当前位置: 仪器信息网 > 行业主题 > >

质谱术发展

仪器信息网质谱术发展专题为您整合质谱术发展相关的最新文章,在质谱术发展专题,您不仅可以免费浏览质谱术发展的资讯, 同时您还可以浏览质谱术发展的相关资料、解决方案,参与社区质谱术发展话题讨论。

质谱术发展相关的论坛

  • 质谱技术在医学检验中的应用发展趋势

    在临床生化检验领域,技术的应用优势明显,也存在较多的挑战和局限性,但技术的不断革新为将解决这些困境,促进技术的应用。在技术应用普及方面,相信行业协会和质谱技术应用较早的临床实验室,将会进一步推动技术应用的规范化和标准化。同时为满足临床在生化检验方面的需求,弥补传统方法的不足,质谱技术在一些特殊检验项目(如内分泌固醇激素方面)的应用优势将更加凸显,并得到扩展和深入,检测结果的快速准确性等各方面也会有进一步提升随着各类专业培训班的成功举办,《临床色谱质谱检验技术》课程在全国高等学校中的开设、逐步推进以及相应教材的出版与应用,专业技术人才的培养也将得到进一步加强。未来的几年,质谱技术在临床生化检验领域的发展会有让人欣喜的表现。在微生物鉴定和核酸检测领域,虽然数据库和分析软件仍不完善,但随着质谱仪的国产化、中国人群菌库和特殊疾病特征的建立以及临床应用的深入,这些问题将会有所改善。而蛋白质鉴定和定量、蛋白组学研究持续深入、质谱成像等新应用不断发展与完善,将为质谱技术的应用带来新的变革。总之,随着技术本身的发展、基础应用以及临床转化应用研究工作的不断深入,质谱技术正在成为医学检验领域非常有前景的、高渗透性的新兴检测技术。

  • 【原创大赛】临床质谱应用主要挑战及发展探索

    [align=center][font=宋体][size=14.0pt]临床质谱应用主要挑战及发展探索[/size][/font][/align][font=宋体][size=12.0pt]近年来,各种检验新理论和新技术不断涌现,极大地推动了临床检验学科的发展。液相色谱串联质谱(liquid chromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体。临床质谱应用愈来愈广,但发展过程面临诸多挑战:初始投资高、仪器操作复杂、缺乏自动化和法规不确定等。而在临床质谱应用发展探索中,需要使方法验证规范化、质量管理系统化、样品处理自动化和行业发展专业化等。现在临床质谱的应用已涉及维生素D、药物中毒检测、内分泌(激素)检测、新生儿筛查遗传病、小分子标志物、蛋白与多肽、微生物及体内微量元素等。[/size][/font][font=宋体][size=12.0pt]我国质谱临床检测可望达百亿规模。2017年全球临床质谱市场份额为49.8亿美元,未来(2017-2025年)CAGR预计以7.3%增长。中国未来五年临床质谱将以7.6%的速度增长,形成一个超百亿规模的临床质谱检测市场。[/size][/font][font=宋体][size=12.0pt]质谱技术具有诸多优点:特异性好,克服免疫分析对小分子化合物的检测缺陷,检测结果更可靠;操作简便,比HPLC和GC-MS的容易使用,通量更大,是免疫分析法的主要互补方法;成本效益高,与其他技术相比,单个样本的测试成本更低;灵活性高,建立和验证新方法比较容易;高灵敏度;多通道检测能力;更接近参考方法。[/size][/font][font=宋体][size=12.0pt]质谱技术使用通用试剂,批量检测时成本较低,受第三方检测公司青睐;质谱的直接检测原理,特异性高,抗干扰(可见即可信);质谱具有即刻、多通道检测能力,通量主要限于样品前处理;检测底限可达ng甚至pg水平,适合微量甚至痕量物质分析,避免使用放射性检测技术。[/size][/font][font=宋体][size=12.0pt]但质谱同样也有缺点,如缺少配套试剂,操作复杂,检测人员需要专门培训,对环境有特殊要求,方法需要开发和验证等。在发展探索过程中,方法验证规范化,质量管理系统化,样品处理自动化,行业发展专业化尤为重要,分析工作者及实验室管理人员应密切关注政策变化和行业动向,紧随行业发展方向。[/size][/font][font=宋体][size=12.0pt]今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习![/size][/font]

  • 关于质谱技术的发展历史介绍

    早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。  世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥大学教授)研制成功;到20世纪20年代,质谱逐渐成为一种分析手段,被化学家采用;从40年代开始,质谱广泛用于有机物质分析;1966年,M.S.B,Munson和F.H. Field报  到了化学电离源(Chemical Ionization,CI),质谱第一次可以检测热不稳定的生物分子;到了80年代左右,随着快原子轰击(FAB)、电喷雾(ESI)和基质辅助激光解析(MALDI)等新“软电离”技术的出现,质谱能用于分析高极性、难挥发和热不稳定样品后,生物质谱飞速发展,已成为现代科学前沿的热点之一。由于具有迅速、灵敏、准确的优点,并能进行蛋白质序列分析和翻译后修饰分析,生物质谱已经无可争议地成为蛋白质组学中分析与鉴定肽和蛋白质的最重要的手段。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。如用质谱法作为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)的检测器已成为一项标准化GC 技术被广泛使用。由于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] 不能分离不稳定和不挥发性物质,所以发展了[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](LC)与质谱法的联用技术。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]可以同时检测糖肽的位置并且提供结构信息。1987年首次报道了毛细管电泳(CE)与质谱的联用技术。CE-MS 在一次分析中可以同时得到迁移时间、分子量和碎片信息,因此它是[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]的补充。  在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱的发展对基础科学研究、国防、航天以及其它工业、民用等诸多领域均有重要意义。

  • 【资料】质谱分析的发展(共1讲)

    [B][center]质谱分析的发展 [/center][/B] 质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。②快原子轰击,把样品分子放入低挥发性液体中,用高速中性原子来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。(2)各种联用技术。色谱、电泳等分离方法与质谱分析相结合为复杂混合物的在线分离分析提供了有力的手段,GC—MS联用技术的应用已得到充分的证明。近年来把液相色谱、毛细管电泳等高效分离手段与质谱连接已在分析强极性、低挥发性样品的混合物方面也取得了进步。主要的接口技术有:①粒子束(particle beam),它能把液相色谱与质谱连接起来,其优点是得到的质谱与普通的EIMS谱十分接近,因此可以用标准谱库的数据去检索。缺点是要耗用大量的氦气,并且只能分析中等极性和中等分子量(2000以下)的分子。②热喷雾(thermospray),是目前与HPLC连接最广泛使用的接口技术。它是一种软电离技术,可测的分子量上限大约为8000amn,缺点是流速需要0.12ml/min,对于质谱分析来说仍嫌太大。③连续流快原子轰击(CF—FAB),利用适当孔径的石英毛细管把液相色谱的流出液直接引入FAB电离源,进行连续的FAB—MS分析。由于它的流速小于5μl/min,与质谱仪更为匹配,因此具有更大的应用潜力。④电喷雾。由于采用常压电离源,因此很容易把微细径柱液相色谱,甚至普通液相色谱(只要有适当的分流装置)通过它与质谱连接起来。最近藉此把毛细管区带电泳与质谱连接起来也取得了成功,实现了高灵敏度(10-15mol),高分离效力(25万理论塔板数)的联用分析。这是一种极有希望,并很有发展前途的联用技术。(3)串联质谱等二维质谱分析方法。如果把二台质谱仪串联起来,把第一台用作分离装置,第二台用作分析装置,这样不仅能把混合物的分离和分析集积在一个系统中完成,而且由于把电离过程和断裂过程分离开来,从而提供多种多样的扫描方式发展二维质谱分析方法来得到特定的结构信息。本法使样品的预处理减少到最低限度,而且可以抑制干扰,特别化学噪音,从而大大提高检测极限。串联质谱技术对于利用上述各种解吸电离技术分析难挥发、热敏感的生物分子也具有重要的意义。首先解吸电离技术一般都使用底物,因此造成强的化学噪音,用串联质谱可以避免底物分子产生的干扰,大大降低背景噪音,其次解吸电离技术一般都是软电离技术,它们的质谱主要显示分子离子峰,缺少分子断裂产生的碎片信息。如果采用串联质谱技术,可使分子离子通过与反应气体的碰撞来产生断裂,因此能提供更多的结构信息。近年来把质谱分析过程中的电离和碰撞断裂过程分离开来的二维测定方法发展很快,主要的仪器方法有以下几种。①串联质谱法(tandem MS),常见的形式有串联(多级)四极杆质谱,四极杆和磁质谱混合式(hybride)串联质谱和采用多个扇形磁铁的串联磁质谱。②傅里叶变换质谱(FT—MS),又叫离子回旋共振谱,它利用电离生成的离子在磁场中回旋共振,通过傅里叶变换得到这些离子的质量谱,这种谱仪过去由于电离造成真空降低与回旋共振要求高真空条件相矛盾,性能不能过关。近年来由于分离电离源技术日趋成熟,这种分析方法得到较大发展,它的优点是很容易做到多级串联质谱分析,目前可分析质量范围已达5万左右,分辨力也可达1万。③整分子气化和多光子电离技术(LEIM—MUPI),它是在微激光解吸电离技术的发展中最近出现的一种新方法。它把解吸和电离二个环节在时间和空间上分离开来,分别用二个激光器进行解吸和电离。使用红外激光器来实现整分子气化,使用可调谐的紫外激光器对电离过程实行宽范围的能量控制,从而得到从电离(只显示分子离子)到各种程度不同的硬电离质谱,并成功地用于生物大分子的序列分析。

