当前位置: 仪器信息网 > 行业主题 > >

表面改性

仪器信息网表面改性专题为您整合表面改性相关的最新文章,在表面改性专题,您不仅可以免费浏览表面改性的资讯, 同时您还可以浏览表面改性的相关资料、解决方案,参与社区表面改性话题讨论。

表面改性相关的资讯

  • 表面改性纳升电喷雾针提高质谱灵敏度
    大家好,本周为大家分享一篇发表在J. Am. Soc. Mass Spectrom上的文章,Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry [1] 。该文章的通讯作者是来自美国亚利桑那大学的Michael T. Marty教授。非变性质谱(NMS)和电荷检测质谱(CD-MS)已成为表征各种蛋白质和高分子复合物的多功能工具。两者通常使用硼硅酸盐针进行纳米电喷雾电离(nESI)。但由于蛋白质在中性pH值下通常带正电荷,可能会吸附在带负电荷的玻璃nESI针表面,从而降低灵敏度,影响数据分析。为了提高NMS和CD-MS的灵敏度,作者用惰性表面改性剂修饰了nsEI针的表面。通过将聚乙二醇(PEG)共价连接到硅烷醇表面,钝化了玻璃表面,以减少非特异性吸附。首先,为确定表面改性是否能提高质谱灵敏度,作者团队采用PEG涂层的玻璃nESI针检测了两种非特异性吸附玻璃的蛋白:牛血清白蛋白(BSA)和溶菌酶。结果发现,相比于对照组,BSA和溶菌酶的信号强度均提高了2倍左右(图1)。PEG 涂层显着提高了nESI针头对标准蛋白质的MS灵敏度。图1.(A) 未涂层对照针和 (B) PEG 涂层针的 BSA 原始质谱显示信号强度。(C) 溶菌酶和 (D) BSA的PEG涂层(浅蓝色)和对照(灰色)nESI针的信号强度。接下来,作者利用搭载PEG表面涂层nESI针的CD-MS检测完整腺病毒 (AAV) 衣壳。结果发现,与采用未改良针的对照组相比,在较低浓度下,PEG改良针所收集的离子总数高出8倍以上(图2)。相比于一般的CD-MS检测,采用改良针的CD-MS检测的样品浓度更低,采集时间缩短。图2. AAV2 衣壳的 CD-MS 分析。(A) 对照组; (B) PEG 涂层针。 (C) 从空AAV2衣壳的5分钟 CD-MS 采集中收集的单个离子总数。接下来,作者研究了nESI针尖端尺寸和几何形状变化对实验结果的影响。实验发现,虽然改良针在较低浓度下显著提高了信号强度,但其针间差异很大。作者团队假设信号强度的偏差是由人工修剪nESI针的尖端直径差异引起的。为了最大限度地减少nESI针尖端尺寸和几何形状的变化,作者开发了一个针头拉拔器程序,以重复生产具有2 μm吸头直径的nESI针头。结果发现,PEG修饰的2 μm针的可明显提高检测信号强度,并且每次运行差异较小。相比于人工修剪的针头,2 μm针信号提升幅度更大。0.1 μm nESI针与2μm针两者检测到的蛋白的信号强度相似(图3)。基于以上结果,作者推测2 μm针检测到的信号值更高的原因可能是2 μm针的锥度更短。较短的锥度可能会在针尖附近产生更高的涂层密度。而手动剪断的针头具有较长的锥度,在拉拔过程中在尖端附近损坏PEG涂层,因此检测到的信号值偏低。而0. 1μm和2μm针尖上的锥度都比较短,涂层在接近针尖表面时可能完好无损,因此两者检测到的信号强度相似。图3. 具有 2 μm(左)和 0.1 μm(右)尖端直径的PEG涂层(浅蓝色)和未涂层对照(灰色)nESI 针的 BSA 最丰富电荷状态的信号强度。通过以上实验,作者已证实了PEG 修饰nESI可提高NMS与CD-MS的灵敏度。接下来,作者对其作用机制进行深入研究。首先,作者测试了灵敏度的提高是否是由于减少了对玻璃的非特异性吸附引起的。作者采用两种化学性质不同的涂层:PEG与多氟分子PFDCS修饰针头,两者均可减少蛋白的非特异性吸附,理论上均可改善质谱灵敏度。但结果发现,仅有PEG涂层针头可改善信号强度。之后,作者采用两种针头检测了泛素信号值。泛素在中性条件下不与玻璃发生吸附作用,理论上两者信号值无统计学差异,但结果发现,相比于PFDCS 修饰针头,PEG修饰针头组检测到的信号值提高了3倍。由此得出结论,PEG涂层针头不是通过减少蛋白与玻璃之间的非特异性吸附来提高质谱信号值的机制。最后,作者研究了表面改性针的毛细管作用,发现无修饰的硼硅酸盐毛细管毛细管作用最强,PEG毛细管具有中等强度的毛细管作用,而PFDCS毛细管几乎没有毛细管作用(图4A)。然后,在没有流体泵送或施加压力的静态条件下研究了不同nESI针的流速(图4B)。结果发现,PEG修饰的nESI针流速最高,而PFDCS修饰和对照nESI针的流速没有统计学差异。作者假设灵敏度的提高可能是由nESI针的流速增加导致的。由于传统针头中较高的毛细力,液体会紧紧地附着在玻璃上,降低给定ESI电压下的液体流量。而PEG修饰降低了毛细阻力,可能会增加流向尖端的液体,从而增加信号。而PFDCS修饰针头虽然具有较低毛细作用,但其流速较小,原因可能是需要一定强度的毛细作用才能获得最佳的流动速度。作者未来的实验将进行深入探索这一假设。ESI针的毛细作用照片。 (B) PFDCS修饰 (深蓝色)、PEG修饰 (浅蓝色)和未修饰 (灰色) 针的流速。总而言之,作者证明了PEG修饰的nESI针增加了多种分析物的质谱信号强度和灵敏度,展示了一种可以在较低浓度下提高难分析物的灵敏度、相对快速且成本低廉的方法。作者推测表面改性通过提高nESI针尖端流速以发挥提高质谱检测灵敏度的作用,但该推测仍需进一步证明。[1]Kostelic MM, Hsieh CC, Sanders HM, Zak CK, Ryan JP, Baker ES, Aspinwall CA, Marty MT. Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. J Am Soc Mass Spectrom. 2022 Jun 1 33(6):1031-1037. doi: 10.1021/jasms.2c00087. Epub 2022 May 19. PMID: 35588532.
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style=" text-align: justify text-indent: 2em " 粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。 /p p style=" text-align: justify text-indent: 2em " 改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。 /p p style=" text-align: justify text-indent: 2em " 产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。 /p p style=" text-align: justify text-indent: 2em " 改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。 /p p style=" text-align: justify text-indent: 2em " 改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。 /p p style=" text-align: justify text-indent: 2em " 改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。 /p p style=" text-align: justify text-indent: 2em " 粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。 /p p br/ /p
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 一文了解超细粉体表面包覆技术“四大天王”
    p style=" text-align: left text-indent: 2em " 粉体的表面修饰是解决超细(纳米)粉体团聚问题的一种重要方法,后者已经成为了超细粉体技术发展的瓶颈。粉体表面包覆技术是指运用一定的工艺技术将修饰剂包裹在粉体表面以达到粉体表面修饰目的一种方法。随着超细粉体粉体的快速发展,粉体表面包覆技术也得以快速发展。目前超细粉体的表面包覆技术种类繁多,最主要的“四大天王”是机械混合法、气相沉积法、超临界流体快速膨胀阀和液相化学法。仪器信息网小编特将四种方法进行了汇总以飨读者。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/8491e78f-a3fb-43ca-b51e-65719702b84b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: left text-indent: 2em " strong 外炼金刚登峰造极——机械混合法: /strong 通过挤压、剪切、冲击、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,随着组分间的相互渗透和扩散,最终形成包覆。目前主要应用的机械混合方法有球石研磨法、搅拌研磨法、高速气流冲击法几种。 /p p style=" text-align: left text-indent: 2em " 优点:处理时间短、反应过程可控、可连续批量生产 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/310a87bd-df49-414b-a7e3-3cecbc86a447.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong 天引万象举重若轻——气相沉积法: /strong 利用过饱和体系中的改性剂在颗粒表面聚集而形成对粉体颗粒的包覆。包括气象化学沉积法和雾化液滴沉积法两大类。前者是通过气相中的化学法应生成改性杂质分子或微核,在颗粒表面沉积或与颗粒表面分子化学键结合,形成均匀致密的薄膜包覆。或者是将改性剂通过雾化喷嘴产生微细液滴其溶质或熔融液在颗粒表面沉积或凝结形成表面包覆。 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:食品、材料、医药、化工等。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/6748b145-ca81-49b4-8ecf-4f19ddb4b9fc.jpg" title=" 3.jpeg" alt=" 3.jpeg" / /p p style=" text-indent: 2em " strong 天下武功唯快不破——超临界流体快速膨胀法: /strong 利用超临界流体在流化床的快速膨胀, 使改性微核在颗粒表面形成均匀的薄膜包覆。超临界流体在快速膨胀过程中, 超临界相向气相的快速转变引发流体温度、压力的急剧降低,从而导致溶质在超临界溶剂中溶解度的急剧变化,在高频湍动的膨胀射流场中瞬间均匀析出溶质微核。膨胀气流载带这些均匀微核与流化床中的颗粒碰撞, 产生均匀接触, 从而在细颗粒表面形成均匀包覆。 /p p style=" text-align: left text-indent: 2em " 优点:不会对产品产生任何污染。(超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离) br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1e3d8f64-187c-4780-aa39-887c3f13059e.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " strong 千变万化大道至简——液相化学法: /strong 利用湿环境中的化学反应形成改性添加剂,对颗粒进行表面包覆。包括沉淀法、溶胶—凝胶法(胶体凝胶法、金属醇盐凝胶法)、异相凝聚法、非均匀形核法、微乳液法、化学镀法等。 /p p style=" text-indent: 2em " 优点:工艺简单,成本低,容易形成核-壳结构。 /p p style=" text-indent: 2em " 最佳应用领域:尤其适用于陶瓷材料的改性参杂。 br/ /p
  • 应用 | 木材疏水表面的构建
    KRÜ SS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜ SS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜ SS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献[1]傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面[J].化学研究与应用,2023,35(01):75-82.
  • 应用 | 基于表面能理论和拉拔试验的铁尾矿和沥青黏附性研究
    研究背景铁尾矿是铁矿石经破碎、筛分、研磨、分级、浮选等工艺流程,筛选出铁元素后的剩余产物,其主要成分与公路工程用集料相同。但现阶段我国的铁尾矿综合利用率较低,主要采取堆存方式进行处置,该做法造成了资源的浪费。公路工程建设过程中需要大量的筑路材料,若能将铁尾矿用作筑路材料,即可以降低公路工程造价,也可减少其对环境的污染。本文以表面自由能理论为依据,采用座滴法测量铁尾矿和不同沥青的表面能参数,并计算沥青与不同集料间的粘附功,以衡量铁尾矿与沥青间的粘附性能。实验方法与仪器1.表面能测试本文使用蒸馏水、甘油以及甲酰胺作为测定接触角的试剂,后测定这三种试剂在试样表面的接触角,并计算沥青与集料的表面能及其分量。本文采用德国KRÜ SS公司的DSA100接触角测量仪在25℃下对四种集料和沥青的接触角进行测试。DSA100接触角测试仪2.原材料本文研究过程中采用东海70号沥青、SBS改性沥青(I-D)和SBR改性乳化沥青蒸发残留物三种沥青,集料采用石灰岩、玄武岩和铁尾矿石。原材料各项技术均能满足现行技术规范要求,其中沥青技术指标如表1所示,四种集料矿物成分如表2所示。表1 沥青技术指标表2 矿物成分组成表结果与讨论1.接触角图1 接触角测试结果由图1实验结果可以发现,四种集料与测试液体的接触角差别较小,且不同材料与各测试液体的接触角试验的重复性较高。其主要原因可能是,各集料在测试前均对其表面进行了分割和磨平,这使得其空隙情况差别不大,因此各接触角差别不是很大。整体而言,蒸馏水与集料间的接触角随SiO2含量的增加而减小,其主要原因是水为极性分子,SiO2对水的极性能力较大,二者接触时更倾向于吸附更多的水以平衡表面力场,降低表面能,所以表现出水与集料间的接触角随SiO2含量的增加而减小的现象。SBS改性沥青与水和甘油间的接触角最大,SBR改性乳化沥青蒸发残留物与水间的接触角次之,基质沥青最小;SBR改性乳化沥青蒸发残留物与甲酰胺间的接触角最大,SBS改性沥青次之,基质沥青最小。图2γL与γLcosθ的关系为进一步验证测试结果的准确性,将不同测试液体的表面能γL与γLCOSθ进行线性拟合,结果如图2。由图 2可以发现,测试液体的表面能γL与γLCOSθ 线性拟合后的相关系数(R2)均大于0.90。表明二者之间具有良好的线性关系,即测试结果可靠。2.表面自由能图3表面能计算结果分别综合3种测试液体的表面能参数及其在集料和沥青的接触角计算集料和沥青的表面能及其分量,计算结果如图3所示。由图3(a)-(c)可以看出,四种集料的表面能相差不大,其中石灰岩的表面能最大,铁尾矿1的表面能最小,该现象的主要原因是石灰岩中的SiO2含量最小,铁尾矿1中SiO2含量最大,已有研究结果表明集料的表面能与SiO2含量呈负相关关系。四种集料中,铁尾矿2的极性分量最大,色散分量最小,石灰岩的极性分量最小,色散分量最大。由(d)-(f)三种沥青的表面能存在较大的差异,其中SBS改性沥青的表面能最大,SBR改性乳化沥青蒸发残留物的表面能最小,其可能原因是改性乳化沥青制备过程中需要加入乳化剂,乳化剂的作用原理是降低沥青与水间的界面能,提高二者间的稳定性,蒸发残留物制备过程中的乳化剂未能完全蒸发,导致其表面能的降低。SBS改性沥青的极性分量最小,色散分量最大,SBR改性乳化沥青的极性分量最大,色散分量最小,其可能原因是SBS蒸发残留物中的乳化剂未能充分挥发,使得其蒸发残留物的极性增强。3.粘附功的计算图4不同沥青与集料间的粘附功通过沥青和集料的表面能数据计算得到二者间的粘附功,计算结果如图4。由图4可以发现,不同沥青与不同集料间的粘附功存在一定差别,其中SBS改性沥青与石灰岩间的粘附功最大,为71.16mJ/m2,而SBR改性乳化沥青蒸发残留物和铁尾矿1之间的粘附功最小,为66.24mJ/m2。整体而言,石灰岩与各沥青间的粘附功要大于玄武岩和铁尾矿,该现象产生的原因是石灰岩的SiO2含量仅为0.76%,其碱性要强于玄武岩和铁尾矿。SBS改性沥青与集料间的粘附功要大于70号基质沥青和SBR改性乳化沥青蒸发残留物,究其原因,SBS改性剂的加入使得沥青的极性降低,而SBR改性乳化沥青蒸发残留物中乳化剂在挥发不完全情况下,其极性更大,且残留物制备过程中需要经过高温蒸发,使得沥青发生了一定程度的老化,老化后的沥青极性增强。小结石灰岩的表面能最大,铁尾矿的表面能小于石灰岩和玄武岩,且铁尾矿的极性分量大于石灰岩和玄武岩,色散分量小于二者。不同沥青与不同集料间的粘附功存在一定差别,SBS改性沥青与集料间的粘附功大于基质沥青和SBR改性乳化沥青蒸发残留物,石灰岩与沥青间的粘附功要大于玄武岩和铁尾矿。参考文献:[1]王鑫洋,苏纪壮,祁冰.基于表面能理论和拉拔试验的铁尾矿与沥青黏附性研究[J/OL].武汉理工大学学报(交通科学与工程版):1-11[2022-12-15].
