橡胶行业中,炭黑补强已经是一项非常成熟的技术,被广泛采用。目前已经发展成非传统上的单一碳黑补强,近年来出来了很多的普通碳黑的替代物,如白炭黑。研究表明,再炭黑补强工艺上,补强剂的除微孔外的外比表面积对补强性能有非常重要的影响。因此在炭黑行业,通常需要测定补强剂的外比表面积来衡量其性能的好坏。 随着材料技术的不断发展,比表面积测定仪还在其它许许多多的行业中都有着广泛的应用,如电磁材料、荧光材料、陶瓷、粉末冶金、吸附剂、化妆品、食品活性炭、二氧化硅、活性碳、分子筛、活性氧化铝,颜填料、无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉、陶瓷材料、氧化铝、氧化锆、氧化釔、氮化硅、碳化硅、炭黑、金属氧化物、碳黑、白碳黑、白炭黑、纳米碳酸钙、电池材料(钴酸锂、三元素、三元素材料、聚合物、聚合物材料、聚合物电池材料、石英、碱锰材料、锂离子材料、锂锰材料、碱性材料、锌锰材料、石英粉、镁锰材料、碳性材料、锌空材料、锌汞材料、乙炔黑、镍氢材料、镍镉材料、隔膜、镍钴酸锂、氧化钴、磷酸铁锂、活性物资、添加剂、导电剂、缓蚀剂、锰粉、电解二氧化锰、锌材、石墨粉、氢氧化亚镍、泡沫镍、储氢合金、改性石墨材料、正极活性物质、负极活性物质、锌粉、锰酸锂、石墨)、发光稀土粉末材料、粉体材料、粉末材料、磁性粉末材料、四氧化三铁、铁氧体,纳米粉体材料、纳米陶瓷材料、纳米材料、纳米金属材料、纳米银粉、铁粉、铜粉、钨粉、镍粉、铝粉、钴粉、超细纤维、多孔织物、复合材料、沉积物、悬浮物等粉体和颗粒材料等。对颗粒材料来讲,比表面积逐渐成为重要的物理性能。

  • 反气相色谱法(IGC)和表面能

    反[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(IGC)于1941 年推出,诺贝尔奖获得者Martin 和Synge 使用色谱法报道测量两种液体之间的分配系数。然而,根据Kiselev 等人,Conder 和 Young 的观点,将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法应用于物理化学测量的先驱者们分别Wicke(1947)、Glueckauf(1947)、Cremer 和Prior(1951)和James 和 Phillips(1954)确定了吸附等温线。这种新方法在20 世纪 60 年代初被命名为“反[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法”,当时 A. V.Kiselev at 教授在 M. V.罗蒙诺索夫莫斯科州立大学提出了“反[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]色谱法”一词,在表面化学和色谱科学的发展中发挥了重要作用。在1967 年出版的一本书(2 年后翻译)教授 Kiselev 和合著者提到了GC确定了固体表面的许多性质,如活度系数、熵和溶液的热、蒸气压、分子量、扩散系数,吸附等温线,表面自由能,热量和吸附的熵,内部扩散的活化能,碳氢化合物的沸点 以及对分子的研究相互作用和气液界面电阻。这本书和其他文献表明[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff] GC [/color][/url]在测量固体表面的物理化学性质有很大的优势。Smidsr??d 和 Guillet 命名的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff] GC [/color][/url]是强大的“不可缺少的分析仪器”,应用甚多,不仅仅是确定混合物的组分。IGC 在 20 世纪 70 年代变得更加流行强大,研究这是因为它可以测试聚合物、共聚物及其共混物表面和内部特性。IGC 在大多数情况下被认为是一种简单、快速和准确的物理化学测量技术,尽管“反[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]色谱法”一词仍然不常用。20 世纪 80 年代出版物数量的增加以及一系列研究的出版表明 IGC 吸引了多个领域研究者的关注。如改性硅酸盐、玻璃纤维和硅酸盐(在聚合物中用作填充剂),饼干。聚合物的研究基于出版物。IGC 提供了大量重要物理化学性质的信息,如溶解度和热力学相互作用参数、扩散动力学、比表面积、粘附功、玻璃化转变温度、表面能量异构性、酸碱性质、材料表面的极性特性以及表征颗粒表面的有机吸附,吸附等温线,以及附着功。IGC 是一种描述粉末在一些溶剂中溶解性能很有价值的方法,但是 Washburn 技术被证明是无效的,因为它只确定固体和液体的相互作用,没有液体对于固体的润湿。