  • 【原创】同位素质谱的学科应用与发展

    [size=4][font=[color=#DC143C]黑体]同位素质谱的学科应用与发展[/color][/font][/size]同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展包括:  (1)同位素地质学方面  同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。  (2)核科学与核工业方面  同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:  1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;  2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;  3)U、Li等同位素标准参考物质的研制。  (3)核物理研究方面  包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用:   研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额;   高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。  (4)标准参考物质的研制发明方面  标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。  (5)在临床医学方面  进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。  (6)在生物学和化学研究工作中的应用  稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。  用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。   用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。   用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。   在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。  (7)环境科学中的应用  近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。  (8)在农业增产方面的应用  现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。  ⑴合理使用肥料;  ⑵农药毒性的研究;  ⑶用轻水灌溉;  ⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;  (5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。  与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。  (9)其他应用  如石油、冶金、电子等方面。

  • 【讨论】现在质谱有什么新的发展? 单独的质谱(非色质联用)还有多少?

    如题: 最近单位的老式磁质谱老出问题,自己修来修去都烦了. 打听了一下,好象EI的质谱买的单位是越来越少了. 不知道这个东西现在怎么样了.好像色质联用到成了质谱的主要用途了.但估计没有人再用磁质谱做色谱检测器了. 哪位消息广点的同志能介绍一下目前仪器特别是硬件的发展情况啊? 都不知道世界潮流了. 谢谢!

  • 实验室分析仪器--质谱仪的历史和发展

    质谱的发展与核物理的早期发展紧密相连,而核物理的早期发展又是建立在真空管气体放电的技术上。克鲁克斯管是从早期用的盖斯勒管改良而来的,它是一个内部抽成较低气压的玻璃管,两端装有电极,阴极和阳极之间可以产生10 -100千伏的高压。克鲁克斯管运行时的真空比0.1帕斯卡要低得多,这是射线管实验——特别是阳极射线研究的必备条件。许多基于克鲁克斯管的实验带来了原子和核物理方面开创性的研究成果。最著名的是在1895年由威廉康拉德伦琴发现x射线。不到年之后J.J.汤姆森通过对阴极射线在电场中的偏转分析和测量了电子的质荷比m / e。他发现了一种质量只有氢原子(当时已知的最轻的原子)的1/1800却带有一个单位负电荷的粒子,这是电子的发现。维恩在1898年通过对阳极射线的分析测量了氢原子核的质量,这是首次对质子的测量。维恩和汤姆森正是质谱法的开创者。1898年由维恩制造的第一台质谱实验装置。在一个气压很低的玻璃管中设置了阴极A和阳极a用来产生阳极射线,然后射线会经过平行的电极缝,同时b区域的真空管外也覆盖了电极用来屏蔽磁场。在真空管c区域内,除了磁极间的平行磁场外在垂直射线和磁场方向设置了平行电场来分析离子束。在电场和磁场的作用下,只有特定速度(v=E/B)的离子可以到达真空管末端,这就是我们现在所说的速度选择器。这个装置的长度只有5厘米。维恩利用它从阳极射线中选出特定速度的离子进行研究,测量了氢原子核(当时维恩并不知道这是氢原子核)的荷质比,并研究了其他一些更重的离子。但直到1919年卢瑟福的系列工作之后才正式宣判了质子的发现。尽管如此,正如J.J.汤姆森所说,维恩是第一个是用磁场偏转来分析离子束性质的科学家。不过真正意义上的质谱法的诞生还要归功于1907年汤姆森本人的实验。汤姆森在剑桥搭建的第一台质谱仪的实物和原理。他同样采用阳极C把放电区和测量区分开,放电区冲入少量的某种气体,阳极和阴极之间加有30-50千伏的电压。同样为了屏蔽磁场的干扰,在放电区的外面放置了金属的隔离罩W。放电区电极C中间是一个6cm长,内径从0.5mm到0.1mm的准直孔,用一个非常精巧的毛细玻璃管F和测量区相连。气体在放电区电离出离子,并且在高电场下获得很快的速度,最后沿着毛细玻璃管以很窄的一束射入抽真空的测量区。测量区内安装了两块平行的电极A,并且外部有一组磁极P提供磁场。与维恩的实验不同,这里磁场和电场的方向是平行的。经过偏转的离子束打在后面的荧光屏上。汤姆森采用了Zn2SO4作为荧光材料,它的灵敏度比之前使用的材料要高很多。由此可以看出,在确定的电场和磁场之下,对于不同荷质比的粒子,随着其速度的变化(调节加速电压),会在荧光屏上显示出不同的抛物线轨迹,他们都出发自同一个未经偏转的原点。汤姆森利用这个原理测量了多种气体电离出的离子束,在早期的实验结果中就可以看到,不同质量离子形成的抛物线都是比较清晰锋锐的,没有出现成片的散点,这也是第一次证明了同一种原子在比较精细的测量中没有表现出质量差别。其实在1918年邓普斯特设计了一套同位素分离装置,离子在G中产生并被高压加速,通过狭缝S1进入抽真空的分析器A,A内有垂直于纸面方向的匀强磁场,粒子在其中偏转180°后,能经过狭缝S2的离子才会被探测到,装置的加速电压可以从500V到1750V。由于离子在磁场中的偏转半径R=mv/qB,经过180°的偏转后,出射方向与入射方向平行,因此通过加速电压和狭缝的选择,可以得到不同荷质比的离子束。实验所用的离子源是热源,是加热或用阴极电子轰击铂片上的对应离子盐产生的的。但是由于当时技术条件的限制,达到一定强度的大范围匀强磁场难以得到,但是为了减小误差,粒子的加速电压又必须足够高(因为粒子的速度本身存在一定分布),也就是说粒子的偏转半径却又不能太小。因此后来尼尔等又发展了90°、60°等小角度偏转的质谱装置,来进行更精确的实验。阿斯顿也是在邓普斯特的想法上提出了改进。1919年,阿斯顿制作了一台全新的质谱仪,上图是阿斯顿的实验装置示意图,和得到的结果。气体电离产生的离子束先经过S1、S2两个准直孔,同时通过一个与其有倾角θ的平行电极板加速,通过挡板D,再经过圆形的匀强磁场偏转,最后打在荧光屏上。阿斯顿的装置拥有十分精巧的几何结构设计,因为离子束在电场中的偏转与和磁场中的偏转都与q/m、v相关,两次偏转符合的结果消除了v的影响,使得相同荷质比不同速度的粒子最终在屏所处的平面上聚焦在同一点。这个装置极大地减小了质谱测量的误差(去除了离子速度分布的影响),扩展了能够测量的离子种类,得到的质谱结果为当时的元素整数质量规则提供了直观的阐释。1922年,阿斯顿获得了诺贝尔物理学奖,以表彰它在质谱仪,同位素等方面的贡献。随后,阿斯顿又进一步改进了他的实验装置(主要是在材料和工艺上),以测定不同元素的质量,并且发现了元素的相对原子质量与整数的偏差,现在我们知道这是核子结合成原子核时的质量亏损,或者说敛集率造成的,但是阿斯顿是在没有相关理论的情况下,率先利用质谱仪观测并且研究这一现象的。基于阿斯顿质谱仪中聚焦的思想,1934年Mattauch与Herzog进一步发展出了完整的离子束能量和方向的双聚焦理论,并且能在同一张底片上得到很大范围的质量谱。这种双聚焦质谱仪最终以他们的名字命名。双聚焦的设计基本成为了之后20年内多数质谱仪的蓝本。在这期间,仪器的材料,制造工艺,离子束的制备方法等都有了很大的发展,实验规模和精度也有了很大提升。质谱仪在同位素的研究方面取得了很多成果,最著名的可能是提取出了铀的同位素235U。还有用来测定材料成分的二次离子质谱法,被应用于古生物学、地球化学和地质学。到了1960年以后,探测器、加速器、光谱学、电磁学等方面技术有了很大的发展,离子的质量测量出现了许多新的方法,比如Radio Frequency Quadrupoles (RFQ),重离子加速器结合TOF系统,傅里叶变换谱学,电四极离子陷方法等等,传统的质谱仪渐渐退出了核物理研究的主流舞台。然而维恩、汤姆森、邓普斯特、阿斯顿等等一批伟大的科学家在实验装置的设计,思考和解决问题的方法上有很多值得我们借鉴和学习。无论技术和知识背景如何改变,我相信其中一些科学研究的基本思想是我们始终须要秉承的

