当前位置: 仪器信息网 > 行业主题 > >

白石墨烯

仪器信息网白石墨烯专题为您整合白石墨烯相关的最新文章,在白石墨烯专题,您不仅可以免费浏览白石墨烯的资讯, 同时您还可以浏览白石墨烯的相关资料、解决方案,参与社区白石墨烯话题讨论。

白石墨烯相关的资讯

  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 我国石墨烯研究获重要进展
    石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建其它维数碳质材料(如零维的富勒烯、一维的纳米碳管和三维的石墨等)的基本单元,具有极好的结晶性及电学质量,可广泛应用于微电子、柔性显示、航空航天、能源、化学传感等领域。自第一片石墨烯材料于2004年英国曼彻斯特大学安德烈• 海姆教授和康斯坦丁• 诺沃肖洛夫研制出来并于2010年荣获诺贝尔物理学奖后,石墨烯迅速成为国际先进材料研发的新热点,引发了诸多发达国家的科学家跟踪研究。   石墨烯结构   该课题组一篇论文获2009年度“中国百篇最具影响国际学术论文”   中国科学院长春应化所现代分析技术工程实验室材料电化学课题组近3年来密切关注国际石墨烯材料研发发展的最新趋势,围绕这一前沿性的重要科学问题,在中科院知识创新工程重要方向项目的支持下,从基础和应用基础研究入手,围绕石墨烯的制备、化学修饰、性能研究等,开展了系列卓有成效的研究工作,并积极探索其在众多领域的应用,取得了系列创新性的研究进展,不但在石墨烯的制备、化学修饰、性能研究等方面取得了长足的进步,还研制、开发出多种高强度、高韧性树脂材料等 此外,还在石墨烯透明电极、生物传感等方面进行了初步的探索,取得了一系列相关研究结果,得到了国内外同行的广泛关注。近年来已在 Anal. Chem.、Chem. Commun.等国际著名核心期刊上发表相关文章15篇。其中发表于2009年Anal. Chem.上面的文章“Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”仅1年左右时间就被引用100余次,并被中国科学信息技术研究所评选为2009年度“中国百篇最具影响国际学术论文”。
  • 划出石墨烯的“及格线”,我国独立完成石墨烯重要国际标准发布
    日前,由中科院山西煤炭化学研究所(简称山西煤化所)独立提出并完成、历时4年修改完善的燃烧法测量石墨烯基材料灰分含量国际标准,经中国、加拿大、韩国、德国等多国科学家审核后正式发布。  该方法完善了石墨烯基材料测试标准体系,显著提高了石墨烯基材料灰分测试效率和分析结果的准确性,得到国内外科学家和产、学、研、检、用单位的高度认可。它是山西煤化所709课题组主持的第二项石墨烯领域国际标准。  合格石墨烯有了新标准  “我们提供了石墨烯材料生产全流程的灰分含量质量监控方法,解决了行业上下游的痛点。”山西煤化所709课题组长陈成猛、成员黄显虹介绍了该标准出台的幕后故事。  近年来,石墨烯材料的应用场景逐渐增多,但杂质过多影响石墨烯产品品质乃至石墨烯复合材料性能,因此必须将材料灰分含量严格限制在一定范围内。石墨烯材料的灰分测量并无经验可借鉴,很多生产、使用石墨烯的企业对于灰分指标“束手无策”。这对全行业来说都是一项空白。  “经过数年研究,我们认为杂质含量需要控制在0.1%以内。高于这个标准线的石墨烯产品便不合格,会影响下游石墨烯复合材料的制备和应用。”黄显虹表示,“目前,石墨烯行业实际上缺少很多关键性的控制和测试标准,灰分含量只是其中很小一部分,其测试方法标准化也仅仅开了个头。”  2017年,709课题组向国际电工委员会提出了“石墨烯基材料-灰分含量:燃烧法”国际标准提案,向全世界行业专家征求意见,最终在2021年7月正式立项。该标准提案由黄显虹和陈成猛担任项目组组长。项目组利用4年时间打磨出一套低成本、高效率灰分测量解决方案。2022年11月4日,国际标准IEC/TS 62607-6-22(纳米制造-关键控制特性-第6-22部分:石墨烯基材料-灰分含量:燃烧法)正式发布。  “我们每年向国际电工委员会纳米电工产品与系统技术委员会成员国科学家汇报两次进展。由于前期工作基础夯实,该标准提案自立项起一年半时间就正式发布,通过速度比大部分国际标准快很多。”黄显虹介绍。  陈成猛表示,石墨烯领域国际标准的出台,将给各个国家出台自己的标准提供一个重要参照,最终很有可能被采纳为国家标准、行业标准。这对于加快壮大新生的石墨烯产业非常重要。  实非不愿,而是不会  从天然石墨到石墨烯材料的过程,就是通过各种手段将石墨薄片的厚度减小为几个石墨烯片层的过程。此时,材料的很多重要性质发生了改变。同时,很多产品受到生产过程中所用化学品的污染。这种“污染”与石墨烯的生产工艺密不可分。  “无论是企业还是研究机构,无法测量石墨烯中的灰分实非不愿,而是缺少方法指导正确测试。石墨烯基材料存在的低密度、强静电、热膨胀效应让测量难以进行。”黄显虹表示。  科学家在石墨烯片层之间引入的官能团刻蚀、破坏了片层的表面和边缘,扩大了片层之间的距离,而且这些片层的表面和层中间夹杂了很多阴阳离子杂质。利用热还原法制备石墨烯材料产生热膨胀效应,这是测量氧化石墨和氧化石墨烯灰分的最大难点。再加上石墨烯材料(还原氧化石墨烯)本身存在强静电且堆积密度极低,四处飞溅,严重影响测量准确性。  科研机构常使用离子体质谱分析仪测试材料中的杂质,但价格昂贵、分析流程长,另外取样代表性不足。因此,709课题组推荐使用更常见且价格更低廉的马弗炉,并开发了一种可靠的检测方法,可以承载更大质量的样本。燃烧法测量石墨烯基材料灰分含量具备了在全行业推广的条件。  控制石墨烯“炸裂”  为了掌控每一步生产过程,石墨烯各类中间品和最终产品都有必要随时监控杂质含量。“剥离”石墨烯片层的过程更像是“炸裂”的过程。  709课题组基于对石墨烯制备技术的深刻理解和对马弗炉热膨胀现象的观测,针对取样、容器选择、称重方法和升温程序等环节,测试了上百次,提出了一系列解决方案。  “关键就在一瞬间。我们最终把热膨胀效应变为‘延迟播放’,避开了氧化石墨烯‘炸裂’,使整个过程准确可控。”2019年夏天,黄显虹重复观察、捕捉不同氧含量的氧化石墨材料发生热膨胀效应的瞬间景象,实验总时长达到5000小时。  “经过4年打磨,我们逐渐完善了一整套检测办法。在国际标准项目立项之前独自探索,在测试方法初具雏形后,我们向10家国内产学研机构发出比对试验邀请,得到了理想的数据。灰分测量的解决方案诞生了。”黄显虹介绍道。  2020年,课题组完成了含氧官能团定量表征及Boehm滴定方法国际标准制定,2022年完成了燃烧法测量石墨烯基材料灰分含量的相关国际标准。陈成猛表示,这项国际标准完善了石墨烯基材料测试标准体系,使产学研机构有了测试分析工具,为规范和促进石墨烯行业健康有序发展提供了技术支撑。与此同时,石墨烯领域研究还需要厘清分歧、达成共识,国家标准制定工作任重道远。
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 中国的石墨烯来了!我们的产业要让世界刮目相看
    石墨烯发现者、诺贝尔奖获得者康斯坦丁诺沃肖洛夫表示,石墨烯作为迄今为止世界上已知材料中最薄、强度最大的材料,以其极好的导电性、导热性和透光性而具备极其广阔的产业应用空间和社会经济价值,未来5-10年全球石墨烯产业会形成超过千亿美元的市场。  “石墨烯,我们来了,我们要让世界刮目相看。”常州国成新材料科技有限公司(以下简称“国成新材料”)董事长、CTO董国材说。  远赴欧洲,攀登知识之巅  1998 年,一个冬日雪后的清晨,伴随上课铃声的响起,黑龙江省一所高中的教室中传出了阵阵朗诵声。在所有高三的学生都还在为人生中的第一次大考而如临大敌之时,许多人眼中的“别人家孩子”董国材已然可以随心所欲的沉浸在自己喜爱的物理世界之中。那时,他已经获得了北京大学的保送名额。  1999年夏天 ,董国材正式成为北京大学的一名大一新生。高手云集的北大,也掩盖不住他身上的“学霸”气息。在别人还在为考研而苦苦复习之时,他却在因可选择的保送学校过多而烦恼。最终,立志成为一名顶尖科学家的他选择了中科院物理所。“中科院物理所的科研实力特别强,当时可以说是国内这个领域里最强的。”董国材给出了自己的理由。  刚刚进入中科院物理所,董国材就受到了导师薛其坤院士的重用,承担了开发一套RHEED震荡观测系统设备的重任。该套设备如果研发成功,将极大的提高相关领域的科研效率。几个月之后,董国材就做出了首台原型机,经测试完全超出最初设计标准。在经过一段时间的使用之后,中科院物理又复制了三套相同的设备,至今还在为中科院物理所、清华大学的科研不断做出贡献。  新设备的研发成功,让董国材成功跻身中科院物理所的“学霸”行列。此后,荷兰莱顿大学的交换生名额自然而然的落到了他的身上。  莱顿大学(Leiden University),最具声望的欧洲大学之一,成立于公元1575年2月8日,是荷兰王国历史最悠久的高等学府,是欧洲研究型大学联盟十二个创立成员之一,也是Coimbra Group、Europaeum等大学联盟的一员̷̷  然而,这些都不是吸引董国材远赴欧洲的理由。“荷兰莱顿大学,在仪器研发上一直是走在世界的最前列,很多产品的技术参数都是世界第一。”他说。  从黑龙江到荷兰莱顿的大学的距离有多远?在董国材的眼中可能只有四个字:不断学习!  学成归国,探索产业路径  陌生的国度,并不能掩盖董国材身上的才华。“你要不要来我们学校读博士?”短短不足一年的交换期,他再次获得了莱顿大学导师的认可。  “导师,您说我要不要在莱顿大学读博士?”董国材拿起了电话打给了远在北京的导师薛其坤院士征询他的建议。最终,在导师的支持下,他决定选择到荷兰继续深造。  2006年,董国材正式加入莱顿大学攻读博士学位。在他到来之前,莱顿大学针对高温扫描隧道显微镜的研发已经持续了八年时间,却迟迟未能研发成功。伴随董国材的加入,中西方思维的碰撞,让项目研发进入了全新阶段。两年后,设备的功能不仅达到了最初的设计指标,还在很多方面远远超出设计指标。诸如,高温下的空间分辨率小于1nm,创造了高温显微学的世界纪录。  “我们造出了世界上最好的仪器设备,那我们一定要选一个全世界最火的材料来做。”在一帮科学狂人的欢呼声中,石墨烯成为了他们的研究方向。  2010年,董国材在荷兰莱顿大学取得博士学位。2012年,以博士后的身份正式毕业。莱顿的大学的6年学习生活,不仅提高了他的知识和科研水平,更让他对以后自己要走的路有了清晰的认识。  2012年,一个消息的传来,让董国材开始思考自己的未来到底在何方。那时,江南石墨烯研究院在常州正式成立,朋友邀请他回国共同去研究石墨烯的产业化。  “回国,毕竟那里离家更近一些。”董国材告诉云投君,“我在下决定前和导师薛其坤院士聊了很久。他告诉我,现在国内不论是在学术氛围,还是在产业环境,亦或是创业环境上都已经不比欧洲差。而对家乡的思念,让我最终下定了决心。”  因为石墨烯,常州这个以前从未听说过的城市,成为了董国材生命中最重要的一个烙印。  筷子兄弟,让世界刮目相看  2012年,在董国材决定回国的时候。在中国常州,德国百尔罗赫中国研发制造中心正式开始试运营,它的掌舵者张泳用十八个月的时间创造了让德国人为之侧目的“中国速度”。那时,距离董国材与张泳这对最佳拍档的碰面还有两年时间。  张泳,1992年大学毕业后进入常州化工研究所成为一名产品研发工程师。四年的科学研究(国家八五攻关项目“丝绸精炼剂”、九五攻关项目“高效印花粘合剂” 的核心成员),两年的车间主任,后来从事销售和技术服务工作,1999年担任研究所纺织印染助剂事业部总经理,2002年开始担任常州化工研究所总经理̷̷张泳用十年的时间,完成了一个基层员工到企业掌舵者的蜕变。而这,也正是常州化工研究所蜕变的开始。  2007年,张泳被常州市授予:首届青年科技创业十大明星。