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 哈克流变仪在聚合物改性、加工和表征方面应用研讨会(南京、北京)
    随着我国现代科技发展和专业技术人才队伍建设的需要,为了进一步提高相关人员的基础理论和技能水平,促进研究单位和企业技术创新和产品科技含量的提升,赛默飞世尔科技(中国)有限公司联合南京大学、清华大学举办&ldquo 流变在聚合物改性、加工和表征方面应用研讨会&rdquo 。 本次研讨会将由哈克流变仪资深技术人员为您讲解最新技术和应用,同时也邀请了南京大学、清华大学和中科院化学研究老师介绍最新的研究成果,并借此机会首次在国内发布最新的产品和技术。 我们诚挚地邀请您参加本次会议,共同讨论材料结构&mdash 流变性能&mdash 在聚合物加工成型工艺中的应用及其最新进展。 主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征 时间和地点: 第一场:南京,2012年4月24日上午9:00-16:00,南京大学化学楼图书馆(北京西路门进入) 第二场:北京,2012年4月26日上午9:00-16:00,清华大学英士楼二楼 内容: 1、技术报告: 1) 聚合物改性加工工艺设计方法,流变行为的特点; 2) 粘弹性相分离体系在剪切场下的相分离行为和机理; 3) 转矩流变仪在聚合物改性及加工中的应用; 4) 旋转流变仪在聚合物改性及加工中的应用; 2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 请将报名表Email至:info.mc.china@thermo.com 或传真至:021-61002125 或电话咨询:021-68654588-2257 本次会议不收取会务费,并免费提供午餐和会议资料。 坐席有限,请尽快报名! 赛默飞世尔科技(中国)有限公司 2012年4月10日 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和 www.thermofisher.cn (中文)。
  • 应用 | 一种具有防冰性能的超疏水表面的制备与研究
    研究背景凛冬将至,寒潮来袭,结冰是造成许多安全事故的重要原因。飞机防冰/除冰技术一直是航空工业的一个重要研究领域。飞机积冰主要发生在平尾、垂尾和发动机真空罩等外露表面,已成为威胁飞行安全和稳定性的严重问题。研究表明,飞机表面结冰主要是由于大量过冷水滴聚集和冻结造成的,特别是当飞机穿越过冷云层时。本文报告了通过光刻结合化学刻蚀方法制备了稳定的纳米片-微坑结构的超疏水表面,表面的防冰性和超疏水性均优于单一结构表面,且超疏水等级结构表面具有较高的非润湿性,接触角高达173°,滚动角低至4.5°,具有优异的超疏水性能和抗结冰性能,为航空工业的应用提供了一个理想的平台。实验仪器润湿性实验,使用KRÜ SS DSA100接触角分析仪。在样品表面滴落4 μl液滴测试接触角和滚动角。重复3次,计算平均值来保证接触角的准确性。为了进一步检验低温润湿性,在-18℃条件下放置样品和去离子水,直到去离子水变成过冷。然后,我们尝试通过在不同样品的表面喷洒过冷的水滴来模拟冻雨的条件。使用高速的相机拍摄,快速比较这些样品的不同润湿性。KRÜ SS DSA100接触角分析仪TC40温控腔箱:温控范围-30℃到160°C结论与讨论表面形貌在本节中,我们通过三种不同的处理方法构建了三个超疏水结构表面,目的是分析和研究表面形貌、润湿性和抗冰性能之间的相关性。此外,我们还制备了一个光滑的疏水铝表面作为标准对照,并与三种超疏水表面的抗冰性能进行了比较。三种结构形态的FESEM图像如图1所示。四种类型的表面处理如下:使用FAS-17改性的铝衬底表面(样品1),带有微坑结构FAS-17改性的铝衬底表面(样品2),带有纳米片FAS-17改性的铝衬底表面(样品3),具有分层结构(微坑规则阵列和纳米片)FAS-17改性的铝衬底表面(样品4)。 图1. 通过三种不同的处理获得的分层形态的扫描电镜图像:(a)微坑结构表面(样品2);(b)纳米片结构表面(样品3);(c)微/纳米分层结构表面(样品4)。常温和低温下的润湿性测试如图2所示,通过比较相同样品FAS-17修饰前后的接触角,改性后样品疏水性大幅提高。在光滑的衬底表面(样品1),通过降低表面自由能,液滴接触角可以增加到大约120°。这也证明了通过引入规则排列的CF3基团可以建立超疏水表面,此时表面能最低,为6.7 mJ/m2。样品3和样品4具有良好的超疏水性,使得水滴很容易从这些表面滚落,这可以用Cassie-Baxter模型来详细解释,说明表面的微观结构在提高超疏水性方面起着关键作用。超疏水纳米分层结构表面(样品4)具有较高的非润湿性,接触角高达约173°,滚动角仅仅为4.5°。与其他单结构表面相比,纳米片-微坑分层结构表面的超疏水性优于任何单结构表面,微尺度和纳米尺度结构的结合明显地捕获了更多的空气,导致在液滴下存在一个由无数空气袋构成的密封空气层。 图2. FAS-17改性前后4种表面结果的接触角和滚动角考虑到飞机的实际使用条件,将过冷水滴喷洒在低温下的测试超疏水性和防冰性能,结果表明,样品3和样品4可以防止过冷水滴的积累,表现出良好的超疏水性。相反,喷在样品1和样品2上的过冷水滴则表现出一定程度的亲水性。显然,研究结果证明,具有微/纳米结构的超疏水表面有效地排斥了被喷洒的冷冻水。结论综上所述,我们结合光刻工艺和化学蚀刻方法,巧妙地设计和制备了一种具有抗冰性能的超疏水分层结构表面。超疏水表面比其他单结构表面具有更强的非润湿性,并且具有优异的防冰性能,防止了过冷水滴的积累。因此,具有微/纳米结构的超疏水表面在航空工业中更具有作为飞机防冰材料的潜力。本文有删减,详细请参考原文。G.Wang, Y. Shen, J. Tao, X. Luo, L. Zhang and Y. Xia, Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties, RSC Adv., 2017, 7, 9981DOI: 10.1039/C6RA28298A
  • 2014全国表面分析科学与技术应用学术会议举行
    表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。目前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(TSIMS)、辉光放电光谱(GD)、扫描探针显微镜(STM)等。   为了深入了解表面分析技术最新动态、最新仪器性能特点,促进同行之间的技术交流,2014年8月29~30日,2014 全国表面分析科学与技术应用学术会议在成都.四川大学举行。60余名从事表面分析技术研究与应用的研究人员参加了此次会议。因为本次会议是由高校分析测试中心研究会主办,所以会议内容不只有新方法新技术研究,还有关于如何用好仪器、如何解决工作中困难方面的交流。   实验数据&ldquo 去伪存真&rdquo   此次会议交流的内容更多的围绕着XPS展开。XPS是重要的表面分析技术手段,在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析,微区分析以及深度剖析(1-2nm)等。   对于复杂的材料体系或单一体系中复杂的化学状态,XPS的谱图一般多为数个化学状态的合成峰,且有可能因为轨道杂化的不同而造成峰型的变化。实验者要从众多的复杂的XPS谱图数据中得到有价值的实验结果,需要掌握数据处理基本原则和相关技巧。清华大学朱永法教授认为数据处理是&ldquo 去伪存真&rdquo 的过程。   北京大学谢景林教授分享了其在重叠谱图拟合方面的经验技巧 赛默飞葛青亲对谢景林教授的报告进行了展开,具体介绍了非线性最小二乘拟合方法的基本思想,并且分享和探讨了如何使用实际采集谱图、参考谱图,配合非线性最小二乘拟合方法对XPS数据进行处理 岛津龚沿东从XPS谱图的本底扣除、线型选择以及其他特殊处理方法介绍了XPS数据处理的一般原则。   北京师范大学吴正龙教授介绍了通过能量去卷积的数据处理方法提高了XPS谱图质量。目前常规的XPS最佳分辨水平(FWHM)约为0.5eV(Ag3d5/2),仍不能满足多数元素价态分析的需求。而XPS分析中对谱峰展宽的贡献主要来源于仪器能量响应、X射线的线宽、样品等。而通过对表观谱进行能量去卷积处理,可以消除仪器和样品对展宽的贡献,进而提高XPS谱峰的分辨率。   应用研究热点   在国外,XPS等表面分析技术已经在生产企业中得到了广泛的应用,如进行半导体失效分析等。而在国内,表面分析技术还局限于科研单位,主要是利用XPS、AES等表面分析技术进行材料表面或界面发生的物理化学反应机理研究。研究热点主要集中在催化材料、碳纳米管石墨烯等新型材料、聚合物太阳能电池等新型器件等。   清华大学朱永法教授介绍了AES化学位移的产生、特点、影响因素等情况,以及AES化学位移在石墨、金刚石的表面吸附、固体表面的离子注入、薄膜制备、界面扩散等研究这个的应用。   铀在国民经济和国防事业中均有重要,但是金属铀的化学活性高,在环境中极易氧化腐蚀,导致其部件性能的劣化或失效,并且这种腐蚀还会带来环境的核污染。中国工程物理研究院刘柯钊研究员使用XPS等分析技术作为表征手段,研究了金属铀腐蚀行为与防腐蚀表面改性技术。   聚合物太阳能电池最有希望成为下一代太阳能电池之一。中山大学陈建教授以紫外光电子能谱(UPS)和XPS、AFS等技术,研究了醇/水溶性共轭聚合物阴极修饰层对不同电极材料功函数的影响,通过降低阴极功函数达到了提高器件能量转换效率的目的。   清华大学姚文清教授的研究对象是航空用电子元器件,这些器件长期在宇宙环境中工作不可避免的受到影响,可能引起器件的密封破坏等而最终失效。姚文清教授通过在超高真空系统中对器件进行紫外辐照、温度变化、电场变化等试验,在此环境下对航空用电子元器件进行原位模拟腐蚀,并采用AES等表面分析技术对器件腐蚀进行微观评价,建立器件腐蚀和失效的早期判断新方法。   南京大学高飞教授通过外置原位电池的应用,利用实验室现有常规XPS获得催化剂材料在真空条件下的准原位 (Ex-situ)信息。结合相关表征手段,准原位XPS成为了探究催化剂在反应条件下反应过程的有利工具。 与会人员合影   2012年,清华大学分析中心、国家大型科学仪器中心-北京电子能谱中心组织召开了第一届全国表面分析科学与技术应用学术会议,此后该会议每年举行一次。今年是该会议第三次举办,会议由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、四川大学分析测试中心共同承办。2015年全国表面分析科学与技术应用学术会议将由宁波新材料所承办。
  • 贝士德仪器参加2020全国粉体检测与表面修饰技术交流