  • SCIEX谈未来质谱的发展趋势

    (转帖)靳文海认为,未来质谱的发展趋势将呈现几个方面的变化。 1、大前提来看,在基本的指标和性能方面,仍然会有进一步的突破。比如不管是用户还是研发团队,都在不断追求灵敏度的提升。 2、从简单的硬件创新转向全方位的创新。举个简单的例子,苹果公司推出智能手机就是一个颠覆时代的创新,它重新定义了手机的功能,包括其应用性;引导大家不再去关注手机的内存大小、频率高低。现在大家拿出各种各样的手机,都是在意谁的更好用、谁的更方便。对于分析仪器特别是质谱的创新,也将如此。 3、融入“互联网+”的元素。奥巴马和习主席都在谈“互联网+”,在“互联网+”应用方面,SCIEX公司也走在所有质谱公司的最前列。在云端计算方面,SCIEX推出的“One Omics”的平台已经持续了近两年;目前该项目进行得非常火热,全球非常积极参与“One Omics”项目,上传、分析、共享数据的已经有近100家实验室,这是非常大的创新。“业界我们还没有看到其它公司有类似的做法。”靳文海表示。在研发和应用性方面,SCIEX利用“互联网+”,也在实施远程诊断,手机终端上的程序开发等项目。“‘互联网+’,是仪器行业特别是质谱行业需要去利用和抓住契机大力发展的方面。” 4、创新方面,更关注客户体验,强调提供完整的解决方案。关于这点,靳文海举例谈到,这方面以前大家配个人电脑兼容机有体会,很多人喜欢攒一台发烧级的兼容机;但配回来后发现,用起来不见得是最佳的配置,使用体验也不那么流畅。对于质谱也一样,除了质谱主机以外,配套的样本制备、数据采集、以及最后的出结果、出报告等一系列过程,都需要整合和创新。以前,大家需要做很多实验后,数据经过很多人的反复分析、推敲、验证,才能最后得到结论。以后的趋势是,任何人操作这台仪器(比如质谱),同样的样本一定保证只出一个结果。这是质谱行业创新要努力的方向。 5、仪器一定要小型化、人性化、易用化。“我们希望SCIEX最终能推出非常微型化、便携式的质谱,我们正在向这个方向努力;我们还希望质谱能够走向更多的实验室,甚至走向寻常百姓家,或者是人民生活中的每一步。” 关于应用性和可靠性,倪涛补充说,“任何一项技术在科研领域中使用时,用户可以容忍一些毛刺,比如不够方便,切换或移动时有很多手工的部分。甚至有些科学家自豪地说,就我这个实验室能做出来,别人做不出来。但对于一个普通的实验员,尤其是到了中国地级市、县时,就要求仪器的整体设计、可靠性、重现性、工作流、使用习惯都要贴近民用。这虽然听起来不属于传统意义的创新,但恰巧正是创新中的难中之难。X500R可以说是SCIEX多年来在研发投入上最大的一个项目——目标就是把高精尖的科技成果,转化为常规实验室好用的帮手,创新难度是很大的。X500R一旦获得成功,我们将可以引领整个行业的进步。” 上述几大方向,是SCIEX认为未来分析仪器发展的趋势和创新的需求。你是怎么认为的呢?