  • 【原创】比表面 比表面测试仪

    比表面是比表面积的简称。根据实际需要,比表面积分为内比表面积、外比表面积、和总比表面积;通常未注明情况下粉体的比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g。粉体材料越细,表面不光滑程度越高,其比表面积越大。由于纳米材料细度很高,一般具有比较大的比表面积;吸附剂催化剂炭黑等材料的效能与比表面积关系密切,一定效能需要一定范围的比表面要求;但并不是比表面积越大,就粉体质量越好。例如在要求粉体球形度的情况下,粒度相当的粉体材料,比表面越大,球形程度就越差。比表面积和粒径(粒径一般用中位径或目数来表示)是两个概念,没有必然联系,同样目数的两个产品不等于他们拥有相同的比表面积,也依赖与其表面光滑程度和孔结构。比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,因为国内外制定出来的比表面积标准都是以BET测试方法为基础的。(GB.T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法,而通过粒度仪估算出的比表面积通常差距都很大,无法反映实际情况。比表面积测试有专用的比表面积测试仪。 比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。 精微高博(JWGB)是当代中国著名的粉体表面特性测试技术的开创者。十年来,精微高博(JWGB)的科学家革新了测试技术并设计发明了相应的物性测试仪器,使粉体及多孔材料的测试更精确、更精密、更可靠。这包括: • 比表面测试• 吸附/脱附等温线• 孔隙度、介孔与微孔孔径分布•粉体真密度•精微高博(JWGB)具有代表性的仪器: -连续流动色谱法智能型比表面分析仪 ---- JW-DA -多站静态容量法比表面及孔隙度分析仪 ---- JW-BK -静态容量法超微孔孔径分布测试仪—— JW-BK-F

  • 【资料】表面张力与表面活性剂

    【资料】表面张力与表面活性剂

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908170954_166085_1610969_3.jpg[/img][color=#00008B]多相体系中相之间存在着界面。习惯上人们仅将气-液,气-固界面称为表面。[/color]   通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为0,但在表面的一个水分子却不如此。因上层空间[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。显然这样的分散体系便储存着较多的表面能。   [color=#DC143C]表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。[/color]   在293K下水的表面张力为72.75×10-3 N• m-1,乙醇为22.32×10-3 N• m-1,正丁醇为24.6×10-3N• m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N• m-1。   表面张力的测值通常有多种方法,目前实验室及教科书中,通常采用的测试方法为最大气泡压法.由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法.  [color=#00008B]作为表面张力测试仪器的测试方法,通常有白金板法\白金环法\悬滴法\滴体积法\最大气泡压法等. [/color]