“我任职期间,在依托研究所原有的两块主营业务的基础上,向国际上需求比较大的、体现高技术要求的医药的ODM的业务转型,并与先灵葆雅、默克等国际一流药厂达成合作,为研究所带来了良好的经济效益。但,这不正是我应该做的吗?”在张泳的反问中,云投君听出了一个企业掌舵者的担当。  2010年8月,经过多番思量,张泳决定加入德国百尔罗赫。“这真的很难抉择。”张泳告诉云投君,“促使我下决心得很重要一点是,我长期在国内的企业工作,特别想看看国外的企业,特别是德国的企业是如何运行的,有哪些地方是值得我们学习和提高的。”  在百尔罗赫呆的越久,张泳内心的感悟就越深,“我经常在想,如果有德国一样的好技术、好产品,配上我们中国接地气的市场行为、推广、规划、执行,我们其实可以做的更好。”  2015年年初,长期从事企业运营的张泳,和一直专注石墨烯和高温隧道扫描显微镜研究的董国材有了第一次的见面。  “我们聊得很投缘,经常在一起交流石墨烯的技术,还有高端科学装备等。”张泳告诉云投君,“我们两个人从性格、专业(他是学物理的、我是学化学的),经历(他有非常强的科学功底、我也有比较好的一个产品研发和新产品推广的经验 他在欧洲留过学,我在欧洲的公司呆过)上都有很强的互补性。我们有好的技术,有比较投缘的搭档,为什么我们不可以,自己出来做一些有情怀的事情,做一些很值得若干年后回味的东西,做一些很拿得出手的产品,让国际同行刮目相看的事情。”  他们的相遇,将本不相交的两条平行线变为了一双“筷子”。而这双“筷子”,或将“夹起”石墨烯这个产业富矿。  中国合伙人,走出自己的产业路  世界上最稳定的图形就是三角形,在国成新材料的创业团队中,同样存在三个“中国合伙人”。除了董国材、张泳,天使投资人吴海宙在其中也扮演着重要的角色。  董国材与吴海宙相识于2012年,刚刚回国的他的江南石墨烯研究院的一次活动上见到了吴海宙。一次简单的交谈,却像是见到了许久的老友。此后,两人每次相见都有聊不完的话题。而国成新材料的创立,则让两人的关系更近一步。  “吴海宙不仅是我们的天使投资人,还是我们的创始成员,是我们铁三角中的重要一环。我们三个人,因为石墨烯和创业有了第一次的头脑风暴。此后,就经常在一起聊我们的技术、潜在市场、未来发展方向,经过很多次的头脑风暴,最后我们就把我们的业务方向定位为:石墨烯的技术和产品的商业化,高真空的科学仪器。”张泳说。  为什么即做石墨烯,又要做科学仪器?“我一直坚信要靠做设备来做科研,要靠做设备来做产业。”董国材表示,在许多关键的领域,不在于你的生产、你的规模,而在于你的设备、你的技术。诸如,中国有无数的LED生产线,但几乎都是赚小钱的。这就是因为设备、技术不在自己手中。而石墨烯产业还有着一个非常特殊的特点,很难买到相应的生产设备。就算可以买到设备,那也是沿着别人的路径在走,很难取得大的突破。  正是得益于国成新材料以一种接近半导体工艺的设备来做半导体的产业思路,国成新材料在石墨烯膜单层平均2英寸大小的环境下,做出了1.5平方米可称得上是国内最大的石墨烯单层膜。“就是因为我们有我们自己的‘高温隧道扫描显微镜’,这个显微镜可以在1300K的温度下,清晰的观察到每一个石墨烯  原子生长的过程。因为我们有清晰的眼睛,所以我们可以观察到整个工艺的过程,所以我们可以控制我们的工艺,生产出优质的大面积的石墨烯膜。正是因为我们有了非常高级的科学仪器,所以我们才可能把石墨烯膜做的这么好。”张泳说。  在 “中国合伙人”的共同努力下,国成新材料用一年多的时间初步建成石墨烯薄膜宏量生产的示范超净间生产厂区,并开展石墨烯薄膜中试设计和部分部件采购 开始石墨烯薄膜应用产品的样品开发,包括smart window,电磁屏蔽膜 完成石墨散热产品的初步设计、验证和初样,有望送手机厂商测试 取得高温下扫描隧道显微镜等高端科学仪器及其部件的销售订单,并有望持续扩大销售规模̷̷一系列成绩。
  • 关于召开2022(第九届)中国国际石墨烯创新大会的通知
    六大亮点抢先看(1)汇聚全球智慧 共“碳”产业未来本届大会将进一步扩容报告专家和报告数量和质量,将邀请石墨烯诺奖、顶级院士专家、政策分析大咖、行业领袖等来自30多个国家和地区的200位全球碳材料领域嘉宾,通过20+场专题论坛,深度解析全球经济形势对石墨烯材料行业发展的影响,探寻发展新风口;20000+参会代表交流探讨行业趋势。(2)1000+项成果需求,直击痛点,注入产业发展新动力为了搭建供需对接桥梁,以科技传播、技术交易、国际资源“三件套”为基础,推出更多组合的科技创新创业服务“套餐”,在今年大会期间,除了继续采取上线+线下的方式,为华为、小米、海尔、塔塔钢铁、IMEC等500强企业组织商务会客室之外。大会组委会还将会面向全球征集1000项石墨烯及新材料成果和需求,持续推进“问题库”“项目库”等资源库建设,丰富石墨烯产业创新资源共享平台服务内涵,高效对接创新创业供需资源,服务石墨烯新材料产业高质量发展。(3)“石墨烯奥斯卡之夜”缔造行业盛典第一届、第二届国际石墨烯颁奖典礼连续在上海成功举办,由全球20个国家和地区共80位石墨烯行业专家共同发起成立,此活动一经举办就得到了全球各国石墨烯人士的大力支持,成为了行业含金量最高的奖项,同时也彰显了上海适宜石墨烯新材料产业发展的创新土壤和产业魅力及影响力。第三届国际石墨烯颁奖典礼(IGA 2022),将进一步扩大范围,30个国家地区、评审委员会将扩增到100个席位,并将进一步扩大评奖范围。同时,联盟将联合各国石墨烯权威机构面向全球大范围征集2022年参选单位。(4)行业大奖 百企竞逐 致敬不凡2022中国国际石墨烯材料应用博览会将汇聚全球 200 +家石墨烯企业的科技创新成果,全面呈现“高大上” 的石墨烯技术和“接地气”的民生需求产品。在博览会期间,大会组委会将组织多方巡展,“产业杰出贡献奖”、“石墨烯工匠奖”、“最具创新力企业”、“石墨烯‘碳达峰、碳中和’技术应用示范企业”等多个行业大奖将在博览会期间评选产生;同时联盟将与GrapheneFlagship、Nano Malaysia、IDtechex、GRAPHENEINFO、NanotechJapan、ARCGrapheneHub、巴西国家石墨烯中心等联合发布《全球石墨烯企业竞争力百强榜》,彰显中国石墨烯产业发展的全球影响力,《2022全球石墨烯产业研究报告》也将在同期发布。(5)海外专场云端峰会助力百项全球石墨烯技术成果来沪发展为了响应国家“一带一路”倡议,助力上海建设具有全球影响力的科技创新中心,同时,进一步发挥中欧合作石墨烯创新中心的平台作用,统筹科技资源的创新力量,吸引与带动海外优质人才和团队来华创新创业,促进创新创业成果转化落地,在2022年中国国际石墨烯创新大会期间,石墨烯联盟将与马来西亚、西班牙、意大利、德国、英国、澳大利亚、瑞典、以色列等各国相关机构联合举办多场海外专场云端峰会。峰会围绕新材料科技应用成果的推广、交流合作和落地转化,助力100项海外成果对接来华发展。(6)全媒体矩阵缔造“百网同播、万人同观”盛况大会将全方位调动媒体资源,形成多形式、全视角、广覆盖的舆论氛围。联合百家中外主流媒体和网站进行直播报道。同时,博览会的展商专访将通过国内外直播+趣味短视频+200家权威媒体渠道宣传等形式, 打造大会全媒体矩阵,采访来自全球各地的展商,并进行实时报道及互动,多维度报道大会,缔造“百网同播、万人同观”盛况,营造全球影响力,挖掘全球商机,洞察产业走势。组委会联系方式:大会咨询:400-110-3655微信号:CGIA-2013、SMXLM2013(添加时备注单位-姓名)官方QQ群:296531551、397051421邮箱:meeting01@c-gia.cn微信公众号:石墨烯联盟
  • 关于召开2022(第九届)中国国际石墨烯创新大会的通知
    关于召开2022(第九届)中国国际石墨烯创新大会的通知会议名称:2022' 中国国际石墨烯创新大会时间:2022年11月11日-13日地点:上海石墨烯联盟(CGIA)先后在宁波、青岛、南京、西安、上海成功举办了八届“中国国际石墨烯创新大会”。八届大会共吸引了全球 30 多个国家和地区的1200多位新材料领域的专家、 4000 多家单位、 63000 多人参会,集中展示了2000多项优秀石墨烯项目,目前已发展成为全球石墨烯前沿技术成果、创新产品的汇聚地、风向标和国际盛会,被誉为“全球石墨烯秋季大会”。与大会同步举办的“中国国际石墨烯材料应用博览会”,通过汇聚全球石墨烯产业化成果,不断为全球石墨烯产业发展注入新的生机与活力。“2022(第九届)中国国际石墨烯创新大会”将于2022年11月11-13日在上海召开。本届大会由上海市宝山区人民政府、上海大学和石墨烯联盟(CGIA)联合主办,大会将聚焦科技成果转化、国际合作、产业链供应链三个方面,携手终端用户打造多场商业化论坛;同时,为了深化国际合作,营造全球影响力,加速国际成果对接,促进国内外石墨烯产业交流,为各国石墨烯企业联手打造一个国际展示平台,助力企业走出国门,走向世界,联盟还将与Graphene Info、Phantoms Foundation、Nano Malaysia、ARCGrapheneHub等众多国外机构打造多场海外分会场、国际石墨烯颁奖晚会、国际石墨烯新材料大赛等多场国际特色活动。届时,来自30个国家地区的200位全球顶级专家将通过线上线下相结合的方式齐聚上海,将与20000+参会代表携手,共同打造一场具有创新性、多元化的全球石墨烯嘉年华盛会。与大会同期举办的“2022中国国际石墨烯材料应用博览会”将邀请全球石墨烯领域200家代表单位参展,众多石墨烯新产品将在博览会的舞台上“争奇斗艳”,为全球石墨烯产业发展注入新动能。上届大会的商务会客室活动广受好评,本届大会将继续设立多场商务洽谈会,邀请众多全球500强终端企业携多项需求与广大石墨烯企业“零距离”对接,解决终端应用企业需求痛点,促进创新链与产业链的深度融合,推动终端产品不断创新以及石墨烯商业化进程。在此,组委会诚挚地欢迎各界人士继续支持和参加“2022(第九届)中国国际石墨烯创新大会”。会议详细进展,请关注http://www.grapchina.cn/。第九届中国国际石墨烯创新大会六大亮点抢先看(1)汇聚全球智慧 共“碳”产业未来本届大会将进一步扩容报告专家和报告数量和质量,将邀请石墨烯诺奖、顶级院士专家、政策分析大咖、行业领袖等来自30多个国家和地区的200位全球碳材料领域嘉宾,通过20+场专题论坛,深度解析全球经济形势对石墨烯材料行业发展的影响,探寻发展新风口;20000+参会代表交流探讨行业趋势。(2)1000+项成果需求,直击痛点,注入产业发展新动力为了搭建供需对接桥梁,以科技传播、技术交易、国际资源“三件套”为基础,推出更多组合的科技创新创业服务“套餐”,在今年大会期间,除了继续采取上线+线下的方式,为华为、小米、海尔、塔塔钢铁、IMEC等500强企业组织商务会客室之外。大会组委会还将会面向全球征集1000项石墨烯及新材料成果和需求,持续推进“问题库”“项目库”等资源库建设,丰富石墨烯产业创新资源共享平台服务内涵,高效对接创新创业供需资源,服务石墨烯新材料产业高质量发展。(3)“石墨烯奥斯卡之夜”缔造行业盛典第一届、第二届国际石墨烯颁奖典礼连续在上海成功举办,由全球20个国家和地区共80位石墨烯行业专家共同发起成立,此活动一经举办就得到了全球各国石墨烯人士的大力支持,成为了行业含金量最高的奖项,同时也彰显了上海适宜石墨烯新材料产业发展的创新土壤和产业魅力及影响力。第三届国际石墨烯颁奖典礼(IGA 2022),将进一步扩大范围,30个国家地区、评审委员会将扩增到100个席位,并将进一步扩大评奖范围。同时,联盟将联合各国石墨烯权威机构面向全球大范围征集2022年参选单位。(4) 行业大奖 百企竞逐 致敬不凡2022中国国际石墨烯材料应用博览会将汇聚全球 200 +家石墨烯企业的科技创新成果,全面呈现“高大上” 的石墨烯技术和“接地气”的民生需求产品。