  • 多组学背景下临床质谱发展三大趋势

    随着精准医学的发展、多组学研究上的突破,临床质谱迎来了发展机会。仪器信息网特别策划[color=#0070c0][url=https://www.instrument.com.cn/zt/CMS2022]“临床质谱技术及应用进展”专题[/url][/color],聚焦临床质谱新产品新技术及相关临床领域的最新应用,以增强业界相关人员之间的信息交流,展示更丰富的临床诊断质谱产品、技术解决方案。与生化、免疫等传统检测技术相比,临床质谱技术在灵敏度、特异性、多指标联检等方面具备独特优势。它既是生化、免疫等检测技术的补充,又是传统检测技术的延伸,可以提高现有检验项目的精准度,也可以检测其他技术不能检测的指标,能够更好地指导临床诊断,为患者提供更准确的检测结果。临床质谱技术正在新生儿遗传代谢病筛查、维生素检测、药物浓度监测、激素检测、微生物鉴定、微量元素检测等多个临床应用场景发挥着越来越重要的作用。[color=#ff0000]解决仪器和试剂适配问题是临床质谱落地路径 [/color]从商业模式角度来说,由于医疗服务体系和保险制度的不同,美国大部分质谱服务都是LDT模式(Laboratory Developed Test, 独立医学实验室),形成了像Quest和Labcorp这样的第三方服务龙头。美国60%以上的医学检验都是外包,医院只采样。而国内临床检验的市场主要还是以公立医院检验科为主,以第三方医学检验为辅的市场结构。大医院的检验科能力强,有能力在院内开展检测。同时,报告时间、政策监管及医院管理的需求,也更倾向样本在院内检测。因此,IVD模式(In Vitro Diagnosis,体外诊断)更适合中国。临近两年中国整个临床质谱行业发展非常迅猛,临床质谱这个赛道上涌入的企业也越来越多,资本的投资热度逐渐升高。由于临床看重的是检验性能和临床价值,需要仪器、试剂、服务一站式解决方案,而非单一的仪器。随着国内临床质谱企业增多,首先解决仪器和试剂的适配问题,成为打通质谱分析临床落地路径。[color=#ff0000]多组学背景下,临床质谱行业发展三大趋势[/color]在临床质谱几大技术平台中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱是临床最为成熟的技术平台之一,布局企业多、仪器多、试剂多,是临床质谱市场的核心板块。在精准医疗技术迭代、临床需求持续扩大、多组学趋势背景下,临床质谱政策环境、资本环境等持续向好,临床质谱行业未来技术及应用整体呈现几大趋势:[b]1、以[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱为核心的多组学研究已成为各类疾病筛查、早期诊断、治疗监测和预后评估的生物标志物创新发现的关键应用平台。[/b]生命组学时代来临,临床质谱技术有望成为常规底层技术。疾病发生发展复杂,单一组学无法解决所有问题,已有大量研究表明依靠单一组学存在较大局限性,多组学在致病机理研究、疾病标志物与致病靶点筛选,以及早期诊断和治疗上都有着巨大的潜力,临床医学正在快速过渡至多组学整合分析。而组学研究样本复杂,通常样本中含有数十万个化合物,分子丰度低,对检测灵敏度要求极高,数据分析庞大,质谱技术多指标检测、高灵敏度、高特异性、高通量的特点非常契合多组学发展趋势,有望在多组学时代中大放异彩。相比基因组学和转录组学,蛋白质组学和代谢组学在精准诊断的普检和特检、精准治疗的创新药研发和伴随诊断中具有更加深远和广泛的意义。其中,蛋白质组学研究难度更高、与临床结合更为紧密、药物医学转化程度更高,是推动临床应用与医学转化的重中之重。[b]2、在应用场景上,常规检测应用成红海,针对大病种的精准诊疗将成为未来临床质谱主力市场。[/b][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱临床应用分为两类,一类是常规检测应用,对现有方法学进行升级,如新生儿遗传代谢病筛查、药物浓度监测、维生素检测等,另一类是基于组学研究,开辟空白、创新应用场景,如慢病诊疗跟踪、肿瘤标志物发现等。随着我国临床质谱常规应用渗透率提高,新生儿遗传代谢病筛查、维生素检测等已成为红海市场,传统检验替代、大病种尤其是阿尔茨海默症、心血管病和肿瘤等疾病的精准诊疗将成为未来重要的临床质谱增量市场。[b]3、未来,各类质谱仪器会持续向国产替代方向发展。[/b]从近年来提出的精准医疗等热点可以得知,人们越发重视生活质量提升,实现精准医疗的目标就离不开[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析技术。由于现有的质谱属于高精尖仪器,需要专业人员操作和维护,且几乎依赖进口,无法满足我国对该技术日益增长的需求,质谱技术向国产化、POCT化、自动化方向发展是未来趋势,推动临床质谱市场成熟。我们相信,2020-2030年是生命组学时代,质谱技术将助推代谢组学、蛋白质组学等组学技术在精准医疗领域发挥重大作用。基于组学技术的疾病特检、伴随诊断未来将有大的发展。一个行业的持续发展需要构建良好的生态,虽然目前我国质谱行业还处于行业发展的早期阶段,但行业生态已经逐步形成。临床质谱产业链的全面发展,硬件厂家、试剂厂家、服务提供商的水平都在快速提升,医院、终端用户的需求日益增长,科研院校、医药企业的参与增多,生态中各种参与者之间的联系越来越紧密。

  • R. Graham Cooks为中国质谱发展做出巨大贡献

    美国分析化学专家罗伯特格雷厄姆库克斯教授荣获2019年度中华人民共和国国际科学技术合作奖,这是对他多年努力与贡献的最好认可。[align=center][img=,400,529]https://img1.17img.cn/17img/images/202401/uepic/1db088cb-2a1e-4378-a4ea-d79d2d880fe5.jpg[/img][/align]  库克斯于1941年生于南非,目前是美国普渡大学教授、美国国家科学院院士、美国艺术与科学院院士及美国国家发明家学院院士。库克斯教授在质谱的基础研究、仪器开发及应用方面取得了丰硕的成果,如亚稳态离子裂解现象的发现,推动了串联质谱技术的开发,为当今新药研发及生物分析提供了必不可少的分析手段。  早在中国改革开放初期,库克斯教授就接纳了多位来自北京工业学院(现北京理工大学)、中国医学科学院药物研究和中国科技大学的访问学者,帮助中国培养了第一代有机质谱人才。同时,库克斯还积极参与推动中国质谱学科的发展。1985年,他第一次来到中国,帮助北京工业学院建设了质谱实验室,担任名誉主任。从1986年起,库克斯教授成为中国质谱学会的名誉会员。过去的30多年里,库克斯教授曾任清华大学、中国科学院长春应用化学所、吉林大学、东华理工大学等多个高校院所的客座教授,为质谱在中国的推广与发展作出了贡献。  库克斯教授从多方面帮助中国在分析化学领域的发展。1985年,他参加了第一届北京分析测试学术报告会暨展览会(BCEIA),此后又多次参会做报告,积极引荐海外学者参会。30年后,BCEIA已成为国际分析化学领域最具规模的会议之一。2010年及2012年,受中国自然科学基金委员会委托,库克斯教授两次组织中美分析化学双边论坛,增强了双方学者的相互了解,提高了中国学者在国际分析化学界的参与度。  库克斯与清华大学和中国计量科学研究院有着十几年的深度合作。他与计量院的质谱团队合作期间,为研究方向提供建议、帮助设计研发平台、培养研究人员。该团队成长迅速,成为国内首个具有质谱仪器研发能力的研究团队,承担国家仪器研发重大项目,为质谱仪研发及产业化培养众多人才。  2003年,当中国学术和产业界就“十五”二期科技攻关计划是否应重启质谱仪器研发项目进行探讨时,库克斯教授提出,“中国应关注小型质谱技术发展”,并表示“将把支持中国发展小型质谱仪作为今后工作中重要的一部分”。时至今日,小型质谱在食品安全及未来生物医疗领域的重要地位已经凸显。在过去十几年里,库克斯教授积极与清华大学、中国计量科学研究院等研究团队合作,极大地推动了质谱小型化在中国的基础研究以及技术发展过程中的中美合作。  自库克斯教授44岁时第一次访问中国以来,时间已过去30多年,通过为中国培养人才和广泛建立并深度参与交流合作,他为质谱在中国的发展以及国际合作促进技术发展做出了有目共睹的巨大贡献。我还记得,2011年7月,库克斯在中国与多年合作过的同事一起,度过了他的70岁生日,生日会上回顾了他30年来和中国学者合作的历程,场面颇为感人。中国的同行都说,虽然岁月已留下深深的印记,但库克斯教授的微笑从来没变过。时至今日,他仍然活跃在技术研究、技术创新、国际合作的大舞台。[align=right]  (作者系清华大学精密仪器系主任)[/align][来源:仪器信息网译] 未经授权不得转载[align=right][/align]

  • 【讨论】看ASMS2011有感:无机质谱仪器发展的路在何方?