    9月23-24日,由粉体圈平台主办,贝士德仪器(北京)有限公司支持的“2020全国粉体检测与表面修饰技术交流会”在丹东福瑞德酒店成功召开,贝士德仪器总经理柳剑峰、销售总监殷小安、东北区区域经理季丹红参会。来自全国各地先进陶瓷、化工、稀土、医药等领域的130多名代表参加了本次活动。贝士德仪器在技术交流会现场设置展台,展示了粉体材料表征相关的比表面积及孔径分析仪、真密度及孔隙率分析,总经理柳剑峰作了题为《比表面积及真密度表征方法的简介与应用》的专题报告。 中国颗粒学会 王体壮秘书长 “王秘书长对会议的成功召开给予了称赞和祝福,提醒企业家们做材料产业要注重科学,也要有情怀。” 丹东百特董青云董事长作为东道主,致辞欢迎远道而来的客人 大会报告总结CONFERENCE GUESTS 报告1:中科院过程工程研究所李兆军研究员分享报告:“粉体的一致性评价与颗粒标准化工作”。 李老师指出,标准化的工艺才是最低成本的,尤其是做粉体生产,如果没有标准,就很难保证粉体的一致性。麦当劳通过前馈控制,采用统一的标准,保证最终成品的一致,这是值得我们粉体生产企业借鉴的案例。报告2:中国地质大学丁浩 教授、博士生导师分享“颗粒复合与复合粉体功能化理论及实践” 丁老师报告中强调了,根据粉体下游客户的用途不同来进行颗粒复合,有目的地做粉体改性工作。先进的颗粒复合理论与方法,可以制造出低成本而功能性满足要求的新材料。 报告3:超细粉末国家工程研究中心副主任杨景辉博士“塑料工业常用粉体及表面改性” 杨博士以粉体长径比的标准对产品进行了分类,总结了分析了塑料常用粉体自身的物理特性及适用分散剂的种类。分散剂的选择是有一定成熟的理论的,有了科学的指导,会更容易找到合适的改性剂与改性工艺。 报告5:贝士德仪器科技(北京)有限公司柳剑峰董事长分享“粉体材料比表面积及真密度表征方法的简介及应用” 柳总在报告中解答了哪些材料需要测比表面积,如何测及应该注意的事项等问题。为仪器的购买和使用者给出指导建议。 报告7:上海理工大学蔡小舒教授、博士生导师分享“纳米粉体新型测量技术” 蔡教授根据企业的实际需求,从科研的角度提出了对纳米颗粒检测的新的方法和技术,为研发人员认识纳米颗粒提供了新的思维。 报告13:东北大学李新光教授分享“粉体水分检测的理论与实践” 李教授以解决实际问题入手,对各种在线水分测试理论与方法进行了评估,认为近红外水分检测是一种低成本又实用的方法。可以解决粉体工业生产中水分控制问题,起到节约成本的作用。 展示区掠影 参会人员大合照 总之,只有开放交流,扩大视野,我们的粉体材料才有前途。 作为本次会议的支持单位,贝士德仪器携公司主打产品:BSD-PS2型比表面及孔径分析仪,BSD-PM系列比表面积及微孔分析仪,BSD-BET400快速比表面积测试仪,BSD-TD真密度及氦孔隙率分析仪参展。各系列先进设备迎来了行业内无数客户的参观和咨询,并获得了一致好评。不少客户在参观完后表示对贝士德仪器的设备很感兴趣,并提出实地参观要求,详谈合作计划。 BSD-PM1 高性能比表面积及微孔分析仪Surface Area and Microporous Analyzer BSD-PM1高性能比表面积及微孔分析仪属于研究级仪器,可测试材料的比表面积、总孔容、孔径分布和吸附脱附数据,尤其可对微孔材料的孔径分布给出更准确测试结果,可升级为双站微孔测试功能,适用于对研发、实验要求极高的科研单位和企业用户。集装阀门和管路设计,模块化组装,保证仪器高真空度和高密封性,是高性能和高稳定性的典型产品。 BSD-PS2 比表面积及孔径分析仪Surface Area Porosity Analyzer BSD-PS2型比表面积及孔径分析仪,具有2个样品预处理脱气站,1个样品分析站。测试精度高、重现性好。重复性误差小于±1%。测试范围:比表面0.0005m2/g以上,微孔:0.35-2nm、介孔:2-50nm、大孔:50-500nm,样品类型:粉末,颗粒,纤维及片状材料等可装入样品管的材料。国内知名品牌,远销海外,获得多项国内技术专利,技术国际领先。 BSD-BET400?全自动快速比表面积仪Auto Fast Specific Surface Area Analyzer 高效率:全世界测试效率高的比表面测试系统;BSD-BET400配合BSD-AD8八站预处理机,分析能力可达12个样品/小时,且包含30min预处理;BET法:动态色谱法测试,符合国标,兼顾测试的高效率;免标样:免标样,彻底消除标样影响,降低测试成本;高稳定性:动态色谱法具有独特的高稳定性,适合工业质量控制;高分辨率:对于中小比表面样品,适用于电池材料、金属粉末、有机粉体等材料的比表面快速分析。?恒温体积定量管(专利):处于恒温状态的体积定量管,不受环境温度影响,是高稳定性的保证;?液氮温度检测(专利):通过液氮温度检测技术,消除液氮纯度因素的影响; BSD-TD-K 全自动真密度及孔隙率分析仪Automatic True Density & Porosity Analyzer BSD-TD-K系列全自动真密度分析仪由计算机控制全自动运行的气体膨胀真密度分析系统,具有多项技术专利,独创的测试方式,使其应用领域较同类仪器更广,能准确测定粉体、块状固体、浆状物质、泡沫等多种材料的真密度和孔隙率,适用于广大研究机构和企事业单位。测试精度:标准铝柱精确度优于±0.03%,标准铝柱重复性优于±0.015%,分辨率:0.0001g/ml测试速度:1-2min完成一次测试过程(不含恒温时间),双站分析效率提高一倍。程序自动连续测试6次,取平均值。恒温模式:全自动程序化恒温模式,程序化控制恒温过程,并自动进入测试过程。此恒温模式为可选;
  • 精彩回顾丨2022全国表面分析技术及新材料表征研讨会圆满召开!
    材料工业是国民经济的基础产业,新材料是材料工业发展的先导,是重要的战略性新兴产业。材料的表面性能对新材料的研究和应用至关重要,近年来新材料的快速发展刺激了科学家对材料表面性能的深入研究。2022年8月17日至8月19日,赛默飞联合多家高校和科研机构共同举办的 “2022全国表面分析技术及新材料表征研讨会” 成功召开,国内外专家齐聚贵阳,共同交流电子能谱(XPS、UPS、AES)、电子显微术、激光拉曼光谱等表面分析技术的最新研究成果及应用。会议伊始,赛默飞材料与结构分析业务高级商务总监陈厅行,为本次大会发表了开幕致辞。 陈厅行表示:非常感谢大家对赛默飞一直以来的支持,我们很多的客户朋友多年来一直和我们一起前行,给了我们莫大的信任和支持。今年也是赛默飞进入中国的40周年,我们扎根中国,服务中国,将一直践行我们的使命,携手客户,让世界更健康,更清洁,更安全。本次会议报告内容集锦如下: 大会第一日中科院大连化物所的盛世善老师首先为我们详细介绍了商业化XPS设备的准原位技术以及近常压的原位技术。同时,也比较介绍了两种原位技术的优缺点。随着商业化XPS设备的普及和成熟,设备的拓展性能也越来越多元。其中,原位技术便是XPS设备比较重要的一个拓展功能。XPS作为一种表面分析技术,在催化材料研究中有广泛的应用。清华大学姚文清教授在报告中详细介绍了通过不同的表面改性方式,来对光催化型催化剂进行改性,以提升其光催化性能。同时,也对相关的机理进行研究。中山大学的陈建教授介绍了通过N、S元素掺杂,将二维Ti3C2Tx材料转化三维材料,进一步提升其电化学性能。Ti3C2Tx作为一种新型的二维纳米材料,具有良好的导电性、亲水性、大比表面积及丰富的表面修饰基团等优点;在催化、电化学等领域有广泛的应用前景。北京化工大学的程斌教授在报告中详细介绍了通过XPS设备研究聚乙烯吡咯烷酮(PVP)在高电场下的行为。在电池浆料材料制备过程中,不可避免的会用到分散剂材料。不同分散剂材料可以影响电池材料的分散,从而影响电池性能。近年来,中国在航空航天领域取得了快速发展。特别是嫦娥工程,取得了举世瞩目的成就。对于嫦娥五号取回来的月壤样品,中国科学院地球化学研究所的李阳研究员为我们介绍了通过TEM+EELS技术联用对月壤样品进行综合表征分析。赛默飞Nexsa系列最新型号Nexsa G2可选配拉曼光谱,实现XPS与拉曼技术原位联用。赛默飞国外资深XPS应用专家Robin Simpson为我们介绍了通过XPS与拉曼多技术联用在法医鉴定各环节中的应用。氧化镓材料作为一种宽禁带半导体材料,在光电子器件方面有广阔的应用前景。厦门大学张洪良教授在报告中详细介绍了通过不同元素掺杂,来实现对氮化镓材料的不同性能调控。通过X射线光电子能谱来表征分析其电子结构,来辅助研究相关调控机理。中国科学技术大学麻茂生教授主要就化学位移基础理论及XPS谱峰拟合实际问题两个方面进行详细介绍。元素化学态分析是XPS的最主要的应用之一,常被用来作氧化态的测定和价态分析以及研究成键形式和分子结构。原位测试分析手段可以实时跟踪结构变化,在目前的科研工作中扮演着越来越重要的角色。上海科技大学杨永教授在报告中详细介绍了XPS加热台的设计,及原位加热分析在XPS研究中的相关应用。黄铁矿的氧化过程涉及氧气的消耗、铁矿物的演化、硫酸盐的还原等,影响着光合作用和微生物新陈代谢。中科院广州地化所鲜海洋教授就详细介绍了黄铁矿氧化还原反应的各向异性和原电池效应等特点,及黄铁矿表面氧化还原反应的成矿效应。对于层结构已知的纳米多层器件可用相对确定的测试参数进行分析,而准确获得未知样品层结构等信息成为研究者们的挑战之一。季华实验室范燕工程师此次报告简要介绍了未知层结构样品深度剖析测试的测试优化方向,并结合实际案例进行分享。生物质是唯一一种含碳可再生资源,其有效利用能够部分替代化石能源。安徽理工大学李唱老师简要介绍了木质素解聚应用实例和相关成果,并就XPS在生物质转化领域中的应用进行了展望。山西煤炭化学研究所严文君工程师介绍了XPS和原位XPS及其在碳基材料及催化中的相关应用,将XPS与AES技术相互结合,为研究催化反应机理及催化剂设计改进等提供了理论依据。赛默飞业务拓展经理王慧敏介绍了针对空气敏感样品研发的完整惰性气体/真空互联解决方案,实现样品从手套箱到XPS、SEM/FIB/PFIB、TEM完全隔绝空气的转移,确保用户可以观察到样品的本征形貌与化学信息。 大会第二日在日常XPS测试中,经常会遇到各种类型材料的分析测试。对于一些类型样品,测试过程中由于射线束的照射,会使样品表面发生变化。比如,X射线照射、刻蚀等,引起样品中元素的还原、破坏。北京师范大学吴正龙教授在报告中详细介绍了XPS测试中常见的一些射线束效应以及在测试中如何避免或减小这些效应。中科院化学所赵志娟工程师介绍了通过XPS设备分析不同类型的纳米材料。对于纳米材料,由于尺度的影响,表面结构及其化学组成具有决定其功能特性的重要作用,XPS逐渐成为纳米材料研究中不可或缺的一种表征手段。材料中氧空位的存在,对材料性能有重要影响。国家纳米中心徐鹏工程师在报告中详细介绍了通过不同表征方式来分析表征氧空位;着重讲解了通过XPS设备表征分析不同材料中的氧空位及氧空位材料的应用。能源电池材料因其清洁、能源转化效率高等特点,得到快速发展。对于空气敏感性的锂电池材料,XPS常规样品台满足不了其测试需求。国联汽车动力电池研究院袁敏娟工程师在报告中主要就真空转移仓的使用、XPS表面分析技术在锂电池材料中的应用进行了详细介绍。随着社会的发展,目前材料学的发展很多集中在将体材料平面化或者开发新型的二维材料,因此维持住表面的性状稳定是个需要处理的问题。费勉仪器马成华工程师就原位与准原位XPS分析技术、常见准原位真空互联设备等进行了详细介绍。赛默飞应用专家Paul Mack主要介绍和分享XPS与UPS、REELS等分析技术联用,在SiO2/Si薄膜、MAPbI3等材料的表征中提供全方位的多功能性应用。自上世纪80年代,赛默飞XPS产品就已经进入中国市场,目前已经深深的扎根中国市场。其中,ESCALAB系列是其中一款经典的XPS设备。赛默飞资深技术专家寿林在报告中从产品历史、硬件原理、维护等方面在详细介绍了ESCALAB系列型号结构特点。赛默飞拉曼应用专家王冬梅为我们介绍了针对材料多维表征、原位电化学和原位催化等各领域的应用方案,以及拉曼光谱技术结合XPS、SEM和流变的完整结构分析方案。赛默飞红外应用专家辛明简述了傅里叶变换红外光谱技术在原位监测中的应用,特别类举了如XPS的超高真空环境的联机检测案例。介绍了赛默飞FTIR产品结合原位监测应用需求的针对性设计。同时此次大会还进行了同步直播,线上的近1000名观众在云端参与会议,同我们一起见证了活动的成功召开!‍最后感谢所有国内外专家的参与,与我们共同交流XPS、电镜、拉曼、红外等分析手段在表面分析领域的最新研究进展及应用。希望能够为中国科研及工业发展做出贡献!‍
  • 超细粉体表面包覆处理14方法 你get几种?