在博览会期间,大会组委会将组织多方巡展,“产业杰出贡献奖”、“石墨烯工匠奖”、“最具创新力企业”、“石墨烯‘碳达峰、碳中和’技术应用示范企业”等多个行业大奖将在博览会期间评选产生;同时联盟将与GrapheneFlagship、Nano Malaysia、IDtechex、GRAPHENEINFO、NanotechJapan、ARCGrapheneHub、巴西国家石墨烯中心等联合发布《全球石墨烯企业竞争力百强榜》,彰显中国石墨烯产业发展的全球影响力,《2022全球石墨烯产业研究报告》也将在同期发布。(5)海外专场云端峰会助力百项全球石墨烯技术成果来沪发展为了响应国家“一带一路”倡议,助力上海建设具有全球影响力的科技创新中心,同时,进一步发挥中欧合作石墨烯创新中心的平台作用,统筹科技资源的创新力量,吸引与带动海外优质人才和团队来华创新创业,促进创新创业成果转化落地,在2022年中国国际石墨烯创新大会期间,石墨烯联盟将与马来西亚、西班牙、意大利、德国、英国、澳大利亚、瑞典、以色列等各国相关机构联合举办多场海外专场云端峰会。峰会围绕新材料科技应用成果的推广、交流合作和落地转化,助力100项海外成果对接来华发展。(6)全媒体矩阵缔造“百网同播、万人同观”盛况大会将全方位调动媒体资源,形成多形式、全视角、广覆盖的舆论氛围。联合百家中外主流媒体和网站进行直播报道。同时,博览会的展商专访将通过国内外直播+趣味短视频+200家权威媒体渠道宣传等形式, 打造大会全媒体矩阵,采访来自全球各地的展商,并进行实时报道及互动,多维度报道大会,缔造“百网同播、万人同观”盛况,营造全球影响力,挖掘全球商机,洞察产业走势。会议名称:2022' 中国国际石墨烯创新大会电话:400-110-3655官网:www.grapchina. cn 邮箱:meeting01@c-gia. c nQQ群:296531551、397051421微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群)微信订阅号:CGIA2013(支持在线咨询)
  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
  • 残次石墨烯可造超灵敏“电子鼻”
    美国伊利诺伊大学芝加哥分校的科学家日前开发出一种能够分辨出单个气体分子的超高灵敏度&ldquo 电子鼻&rdquo 。这种新型气体传感器对气体分子的吸收能力比传统化学传感器强300倍。   让人不可思议的是,用来制造这种高灵敏度&ldquo 电子鼻&rdquo 的材料竟是此前被认为残次品的、存在缺陷的石墨烯。相关论文发表在《自然· 通信》杂志网站上。    在制造石墨烯的过程中,石墨烯逐渐形成晶格或片状时,会随机出现一些单晶颗粒。这种多晶结构与单晶之间的边界被称为晶界。由于晶界会造成电子的散射,削 弱石墨烯晶格的性能,具有晶界的石墨烯通常都被认为是毫无价值的次品。但美国伊利诺伊大学芝加哥分校机械和工业工程教授阿明· 萨利希-空锦带领的研究小组 却发现,这些缺陷正好适合用来制造高灵敏度气体传感器。   物理学家组织网9月23日(北京时间)报道称,为了验证这一想法,测试石墨烯缺 陷的电气性能,研究人员用单个石墨烯晶界制造了一个微米尺寸的气体传感器。他们在测试中发现,石墨烯晶界能够将气体分子吸附到其表面并让它们聚集起来,石墨烯晶体上却没有这样的现象。这使具有这种缺陷的石墨烯成为观测气体分子的理想场所。   由切赫· 克拉尔带领伊利诺伊大学芝加哥分校的一个 理论化学小组,对该晶界所具备的这种独特吸引力和电子特性进行了解释:晶界的不规则特性使其具备了数百个不同灵敏度的电子传输间隙。这就像是许多平行的并 联开关,当气体分子在晶界上发生聚集,电荷发生转移时,这些开关会突然打开或者关闭。这一切都发生在一个非常短暂的时间当中。而这便是用其制成的气体传感 器能够具备超高灵敏度的原因所在。   萨利希-空锦说:&ldquo 数十年来科学家们一直试图制造出一种强大的、具有超高灵敏度的传感器。我们的研究 将其变成了现实,可以在微米级的尺寸上将这些晶界集成起来进行统一控制。使用这种技术能很容易制造出芯片级的传感器阵列。借助晶界对气体分子超强的吸附能 力和快速反应能力,用石墨烯晶界阵列制成的电子鼻甚至能够检测出单个气体分子。这种材料集精确和可靠于一身,是制造气体传感器的理想材料。&rdquo
  • 石墨烯 — 下一场材料革命
    2019年9月20至22日在山西煤炭化学研究所举办了第七届石墨烯青年论坛,石墨烯青年论坛于2013年发起,至今已成功举办六届,分别由浙江大学、哈尔滨工业大学、中国科学技术大学、中国科学院宁波材料技术与工程研究所、上海应用技术大学与上海交通大学(合办)、中国科学院兰州化学物理研究所举办。今年由中国科学院山西煤炭化学研究所主办,重点交流最近一年来青年科学家在石墨烯领域的最新研究进展。此届石墨烯青年论坛参会人数百余人,石墨烯青年论坛已发展成为国内石墨烯领域颇具特色和影响力的专业学术会议,弗尔德仪器携旗下有幸参与此次盛会,与该研究领域的优秀中青年科学家共同学习和交流。 参会嘉宾合影留念 在论坛大会上,首先由中科院金属所的成会明院士为大会致辞,并带来“研究中的简单美”—石墨烯研究的几个实例为题的报告,第二个是中科院山西煤化所的房倚天副所长为大会致辞,清华大学深圳研究生院的康飞宇老师为大家做“天然石墨深加工与石墨烯粉体制备技术”为题的报告,与现场石墨烯领域的中青年学者和专家进行了深入交流和经验分享。 小知识石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ωcm,比铜或银更低,为目前世上电阻率最小的材料[5][1]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 热处理CarboliteGero(卡博莱特盖罗)是弗尔德科学仪器事业部制造实验室和工业马弗炉、烘箱的专业品牌,加热温度范围30-3000℃。在石墨烯行业中,CarboliteGero具有丰富的行业应用经验,是全球知名的热处理炉供应商。卡博莱特?盖罗Carbolite ? Gero高温管式炉HTRH,可在水平位置上操作,最高温度可达1800°C。凭借多种多样的配件,HTRH系列在高温范围内可提供完整的系统解决方案。 研磨粉碎德国RETSCH(莱驰)强大、灵活的行星式球磨仪PM100满足快速将样品研磨至亚微米级的所有要求,并且保证结果具有可重复性。常被用来做高难度样品研磨,从常规的样品处理到胶体研磨和机械合金。行星球磨仪超高的离心力带来极大的粉碎能量,因此所需研磨时间非常短,可将样品研磨到纳米级的细度。 粒度粒形分析Camsizer X2采用了更高分辨率的光学系统,提供更多的分析模块可选。CamsizerX2可选的X-Fall、X-Jet和X-Flow三种模块可让您根据不同的应用和要求进行分析,由于具有足够的进样量也不受其他因素(如折射率)影响,Camsizer X2还能够准确测量到粉体的整体形态信息,比如球形度、对称性等。 元素分析仪德国Eltra(埃尔特)能够对固体样品中C/H/O/N/S元素进行精准分析。新的ELEMENTRAC CS-d是一台可靠,精准,耐用的燃烧法碳硫元素分析仪。红外检测池配置灵活,C,S测量范围宽泛,从ppm级一直到100%。ELEMENTRAC CS-d针对有机和无机样品中C,S的测量,一台仪器整合了两种炉体,即高频感应炉和电阻炉。
  • 上海微系统所在大尺寸石墨烯制备及导热应用方面取得进展
    制备决定未来,石墨烯材料的可控制备是石墨烯行业的基础,更是石墨烯在下游应用中充分发挥其性能优势的关键。在批量制造石墨烯材料的过程中,精确控制石墨烯片层厚度、横向尺寸和化学结构等参数已成为石墨烯在热管理、新能源、纤维等领域应用的瓶颈。鳞片石墨剥离技术是发展最为成熟的石墨烯规模化制备技术,该方法已实现石墨烯片层厚度和化学结构的精确控制,但在横向尺寸调控方面仍然面临挑战,典型的石墨烯横向尺寸分布在几百纳米到几个微米以内。单一石墨烯片的的横向尺寸越大,所组装构建的宏观结构在导热、导电和力学等性能方面具有更大的提升潜力和空间。因此,亟待发展横向尺寸在几十微米、甚至几百微米的大尺寸石墨烯材料规模化高效可控制备技术,而实现这一目标必须从制备机理上进行创新和突破。近期,针对传统技术利用长时间、强氧化剂环境氧化剥离石墨存在的剪切破碎严重、横向尺寸难保持等关键科学问题,中科院上海微系统所丁古巧课题组在前期独创的“离域电化学解理” 方法(Chemical Engineering Journal 428 (2022): 131122. 10.1016/j.cej.2021.131122)和“预解理再剥离”技术(Carbon 191 (2022): 477. 10.1016/j.carbon.2022.02.001)基础上,提出了 “氧化新鲜石墨烯网络结构”新策略,该策略首先利用离域电化学法深度解理石墨获得多孔的石墨烯网络结构,然后对获得的石墨烯多孔网络结构进行氧化剥离,由于多孔网络结构为氧化剂的输运提供了高速通道,实现了氧化剂当量和氧化剥离时间的同步大幅减小(图1a),氧化剂当量从通常报道的2-5减少至1,氧化时间从通常的3-5 h下降到1 h,为大尺寸石墨烯材料的制备提供了新的思路。图1. (a) “氧化石墨烯网络结构”策略示意图;(b)大尺寸氧化石墨烯横向尺寸及分布;(c)大尺寸氧化石墨烯的晶格结构分析;(d, e)“氧化新鲜石墨烯网络”策略的优势。该方法在不引入后续筛选处理的情况下实现了大尺寸高晶格质量氧化石墨烯的高效制备。将石墨剥离过程中横向尺寸保持率提高到文献报道最好水平的1.5-2倍,将氧化石墨烯的平均尺寸极限从~120 μm提升到~180 μm(图1b)。需要特别指出的是,结构表征数据表明所制备的水相可分散大尺寸氧化石墨烯具有完全不同于传统氧化石墨烯的晶格结构,也不同于一般的石墨烯,是介于氧化石墨烯和高质量石墨烯之间的一种特殊结构石墨烯材料。氧化剂当量和氧化时间同时减少不仅抑制了石墨/石墨烯碎裂,还在很大程度上保留了石墨原料的sp2结构,在剥离形成的石墨烯片中形成了 “晶区网络包围非晶区岛”的特殊晶格结构(图1c)。更重要的是,机理研究还发现深度预解理石墨结构并保持其“新鲜性”对于石墨烯横向尺寸保持至关重要,传统方法在预解理和氧化剥离体系之间切换时引入的洗涤干燥等过程不可忽视。现有预解理方法很难将石墨解理成石墨烯网络结构,而且溶液体系切换不可避免的片层“回叠”效应在很大程度上破坏了新构建的氧化剂输运通道。相反,“离域电化学解理”体系很好地匹配了氧化剥离体系,从根本上避免了不同体系切换造成的不良影响,是“氧化新鲜石墨烯网络结构”策略成功的关键。进一步的物性结果(图2)表明,大尺寸高质量石墨烯具有良好水相分散性,可组装形成层状结构宏观膜。与绝缘的传统氧化石墨烯膜不同,在不经还原处理情况下大尺寸高质量石墨烯宏观膜表现出良好导电性,电导率达到305.3 Sm-1。同时,相对于小尺寸氧化石墨烯,大尺寸高质量石墨烯构建的宏观膜具有优异的力学性能,杨氏模量达到21.2 GPa,拉伸强度达到392.1 Mpa,分别是小尺寸石墨烯膜的~3倍和~5倍。更重要的是,大尺寸高质量石墨烯在构建石墨烯导热厚膜方面表现出明显优势,制备的100 μm石墨烯厚膜导热系数达到1576.1±26.7 W m-1 K-1,超过此前文献报道水平,充分体现了大尺寸石墨烯的导热优势。图2.大尺寸氧化石墨烯膜的显微结构(a)、导电性能(b)、力学性能(c-f)和导热性能(g-j)优势。上述工作大幅突破了氧化石墨烯的平均横向尺寸极限,同时拓展了氧化石墨烯的物性空间,形成了水相可分散大尺寸高质量氧化石墨烯的可规模化制备技术,从材料层面为石墨烯基器件热管理体系、力学增强结构、导电复合材料的性能突破和应用升级提供了新的解决方案。相关研究成果近期以“Oxidating Fresh Porous Graphene Networks toward Ultra‐Large Graphene Oxide with Electrical Conductivity”为题在线发表于Advanced Functional Materials (IF=19.924,10.1002/adfm.202202697)。论文第一作者为中科院上海微系统所张鹏磊博士,通讯作者为中科院上海微系统所丁古巧研究员、何朋副研究员。相关工作得到国家自然科学基金(51802337, 11774368 and 11704204)等资金支持。论文链接 https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202202697