    看了ASMS上面的新品发布 ,里面所有的新品几乎都是为生命科学,蛋白质科学等设计的,的确现在有机质谱是当今一个发展比较迅速的时期。而无机质谱仪器却鲜见有新品或者发展,这两天关注的ASMS2011,从上面也没看到多少关于无机质谱方面的信息。联想到上次仪器信息网3月PITTCON2011报道我不禁要问,无机质谱还在发展么?具体是在哪些方面发展的?·

  • 【讨论】第三届在线分析仪器发展论坛:在线质谱仪技术发展现状

    2010年11月1日,由中国仪器仪表学会分析仪器分会与北京雄鹰国际展览有限公司联合主办的“第三届中国在线分析仪器应用及发展国际论坛暨展览会”在北京国际会议中心隆重召开。来自中石油、中石化、中海油、煤化工、中化集团等下属企业及市政环保等用户及厂商代表400余人参加了本次论坛。仪器信息网作为特约媒体应邀参加了本次会议。过程/在线质谱仪的应用  过程质谱仪根据质谱定性定量的原理对工业过程进行在线监测,在多个行业有着广泛的应用前景。在本分会场上,上海舜宇恒平科学仪器有限公司、赛默飞世尔科技(中国)有限公司分别探讨了过程质谱仪的研发及应用状况。  上海舜宇恒平科学仪器有限公司黄晓晶女士以“国产过程质谱仪的应用”为题,介绍了过程质谱仪应用领域,阐述了国产过程质谱仪的发展机会与发展现状。  在报告中,黄晓晶女士通过列举应用实例,阐明过程质谱仪依据其自动化程度高,测量范围广,分析速度快,仪器稳定性、可靠性好等特点,在石化行业广泛应用,使企业节省了原料及能源,提高了生产效率,增加了经济效益。过程质谱仪在石化行业应用的领域包括:乙烯裂解炉,环氧乙烷/乙二醇,催化剂活性评价,烯烃生产以及合成氨、甲醇装置等一些反应剧烈,需要进行快速在线分析的场合。  关于国产过程质谱仪的发展状况,她表示,国外过程质谱仪“单机价格昂贵”、“售后服务成本高”、“定制服务可行性差”等方面的问题为国产过程质谱仪的发展提供了机会。  2009 年,上海舜宇恒平科学仪器有限公司整合多方技术优势,推出了SHP8400 过程气体质谱分析仪。该款仪器打破了进口过程质谱仪的市场垄断,填补了我国在该项技术的空白。此仪器一经推向市场,即受到各方面的广泛关注。该仪器采用多通旋转阀和电磁阀为进样系统,检测系统采用四极杆质量分析器和电子轰击型离子源,检测器有法拉第筒和电子倍增器两种。该仪器优异的性价比使其在石化行业的应用极具潜力。  “大力发展过程质谱仪的国产化,努力提升过程质谱仪的性价比,开拓其在石化行业的应用具有十分重要的意义”,黄晓晶女士在其报告最后指出。http://bimg.instrument.com.cn/lib/editor/UploadFile/201011/2010112185823320.jpg上海舜宇恒平科学仪器有限公司黄晓晶女士  赛默飞世尔科技(中国)有限公司王清华先生则介绍了在线质谱仪的主要应用情况。其在报告中详细介绍了赛默飞世尔科技推出的Prima/Sentinel PRO、Prima dB、APIX dB/Quattro系列在线质谱仪的工作原理、仪器性能及应用领域。该系列仪器在化工、制药、钢铁冶炼、环境监测等领域得到广泛的应用。http://bimg.instrument.com.cn/lib/editor/UploadFile/201011/2010112185839882.jpg赛默飞世尔科技(中国)有限公司王清华先生详细资讯:http://www.instrument.com.cn/news/20101102/050146.shtml

  • 【讨论】单四极杆质谱有哪些新的发展方向?

    【讨论】单四极杆质谱有哪些新的发展方向?

    单四极杆MS应该是非常成熟的仪器了,但是最近几个质谱老大高调推出了单四极杆质谱,请各位前辈谈谈现在单四极杆质谱最新的一些发展方向?[url]http://www.instrument.com.cn/newproduct/[/url][img=310,291,left]http://ng1.17img.cn/bbsfiles/images/2010/06/201006231119_226600_1636300_3.jpg[/img]Thermo ISQ单四极杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url](ISQ [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS) 技术参数1. 1.2-1100 u的质量数范围2. 真空锁定装置支持离子源整体拆卸,无需放真空3. S型离子通道更有助于降低噪音4. ExtractaBrite[sup]TM[/sup]离子源提高分析灵活性和耐用性5. 高速采集速率与快速[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术兼容6. 可拆卸筒式离子源设计使维护更便捷,并轻松切换电离模式7. 全扫描/SIM交替扫描在一次进样中实现定性和定量分析8. 双灯丝的微调控制设计使操作更可靠9. QuanLab Forms分析应用软件,使您轻松采集、查ISQ特性优势

  • 专家评Pittcon光谱、色谱、质谱新品及发展趋势

    在最新一期C&EN期刊上刊登了一篇对Pittcon 2012原子光谱、分子光谱、质谱、色谱新品及发展趋势的文章。C&EN在展会期间邀请了四位专家点评Pittcon上的新品。我将其翻译,希望能对大家有用!Pittcon 2012四类仪器新品及发展趋势评析  体积小、价格低廉和高性能——这些是Pittcon 2012上所展示分析仪器的典型介绍。四位学术研究人员,包括原子光谱专家、分子光谱专家、质谱专家、色谱专家帮助C&EN确定今年Pittcon上众多产品中最值得注意的新仪器。  文章中涉及的四大类14台仪器新品。  包括:原子光谱类——APPLIED SPECTRA RT100光谱仪、斯派克SpectroBlue ICP发射光谱仪、赛默飞世尔iCAP Q ICP/MS  分子光谱类——默克密理博Direct Detect生物大分子定量系统、Block Engineering LaserBench光谱仪、布鲁克HI90高光谱成像系统、Implen NanoPhotometer P-Class蛋白质和核酸定量显微分光光度计  质谱类——Advion Expression CMS、1st Detect MMS-1000离子阱质谱仪、Torion Tridion-9 GC/ TMS、布鲁克 Scion TQ三重四极杆气质、Protes LAESI DP-1000  色谱类——Waters Acquity UPC2系统、AB SCIEX Eksigent Ekspert UltraLC 100详细内容请看:http://www.instrument.com.cn/news/20120409/076504.shtml