    p style=" margin-top:0 margin-right:0 margin-bottom:16px margin-left: 0 text-align:justify text-justify:inter-ideograph text-indent:32px line-height:28px" span style=" font-size: 14px" 超细粉体通常是指粒径在微米级或纳米级的粒子。和大块常规材料相比具有更大比表面积、表面活性及更高的表面能,因而表现出优异的光、热、电、磁、催化等性能。超细粉体作为一种功能材料近些年得到人们的广泛研究,并在国民经济发展各领域得到越来越广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 然而由于超细粉体独有的团聚及分散问题使其失去了许多优异性能,严重制约了超细粉体的工业化应用。因此,如何避免超细粉体的团聚失效已成为超细粉体发展应用所面临的难题。通过对超细粉体进行一定的表面包覆,使颗粒表面获得新的物理、化学及其他新的功能,从而大大改善了粒子的分散性及与其他物质的相容性。表面包覆技术有效地解决了超细粉体团聚这一难题。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的机理 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 关于包覆机理,目前还在研究之中,尚无定论。主要的观点有以下几种: /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 1 /span )库仑静电引力相互吸引机理。这种观点认为,包覆剂带有与基体表面相反的电荷,靠库仑引力使包覆剂颗粒吸附到被包覆颗粒表面。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 2 /span )化学键机理。通过化学反应使基体和包覆物之间形成牢固的化学键,从而生成均匀致密的包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 3 /span )过饱和度机理。这种机理从结晶学角度出发,认为在某一 span pH /span 值下,有异相物质存在时,如溶液超过它的过饱和度就会有大量的晶核立即生成,沉积到异相颗粒表面形成包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的方法 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 1 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 机械混合法 /span /strong 。利用挤压、冲击、剪切、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,使各种组分相互渗入和扩散,形成包覆。目前主要应用的有球石研磨法、搅拌研磨法和高速气流冲击法。该方法的优点是处理时间短,反应过程容易控制,可连续批量生产,较有利于实现各种树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。但此法仅用于微米级粉体的包覆,且要求粉体具有单一分散性。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" & nbsp /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/970202c4-22d6-4884-b41b-d5ae59c230bb.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体材料改性包覆机 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 2 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 固相反应法 /span /strong 。把几种金属盐或金属氧化物按配方充分混合、研磨,再进行煅烧,经固相反应直接得到超细包覆粉。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 3 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 水热法 /span /strong 。在高温高压的密闭体系中以水为媒介,得到常压条件下无法得到的特殊的物理化学环境,使反应前驱体得到充分的溶解,并达到一定的过饱和度,从而形成生长基元,进而成核、结晶制得复合粉体。水热法的优越性有:合成的核 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 壳型纳米粉体纯度高,粒度分布窄,晶粒组分和形态可控,晶粒发育完整,团聚程度轻,制得的产品壳层致密均匀,制备的纳米粉体不需要后期的晶化热处理。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 4 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 溶胶 /span /strong /span strong span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span /strong strong span style=" font-size: 14px font-family: 宋体" 凝胶法 /span /strong span style=" font-size: 14px" 。首先将改性剂前驱体溶于水 span ( /span 或有机溶剂 span ) /span 形成均匀溶液,溶质与溶剂经水解或醇解反应得到改性剂 span ( /span 或其前驱体 span ) /span 溶胶;再将经过预处理的被包覆颗粒与溶胶均匀混合,使颗粒均匀分散于溶胶中,溶胶经处理转变为凝胶,在高温下煅烧得到外表面包覆有改性剂的粉体,从而实现粉体的表面改性。溶胶 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 凝胶法制备的包覆复合粒子具有纯度高、化学均匀性好、颗粒细小、粒径分布窄等优点,且该技术操作容易、设备简单,能在较低温度下制备各种功能材料,在磁性复合材料、发光复合材料、催化复合材料和传感器制备等方面获得了较好的应用。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/cfdf281f-6370-4925-bded-830ee0436006.jpg" title=" 2.jpg" alt=" 2.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种石墨烯包覆稀土掺杂纳米氧化物 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 5 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 沉淀法 /span /strong 。向含有粉体颗粒的溶液中加入沉淀剂,或者加入可以引发反应体系中沉淀剂生成的物质,使改性离子发生沉淀反应,在颗粒表面析出,从而对颗粒进行包覆。沉淀反应包覆往往是在纳米粒子表面包覆无机氧化物,可以便捷地控制体系中的金属离子浓度以及沉淀剂的释放速度和剂量,特别适合对微纳米粉体进行无机改性剂包覆。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/e593175d-8805-4d80-9f97-225c609d5773.jpg" title=" 3.jpg" alt=" 3.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种粉煤灰空心微珠表面包覆纳米氢氧化镁复合粉体材料 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 6 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均相凝聚法 /span /strong (又称“杂絮凝法”)。根据表面带有相反电荷的微粒能相互吸引而凝聚的原理提出的一种方法。如果一种微粒的直径远小于另一种电荷微粒的直径,那么在凝聚过程中,小微粒就会吸附在大微粒的外表面形成包覆层。其关键在于对微粒表面进行修饰,或直接调节溶液的 span pH /span 值,从而改变微粒的表面电荷。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 7 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微乳液包覆法 /span /strong 。首先通过 span W/O( /span 油包水 span ) /span 型微乳液提供的微小水核来制备需要包覆的超细粉体,然后通过微乳聚合对粉体进行包覆改性。与其他纳米材料的制备方法相比,微乳液法制备纳米材料具有以下特点:( span 1 /span )粒径分布窄且较易控制;( span 2 /span )由于粒子表面包覆一层 span ( /span 或几层 span ) /span 表面活性剂分子,不易聚结,得到的有机溶胶稳定性好,可较长时间放置;( span 3 /span )在常压下进行反应,反应温度较温和,装置简单,易于实现。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 8 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均匀形核法 /span /strong 。根据 span LAMER /span 结晶过程理论,利用改性剂微粒在被包覆颗粒基体上的非均匀形核与生长来形成包覆层。该方法可以精确控制包覆层的厚度及化学组分。非均匀形核包覆中,改性剂的质量浓度介于非均匀形核临界浓度与临界饱和浓度之间,所以非均匀形核法包覆是一种发生在非均匀形核临界浓度与均相成核临界浓度之间的沉淀包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 9 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学镀法 /span /strong 。指不外加电流而用化学法进行金属沉淀的过程,有置换法、接触镀法和还原法三种。化学镀法主要用于陶瓷粉体表面包覆金属或复合涂层,实现陶瓷与金属的均匀混合,从而制备金属陶瓷复合材料。其实质是镀液中的金属离子在催化作用下被还原剂还原成金属粒子沉积在粉体表面,是一种自动催化氧化 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 还原反应过程,因此可以获得一定厚度的金属镀层,且镀层厚度均匀、孔隙率低。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 10 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 超临界流体法 /span /strong 。是尚在研究的一种新技术。在超临界情况下,降低压力可以导致过饱和的产生,而且可达到高过饱和速率,使固体溶质从超临界溶液中结晶出来。由于结晶过程是在准均匀介质中进行的,能够得到更准确的控制。因此,从超临界溶液中进行固体沉积是一种很有前途的新技术,能够产生平均粒径很小的细微粒子,而且还可控制其粒度分布。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 11 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学气相沉积法 /span /strong 。在相当高的温度下,混合气体与基体的表面相互作用,使混合气体中的某些成分分解,并在基体上形成一种金属或化合物的包覆层。它一般包括 span 3 /span 个步骤:产生挥发性物质;将挥发性物质输送到沉淀区;与基体发生化学反应生成固态产物。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 12 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 高能量法 /span /strong 。利用红外线、紫外线、γ射线、电晕放电、等离子体等对纳米颗粒进行包覆的方法,统称高能量法。高能量法常常是利用一些具有活性官能团的物质在高能粒子作用下实现在纳米颗粒的表面包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 13 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 喷雾热分解法 /span /strong 。其工艺原理是将含有所需正离子的几种盐类的混合溶液喷成雾状,送入加热至设定温度的反应室内,通过反应,生成微细的复合粉末颗粒。在该工艺中,从原料到产品粉末,包括配溶液、喷雾、反应和收集等 span 4 /span 个基本环节。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/b8e57be4-5a08-48ba-8c26-8382485ea891.jpg" title=" 4.jpg" alt=" 4.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 二氧化硅包覆二硼化锆 span - /span 碳化硅的复合粉体 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 14 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微胶囊化法 /span /strong 。在粉体表面覆盖均质且有一定厚度薄膜的一种表面改性方法。通常制备的微胶囊粒子大小在 span 2 /span ~ span 1000 /span μ span m /span ,壁材厚度为 span 0.2 /span ~ span 10 /span μ span m /span 。微胶囊可改变囊芯物质的外观形态而不改变它的性质,还可控制芯物质的放出条件;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。微胶囊技术在制药、食品、涂料、粘接剂、印刷、催化剂等行业都已得到了广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 结语 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px " span style=" font-size: 14px" 表面包覆技术的选用,应根据核心粉体和包膜材料的特性以及改性后复合粉体的应用场合来综合考虑。随着科学技术的发展,超细粉体包覆技术将进一步完善,有望制备出多功能、多组分、稳定性更强的超细复合粒子,这将为复合粒子开辟更广阔的应用前景。目前关于超细粉表面包覆机制及通过多种包覆方法结合制备性能更优异的超细粉体将是未来该领域的研究发展方向。 /span /p