  • 【原创大赛】PSF膜材料改性

    本文的目的在于通过对三种亲水改性聚砜添加剂的对比,发现最理想的亲水改性聚砜添加剂,制备出高水通量,综合性能优良的水处理用的聚砜中空纤维超滤/微滤膜。1.研究方案(1)以聚砜为原材料,亲水改性聚砜为添加剂,用浸入沉淀相转化法制备聚砜平板膜作为前期研究,通过测水接触角初步三种亲水改性聚砜的亲水改性效果。(2)研究凝固浴温度和空气浴条件对中空纤维膜结构和性能的影响,确定最佳制膜条件。2实验部分2.1 实验材料与仪器2.1.1实验材料 2.2 中空纤维膜的制备将不同浓度的A,B,C亲水改性聚砜配制的纺丝液和空白组纺丝液倒入溶解罐中,抽真空,静置约4小时脱泡。纺丝时,溶解罐中的纺丝液约在2个大气压的压力下通过计量泵挤入喷丝板的环隙。同时,内凝固浴通过流量泵进入喷丝板插管中。初生纤维经过一段空气间隙后,进入外凝固浴槽凝固最后,通过转筒收集中空纤维膜,制得的膜编号放入水槽中浸泡,测其强度,拉伸,水通量,SEM。纺丝机上可调控参数为氮气气压、溶解罐温度、芯液泵速率、计量泵速率、绕丝机速率、纺丝头内径、纺丝头外径、空气浴长度和三个外凝固浴的温度。三个水浴温度可以各自调控,水浴长度则一般固定不变。2.3 表征方法扫描电镜。为了观察膜的断面结构,为了将膜干燥首先采用溶剂置换的方法。将原先浸泡在水中的膜放到无水乙醇中浸泡24小时,然后在空气中自然晾干。将干燥后的膜取出规则的一段在液氮中冷冻脆断,断面经真空镀金后用 台式扫描电镜观察,对于膜的内外表面,经溶剂置换法干燥后,沿纤维长度方向用刀片斜切,这样的话内外表面就同时暴露了,真空镀金后用扫描电镜观察。力学性能。中空纤维膜的断裂伸长、断裂强度用电子拉力实验机测定。纤维经甘油浸泡24小时后,在湿态测试。试样标距100mm,夹具拉伸速度为20mm/min。每个样品至少测五次,取平均值。接触角。采用CTS-200水接触角测量仪,测定充分干燥的预处理和接枝反应后的聚砜膜接触角,同时测定相应的空白膜,以进行对比。每个样品至少测定5个点,取平均值。水通量。取度为30cm的10根中空纤维膜,将中空纤维膜的两端并一起,用胶带固定,端口用真空硅脂封住,放入模具中静置若干分钟。模具中倒入配好的PU灌封胶(A组分:B组分=1:1的比例配置),静置固定24 h,将多余的环氧胶切去,直到与管口平齐。用内压法测中空纤维膜的水通量。先在0.12 MPa下预压30 min,然后在0.10MPa下测5min的水通量。每批次的膜取三个点,水通量取平均值。3 实验结果与讨论3 .1不同种类添加剂同一浓度的聚砜膜亲水性 将刮成的A,B,C平板膜对其表面做扫描电镜,并测其水接触角。如下图。 图 3.1 A、B、C聚砜膜的表面扫描电镜 图 3.2 A、B、C的水接触角随时间变化由图中可以看出在相同添加剂浓度下,B和C水接触角随时间下降得相对快,说明水滴润湿平板膜速度相对快,B和C曲线几乎平行,说明2者的亲水性应该相差不大。3.2不同种类添加剂不同浓度的中空纤维膜丝性能为了得出哪种亲水改性剂在哪种浓度的下亲水改性效果最好,采用同一纺丝液温度,同一芯液组成和温度,同一空气浴长度,同一凝固浴组成和温度纺不同浓度的A,B,C,空白组纺丝液。并测其强度,拉伸,水通量,SEM。得到下图。膜丝太脆没有给出具体的数据是因为添加剂含量太高,平板膜制成晾干后像枯叶一样脆尔而且膜边卷曲严重,而中空纤维膜则很容易被自己的重力压折,几乎没有任何实际意义。从数据中可以看出,同一添加剂浓度下B的水通量比A高一点,机械性能也要好一点。因为选定B组3号样配方为最理想亲水改性配方。3.3凝固浴温度对聚砜中空纤维膜结构的影响通过对3号纺丝液固定其他条件只改变凝固浴温度,得到最优亲水改性效果。得到下表。图 3.3图 3.4从表中可以得出,随着凝固浴温度的增加,水通量增加。机械性能稍微下降,但影响不大。SEM图如下。图 3.5 凝固浴温度为20?30?50?55?的表面图和截面图图可以看出,在其他条件相同的情况下,随着凝固浴温度的增加,表面膜孔孔径增大,孔隙率上升,双连续孔增多。膜的表层由致密层变为疏松层。但是这种疏松的结构会导致膜的机械性能稍微降低。3.4空气浴长度对聚砜膜结构的影响及膜的孔径分析通过对3号纺丝液固定其他条件只改变空气浴长度,得到最优亲水改性效果。如下表。图3.6图3.7由图中可以看出,随着空气浴长度的减小,膜丝的水通量减少。但是强度增大,拉伸率基本不变,膜丝机械性能变好。SEM图如下。图3.8 空气浴长度为10cm 6cm 2cm的膜表面和截面电镜图从图中可以看出,在其他条件一样的情况下,随着空气浴长度的减小,膜的孔径变小,疏松的底层更加紧密。对3号样用10cm空气浴在凝固浴60?下纺丝,得到的膜丝用双液法进行孔径分析,得到下图。 图 3.9由图可知,最可几孔径是0.03μm以下,平均孔径是0.048μm。对其测1g/Lγ球蛋白截留率,就留率为96%。4 总结与展望聚砜膜材料由于原料价廉易得、制膜过程简单、机械强度和抗压密性良好,以及优良的化学稳定性,且有一定的抗生物降解能力,目前它被广泛地用于超滤膜的制备。然而由于聚砜的亲水性能较差,用它制备的超滤膜透水速度太慢,且抗污染性又比较差,因此在一定程度上限制了聚砜膜在超滤领域中的应用,所以对聚砜膜进行亲水改性是急切需要的。本文通过采用浸没沉淀相转化法,使用聚醚砜作为膜的主要原材料,三种不同种类的亲水改性聚砜作为添加剂,调控成膜工艺条件等因素,制备聚醚砜中空纤维膜,调控聚醚砜中空纤维膜的截面和表面结构研究成膜原料和成膜工艺对聚醚砜中空纤维膜性质的影响通过CA、SEM和Flux等方法研究膜亲水改性的效果。得出以下结论如下:1、通过制备同一比例添加剂下三种不同种类的聚砜平板膜并测其接触角,发现A样和B样的亲水性相对较好。并得到一个亲水改性效果最好的添加剂含量比例。2、通过控制空气浴长度和凝固浴温度等工艺因素,得到水通量最高和机械性能较好的工艺参数。