  • 质谱技术在肿瘤蛋白质标志物研究中的应用与发展

    20世纪基因组学研究取得的巨大成就为蛋白质组学的发展奠定了基础。蛋白质组学是从整体水平上分析生命体、组织或细胞的蛋白质组成及其活动规律的科学,以基因表达产物为研究对象,延伸了基因组学研究深度,更深层次地揭示了生命活动规律。蛋白质组学的研究内容主要包括蛋白质表达存在方式(修饰形式)的鉴定、结构与功能分析、蛋白质定位、蛋白质差异表达以及蛋白质间相互作用分析等[1]。目前蛋白质组学研究技术主要包括:二维电泳技术、蛋白质芯片技术、质谱技术等[2]。其中,二维电泳技术是早期蛋白质组学的重要技术之一,但是由于实验步骤多,耗时长,重复性差等特点,已经逐步被新型技术所取代。蛋白质芯片技术是将多种蛋白质纯品点于芯片表面,形成蛋白质矩阵进行免疫等标记反应,主要受限于很多蛋白质无法获得纯品而不能用于芯片制备。质谱技术由于灵敏度高、特异性强、分析范围宽等优点逐渐成为蛋白质组学的主要研究手段,可以对特定生命过程中的功能性蛋白质分子进行定性和定量检测,因此在基础科研和临床研究中得到了广泛的应用[3,4]。一、基于质谱的蛋白质组学技术1.基于质谱的蛋白质组学定性技术:蛋白质定性鉴定的基本原理在于:蛋白质组的基本序列已经通过基因组学信息获得,可以用来鉴定多肽的氨基酸序列,并且获得多肽与蛋白质的对应关系[1],即质谱提供的多肽碎片数据可以与蛋白质数据库自动匹配来确定多肽序列与蛋白质归属。基本技术策略分为:(1)自上而下(Top–down)策略[5],即完整蛋白质在质谱中进行分析,可以提供完整蛋白质的质量数,但是由于质谱仪受到质量分析范围的限制,此方法在常规实验室不易实现。(2)自下而上(Bottom–up)策略[6],即蛋白质被蛋白酶水解成多肽,然后对多肽进行质谱分析和碎裂。基于这条策略的大致步骤为:蛋白质样品首先经过酶解降解为多肽,然后对多肽进行色谱–质谱分离与鉴定,最后通过搜索引擎(MASCOT:http://www.matrixscience.com/server.html, SEQUEST:http://fields.scripps.edu/sequest等)在公共蛋白质组学数据库(SWISS–PORT: http://web.expasy.org/groups/swissprot, NCBI:http://www.ncbi.nlm.nih.gov/pubmed等)中自动完成质谱数据的解析,确定多肽序列与蛋白质种类。该技术灵敏度高,特异性好,仪器自动化程度高,可以鉴定出生物样品中成千上万种蛋白质,被认为是大规模、高通量蛋白质定性检测的首选方法。2.基于质谱的蛋白质组学相对定量技术:对于大多数生命科学和医学研究来说,仅完成样品中蛋白质组的定性研究是远远不够的,还需要对蛋白质组进行定量分析。由于组学的研究对象是多个蛋白质,单次检测很难实现所有蛋白质的绝对定量,因此蛋白质组学定量多为相对定量检测。蛋白质组学定量的质谱技术包括谱图计数、质谱峰强度定量、同位素定量技术等。其中使用同位素作为内标定量的方法是目前质谱定量的最佳手段,即对整体蛋白质组进行同位素标记,并使用每一种天然蛋白质与同位素蛋白质的比值进行相对定量分析。主要分为细胞层面标记和蛋白质层面标记两种技术路线:(1)细胞层面标记的细胞培养氨基酸稳定同位素标记(stable isotope labeling with amino acids in cell culture,SILAC)方法[7]:即在两种细胞样品中分别加入轻重同位素标记的培养基,经过传代培养后,两种细胞样品中的全部蛋白质中分别嵌合了轻重同位素,可以在质谱上根据同位素的不同质荷比直接判断样品来源并进行定量比对。(2)蛋白质层面标记:使用含有同位素的小分子与样品全部蛋白质直接标记,如同位素标记相对和绝对定量技术(isobaric tags for relative and absolute quantification,iTRAQ)[8]、同位素编码亲和标记(isotope–coded affinity tag,iCAT) [9]、18O标记[10]等方法,此类方法使用带有稳定同位素的小分子与特定氨基酸侧链反应,使得多个样品可以分别连接含有不同同位素个数(多至8个)的小分子,从而产生一级数据相同但是二级数据不同的质谱谱图,通过二级谱图强度比对进行多个样品的定量分析。3.基于质谱的目标蛋白质绝对定量技术:质谱技术对目标蛋白质的绝对定量检测主要通过质谱多反应监控技术与同位素多肽内标技术联用来实现[11]。该方法首先选定目标蛋白质的一个或多个多肽,合成序列相同但含有稳定同位素的多肽作为内标,定量加入样品中,通过监测特定多肽及其同位素多肽的质谱峰强度进行比对和计算获得目标蛋白质的定量值。质谱多反应监控技术通过进行母离子筛选与子离子筛选等二次选择过程,筛选出目标蛋白质,而非目标蛋白质由于无法通过筛选达到检测器,极大降低了噪音干扰。因此,此方法针对性强,本底噪音低,是目前质谱技术中定量能力最好的一种,可以控制变异系数小于15%,检测限低至纳克每毫升,适合血液、组织等临床样品的定量检测[11]。二、质谱技术发现肿瘤蛋白质标志物质谱技术作为一项强有力的研究工具在科学研究中发挥着巨大的作用,特别在肿瘤相关研究中,目前已经获得美国食品药品监督管理局(Food and Drug Administration,FDA)批准的肿瘤标志物包括多种蛋白质前列腺特异性抗原(prostate–specific antigen, PSA), 癌胚抗原(carcinoembryonic antigen CEA), 人类表皮生长因子受体2(human epidermal growth factor receptor 2,Her–2), 人绒毛膜促性腺激素(human chorionic gonadotropin, HCG), 糖类抗原CA125等,均揭示了蛋白质与肿瘤发生发展密切相关。这些已有成果极大促进了质谱技术在肿瘤蛋白质标志物研究中的应用,并取得了标志性进展。例如:美国约翰霍普金斯大学的Chan课题组发现了新型卵巢癌蛋白质标志物,他们使用表面增强激光解析电离质谱技术(surface enhanced laser desorption and ionization time–of–flight mass spectrometry, SELDI–TOF MS)技术对503个妇女的血清进行了蛋白质组学的分析[12],在随后的大量临床验证中最终确定CA125、β2微球蛋白,转铁蛋白,甲状腺运载蛋白和载脂蛋白A1的联合检测可以作为卵巢癌的新型临床诊断指标。2009年9月该试剂盒OVA1(商品名称:http://ova–1.com)获得了美国FDA的认证,进入临床使用,被认为是国际肿瘤蛋白质标志物研究的重要标志性成果。同时,肿瘤仍然是国际上致死率最高的疾病之一,缺乏早期检测技术和有效治疗方案,临床中还存在着大量问题需要解决,新型标志物的研发迫在眉睫。由于肿瘤蛋白质标志物研究的难度大,风险高,因此近十年来仅有几例试剂盒获得了美国FDA批准,进入临床使用。大量标志物研究还停留在论文研究水平,其中临床问题、研究思路和技术方案的选择直接关系到研究的成功与否。1.临床问题选择:在肿瘤蛋白质标志物研究中,临床问题的选择是研究核心。在肿瘤研究中,需要解决的临床问题往往包括肿瘤早期检测、肿瘤分期检测、治疗方案与药物选择、疗效评估等多个方面。研究者需要根据不同肿瘤的临床情况,具体分析并凝练不同肿瘤的主要临床问题。例如,对于病程发展快、五年存活率低、没有有效手术或化疗手段的肿瘤,早期诊断是研究重点,如胰腺癌、卵巢癌、肺癌等;对于病程发展慢、手术效果明显的肿瘤,肿瘤的愈后与复发是需要关注的问题,如前列腺癌、肠癌等;还有一些肿瘤有特殊的检测需求,如乳腺癌虽然有临床有效的雌激素受体(estrogen receptor,ER),孕激素受体(progesterone receptor,PR),HER2等基因标志物,可以进行药物靶点治疗,但是三阴性乳腺癌的检测还缺乏有效的标志物与治疗方案。因此,在肿瘤蛋白质标志物研究实验开展之前,明确临床问题,并以此确定临床样品入组标准,是研究成功的核心基础。2.研究思路设计:不同于基础科学实验,临床实验需要在大量样本中进行实验结果的验证,因此肿瘤蛋白质标志物研究往往包括新型标志物发现和验证两部分。标志物发现实验是在疾病组和对照组之间进行蛋白质组学分析,鉴定样本中的未知蛋白质组并进行相对定量比较,分析数据选择出在两组样本中差异最大的一个或几个蛋白质作为新型标志物的候选物。随后,标志物验证实验在大量未知样本中进行蛋白质候选物的定量检测,使用发现实验中建立的区分标准进行判读,计算检测灵敏性(sensitivity)和特异性(specificity)。有效的蛋白质标志物研究往往需要发现与验证的两步设计思路来相互保证。3.技术方案选择:根据蛋白质标志物研究的两步设计思路,发现实验中使用基于质谱的蛋白质组学定性技术与相对定量技术对样本中的大量未知蛋白质进行分析,获得标志物候选物名单。验证实验中根据已有名单,进行目标蛋白质(非蛋白质组学)的精确定量检测。这几种质谱技术的配合使用,可以满足不同实验情况和目的,最终实现新型蛋白质标志物的成功研发。三、展望质谱技术是现阶段蛋白质组学研究的核心技术,具有灵敏度高、特异性强、分析通量大等优势,特别是其与同位素内标的联合使用,大大提高了质谱定量能力,因此在多种肿瘤标志物研究中取得了突破性进展并被广泛应用。目前,大量肿瘤蛋白质标志物候选物已经通过使用质谱技术被从血液、组织、体液中筛选出来,预计在完成大规模临床验证后可以作为新型标志物在临床使用,促进肿瘤检测水平的发展。同时值得注意的是,质谱技术还不具备进行蛋白质组的绝对定量能力。相对于免疫等传统蛋白质检测技术,仪器昂贵,操作复杂,自动化程度低,这些因素决定了质谱目前适用于蛋白质的临床研究,但不适用于蛋白质的临床检验,这是质谱技术面临的重要挑战之一。参考文献[1]何华勤. 简明蛋白质组学[M]. 北京:中国林业出版社, 2011:1,76,85-95,119,125-138.[2]RuediA, MatthiasM. Mass spectrometry-based proteomics[J]. Nature, 2003, 422(13):198-207.[3]甄艳, 施季森. 质谱技术在蛋白质组学研究中的应用[J]. 南京林业大学学报:自然科学版, 2011, 35(1):103-108.[4]孙瑞祥, 付岩, 李德泉,等. 基于质谱技术的计算蛋白质组学研究[J]. 中国科学E辑信息科学, 2006, 36(2):222-234.[5]WhiteleggeJ,HalgandF,SoudaP, et al. Top-down mass spectrometry of integral membrane proteins [J]. Expert Review Proteomics, 2006, 3(6):585-596.[6]ChaitBT. Mass spectrometry:bottom-up or top-down? [J]. Science, 2006, 314(5796):65-66.[7]TranDT, AdhikariJ, FitzgeraldMC. StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions [J]. Mol Cell Proteomics, 2014,13(7):1800-1813.[8]DytfeldD, KandarpaM, StrahlerJR, et al. Proteomic Profiling of Multiple Myeloma (MM) Cells Using iTRAQ and Label-Free Quantitative Proteomics for the Prediction of Complete or near Complete Response (CR/nCR) In Frontline Treatment with Lenalidomide, Bortezomib, and Dexamethasone [J]. Blood, 2010, 116(21):271-272.[9]García-SantamarinaS, BoronatS, DomènechA, et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry [J]. Nat Protoc,2014,9(5):1131-1145.[10]MirzaSP, GreeneAS, OlivierM. 18O labeling over a coffee break:a rapid strategy for quantitative proteomics [J]. J Proteome Res, 2008,7(7):3042-3048.[11]曹冬, 张养军, 钱小红. 基于生物质谱的蛋白质组学绝对定量方法研究进展[J]. 质谱学报, 2008, 29(3):185-190.[12]ZhangZ, BastRC, YuY,et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer[J]. Cancer Res,2004,64(16), 5882-5890.