  • 关注近期国际行业形势 助力石墨烯产业发展
    p strong   一、行业动态(六月汇总) /strong /p p   (1)中国太阳能组件制造商Znshine Solar宣布,与阿联酋阿提哈德能源服务公司(Etihad Energy services)签署一份100兆瓦石墨烯增强型太阳能组件供应协议。 /p p   (2)黑龙江大学陈志敏教授团队在Energy & amp Environmental Science杂志上发表文章,介绍了一种利用氢键组装的超分子体系灵活调控氮磷共掺杂石墨烯中杂原子配置(如比例和含量等)的方法,实现了NHDG催化剂在酸性条件下HER活性的新突破。 /p p   (3)上海交通大学高分子系郑震副教授带领博士生雷昆在美国化学会旗下知名期刊ACS Omega上发表关于基于氧化石墨烯与苯乙烯类树脂的有机-无机层层组装杂化膜的界面作用研究的研究成果。 /p p   (4)由挪威科技大学(NTNU)的教授Helge Weman和Bj?rn-Ove Fimland领导的研究小组成功地在石墨烯表面产生紫外线,该紫外线可以消除紫外线装置中的有毒汞。 /p p   (5)来自韩国的明知大学(Myongji University)、成均馆大学(Sungkyunkwan University)、 嘉泉大学(Gachon University)、韩国技术研究院(KIST) 和美国维拉诺瓦大学(Villanova University)的研究人员开发出一种基于石墨烯的生物传感器来检测细菌的存在。 /p p   (6)山西煤化所在三维石墨烯基热界面材料研究方面取得进展。 /p p   (7)日本名古屋工业大学(NITech)的研究团队将单层石墨烯应用于氮化镓并通过在紫外线照射下表征器件来确定石墨烯和氮化镓异质结的界面特性,该研究为了解各种二维和三维异质结构的界面,以开发具有石墨烯的新型光电器件提供可能。 /p p   (8)杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证。 /p p   (9)位于葡萄牙米尼奥大学的国际伊比利亚纳米技术实验室(INL)和生命与健康科学研究所(ICVS)的研究人员将开发一种基于石墨烯的设备,该设备能够以快速、可靠的方式并以可获得的成本进行疟疾的早期诊断。 /p p   (10)Proactive investors发布新闻称GrapheneCA利用其专有技术,使用低温工艺将其高品质石墨烯与各种凝胶混合,该公司有望利用其颠覆性的石墨烯技术改变世界。 /p p   (11)美国麻省理工学院的Jing Kong教授等人提出利用石蜡转移石墨烯的技术,解决了石墨烯转移中支撑层污染和起皱问题。 /p p   (12)来自中国、美国和日本的一组研究人员开发一种方法,通过用纳米管增强用于海水淡化项目的石墨烯基膜。 /p p   (13)First Graphene(ASX: FGR)披露其PureGRAPH石墨烯产品,该产品通过改善聚氨酯材料的阻燃性,提高了聚氨酯材料的安全性 /p p   (14)武汉大学袁荃和湖南大学/UCLA段镶锋等团队合作,报道了一种新型的厘米级纳米多孔石墨烯的制备方法,有望更容易实现石墨烯纳滤膜的规模化生产。 /p p   (15)澳大利亚阿德莱德大学乔世璋教授课题组报道了层间距可调控的富氮薄层石墨烯(N-FLG),通过石墨烯扩层实现了钠离子的高效存储。 /p p   (16)中国科学院国家纳米科学中心张勇课题组前期成功实现了过渡金属二硫族化合物本征量子片的规模制备。 /p p   (17)Verditek和Paragraf宣布,他们已经成功地将石墨烯应用到光伏电池上,目前正在继续工作,目标是实现超过25%的效率。 /p p   (18)加拿大石墨烯领导集团(GLC)宣布获得35万加元的拨款, 这笔资金将支持GLC“氧化石墨烯的规模化”,用于开发GLC的产品环境平台。 /p p   (19)Haydale和国家物理实验室(NPL)共同参与一项为期12个月的关于改进石墨烯功能和应用的项目,该项目由英国创新署( Innovate UK )进行资助。 /p p   (20)北京大学刘忠范院士团队开发了一种垂直石墨烯纳米片作为散热器的蓝宝石衬底氮化铝紫外LED器件,有效提升了紫外LED的散热性能。 /p p   (21)中科院重庆研究院与新加坡国立大学合作,研制了三维微纳共形石墨烯柔性力敏电极,并应用于高灵敏柔性压容式触觉传感,主要指标已超越人类触觉感知水平。 /p p   (22)大阪大学的研究人员发明了一种基于石墨烯的生物传感器,用来检测那些攻击胃壁的细菌,这些细菌与胃癌有关。 /p p   (23)德克萨斯大学奥斯汀分校的研究人员开发了一种基于石墨烯的可穿戴设备,可以准确、舒适地监测心脏活动。 /p p   (24)在美国能源部埃姆斯实验室和美国东北大学的合作中,科学家们开发了一个模型,用于预测夹在石墨烯等二维或二维以下材料之间的金属纳米晶体或“岛屿”的形状。 /p p   (25)上海兆芯集成电路有限公司在中央处理器创新技术产业生态发展论坛上,发布了新一代16nm 3.0GHz x86 CPU产品——开先KX-6000和开胜KH-30000系列处理器。 /p p   (26)XG科学近期宣布与中化集团和余姚PGS合作开发石墨烯增强热塑性复合材料。 /p p   (27)石墨烯旗舰合作伙伴布鲁塞尔自由大学、比萨大学和剑桥大学与欧洲航天局(ESA)和瑞典太空公司(SSC)合作,最近向太空发射材料科学实验火箭(MASER),目的是测试在零重力条件下在硅衬底上打印石墨烯图案效果。 /p p   (28)中国科学技术大学朱彦武教授课题组以碳材料的基本结构单元——单层石墨烯作为研究对象,利用原位拉曼光谱和傅里叶变换红红外光谱探究了单层石墨烯电极/电解质界面在电化学循环中的演变过程。 /p p   (29)宁波材料所在推进石墨烯超级防腐涂层领域取得进展。 /p p strong   二、联盟动态(六月汇总) /strong /p p   (1)6月1日,国家石墨烯产品质量监督检验中心发布《产业质量发展分析报告》 /p p   (2)6月1日,2019中国福建(永安)石墨烯创新创业大赛在福建永安成功举办 /p p   (3)6月2日,2019中国福建(永安)6· 18项目成果对接会顺利召开。 /p p   (4)6月5日,中国邮政集团公司与华为签署战略合作协议 /p p   (5)6月5日,济南圣泉集团荣获“2019年度环保社会责任企业”称号 /p p   (6)6月5日,首届西安哈工大校友创新创业大赛暨“迎哈工大百年华诞”创新创业大赛在西安高新区成功举办 /p p   (7)6月6日,石墨烯领域传出重大喜讯!杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证 /p p   (8)石墨烯联盟(CGIA)联合国内外多家石墨烯领域产学研单位,共同倡议将每年6月6日设立为“国际石墨烯日International Graphene Day”。 /p p   (9)6月10日,宝泰隆石墨烯公司被七台河市科学技术局授予科技型中小企业称号 /p p   (10)6月10日,5G助力“泛在电力物联网” 中兴通讯与许继电气签署战略合作协议 /p p   (11)6月10日,华为与马来西亚运营商TIME签署MoU,共建领先的10G PON超宽接入网实验局 /p p   (12)6月12日,圣泉集团又一生物质石墨烯材料研发及产业化应用项目在京通过鉴定 /p p   (13)6月12日,广州特种承压设备检测研究院圆满完成普莱克斯华南区3市4厂654只安全阀现场校验服务工作。 /p p   (14)山西煤化所碳纤维表面工程课题组在表面改性方面取得新进展 /p p   (15)6月13日,菏泽市政协副主席、教科卫体委员会主任黄秀玲来山东玉皇新能源科技有限公司调研 /p p   (16)6月13日,济南圣泉集团荣获“济南市劳动关系和谐企业”称号 /p p   (17)6月13日,佛山市基金业协会、佛山力合创新中心和广东金睿和投资管理有限公司一行赴广东墨睿科技有限公司参观考察 /p p   (18)6月13日,双星集团获首批市级双创示范基地授牌 /p p   (19)6月14日,朗丰石墨烯润滑油获得中国环境标准Ⅱ型产品认证。 /p p   (20)6月20日,“新华社民族品牌工程?服务产业新锐行动”启动仪式暨首批入选企业签约仪式在京举行,东旭光电旗下子公司明朔科技作为首批入选的六家企业之一受邀参会 /p p   (21)6月20日,陕西省商业联合会组织会员代表一行20余人到访西安丝路石墨烯创新中心考察交流 /p p   (22)6月20日,中兴通讯视频算法荣获IEEE CVPR超级挑战赛冠军,关键技术助力5G大视频业务发展 /p p   (23)6月21日,由西安石墨烯产业联盟主办的“2019第二期西安石墨烯项目对接沙龙”在西安丝路石墨烯创新中心成功举办。 /p p   (24)6月21日,中核投资公司领导一行到宝泰隆新材料股份有限公司考察 /p p   (25)6月25日,超威集团连续7年上榜中国轻工百强 /p p   (26)6月25日,国家新材料产业发展专家咨询委员会在中国工程院召开重点领域专项调研总结汇报会,专家咨询委员会李义春委员等石墨烯调研组专家参会,并汇报了石墨烯领域专项调研情况 /p p   (27)6月25日,华为与网易成立5G云游戏联合创新实验室 /p p   (28)6月26日,中兴通讯助力中国移动演示全球首个面向5G的边缘开放硬件加速平台。 /p p   (29)6月26日,美国NANOGRAF公司嘉宾到访墨西科技 /p p   (30)6月26日,广州特种承压设备检测研究院研发的《拉伸测试设备》喜获国家实用新型专利授权 /p p   (31)6月28日,石墨烯在汽车领域应用发展论坛暨西安新三力石墨烯汽车应用研发中心揭牌仪式在西安高新区圆满举行 /p p   (32)6月28日,北京联通联合华为成功完成全球首个5G承载随流检测方案iFIT试点 /p p   (33)6月28日,中兴通讯“ATG空中宽带”获亚洲最佳互联生活移动应用大奖。 /p p   “2019中国国际石墨烯创新大会” 将于2019年10月19-21日在西安陕西宾馆召开,免费参会。详情可登录大会官网(官网:www.grapchina.cn详细了解)。 /p p   电话:400-110-3655 /p p   官网:www.grapchina.cn /p p   邮箱:meeting01@c-gia.org /p p   QQ群:296531551 397051421 /p p   微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群) /p p   微信订阅号:CGIA2013(支持在线咨询) /p p br/ /p
  • 石墨烯人的奥斯卡——首届国际石墨烯颁奖典礼圆满落幕 大奖花落谁家?