  • 近7万人次!第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会圆满落幕
    仪器信息网讯 2022年6月14-15日,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”在线上成功举办。会议采取多平台直播形式,仪器信息网、科学邦、科研云、寇享学术、邃瞳科学云等平台同步转播,观众69457人次,现场气氛热烈,专家答疑环节提问踊跃。第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会本届会议由中国科学院院士、清华大学李景虹教授领衔,5位国家杰出青年基金获得者、3位表面化学分析分技术委员会委员以及表面分析领域的五家国内外知名仪器厂商代表分别作了相关报告。中国科学院院士、清华大学李景虹教授致辞中国科学院院士、清华大学李景虹教授发表致辞并对到场的嘉宾并表示欢迎。李景虹教授首先介绍了国家大型科学仪器中心——北京电子能谱中心的基本情况、人员情况、科研成果、主导标准等。北京电子能谱中心是2005年由科技部、教育部、北京市科委联合规划投资建设的国家级平台中心,依托清华大学分析中心建立。中心通过表面分析仪器与学科建设的结合,以方法学和分析仪器研制为导向,服务和支撑科技前沿和国家重大需求为目标,推进表面科学研究和表面分析技术的发展,促进仪器在我国表面科学研究领域充分发挥作用,也通过学科的研究促进新的分析方法的建立,发展成为国内表面研究的基地,建设成为一流的分析研究型国家仪器中心。中心为表面科学标准化工作提供了重要支撑。参与制定国际标准ISO/TR 22335:2007是中国首次参与制定的表面化学分析国际标准;主导表面化学分析标准项目18项,其中GB/T 26533-2011(《俄歇电子能谱分析方法通则》)具有标准总领地位纲要性国家标准文件。GB/T 36504-2018(《印刷线路板表面污染物分析 俄歇电子能谱》)成功解决了神州、北斗系列星船中关键型号元器件失效的重大质量问题。GB/T 36533-2018(《硅酸盐中微颗粒铁的化学态测定 俄歇电子能谱法》)建立了硅酸盐矿物俄歇线形的检测方法及数据库,对我国探月计划深入解析地外物质演化过程起到重要支撑作用。李景虹院士随后介绍了中国分析测试协会高校分析测试分会的发展情况、学术交流、实验室认证、标准化工作和未来规划。高校分会的宗旨是推动全国高等学校科技资源更好地服务于国家科技事业、教育事业、经济建设和社会发展。为全国高校分析测试中心为代表的科技资源开放共享服务的单位和部门搭建更好的交流和沟通的平台,推动高校科研实验室建设与管理的规范化,促进高校科技资源的开放共享,从实验室管理、信息化建设、资质认定、仪器功能与分析方法开发、标准制订、科普培训、技术咨询等方面开展活动,提升我国高校仪器设备研发和使用水平、实验室管理能力、人员实验技术能力与服务能力,促进实验室能力全面提升、扩大服务范围和增强影响力,不断推动高校分析测试事业的发展。专场主持人中国科学院理化技术研究所研究员 张铁锐水滑石(LDH)是一种层状双金属氢氧化物,作为光催化材料具有广阔的应用前景。水滑石基纳米光催化材料能够合成太阳燃料及高附加值化学品,且具有不含贵金属,制备简便,能实现千吨级产业化生产等优点。然而其存在活性低、选择性差的问题,传统增大比表面积和改变元素组成的方法,改性效果并不理想。张铁锐研究员通过优化调控水滑石基催化材料的表界面结构,引入表面缺陷结构提高催化活性,并优化设计界面结构提高了催化的选择性,最终实现了产物的高效生产。中国科学技术大学教授 熊宇杰能源结构与二氧化碳排放是备受全球关注的重要问题,我国未来40年能源的消耗量将增长50%,预计2030年二氧化碳的排放量将达到峰值。自然界本身存在碳循环系统,但人类活动带来的二氧化碳排放仍需构筑人工的碳循环系统加速实现碳循环过程,而人工实现碳循环的关键问题就是如何高效实现将二氧化碳、甲烷等碳基小分子转化成多碳燃料或化学品。熊宇杰研究员以电荷动力学研究为基础,通过对催化位点进行精准设计,高效实现了对二氧化碳、甲烷等碳基小分子的催化转化和化学转化过程的精准控制;此外,熊宇杰研究员还介绍了如何构建排硫硫杆菌/CdS生物/无机杂化材料体系高效实现二氧化碳的固定。北京大学教授 马丁现代催化研究主要是探究催化机理,设计新型催化剂。多相催化反应过程有30%以上使用了金属催化,随着金属尺寸的缩小,从块体、发展到纳米尺寸,再到单原子尺寸,催化剂中贵金属的载量在降低,贵金属的利用率得到了提高。马丁教授利用纳米金刚石衍生制备了富缺陷石墨烯载体(碳缺陷可与金属作用形成金属-C键),获得了结构均一可控、表面碳缺陷丰富的催化剂载体,可以实现限域原子级分散金属催化剂。马丁教授还提出了一种全暴露金属团簇催化剂(Fully Exposed Cluster Catalysts, FECCs)。全暴露金属团簇催化剂与金属纳米颗粒及单原子催化剂相比,在催化反应中具能够在保持金属原子接近100%利用率的同时,还能为催化反应提供丰富的表面活性位点,以N-乙基咔唑脱氢和环己烷脱氢为例介绍了通过对团簇催化剂的研究。马丁教授认为,团簇易于描述的结构使其成为研究催化反应的理想模型催化剂。湖南大学教授 王双印王双印教授主要介绍了其在有机分子电催化转化方面的部分工作,包括实现了常温常压下惰性气体分子的电催化偶联,揭示了亲核试剂电催化氧化的氢缺陷循环机制,探究了有机分子电催化氧化反应路径,明确了生物质电催化吸附行为及催化剂几何位点效应。清华大学教授 朱永法有机半导体可见光催化在环境、能源、精细合成及肿瘤去除方面均有广泛的应用。能源光催化需要解决光利用率低、反应能力低、反应速率低等问题。朱永法教授通过对能带间隙、带边位置、表面活性中心的调控,实现了对苝亚酰胺基超分子光催化、PDI-尿素结晶聚物光催化产氧、锌卟啉超产氢、TPPS/C60超分子产氢、TPPS/PDI界面产氢、双卟啉异质结产氢、四羧酸苝超分子产氢、氢键有机框架产氢、双功能C3N4产氢、C3N4/rGO/PDIP全解水产氢产氧、NDI-尿素聚合物全解水产氢产氧等体系催化性能的提升。此外,朱永法教授利用催化还原二氧化碳合成燃料和精细化学品,通过构建了钙钛矿、Er掺杂NiO、双铜离子位点MOF、晶格拉伸体系,从而实现二氧化碳的还原。最后,朱永法教授介绍了有机超分子可见光催化快速、彻底、靶向消除实体肿瘤方面的工作。研究使用无细胞毒性的全有机超分子材料,利用正常细胞吞噬小颗粒,癌症细胞吞噬大颗粒的特性,实现癌细胞对光催化剂的靶向吞噬,再利用可以穿透皮肤和血液20mm的900-650nm红光激发细胞内的光催化剂产生强氧化性空穴,达到快速杀灭癌症细胞和彻底消除实体肿瘤的目的。中国科学院上海硅酸盐研究所研究员 卓尚军质谱技术自1906年J.J.Thomson获诺贝尔物理学奖以来发展迅速,陆陆续续已经有十三个诺贝奖和质谱技术密切相关。辉光放电质谱(GD-MS)可以对固体样品直接分析,具有分析元素范围广、检测限极低、相对灵敏度因子一致、线性动态范围宽、基体效应小、稳定性及重现性好等特点。目前市面上商品化的高分辨辉光放电质谱主要源自美国赛默飞世尔科技公司、英国质谱公司和Nu仪器公司。卓尚军研究员在报告中介绍了辉光放电质谱的基本原理、辉光放电质谱定量与半定量分析、最新分析非导电材料的第二阴极技术及磁场增强离子源技术、以及国际标准ISO/TS 15338:2020、国家标准GB/T 26017-2010(《高纯铜》)、国家标准GC/T 33236-2016(《多晶硅 痕量元素化学分析 辉光放电质谱法》)等方法标准及宣贯。中科院化学所高级工程师 赵志娟紫外光电子能谱技术(UPS)是研究固体材料表面电子结构的重要方法,在量子力学、固体物理、表面科学与材料科学等领域有重要应用。UPS测试能得到材料逸出功、价带结构、价带顶/HOMO能级位置、费米能级位置等信息。对于不同的能谱仪,不同实验室及不同操作者而言,UPS测量结果的一致性极为重要,是表面分析结果的质量保证。中科院化学所高级工程师赵志娟宣贯了国家标准GB/T41072-2021(《表面化学分析 电子能谱 紫外光电子能谱分析指南》,该标准提供了仪器操作者对固体材料表面进行紫外光电子能谱分析的指导,包括样品处理、谱仪校准和设定、谱图采集以及最终报告,此标准适用于配备有真空紫外光源的X射线光电子能谱仪操作者分析典型样品。中国科学技术大学教授 黄文浩我国在纳米科技领域起步并不晚,然而在纳米标准的建立上落后于世界先进水平,与我国科技强国的目标并不相称,尤其随着纳米科技产业发展及国际商贸活动的需求,建立纳米标准,争取更多话语权,显得十分必要和紧迫。SPM是纳米科技的主要工具之一,黄文浩教授基于SPM纳米测量技术的研究基础,认为SPM仪器分辨力的标定和SPM仪器漂移的测量亟待标准的建立。黄文浩教授首次在2006年的ISO/TC201国际会议上提出了这一观点,并牵头完成了首个SPM漂移测量的国际标准ISO 11039(Surface chemical analysis —— Scanning probe microscopy —— Measurement of drift rate)以及国内首个SPM漂移测量的国家标准GB/T 29190-2012(《扫描探针显微镜漂移速率测量方法》)。黄文浩教授在报告中介绍了图像相关分析法、特征点法、非周期光栅法、原子光栅法等几种SPM漂移速率的测量方法,还介绍了温度对原子力显微镜纳米尺寸测量的影响。最后,黄文浩教授希望更多的科研工作者能够积极参加标准化活动,为我国早日成为标准化强国努力奋斗。来自日本电子、岛津、赛默飞世尔科技、精微高博、高德英特的知名表面分析科学仪器厂商代表也分别作了相关报告。日本电子株式会社应用工程师 张元俄歇电子能谱(AES)的表面检测区域范围为10-20nm,检测深度为0-6nm,是对固体块状材料进行表面微区分析的最佳工具。日本电子株式会社应用工程师张元从俄歇电子的产生机理和检测范围出发,介绍了日本电子JAMP-9510F场发射俄歇微探针的新功能——利用元素面分布图与对应能谱灵活分析,并以MOS电容器元素面分布分析、pnp晶体管功函数分析和(R)EELS测定IR薄膜带隙举例说明新功能能够实现不同价态硅的高能量分辨率和高空间分辨率面分布分析、利用功函数的差能获取半导体材料中的p、n区分布、利用带隙能力差异能获取二氧化钛和二氧化硅的REELS面分布。岛津企业管理(中国)有限公司研究员 龚沿东X射线光电子能谱(XPS)是一种灵敏的表面分析技术,信息深度来自试样表面10nm范围内,能够获取元素成分、化学价态、定性/定量分析等信息。岛津企业管理(中国)有限公司研究员龚沿东表示,XPS分析技术除了常规的采谱,还可进行成像、角分辨和深度剖析等。角分辨XPS(ARXPS)可以利用光电子在材料中穿行时的衰减效应进行无损深度剖析,适用于表面粗糙度很低的均质薄膜群定元素或其化学态组分随深度变化的关系。XPS中常规的X射线源靶材有Mg、Al、Ag、Ti、Zr、Cr等,通过靶材的选择能改变光电子的动能,从而得到更深的深度信息,而损伤性深度剖析更是能够获取100nm-10μm的深度信息。报告中介绍了如何选择离子源进行金属、有机物、无机物的深度剖析。赛默飞世尔科技(中国)有限公司资深应用专家 葛青亲赛默飞世尔科技(中国)有限公司资深应用专家葛青亲分别用几个案例介绍了Nexsa G2表面分析平台多技术联用技术。XPS用于等离子体表面样品的评估分析中,常规XPS可以评估等离子体表面改性聚合物涂层的效果及其机理,无损变角XPS可以研究等离子改性结果及表面改性深度;XPS分析钠离子电池正极材料中异物及杂质成分中,常规XPS及小束斑XPS可以聚焦到异物或杂质上,快速分析其元素及其化学态信息,特色SnapMap快照成像可获取元素及其化学态在电池材料中的分布信息;联用原位综合表征石墨烯材料时,常规XPS可快速分析样品表面元素及其化学态信息,UPS可快速得到样品价电子结构及功函数信息,REELS可快速得到样品带隙、导带、氢元素定量等信息,ISS测试可快速分析样品极表面(约1nm)元素信息,Raman可快速得到样品分子结构、晶型、缺陷等信息。此外,还介绍了如何用XPS-Raman分析氮化硼,以及利用Maps软件实现XPS和SEM、TEM、PFIB跨设备原位联用。北京精微高博仪器有限公司市场部经理 牛宇鑫北京精微高博仪器有限公司市场部经理牛宇鑫对吸附等温线进行了解读,包括I-VI型等温线和滞后环的分类包括H1-H5类回线,介绍了比表面积和孔结构的分析方法,对错误BET报告、脱附孔径假峰、S回线、吸脱附曲线交叉、吸脱附曲线不重合等异常数据进行了解读。高德英特(北京)科技有限公司应用科学家 鞠焕鑫表面分析技术应用在生活的方方面面,随着能源技术的发展,XPS、AES、TOF-SIMS越来越多的应用于电池研究中。不同的是XPS技术检测到的光电子带来的表面6nm以内的信息,可用于定量分析和化学态分析;TOF-SIMS检测到二次离子带来的表面1nm以内的信息,具有最高的表面灵敏度,能够获取分子信息;AES检测到的是俄歇电子带来的表面6nm以内的信息,能进行半定量分析,具有最好的空间分辨率。报告中主要介绍了使用XPS分析锂硫电池的SEI层和质子交换膜信息、锂离子和电解液界面的动态演变,使用TOF-SIMS分析OLED、锂电等。更多内容关注后续回放视频:https://www.instrument.com.cn/webinar/meetings/bmfx2022
  • 石墨烯高端产业应用“石墨烯表面波探测技术”全球首发
    12月6日,中国最早从事石墨烯技术研发的企业北京碳世纪科技有限公司召开技术发布会,发布全球首个石墨烯高端产业应用——“石墨烯表面波探测技术”。这一技术的问世将掀起全球探测技术革命。  石墨烯是一种碳原子以sp² 杂化轨道组成的六角形呈蜂窝巢晶格状,只有一个碳原子厚度的二维材料,被称作是“新材料之王”。  石墨烯表面波探测技术是指石墨烯表面形成的波在探测技术方面的应用。这一技术的优势在于具有超高的灵敏度和超快的响应速度,无论是科学还是技术领域均在世界上处于领先水平,将发挥出巨大商业与社会价值,引领全球探测技术革命。  该技术可以替代基于传统SPR技术的探测系统,远高于SPR的响应速度和灵敏度,为科学研究提供更加准确、快捷的数据信息,能够极大地提高探测技术在科技、医疗、安防等行业中的应用效果,甚至帮助特殊人群完成“不可能完成的任务”。碳世纪CTO徐亭博士做石墨烯表面波探测技术演示  石墨烯表面波探测技术的具体应用包含气态应用、液态应用和固态应用。  在气态应用方面,可提供超快、高灵湿度探测与气体特异性检测。可应用到非接触、无声人机交互系统 非接触、无声安防系统 聋哑人“说话”系统 重症监护系统(呼吸监测) 毒气、易爆气体监测 即时、无痛疾病诊断 工业用气体监测系统等。 例如聋哑人“说话”系统,这一技术可以探测到聋哑人口腔湿度细微的变化,将湿度频率数据转换成语言信息,借助音响设备发声,帮助聋哑人用常人的声音表达自己。在非接触、无声安防系统的应用上,可以针对每一个人不同的气场信息订制安防方案,提高人身、财产安全保障。  在液态应用方面,可提供超快、高灵敏分子探测和单细胞检测,应用到蛋白质工程、制药工程、癌症预防、血液检测、疫苗研发、抗癌药物筛选、抗癌药物机理研究等。运用这一技术,可以即时探测到癌症细胞的一举一动,为医生提供准确、快捷的病理信息,提高对患者用药量的准确度,达到更有效的治疗效果。  在固态应用方面,可提供超快的二维材料厚度测量和二维材料品质鉴定,应用到石墨烯测量与鉴定、其他二维材料测量与鉴定和单分子层、膜材料测量与鉴定。碳世纪董事长闫立群与碳世纪科学家本色出演话剧《烯芯有声》,以话剧形式分享石墨烯表面波探测技术  发布会上,业界人士对石墨烯表面波探测技术给予了很高的评价。“这在石墨烯领域是非常高端的技术,同时给探测技术带来的是颠覆性的变革,”一参会嘉宾表示。  碳世纪董事长闫立群表示,科学指发现与突破,技术是要转为生产力,改变人们的生活。碳世纪始终坚持并践行的一份梦想就是运用石墨烯把科学发现转化为生产力,真正的实现“科学与技术让人们的生活更美好”。碳世纪董事长闫立群在发布会上讲解公司石墨烯技术与应用  碳世纪作为一家专精于石墨烯工业化生产和石墨烯下游应用技术及产品研发与产业实践的高新技术企业,具备极强的创新性与创新精神。目前已建成全球首条石墨烯(单层碳原子)吨级生产线,成功研制了石墨烯光致电推动技术、石墨烯发动机油节能改进剂、超级电容器用石墨烯改性活性炭、石墨烯改性塑料、石墨烯空气净化系列产品和技术等。
