当前位置: 仪器信息网 > 行业主题 > >

表面包覆

仪器信息网表面包覆专题为您整合表面包覆相关的最新文章,在表面包覆专题,您不仅可以免费浏览表面包覆的资讯, 同时您还可以浏览表面包覆的相关资料、解决方案,参与社区表面包覆话题讨论。

表面包覆相关的资讯

  • 一文了解超细粉体表面包覆技术“四大天王”
    p style=" text-align: left text-indent: 2em " 粉体的表面修饰是解决超细(纳米)粉体团聚问题的一种重要方法,后者已经成为了超细粉体技术发展的瓶颈。粉体表面包覆技术是指运用一定的工艺技术将修饰剂包裹在粉体表面以达到粉体表面修饰目的一种方法。随着超细粉体粉体的快速发展,粉体表面包覆技术也得以快速发展。目前超细粉体的表面包覆技术种类繁多,最主要的“四大天王”是机械混合法、气相沉积法、超临界流体快速膨胀阀和液相化学法。仪器信息网小编特将四种方法进行了汇总以飨读者。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/8491e78f-a3fb-43ca-b51e-65719702b84b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: left text-indent: 2em " strong 外炼金刚登峰造极——机械混合法: /strong 通过挤压、剪切、冲击、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,随着组分间的相互渗透和扩散,最终形成包覆。目前主要应用的机械混合方法有球石研磨法、搅拌研磨法、高速气流冲击法几种。 /p p style=" text-align: left text-indent: 2em " 优点:处理时间短、反应过程可控、可连续批量生产 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/310a87bd-df49-414b-a7e3-3cecbc86a447.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong 天引万象举重若轻——气相沉积法: /strong 利用过饱和体系中的改性剂在颗粒表面聚集而形成对粉体颗粒的包覆。包括气象化学沉积法和雾化液滴沉积法两大类。前者是通过气相中的化学法应生成改性杂质分子或微核,在颗粒表面沉积或与颗粒表面分子化学键结合,形成均匀致密的薄膜包覆。或者是将改性剂通过雾化喷嘴产生微细液滴其溶质或熔融液在颗粒表面沉积或凝结形成表面包覆。 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:食品、材料、医药、化工等。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/6748b145-ca81-49b4-8ecf-4f19ddb4b9fc.jpg" title=" 3.jpeg" alt=" 3.jpeg" / /p p style=" text-indent: 2em " strong 天下武功唯快不破——超临界流体快速膨胀法: /strong 利用超临界流体在流化床的快速膨胀, 使改性微核在颗粒表面形成均匀的薄膜包覆。超临界流体在快速膨胀过程中, 超临界相向气相的快速转变引发流体温度、压力的急剧降低,从而导致溶质在超临界溶剂中溶解度的急剧变化,在高频湍动的膨胀射流场中瞬间均匀析出溶质微核。膨胀气流载带这些均匀微核与流化床中的颗粒碰撞, 产生均匀接触, 从而在细颗粒表面形成均匀包覆。 /p p style=" text-align: left text-indent: 2em " 优点:不会对产品产生任何污染。(超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离) br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1e3d8f64-187c-4780-aa39-887c3f13059e.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " strong 千变万化大道至简——液相化学法: /strong 利用湿环境中的化学反应形成改性添加剂,对颗粒进行表面包覆。包括沉淀法、溶胶—凝胶法(胶体凝胶法、金属醇盐凝胶法)、异相凝聚法、非均匀形核法、微乳液法、化学镀法等。 /p p style=" text-indent: 2em " 优点:工艺简单,成本低,容易形成核-壳结构。 /p p style=" text-indent: 2em " 最佳应用领域:尤其适用于陶瓷材料的改性参杂。 br/ /p
  • 超细粉体表面包覆处理14方法 你get几种?
    p style=" margin-top:0 margin-right:0 margin-bottom:16px margin-left: 0 text-align:justify text-justify:inter-ideograph text-indent:32px line-height:28px" span style=" font-size: 14px" 超细粉体通常是指粒径在微米级或纳米级的粒子。和大块常规材料相比具有更大比表面积、表面活性及更高的表面能,因而表现出优异的光、热、电、磁、催化等性能。超细粉体作为一种功能材料近些年得到人们的广泛研究,并在国民经济发展各领域得到越来越广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 然而由于超细粉体独有的团聚及分散问题使其失去了许多优异性能,严重制约了超细粉体的工业化应用。因此,如何避免超细粉体的团聚失效已成为超细粉体发展应用所面临的难题。通过对超细粉体进行一定的表面包覆,使颗粒表面获得新的物理、化学及其他新的功能,从而大大改善了粒子的分散性及与其他物质的相容性。表面包覆技术有效地解决了超细粉体团聚这一难题。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的机理 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 关于包覆机理,目前还在研究之中,尚无定论。主要的观点有以下几种: /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 1 /span )库仑静电引力相互吸引机理。这种观点认为,包覆剂带有与基体表面相反的电荷,靠库仑引力使包覆剂颗粒吸附到被包覆颗粒表面。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 2 /span )化学键机理。通过化学反应使基体和包覆物之间形成牢固的化学键,从而生成均匀致密的包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 3 /span )过饱和度机理。这种机理从结晶学角度出发,认为在某一 span pH /span 值下,有异相物质存在时,如溶液超过它的过饱和度就会有大量的晶核立即生成,沉积到异相颗粒表面形成包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的方法 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 1 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 机械混合法 /span /strong 。利用挤压、冲击、剪切、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,使各种组分相互渗入和扩散,形成包覆。目前主要应用的有球石研磨法、搅拌研磨法和高速气流冲击法。该方法的优点是处理时间短,反应过程容易控制,可连续批量生产,较有利于实现各种树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。但此法仅用于微米级粉体的包覆,且要求粉体具有单一分散性。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" & nbsp /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/970202c4-22d6-4884-b41b-d5ae59c230bb.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体材料改性包覆机 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 2 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 固相反应法 /span /strong 。把几种金属盐或金属氧化物按配方充分混合、研磨,再进行煅烧,经固相反应直接得到超细包覆粉。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 3 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 水热法 /span /strong 。在高温高压的密闭体系中以水为媒介,得到常压条件下无法得到的特殊的物理化学环境,使反应前驱体得到充分的溶解,并达到一定的过饱和度,从而形成生长基元,进而成核、结晶制得复合粉体。水热法的优越性有:合成的核 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 壳型纳米粉体纯度高,粒度分布窄,晶粒组分和形态可控,晶粒发育完整,团聚程度轻,制得的产品壳层致密均匀,制备的纳米粉体不需要后期的晶化热处理。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 4 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 溶胶 /span /strong /span strong span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span /strong strong span style=" font-size: 14px font-family: 宋体" 凝胶法 /span /strong span style=" font-size: 14px" 。首先将改性剂前驱体溶于水 span ( /span 或有机溶剂 span ) /span 形成均匀溶液,溶质与溶剂经水解或醇解反应得到改性剂 span ( /span 或其前驱体 span ) /span 溶胶;再将经过预处理的被包覆颗粒与溶胶均匀混合,使颗粒均匀分散于溶胶中,溶胶经处理转变为凝胶,在高温下煅烧得到外表面包覆有改性剂的粉体,从而实现粉体的表面改性。溶胶 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 凝胶法制备的包覆复合粒子具有纯度高、化学均匀性好、颗粒细小、粒径分布窄等优点,且该技术操作容易、设备简单,能在较低温度下制备各种功能材料,在磁性复合材料、发光复合材料、催化复合材料和传感器制备等方面获得了较好的应用。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/cfdf281f-6370-4925-bded-830ee0436006.jpg" title=" 2.jpg" alt=" 2.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种石墨烯包覆稀土掺杂纳米氧化物 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 5 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 沉淀法 /span /strong 。向含有粉体颗粒的溶液中加入沉淀剂,或者加入可以引发反应体系中沉淀剂生成的物质,使改性离子发生沉淀反应,在颗粒表面析出,从而对颗粒进行包覆。沉淀反应包覆往往是在纳米粒子表面包覆无机氧化物,可以便捷地控制体系中的金属离子浓度以及沉淀剂的释放速度和剂量,特别适合对微纳米粉体进行无机改性剂包覆。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/e593175d-8805-4d80-9f97-225c609d5773.jpg" title=" 3.jpg" alt=" 3.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种粉煤灰空心微珠表面包覆纳米氢氧化镁复合粉体材料 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 6 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均相凝聚法 /span /strong (又称“杂絮凝法”)。根据表面带有相反电荷的微粒能相互吸引而凝聚的原理提出的一种方法。如果一种微粒的直径远小于另一种电荷微粒的直径,那么在凝聚过程中,小微粒就会吸附在大微粒的外表面形成包覆层。其关键在于对微粒表面进行修饰,或直接调节溶液的 span pH /span 值,从而改变微粒的表面电荷。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 7 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微乳液包覆法 /span /strong 。首先通过 span W/O( /span 油包水 span ) /span 型微乳液提供的微小水核来制备需要包覆的超细粉体,然后通过微乳聚合对粉体进行包覆改性。与其他纳米材料的制备方法相比,微乳液法制备纳米材料具有以下特点:( span 1 /span )粒径分布窄且较易控制;( span 2 /span )由于粒子表面包覆一层 span ( /span 或几层 span ) /span 表面活性剂分子,不易聚结,得到的有机溶胶稳定性好,可较长时间放置;( span 3 /span )在常压下进行反应,反应温度较温和,装置简单,易于实现。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 8 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均匀形核法 /span /strong 。根据 span LAMER /span 结晶过程理论,利用改性剂微粒在被包覆颗粒基体上的非均匀形核与生长来形成包覆层。该方法可以精确控制包覆层的厚度及化学组分。非均匀形核包覆中,改性剂的质量浓度介于非均匀形核临界浓度与临界饱和浓度之间,所以非均匀形核法包覆是一种发生在非均匀形核临界浓度与均相成核临界浓度之间的沉淀包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 9 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学镀法 /span /strong 。指不外加电流而用化学法进行金属沉淀的过程,有置换法、接触镀法和还原法三种。化学镀法主要用于陶瓷粉体表面包覆金属或复合涂层,实现陶瓷与金属的均匀混合,从而制备金属陶瓷复合材料。其实质是镀液中的金属离子在催化作用下被还原剂还原成金属粒子沉积在粉体表面,是一种自动催化氧化 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 还原反应过程,因此可以获得一定厚度的金属镀层,且镀层厚度均匀、孔隙率低。