    p & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong & nbsp 2020年10月17日晚,2020首届国际石墨烯颁奖典礼(IGA)隆重举行,表彰为石墨烯科研和产业发展做出重要贡献的个人和企业,颁发奖项包括最佳石墨烯产品奖、最佳石墨烯企业奖、石墨烯产业示范奖、石墨烯产业促进奖、终身荣誉奖。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c6f13eea-6270-4ae7-a13d-e65a3ced0e81.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " strong 颁奖典礼现场 /strong /p p style=" margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 颁奖典礼上,国家新材料专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春做活动介绍并致辞,石墨烯诺贝尔奖获得者、石墨烯发现者Andre Geim教授以录制视频形式致辞,向长期以来关心和支持石墨烯产业发展的全球石墨烯人表示衷心感谢。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/72b6726c-1f8f-497b-a2a4-df7573dd2498.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " strong 李义春致辞 /strong /p p strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d90a7bd1-668d-48e7-a02c-66b77bcfc9a2.jpg" title=" 7.jpg" alt=" 7.jpg" / /strong /p p style=" text-align: center " strong Andre Geim视频致辞 /strong /p p & nbsp & nbsp & nbsp & nbsp 首届国际石墨烯国际主席及评审团阵容强大,由来自全球20个国家和地区的,在全球石墨烯行业内具有话语权及影响力的产学界人士组成。根据国际主席团的提名,国际评审团进行投票表决,评选出全球石墨烯行业5大顶尖翘楚。 /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp IGA2020最佳石墨烯产品奖:常州富烯科技股份有限公司的石墨烯导热膜产品 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp IGA国际评审主席李义春先生题颁奖词:不甘平凡,坚守寂寞。在资本炒作的热潮里,富烯科技坚持工匠精神,精心打磨产品,五年磨一剑。将石墨烯从实验室中的完美材料,变为大规模进入百姓手中的高端电子产品,填补了国内外石墨烯高导热性电子应用产业化的空白。从无到有,从劣到优,富烯走出了石墨烯高端电子产品商业化真正意义上的第一步。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5c8c44a4-72a8-4eae-a439-62d15da0b839.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 富烯科技代表领奖 /strong /span /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020最佳石墨烯企业奖:西班牙Graphenea公司 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Stephan Roche先生题颁奖词:精益求精,工匠精神。Graphenea在晶圆级高质量石墨烯领域上深耕多年,可谓一骑红尘。在定制化石墨烯器件、高性能晶片级石墨烯应用等领域也成果显著,为全球高精尖电子和光电子器件工业开启石墨烯时代奠定了基础。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/de2e3ac8-bee5-4452-8468-1c699e6d9498.jpg" title=" IMG_6477.jpg" alt=" IMG_6477.jpg" / /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020石墨烯产业示范奖:华为技术有限公司 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Rezal Khairi Ahmad先生题颁奖词:脚踏实地,志高存远。华为用实力开辟市场,用魄力创新科技,作为第一个大规模涉足商用石墨烯散热膜领域的大型终端企业,华为敢做第一个吃螃蟹的人。石墨烯散热技术在华为手机上的成功,为石墨烯产业发展方向打开了一扇新的大门。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/497cde5a-f433-4af3-836e-7b78ede4d936.jpg" title=" IMG_6478.jpg" alt=" IMG_6478.jpg" / /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020石墨烯产业促进奖:西安丝路石墨烯创新中心 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席冯新亮先生题颁奖词:助力产业,创新驱动。自西安丝路成立以来,坚持以创新服务为根本,立足石墨烯企业需求,开拓石墨烯下游应用市场。两年间,先后成立了八大应用研究院,成功为西安当地引入了40余石墨烯企业及项目,帮助西安高新区完成了石墨烯产业从无到有,从少到多的质变。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/fe10ef93-3495-4785-a657-040c0f9991a4.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" font-size: 14px color: rgb(89, 89, 89) " 西安丝路石墨烯创新中心代表领奖 /span /strong br/ /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA终身荣誉奖 :Andre Geim教授 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Dusan Losic先生题颁奖词:从三维到二维,从恶搞到诺奖,安德烈海姆教授真正意义上的开创了石墨烯的时代。不拘泥于国界,不迂腐于市场,他奔波于学术和产业的浪潮中,却只为向世人证明石墨烯对工业的意义。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/3d199217-a682-44be-b63e-2c71c49a35db.jpg" title=" IMG_6489.JPG" alt=" IMG_6489.JPG" / /p
  • 诺奖得主小组用石墨烯制成隔气透水材料
    英国曼彻斯特大学教授安德烈海姆最近利用氧化石墨烯制作出了一种新型隔气透水材料。这种材料的神奇之处在于,绝大多数液体和气体都无法通过它,但水蒸气可以畅通无阻。   石墨烯是从石墨材料中剥离出来的,由碳原子组成的二维晶体。它只有一层碳原子的厚度,是目前世界上最薄的材料。海姆和同事康斯坦丁诺沃肖洛夫2004年在世界上最早制作出石墨烯,并因此共同获得2010年诺贝尔物理学奖。   近日,海姆在美国《科学》杂志上报告说,他的研究小组把石墨烯加工为氧化石墨烯后,制成一种薄膜,这种薄膜的厚度只有一根头发的几百分之一,但强度和韧性都很好。   特别神奇的是,这种薄膜具有特殊的隔气透水的性能。在实验中,用这种薄膜封装的绝大部分气体和液体都无法逸出来,显示出良好的密封性,唯有水能够照常蒸发。   海姆研究小组成员拉胡尔奈尔说,他们做了一个有趣的实验,用这种薄膜封好一瓶伏特加酒,结果随着水分蒸发,酒的味道越来越浓。   奈尔说,独特的隔气透水性质,注定这种新型材料将会拥有广阔的应用前景。(来源:新华网 黄堃)
  • 石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式成功举办
    2021年10月24日,石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式于北京石墨烯论坛2021期间在北京稻香湖景酒店成功举办。论坛由北京石墨烯研究院、中国计量科学研究院、深圳中国计量科学研究院技术创新研究院联合组织,60余位全国从事石墨烯标准、计量、检验检测、认证认可工作的专家、学者和领导出席,共同就国家质量技术基础(NQI)对石墨烯产业的支撑和石墨烯NQI技术问题进行了深入交流。北京石墨烯研究院副院长彭海琳致辞深圳中国计量科学研究院技术创新研究院副院长宋振飞致辞中国标准化研究院副院长邱月明致辞论坛先后由北京石墨烯研究院质检中心主任周新与中国计量院新材料计量研究室主任任玲玲主持;北京石墨烯研究院副院长彭海琳、深圳中国计量科学研究院技术创新研究院副院长宋振飞、中国标准化研究院副院长邱月明相继致辞,随后进入报告环节。中国计量院新材料计量研究室主任 任玲玲报告题目:《石墨烯材料计量标准合格评定与产业高质量发展》“计量、标准、合格评定”简称NQI,是未来世界经济可持续发展的三大支柱。任玲玲主任系统介绍了NQI的组成、基本概念以及在材料全生命周期中的着力点,分别从材料基础研究到生产过程、产品不同产业周期举例说明计量、标准对其质量控制和提升的重要性。并重点介绍了NQI在石墨烯领域的重要研究成果及效益;国家市场监管总局成立的两个石墨烯NQI中心的核心任务,及其对石墨烯基础研究、产业发展的带动作用。国家纳米科学中心研究员谢黎明报告题目:《石墨烯标准化研究的现状与挑战》石墨烯具有优异的光学、电学、热线、力学等性能,在高频光电器件、特种光纤、电池、导热膜等领域应用前景广阔。而产业的发展离不开标准支撑,石墨烯的标准制订至关重要。谢黎明研究员在报告中介绍了国内外石墨烯标准研制现状及存在的技术挑战,他指出,国际上ISO、IEC、美国ASTM等机构都在研制石墨烯标准,其中IEC标准最为全面,覆盖术语、测试指南、结构检测、物性测量等,具有较大影响力;我国SAC-TC279标准化委员会也陆续发不了几项石墨烯标准,未形成良好的系统性,我国石墨烯标准研制存在立项少、研制力量不足等短板,同时还存在诸多挑战,如缺乏石墨烯晶畴无损快速检测方法、缺陷浓度定量检测方法等。因此,我国石墨烯标准研制还需要更紧密的产学研合作,应加强顶层设计,有计划的开展系统性石墨烯标准工作。中关村材料试验技术联盟秘书处主任 王蓬报告题目:《CSTM标准与评价体系建设》标准是世界“通用语言”,是经济活动和社会发展的技术支撑。近日,《国家标准化发展纲要》发布,提出优化标准供给结构,提升市场自主制定标准的比重;CSTM以此为基础,致力于以标准和质量评价推动材料产业的高质量发展。CSTM标准体系围绕材料属性、应用领域和通用技术三个维度建立矩阵式的组织架构,真正实现“一材多用一用多选”,“一技多用一用多技”;建设以市场为导向的,具有系统性、先进性、适用性、时效性、多元性、包容性和动态性中国材料试验标准体系。CSTM专业质量评价针对材料全产业链、全生命周期、全流程、全域数据流开展专业性评价,以评价认证为导引,发挥质量要素(标准、检验检测、认证认可等)间协调互动作用,助力材料产品质量提升,材料产业高质量发展。北京石墨烯研究院高级工程师 柳絮报告题目:《石墨烯科研实验室管理的理论研究与实践》开展科研实验室认可,规范科研活动过程,可以有效地保障科研成果的真实性和有效性,推进科研诚信制度建设,提升科研实验室的创新能力。目前北京石墨烯研究院依据相应准则,以“国家市场监管技术创新中心(石墨烯计量与标准技术中心)”和“国家新材料石墨烯产业计量测试中心”为基础,围绕石墨烯标准带制定与标准物质研制,石墨烯测量技术与表征方法研究,石墨烯薄膜、纤维和器件技术研究三个主要研究方向,组织开展石墨烯科研实验室认可工作。中国检验检疫科学研究院首席专家 席广成报告题目:《超细金属负载3D多孔石墨烯表面增加拉曼传感》由于其指纹级的高分辨率和快速、易携带等优点,无损、免标记的表面增强拉曼散射(SERS)技术已经成为了最重要的分析技术之一,被广泛应用于污染物检测、未知风险物筛查、生物组织成像、反应过程机制探查、材料结构表征等重要研究领域。对于SERS技术来说,其性能主要由基底材料决定的,目前研究最深入的SERS基底为贵金属金和银,但金使用成本较高,而银易氧化。石墨烯最近被证明是一种高灵敏的SERS基底材料,席广成团队将超细银颗粒与多孔石墨烯结合起来,利用多孔石墨烯的富集功能和银的表面等离子体共振效应,获得了极高灵敏度的SERS基底;并研制了高性能准金属表面增强拉曼散射传感器,建立了在线高通量表面增强拉曼光谱检测方法。北京石墨烯研究院质检中心主任 周新报告题目:《太赫兹技术在石墨烯表征测量领域的研究进展与展望》太赫兹波是指频率在0.1~10THz范围内的电磁波,该频段是宏观经典理论向微观量子理论的过渡。研究发现,石墨烯的能带结构与其独特性质使其与太赫兹领域有着天然的内在联系。来到北京石墨烯研究院质检中心后,分析化学专业出身的周新主任便开始探索太赫兹技术在石墨烯表征测量领域的应用。他表示,太赫兹提供了方便、快捷、无损的石墨烯电学、磁学参数的测量方法,适用于薄膜材料的批量快速测量;且随着太赫兹技术和CVD法制备石黑烯薄膜的研究进展,该检测技术的研究空间将进一步提升;太赫兹还会在石墨烯薄膜器件在线检测中大显身手。同时,太赫兹检测石墨烯的方法标准化工作亟待同行共同研究;未来会有更多商品化的太赫兹检测石墨烯仪器上市。国家石墨烯产品质量检验检测中心(江苏)高级工程师 刘峥报告题目:《石墨烯产品检测方法介绍》刘峥在报告中简单介绍了市场上常见的各类石墨烯原材料及产品,认为石墨烯产品将向着水净化产品、燃料电池、太阳能电池、芯片电子器件、传感器成像设备、生物医药治疗装置、航空航天材料等应用领域发展;系统介绍了石墨烯原材料和相关产品的检测方法,包括基本物性分析、形貌表征、元素分析、电学性能、热学性能、力学性能和光谱分析;最后探讨了当前石墨烯产品检测标准化工作和产品认证中存在的问题。CSTM/FC00/TC04石墨烯技术委员会成立报告介绍后,举行了CSTM/FC00/TC04石墨烯技术委员会成立仪式,任玲玲宣读相应批复文件。该技术委员会由北京石墨烯研究院发起筹建并承担秘书处单位,北京石墨烯研究院质检中心主任周新被选为主任委员。石墨烯NQI技术中心主任对话会随即,举办国家石墨烯NQI技术中心主任对话会。对话会由国家市场监管总局发展研究中心副主任姚雷主持,邀请了国家市场监管技术创新中心(石墨烯计量与标准技术)、国家石墨烯材料产业计量测试中心(北京)、国家石墨烯材料产业计量测试中心(深圳)、国家石墨烯产品质量检验检测中心(江苏)、国家石墨烯产品质量检验检测中心(广东)、国家石墨烯产品质量检验检测中心(山东)和常州第六元素材料科技股份有限公司等7家单位参加,刘忠范院士作为国家市场监管技术创新中心(石墨烯计量与标准技术)主任全程参与了对话。对话会围绕“发挥NQI作用支撑石墨烯产业规范健康发展”主题进行了探讨,重点围绕石墨烯产业发展现状对NQI的需求,以及NQI支撑石墨烯产业发展存在的问题和解决的思路展开了讨论,对话嘉宾就进一步开展技术和业务协同的必要性和重要性产生了共鸣,通过对话,坚定了石墨烯NQI技术发展的信心,并对持续开展合作与交流达成了共识。论坛现场