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 2013 全国表面分析科学会议主题报告
    仪器信息网讯 2013年8月20-21日,&ldquo 2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班&rdquo 在北京举行。   X射线光电子能谱仪(XPS)与俄歇电子能谱(AES)是重要的表面分析技术手段。XPS在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析,微区分析以及深度剖析(1-2nm)等。俄歇电子能谱(AES)主要检测由表面激发出来的俄歇电子来获取表面信息,它不仅能定性和定量地分析物质表界面的元素组成,而且可以分析某一元素沿着深度方向的含量变化。   此外,还有二次离子质谱,辉光放电光谱、扫描探针显微镜以及全反射X射线荧光光谱等表面分析技术。 会议现场   与会专家介绍了这些分析技术在电子器件、半导体、高分子材料、纳米材料、催化剂、薄膜材料等领域的应用情况。其中以XPS方法为主。 王金淑 谢芳艳   在电子器件、半导体领域的应用,北京工业大学王金淑采用X射线光电子能谱法对添加不同含量的氧化镧掺杂钼粉的性能以及可用于电真空器件的镧钼阴极的表面元素状态进行了研究。中山大学谢芳艳利用XPS为主要研究手段,研究了半导体器件能级结构、电极功函数调制、界面电荷转移和扩散、修饰层作用与器件寿命等问题。 郝建薇 田云飞   在橡塑材料、塑料分析中的应用,北京理工大学郝建薇利用XPS以45° 掠角表征了硅橡胶/乙烯-乙烯乙酸(MVPQ/EVA28,VA含量28%)共混材料耐油耐热测试前后样品表面C、O、Si元素浓度的变化 采用变角XPS分别以10° 、45° 及80° 掠角表征了以上共混材料耐热老化前后样品表面元素浓度随深度的变化。四川大学田云飞采用X射线光电子能谱对微等离子体处理后的工程塑料聚苯硫醚材料表面进行分析,并与Ar离子刻蚀后的材料表面进行了对比。 殷志强 吴正龙   X射线光电子能谱(XPS)在分析薄膜化学组分及其分布中有着重要的作用。清华大学殷志强介绍了表面分析技术在玻璃真空管太阳集热器和能效薄膜研究中的应用。北京师范大学吴正龙介绍了超薄氧化硅薄膜包覆纳米铜的SERS 基体的初步研究。 刘义为 陆雷   广东东莞新科技术研究开发有限公司刘义为利用AES表征了微区超薄类金刚石薄膜的性质和厚度测量、SP2含量、界面分析等。中国工程物理研究院陆雷利用SEM、AFM、AES和XPS对铍薄膜的表面形貌、O含量、Be薄膜同Cu基片间的扩散现象进行了研究。 严楷 王江涌   清华大学严楷运用俄歇电子能谱、原子力显微镜等分析方法,研究经过低地球轨道环境模拟装置对Au/Cu/Si薄膜样品进行紫外辐照处理的Au/Cu复膜表面和界面结构变化,追踪表面形态和界面层产物的分布,分析原子扩散过程。汕头大学王江涌介绍了溅射深度剖析的定量分析及其应用的最新研究进展。 高飞 叶迎春   原位分析也是XPS技术的一个研究热点。南京大学高飞认为准原位XPS(Ex-situ)分析在一定程度上可以解决常规XPS分析中的&ldquo Pressure Gap&rdquo 的问题,结合相关表征手段,可以成为探究催化剂在反应条件下反应过程的有利工具。   中国石化上海石油化工研究院叶迎春利用近常压原位XPS研究了介孔氧化铈和棒状氧化铈负载贵金属在水煤气转化反应中氧化铈产生氧空位的能力。并通过原位XPS研究结合WGS催化反应数据,认识了Cu-Fe3O4-Al2O3催化剂在不同预处理条件下发生的不同化学过程。 钟发春 程斌   还有中国工程物理研究院钟发春利用XPS研究了PBX炸药、固体推进剂及锆粉点火剂的表面元素组成和结构特性 利用XPS的线扫描功能研究了不同老化时间的固体推进剂特征元素从推进剂-衬层的表面元素变化趋势 并利用XPS-MS联机技术可用于研究固体炸药材料在激光作用下的降解行为。北京化工大学程斌介绍了XPS在高分子材料鉴别、高分子共聚/共混物组成测定、高分子材料表面改性研究方面的应用。 邱丽美 徐鹏   中国石化石油化工科学研究院邱丽美利用XPS研究了稀土在分子筛笼内外的存在比例对催化性能的影响。国家纳米中心徐鹏介绍了分别将纤维状样品压片在金属In和导电胶带上进行测试,对XPS谱图的影响分析。 王海   XPS、AES、SIMS等表面分析技术因具有较强的基体效应而通常被认为是半定量的分析方法,很难对材料表面化学组成进行准确定量。因此,表面分析的量值溯源问题再国际上日益受到关注。中国计量科学研究院王海介绍说:&ldquo 我国的表面分析计量研究始于&lsquo 十一五&rsquo 期间,目前已参加了2项关键比对和3项研究性比对,都取得了不多不错的成绩。&rdquo 张增明 张毅   此外,中国科学技术大学张增明利用紫外可见分光光度计及光谱椭偏仪测量了薄膜样品在300-1000nm波长范围内的正入射时的透射谱,及68° 、78° 入射时的椭偏参数谱,并经过综合分析精确测定了不同薄膜的厚度及光学常数。薄膜厚度经过原子力显微镜测试及X射线反射等不同方法验证准确有效。   辉光放电光谱技术是基于惰性气体在低气压下放电的原理而发展起来的光谱分析技术。与其他表面分析技术如俄歇电子能谱(AES)、二次离子质谱(SIMS)相比,具有分析速度快,分析成本低等优势。宝钢集团张毅利用辉光放电光谱,通过光源条件实验,确定了最佳分析参数 选用多种基体标准样品,通过溅射率校正建立了标准工作曲线,定量分析钢铁材料表面纳米级薄膜或镀层中元素的含量及其元素分布状况。(撰稿:秦丽娟)   相关新闻:2013 全国表面分析科学与技术应用学术会议举行   X 射线光电子能谱(XPS)高端研修班在京举办   2013全国表面分析科学会议上的仪器厂商
  • Webinar | 表面zeta电位能告诉我们医疗器械的血液相容性
    医用器材表面性质的控制对于病人的安全性至关重要。例如、对于医用管材以及预充式注射器来说,抗体会显著受到蛋白吸附的影响。使用医用导管时,在硅胶表面施加防粘涂层,避免感染。对透析膜来说,为了保证血液相容性,表面不能有副作用。 尽管已经开发了不同的方法来保证医用器材的使用安全性,通过在薄膜涂层的方式来进行表面改性是最常用的方法。表面敏感的测量方法频繁应用于这类涂层的表征。在这些技术里面,流动电位法已经被证明是最有力的手段之一。该方法对于固体材料的外表面敏感,可以探测固液界面电荷层的形成,而且适用于复杂的几何形状,如高分子管、中空纤维膜或注射器筒。流动电位法所测量的表面Zeta电位,不仅可以表征固-液界面的电荷情况,还可以提供材料表面与水溶液溶质的静电相互作用信息.本次讲座,我们重点关注医用器材的精选案列,并且提供相关材料表面对血液相容性有影响的Zeta电位测试结果。主题表面zeta电位能告诉我们医疗器械的血液相容性日期2021-02-16, 16:00 - 16:30主讲人Dr. Thomas Luxbacher安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 六种表面分析技术与材料表征方法简介
    利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式。
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • 2015全国表面分析科学与技术应用学术会议召开
    仪器信息网讯 2015年5月15日,&ldquo 2015年全国表面分析科学与技术应用学术会议&rdquo 在宁波召开。 会议现场   &ldquo 2015年全国表面分析科学与技术应用学术会议&rdquo 由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会、北京分析测试协会表面分析专业委员会主办,中国科学院宁波材料技术与工程研究所、国家大型科学仪器中心-北京电子能谱中心协办。&ldquo 2015年全国表面分析科学与技术应用学术会议&rdquo 为期两天,80余名从事表面分析技术研究与应用的研究人员参加了会议。 中国科学院宁波材料技术与工程研究所副所长李润伟致辞   此次会议承办方中国科学院宁波材料技术与工程研究所副所长李润伟致辞欢迎各位研究人员的光临。据李润伟介绍,宁波材料技术与工程研究所(简称&ldquo 宁波材料所&rdquo )的发展历程。2004年,中国科学院与浙江省人民政府、宁波市人民政府三方签署协议,决定共建中科院宁波材料所。2007年宁波材料所顺利通过验收并正式揭牌,组建了磁性材料与机电装备、高分子与复合材料、功能材料与纳米器件、表面工程、燃料电池与能源技术、特种纤维6个事业部。2009年宁波材料所二期建设启动,将研究领域从原先的材料领域进一步拓展到新能源和先进制造领域。经过十年发展,目前宁波材料所基本建成了一个既满足自身发展需求又积极为地方企业服务的科技支撑平台,整个平台仪器设备总值约3亿元 建成12.9万平方米科研大楼与实验室,建设了碳纤维制备国家工程实验室、发改委磁性材料科技创新服务平台、等一批科研平台,为科研工作顺利开展提供了保障。 清华大学朱永法教授主持会议   清华大学朱永法教授指出,&ldquo 2015年全国表面分析科学与技术应用学术会议&rdquo 旨在推动表面分析科学与应用技术的快速发展,加强同行之间的交流合作,展示相关的新成就、新进展;建立表面分析的交流平台,形成自由研讨的学术氛围,让思想碰撞出火花,并共同提升理论与技术水平,促进表面分析科学研究队伍的壮大。   本次会议共有4个大会报告、12个邀请报告、14个口头报告,另外,岛津/Kratos、高德英特/ULVAC-PHI等仪器设备公司在会议现场展示了相关技术资料。   其中,会议第一天进行了3个大会报告,分别是: 报告题目:Interface Engineering for 2D Materials Based OptoelectronicDevices 报告人:陈伟副教授/新加坡国立大学   陈伟副教授目前主要关注于低维分子量子结构、有机光电器件、石墨烯及复合材料的界面问题,以及其在分子器件、有机太阳能电池、纳米催化等方面的应用。在此次报告中,陈伟副教授利用表面分析技术研究了二维材料&mdash &mdash 石墨烯、黑磷功能化调制界面反应机理等问题。 报告题目:Chemistry with a Tiny Hammer 报告人:郑直教授/许昌学院   郑直教授在国际上首次提出了一个&ldquo Chemistry with a tiny hammer&rdquo 的全新化学反应机制来设计和实现表面高分子聚合反应。与常规的湿法化学过程来制备交联的聚合物薄膜不同,这种路线不会用到任何引发剂、添加剂及催化剂等,属于环境友好型制备反应 整个过程只需用到动能为几个eV 的质子束来实现干法化学合成,可选择性导致C-H 键断裂,从而能够适应各种分子器件和医用材料等的制备和改进。可在单晶硅片和其它半导体器件上制备得到聚苯乙烯、聚丙烯酸、聚乙烯醇、聚氧乙烯、聚甲基丙烯酸N,N-二甲氨基乙酯等交联的超薄聚合物薄膜,通过对反应能量和剂量的精确控制,表面官能团能得到很好保护,解决了聚合物薄膜制备以及改性过程中的节能、聚合物表面官能团的保护等技术问题。 报告题目:The applications of large Ar cluster beams in XPS 报告人:Dr. Christopher James Blomfield/Kratos, UK   Kratos公司位于英国曼切斯特,现在是日本岛津公司的全资子公司。Kratos是世界上最早生产商品化X射线光电子能谱(XPS)的厂家之一。2014年5月,Kratos推出了最新型的XPS谱仪&mdash &mdash Axis Supra,并在短短的两个月的时间内,成功地在全球范围内销售了6台Axis Supra型XPS谱仪。此次报告中,Christopher James Blomfield/博士介绍了由于单原子离子源用于软物质例如聚合物的深度剖析和表面清洁时受到限制。而气体团簇离子源的离子束减少了进入样品表面中的能量,从而降低样品损伤。报告指出,气体团簇离子源是进行深度分析有机物和聚合物而不破坏其化学状态的有效工具。   汕头大学王江涌教授、清华大学姚文清高级工程师、上海交通大学 邹志强教授、石油化工科学研究院邱丽美高级工程师、高德英特(北京)科技有限公司鲁德凤、ULVAC-PHI Dr. Takuji Shibasaki、宁波大学谭瑞琴研究员、四川大学田云飞博士、中国计量科学研究院王海博士也分别做精彩报告,介绍了X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(TSIMS)、辉光放电光谱(GD)、扫描探针显微镜(STM)等表面分析技术在各领域的应用。 与会人员合影   2012年,清华大学分析中心、国家大型科学仪器中心-北京电子能谱中心组织召开了第一届全国表面分析科学与技术应用学术会议,此后该会议每年举行一次。今年是该会议第四次举办。   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。同时,由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。目前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(TSIMS)、辉光放电光谱(GD)、扫描探针显微镜(STM)等。国内表面分析技术起步于80年代,广泛应用于基础科研、先进材料研制、高精尖技术、装备制造等领域。 撰稿:刘丰秋
  • 2012赛默飞世尔-流变在聚合物改性、加工和表征方面应用研讨会邀请函(郑州)