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 10 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 超临界流体法 /span /strong 。是尚在研究的一种新技术。在超临界情况下,降低压力可以导致过饱和的产生,而且可达到高过饱和速率,使固体溶质从超临界溶液中结晶出来。由于结晶过程是在准均匀介质中进行的,能够得到更准确的控制。因此,从超临界溶液中进行固体沉积是一种很有前途的新技术,能够产生平均粒径很小的细微粒子,而且还可控制其粒度分布。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 11 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学气相沉积法 /span /strong 。在相当高的温度下,混合气体与基体的表面相互作用,使混合气体中的某些成分分解,并在基体上形成一种金属或化合物的包覆层。它一般包括 span 3 /span 个步骤:产生挥发性物质;将挥发性物质输送到沉淀区;与基体发生化学反应生成固态产物。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 12 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 高能量法 /span /strong 。利用红外线、紫外线、γ射线、电晕放电、等离子体等对纳米颗粒进行包覆的方法,统称高能量法。高能量法常常是利用一些具有活性官能团的物质在高能粒子作用下实现在纳米颗粒的表面包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 13 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 喷雾热分解法 /span /strong 。其工艺原理是将含有所需正离子的几种盐类的混合溶液喷成雾状,送入加热至设定温度的反应室内,通过反应,生成微细的复合粉末颗粒。在该工艺中,从原料到产品粉末,包括配溶液、喷雾、反应和收集等 span 4 /span 个基本环节。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/b8e57be4-5a08-48ba-8c26-8382485ea891.jpg" title=" 4.jpg" alt=" 4.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 二氧化硅包覆二硼化锆 span - /span 碳化硅的复合粉体 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 14 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微胶囊化法 /span /strong 。在粉体表面覆盖均质且有一定厚度薄膜的一种表面改性方法。通常制备的微胶囊粒子大小在 span 2 /span ~ span 1000 /span μ span m /span ,壁材厚度为 span 0.2 /span ~ span 10 /span μ span m /span 。微胶囊可改变囊芯物质的外观形态而不改变它的性质,还可控制芯物质的放出条件;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。微胶囊技术在制药、食品、涂料、粘接剂、印刷、催化剂等行业都已得到了广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 结语 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px " span style=" font-size: 14px" 表面包覆技术的选用,应根据核心粉体和包膜材料的特性以及改性后复合粉体的应用场合来综合考虑。随着科学技术的发展,超细粉体包覆技术将进一步完善,有望制备出多功能、多组分、稳定性更强的超细复合粒子,这将为复合粒子开辟更广阔的应用前景。目前关于超细粉表面包覆机制及通过多种包覆方法结合制备性能更优异的超细粉体将是未来该领域的研究发展方向。 /span /p
  • 面包甲醛超标61倍?原来是监测仪的问题
    用电化学甲醛监测仪测试面包,显示的数值为5毫克/立方米测试料酒,显示的数值为0.63毫克/立方米 测试爽肤水、白酒、香水,显示的数值均为5毫克/立方米  看着迅速飙升的甲醛数值,尹宏倒吸了一口凉气:太恐怖了!他只是在甲醛监测仪前吃了片面包。“简直难以置信!” 一家甲醛监测仪生产厂家的工程师解释,面包里挥发出的气体恰是电化学甲醛监测仪的“软肋”,但并不是甲醛。  经过一番实验发现,电化学甲醛监测仪的“克星”不止是面包中挥发出的气体,香水、料酒的味道甚至炒菜时的油烟也会让电化学甲醛监测仪数值飙升,发出红色警报。  吃片面包  甲醛监测仪数值猛升  12月9日,尹宏借来一款空气质量监测仪,测试家中的空气质量。由于仪器还有测试甲醛功能,顺便也看看家中是否甲醛超标。在家中多处测量发现,甲醛含量基本是0。尹宏顺手将监测仪放在桌子上,在旁边吃起了面包。  哪知,监测仪上的甲醛数值迅速攀升,很快从0上升到1毫克/立方米以上。“太恐怖了。”为了确定是面包导致数值攀升,尹宏又将回到正常的监测仪放在面包袋(里面还有几片面包)封口处,甲醛数值又一路狂飙,最高达到约1.3毫克/立方米。  网友@dongdongtj也发现了与尹宏类似的现象。其取出烤箱里的面包发现:“同一地方,同样环境,甲醛测量值从0.15到0.3。”值得注意的是,他们都是利用电化学传感器测量甲醛。  记者实验  白酒爽肤水也是如此  12月14日,记者用尹宏使用的监测仪靠近面包测试,检测数值同样是迅速攀升到1毫克/立方米以上。那么,到底是面包里含有甲醛,还是监测仪出了问题?  国家标准《居室空气中甲醛的卫生标准》规定,居室空气中甲醛的最高容许浓度为0.08毫克/立方米。正常情况下,人体对甲醛的嗅觉阈通常是0.07 毫克/立方米。如果真的是空气中的甲醛浓度严重超标,可以闻到明显的刺激性气味。成都商报记者多次试验,均未发现异常味道。因此排除了面包挥发甲醛的可能。  15日,记者购买了一款由江西贝谷科技股份有限公司生产的甲保御牌家用甲醛监测仪。开机后,检测结果显示0.08毫克/立方米,符合国家标准。然后分别使用面包、料酒、白酒、香水、爽肤水对该监测仪进行试验。  结果发现,当面包、白酒、香水、爽肤水靠近监测仪时,甲醛数值会迅速飙升,发出红色警报。屏幕显示,甲醛浓度达到5毫克/立方米,超过国家标准61.5倍。料酒的测试数值是0.63毫克/立方米,但也超标近7倍。只要监测仪远离这些物质,甲醛数值就会逐渐回到正常水平。  厂家解释  芳香物质影响仪器测量  “面包发酵过程中微生物代谢产生的芳香物质会影响甲醛的测量。醇类物质也会对甲醛测量的准确性产生影响,如乙醇、丙醇、丁醇、异丁醇、戊醇、 异戊醇等。”成都商报记者在京东上看到,客服在针对监测仪的回复中称,这个问题现今技术还无法解决,所有电化学测量仪器都不能避免。不排除干扰因素,测量结果也一定不会准确。  “吃饭、喝酒时也不能检测,炒菜里的料酒也会影响到测量的准确性。”江西贝谷科技股份有限公司工程师周工表示,市场上在售的家用甲醛监测仪除了利用电化学制成的,还有半导体的。  周工说,电化学甲醛监测仪的工作原理相对简单,由采样窗口抽入的空气通过电化学传感器(由两根贵金属电极及一种特殊的电解质组成),在过滤膜上,甲醛气体分子在适当的电极电压下发生氧化还原反应,产生与甲醛浓度成正比的电流信号。该信号经过放大和数字处理电路而显示出甲醛的浓度。  “电化学传感器和半导体传感器都会对酒精挥发的气体产生反应。”周工分析,醇类物质、酚类物质以及二氧化硫等刺激性气味都会像甲醛一样使得监测仪的数值产生波动。“不过,这些物质极易挥发,而甲醛的挥发期最长达15年。所以在测量时只要避免上述物质,测量的精准度还是可以保证的。”
  • 面包改良剂将制定行业标准
    行业公会:按规定使用时面包安全   本报9月4日A6版《面包一“改良” 增肥三四倍》报道引起了市民极大关注。8日,全国工商联烘焙业公会在广州专门召开的烘焙食品安全座谈会上,有关专家认为,市民不需谈改良剂色变,只要在国家规定范围下使用面包改良剂,面包是安全可靠的。   但鉴于面包改良剂等复合添加剂要比单一添加剂复杂,烘焙业公会副秘书长单志明透露,很多烘焙企业都要求烘焙业公会组织制定面包改良剂的行业标准,规范复合添加剂的生产。全国工商联烘焙业公会表示,中秋节后将与有关部门及烘焙行业企业沟通,着手制定面包改良剂的行业标准。“对符合规定合法生产的企业我们要扶持发展,对于一些害群之马我们坚决清理”。   改良剂未纳入QS管理   同时,记者8日走访广州一德路批发市场发现,面包改良剂等食品添加剂应有尽有,溴酸钾这样禁用于食品的添加剂也不难找到,而且部分面包改良剂等米面用的添加剂竟然都标示了QS标志,但面包改良剂并未纳入QS管理,经过网上查询发现,不是查不到记录,就是用其他产品如香精香料的许可证号冒名顶替的。   专家们表示,面包改良剂包括很多种类,不同种类有不同的效用,比如乳化剂可以使面团更松软,“2005年以前,大部分氧化剂都是使用溴酸钾,因为‘物美价廉’,但2005年禁用之后,厂家基本都改用ADA、过氧化钙、葡萄糖氧化酶等代替,尽管效果不如溴酸钾,但已经非常接近。”烘焙业公会专家委员会委员谢拥葵说道。   市场添加剂“应有尽有”   在一家销售食品添加剂的商行,各式各样的食品添加剂摆满了柜台,除了各种香精、色素之外,还有饼干膨松剂、乳化剂、果味粉、钵仔粉、用于牛肉丸的特立素(令肉类增加弹性、吸水膨胀令食品烹调后更爽口软滑并保鲜)……你想得到的想不到的都有。   不过当记者问有没有面包用的改良剂时,店主警惕地表示“没有”,但记者稍稍翻找,就在角落找到了“面包改良剂”。店员告诉记者,一包15元,买一箱还可以便宜2元一包。“怎么用?”“有使用方法嘛,面包加1%到1.2%,就是100斤面粉加1斤就行,一包有2斤,200斤的面粉才加15块的改良剂,抵啦。”
  • 加强面包粉中添加剂检测势在必行
    近日,据《每日商报》报道:全球连锁快餐业巨头Subway(赛百味)承认在北美出售的食物中含有制鞋底的化学物质偶氮二甲酰胺。外媒称,美国市面上大部分面包都有这种成分,包括星巴克和麦当劳。赛百味中国在官网发表声明,称&ldquo 中国地区的面包中不存在偶氮二甲酰胺这一成分&rdquo 。   据有关报道,国产面包粉普遍添加&ldquo 偶氮甲酰胺&rdquo ,与&ldquo 偶氮二甲酰胺&rdquo 仅仅一字之差。这似乎预示国产面包粉所添加的食品发泡添加剂在种类上不会出现违规情况。但是,从食品添加剂交易市场上看,在售&ldquo 食品添加剂&rdquo 中,&ldquo 偶氮二甲酰胺&rdquo 赫然在列;《一种食品级改性发泡剂偶氮二甲酰胺的合成方法》(专利号:201110329254)也公而告之。这无不说明&ldquo 偶氮二甲酰胺&rdquo 在中国食品加工行业中广泛使用。《GB 2760-2011 食品安全国家标准食品添加剂使用标准》中明确规定只允许使用&ldquo 偶氮甲酰胺&rdquo 用作&ldquo 面粉功能剂&rdquo 。这不仅让人产生疑问,这些生产、销售的&ldquo 食品级偶氮二甲酰胺&rdquo 是真的没有在食品加工中使用吗?是否有必要加强食品中&ldquo 偶氮二甲酰胺&rdquo ? 全文如下:   赛百味承认食物中含鞋底成分浙江总代称没问题   面包粉添加剂行业秘密浮出水面   商报讯 (记者 陈颖 摄影 詹逾) 咬一口三明治下肚,可能就吃到了含制鞋底的成分。美国赛百味顾客近期的这种遭遇,让国内快餐粉丝们心头一紧。日前,全球连锁快餐业巨头Subway(赛百味)承认在北美出售的食物中含有制鞋底的化学物质偶氮二甲酰胺。外媒称,美国市面上大部分面包都有这种成分,包括星巴克和麦当劳。   赛百味中国在官网发表声明,称&ldquo 中国地区的面包中不存在偶氮二甲酰胺这一成分&rdquo 。星巴克和麦当劳华东区的相关负责人也表示,在售商品符合国内食品质量要求,与处于风口浪尖的美国货源无关。   不过,国内目前面包面粉中普遍添加了&ldquo 偶氮甲酰胺&rdquo ,与该事件主角&ldquo 偶氮二甲酰胺&rdquo 仅一字之差。   浙江赛百味总代称杭州在售面包没问题   就在几天前,作为全球快餐连锁业巨头的Subway(赛百味)在美国承认添加化学物质偶氮二甲酰胺,并于美国时间6日宣布停用此成分。   据悉,偶氮二甲酰胺通常拿来作为橡胶鞋底和瑜伽垫的原料,而因具有氧化和漂白的效果,也会被添加在面粉中作为增筋剂,加强面筋的弹性与韧性。联合国食品法典委员会(Codex)也将其列为合法食品添加物,但在欧盟、澳大利亚被明令禁止用于食物。世界卫生组织曾将它与呼吸、过敏和哮喘等联系在一起。   &ldquo 美国方面的消息一出,中国市场就马上进行了自查,结果是我们在售的面包肯定不含这种添加剂。&rdquo 赛百味浙江地区总代虞予说,这种中文名为&ldquo 偶氮二甲酰胺&rdquo 的添加剂对他来说也非常陌生,直到这一事件曝光他才&ldquo 学到&rdquo 这个名词。   虞予提及的&ldquo 自查&rdquo 在赛百味中国官网首页也有公开结果。首页的滚动页面中有文字表述,&ldquo 中国地区的面包中不存在偶氮二甲酰胺这一成分&rdquo 。点击进入后,有两份供应商出具的英文申明,落款公章分别是&ldquo 麦西恩食品(上海)有限公司&rdquo 和&ldquo 北京百嘉宜食品有限公司&rdquo 。   另外,麦当劳和星巴克华东区相关负责人也表示,他们的面粉来自国内市场的供应商,与美国货源无关系。   目前,上述三家连锁企业在杭州市场的销售一切正常。   国产面包粉普遍添加&ldquo 偶氮甲酰胺&rdquo   百度百科显示,&ldquo 偶氮二甲酰胺&rdquo 是一种多种泡沫塑料发泡剂,适用于PVC、EVA、PP等塑料发泡。根据外媒报道,&ldquo 偶氮二甲酰胺&rdquo 类的添加剂普遍存在于美国市售的面包中,那么杭州市场的面包情况如何?   2011年5月1日起,我国全面禁止在面粉生产中添加过氧化苯甲酰、过氧化钙(俗称&ldquo 面粉增白剂&rdquo )。但是不同用途的面粉中仍会添加不同的改良剂,比如面包面粉中普遍会添加&ldquo 偶氮甲酰胺&rdquo 这种增筋剂,与美国赛百味面包事件主角&ldquo 偶氮二甲酰胺&rdquo 仅一字之差。   昨天,记者在市中心一家超市的面粉货架看到,&ldquo 上一道&rdquo 等品牌的面包面粉的配料表中,确实含有偶氮甲酰胺。   &ldquo 偶氮甲酰胺是我们国家允许添加的面粉改良剂,主要提高面包的筋度&rdquo ,本地老牌企业东南面粉厂(即牡丹面粉公司)品质管理部经理谢伟中告诉记者,其使用量有着严格规定,即最大用量不能超过0.045g/kg。   去年卫生部对外公示新版《食品添加剂使用标准》征求意见稿时,业内对&ldquo 偶氮甲酰胺&rdquo 的去留引发过争论。国家粮食局标准质量中心原高级工程师谢华民就持反对意见,曾向媒体表示&ldquo 虽然偶氮甲酰胺的毒性并不确定,但是在请教了一些化学方面的专家后,她得知偶氮类化学物质都具有一定的致癌性&rdquo ,且欧盟因怀疑偶氮甲酰胺对人体致癌的不确定性而禁止了其在面粉中的使用。   &ldquo 现在我们主要用维生素C来提高筋度,偶氮甲酰胺可能会被逐步替代。&rdquo 东南面粉厂相关负责人表示。
  • 欧盟通报中国产面包屑
    2008年12月26日,波兰通过欧盟食品和饲料委员会通报中国产面包屑,通报原因是在产品中检测出未经批准的色素E102—柠檬黄、E110—日落黄和E160b—胭脂素橙。
  • 赛百味面包被曝含橡胶鞋底成分 或致呼吸性疾病(转自网络)