  • 国际石墨烯创新大会在即 我国将参与国际石墨烯标准制定
    据悉,由青岛国家高新技术产业开发区和中国石墨烯产业技术创新战略联盟共同举办,青岛国际石墨烯创新中心承办的“2016中国国际石墨烯创新大会”将于9月22日在青岛国际会展中心召开。本次展会将围绕石墨烯新能源、环保、润滑剂等领域集中开展,同时我国石墨烯标准委员会将参与国际石墨烯的标准制定,成为展会一大亮点。  吸引30多个国家和地区企业  为期3天的活动中,来自30多个国家和地区的600家公司、2000多位石墨烯行业人士,将通过40多场分会对石墨烯的基础研究、应用技术及产业化推广展开交流和探讨。大会还将同期举办“2016中国国际先进碳材料应用博览会”,吸引了国内外优秀的石墨烯原材料供应商、制备及检测设备供应商及下游应用领头企业前来参展。  9月22日上午,在青岛国际会展中心5号馆5307会议室,还将举办石墨烯大会青岛专场活动。活动涵盖中国石墨烯产业技术创新战略联盟理事单位授牌、石墨烯创新项目落户签约仪式等,突出展示青岛地区间石墨烯产业发展创新合作成果,推动青岛国际石墨烯创新中心建设成为“技术领先、科研集中、产业集聚、辐射全球”的高水平石墨烯技术研发和产业应用平台。  石墨烯标准制定成亮点  在青举办的2015中国国际石墨烯创新大会上,石墨烯发现者、2010年诺奖得主安德烈海姆教授应邀出席做了主题演讲,并受聘为 “青岛市经济顾问”和“青岛高新区石墨烯工程技术研究中心名誉主任”。本届大会上,安德烈海姆教授将继续参会并带来更精彩的主题报告,参会代表将现场聆听顶级学者对石墨烯产业未来发展的独到见解。  本届大会上,中国石墨烯产业技术创新战略联盟标准化委员会参与国际石墨烯标准制定是一大亮点。大会期间,中外将联合举办国际石墨烯标准化论坛,标志着中国在联合制定国际石墨烯标准方面迈出关键一步。欧盟石墨烯旗舰计划负责人将与中方共同布局全球石墨烯知识产权合作,讨论合作开展知识产权保护、交易等促进企业技术发展的平台建设工作。  石墨烯:“新材料之王”  据从事多年石墨烯研究的青岛华高墨烯有限公司总经理钟成介绍,石墨烯其实是一种新型的纳米材料,本来就存在于自然界。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯,但难以剥离出单层结构。 2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010 年诺贝尔物理学奖。  作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”。
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 石墨烯高端产业应用“石墨烯表面波探测技术”全球首发
    12月6日,中国最早从事石墨烯技术研发的企业北京碳世纪科技有限公司召开技术发布会,发布全球首个石墨烯高端产业应用——“石墨烯表面波探测技术”。这一技术的问世将掀起全球探测技术革命。  石墨烯是一种碳原子以sp² 杂化轨道组成的六角形呈蜂窝巢晶格状,只有一个碳原子厚度的二维材料,被称作是“新材料之王”。  石墨烯表面波探测技术是指石墨烯表面形成的波在探测技术方面的应用。这一技术的优势在于具有超高的灵敏度和超快的响应速度,无论是科学还是技术领域均在世界上处于领先水平,将发挥出巨大商业与社会价值,引领全球探测技术革命。  该技术可以替代基于传统SPR技术的探测系统,远高于SPR的响应速度和灵敏度,为科学研究提供更加准确、快捷的数据信息,能够极大地提高探测技术在科技、医疗、安防等行业中的应用效果,甚至帮助特殊人群完成“不可能完成的任务”。碳世纪CTO徐亭博士做石墨烯表面波探测技术演示  石墨烯表面波探测技术的具体应用包含气态应用、液态应用和固态应用。  在气态应用方面,可提供超快、高灵湿度探测与气体特异性检测。可应用到非接触、无声人机交互系统 非接触、无声安防系统 聋哑人“说话”系统 重症监护系统(呼吸监测) 毒气、易爆气体监测 即时、无痛疾病诊断 工业用气体监测系统等。 例如聋哑人“说话”系统,这一技术可以探测到聋哑人口腔湿度细微的变化,将湿度频率数据转换成语言信息,借助音响设备发声,帮助聋哑人用常人的声音表达自己。在非接触、无声安防系统的应用上,可以针对每一个人不同的气场信息订制安防方案,提高人身、财产安全保障。  在液态应用方面,可提供超快、高灵敏分子探测和单细胞检测,应用到蛋白质工程、制药工程、癌症预防、血液检测、疫苗研发、抗癌药物筛选、抗癌药物机理研究等。运用这一技术,可以即时探测到癌症细胞的一举一动,为医生提供准确、快捷的病理信息,提高对患者用药量的准确度,达到更有效的治疗效果。  在固态应用方面,可提供超快的二维材料厚度测量和二维材料品质鉴定,应用到石墨烯测量与鉴定、其他二维材料测量与鉴定和单分子层、膜材料测量与鉴定。碳世纪董事长闫立群与碳世纪科学家本色出演话剧《烯芯有声》,以话剧形式分享石墨烯表面波探测技术  发布会上,业界人士对石墨烯表面波探测技术给予了很高的评价。“这在石墨烯领域是非常高端的技术,同时给探测技术带来的是颠覆性的变革,”一参会嘉宾表示。  碳世纪董事长闫立群表示,科学指发现与突破,技术是要转为生产力,改变人们的生活。碳世纪始终坚持并践行的一份梦想就是运用石墨烯把科学发现转化为生产力,真正的实现“科学与技术让人们的生活更美好”。碳世纪董事长闫立群在发布会上讲解公司石墨烯技术与应用  碳世纪作为一家专精于石墨烯工业化生产和石墨烯下游应用技术及产品研发与产业实践的高新技术企业,具备极强的创新性与创新精神。目前已建成全球首条石墨烯(单层碳原子)吨级生产线,成功研制了石墨烯光致电推动技术、石墨烯发动机油节能改进剂、超级电容器用石墨烯改性活性炭、石墨烯改性塑料、石墨烯空气净化系列产品和技术等。
  • 新型石墨烯材料问世
    近日,中科院等离子体所低温等离子体应用研究室研究员王祥科和中科院化学所研究员胡文平合作,成功制备出分散性均匀的功能化石墨烯材料,并对该材料进行磺酸化处理,实现了对持久性有机污染物的有效去除。相关研究论文日前在材料领域的顶级期刊《先进材料》发表。   石墨烯材料具有独特的物理化学性质,近年来引起国际上的广泛关注。石墨烯与有机污染物之间可以产生非常强的络合反应,从而对有机污染物有很强的吸附能力。但在溶液中,石墨烯易于团聚,从而会降低自身的吸附能力。   王祥科、胡文平等通过大量的实验研究表明,在石墨烯表面进行磺酸基功能化处理,不但可以提高石墨烯的分散性,而且可以提高石墨烯的吸附能力。研究结果显示,这种功能化石墨烯对萘和萘酚的吸附能力达到了每克2.4毫摩尔,是目前吸附能力最高的材料。目前,该种材料的制备成本较高,但随着技术的发展,将有望实现低成本、规模化制备,因此在未来的环境污染治理中有非常重要的应用前景。   王祥科介绍说,研究发现,对石墨烯进行氧化处理,在其表面修饰含氧功能基团后,氧化石墨烯对金属离子也具有很好的吸附效果。此外,课题组在等离子体技术制备石墨烯纳米材料研究中,利用等离子体技术可以直接在石墨表面剥离制备石墨烯,不需要化学试剂,简化了制备过程,并且该过程是环境友好的。   据介绍,常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
  • 浙大攻克世界性难题:让石墨烯有弹性
    p   在80后90后的童年记忆中,有一个著名的历史故事,司马光砸缸。当陶土做的水缸被石块砸了一下,就破了一个洞,水流出来了,掉在缸里的孩子也得救了。 /p p   而对于女孩子来说,跳皮筋是洋溢着欢快笑声的集体游戏,在牛皮筋的一勾一拉中,旋转,跳跃,不停歇。 /p p   这两个童年记忆,其实包含着一个自然界的普遍规律,玻璃、陶瓷这样的无机材料通常都是又脆又硬的,没有什么弹性,而橡胶这类的有机材料韧性好,弹性足,可以反复拉伸。 /p p   如何让无机材料变得像有机材料那样可以回弹,是世界很多科学家的努力目标。 /p p   这其中就有浙江大学高分子科学与工程学系的高超教授团队。最近,他们的研究取得了突破性进展,设计制备出了高度可拉伸的全碳气凝胶弹性体,并且表现出优异的性能,今后有望应用在柔性器件、智能机器人及航空航天等多个领域。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/99d0c873-4a30-4542-90ee-86367a879173.jpg" title=" 3.jpg" / /p p   论文发表在国际著名期刊《自然通讯》,共同第一作者为博士生郭凡、姜炎秋,通讯作者为许震特聘研究员、高超教授。 br/ /p p    strong 打破物质的本性 /strong /p p   材料科学的发展一直与人类文明密切相关。现如今我们已经拥有了各种各样的材料。可是让科学家烦恼的是,无机材料耐高低温但没有弹性,有机材料有弹性却又不耐高低温。 /p p   如果能研究出一种无机材料,在保持耐高低温的同时具备一定的弹性,该多好啊。“这样就能扩大材料的使用范围。我们做科学研究就是要打破物质的本性,这样才能发现新性能,寻找新用途。” /p p   研究团队在研制这一新材料时,聚焦的无机物材料为碳。因为碳所特有的导电性能,为未来应用提供了更多可能性。他们发现,高分子弹性体,比如橡胶,分子是链状结构,就像柔软的棉线团,有很多缠结的地方可以被拉开,当外力去除,这些高分子的“棉线”又重新缠结变成线团。无机物之所以不能拉长再回弹,就是因为没有相似的结构。 /p p   这时候,高超团队搬出了他们的研究老伙伴,石墨烯。他们希望能在“一片片”的石墨烯中制造出一些褶皱,将高分子的可拉伸“线团结构”拓展成为石墨烯中可拉伸的“纸团结构”,来提高石墨烯的延展性。 /p p   团队借鉴生物学理念,从肌肉和关节的拉伸中寻找答案,设计出类似传统拉缩式灯笼的结构,并用3D技术打印出来,通过限位压缩定型,形成一些“褶皱”。这时候,石墨烯材料可以拉伸100%。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/96def27c-0e76-4da6-b6ea-cf62831f59ba.gif" title=" PT180405000012hNkQ.gif" / /p p   继续拉伸,石墨烯的“一片片”分子结构之间就会出现裂纹。怎么办?团队引入了另外一种纳米材料——碳纳米管,在石墨烯的片层之间打上“补丁”。这样一来,石墨烯就可以拉伸200%了。 br/ /p p   高超教授说,这种全碳气凝胶弹性体具有优异的抗疲劳性能,在拉伸200%的状态下,可稳定循环至少100圈 在100Hz、1%应变的状态下,可稳定循环至少百万次。“之前一些研究是在有机材料上涂一层无机材料,以此来实现可拉伸。我们这套方法是改变了材料的本身特性。” /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/eb23600f-2e7b-4eed-b973-5aac366964dd.jpg" title=" 4.jpg" / /p p   对于这一新型材料的未来发展前景,高超教授表示,可以应用到与仿真机器人相关的导电弹性体上,比如电子皮肤等等。“更大的意义,我们希望开拓一个新的研究领域。当大家都在研究气凝胶的压缩性能时,我们希望换一种思路,从拉伸这个方向开展研究。” br/ /p p    strong 从一只雁到一群雁 /strong /p p   高超团队与石墨烯的情缘已有十年之久。“石墨烯本身是一个‘很小’的材料。国际科研领域已经对它的纳米级结构分析得非常透彻了,我们想看看,把它组装起来变‘大’后会怎么样。”10年前的2008年,高超被引进加入浙大高分子系后,为自己定了一个清晰的全新研究方向——石墨烯宏观组装。 /p p   他用一首儿歌来解释这项研究。“秋天到了,一行大雁往南飞,一会排成一字形一会排成人字形。”当一群大雁在飞行时,我们一眼就能看出雁群的形状,反倒是一只大雁在空中飞的时候,我们很难看清楚它的结构。 /p p   通过群效应团队发现了氧化石墨烯的液晶现象。在一次实验中,团队成员把氧化石墨烯倒进一个杯子,偶然对着光一晃,发现杯中出现了彩色带。这是什么原因呢?团队顺藤摸瓜,发现氧化石墨烯在溶液中的浓度达到某个临界值时,会自发进行取向排列,不但可以流动还高度有序。 /p p   又有一次实验,成员把两条氧化石墨烯纤维放在一起,过了一会儿,这两条纤维居然“焊”在一起了。原来氧化石墨烯有一种“自融合”的本领。 /p p   从这两大发现出发,团队“倒腾”出了四大发明:石墨烯纤维、石墨烯组装膜、石墨烯泡沫、石墨烯无纺布,科研成果发表在《自然通讯》和《先进材料》等国际著名期刊上。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/4097cb8e-708a-4cfb-ae4d-85994a64a7d4.jpg" title=" 5.jpg" / /p p   高超说,一流是要不断奋斗出来的,“不是说做好一个工作就行,而是要不断推进”。在团队建设中,高超也非常强调“一流”,认为要有一流的文化、一流的平台、一流的待遇,最终产出一流的成果。他经常跟学生说:“科研首先要发奋,拼搏了才能有所发现,有所发明。还要努力让科研成果转化为对社会有用的产品,让科技发达起来,让国家发达起来。” br/ /p p   从最初的几个人,到现在的几十人,高超团队也从“一只大雁”发展到了“一群大雁”。对于过去没钱买研究设备的窘况记忆犹新,对于未来,高超说,他会坚持在首创、极致和影响力三个层面上继续努力。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/2ca1ddb9-ed63-40a0-8d43-cff98afbd069.jpg" title=" 6.jpg" / /p p   strong  科学也可以诗情画意 /strong br/ /p p   对于石墨烯宏观组装研究,高超今年1月还专门写了一首诗来解释其中的奥妙。 /p p   氧化石墨烯 /p p   插层氧化银成金, /p p   水洗超声片片新。 /p p   纵是千疮身百孔, /p p   组装修复变烯神。 /p p   高超说,这首诗的大意就是,氧化石墨烯通过插层、氧化、水洗、超声等过程制得,尽管缺陷很多,但可以通过组装及结构修复形成有重要应用价值的石墨烯宏观材料。在他心目中,氧化石墨烯的可塑性太强了,可以在很多领域派上用场。早些年,他还写过另外一首诗来赞美石墨烯。 /p p   烯望 /p p   石陶铜铁竞风流, /p p   信息时代硅独秀。 /p p   量子纪元孰占优, /p p   一片石墨立潮头。 /p p   科研工作很忙,这些作品都是高超利用坐火车乘飞机这样的琐碎时间完成的。写诗和骈文是高超业余的重要爱好。他认为科学家也可以写风花雪月的诗句,但如果用诗的语言表达科学,更有利于传播科学,也更能发挥科学家的特长。 /p p   “习总书记曾说,科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。我觉得,研究不能只是成为枯燥的论文,还要让公众能够看懂。” /p p   他还认为,科学家要多交小朋友,从而提高科学的吸引力和公众的科学鉴赏能力。 /p