  • 中美临床质谱发展现状比较

    近年来,随着质谱技术的快速发展,离子源技术及质量分析器技术的变革,质谱仪器设计的快速改进,使得质谱仪成为化学分析领域尤其是 生命科学领域非常有效的一种分析工具。  得益于质谱技术的发展,过去几十年来,许多临床检测实验室已经陆续引进 质谱技术,因为与传统的检测方法相比,质谱技术具有高灵敏度、高特异性和高准确度的特点。质谱技术在临床检验中的应用,主要涉及临床生化检验、临床免疫学 检验、临床微生物检验以及临床分子生物诊断等方面。在临床生化检验领域,由于串联质谱技术的高特异性、高准确度、高灵敏度、高简便性、线性范围宽及高通量 的优点,逐渐取代了部分传统的检测方法,使得生化检验结果更加准确可靠,对临床诊断的参考意义进一步提升 检测方式不再是一次分析只针对一种代谢物、一种 疾病,而是一次分析可针对多种代谢物、多种疾病。正是由于质谱技术在生化检验中的优异表现,进一步促进了质谱技术在临床检验中的迅速发 展。  在美国,临床质谱技术已经发展得相对成熟,服务于临床检测的项目已达400余项 涉及产前检查、新生儿筛 查、滥用药物监测、代谢物检查(氨基酸、脂肪酸)、类固醇激素检测(内分泌)、维生素族检测以及微生物鉴定等领域。同时,在蛋白组学研究方面,也正在研究 如何从科研转化到临床应用。  临床质谱技术在美国的成熟发展,离不开上下游供应产业的成熟发展和行业协会的推 动。在美国,较大型的质谱公司如SCEIX、Thermo Fisher、Agilent等不仅能提供质量较高的检测仪器,而且都积极配合临床质谱的发展,不断更新升级自身的软硬件设备及应用支持服务,使得质谱技 术在临床的应用获得强大的后盾支撑。同时,为了汇聚检验领域专家,共同促进行业对临床质谱分析的关注和理解,促进质谱成为健康管理的便利工具,2008 年,由David Herold教授等人在美国圣地亚哥发起举办了第一届Mass Spectrometry: applications to the Clinical Lab(MSACL),即质谱在临床实验室的应用会议。会议以其高度的专业聚焦性受到了业界人士的广泛欢迎。会议宗旨是为质谱的临床应用发展研讨提供专业 的交流平台,专注专业的行业聚焦型会议,促进了行业人才的培养,加快了行业信息的流通,提高了新技术、新应用的普及率,很好地推动了质谱技术在临床检验实 验室的发展。  当然质谱技术的发展除了其本身发展和应用的良好推广与实践外,更离不开行业政策环境的支撑。在美 国对临床质谱技术采用了有效兼顾监管和鼓励创新的LDT (Laboratory Developed Test)模式。在此模式下,只要是有临床实验室改进修正案(CLIA)执照的实验室,其研发的产品和技术服务就可以合法进入临床,合理收费。实验室取得 CLIA标准相关认证后,检测结果即可用于指导临床诊疗。该管理方式自实施以来,得到了患者、医院、第三方临检中心、保险公司的广泛认可,目前美国有近 25万个CLIA实验室。美国临床病理学会(ASCP)对LDT定义为:实验室内部研发、验证和使用,以诊断为目的的体外诊断实验。LDT仅能在研发的实 验室内使用,可使用购买或自制的试剂,但这些试剂不能销售给其他实验室、医院或医生。LDT的开展不需要经过FDA的批准。正是这种有效兼顾监管和鼓励创 新的LDT模式,极大地促进了美国质谱技术在临床应用中的快速发展。  在中国,临床质谱技术属于较年轻的检测方 法,临床应用还处于起步阶段,少量第三方医学检验机构和大城市的三甲医院开展了利用质谱为手段的检测项目,数量十分有限,应用广度和深度远不如美国。在中 国临床质谱应用方面,以金域检验为代表的机构中,临床质谱的主要应用涉及新生儿筛查、药物浓度监测、代谢物检查(氨基酸、脂肪酸、胆汁酸)、类固醇激素检 测(内分泌检测)、微量元素检测、维生素族检测以及微生物鉴定等领域 检测项目数量有限,开展数量较多的金域检验公司也仅70余 项。  中国的质谱市场上,仪器设备几乎被国外公司垄断,市场上应用较多的为SCIEX、Agilent、 Waters、Thermo Fisher、Shidmazu、Bruker等公司的产品 国产质谱仪器主要在部分研究机构有应用,距离实际的生产应用普及还有很大的距离。这一现状, 导致了中国的临床质谱的投入成本较高、技术支持服务有限,一定程度上限制了技术的发展。  在行业政策环境方面,中国除香港外,没有开放的CLIA监管机制,也无明确的LDT政策。我国许多专家学者呼 吁,中国应该借鉴美国的管理模式,允许LDT项目,实现临床实验室检验结果的质量保证。这样既能控制风险,又能加速新技术的临床应用。在行业协会方面,非 常认可LDT项目,并在积极推动中国LDT项目的发展。2014年3月7日,上海医学会举行了“部分基因和质谱检测的实验室自建项目(LDT)的研讨 会”。在会上,上海市卫计委医政处、规财处和发改委领导均对LDT 开展表示支持,鼓励医院在保证质量的前提下,开展LDT项目试运行。上海医学会表示愿意作为学术平台,为政府机关和临床专家搭建沟通平台,希望在有关政府 机构的支持和监督下,规范而又稳步推进LDT项目,促进个体化诊疗的发展。  在中国香港,由于LDT项目的开 放,临床质谱技术得到了很好的发展。质谱技术的高准确度、高灵敏度、高特异性以及低成本等特点,促使了香港很多检验机构已经用质谱技术完全替代了放射免疫 技术,用于临床检测服务 越来越多的免疫学方法项目也在逐步被临床质谱检测项目所替代。CLIA监管模式下的LDT项目的开放,是质谱等年轻技术发展的推 动力,希望中国能尽快形成LDT的氛围,促进临床质谱等新技术的发展。  当然,中国临床质谱技术的发展,也受限于技术本身的局限性。这些局限性表现在几个方面,第一,临床质谱技术相较于传统免疫学技术:仪器自动化程度低,仪器 数据不能直接转化为可读数据,对技术人员的操作能力和专业数据处理能力要求高 第二,质谱仪器厂商的应用支持欠缺,也加大了对技术人员的要求,需要技术人 员具备较强的仪器使用与维护能力 第三,质谱技术本身属于高精尖技术,技术复杂程度较高,即使是化学领域的专业人才,也需要经过长期的培训和实践,才能掌 握。所以技术的复杂性对医学检验行业的技术人员是很大的挑战。正是基于技术局限性对人员的依赖和高要求,所以技术的发展渴求高水平、大批量的专业技术人才 的涌现。目前,在中国没有专门的临床质谱人才培养方案,也无专业的临床质谱行业协会或培训交流会议,临床质谱行业人才匮乏。这种人才匮乏的现状,也在一定 程度上限制了临床质谱技术的应用和普及。针对此种现状,一方面中华医学会检验分会,对临床质谱技术的聚焦呼之欲出,另一方面需要各界社会力量集聚、积极筹 备相应的培训交流会议。  综合以上的中 美临床质谱发展的现状,中国的临床质谱行业较美国还有很大的差距。行业的发展,离不开有关部门、行业组织的多方推动。我们希望,中华医学会检验分会、质谱 仪器厂商、医院检验科、第三方医学独立实验室以及有关监管部门,共同联动,一起推动中国临床质谱行业的发展。我们也期待,在不久的将来,临床质谱技术能更 好、更广泛的为医学检验服务,让检验结果更加准确、快速、有效,造福病患。