    赛百味面包含鞋底成分 国内面粉业仍用该添加剂 官方称中国区面包不含该物质  新年伊始,洋快餐赛百味就因面包含有偶氮二甲酰胺(azodicarbonamide)陷入了食品安全危机,据外媒报道,该成分通常拿来作为橡胶(15565, 140.00, 0.91%)鞋底和瑜伽垫的原料。对于事件,赛百味中国通过官方网站回应称,中国区的面包中不存在上述成分。  ■新快报记者 陆琨倩  偶氮二甲酰胺通常用作增筋剂  据外媒报道,全球连锁快餐Subway(赛百味)的面包内因含有化学物质偶氮二甲酰胺,已于美国时间2月6日自主宣布停用此成分。  消息称,偶氮二甲酰胺通常拿来作为橡胶鞋底和瑜伽垫的原料。中国台湾“卫福部食药署副署长”姜郁美接受媒体采访时表示,偶氮二甲酰胺具有氧化和漂白的效果,通常添加在面粉中作为增筋剂,加强面筋的弹性与韧性。  据记者了解,目前联合国食品法典委员会(Codex)及美国FDA均将其列为合法食品添加物,但欧盟与澳大利亚禁止使用这项化学物质,因为可能会引致呼吸性疾病和过敏。而根据FDA的限制,每公斤面包偶氮二甲酰胺含量不得超过45毫克,就不会影响身体健康。  赛百味中国否认使用该成分  对于事件,赛百味中国在官方网站发布声明称,中国区的面包中不存在上述成分,虽然该添加剂的使用已获得美国政府部门的批准,美国赛百味餐厅仍已经开始去除面包中的偶氮二甲酰胺。并出示了两家供应商的声明,其中供应商mission称,在中国、新加坡、马来西亚的面包都没有采用上述这种物质。  消息称,中国台湾当局已经采取行动,姜郁美说,中国台湾Subway过去未有添加偶氮二甲酰胺过量的纪录,这次美国厂商自主停用,会要求中国台湾Subway提交报告。  中国台湾林口长庚医院肾脏科主治医师颜宗海接受采访时也表示,动物实验曾发现偶氮二甲酰胺的代谢物氨基 (SEM)有致癌疑虑,新加坡、澳大利亚、日本等国都已禁用,就算是合法食品添加,气管较敏感的民众,食用过量可能会出现气喘、过敏等反应。  记者昨日试图联系赛百味中国相关负责人了解公司是否有向国内相关监督部门提供安全报告,但至截稿,仍未收到回复。(来源:新快报)
  • 过期面包、抗生素?3.15晚会再爆食品安全隐患
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 今年的“3· 15”晚会受疫情影响延期至7月16日播出。据央视发布的消息,晚会主题定为“凝聚力量、共筑美好”,积极关注新产业、新业态和新消费模式。那么今年“3· 15”晚会,都有又爆出了哪些食品安全隐患呢? /span /p p style=" text-align: center" img title=" 3.15_副本.jpg" style=" max-width:100% max-height:100% " alt=" 3.15_副本.jpg" src=" https://img1.17img.cn/17img/images/202007/uepic/ece43a86-9efe-46c9-ae9d-517d48757f01.jpg" / br/ /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体,SimSun " 汉堡王用过期面包做汉堡 鸡腿排保质期随意改 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 7月16日,央视3· 15晚会点名汉堡王。据调查,在南昌市汉堡王红谷滩天虹店,当班经理发现面包到期后,很自然地吩咐员工更换标签。员工将这批汉堡上旧的标签撕掉,换上了新的标签。在汉堡王南昌王府井店,不仅仅过期面包被重新修改保质期再销售,过期的南美风味鸡腿排同样被要求修改标签,延长保质期。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 对此,“汉堡王中国”官方微博回应称:已立即成立工作组并对相关餐厅进行停业整顿调查,汉堡王表示深深的歉意,将全力配合政府部门进行调查,并对该事件进行严肃处理并引以为戒。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体,SimSun " 养海参投放敌敌畏 南方海参冒充北方海参 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 在山东即墨,不少海参养殖基地的池塘边都散落着农药敌敌畏的空瓶和箱子。据央视315晚会报道,央视记者调查发现,在海参养殖中使用敌敌畏的现象非常普遍。恒生源是当地规模较大的海参养殖基地之一,拥有上百个海参养殖池塘,在恒生源这个基地内,养殖户告诉记者,他们以每亩2000多元的价格承包了这里的池塘。在一个海参养殖池塘旁边的草丛里,同样堆放着一堆敌敌畏农药空瓶。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 养殖户告诉央视记者,海参抗药性是最厉害的,菊酯类药物、敌敌畏都药不死海参。而使用过农药的海水还会被重新排回大海。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 此外,养殖户告诉央视记者,使用过农药的海水还会被重新排回大海。一些大棚海参养殖户也偷偷告诉记者,他们在养殖过程中还经常用到抗生素等各种兽药原粉。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " br/ /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/3152020" target=" _self" img title=" 315专题.jpg" style=" max-width:100% max-height:100% " alt=" 315专题.jpg" src=" https://img1.17img.cn/17img/images/202007/uepic/ac505680-b217-4fd9-add5-705f39702ee7.jpg" / /a /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " /span br/ /p p br/ /p
  • 波通公司作为铂金会员参加第十四届国际谷物科技与面包大会(ICC)
    第十四届国际谷物科技与面包大会暨国际油料与油脂科技发展论坛于2012年8月6-9日在中国北京召开。大会的主题为&ldquo 科技创新与健康粮油&rdquo 。 ICC作为国际谷物科技领域重要的学术组织,致力于在谷物及食品科技领域组织开展国际交流与合作,在全球范围内推进科技进步和标准化进程,从而改善人类生活。ICC谷物与面包大会是国际谷物科技领域最高水平的学术活动之一,每四年召开一次。瑞典波通仪器公司作为这次会议的铂金赞助商积极参与了本次会议。 开幕式中,波通公司创始人Harald Perten的继承人Jan Perten为本次在谷物和食品研究领域里成绩卓越的研究人员颁发了ICC Harald Perten Prize ,本奖项是谷物化学家Harald Perten于1989年设立的Harald Perten基金,旨在奖励在谷物科学领域中有杰出贡献的科学家和工作者,紧接着ICC秘书长代表ICC感谢perten公司多年来对谷物研究的贡献为Jan Perten颁发了&ldquo 最佳合作伙伴奖&rdquo 和证书,肯定了Perten和瑞典波通仪器公司在行业内的贡献。开幕式后国家粮食局的领导光临瑞典波通仪器公司的展台,参观了波通公司的产品,并对波通公司的产品和服务给出满意的肯定。 第二天瑞典波通公司做了关于谷物食品和粮油检测技术的研讨会,很多学者和研究人员参加了此次的研讨会。会后波通公司为了答谢回馈客户多年来的支持,举办了50周年庆典抽奖活动,瑞典波通公司VP Sales & Marketing Bengt Sahlin和波通中国总经理刘宇飞先生亲自参与抽奖和颁奖,会场气氛激动人心。 第三天,ICC会员专场中,Bengt Sahlin给大家详细介绍了波通公司的新产品和新研究,并于会后作为最佳论文张贴奖的评委员之一给最佳论文张贴奖的六位学者颁发了Best Poster Awards。 至此第十四届国际谷物科技与面包大会暨国际油料与油脂科技发展论坛圆满结束。
  • 广州一面包厂使用毒奶粉 潮安发现28吨陕西毒奶粉
    日前,广州在紧急清查三聚氰胺毒奶粉的行动中,“揪”出从化一家面包厂曾从宁夏进购一批三聚氰胺问题奶粉。市卫生局没有公布面包厂具体名称,只表示该厂生产的面包并未流入广州各个中心城区。广州市卫生局法监处表示,“毒面包”是该厂现做现卖的,并未流入广州各个中心城区,目前提供问题奶粉的面包厂已经停业整顿。   确认毒奶粉来自宁夏   昨天,广州市卫生局党委副书记熊远大在接受媒体采访时透露:“上级通报过某些厂用过这些奶粉来做面包,广州按照省级部门的部署,已对这些牵涉到要用到奶粉的食品进行严格的处理。”记者随后从统筹查处行动的市卫生局法监处了解到,被查处的面包来自从化一家面包厂。“上级部门通报,从化有一家面包厂购入了来自宁夏的三聚氰胺问题奶粉。有关部门便根据线索查找到。据消息反馈,该厂的‘毒面包’是每天现制现做的,没有流入广州市区,广州市卫监所负责清查餐饮行业,未发现问题面包流入广州餐饮业。”   据了解,目前重点追查的毒奶粉源头来自陕西,从化查出的毒奶粉则来自宁夏,将为追查毒奶粉提供新的线索。   面包制品一般会用到奶粉   据了解,制作面包蛋糕为了口感好,通常会用牛奶和黄油,而鲜牛奶成本高,于是奶粉一般会用作制作面包糕点原料。一般会以奶粉:水=1:9先冲调好使用,当然有时为了口感更好奶粉会冲调得更浓。   毒奶粉改头换面重出江湖,很多广州市民都担心家门口的面包店或者在超市、门店买到的面包蛋糕会不会使用毒奶粉。一些市民希望相关部门应对使用奶制品的厂和门店进行排查,而一些面包店商家也表示希望来个排查,免得自家没有用问题奶粉,却被市民误会,一段时间内拒绝食用面包糕点,那就“一颗老鼠屎搞坏一锅粥”了。   陕西省公安厅3日上午召开新闻发布会,公布渭南市乐康乳业有限公司三聚氰胺超标乳制品案件查处情况,3名犯罪嫌疑人已于2日被依法逮捕,1名采取了取保候审措施。   陕西省公安厅副厅长许强介绍,渭南市乐康公司奶粉三聚氰胺超标的污染源是临渭区故市镇社会人员马双林销售给企业的10吨奶粉。   毒奶粉流通途径查清   乐康公司2009年9月和10月分两次从马双林处购买到过期奶粉后,在未获得所购奶粉三聚氰胺检测合格报告而且未将奶粉送检的情况下,公司总经理张文学授意主管生产的副总兼车间主任的朱书明,将所购的10吨奶粉按1∶2.5左右的比例,在包装车间利用振动筛与乐康公司生产的乳粉搅拌生产掺混奶粉32.5吨,其中28吨销售给广东潮安县龙信食品公司。   龙信食品公司将25吨转销给福建漳州芗城南方食品公司,3吨转销给本县真美公司。福建漳州芗城南方公司将10.4125吨用于生产奶糖,其中0.8吨三聚氰胺超标,共生产1148件奶糖,已封存164件,其他售出的正在召回。其余的14.5875吨问题奶粉已被当地销毁。潮安真美公司所购的3吨污染奶粉中1.1吨用于生产奶糖93箱,已被查封,其余1.9吨奶粉已被当地质监部门销毁。   渭南乐康公司库存的4.5吨奶粉已于1月22日被渭南市质监部门监督销毁。   管理混乱毒奶粉流出   据查,马双林于2008年4月至8月从陕西大荔荔华乳业公司共购入20吨问题奶粉。另外10吨中的3.44吨于同年6月至8月被公司零售流向社会,剩余的于2009年1月15日被追缴销毁。   另据调查,大荔县荔华乳品公司在2008年9月至11月质监部门驻厂监管期间,对9月14日前生产的奶粉按照要求做库存与销售记录排查、清零时,销售台账记录不全,未将此前销售给马双林的20吨奶粉记入台账,造成工作遗漏,从而导致了2008年9月14日前生产的三聚氰胺超标奶粉流向社会。   广州工商部门暂未发现问题乳品   目前正在全城范围进行的三聚氰胺奶制品清查行动中,公布的三种奶粉均为原料奶粉且问题奶粉多在当地市场“消化”,目前尚未在广州发现。记者昨日走访了中山八路婴童用品批发市场及多个商场超市,均未发现有2008年国家通报的20家企业生产的31批次含三聚氰胺乳品。   据广州市工商局相关人士介绍,清查范围包括婴幼儿配方奶粉、普通奶粉和其他配方奶粉、液体乳 以乳制品为主要原料的食品。重点是对2008年国家通报的20家企业生产的31批次含三聚氰胺乳粉的销毁情况进行全面复查,一家一家核实相关资料,确保2008年被清查出的问题奶粉全部销毁。同时对标称“渭南市乐康乳业有限公司”和“宁夏吴忠市天天乳业有限公司”生产的乳及乳制品全部下架封存,做好登记。   “卫生部公布的三聚氰胺检验项目不合格的三影牌全脂奶粉、三影牌全脂乳粉等产品主要是原料奶粉,一般不会进入商场超市。涉事的问题品牌多为地方产品,广州的市民无需担心”。   婴儿奶粉批发市场主做国外牌   据市工商局介绍,去年3吨由龙信公司3吨转销至广东潮安县真美公司的问题奶粉,1.1吨用于生产奶糖93箱,已被查封,1.9吨奶粉已被当地质检部门监督销毁。   昨日,记者在东风路百佳超市、五羊新城的万家超市、番禺宏城超市进行走访,没有发现上述“问题”品牌的问题奶制品。多家超市销售人员告诉记者,出售的乳品一般是国内外知名大品牌及本地品牌,省外地方产品很难进入。   婴儿奶粉批发市场呢?记者昨日来到中山八路婴童用品批发市场,发现仅在南二楼处有一档口批发婴儿奶粉,全是惠氏、安学健等国外品牌,无国产奶粉。   陕西毒奶粉案捉3人   据了解,张文学、朱书明、马双林于2010年1月下旬以涉嫌生产、销售不符合卫生标准食品罪被公安部门刑事拘留。乐康公司主管销售的副总经理同天虎因患有严重心脏病,以涉嫌生产、销售不符合卫生标准食品罪采取了取保候审措施。   疑犯张文学,男,汉族,现年49岁,渭南市下吉镇南七村张庄四组人,系渭南市乐康公司总经理(法人代表)。2010年1月23日,因涉嫌生产、销售不符合卫生标准食品罪被渭南市公安局临渭分局刑事拘留,2010年2月2日,经报请临渭区人民检察院批准已依法逮捕。   疑犯朱书明,男,汉族,现年48岁,渭南市下吉镇北七村六组人,系乐康公司主管生产副经理兼车间主任。2010年1月23日,因涉嫌生产、销售不符合卫生标准食品罪被渭南市公安局临渭分局刑事拘留,2010年2月2日,经报请临渭区人民检察院批准已依法逮捕。   疑犯马双林,男,汉族,现年47岁,渭南市故市镇桥马村东组农民,临渭区第十六届人大代表。因向乐康公司销售不合格乳粉,2010年1月31日,经报请区人大常委会许可,以涉嫌销售不符合卫生标准食品罪对马双林依法刑事拘留。2010年2月2日,经报请临渭区人民检察院批准已依法逮捕。
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style=" text-align: justify text-indent: 2em " 粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。 /p p style=" text-align: justify text-indent: 2em " 改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。 /p p style=" text-align: justify text-indent: 2em " 产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。 /p p style=" text-align: justify text-indent: 2em " 改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。 /p p style=" text-align: justify text-indent: 2em " 改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。 /p p style=" text-align: justify text-indent: 2em " 改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。 /p p style=" text-align: justify text-indent: 2em " 粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。 /p p br/ /p
  • 做面包、蛋糕、酱料的中小型食品厂,都在用它们做配料生产!