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 中科院物理所率先实现基于石墨烯的各向异性刻蚀技术
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)张广宇研究组与高鸿钧研究组、王恩哥研究组合作,利用自制的远程电感耦合等离子体系统,首次成功实现了石墨烯的可控各向异性刻蚀。这种基于石墨烯的各向异性刻蚀技术是我国科学家在该研究领域中独具特色的工作,相关结果发表在【Advanced Materials (2010)】,并得到了审稿人的高度评价。   石墨烯(graphene),是继富勒烯、碳纳米管之后被科学家们发现的又一种新的碳元素结构形态。作为一种室温下稳定存在的二维量子体系,石墨烯打破了凝聚态物理的理论,推翻了人们以前普遍接受的严格的二维晶体无法在有限的温度下存在的科学预言,对凝聚态物理的发展产生了重大的影响。不仅如此,石墨烯表现出来的一系列独特的电学输运特性、光学耦合和其他新奇的物理特性,以及利于剪裁加工的二维特性,使其在分子电子学、微纳米器件、超高速计算机芯片、高转换效率电池、固态气敏传感器、太赫兹学等领域可能有重要的应用前景。   然而,由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为人们关注的热点问题,这也为石墨烯的制备提出了新的挑战。一般引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。(2) 利用量子限域效应和边缘效应,通过形成石墨烯纳米结构(如 nanoribbons纳米带)引入能隙,通过调节带宽,可以实现对带隙宽度的调节。(3) 利用化学气相沉积法掺杂(如B、N等)产生能隙,通过调节掺杂程度可实现对能隙的调节。(4)利用基底作用诱导(如SiC基底上的外延石墨烯)产生能隙,通过调节基底的作用程度可实现对能隙的调节。此前,张广宇研究组与高鸿钧研究组和陈小龙研究组合作,利用拉曼光谱学的手段,系统地研究了外延石墨烯与碳化硅基底之间的电荷转移机制,为未来这类样品制作电子学器件提供了技术参考依据。相关结果发表在【J. Appl. Phys. 107, 034305, (2010)】。   基于已有的实验结果,大家一致认为这四种方法中最可行、最具应用价值的当属石墨烯的纳米结构。目前,石墨烯纳米结构的制备技术和电学性能的研究都有飞速的发展,但要实现大规模集成石墨烯纳米结构器件的应用,如何利用现有的微纳加工技术获得边缘可控的石墨烯纳米结构是亟待解决的难题。虽然国际上已有少数研究组利用金属粒子催化加氢反应或利用SiO2衬底与石墨烯的选择性反应来实现石墨烯选择性的各向异性刻蚀,但这些方法的刻蚀速率不可控,刻蚀取向不确定,且无法与传统的微纳加工技术兼容,从而无法实现石墨烯纳米结构器件的集成加工。   张广宇等人此次实现的这种基于氢等离子体的干法刻蚀技术受等离子体强度和样品温度的调控,刻蚀速率可以精确控制在几个nm/min,且不会引入新的缺陷。由于石墨烯特殊的六角对称性,这种方法可以得到近原子级规则的Zigzag边缘结构。他们还利用这种干法刻蚀技术结合电子束光刻技术首次实现了对石墨烯纳米结构的精确加工和剪裁。这种技术的优势在于可以对石墨烯结构进行原子级尺度加工和对于石墨烯质量的保持性。这种可以沿固定晶向,得到固定的边缘结构的加工剪裁石墨烯的技术是传统技术所无法实现的,为未来大规模精确控制、加工具有确定晶向和边缘结构的石墨烯纳米结构奠定了技术基础。   这项工作得到了中科院“百人计划”、国家自然科学基金和“973”项目的支持。      图1新鲜解理的石墨(a)表面光滑台阶清晰可见,不同功率。(b)50W和(c)100W氢等离子体刻蚀过的石墨表面,显示出了形状规则的正六边形孔。(d)刻蚀速率随温度的变化关系。(e)刻蚀速率随时间的变化关系,证明刻蚀速率可精确稳定的控制在几纳米/分钟。      图2 同样的各向异性刻蚀效应在机械剥离的石墨烯中也如此。氢等离子体刻蚀过的单层(a)、两层(b)及多层(c)石墨烯,正六边形孔洞清晰的形成于缺陷处。(d)单层及两层石墨烯刻蚀速率随温度的变化关系。(e)拉曼光谱表征,几乎看不到代表缺陷态的拉曼D峰,证明石墨烯的晶体质量并没有被温和的氢等离子体破坏。      图3 氢等离子体刻蚀出的单层正六边形孔洞边缘的扫描隧道显微镜成像(a)恒流模式高度像,(b)原子分辨像,(c)二维傅里叶变换图,显示出刻蚀得到的近原子级规则的边缘与zigzag取向平行,且在边缘处观察到了驻波。(d)对应的结构示意图。      图4 利用电子束曝光与各向异性刻蚀方法相结合制备具有特定取向的sub-20nm石墨烯纳米带的流程图(a)。具体过程如图(b)电子束曝光和氧等离子体刻蚀得到的起始宽度为120nm的石墨烯条带,经过氢等离子体各向异性刻蚀之后细化到sub-20nm的石墨烯纳米带如图(c)。(d)石墨烯纳米带场效应晶体管器件的结构示意图,石墨烯为接触电极,(e)不同宽度的石墨烯纳米带的器件,(f)对应的转移特性曲线,证明8nm宽的石墨烯纳米带能在室温下实现2个数量级的开关比。
  • 太赫兹在石墨烯领域的潜力 2项技术入选2020年度石墨烯十大新闻
    近日,2020年度石墨烯十大新闻出炉,其中2项技术与太赫兹技术有关:石墨烯放大器电路可释放“太赫兹间隙”图 拉夫堡大学研究人员创造了一种独特的基于石墨烯的装置,该设备可以释放太赫兹波长,并使革命性的新技术成为可能。(图片来源:拉夫堡大学)麻省理工学院研究人员使用石墨烯和氮化硼将太赫兹波转换为可用能量麻省理工学院的研究人员开发了一种基于石墨烯的器件,可能能够将周围的太赫兹波转换为直流电。(图片来源:麻省理工学院)
  • 清华大学王宏伟等研发新型功能化石墨烯,改善冷冻电镜优势取向问题
    单颗粒冷冻电镜三维重构技术是目前用于解析生物大分子高分辨率结构的主流手段之一。然而,高质量的冷冻电镜样品制备仍然面临很多挑战,如气液界面、优势取向和背景噪音等,极大地限制了结构解析的效率。针对这些问题,清华大学王宏伟教授课题组、饶燏教授课题组和北京大学彭海琳教授课题组合作研发了一种新型功能化石墨烯电镜载网,有助解决样品颗粒优势取向和气液界面等问题。在该研究中,他们合成了多种带有不同电荷性质基团(如氨基和磺酸根)的重氮盐分子,并利用这些重氮盐分子对CVD生长的石墨烯膜进行功能化修饰,进而获得带有不同电荷性质的石墨烯支撑膜。他们利用石蜡作为转移介质,将石墨烯支撑膜洁净转移到电镜载网上,用以冷冻电镜样品制备。经过冷冻电子断层扫描重构表征,这种功能化石墨烯支撑膜保证了对目标生物大分子的有效吸附,避免了气液界面所带来的潜在风险。另外,因为石墨烯表面修饰的基团带有不同的电荷性质,从而提供了与目标生物大分子不同的相互作用方式,达到丰富取向分布的目的。单颗粒冷冻电镜数据分析表明,带有负电性修饰的石墨烯倾向性地结合生物大分子颗粒表面的正电性区域,而带有正电性修饰的石墨烯则结合生物大分子颗粒的负电性区域,实现了调控生物大分子的取向分布。乳酸乳球菌第二类内含子LtrBRNP在常规支撑膜上具有严重的优势取向问题,从而较难获得高分辨率重构。在该研究中,这种带有不同电性修饰的功能化石墨烯支撑膜能够调控LtrBRNP的取向分布,成功解决了优势取向问题,最终获得了分辨率达3.2埃的三维重构结果。并且,在三维重构过程中,相比没有修饰的普通石墨烯支撑膜,LtrBRNP在功能化石墨烯膜上的颗粒有效利用率也明显增加。这些数据表明这种功能化石墨烯支撑膜提供了一个较为友好的作用界面,有助于保护生物大分子的三维结构。20S蛋白酶体以及核糖体在不同电性修饰的石墨烯(NFG:正电性修饰;SFG:负电性修饰)上的取向分布该研究于11月7日在《自然通讯》(Nature Communications)在线发表,题为“带有多种电性修饰的石墨烯支撑膜用以单颗粒冷冻电镜结构解析”(Functionalized graphene grids with various charges for single-particle cryo-EM)。清华大学生命科学学院/结构生物学高精尖创新中心王宏伟教授、生命学院博士后刘楠、清华大学药学院饶燏教授以及北京大学化学与分子工程学院彭海琳教授为本文共同通讯作者,清华大学生命科学学院2019级博士生陆叶、博士后刘楠,药学院2019级博士生刘永波以及北京大学化学与分子工程学院博士毕业生郑黎明为本文共同第一作者。王宏伟课题组王家博士、2020级博士研究生杨君豪、2020级博士研究生贾霞、2022级博士研究生资沁茹以及实验室其他成员对该工作提供了重要帮助。该研究得到国家自然科学基金、国家重点研发计划、北京生物结构前沿研究中心、清华-北大生命科学联合中心、科学探索奖和中国博士后科学基金等的支持。论文链接:https://www.nature.com/articles/s41467-022-34579-w
  • 石墨烯大会倒计时!抢驻南京国际展览中心迫在眉睫!
    p style=" text-align: center "   石墨烯大会倒计时!抢驻南京国际展览中心迫在眉睫! /p p style=" text-align: center "   ——全球百位大咖、千家名企云集2017中国国际石墨烯创新大会 /p p   8月16日,2017中国国际石墨烯创新大会新闻发布会在南京召开。国家新材料产业发展专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春,南京开发区以及南京市贸促会等相关部门领导出席新闻发布会并通报了大会筹备情况。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/9b8c0606-3799-4c3f-b67a-d65dd51fbbdb.jpg" / /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/7c7fe625-dff3-4f5a-bbb5-8c41b039d158.jpg" / /p p style=" text-align: center "   图为2017中国国际石墨烯创新大会新闻发布会现场 /p p   2017中国国际石墨烯创新大会以“全球化的合作与分工”为主题,由中国石墨烯产业技术创新战略联盟、南京市人民政府联合主办,将于2017年9月24日-26日在南京国际展览中心举行。届时,将有各国石墨烯机构负责人、世界顶级石墨烯专家、行业相关组织者和骨干企业代表等3000余人次参会。大会同时设有2017中国国际石墨烯材料应用博览会及百项成果展示活动。 /p p   经过前三届的成功举办,中国国际石墨烯创新大会已经成为石墨烯行业在中国唯一的集会议会展、贸易洽谈、行业决策与信息共享于一体的大型综合性产业大会 为国内外石墨烯研发机构和企业提供政策研讨、学术交流、产品展示、项目合作、投资对接的综合性平台 是举办地展示本地区石墨烯产业发展成果、开展国际石墨烯技术交流与合作的重要窗口和平台。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/c36170bc-3533-429a-a7a1-69f075f50c9e.jpg" / /p p style=" text-align: center "   图为2017中国国际石墨烯创新大会倒计时启动仪式现场 /p p   本届大会将呈现几大特点: /p p   一、大会得到了国家相关部委的高度重视。 /p p   国家新材料产业发展专家咨询委员会主任干勇院士、中国工程院化工冶金材料学部主任薛群基院士都将出席大会并做报告。国家发改委、工信部、商务部、科技部、教育部、军事科学院等相关机构均将派出人员参加会议,并在会议期间举办各种活动。 /p p   二、大会期间将邀请参会的20多个国家代表参加国际合作圆桌会议,发布《南京宣言》,由中国提出打造“优势互补,合作双赢”的全球石墨烯产业发展共同体。 /p p   三、诺奖得主Andre Geim教授等国际著名石墨烯领军人物将继续参会并带来他们最新的研究成果。 /p p   四、与以往不同的是大会将设立三大平行会议,分别为石墨烯及二维材料前沿研究、石墨烯新兴产业、石墨烯在传统产业应用,大会安排注重实效,会场全部配置同声传译。 /p p   五、本届大会设立了企业产品发布专场、百项成果对接活动、投融资及并购论坛等特色论坛与活动,产业服务更加求真务实。 /p p   六、石墨烯检测、标准与专利融合,国家制造业(石墨烯)创新中心模式研讨,石墨资源利用等特色专题研讨为地方政府、企业单位、社会资本、上下游综合协调产业发展的各种需求提供了沟通平台。 /p p   七、中国国际石墨烯材料应用博览会面积将从去年的5千平增至2万平米,200余展商集中展示全球最新石墨烯应用成果,提升中国石墨烯产业的国际影响力。 /p p   八、西班牙加泰罗尼亚纳米科学与技术研究所(ICN2)、IIT石墨烯实验室、东旭光电、宝泰隆、东莞鸿纳、二维碳素、华升石墨、上海超碳石墨烯等全球知名石墨烯企业单位共同参与大会的举办,打造全球石墨烯产业的饕餮盛会。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/ca4035fa-fd26-41fa-aa10-89d57e69d4d2.jpg" / /p p style=" text-align: center "   图为《2017全球石墨烯产业研究报告》英文版全球首发现场 /p p   在此次发布会上,由中国石墨烯产业技术创新战略联盟产业研究中心(CGIA Research)编写的《2017全球石墨烯产业研究报告》英文版正式面向全球发布。《报告》预测了全球石墨烯应用市场2020年将成长至1000亿元的规模,中国在全球石墨烯市场上占据主导地位。国家层面的政策引导、系统规划明显加速,产学研合作贯通产业链条,品牌竞争格局即将形成,这标志着我国的石墨烯产业智库也走在了国际前列。 /p p   本次大会是南京市落实国家三部委《关于加快石墨烯产业创新发展的若干意见》的重要举措。南京市将通过搭建国际交流合作平台,整合优质创新资源,营造良好产业生态氛围,扎实提升南京市在全球石墨烯行业的国际影响力,力争将南京建设成为全球石墨烯产业应用示范高地,推进南京市石墨烯产业快速、健康、可持续发展。目前,石墨烯发现者、诺贝尔奖获得者Konstantin Novoselov团队已在国家级南京开发区设立了石墨烯创心中心,孵化了若干产业化项目。 /p p   联系方式: /p p   咨询热线:400-110-3655 /p p   官方网站:http://www.grapchina.org(9月24日前,仅限官网在线报名) /p p   官方邮箱:meeting@c-gia.org /p p   微信公众平台:CGIA2013(支持在线咨询) /p p   QQ群: 296531551 397051421 /p p /p
  • 新政出台 石墨烯行业迎利好