  • 表面与界面

    表面与界面[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15255]表面与界面[/url]

  • 表面成分分析

    表面成分分析表面成分分析是指对表面纳米及微米厚度范围内的成分进行分析的技术,例如对电镀层、电化学抛光层,钝化层、渗氮层、渗碳层、喷涂层等各种表面处理层进行成分分析。根据表面处理层厚度和产品实际情况选用不同的测试方法:1. SEM+EDS——表面处理层厚度大于1微米,通常选用EDS来进行成分测试,结合SEM可以对微区成分进行测定。2. 金相切片+EDS——当要测试的位置不在表面时,通常需要用金相切片方法将测试位置暴露在截面上,再用EDS进行成分分析。3. XPS——当表面处理层厚度小于1微米时,通常采用XPS进行表面成分分析,同时可以给出化学态信息,对表面物质组成进行全面分析。结合氩离子溅射,XPS还能给出元素沿样品深度方向的信息,可以对多层膜进行成分剖析。4. AES——当表面处理层只有几个纳米厚度,并且测试位置为微小区域时,通常用AES对微区进行极表面成分分析。表面成分分析常见案例:PCB板金手指成分分析,饰品镀金层成分分析,电化学抛光后表面残留物分析,未知样品成分剖析,多层膜剖析等。 太阳镜表面膜层深度剖析 从表面开始膜层结构:MgF(22nm)/TiO2(44nm)/MgF(22nm)/TiO2(44nm)/ MgF(110nm) http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

  • 如何提高表面张力,降低表面接触角

    为提高固体表面机能,大多运用例如药液的湿洗法以及其他干法清洗等处理技术。最近有将光增感剂作为药液使用的案例。运用紫外线放射(以下简称为UV)的表面处理法,基本上是指在大气中可以处理的干法改质和清洗方法。改质是直接提高物体表面的接着力,并通过清洗表面的形成然接着层的有机污染膜,间接的提高接着力保证品质的安定化。UV法虽然已经在50多年前就已经发现,但是常年以来在工业运用中却非常低。随着上世纪80年前期起随着液晶显示装置的高集成度的发展,在液晶玻璃的清洗工程中被广泛运用,现在已经成为液晶制品生产过程中不可缺少的工艺。改质技术相对发展比较缓慢,在90年代前期开始运用于汽车涂装的前期处理,磁悬浮列车铁轨的表面处理等,在此之后运用于汽车发动机周边设备以及提高电子机械工程塑料的粘结度等方面。光技术在毫米工艺中虽然没有被认可,但是随着毫米时代的到来,终于被广泛认可和使用。现在光技术还处在发展起,今后随着纳米技术时代的到来,光技术工艺必将成为纳米时代不可缺少的技术。2 UV表面处理法的机制2-1 改质UV表面处理法有固体表面的改质和清洗两种反应,根据素材来决定是哪种反应。玻璃和陶瓷是清洗作用,而塑料和金属则是改质和清洗两方面作用。有机物的分子结合可以用比其高的能量来切断。将C-H分子切断后可以得到H原子,由于H原子很轻,因而可以很容易将其拨离。跟其他氧反应可以生成富含O原子的C-O,-COO, C=O等官能基。高分子表面的化学反应,可以由X线光电子分光(XPS)或者IR频谱分析出来。下图是液晶聚合物(LCP)表面用200W低压水银灯照射3分钟后的C1SXPS频谱。由于富氧自由基有极性,因此增强表面能量可以提高亲水性。图4 是在大气中用200W低压水银灯对PBT和PPS照射时,根据照射时间的变化显示的表面能量变化。我们用湿润剂来评价表面能量的变化。随着露光量的增加,润滑指数急剧上升后缓慢上升。图5是用双组分环氧类粘结剂对同样的PPS和PBT按照同样的处理方式时试验时强度和照射关系。粘结强度和湿润指数都随着露光量的增加而变强。但是粘结强度在露光量达到一定峰值之后则下降。这并不是数据的错误,而是粘结剂在粘结是需要湿润,粘结剂本身固有的表面张力与被粘结物体和粘结剂的表面张力像同时,以及正确的极性成分和非极性成分相等界面张力为零时可以得到最大的粘着力。