    任何一款大受欢迎的面包和蛋糕,都要经过数道工序、层层把关和检查才能从生产车间抵达消费者的手中。做食品,就是做安全和质量。因为食品的重要性,食药监局对食品安全的监管越来越严格,生产数据要可追溯、产品安全检测得过关。对中小型食品企业来说,产品种类多一点,配方配料复杂一点,就会带来高昂的人工成本、生产管理成本,以及不可避免的人为失误,这些都是中小型食品企业难以言说的痛;但若引入多条全自动配方配料系统、成本高昂、还得培训专人进行维护管理。那么,在纯粹倚靠人工做配方配料和全自动生产之间,可有为中小型食品厂留下一条路呢? 有!用奥豪斯T81智能手工配料系统呀! 奥豪斯T81智能手工配料系统,就非常适合食品企业多个配方配料的生产操作及生产管理。别看这个仪表个头不大,但是功能可不容小觑! 只需要把它接到生产系统或电脑上,就可以通过电脑直接给生产线下发当天生产任务,生产员只需根据仪表的提示进行操作即可。这台仪表可以连接2-3台秤,一个扫描枪、一个打印机和一台电脑。称重零误差仪表会自动显示所需称重的物料及重量,投放过程中可以看到称重进度条,是否达到称重设定值、是否在称重误差范围内……一目了然。只有称重在误差范围内,仪表才会进入下一个物料的称重环节;否则就会报错。这样既可以防止物料错投,又可以避免浪费,还可以保证配方的精准。扫描枪识别物料,避免工人放错物料;打印机可按照您设定的打印格式进行打印;数据可追溯不仅如此,仪表还会自动储存每一次的生产操作记录,可存储100000条数据。不管是企业内部抽检、还是食品监管部门检查,都能让您做到有据可循。管理更清晰除了以上功能,奥豪斯T81智能手工配料还有三级权限管理功能,方便您内部的企业管理。分别为:只有配料软件管理员才可以看到配方内容并下达生产任务;生产操作员按仪表提示进行操作即可,工序减少、流程清晰、效率自然就提高了。仪表管理员可以进行仪表参数设置与校正等工作,方便您对仪表进行维护。「好厨子要配好刀」,好产品的生产,也离不开一台可靠、耐用、性能优异的称量设备。作为工业衡器设备厂家的佼佼者奥豪斯,致力于为每一家对产品品质有要求、有想法的企业,提供可靠耐用的衡器设备! 往期文章肉松行业的水分测定应用奥豪斯T81助力食品企业迎接“飞行检查”手工配料管理系统,让工业4.0不再是梦!称,以知轻重也——奥豪斯工业衡器的应用奥豪斯pH 计在食品行业的应用奥豪斯MB系列水分测定仪的精彩应用检测那些事儿 | 听说你的实验仪器又罢工了?低调高手从不显山露水 | 奥豪斯产品Party 如果心动的话,赶快联系我们,留下您的信息,我们的专业工程师将竭诚为您服务!喜欢这篇文章请点 在看 哟! ▼
  • 突破!原位电镜揭示双金属催化剂反应状态下的真实活性表面
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院大连化学物理研究所能源研究技术平台电镜技术研究组副研究员刘伟、杨冰与中国科学院上海高等研究院研究员髙嶷团队及南方科技大学副教授谷猛团队合作,在观察和确认NiAu催化剂在CO2加氢反应中的真实表面方面取得进展。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 催化研究中,常规静态显微分析只能提供催化剂反应前或反应后的非工况结构信息。然而在热振动、气体分子吸/脱附等作用下,催化剂的表面原子难免发生迁移导致表面重构,变化后的表面才是与催化反应活性相关的真实表面,要看清这一表面状态需要借助原位表征技术。尤其对于容易发生表面重构的多元金属催化体系而言,无法原位观测反应气氛下催化剂的原子结构,就不能确认贡献催化活性的真实表面,更无法建立可信的催化构效关系。在以往的研究中,具有宏观统计特性的原位谱学手段已经从精细的能量维度对动态催化过程做出了先驱性探索,例如原位FTIR、原位XPS(AP-XPS)以及原位XAS。在此基础上,实空间下直接观测反应中催化剂的表面原子排布是研究人员长期追寻的目标。针对此问题诞生了环境透射电子显微技术(ETEM),ETEM是主要基于TEM成像的原位手段,适用于原子分辨下追踪气固相反应中催化剂的结构演化过程。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/69a53f56-f8b2-4cb7-adbb-cf19e4397bed.jpg" title=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" alt=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" / /span /p p style=" text-align: justify text-indent: 2em " 在本工作中,研究团队基于环境透射电镜以及特殊设计的mbar级负压定量混气系统,研究了NiAu/SiO2体系催化CO2加氢反应过程。初期静态显微结果表明,该催化剂以Ni为核心,表面包裹2至3层Au原子壳层,为一种典型的Ni@Au核壳构型。而考虑到Ni具有强大的加氢活性,会导致反应的CH4选择性,因此,该核壳构型可合理地解释本工作中CO2加氢高达95%以上的CO选择性。 /p p style=" text-align: justify text-indent: 2em " 但是,环境透射电镜原位观测发现,该催化剂在反应气氛和温度下,内核Ni原子会逐渐偏析至表面与Au合金化;在降温停止反应时,会退合金化返回Ni@Au核壳型结构。原位谱学手段(包括原位FTIR和原位XAS)的结果很好地证实了上述显微观测结果。理论计算和原位FTIR结果表明,反应中原位生成的CO与NiAu表面合金化起到了关键而微妙的相互促进作用,这是该催化剂构型演变及高CO选择性的原因。 /p p style=" text-align: justify text-indent: 2em " 该工作为研究核壳型双金属催化过程提供了启发,例如反应条件下核壳表面是否真实存在,是否贡献催化活性?又如催化剂制备中追求构建核壳表面是否有必要?该工作是一套原位环境下微观结构表征与宏观状态统计的综合应用案例,突出局域原子结构显微观测的同时,借助原位谱学手段,尤其是原位XAS技术,确保了电子显微发现与材料宏观工况性能的关联置信度。从而为发展原位、动态、高时空分辨的催化表征新方法和新技术提供了范例,也为设计构筑特定结构和功能催化新材料提供了借鉴和思考。 /p p style=" text-align: justify text-indent: 2em " 此外,期刊特别邀请审稿人撰写并独立刊发了题为The dynamic of the peel& nbsp 的工作评述(news & amp views),以表明本工作对于催化研究的独特启发。 /p p style=" text-align: justify text-indent: 2em " 相关成果发表在《 span style=" color: rgb(0, 112, 192) " 自然-催化 /span 》(Nature Catalysis)上。该工作得到国家自然科学基金项目、大连市人才项目、中科院青年创新促进会等的资助,尤其得到了研究员苏党生的大力支持。 /p
  • 27项!比表面国家及行业标准荟萃 12项涉及气体吸附法
    p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" /span /p p style=" text-align: justify text-indent: 2em " 比表面积是粉体检测的重要参数之一,而气体吸附法是测量比表面和孔径分布的一种常用方法。真实表面包括不规则的表面和孔的内部表面。它们的面积无法从颗粒大小的信息中计算出来,但却可以通过在原子水平上吸附某种不活动的或惰性气体来确定。气体的吸附量,不仅仅是暴露表面总量的函数,还是温度、气体压力以及气体和固体之间发生反应强度的函数,这正是气体吸附法得以测量比表面积的基本原理。 /p p style=" text-align: justify text-indent: 2em " 无规矩不成方圆,非标准不能划一。在本文中,仪器信息网从网络搜集、汇总了我国现行涉及比表面检测及分析的国家、行业标准共23项。荟萃中共包含14项国家标准,9项行业标准。涉及有色金属、化工、建材、能源、石油天然气等行业。这其中,更含有7项国家标准和5项行业标准涉及气体吸附法、氮吸附法及BET检测法,详情汇总如下,以飨读者。 /p p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none " tbody tr class=" firstRow" td width=" 568" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 国家标准 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 编号 /span /strong /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 名称 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 主管单位 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 21650.3-2011 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 /span & nbsp span style=" font-family:宋体" 第 /span span 3 /span span style=" font-family:宋体" 部分:气体吸附法分析微孔 /span /p p span style=" font-family:宋体" 综合 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 21650.2-2008& nbsp /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 /span & nbsp span style=" font-family:宋体" 第 /span span 2 /span span style=" font-family:宋体" 部分:气体吸附法分析介孔和大孔 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 19587-2017 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span span style=" font-family: 宋体" 气体吸附 /span span BET /span span style=" font-family:宋体" 法测定固态物质比表面积 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 3780.5-2017 /span /p p span & nbsp /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 炭黑 /span & nbsp span style=" font-family:宋体" 第 /span span 5 /span span style=" font-family:宋体" 部分:比表面积的测定 /span span CTAB /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油和化学工业联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 23656-2016 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 橡胶配合剂 /span & nbsp span style=" font-family:宋体" 沉淀水合二氧化硅比表面积的测定 /span span CTAB /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油和化学工业联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 14634.6-2010 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 灯用稀土三基色荧光粉试验方法 /span & nbsp span style=" font-family:宋体" 第 /span span 6 /span span style=" font-family:宋体" 部分:比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 10322.8-2009 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 铁矿石 /span & nbsp span style=" font-family:宋体" 比表面积的单点测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国钢铁工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 7702.20-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 煤质颗粒活性炭试验方法 /span & nbsp span style=" font-family:宋体" 孔容积 /span span style=" font-family:宋体" 比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国兵器工业集团公司 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 11847-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 二氧化铀粉末比表面积测定 /span span BET /span span style=" font-family:宋体" 容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 13390-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 金属粉末比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 8074-2008 /span span style=" font-family:宋体" ( /span span 11 /span span style=" font-family:宋体" ) /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 水泥比表面积测定方法 /span & nbsp span style=" font-family:宋体" 勃氏法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国建筑材料联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 20170.2-2006 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 稀土金属及其化合物物理性能测试方法 /span & nbsp span style=" font-family:宋体" 稀土化合物比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家发展和改革委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 11107-1989 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 金属及其化合物粉末 /span & nbsp span style=" font-family:宋体" 比表面积和粒度测定 /span & nbsp span style=" font-family:宋体" 空气透过法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 6609.35-2009 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 氧化铝化学分析方法和物理性能测定方法 /span & nbsp span style=" font-family:宋体" 第 /span span 35 /span span style=" font-family:宋体" 部分:比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" GB/T 11107-2018 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 金属及其化合物粉末 比表面积和粒度测定 空气透过法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 全国有色金属标准化技术委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GSB 14-1511-2014 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 水泥细度和比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span span style=" font-family: 瀹嬩綋, serif" GSB 08-3387-2017 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 粒化高炉矿渣粉细度和比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GSB 04-3257-2015 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 