    邀 请 函 流变在聚合物改性、加工和表征方面应用研讨会 暨哈克流变仪新产品发布会 时间:2012年5月22日下午13:30 主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征 随着我国现代制造领域科技发展和专业技术人才队伍建设的需要,为了进一步提高相关人员的基础理论和技能水平,促进研究单位和企业技术创新和产品科技含量的提升,郑州大学材料学院和赛默飞世尔科技(中国)有限公司公司联名举办&ldquo 聚流变在聚合物改性、加工和表征方面应用研讨会&rdquo &mdash &mdash 将于2012年5月22日在郑州御花园酒店举行。本次研讨会将由哈克流变仪资深技术人员为您讲解最新技术和应用,并借此机会首次在国内发布最新的产品和技术。 我们诚挚地邀请您参加本次会议,共同讨论材料结构&mdash 流变性能&mdash 在聚合物加工成型工艺中的应用及其最新进展。 交流会内容如下: 1、技术报告: 1) 聚合物改性加工工艺设计方法,流变行为的特点; 2) 转矩流变仪在聚合物改性及加工中的应用; 3) 旋转流变仪在聚合物改性及加工中的应用; 2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术 3、参观郑州大学相关实验室包括塑料改性综合实验室、流变测试仪器实验室等 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 Please let me know about your new products or special offers: 请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我: via E-mail(电子邮件): via Direct Mail(直接邮寄至): Take me off your distribution list (请不要发送给我): Register via E-mail (您可以通过下列电子邮件注册): linda.xie@thermofisher.com, Tel: 021 68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included. Number of attendees is limited &ndash so register today! 本次会议不收取会务费,并免费提供晚餐和会议资料。 坐席有限&mdash 请立即报名! 赛默飞世尔科技(中国)有限公司 郑州大学材料学院 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要 客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和 www.thermofisher.cn (中文)。
  • 2012赛默飞世尔-流变在聚合物改性、加工和表征方面应用研讨会邀请函(广州)
    邀 请 函 流变在聚合物改性、加工和表征方面应用研讨会 暨哈克流变仪新产品发布会 时间: 2012年5月10日,9:00&mdash 15:00 地点: 华南理工大学化学与化工学院 主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征 尊敬的先生/女士: 您好! 由赛默飞世尔科技(中国)有限公司和华南理工大学化学与化工学院共同主办的&ldquo 流变在聚合物改性、加工和表征方面应用研讨会&rdquo 将于2012年5月10日在广州举行,本次研讨会将由哈克流变仪资深技术人员,以及来自赛默飞世尔科技有限公司的德国专家Dr. Klaus Oldö rp为您讲解最新技术和应用,并借此机会首次在国内发布最新的产品和技术。我们诚挚地邀请您参加本次会议,共同讨论材料结构&mdash 流变性能&mdash 在聚合物加工成型工艺中的应用及其最新进展。 交流会内容如下: 1、技术报告: 1) 转矩流变仪在聚合物改性及加工中的应用; 2) 旋转流变仪在聚合物改性及加工中的应用; 2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术 3、参观华南理工大学大学流变测试仪器实验室等 会议日程(5月10日) 8:30-9:00 注册 所有与会者 9:00-9:15 欢迎辞,会议介绍 赛默飞世尔科技,李健 9:15-9:45 新品发布 - 哈克Rheonaut红外流变同步联用测试单元 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 9:45 - 10:15 新品发布 - 哈克PROCESS 11微型双螺杆挤出机 赛默飞世尔科技,李健 10:15-10:30 茶歇 所有与会者 10:30-12:00 哈克旋转流变仪和粘度计在聚合物表征方面的应用 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 12:00-13:15 午餐 所有与会者 13:15-14:15 哈克转矩流变仪在聚合物加工改性等方面的应用 赛默飞世尔科技,李健 14:15-15:00 技术交流和参观合作实验室 所有与会者 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 Pls let me know about your new products or special offers: 请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我: via E-mail(电子邮件):_______ via Direct Mail(直接邮寄至):______ Take me off your distribution list (请不要发送给我):______ Register via E-mail: moggy.wang@thermofisher.com , Tel: 020-83145171;13926010308;Fax:020-83486621 Linda.xie@thermofisher.com, Tel: 021-68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included. Number of attendees is limited &ndash so register today! 您可以通过下列电子邮件注册: moggy.wang@thermofisher.com , Tel: 020-83145171 Fax:020-83486621 Linda.xie@thermofisher.com,电话:021-68654588-2419 本次会议不收取会务费,并免费提供午餐和会议资料。 坐席有限&mdash 请立即报名! 赛默飞世尔科技(中国)有限公司 2012年4月26日 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和 www.thermofisher.cn (中文)。
  • 具有不同表面润湿性的微尺度3D打印微流控器件
    作为微纳3D打印的先行者和领导者,在三维复杂结构微加工领域,重庆摩方精密科技有限公司拥有超过二十年的科研及工程实践经验。摩方精密在微流控应用领域,基于微流控的装置,例如流体连接器和基因测序仪阀门,已使用 PµSL 技术成功实现微流控3D打印。 ---阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自重庆摩方精密科技有限公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。 多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。 致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract官网:https://www.bmftec.cn/links/7
  • 具有不同表面润湿性的微尺度3D打印微流控器件
    阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自深圳摩方材料公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract
  • 【标准解读】氩气吸附静态容量法测定石墨烯粉体比表面积
    氩气吸附静态容量法是用氩气(Ar)作为吸附质,在液氩温度下用物理吸附仪测试粉体样品BET吸附比表面积,并采用多点法对检测数据进行分析处理的测量方法。氮气吸附BET法是测试固态物质比表面积的常用方法,用氮气(N2)作为吸附质,当N2在固态吸附剂表面的吸附行为符合理想的经典物理吸附模型时适用。若被测样品对N2分子存在特定吸附,则会造成比表面积测试结果的准确性、可靠性差。石墨烯是一类典型的二维碳纳米材料,具有优异的电、热和机械性能,在锂离子电池、集成电路、5G通信、新型显示等电热应用领域展现出广阔的产业应用前景。石墨烯粉体是我国商业化石墨烯产品的主要类型,由大量“石墨烯纳米片”组成,在锂离子电池电极材料、导电液、导热膜、重防腐涂料等产业领域已实现规模应用。石墨烯粉体的比表面积是影响其应用性能的关键特性参数之一,比表面积的准确可靠测定有利于石墨烯粉体的生产控制,进行应用性能调控。本标准给出了用氩气吸附静态容量法对产业化石墨烯粉体的比表面积进行准确测定的标准化测试分析方法,从很大程度上完善和补充国内现有石墨烯粉体测试方法标准的不足,可用于产业化石墨烯粉体的规格评价和质量控制,为推动石墨烯产业的高质量发展提供了标准技术支撑,具有重要的实用价值。一、背景对于固态样品比表面积的测定,业内通常依据国家标准GB/T 19587-2017/ISO 9277:2010《气体吸附BET方法测定固态物质比表面积》,但产业领域内根据此标准以N2作为吸附质测定石墨烯粉体的比表面积时,不同检测实验室间无法获得良好一致的检测结果,甚至在同一实验室对同一样品进行检测时,结果重复性也较差。国家标准指导性技术文件GB/Z 38062-2019《纳米技术 石墨烯材料比表面积的测试 亚甲基蓝吸附法》是针对石墨烯粉体的比表面积测试而制定的标准测定方法,但此文件中给出的测试样品需在液体中分散制样,试样处理过程复杂,影响因素繁多,从而造成实验过程的可控性及检测结果的重复性、复现性较差。本标准采用氩气吸附静态容量法来测定石墨烯粉体的比表面积,该方法具有简单、快速、准确的特点,能够有效地评估石墨烯粉体的表面性质。二、制定过程本标准涉及的技术和产业领域广泛,因此集合了国内相关领域的一批权威代表性的科研院所、检测分析平台、石墨烯粉体生产/应用企业、分析仪器厂家等产、学、研、用机构通力合作完成。牵头单位为国家纳米科学中心,共同起草单位有中国计量科学研究院、广州特种承压设备检测研究院、贝士德仪器科技(北京)有限公司、北京石墨烯研究院、青岛华高墨烯科技股份有限公司、冶金工业信息标准研究院、北京低碳清洁能源研究院、浙江师范大学、泰州飞荣达新材料科技有限公司、中国科学院山西煤炭化学研究所。起草工作组历时3年对标准技术内容的可靠性进行了充分的实验验证,深入考察了不同类型石墨烯粉体的均匀性、稳定性,样品预处理方式、准确称重和转移、脱气处理温度和时间、吸附气体选择、测试程序、石墨烯粉体是否含有微孔及如何处理、测试数据选取和分析处理等关键技术点,确保标准的技术内容具备科学性、可操作性和广泛适用性。三、适用范围本标准适用于具有Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线的石墨烯粉体的比表面积测定。含有少量微孔、吸附等温线呈现出Ⅱ型和Ⅰ型相结合或Ⅳ型和Ⅰ型相结合的石墨烯粉体比表面积测定也适用。本标准描述的方法,其他类型的碳基纳米材料,如碳纳米管、碳纤维、多孔炭等比表面积的测定也可参照使用。四、主要内容本标准技术内容涵盖氩气吸附静态容量法测定石墨烯粉体比表面积的全流程,针对石墨烯粉体比表面积测定过程中的取样、称重、样品脱气处理温度和时间、测试程序设置以及比表面积计算给出了指引和规定,并在附录中给出了不同气体吸附质、不同类型石墨烯的比表面积测试实例及吸附热研究。术语和定义:包括不同类型石墨烯粉体、比表面积、气体吸附技术核心术语。一般原理:扼要介绍了氩气吸附静态容量法测量原理:以氩气为吸附质,在液氩温度(87.3 K)下通过静态容量法测量平衡状态下氩气分子的吸附等温线,采用BET多点法进行数据分析,获得石墨烯粉体样品的吸附量与比表面积。本文件应用范围包括Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线以及II型和I型相结合或Ⅳ型和I型相结合的吸附等温线。氩气吸附静态容量法检测示意图(图1)、不同类型的吸附等温线图(图2)附下。取样和称重:取样量应大于样品的最小取样量,并根据仪器说明书综合考虑取样量。取样量宜使总表面积处于10 m2~120 m2范围。表观密度较大的样品可直接取样;表观密度小、易飘洒的样品,宜震实后取样,且选用较大体积的测试样品管。称重时需对精密电子天平进行校准,并注意气体回填、环境温度变化等因素的影响。标准中给出了如何称取不同类型石墨烯粉体的推荐操作。脱气条件和测试程序:测定前,应通过脱气除去样品表面的物理吸附物质,同时要避免表面发生不可逆的变化。脱气温度应低于样品的热分解温度,用热重分析法确定合适脱气温度。脱气时间由样品管内的真空度决定,推荐在脱气温度下样品管内的真空度最终达到≤1 Pa。标准中给出了如何确定脱气温度和时间、详细的测试程序和应满足的要求,以及不同类型测试样品的数据点选取原则和注意事项等。实验数据处理:详细给出了基于BET多点物理吸附法计算比表面积的方法和要求,及测试样品分别在含微孔、不含微孔情况时,如何对测试数据进行处理和分析。检测报告:基于测试过程和测试结果,安全要求给出检测报告并对测试结果进行不确定度分析。测试实例:附录中详尽给出了具有典型代表性的不同类型石墨烯粉体的测试实例,并展示了用不同吸附质气体(氩气、氮气、氧气、二氧化碳、氪气)顺序进行吸附时,测试样品所表现出的吸附行为差异,实验数据明确表明某些石墨烯粉体测试样品对N2分子存在特定吸附情况。通过研究不同类型石墨烯粉体吸附N2和Ar时的吸附热差异,进一步验证了石墨烯粉体存在对氮气的特异性吸附行为的存在,表明了选择Ar作为吸附质采取氩气吸附静态容量法测定石墨烯粉体比表面积的必要性。五、理论依据浅释在石墨烯粉体测试样品均匀性、稳定性满足测试要求的前提下,用氮气吸附BET法测量石墨烯粉体比表面积的准确性、可靠性较差的原因在于N2存在特定吸附行为:由不同生产厂家、不同生产工艺的产业化石墨烯粉体,通常不可避免的含有片层内缺陷、片径边缘位错、晶界等,从而造成处于特定位点上的碳原子活跃程度存在明显差异。此外不同表面改性生产工艺也会造成石墨烯粉体样品表面功能基团(如-OH)的差异。用具有四极矩的N2分子作为吸附质,会与石墨烯粉体中的活跃碳原子或极性吸附基团间形成特定吸附,使得形成不符合理想经典物理吸附模型的分子排列取向,造成多点吸附曲线的线性相关性较差,导致比表面积测试结果的准确性、可靠性也较差。氩气分子是单原子气体分子,电子已完全配对且不存在任何成键轨道,通常认为其不具有化学活性。氩气分子不存在四极矩,作为吸附质在石墨烯粉体材料表面吸附时,对样品表面结构或官能团的敏感性低,其吸附行为符合理想经典物理吸附模型,所以在液氩温度下进行比表面积测定时,可用经典BET理论进行计算。由于氩气与氮气的极化率和分子尺寸极为相似,他们的非特定吸附性质也极为相似,在非极性吸附剂上,氮的吸附热和氩的吸附热几乎相等。本标准用不同类型、不同表面修饰、不同极性的石墨烯粉体样品进行详细的试验验证,证实了采用Ar作为吸附质测定石墨烯粉体比表面积的科学性和合理性。本文作者: 刘忍肖 教授级高工;国家纳米科学中心 中科院纳米标准与检测重点实验室Email: liurx@nanoctr.cn 闫晓英 工程师; 国家纳米科学中心 技术发展部Email:yanxy@nanoctr.cn
  • OPTON微观世界|第34期 从荷叶效应到超疏水表面——从自然到人工合成