  • 界面(表面)张力仪!

    最近我们需要对表面活性剂的油水界面张力进行测试,想购买一台表面/界面张力仪,但对其不甚了解.1\在网上查到的资料都是一般最低只能测到0.1~1mn/m,而我们的产品要求界面张力达到10-2或10-3次方,有能达到这种水平的界面张力仪么?价格大概是多少?2\由于工作刚开展,想先买一台便宜一点的测试仪,好像表面张力测试仪价格要低于界面张力测试仪,不知表面张力测试能否部分替代界面(油水)张力测试,它们之间是否呈比例关系.有厂家或技术人员,望能解惑,谢谢

  • 关于极性改性反相液相色谱柱那些事

    关于极性改性反相液相色谱柱那些事

    常规C18 色谱柱在高水相条件下长时间操作,经常会出现“柱塌陷” 现象,造成分析物的保留时间和分离度骤降。极性改性反相色谱柱由于采用独特的极性改性技术,通过引入极性基团使其表面更容易被水润湿,从而有效地避免了该现象的发生。此外,极性改性反相液相色谱柱在高有机相下表现同样出色,能在LC-MS 测试中加快去溶剂化的过程,从而有效提高LC-MS 的检测灵敏度。极性改性反相液相色谱柱的流动相适用范围可以从100% 水相到100% 有机相,使方法开发更加简单易行。极性改性反相色谱柱是以高纯硅胶为基质,采用独特的极性改性技术生产的色谱柱。这个系列的色谱柱不但保留了传统硅胶基质反相色谱柱的性能,而且又增加了一些新的特性:• 填料表面具有极性基团,适合于高水相条件下的分离• 增强了对亲水性、极性化合物的保留能力• 独特的选择性和优异的分离度• 降低了碱性化合物与残余硅羟基的相互作用,提高了色谱峰的对称性• pH 范围更宽,适合于分析酸、碱化合物迪马科技极性改性反相液相色谱柱有两个系列:一个是Spursil(思博尔)系列,包括Spursil C18 和Spursil C18-EP,二者的结构差异如下http://ng1.17img.cn/bbsfiles/images/2015/06/201506021619_548446_1610895_3.jpg一个是Diamonsil Plus 系列,包括Diamonsil Plus C18-A 及 Diamonsil Plus C18-B,Diamonsil Plus C18-B的极性略大约Diamonsil Plus C18-Ahttp://ng1.17img.cn/bbsfiles/images/2015/06/201506021624_548450_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506021624_548451_1610895_3.jpg

  • 表面异物分析

    表面异物分析是指对产品表面的微小异物或表面污染物、析出物进行成分分析的技术,例如对表面嵌入异物、斑点、油状物、喷霜等异常物质进行定性分析,藉此找寻污染源或配方不相容者,是改善产品最常用的分析方法之一。根据异物的实际情况选择不同的测试方法:1. FTIR——如果异物是有机物,通常选用显微红外光谱仪进行分析,获得异物的官能团信息,与标准谱库进行检索,确定异物的主要成分;2. SEM+EDS——如果异物是金属或者氧化物,并且没有明确的官能团信息,通常选用电子显微镜-X射线能谱分析仪(SEM+EDS)对异物或材料表面进行元素成分分析。3. XPS——如果异物是金属或者氧化物,并且没有明确的官能团信息,同时是在材料极表面(纳米级别)时,通常选用X射线光电子能谱仪(XPS)进行元素成分分析。常见的异物分析案例有:PCB板上的助焊剂残留、金属件的表面氧化物、PVC线皮析出的物质、螺母的表面油污、塑胶制品中夹杂的白色颗粒、显示屏上的外来物、铜丝表面发黑、焊锡发黑等。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制