硬质合金粉末比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 color:#2B2B2B background:white" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 568" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 行业标准 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 编号 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 名称 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 行业 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 主管单位 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span /p p span YS/T 1161.3-2016 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 拟薄水铝石分析方法 /span & nbsp span style=" font-family:宋体" 第 /span span 3 /span span style=" font-family:宋体" 部分:孔容和比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 有色金属 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 工信部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span /p p span SY/T 6154-1995 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 岩石比表面和孔径分布测定静态氮吸附容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 石油天然气 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油天然气总公司 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp HG/T 2347.8-1992 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" γ /span span .Fe2O3 /span span style=" font-family:宋体" 磁粉比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 化工 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 化学工业部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span YS/T 438.4-2013 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 砂状氧化铝物理性能测定方法 /span & nbsp span style=" font-family:宋体" 第 /span span 4 /span span style=" font-family:宋体" 部分:比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 有色金属 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 工业和信息化部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span HG/T 3073-1999 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 橡胶配合剂 /span & nbsp span style=" font-family:宋体" 沉淀水合二氧化硅比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附方法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 化工 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家石油和化学工业局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 " DB13/T 2768.4-2018 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 石墨烯粉体材料检测方法 /span & nbsp span style=" font-family:宋体" 第 /span span 4 /span span style=" font-family:宋体" 部分:比表面积、孔容和孔径的测定 /span span BET /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333 background:white" 地震 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 河北省质量技术监督局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" NB/SH/T 0959-2017 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 催化裂化催化剂比表面积的测定 /span & nbsp span style=" font-family:宋体" 静态氮吸附容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 能源 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 国家能源局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" JJG (建材 span ) 107-1999 /span /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 透气法比表面积仪检定规程 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 建材 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 国家建筑材料工业局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 " JC/T 995-2006 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height:21px" span style=" font-family: 瀹嬩綋, serif" 低比表面积高烧结活性氧化锆粉体 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 建材 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p span style=" font-family: 瀹嬩綋, serif" 国家发展和改革委员会 /span /p /td /tr /tbody /table p style=" text-indent: 2em " 更多比表面及孔径分析检测优质仪器点击进入 a href=" https://www.instrument.com.cn/zc/191.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 明星专场 /strong /span /a 浏览! /p p & nbsp & nbsp & nbsp 加入仪器信息网小材子微信号:XCZ3i666,拉你进入比表面及孔径分析检测交流群。 /p
  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 鞠熀先教授团队发展细胞表面聚糖原位检测新方法
    p   糖基化是普遍存在的翻译后修饰,蛋白质的糖基化模式决定了其结构、功能以及细胞识别和信号传导等过程,与细胞生理状态的动态响应、疾病的进程和状态密切相关。因此,对活细胞表面特定蛋白糖型的原位检测有助于加深对糖基化机制和蛋白功能的理解,也可为疾病特别是癌症的诊断和治疗提供靶标。 /p p   南京大学生命分析化学国家重点实验室的鞠熀先教授研究组自2007年以来,针对这一挑战性课题,先后在国家自然科学基金和973项目资助下,通过设计两表面一分子竞争识别策略和聚糖电化学检测芯片,提出细胞表面糖基原位检测的奠基性工作(J. Am. Chem. Soc., 2008, 130, 7224 Angew. Chem. Int. Ed., 2009, 48, 6465等),曾获2013年教育部自然科学一等奖。同时,他们通过组装P-糖蛋白抗体功能化仿生界面,提出电极界面上细胞检测的新方法 并引入“化学选择性聚糖识别”,提出细胞表面多种聚糖的同时定量和聚糖密度的分析策略,该工作是2016年江苏省科学技术一等奖的主要内容。2015年以来,该研究组在细胞表面特定蛋白糖型的成像方法学研究方面取得重要的进展,发展了特定蛋白质上的糖基与多种糖型原位检测的系列方法(Chem. Sci., 2015, 6, 3769 Chem. Sci., 2016, 7, 569 Anal. Chem., 2016, 88, 2923 Angew. Chem. Int. Ed., 2016, 55, 5220)。近日,他们用核酸适配体(Apt)标记半乳糖氧化酶(GO),利用Apt识别细胞表面的特定蛋白质和GO的活性“开关”,构建了一种局域聚糖化学重构策略,实现了活细胞表面特定蛋白的糖型成像。相关工作发表在Angew. Chem. Int. Ed. 上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/fc3bb757-60dd-4e71-aa95-f9b4658441cc.jpg" title=" 176385_201706191504311.jpg" / /p p style=" text-align: center " 图1. 局域聚糖化学重构策略的原理示意图 /p p   该局域聚糖化学重构工作的第一作者是2014级硕士研究生惠晶晶,丁霖副教授和鞠熀先教授为通讯作者。他们以MUC1黏蛋白为研究模型,首先利用Apt与MUC1的特异性识别将亚铁氰化钾抑制的GO定位至MUC1上。然后用铁氰化钾激活GO,催化氧化细胞表面MUC1的末端半乳糖/N-乙酰半乳糖胺(Gal/GalNAc)生成醛基,通过醛基-生物素酰肼的快速反应将FITC标记在目标Gal/GalNAc上,用化学反应活性作为信号报告系统实现了活细胞表面特定蛋白糖型的原位检测。与通常的糖代谢标记技术相比,局域聚糖化学重构策略操作简单,仅对目标蛋白上的聚糖进行标记,标记过程与细胞自身功能无关,避免了“代谢效率”的异质性问题,为不同细胞系特定蛋白上糖型表达的研究提供了重要的工具和方法模型。这是该课题组在细胞功能分子原位检测方法学研究领域的又一项重要进展。 /p
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 合肥物质院杨良保团队开发出表面增强拉曼光谱分析新方法
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所研究员杨良保课题组,开发了AgNP/MoS2纳米“口袋”自动捕获目标物分子的表面增强拉曼光谱方法,可实现部分化学反应过程的高灵敏长时间动态检测。相关成果发表在《分析化学》(Analytical Chemistry)上,并被选为当期正封面(图1)。表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保团队致力于SERS方面的研究。在既往研究的基础上,该团队在大面积单层纳米粒子膜上覆盖了二维材料MoS2(图2),制备成AgNP/MoS2纳米“口袋”,将其覆盖在待测目标物分子之上,采用多物理场模型的有限元模拟方法,分析了AgNP/MoS2纳米“口袋”结构在溶液和空气中的电场增强分布和溶液蒸发的动态过程。研究表明,该纳米“口袋”具有高密度的热点,并具有主动捕获分子的能力,与单层AgNP膜相比,覆盖MoS2后减缓了溶液的蒸发,延长了SERS检测的窗口期,同时进一步增强了电场。该结构可实现长达8分钟的高灵敏度、高稳定性的SERS动态检测。此外,该结构可用于检测抗肿瘤药物和监测血清中次黄嘌呤的结构变化。相关方法有望更多地应用于生物系统中物质转化或其他化学反应动力学的现场检测。   研究工作得到中国科学院科研仪器装备开发项目、国家自然科学基金和安徽省自然科学研究项目等的支持。
  • 鞠熀先团队顶级期刊发文 细胞表面聚糖检测新成果
    p   在国家自然科学基金项目项目(项目编号:90713015、91213301、91413118、21135002、21635005)等资助下,南京大学鞠熀先、丁霖教授研究团队通过十余年的持续研究,在细胞表面聚糖检测领域取得系列开创性研究成果。 /p p   糖基化模式随细胞生物过程和信号转导通路的改变而发生明显的动态变化,并对多种重要的生物过程具有调控作用。因此,活细胞表面以及特定蛋白上糖型的原位示踪不仅能够加深对蛋白质糖基化过程及其功能的理解,而且有助于新型诊断标志物和治疗靶标的甄定。 /p p   该研究组开创性提出一系列细胞表面聚糖的原位电化学、光学与扫描成像检测方法(J. Am. Chem. Soc. 2008, 130, 7224 Angew. Chem. Int. Ed. 2009, 48, 6465 Anal. Chem. 2010, 82, 5804 Anal. Chem. 2012, 84, 1452 Chem. Sci. 2015, 6, 3769),发展了特定蛋白上聚糖原位检测的多种方法(Angew. Chem. Int. Ed. 2016, 55, 5220 Chem. Sci. 2016, 7, 569 Angew. Chem. Int. Ed. 2017, 56, 8139),实现了细胞表面神经节苷脂的定量、亚型筛查与再生分析(Angew. Chem. Int. Ed. 2018, 57, 785),在细胞表面糖基的原位检测领域提出了奠基性成果(Acc. Chem. Res. 2014, 47, 979 by Prof. M. S. Strano at Massachusetts Institute of Technology),并应邀综述了该领域的发展前沿与趋势(Acc. Chem. Res. 2018, 51, 890)。 /p p   近期,该研究组利用DNA序列的编码功能,构建了一种分级编码策略(Hierarchical Coding Strategy, HieCo)。他们以细胞表面的肿瘤标志物粘蛋白MUC1为模型,O-聚糖糖链末端的唾液酸和岩藻糖为对象,巧妙地设计DNA序列和荧光基团的标记位点,结合适配体识别蛋白技术和糖代谢标记技术,对糖蛋白的蛋白、聚糖两个不同级别的结构单元进行分别编码和掩蔽,利用启动序列与时间编码的杂交引发解码过程,实现了由高级到低级的顺序解码,并提出癌细胞表面MUC1上两种单糖的同时成像方法。与已有的蛋白特异性糖型成像策略相比,该方法可反映目标糖蛋白的真实分级结构,并提供任意扩展的单糖检测通道,实现细胞生理状态改变和上皮细胞-间充质转化过程中两种单糖变化的动态监测,为揭示与聚糖相关的生命过程提供了重要工具。 /p p   这一研究成果以“A hierarchical coding strategy for live cell imaging of protein-specific glycoforms”(分级编码策略用于活细胞表面蛋白特异性糖型的成像)为题发表于Angew. Chem. Int. Ed. 2018, 57, 12007-12011(https://onlinelibrary.wiley.com/doi/10.1002/anie.201807054)。日本糖化学生物学专家Tadashi Suzuki教授在Nature的News and Views专栏以《DNA tags used to image sugar-bearing proteins on cells》为题对该工作进行了介绍和评论(Nature 2018, 561, 38-40)。该文指出:鞠、丁课题组提出的对聚糖进行DNA编码的方法“解决了同时检测特定蛋白上多种聚糖的难题” “由于作为标签的DNA序列在理论上可以有无穷多,该方法可以被拓展为多种聚糖的同时检测” 并且,所使用的DNA不会被转运到细胞内,使该方法“具有专注于细胞表面蛋白研究的优点”。Suzuki教授在评论中高度评价鞠、丁课题组的工作“具有很大的潜力,为发展绿色荧光蛋白标记的类似系统走出了重要的一步”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/f17ecf36-3d43-45f7-a14e-72dee3bde0e0.jpg" title=" 微信图片_20180928105530.jpg" alt=" 微信图片_20180928105530.jpg" / /p p br/ /p
  • BET是比表面及孔径吸附的缩写吗
    BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。1983年,三位科学家对Langmuir 理论进行修正,提出著名的BET理论,其正式名称是多分子层吸附理论,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。多分子层吸附理论所采用的模型的基本假设是:一、固体表面是均匀的,发生多层吸附;二、除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。该理论放弃了单分子吸附层的观点,认为在物理吸附中,固体与气体间的吸附是依靠分子间引力而发生的;而且已被吸附的分子仍有引力,因此在第一吸附层之上还可以吸附第二层,第三层,… … 也就是多分子层吸附。从多分子层吸附理论得到的BET吸附等温式,可用于测试颗粒的比表面积、孔容、孔径分布以及氮气吸附脱附曲线。运用 BET方法的物理吸附等温线对吸附表面积进行测定,主要包含两个步骤:第一步,做出BET图,从中导出单层吸附量;第二步,根据单层吸附量计算比表面积。由于BET 法适合大部分样品,被广泛应用于许多多孔及无孔材料BET面积α的确定。其最大优势是考虑到了由样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别。BET吸附等温式是行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET吸附等温式建立起来的。但BET 法并不适用于所有样品,因此按介孔材料的分析方法分析微孔材料时,由物理吸附分析仪自动生成的BET 比表面值是错误的。ISO9277-2010 和 IUPAC都对含微孔材料的BET比表面分析方法及判断BET 结果的方法做出了规定。
  • 浅谈比表面积分析方法之气体物理吸附技术
    固体表面积分析测试方法有多种,其中气体吸附法是最成熟和通用的方法。其基本原理是测算出某种气体吸附质分子在固体表面物理吸附形成完整单分子吸附层的吸附量,乘以每个分子覆盖的面积(分子截面积,molecular cross-sectional area),即得到样品的总表面积。吸附剂的总表面积除以其质量称为比表面积(specific surface area,m2/g),它是表面积的常用表示方式。实验测定吸附等温线的原则是,在恒定温度下,将吸附剂置于吸附物气体中,待达到吸附平衡后测定或计算气体的平衡压力和吸附量。基于在恒定低温下测量气体的吸附和脱附曲线,并通过对等温线的进行计算,可获取样品的孔径分布、比表面积、孔隙度和平均孔径等固体材料性质。测定方法分为静态法和动态法。前者有容量法(体积法)、重量法等;后者有重量法、流动色谱法等。在此介绍常用的静态容量法和动态流动色谱法。静态容量法需要测量气体体积的压力变化。将已知的气体量注入到恒定温度下的装有吸附剂的样品管中,当吸附发生时,样品内的压力降低直到平衡状态;平衡压力下气体吸附量为注入到样品内气体的量和平衡压力下样品管内剩余气体量的差值。吸附等温线通常使用进气技术将气体注入到体系内,再应用气体定律等到连续的数据点。需要精确知道死体积(自由空间),可以通过校正样品管体积再减去吸附剂的体积(通过密度计算)得到,也可以通过在一定程度上不在吸附剂上发生吸附的气体(如氦气)来测量。容量法气体吸附装置示意动态流动色谱法为在大气压力下,吸附气体和惰性气体的混合物在样品上连续流动,通过热传导检测器(TCD)监测样品对吸附物的吸收。首先,在环境温度下监测从样品管流过的气体,作为建立基线的参考;接下来,降低样品所处温度以促进吸附,并检测随着由于发生吸附导致的气体混合物热导率的变化,当吸附平衡建立时,出口气原始混合物的比例恢复,TCD信号恢复到基线;然后将样品温度提高到环境温度,这时因为被吸附的气体从样品脱附,并再次改变气体混合物中组分的比例。将任一信号(通常是脱附)与校准信号进行积分,可以得到样品吸附的气体量,混合物中吸附气体的分压除以饱和压力就是吸附发生时的相对压力。流动色谱法系统总之,无论什么方法,所使用的气体都是在固体表面形成物理吸附的气体,例如氮气、氩气、二氧化碳等,常使用的冷浴温度一般为氮气@77K(液氮温度),氩气@77K(液氮温度)/87K(液氩温度),二氧化碳@273.15K(冰水混合物温度)/298.15K(室温)/195K(干冰温度)。参考文献《现代催化研究方法新编》 辛勤 罗孟飞 徐杰 主编,科学出版社2018年本文作者:钟华 博士,毕业于中国科学院大连化学物理研究所。在粉体与颗粒表征仪器行业工作10多年,多年在高校研究所开展不同技术讲座和培训,对颗粒表征仪器有丰富的理论知识和仪器应用、市场实践经验。
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 应用 | 衡量表面活性剂皮肤刺激性的辅助手段——临界胶束浓度
    研究背景表面活性剂是化妆品中最常用原料之一,在洁面乳、沐浴露、洗发液等产品中均有应用。越来越多的消费者开始注重表面活性剂对皮肤的影响,追求更温和更低刺激性的表面活性剂类清洁产品,但是消费者往往忽视了表面活性剂在清洗过程中并不能完全被清除干净,容易在人体皮肤上残留,且不同种类的表面活性剂在皮肤的残留量以及机理存在差异。目前关于表面活性剂在人体皮肤残留的研究较少,因此本文对表面活性剂在人体皮肤上残留发生的机理、危害以及表征手法进行了详细的阐述。原理与测量表活在皮肤表面发生残留的机理当消费者使用以表面活性剂为主的清洁类产品时,将在完成清洁时使用大量的清水进行冲洗,但是由于人体皮肤构造存在间隙以及表面活性剂的双亲结构造成渗透等原因,不可避免的存在一部分表面活性剂无法用水冲走,而是吸附渗透至皮肤角质层内,造成表面活性剂在人体皮肤的残留,而残留会对角质层乃至皮肤深层产生长期的负面影响,如造成皮肤过度干燥、炎症等。 一般来说,表面活性剂在人体皮肤表皮发生残留主要是由表面活性剂与角质层细胞角蛋白的结合造成,这是因为在清洗过程中表面活性剂形成单体产生渗透,通过相对较强的静电相互作用导致表面活性剂疏水部分能够与皮肤蛋白片段结合,以及表面活性剂带电荷的亲水头基与皮肤蛋白某些带电荷的部分结合,吸附于皮肤深层无法清洗干净;目前研究表明不同表面活性剂结合角蛋白能力不同,所以不同表面活性剂吸附残留也会有所不同,因此在一个表面活性剂为主的产品中,影响表面活性剂在皮肤表面的吸附残留主要是由体系中表面活性剂类型以及表面活性剂的单体浓度决定。体系临界胶束浓度的影响关于表面活性剂对皮肤渗透吸附造成残留的研究,有研究人员先后提出了单体理论、胶束理论和亚胶束渗透聚集体理论等来解释不同表面活性剂的不同现象,但目前这些理论仍然存在一些问题,主要在于上述理论研究忽略了一个和实际情况不符的事实就是暴露时间,消费者在实际使用表面活性剂产品的暴露时间一般只有几分钟,而上述研究均采用了夸张的暴露时间,如通过贴片封闭接触皮肤21天或者5h接触方案,其都给予表面活性剂足够的时间来渗入和溶胀皮肤结构,因此得出的结论很难与消费者实际使用产品保持一致。因此消费者在实际使用表面活性产品如洁面时,首先体系中的单体会穿透皮肤,吸附残留在皮肤上,而决定单体穿透皮肤的主要影响因素就是体系中表面活性剂的胶束浓度和胶束电荷。Morris等研究表明表面活性剂的吸附渗透和体系的胶束浓度有非常大的相关性,而与胶束直径的相关性较差,一般来说胶束浓度越低吸附渗透越低。例如SLS复配甜菜碱类两性表面活性剂或非离子表面活性剂后,其胶束直径变小,体系CMC降低从而降低了吸附渗透。而SLES对比SLS在相同的测试条件下胶束粒径并未改变,但其CMC变小,皮肤渗透降低,这是因为大多数表面活性剂的胶束粒径均较小,满足皮肤渗透所需标准,从而得出渗透和胶束直径关联度不大的结论。综上所述,通过表面活性剂的复配降低体系的临界胶束浓度,进一步降低表面活性剂单体浓度,从而降低皮肤渗透减少表面活性剂产品在皮肤的残留,这是比较直接的方法,而增加胶束尺寸并不会直接降低表面活性剂的渗透。因此,CMC 临界胶束浓度测量可以作为表面活性剂皮肤刺激性的定向辅助手段。临界胶束浓度测量方法KRÜ SS的Tensíío表面张力仪,配备两个或者单个分液器,可以全自动稀释和测量表面活性剂在不同浓度下的表面张力,得到临界胶束浓度。 作为一种有前途的表面活性剂,我们研究了聚乙二醇-10单油酸酯(PG-10-1-O)作为市场上常用乳化剂的替代品。 表1. 表面张力 vs PG-10-1-O 溶液浓度。根据线性外推,可推断自组装临界浓度的范围为 8 至 11 mg/L。在给定的 PG-10-1-O 摩尔质量为 1023 g/mol 时,处于过渡范围内的浓度 10.5 mg/L 对应于 0.011 mmol/L。因此,该浓度低于个人护理中使用的其他典型表面活性剂的CMC 值,如十二烷基硫酸钠(SDS)8.2 mmol/L 或C12/14 烷基糖苷 0.04 mmol/L,这是 PG-10-1-O 的较好温和性的一个重要标志。思考与注意表面活性剂在皮肤残留的危害表面活性剂单体进入皮肤与蛋白质结合后,会导致皮肤结构肿胀,而皮肤结构肿胀会允许表面活性剂进入皮肤结构的更深层中逐渐结合,从而进一步增强肿胀和渗透,这是一个级联过程。具体表面活性剂残留危害主要有对皮肤角质层表层蛋白的危害,对皮肤角质层脂质的危害,对皮肤表皮活细胞的危害。结论与展望清洁类产品有着良好的市场前景,由于市面上个人清洁系列产品层出不穷,不少消费者关注重心转移到清洁类产品的温和性上,追求更加低刺激的产品。在未来,化妆品的产品设计中应该更加关注基础理论的研究,寻找清洁类产品造成刺激背后的原因和机理,设计出更加科学的产品配方架构,以此来做到最大可能降低清洁类产品对人体皮肤的危害。参考文献1,秦&emsp 尧,闫加雷,钱景茹,张廷志. 表面活性剂在人体皮肤的残留研究[J]. 日用化学品科学,2023,46(6):59-63.2,KRÜ SS应用报告291.一种用于低粘度配方和脂质体结构的通用乳化剂的表征方法.
  • iPore400 为原料药及辅料的比表面积测定带来惊喜
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020 年版中国药典,增加了0991 比表面积测定法,并将于2020 年12 月30 日起正式实施。用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为药学院毕业并从事气体吸附比表面和孔径分析20 余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展突破:一、中国药典2020 版要求在相对压力P/P0为0.05-0.3 范围内至少进行3 个压力点的测试,且BET 方程相关系数需大于0.9975:1、有关BET 比表面积的测量和计算:首先需要明确的是,BET 比表面积是通过多层吸附理论(BET 方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P00.05-0.3 的范围内,吸附曲线在这里进入平台区(图1)。BET 理论恰恰需要在这个阶段的吸附数据计算比表面积。完整的BET 报告必须包括比表面值、回归曲线、相关系数和C 常数(C 值,图2)。 图1 一种α氧化铝的吸附等温线片段(P/P0 0.05-0.35) 图2 由图1 计算得到BET 曲线及完整的报告信息2、有关BET 计算的P/P0 取点:众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991 的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品的研发成功,需要进行比表面积和孔径分析的材料越来越多,多微孔纳米载体材料控制药物缓释速度已经开始应用。而这些材料的多层吸附区域会前移,也就是可能到P/P0 为0.01~0.15 的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET 计算结果可靠性的标准应该是C 值大于0 和回归系数大于0.9999。(延伸阅读:杨正红:《物理吸附100 问》化工出版社,2016 年)3、有关BET 方程相关系数:回归曲线的相关系数R=0.9975 是一个过于粗放的低端要求,来源于20 年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET 差5%不算差”的说法,由此,按允许偏差±5 计算:R = (1+0.0500)x (1-0.0500)= 0.997500这显然是一个到达极限的最低标准,对于用于质量控制的比表面测定是难以忍受的。而目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过±2,这意味着:R = (1+0.0200)x (1-0.0200)= 0.999600也就是说,R 值不应该低于0.9996。如果按常规质检要求,重复性允许偏差±1 计算,则对R 值的最低要求为:R = (1+0.0100)x (1-0.0100)= 0.999900即回归曲线的相关系数不小于四个9(R 0.9999)。4、iPore 400 多站比表面分析仪测定小表面样品的重复性:iPore 400 是理化联科最新开发的按照欧洲标准设计制造的4 站或6 站比表面和孔径分析仪,专门为了解决超低比表面材料的质量控制的痛点问题。该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括:(1) 全域自动恒温系统:拥有双路进气预热及0.02℃高精度恒温系统,可根据需要在35-50℃之间设定恒定温度;实时显示全区域气路和歧管的系统温度,克服环境带来的误差。(2) 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持分析过程中死体积恒定。图3 iPore 400 全自动物理吸附分析仪和iBox 26 智能脱气站(3) 32 位芯片及电路系统:采用全新32 位芯片及电路系统,相比24 位系统,压力传感器分析精度提升30 倍以上,确保超低比表面测量的极致精度。这些新技术的采用,可以用氮吸附测定0.005 m2/g 左右的比表面积,大大突破了常规氮吸附的比表面下限极值(0.01m2/g)(图4)。仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221±0.013m2/g,氪吸附)的重复性偏差(表1)。结果表明,iPore 400 的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET 比表面测定长期重复性达到空前水平!图4 一种电解质膜的BET 比表面(左图),及吸附等温线和孔径分布(右小图)。BET 比表面积=0.0076m2/g!表1 超低比表面标准品比表面长期稳定性实验iPore 400 可以配置6 个独立的分析站(图5),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6 个站BET 测定结果具有高度的一致性,重现性偏差同样优于1%(表2)。表2 低比表面石墨样品比表面平行测定实验(红色数据是12 次测量结果的标准差)图5 iPore 400 全自动物理吸附分析仪气路结构透视图二、iPore 400 为药企行业比表面积测定带来的惊喜——用氮吸附替代氪吸附:药品多为有机化合物,比表面值一般都很低。新版中国药典0991 指出,对于比表面积小于 0.2m2/g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2 方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr 吸附一般至少需要配备10 torr 的高精密压力传感器以及分子泵,以分辨P/P0 在10-5~10-4 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m2 的绝对表面积计算。但是,一般的氪吸附的应用需要配置分子泵和10torr 压力传感器,这给企业带来了额外的成本负担。iPore400 的黑科技可以在标准配置(机械泵和1000torr 压力传感器)的条件下满足氪吸附的应用要求,P/P0 下限达到可重复的10-5(图6),这给企业带来了第一层惊喜!图6 iPore 400 全自动物理吸附分析仪COF 测定的等温吸附曲线,在机械泵条件下,P/P0 下限可到10-5,并且可完全重复测定!其实,在77.4K 的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P0?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET 方法中,假设吸附质相完全浸润)?在77K 的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm2 (15.2 Å2),但通常会用较大的横截面面积值,甚至高达0.236 nm2(23.6Å2)。采用较多的横截面积值是0.202 nm2(20.2 Å2)。除此之外,氪气的成本是氮气的240 倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。为此,理化联科iPore 400 新一代气体吸附分析技术已经用氮气成功地实现了氪吸附领域的超低比表面积测定(图4)。这给企业带来了第二层惊喜!图7 一种比表面为0.04m2/g 的金属氧化物吸附等温线和BET 比表面曲线a 和b:iPore 400 两次测定的结果,比表面积值可以完全重复;c::iPore 400 关闭死体积恒定功能的结果,可见BET 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ;d:其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线为了进一步验证上述研究成果的可靠性,我们用氮吸附测试了一个比表面积仅0.04m2/g 的金属氧化物的完整吸附等温线和BET 曲线,不仅两次测定(图7a 和b)相关系数都在0.9999 以上,而且BET 比表面完全重复!当关闭iPore 400 的死体积恒定功能再进行测试时,虽然BET =0 .032 并且相关系数R=0.9987,依然满足药典0991 要求(图7c),但可以看到数据质量已经很差,脱附曲线已经完全变形。而常规的氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图7d)。iPore 400 技术突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图4 右)。工欲善其事,必先利其器!贯彻药典新规和GB/T 19587-2017 标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,需要性能全面优化的可涵盖各种药用试品的分析仪器。配合iBox 26 全自动智能脱气站,iPore400 全自动比表面和孔径分析仪的一系列创新和突破,引领了下一代物理吸附分析仪的新标准。它的高稳定性、高重复性、高效率、超高性价比为中国企业全面贯彻中国药典0991 带来了不断惊喜!