    p   近日,工信部、发改委、科技部联合印发了《关于加快石墨烯产业创新发展的若干意见》。该意见指出,要抓住机遇培育壮大石墨烯产业,把石墨烯产业打造成先导产业。同时提出了“四个推进”,即推进产业发展关键技术创新 推进首批次产业化应用示范 推进产业绿色、循环、低碳发展 推进拓展应用领域。 /p p   石墨烯是在光、电、热、力等方面具有优异性能,极具应用潜力、可广泛服务于经济社会发展的新材料,已经在能源装备、交通运输、航空航天、海工装备等产品上呈现良好的应用前景。 /p p   我国拥有巨大的石墨资源储备,发展石墨烯得天独厚的优势。据统计,全球天然石墨储量约为7100万吨,其中中国储量约为5500万吨,占全球储量的77%,居世界首位。近几年,我国在石墨烯的研发上投入很多,也先后取得了不小的成绩,使得我国也位列石墨烯技术强国。 /p p   有业内人士表示,批量化生产和大尺寸生产是阻碍石墨烯大规模商用的最主要因素。而我国最新的研究成果已成功突破这两大难题,制造成本已从5000元/克降至3元/克,解决了这种材料的量产难题。利用化学气相沉积法成功制造出了国内首片15英寸的单层石墨烯,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出了7英寸石墨烯触摸屏。 /p p   不过看似一切美好的石墨烯产业仍旧有许多问题亟待解决。石家庄科学产业技术研究院研究员胡伟告诉《中国产经新闻》记者,“虽然我国在石墨烯技术上取得了一定的成绩,但关键核心制造技术与发达国家相比仍旧有所差距。此外,我们在石墨烯的应用上也还需要扩大范围。” /p p   最近炒得火热的华为手机电池将使用石墨烯制成,最终被证明并未实现,华为和曼切斯特大学关于石墨烯技术的合作仅仅着眼于通信领域。胡伟告诉记者,虽然量产的技术已经得到实现,但石墨烯仍旧没有迎来大规模的商用。我国目前石墨烯技术仍旧处于产业化的初级阶段,未来在技术、工艺和产业链对接方面还需要投入大量资源与研究。 /p p   虽然目前我国石墨烯产业仍旧存在许多问题,前景仍旧可期。根据新政的指导意见,指明要将石墨烯产业发展成为先导产业。将在2020年完善石墨烯产业体系,实现石墨烯材料的标准化、系列化和低成本化,并在多领域实现规模化应用。强调了产学研用协同发展的重要性,并具体落实了石墨烯材料规模化制备技术创新、知识产权体系建设、产业发展服务平台搭建3个发展方向。 /p p   胡伟表示,三部委发布的新政指导相关部门在未来加大对石墨烯核心技术的研究,有效改善我国石墨烯行业技术薄弱的问题。此外,在产业链和应用上也指明了方向。我国的石墨烯应该走出实验室,真正地应用在各行各业中。而对于一个新兴产业来讲,标准化是健康发展的基础。我国石墨烯下游企业需求极大,如果发展顺利,将迎来一个千亿元的大市场。 /p
  • 石墨烯:新材料王者之路有多长?
    p   去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。 /p p   中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。 /p p   牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。” /p p    strong 超级材料 /strong /p p   石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。 /p p   2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。 /p p   他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。 /p p   据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。 /p p   常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。 /p p   石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。 /p p   另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 /p p   石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。 /p p style=" text-align: center " img title=" untitled1.png" src=" http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg" / /p p style=" text-align: center " 诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带 /p p    strong 性能改良 /strong /p p   这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。 /p p   由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。 /p p   牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。” /p p   当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。 /p p   “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。 /p p   牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。 /p p style=" text-align: center " img style=" width: 499px height: 420px " title=" untitled2.png" src=" http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width=" 499" height=" 509" / /p p style=" text-align: center " 显微镜下的石墨烯“单晶” /p p    strong 目标驱动 /strong /p p   他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。 /p p   “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。 /p p   因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。 /p p   围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。 /p p   目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。 /p p   牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。” /p
  • 石墨烯“织就”锂离子“梦幻华服”
    p style=" text-indent: 2em " 如果说那薄如蝉翼、六角网格纹路质地的材料是巧夺天工的织锦,那么这位八零后的女科学家就是一位新锐的时尚设计师,她以新潮的艺术思维、灵巧的双手把“织锦”幻化成“梦幻华服”。她就是中国科学院金属研究所博士、北京圣盟科技有限公司首席科学家赵金平。而她和团队制作“梦幻华服”的“织锦”就是被称作“新材料之王”的石墨烯。 /p p style=" text-indent: 2em " 7月16日上午,在北京科技会堂,赵金平向汇聚于此的业内专家展示、讲解自己和团队取得的一项重大突破:石墨烯包裹改性锂离子电池正、负极材料技术。该技术形象地说就是给锂离子电极材料“量体裁衣”,从而大幅提升电池性能。 /p p style=" text-indent: 2em " ①独创两套包覆法 /p p style=" text-indent: 2em " 规模化试产成功 /p p style=" text-indent: 2em " 通过现场展示的放大5万倍的扫描电镜图,赵博士娓娓讲述着石墨烯“梦幻华服”特有的科技之美:“如此图所示,石墨烯非常均匀地包覆在三元材料锂离子表面,不仅不会破坏被包覆的三元材料,而且形成了更加稳定的结构。” /p p style=" text-indent: 2em " 传统电极材料在充放电循环过程中,体积极容易增大膨出,严重时会导致粉化,极大影响电池性能。石墨烯具有超高导电性、柔性,将其包覆在电极材料表面,如同为其“穿上”了量身定制的“魔法衣”,既能增强电子转移速率,提高导电性,又能约束其体积变化,大幅提高放电容量、充放电次数等性能。 /p p style=" text-indent: 2em " 近年来,国际上研究石墨烯包覆技术的学者很多,不过大多停留在学术探讨层面,极少实现技术,更不要说实现产业化。赵金平团队正是迎着技术难题而上,通过数年持之以恒努力,在全球率先实现了石墨烯包覆电极材料尤其是三元正极材料和碳硅负极材料等的技术突破,申请数项国家专利。特别难能可贵的是,该技术投入规模化试产成功,为商业化量产奠定了基础。 /p p style=" text-indent: 2em " 对石墨烯包覆技术的秘诀,赵金平透露说,就如同给电极材料制作衣服,要“合身”“美观”,就必须量体裁衣、个性化定制,也就是说,要针对不同电极材料的结构和表面特性,制作适宜的石墨烯材料,采用相应的包覆方法。具体来说,她带领团队针对正极材料和负极材料,分别开发了“两相界面包覆法”和“液氮冷萃法”。 /p p style=" text-indent: 2em " ②性能指标大幅提升 /p p style=" text-indent: 2em " 推动提前实现能量密度2020 /p p style=" text-indent: 2em " “就放电容量而言,经过500次循环后,石墨烯包覆的三元材料和加入了添加剂的石墨烯包覆的三元材料的容量保持率分别为87.3%和98.08%,其循环稳定性比传统三元材料分别提升了40%和50.56%。经过1000次循环后,加入了添加剂的石墨烯包覆的三元材料容量保持率还能达83.87%。”赵金平对石墨烯包覆后的三原材料性能指标如数家珍。 /p p style=" text-indent: 2em " 负极材料经过石墨烯包裹后不仅循环稳定性有所提升,其容量也大幅度提高。赵金平以氧化铁材料为例介绍说,通过“液氮冷萃法”,加入添加剂后,石墨烯均匀地包裹在氧化铁表面,其容量提高67.1%,稳定性提高18.2%。最值得期待的是石墨烯包裹硅负极材料的性能表现,目前,她和团队正在做相关实验和测试,相信相关数据一定会让人特别振奋。 /p p style=" text-indent: 2em " 在认真评审后,由国家新材料产业发展专家咨询委员会委员、清华大学材料科学与工程系教授翁端,国家“千人计划”专家、中科院大连化学物理研究所研究员吴忠帅,中国国际石墨烯资源产业联盟常务副理事长阮汝祥等10人组成的专家委员会认为,“石墨烯包覆锂离子电池正、负极材料技术达到国际先进水平,同意通过科技成果评价。”该技术应用到车用动力电池上,就可望实现单体能量密度达到300瓦时/千克,而这正是《智能汽车关键技术产业化实施方案》提出的2020年车用动力电池能量密度指标。 /p p style=" text-indent: 2em " 赵金平特别指出,石墨烯包裹技术和石墨烯基电池材料优异的性能已经通过国家动力电池创新中心和风帆有限责任公司的检测,后者还出具了相关样品的检测报告。在技术专利方面,目前,赵金平团队基于石墨烯的包裹技术已申请2项国家专利,还有数项专利正在申报中。 /p p style=" text-indent: 2em " ③突破源于3个方面 /p p style=" text-indent: 2em " 领先气质诠释创新中国 /p p style=" text-indent: 2em " 石墨烯作为电子迁移率超高、热传导效应性能超好的神奇二维碳纳米材料,自2004年被发现以来,特别是其发现者因此获得2010 年度诺贝尔物理学奖以来,成为耀眼的“明星”材料,将其用于提升锂离子电池性能的研究更是不断掀起热潮。然而,教育部查新工作站发布的相关科技查新报告显示,除了赵金平团队研发成果申请的专利外,在国内外已公开发表的文献和专利中,尚未见有利用针对锂离子电池正极材料的“两相界面包覆”工艺和针对负级材料的“液氮冷萃”工艺,制备比容量大、循环稳定性好的石墨烯改性锂离子电池电极材料的报道。 /p p style=" text-indent: 2em " 赵金平团队为何能取得原创性技术突破呢?在业内专家看来,大体上在于3个方面。一是优质石墨烯供应充足。赵金平团队的研究占据了一个先天优势:所在公司北京圣盟科技是全球石墨烯制备的领先企业,可以为技术开发提供高品质石墨烯支持,而这正是取得突破至关重要的基础条件。否则,以品质不高的石墨烯或者石墨粉投入科研,取得突破是难以想象的。二是长期的技术积累和不怕困难的拼搏精神。赵金平和团队在石墨烯科研领域耕耘了近10年,相关包覆技术创新是长期摸索的必然。迎难而上、苦心钻研的拼搏是成功的必备条件。在实验中,由于三元材料颗粒较大,石墨烯包裹困难,她带领团队硬是攻关了近一年半,锲而不舍,不断尝试,终获成功。三是中国石墨烯科研实力居前,引领世界。据《经济日报》今年年初报道,中国是石墨烯研究和应用开发最为活跃的国家之一,在全球石墨烯专利中,近六成来自中国。正是国内良好的石墨烯科技创新环境和氛围,培养造就了赵金平团队勇于创新的精神和能力。  /p
  • 《石墨烯材料的术语、定义及代号》国家标准预审会取得圆满成功
    由泰州巨纳新能源有限公司作为第一起草单位承担的《石墨烯材料的术语、定义及代号》国家标准的制订工作,经过两年多的努力,在广泛听取各方意见的基础上完成了征求意见稿的修改工作,于2016年8月12日在常州召开了预审会。来自全国纳米技术标准技术委员会及其下属的纳米材料分会、石墨烯领域的相关技术专家、企业代表近百人参加了此次会议并进行了热烈的讨论。此次会议在石墨烯材料领域的重要术语(如石墨烯、石墨烯材料、二维材料等)、石墨烯材料常见制备方法、石墨烯材料常见检测与表征方法和石墨烯材料产品代号等方面达成了基本共识,取得了圆满成功。在此基础上,泰州巨纳新能源有限公司将于近期完成《石墨烯材料的术语、定义及代号》国家标准的制定工作。此项国家标准将对我国石墨烯材料的生产、应用、检验、流通、科研等起着重要的规范和促进作用,也将为我国相关单位参与石墨烯国际标准制定提供良好机遇,为我国石墨烯产业走向国际打下坚实基础。泰州巨纳新能源有限公司是国内最早从事石墨烯生产、检测、应用研发以及标准化工作的单位之一,是我国首批国家标准项目《石墨烯材料的术语、定义及代号》、《光学法测定石墨烯层数》的第一起草单位,至今已在石墨烯技术领域完成3项团体标准、19项企业标准的编制工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制