    前 言在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。荷叶效应如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。图1荷叶效应超疏水特性其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°时,我们称该液体可以湿润固体。当θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。图2 浸润与不浸润的特征在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。图3 荷花叶片的sem图像 (a)低倍图像(b) “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布由荷叶到仿生技术自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构对自然界演化生成的超疏水结构,科学家们也做了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学气相沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。图5不同形态的人工合成的超疏水结构图6 超疏水结构碳纳米管阵列经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效地提升了舰载的行驶速度。
  • 新材料火热带动表面分析技术发展 智能化/原位/联用是未来发展趋势——ACCSI2024访北化研究员程斌
    “第十七届中国科学仪器发展年会(ACCSI2024)”于2024年4月17-19日在苏州狮山国际会议中心盛大召开。ACCSI定位为科学仪器行业高级别产业峰会,经过多年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2024 以“融合创新,质领未来”为主题,吸引了来自“政、产、学、研、用、资、媒”等各方的高端人士共计1500余人参会,共同探讨科学仪器行业的前沿趋势与发展机遇。年会现场,仪器信息网特别采访了北京化工大学研究员程斌老师。访谈中,针对高分子材料的表征方法、表面分析的定义、表面分析技术当前的应用现状,以及表面分析技术未来的发展前景等话题进行了深入的探讨。仪器信息网:您的研究方向包括高分子材料合成、表征、改性等,高分子材料的主要表征手段有哪些?这些手段目前应用情况如何?程斌老师:我是从事高分子材料的合成、表征,以及高分子材料改性的。高分子材料的表征方法一般分为两类:一类是结构表征,一种是性能表征。那么结构表征有三个层级:一级结构、二级结构、三级结构。一级结构就是要知道高分子材料是由哪些元素组成的,对应的方法一般就是大家熟知的红外光谱、核磁共振等。二级结构是高分子材料有别于其他材料的,因为高分子材料层级的尺寸比较大,一般用相对分子质量的大小来表征分子尺寸的大小,常用的表征方法就是色谱——体积排除色谱(SEC),国内称为GPC,也就是凝胶渗透色谱。分子尺寸大小是很重要的一个结构,它决定了高分子材料的性质。举个例子,如聚乙烯是最常见的一种高分子材料,像日常生活中看到的盆、盒子等物品,很容易就把它摔碎了,这些分子量大概就是几万到十几万。但是如果上了百万以后,就会形成一种高分子材料——超高分子量聚乙烯,这种材料的性能远超过聚乙烯,其坚韧度极高,几乎无法被剪切或刺穿,可以做防刺手套等。第三个层面就是常说的三级结构或者织态结构,通常具有一定的性能。常规的表征方法就是结晶表征,如XRD等。因为它有了性能,还可以用一些性能的方法来对它进行表征,比如热性能以及光散射的性能等。除了结构表征以外,就是性能表征。首先必须进行结构表征,因为它决定了性能。性能表征常见的是力学性能,也就是机械性能。常用的就是机械性能分析仪或者叫万能试验机,这个就能把大部分的机械性能表达出来,比如拉伸性能、压缩性能等。还有一个冲击性能机,可以把冲击性能、韧性表达出来。除了这些以外,还有热性能、光性能以及磁性能,因为高分子材料是功能性材料,所以强调各种功能性的表达要更多。其中热性能有一个是高分子材料独有的——玻璃化温度,它决定高分子材料的使用,当然其他材料也有玻璃化温度,但不是很明显,不是起决定作用的。表征方法有几种方式,如差示扫描量热法(DSC)、热机械分析等。仪器信息网:您在材料表面与界面分析方面开展了很多工作,请谈谈材料表面与界面分析的定义?表面分析方法对于材料科学的重要意义?程斌老师:一般把气体和液体、气体和固体的界面称为表面,表面是一个过渡区,在宏观上来看好像是一个界面,但微观上来讲,就是个过渡区。另一个定义是表面大概就是10个纳米尺度,这个是在科学界和业界普遍接受的,包括在一些国际组织里面也认为10个纳米以下的称为表面。之所以要进行表面分析,是因为表面的性质是由表面组成决定的,表面性质又和别的本体性质是完全不一样的,所以要进行表面分析。近年来,新材料领域的迅猛发展促进表面分析技术的进步。这些新材料不仅强调高性能、功能化和智能化,更在微观尺度上展现出前所未有的复杂性。随着材料尺度逐渐缩小至纳米、原子甚至分子级别,表面问题变得愈发突出。这些表面现象不仅影响着材料的整体性能,还直接关系到其在实际应用中的表现。仪器信息网:表面界面分析方法主要包含哪些表征技术?这些技术目前的应用现状如何?中国应用水平、仪器技术水平如何?程斌老师:表面分析和材料分析也是一样的,也是两部分,一部分是结构分析,一部分是性质和性能分析。表面分析和材料分析相比,还是有很大挑战性的,因为表面是纳米级的,非常薄且无法分离出来,所以在表面分析表征方法的发展过程中,解决了很多问题,甚至得过诺奖,如X射线光子能谱法(1981年得过诺奖)。在X射线光子能谱法发明以前,是无法很容易的知道表面组成。在表面分析组成领域,最常见的就是X射线光子能谱法,还有俄歇电子能谱法、二次离子质谱法。但后两种方法现在不是主流,大约95%-97%都采用X射线光子能谱法,另外两种占比不到5%。第二个就是性能分析,性能相对来说简单一些,表面有一个基本性能——表面能。分析方法主要是仪器分析方法,要借助于仪器。在中国,得益于国家经济的快速发展和资金积累,能够购买到世界上一流的表面分析设备。甚至很多设备在刚推出时就被引入中国。同时,在国产化方面,尽管受到一些非正常因素的制约,但近年来也取得了显著进步,已经有一些国产设备成型并投入市场。仪器信息网:畅谈一下表面分析技术的未来发展趋势?程斌老师:表面分析技术原来不是特别热门的,完全得益于新材料的发展才热门起来,新材料对它的要求,促进了表面分析的发展。那么目前来看,新材料方面有几个要求,在全世界范围内的材料热造成了需要大量的表面分析。目前的表面分析方法,它的设备以及操作都是要专家级的,而且都是非常贵重的设备,这样就很难满足大量的需求。所以目前发展很重要的一个趋势,就是自动化,而且现在已经引入了AI,相应的仪器正在研发,可能很快就会面世,这样就会把表面分析的门槛降低,就可以更高效率的为材料发展服务。第二个就是原位。原位有几个层面,一个层面就是材料在制备或者应用后,不再有其他因素的干扰,直接去分析。第二个层面要在同一个位置上,只能针对材料表面的一个极小区域或维度进行分析,并且很难找到另外同样的一个位置,这样对解读材料的结果就有很大的困难。第三个层面是在实际操作过程中来收集信息,现在成功引入并应用了operando技术,相应的测试仪器也在发展,如真空互联,可以不在外界干扰的情况下直接测试。第二种就是有些公司做了一些技术性的改造,可以在同一个位置上测试。operando技术某些方面还不太成熟,也在逐步的迭代。随着材料的要求越来越高,它逐步迭代,技术越来越成熟,这绝对是一个发展趋势。再一个趋势就是把多种方法组合到一起,如X射线光子能谱法就可以结合离子散射法和拉曼光谱法,在得到组成信息的同时得到结构信息。还有一个趋势就是一些新的方法进入表面分析,如辉光放电质谱法,对超纯材料的定量分析是一个很重要的方法,近几年因为材料的需求开始进入表面分析领域,也在逐步完善。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?程斌老师:仪器信息网肯定是一直很关注的,也很熟悉,以前在专家层面有过合作。从仪器信息网建立开始,是搭载了互联网的一个新技术,把仪器的信息综合起来,便于大家了解设备,对国家仪器科技体系的搭建做了一定的贡献。从一个用户角度来讲,提几点希望,第一点希望是改善一下模式,从B2B向B2C的模式发展,要发掘每一个客户的需求。例如,针对目前市场上普遍存在的培训需求,仪器在咱们国家已经是很普及,包括很多高档的设备(价格较贵,需要专家来操作和解读的设备)在中国也是非常普及了,那么仪器信息网可以为用户提供更加全面、专业的培训服务。第二点就是建立一个高效的交流平台,虽然有一些协会组织举办的会议提供了交流机会,但渠道仍然有限。仪器信息网可以利用其庞大的客户群优势,开辟一个新的交流渠道。第三点就是仪器信息网当年成立的时候还是搭载了一些当时的新媒体,但这两年好像有点固步自封了,应该紧跟时代潮流,加大在微信、抖音等新媒体工具的投入和使用力度,继续发掘一些新的、大家喜闻乐见的媒体方式,进一步促进仪器信息网的发展。
  • 流变在聚合物改性、加工和表征应用研讨会(福州)-赛默飞世尔
    邀 请 函流变在聚合物改性、加工和表征方面应用研讨会 时间:2012年6月5日,8:30—16:00地点: 福建师范大学(仓山校区)主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征尊敬的先生/女士:您好!由赛默飞世尔科技(中国)有限公司和福建省高分子材料重点实验室共同主办的“流变在聚合物改性、加工和表征方面应用研讨会”将于2012年6月5日在福州举行,本次研讨会将由哈克流变仪资深技术人员,以及福建师范大学的老师为您讲解最新技术和应用,并借此机会首次在国内发布最新的产品和技术。我们诚挚地邀请您参加本次会议,共同讨论材料结构—流变性能—在聚合物加工成型工艺中的应用及其最新进展。交流会内容如下:1、技术报告:1) 转矩流变仪在聚合物改性及加工中的应用;2) 旋转流变仪在聚合物改性及加工中的应用;3)竹粉和聚丙烯的改性及其对复合体系流变性能的影响;2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术3、参观福建师范大学转矩流变测试仪器实验室等会议日程(6月5日) 8:30-9:00 注册 所有与会者 9:00-9:10 欢迎辞,嘉宾介绍 赛默飞世尔科技,王琦 9:10-9:15 福建省高分子材料重点实验室执行主任致辞 福建师范大学,刘海清 教授,博士生导师 9:15-9:45 哈克Rheonaut红外流变同步联用测试单元 赛默飞世尔科技,范永忠 9:45 - 10:15 哈克PROCESS 11微型双螺杆挤出机 赛默飞世尔科技,李健 10:15-10:30 茶歇 所有与会者 10:30-12:00 哈克旋转流变仪和粘度计在聚合物表征方面的应用 赛默飞世尔科技,孙文彬 12:00-13:15 午餐 所有与会者 13:30 -14:00 竹粉和聚丙烯的改性及其对复合体系流变性能的影响 福建师范大学,陈钦慧老师 14:30-15:30 哈克转矩流变仪在聚合物加工改性等方面的应用 赛默飞世尔科技,李健 15:30-16:00 技术交流和参观合作实验室 所有与会者 注册表Registration Form Name姓名 Company公司 Department部门 Title职位 Email电子信箱 Telephone电话 Address地址 The following Colleague will be attending as well:下列同事将与我一起参加: Name姓名 Company公司 Department部门 Title职位 Email电子信箱 Telephone电话 Address地址 Pls let me know about your new products or special offers:请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我:via E-mail(电子邮件):‰via Direct Mail(直接邮寄至):‰Take me off your distribution list (请不要发送给我):‰Register via E-mail: moggy.wang@thermofisher.com , Tel: 020-83145171;13926010308;Fax:020-83486621 sunny.feng@thermofisher.com, Tel: 021-68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included.Number of attendees is limited – so register today!您可以通过下列电子邮件注册:moggy.wang@thermofisher.com , Tel: 020-83145171 Fax:020-83486621sunny.feng@thermofisher.com,电话:021-68654588-2419 本次会议不收取会务费,并免费提供午餐和会议资料。坐席有限—请立即报名!赛默飞世尔科技(中国)有限公司福建省高分子材料重点实验室2012年5月15日交通指引:火车南站至福建师范大学(仓山区)乘坐124、503、83路在师大站下车,全程约50分钟/11.1公里。火车站至福建师范大学(仓山区)乘坐k1、20、106路在师大站下车,全程约60分钟/12.0公里。机场大巴至阿波罗酒店乘坐出租车至福建师范大学(仓山区),全程约14分钟/5.5公里。
  • 国家能源集团低碳院研发失效反渗透膜pH响应改性修复技术
    8月29日,国家能源集团北京低碳清洁能源研究院(以下简称低碳院)膜分离技术团队针对失效反渗透膜研发的pH响应改性修复技术相关研究成果发表在SCI水资源一区TOP期刊《Desalination》。   反渗透膜在工业废水处理等领域的长期运行过程中,聚酰胺膜表面会不可避免地发生膜污染,造成膜性能下降。当膜产水水质无法满足应用指标时,就需要对膜元件进行更换,导致废弃的反渗透膜数量日益增多。废弃反渗透膜通常作为固废垃圾被直接填埋,不仅给环境带来巨大压力,更造成资源的浪费。膜性能修复可有效延长反渗透膜的使用寿命,但目前的改性方法还存在长期使用性能有限、无法直接应用于膜元件等问题,因此,亟需开发一种简便、高效并可直接应用于失效反渗透膜元件的改性修复技术,以进一步提高修复膜的使用寿命。   研究团队以聚丙烯酸作为修复剂,对失效反渗透膜表面断裂的酰胺键进行修复改性处理。通过活化反应使修复剂与膜表面活性基团发生化学交联反应,有效提升失效反渗透膜的脱盐率,同时引入具有pH响应性的羧酸基团,用于通过工业常规碱/酸清洗来调节修复膜的脱盐性能。为进一步验证应用效果,研究团队对6支矿井水处理5年的废弃反渗透膜元件进行了聚丙烯酸改性修复,修复后的膜元件脱盐率平均从92.68%提高至97.26%。修复膜在矿井水处理现场连续运行的185天里,通过及时的酸洗调控使得修复膜性能满足现场需求,验证了修复膜的性能稳定性和脱盐率可控性。   膜分离技术是低碳院开展的诸多前沿技术研究之一,应用领域涉及水处理、二氧化碳捕集等。作为国家能源集团直属的前沿研究院,低碳院坚持需求牵引和问题导向,瞄准战略性新兴产业和未来产业,开展应用基础研究和前沿引领技术开发,为集团公司加快建设世界一流清洁低碳能源领军企业贡献科技力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制