  • 杨正红:氮吸附仪表征药物超低比表面积的技术突破
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020年版中国药典,增加了0991比表面积测定法,并将于2020年12月30日起正式实施。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为毕业于药学院并从事气体吸附比表面和孔径分析20余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展。 /span span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " strong span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun " 一、中国药典2020版要求在相对压力P/P sub 0 /sub 为0.05-0.3范围内至少进行3个压力点的测试,且BET方程相关系数需大于0.9975 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1、有关BET比表面积的测量和计算: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先需要明确的是,BET比表面积是通过多层吸附理论(BET方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P sub 0 /sub 0.05-0.3的范围内,吸附曲线在这里进入平台区(图1)。BET理论恰恰需要这个阶段的吸附数据来计算比表面积。完整的BET报告必须包括比表面值、回归曲线、相关系数和C常数(C值,图2)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/31a57e2c-4f93-4cd4-89eb-10ed26bc5031.jpg" title=" 0000.png" alt=" 0000.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2、有关BET计算的P/P sub 0 /sub 取点: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品和药用材料的研发成功,已经开始应用多微孔的纳米载体材料控制药物缓释速度,而这些材料的多层吸附区域会前移,也就是可能到P/P sub 0 /sub 为0.01~0.15的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET计算结果可靠性的标准应该是C值大于0和回归系数大于0.9999。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (延伸阅读:杨正红:《物理吸附100问》化工出版社,2016年) /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3、有关BET方程相关系数: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 回归曲线的相关系数R=0.9975是对吸附等温线测定质量的过于粗放的低端要求,来源于20年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET差5%不算差”的说法,由此,按允许偏差± 5计算: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0500)x (1-0.0500)= 0.997500 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于BET的计算是取自多层吸附已经完成,孔中的毛细管凝聚尚未发生的平缓线性阶段数据,这显然是一个到达极限的最低标准。以这么低的标准去进行比表面测定的质量控制,实际上等于没有控制。目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过± 2,这意味着: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0200)x (1-0.0200)= 0.999600 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 也就是说,R值不应该低于0.9996。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果按常规质检要求,重复性允许偏差± 1计算,则对R值的最低要求为: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0100)x (1-0.0100)= 0.999900 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 即回归曲线的相关系数不小于四个9(R & gt 0.9999)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 二、表征超低比表面积的技术突破 /span /strong /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于真空体积法气体吸附分析仪等温线测定依据的是理想气体方程,影响结果的主要因素不外乎温度、压力和体积。当样品的吸附量远大于这些因素引起的误差时,温度、压力和体积的波动或精度误差(仪器的本底噪音)可以被忽略不计,但是当药品这样的小表面材料所能吸附样品总量不足以克服本底噪音时,就带来了测试结果的不稳定性,甚至测不出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了解决超低比表面材料的质量控制的痛点问题,我们专门开发设计了iPore 400,该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括: /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2260669a-9557-4d2e-b89a-72e7994aee06.jpg" title=" 111.png" alt=" 111.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (1)& nbsp 全域自动恒温系统:拥有双路进气预热管路及包括12个静音风扇组成的高精度恒温系统(图4),可根据需要在35-50℃之间设定恒定温度。系统实时显示全区域气路和歧管的温度,避免环境因素带来的误差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " a)& nbsp 内部整体恒温,可在35-50℃之间设置:真空体积法是通过压力传感器读取压力的变化而计算吸附量的,其准确性和有效精度对温度变化极其敏感,尤其在微孔和超低比表面分析中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " b)& nbsp 0.02℃温控精度:三个温度传感器,实时显示各区域温度。高精度和高稳定的全恒温控制,可将压力变化控制在0.05%以内,远小于传感器本身的不确定度(0.1%),可彻底避免因环境温度变化造成的分析误差。可根据地区需要和数据对比需要调节恒定温度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " c)& nbsp 进气预热恒温: 由于涉及安全管理问题,大多数实验室气瓶置于室外,造成吸附气进气温度与室温或仪器内温差距巨大,定量注气失准。该系统消灭了地区差别和早晚温差对钢瓶气造成的误差,尤其为锂电材料,药物材料,膜材料的等小比表面质量控制带来福音。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " d)& nbsp 新型电磁阀:常规电磁阀的发热问题由来已久,严重影响气体定量和压力读数的准确性,该问题在超低比表面和微孔分析时尤为突出。为解决这一问题所开发的带有自锁功能的电磁阀,无需持续供电便可保持开启或关闭状态,发热量等效为零,消除了电磁阀工作中发热引起的测量误差,极大地提升了分析性能。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (2)& nbsp 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持过程中死体积恒定。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 【专利号:ZL 2019 & nbsp 885784.5】 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 真空体积法物理吸附是在一个密闭空间进行的。自由空间是系统中吸附质分子传递、扩散的区域,如果要精确计算样品的物理吸附量,死体积值是准确采集数据的基础。因为真空体积法的测量基础是压力,吸附量的计算基础是理想气体状态方程,所以吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。 系统死体积越小,对压力变化的灵敏度越高,吸附量计算越准确。换句话说,在同样的条件下,系统死体积越小,则仪器测量精度越高。由于在氮吸附分析过程中,液氮是不断挥发的,所以为保证精确计算吸附量,要对死体积进行控制、测量或校准。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9d9ab2a1-3a09-482c-b996-a84f2e8565d1.jpg" title=" 222.png" alt=" 222.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (3)32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。转换精度就是分辨率的大小,因此要获得高精度的模/数转换结果,首先要保证选择有足够分辨率的ADC,同时还必须与外接电路的配置匹配有关。iPore系列不仅采用32位模数转换,而且采用拥有自主知识产权的32位电路设计和制造,从系统上保证了压力传感器精度的进一步提升(见表1)。 /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 表1 & nbsp ADC芯片转换精度与压力分辨率关系(以1000Torr传感器为例) /span /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC转换位数 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 16 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 24 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 32 Bit /span /strong strong /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC有效位数 /span /strong strong /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 15 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 20 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 28 Bit /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力最小分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 2 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0079 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.00003 Pa /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力有效分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 4 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.12 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0039 Pa /span /p /td /tr tr td width=" 568" valign=" top" colspan=" 4" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" *ADC span style=" font-family:宋体" 有效位数是指可靠的转换值 /span /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 这些新技术的采用,带来了意想不到的突破。它不仅可以用氮吸附测定0.005 m sup 2 /sup /g左右的比表面积,大大超越了常规氮吸附的比表面下限极值(0.01m sup 2 /sup /g),而且可以测得微量吸附下的孔径分布(图6)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/4eb6833c-d410-482b-9d03-8f85c54cd03d.jpg" title=" 444.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/1dbb2a52-49ba-426e-a862-cd25a827530c.jpg" title=" 555.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) " 三、突破性吸附技术对制药行业的应用意义 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1.& nbsp 超低比表面样品测定的重复性、重现性和稳定性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221± 0.013m sup 2 /sup /g,氪吸附)的重复性偏差(表2)。结果表明,iPore 400的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET比表面测定长期重复性达到空前水平! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " iPore 400可以配置6个独立的分析站(图4),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6个站BET测定结果具有高度的一致性,重现性偏差同样优于1%(表3)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center " strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 表 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" 3 /span /strong strong span style=" font-family: 黑体 font-size: 14px" & nbsp /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 低比表面石墨样品比表面平行测定实验( /span /span /strong strong span style=" font-family: 黑体 color: rgb(255, 0, 0) font-size: 14px" span style=" font-family:黑体" 红色 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 数据是 /span 12次测量结果的标准差) /span /strong /p table border=" 0" cellspacing=" 0" style=" margin-left: 7px border: none" align=" center" tbody tr style=" height:22px" class=" firstRow" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td valign=" center" nowrap=" " colspan=" 6" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" BET比表面值(m /span /strong strong sup span style=" font-family: 黑体 font-size: 15px vertical-align: super" 2 /span /sup /strong strong span style=" font-family: 黑体 font-size: 15px" /g), & nbsp & nbsp R & gt 0.9999 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 六站测定重现性 /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 测定次数 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 站号 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 1 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 2 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 3 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 4 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 5 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 6 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" RSD /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 1 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定投气量测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8781 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8880 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8940 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8825 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8878 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8800 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.54% /span /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 2 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定压测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8767 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8760 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8744 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8816 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.25% /span /p /td /tr tr style=" height:19px" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 15px" 同站测定重现性,RSD /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.07% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.60% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.96% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.39% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.67% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.08% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" strong span style=" font-family: 宋体 color: rgb(255, 0, 0) font-size: 15px" 0.61% /span /strong strong /strong /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 我们用这些新技术对薄膜超低比表面积进行了重复性测定,得到了相当出色的结果 (BET = 0.0307m sup 2 /sup /g)。这为解决超滤膜和纳滤膜的纳米孔分析奠定了基础(图7)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0e898529-e557-42aa-8499-f7f6d3993be8.jpg" title=" 666.png" alt=" 666.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2.& nbsp 超高比表面样品测定的重复性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 共价有机框架聚合物(COF)是一种低密度、高比表面、易于修饰改性和功能化的新型人工合成材料。在问世的短短十余年之间,就在气体储存与分离、非均相催化、储能材料、光电、传感以及药物传递等领域展现出优异的应用前景,并且已经发展成为一种纳米药物载体。常规气体吸附法比表面容易测定的范围是5~500 m sup 2 /sup /g之间。因为吸附量巨大,需要长时间的平衡条件,比表面大于1000 m sup 2 /sup /g 的样品重复性控制并不容易做到。为此,对比表面大于2000m sup 2 /sup /g的COF样品比表面进行了长期稳定性测定,结果重复性优于0.07%(图8)! /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3.& nbsp 能力验证——新技术对超低比表面样品测定重复性的重要性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了比较新技术和现有技术在超低比表面应用中的区别,我们用一种极低比表面的金属氧化物对仪器性能进一步进行了验证,并与其它品牌的测试结果进行了比较(图8)。结果表明,新技术不仅两次测定(图8a和b)相关系数都在0.9999以上,而且BET比表面和吸脱附等温线都能很好地重复;而一旦关闭死体积恒定功能,虽然BET =0 .032并且相关系数(R=0.9987)依然满足药典0991要求(图8c),但其数据质量已经迅速下降,脱附等温线已经发生变形,说明这些采用的新技术相辅相成,缺一不可。而没有这些技术的常规氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图8d)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/f6863e5f-cd33-488a-97c4-55f51653c09e.jpg" title=" a.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/69859a06-d2f0-4879-9371-d8406940d9b3.jpg" title=" b.png" / /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" a span style=" font-family:黑体" 和 /span span style=" font-family:Times New Roman" b /span span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 两次测定的结果,比表面积值可以完全重复; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" c span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 关闭死体积恒定功能的结果,可见 /span span style=" font-family:Times New Roman" BET /span span style=" font-family:黑体" 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" d span style=" font-family:黑体" :其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线 /span /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 4.& nbsp 在标准“介孔仪器”配置上实现氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药品多为有机化合物,比表面值一般都很低。新版中国药典0991指出,对于比表面积小于 0.2m sup 2 /sup /g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr吸附一般至少需要配备10torr的高精密压力传感器以及分子泵,以分辨P/P sub 0 /sub 在10 sup -5 /sup ~10 sup -4 /sup 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m sup 2 /sup 的绝对表面积计算。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但是,一般的氪吸附的应用需要配置分子泵和10torr压力传感器,这给企业带来了额外的成本负担。而新技术的突破可以在标准配置(机械泵和1000torr压力传感器)的条件下满足氪吸附的应用要求,P/P sub 0 /sub 下限达到可重复的10 sup -5 /sup (图9),为医药企业节约了检测投资成本! /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ad65b4cb-6898-4bbf-8553-8afc66f8b0c1.jpg" title=" c.png" alt=" c.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 5.& nbsp 用氮吸附完全替代氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 其实,在77.4K的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P sub 0 /sub ?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET方法中,假设吸附质相完全浸润)?在77K的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm sup 2 /sup & nbsp (15.2 Å sup 2 /sup ),但通常会用较大的横截面面积值,甚至高达0.236 nm sup 2 /sup (23.6 Å 2)。采用较多的横截面积值是0.202 nm sup 2 /sup (20.2 Å sup 2 /sup )。除此之外,氪气的成本是氮气的240倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。因此,理化联科气体吸附分析技术上的突破带来了药企行业应用的巨大突破,氮吸附已经成功地实现了氪吸附领域的超低比表面积测定(图6~8)。我们用氮吸附成功测定的极限样品是0.0047m sup 2 /sup /g,这意味着只有当试样比表面小于0.005m sup 2 /sup /g时,才需要氪吸附,而这样的样品凤毛麟角。也就是说,一台全部采用上述新技术的仪器可以全部满足药企各种比表面的测定需求。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 6.& nbsp 建立超滤膜孔径(纳米孔)评价的新方法: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 滤膜孔径评价的经典方法是气体渗透法(即毛细管流动法),但这种方法的适用范围是20nm~500μm。超滤膜是一种孔径范围为1-20nm的纳米孔过滤膜,其范围恰恰在气体渗透法能力之外。该膜的孔径范围虽然被气体吸附法所覆盖,但由于膜的吸附量过低,常规的气体吸附法无法实现测定。国外曾经建立起了液氩温度下氪吸附测量膜孔径的方法,但无论仪器、耗材及方法都很难向工厂推广。制药行业中膜技术应用存在的技术瓶颈亟待解决,需要建立快速可行的超滤膜孔径评价方法。实际上,电池隔膜和电子薄膜也存在类似问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附技术在精度控制上的突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图6右)。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 7.& nbsp 突破传统“介孔仪器”,实现微介孔样品的氮吸附微孔测定: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 新的气体吸附技术标准使1000torr传感器的分辨率提高到了10torr级别,仪器的密封性使机械泵抽空效率发挥到极致。以氮吸附替代氪吸附,以传统介孔仪器成功测定微孔(图10),不仅节约了用户购买仪器的成本,而且降低了用户使用成本;不仅将比表面测定的重复性提高一个数量级,而且微孔分析的重复性也得到充分保障,对MOF/COF样品的研究开发将起到推动作用。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c02cabde-81b1-42d3-a7f5-5b064c381921.jpg" title=" d.png" alt=" d.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 8.& nbsp 气凝胶较大介孔和边际大孔的孔径分析取得突破: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附法介孔孔径分析的经典方法是BJH法,它是基于以毛细管凝聚理论为基础的KELVIN公式。其基本概念是,当压力增加时,气体先在小孔中凝结, 然后才是大孔。因此,孔径与压力有对应关系。但是,当孔径大于10nm以后(对应P/P sub 0 /sub =0.90),压力上升0.05(P/P sub 0 /sub =0.95),对应的孔径已经是20nm了,并且呈指数上升。如:P/P sub 0 /sub =0.98对应50nm,而0.99则已经是100nm了。因此,虽然ISO15901-2指出气体吸附法的孔径测定上限是100nm,但实际上很少有人能做到30nm以上去,因为压力传感器必须能够密集分辨和探知百万分之一的压力变化,这大大超出了常规压力传感器0.15% 分辨率的标称值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气凝胶是一种新型低密度多孔纳米材料,具有独特的纳米级多孔及三维网络结构,同时具有极低的密度(3 500kg/m sup 3 /sup )、高比表面积(200 1000m sup 2 /sup /g)和高孔隙率(孔隙率高达 80 99.8%,孔径典型尺寸为 1 100nm),从而表现出独特的光学、热学、声学及电学性能,具有广阔的应用前景。在医药领域,气凝胶被用于药物可控释放体系。但是,其孔径分布分析却遇到麻烦,因为压汞仪的高压会破环样品的孔结构。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 致病微生物在多孔氧化铝膜上生长不易受到限制,因此氧化铝膜常用于药物敏感性实验(DST)了解病原微生物对各种抗生素的敏感程度或耐受程度来指导临床用药。与气凝胶相反,膜的单位吸附量极低,但孔径可能达到100nm以上。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由表1可知,32位电路新技术可以极大地提高压力传感器的分辨率,至少可分辨3.9*10 sup -8 /sup 的相对压力变化,因此,我们尝试对气凝胶和氧化铝膜进行孔径分布分析。利用精细投气控制新技术,0.99以上的设点间隔达到0.0002的密度,最高吸附点达到了0.9980(对应孔径559nm),在测试方法上取得新的突破,为建立气凝胶和氧化铝膜孔径分析的新方法奠定了坚实的基础(图11)。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px text-indent: 0em " span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun font-size: 18px " 四、总结 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 工欲善其事,必先利其器! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 利用气体吸附分析仪进行比表面积质量控制分析时,经常碰到如下问题:不同厂家仪器之间数据不一致;同一型号在不同地域或不同海拔的数据不一致;同一台仪器在白天晚上或春夏秋冬的数据不一致;同一台仪器长期稳定性不好。这些现象已经成为长期困扰行业质量控制的头疼问题。气体吸附分析技术的突破不仅彻底攻克了这个难题,而且使超低比表面分析达到高稳定性、高重复性、高效率;随之产生的功能性扩展,无论用氮吸附代替氪吸附,还是孔径分布测定向介孔两端范围延伸拓展,都为中国企业全面贯彻中国药典0991带来了超高性价比的惊喜! /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6ca5abfe-f2ab-4486-9fa5-bb34c06304c5.jpg" title=" e.png" alt=" e.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附分析技术的突破,为全面贯彻药典新规和GB/T 19587-2017标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,提供了性能全面优化的可涵盖各种药用试品的分析仪器,也为下一代物理吸附分析仪的发展方向树立了新的标杆,建立了新的标准。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体, SimSun" 作者简介: /span /strong /p p style=" text-align: center " span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b5946e97-b5e2-4749-8815-3ebd6df36529.jpg" title=" f_看图王(1).jpg" alt=" f_看图王(1).jpg" / /span /p p span style=" font-family: 宋体, SimSun " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /span /p
  • 符合浸银标准IPC –4553A,避免PCB板表面氧化
    浸银是几种符合RoHS标准的表面处理方法之一,可保护基底铜免受氧化。作为一种薄浸镀镀层,它在电路板制造中的主要功能是作为可焊性防护层,为焊接处留出清洁的铜表面并可融入焊料。此外,在其整个使用寿命期间,银层有助于防止印刷电路板的铜发生氧化作用。 IPC-4553A条例详细说明了生产环境中浸银表面处理的参数,从而确保可重现的,稳定的焊接。IPC-4553A帮助制造商提高焊接的可靠性第一份浸银规范IPC-4553发布于2005年,反映了当时印刷电路板生产的主流实践,即两种可用的不同类型的商业浸银镀层指南(业内称之为“厚”和“薄”)。然而,随着时间的推移,“薄”镀层的使用逐渐减少,“厚”镀层逐渐成为行业常规。2009年,为反映这一现象,对该条例进行了更新,随后IPC-4553A便应运而生。修订后的规范的亮点在于对浸银镀层厚度规定了上限和下限要求。这对于制造过程中的质量控制和现场的部件可靠性至关重要。如果镀层厚度过薄,则铜会在焊接过程中氧化,生产中的焊接可能会失效。如果镀层太厚,焊接可能最终会被弱化并在现场失效。该条例旨在依据IPC J-STD-003针对12个月的保质期提供可靠的表面处理。除了表面厚度规格之外,IPC-4553A还提供了以下参数:孔隙率、附着力、清洁度、电解腐蚀、耐化学性和高频信号损耗。此外,由于银是一种活性物质,当其与硫结合时会失去光泽。因此,为最大限度地减少银表面与环境的接触,该规范还提供了包装和储存指南。本规范的未来版本可能会涵盖浸银表面处理的额外用途,如铝丝焊接和金属弹片触点。对XRF设备进行合规的正确校准IPC-4553A规范给出了特定焊盘尺寸(60× 60密耳)*的最大和最小银层厚度。这一点极为重要,因为镀层沉积的厚度会因镀位面积的大小而变化。镀层厚度采用X射线荧光仪器测量。但对于浸银厚度测量而言,设备的正确设置极其重要。本规范已给出了相关的详细指南,然而最重要的是对XRF设备定期进行严格校准。制造商必须使用铜上镀银的标准片校准,其镀层厚度和焊盘尺寸应与实际生产值的为同一数量级。日立分析仪器是IPC的成员,其大力推荐遵循IPC指南以实现印刷电路板表面处理的质量和可靠性,包括浸银。我们开发的XRF仪器与快速发展的PCB技术保持同步,旨在帮助您实现生产的一致性和可靠性。
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。   验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。   该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 应用 | 石墨烯表面究竟是疏水还是亲水?
    摘要石墨类碳材料在电极,吸附,催化载体以及固体润滑剂方面有着极其广泛的应用。了解它们和水之间的相互作用对于基础材料的表征以及实际装置的制备都起着关键作用。曾经,普遍的观点都认为石墨碳材料表面是疏水的。然而,美国匹兹堡大学Kozbial等人发表在国际顶级杂志Accounts of Chemical Research上的最新研究发现:石墨表面本质上是亲水的,而由于表面吸附了空气环境中的烃类污染物,才造成石墨烯表面的疏水性。研究回顾在石墨烯的各类应用中,表面性能的精准控制(例如黏附、摩擦和表面能)是非常必要的。润湿性不仅是表征表面性能的重要参数,而且还直接影响了电子掺杂和载体可移动性。在1940年, Fowkes and Harkins首次报道了天然石墨的接触角为85°度左右。其他学者研究不同石墨类碳材料时得出的结果也与该值相接近。碳纳米管以及石墨烯的润湿性研究结果也表明他们都是疏水的。所有的这些研究都表明sp2杂化形式的石墨类碳材料都是疏水的。润湿性的不同观点:1. Tadros等人采用捕泡法测试出表面干净的各项同性的石墨,其前进角为63° (53 °C)。但他们的工作主要集中在研究等温吸附上,而不是润湿性,所得出结论不十分可靠。2. Schrader发现石墨在室温下和超真空条件下被剥离后的接触角值为35°。但是,超高真空会造成水的蒸发,造成较低的接触角。进一步提出石墨疏水是由于石墨被疏水的有机物污染。研究思路为了解决以上问题,美国匹兹堡大学Kozbial教授重新设计了实验,并用KRÜ SS DSA100接触角测试仪表征材料的接触角和表面能。室温下,研究了新鲜石墨烯和剥离的高度有序热解石墨表面的接触角与时间的变化。结果表明暴露在空气中时,接触角与时间具有相依性(图1)。之前研究者们也用同样的方法研究了金的润湿性,由于金的表面吸附了空气中的烃类污染物,造成金的疏水性。而二氧化硅和稀土氧化物等陶瓷材料的接触角也表现出同样的性质。因此Kozbial教授提出,石墨类碳材料是否也因为表面吸附了空气中的烃类污染物才变得疏水呢?图1.铜基石墨烯,镍基石墨烯和石墨的水接触角数据。(1)衰减全反射红外光谱分析利用衰减全反射红外光谱法,采集了新鲜和老化的石墨烯的表面数据。结果表明,石墨烯在空气中暴露10分钟后,出现了明显的亚甲基(&minus CH2&minus )的峰(图2a),这说明有烃类物质吸附在了石墨烯表面。此外,亚甲基峰强度随着暴露时间的增长而变强,同时接触角和ATR-FTIR的数据也表现出相似的趋势。如下:干净表面的石墨烯具有较低的接触角和较弱的亚甲基峰接触角和亚甲基峰强度随着在空气中暴露的时间增长而增加,60分钟之后都不再发生明显的变化。(2)XPS分析采集新鲜石墨烯和老化2天石墨烯的C1s XPS数据。285eV附近的强峰来自于石墨烯碳原子(图2b)。不同的是,在285.7 eV处有一个更正的峰以及在287.6 eV附近出现了一个肩峰,这都说明了烃类物质的存在。随后也采集了新鲜石墨和老化2天石墨的ATR-FTIR数据。因此,对于石墨烯和石墨而言,新合成或者新剥离得到的表面是没有烃类物质的,而在空气中暴露老化之后,是有烃类物质吸附的。图2. 铜基石墨烯的(a) ATR-FTIR和(b) XPS图谱,石墨的ATR-FTIR图谱(c),(d)烃类物质吸附膜厚度和接触角石墨在空气暴露时间的变化关系(3)椭圆偏振分析通过该技术研究发现,石墨表面开始暴露在空气中后,烃类物质吸附膜的厚度逐渐增加,在60分钟时达到峰值,随后曲线出现平台。引起了这一变化时,石墨表面生成了&sim 6&angst 厚的烃类物质层。综上,ATR-FTIR,XPS以及椭圆偏振法都表明石墨表面本质上是温和亲水的,吸附烃类物质后才变的疏水。(4)表面能分析表面能是固体物质重要的表面性质,它不仅决定材料表面的润湿性,更深深影响着粘附性、摩擦性以及其他的表面或界面性能。基于四种测试液体的接触角数据,通过三种常见的模型Neumann,Fowkes和Owens&minus Wendt计算了新鲜和老化石墨表面的表面能。图3表明石墨烯和石墨的表面能随着暴露时间增长而逐渐降低。新鲜表面的表面能最大,老化表面的表面能最小。造成这种结果的原因是空气中烃类物质的吸附过程带来的热力学驱动力降低了总表面能。图3 新鲜和老化石墨烯,石墨的表面能图及极性和非极性分量总结烃类污染物不仅影响石墨类材料表面的润湿性还影响了其粘附性和吸附性。因此,开发有效的去除和抑制烃类污染物对于操控石墨表面性能是非常关键的。此障碍在未来获得突破后,石墨烯基装置的成功制备也就为时不远了。参考文献Kozbial, A., Zhou, F., Li, Z., Liu, H., & Li, L. Are Graphitic Surfaces Hydrophobic. Accounts of Chemical Research 2016.
  • HORIBA用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移
    撰文:李俊博研究背景一般情况下利用拉曼光谱技术可以非常方便的鉴定物质成分,获得结构信息。但是,一些化学物质直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,提高拉曼信号信噪比,从而检测出待检物质。表面增强共振拉曼(SERS)活性基底的快速发展促进了人们对SERS机理的探究,这使SERS的应用范围拓宽至更广的领域。大量的研究表明SERS的增强机理主要有两种:表面等离子体共振及电荷转移机理。对于过渡金属基底来说,其增强能力取决于自身的性质及材料的表面形态,电磁场与化学增强的共同作用使之产生增强的拉曼信号。然而,目前只有几种有机小分子在过渡金属上能够被选择性的增强,这限制了过渡金属的实际应用。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授等人制备了四种SERS活性基底(两种过渡金属和两种贵金属),并通过细胞色素c (Cyt c)在基底上SERS光谱的变化,讨论了Cyt c与这些活性基底间的电子转移路径与机理。本研究中, SERS光谱的采集采用了HORIBA LabRam系列拉曼光谱仪,所有的拉曼数据则通过LabSpec软件进行分析。下面让我们走进该项研究:﹀﹀﹀1为什么选择Cyt c 细胞色素c是一种水溶性的血红素蛋白质并常作为呼吸链中的电子载体。大部分Cyt c的SERS光谱的获得是通过电化学结合拉曼光谱的方法,从而研究氧化还原蛋白质在基础及应用科学领域的结构与反应动力学。基于Cyt c的电子转移的能力,Cyt c常用作新型的探针来探究SERS活性基底与吸附生物分子之间的电子转移。图1. 细胞色素c与SERS活性材料之间的电子转移示意图。2具体的研究过程作者通过紫外光谱表征发现过渡金属镍和钴纳米粒子可将氧化态的Cyt c还原,并且通过SERS光谱发现二者与还原剂连二硫酸钠的作用相同,二者作为良好的还原剂与Cyt c之间发生了电子转移,且通过谱峰的对比证实了在过渡金属的作用下,蛋白质仍保持着良好的二级结构。另一方面,对惰性金属Au和Ag纳米粒子也进行了相同的实验,通过紫外图的表征说明二者对氧化态和还原态的Cyt c均未产生价态上的影响,而SERS光谱则表明Ag纳米粒子能使还原态Cyt c氧化,并且谱峰相对强度的变化意味着Cyt c结构的改变。基于以上现象,作者对Cyt c与金属纳米粒子之间的电子转移机理进行了探究并给出合理解释。氧化态Cyt c与Ni NWs之间的转移方向是从Ni的费米能级至Cyt c的导带,此处由于Cyt c的电导性表现出半导体的行为,因此根据肖特基势垒和欧姆接触可知,金属镍的功函与Cyt c的电子亲和能值十分接近,促移则基于SERS的电子转移机理,实验所用的激发光能量恰能够激发Cyt c HOMO能级上的电子转移至Ag的费米能级。3研究的创新点本研究将氧化还原蛋白质的电子转移与SERS中的电荷转移机理相结合,为电荷转移理论提出了新的见解。并且,Cyt c与过渡金属之间直接的电子转移行为的发现将会拓宽过渡金属在氧化还原蛋白质光谱研究领域的应用。 此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《Chemistry - A European Journal》上: Junbo Li, Weina Cheng, Xiaolei Wang, Haijing Zhang, Jin Jing, Wei Ji, Xiao Xia Han, Bing Zhao, “Electron Transfer of Cytochrome c on Surface-Enhanced Raman Scattering-Active Substrates: Material Dependence and Biocompatibility”. Chem. Eur. J. 2017, DOI: 10.1002/chem.201702307HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制