  • 【原创大赛】临床质谱发展探索-质量管理系统化

    [align=center][font=宋体][size=14.0pt]临床质谱发展探索-质量管理系统化[/size][/font][/align][font=宋体][size=12.0pt]近年来,各种检验新理论和新技术不断涌现,极大地推动了临床检验学科的发展。液相色谱串联质谱(liquid chromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体。[/size][/font][font=宋体][size=12.0pt]而在临床质谱发展探索的道路上,质量管理标准的系统化尤为重要。在质量管理实践中,我们可大致划分为以下几个方面:[/size][/font][font=宋体][size=12.0pt]1.[/size][/font][font=宋体][size=12.0pt]人员管理:人员履历,培训计划,能力评估,操作考核。[/size][/font][font=宋体][size=12.0pt]2.[/size][/font][font=宋体][size=12.0pt]仪器管理:仪器验证,定期维护,使用记录,维修验证。[/size][/font][font=宋体][size=12.0pt]3.[/size][/font][font=宋体][size=12.0pt]耗材管理:试剂盒,标准品,样品处理耗材,色谱柱。[/size][/font][font=宋体][size=12.0pt]4.[/size][/font][font=宋体][size=12.0pt]方法开发验证:色谱质谱条件,性能验证。[/size][/font][font=宋体][size=12.0pt]5.[/size][/font][font=宋体][size=12.0pt]环境要求:电源,气体,温度,湿度,通风,降噪等。[/size][/font][font=宋体][size=12.0pt]6.[/size][/font][font=宋体][size=12.0pt]日常质控:标准曲线,质控,积分标准,结果报告。[/size][/font][font=宋体][size=12.0pt]7.[/size][/font][font=宋体][size=12.0pt]质量保证:EQA,日常稽查,运行后质量监测。[/size][/font][font=宋体][size=12.0pt]质量体系是组织和落实有物质保障和有具体工作内容的有机整体。包括了人力物力管理、组织机构管理、职责权限管理和程序活动管理。其中组织机构管理,由上至下的管理分布为:临检负责人,质量保证人员,分析测试人员,样品处理人员,质量控制人员和质检管理员。人力物力包括了资质,培训,数量,休假;设施,环境,仪器,试剂,标本等。程序活动包括了SOP,仪器日志,操作记录,SOP的管理和执行,要求是清晰易懂,符合实际和便于查阅。职责权限则是分为质量控制人员职责QA和质量保证人员职责QC。[/size][/font][font=宋体][size=12.0pt]仪器管理遵循3Q验证,IQ安装确认,OQ运行确认,PQ性能确认。周期性验证,季度验证,年度验证。[/size][/font][font=宋体][size=12.0pt]周期性的QA程序。质谱仪PPG校正(每3个月),液相色谱流速、进样量、温度较正(每年度),气压,整机性能验证(每年度)。仪器之间的相关性(每6个月),新色谱柱验证(至少5个样品),QC、校准品、试剂、流动相批次更换(实验室根据自身情况确定验证数量),正确度验证,采用可溯源的物质,推荐每半年一次。数据审核,包括样品编号,进样批次,原始数据,报告审核等。[/size][/font][font=宋体][size=12.0pt]今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习![/size][/font]

  • 【原创大赛】从质谱技术的革新谈方法创新与分析仪器发展——清华大学化学系张新荣教授讲座后感

    【原创大赛】从质谱技术的革新谈方法创新与分析仪器发展——清华大学化学系张新荣教授讲座后感

    前阵子参加了一个巨空洞的创新方法的会议,但听到了清华大学化学系张新荣教授的报告,感觉还挺有收获,也算不虚此行。张教授的报告题目是“谈方法创新与分析仪器发展”,听上去似乎很空,但是,张教授讲得非常生动,举了很多富有启发性的例子,非常适合搞仪器研发的人看看。  一、方法创新是分析仪器发展的源泉  以质谱仪器研究为例,阐述了方法创新与分析仪器发展的关系。  张教授说,质谱仪器的发展与分析方法的进步密切相关。质谱仪器诞生以后,经历了多次技术革新与革命,这些革新与革命相当程度上是由于分析方法的发展而产生的。  质谱仪器本身并不复杂,主要由离子源、质量分析器和检测器组成,现在大家做工作最多的是离子源和质量分析器。EI→CI:引入反应气体  最早的气质,用的是电子电离源(EI),EI源结构简单具有很大的优点,能量很高,能够把分子打碎,从而分析分子结构。但是成也萧何败萧何,EI源的能量太高了,如果许多分子进入质谱,都被打碎了,那么就会造成混淆。为了避免这个问题,只能再给质谱配一个色谱,先实现分析,让分子一个一个进入质谱。加了色谱以后,仪器在小型化方面就实现起来比较麻烦。 这样人们就做了改进,于是单程了化学电离源(CI)。CI源其实也很简单,就是在EI源的基础上,引进反应气如甲烷,灯丝发出的电子先将反应气电离,然后反应气离子与样品分子M进行离子-分子反应,并使样品分子M电离。这样CI源的能量就不会太高。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291620_342440_1622715_3.jpg就是引入一个反应气体,这么简单的一个方法,就改进了质谱的性能,现在CI源广泛的应用在质谱仪器上。CI→PTR:用水蒸气替代甲烷 CI源还不够好,因为要用到甲烷,甲烷是一种高危险的气体。所以后来奥地利的科学家用水蒸气替代甲烷,辉光放电,水蒸气变成了H3O+,反应物再跟H3O+反应,生产MH+在进行检测。这就产生了质子转移反应电离源(PTR)。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291620_342441_1622715_3.jpgPTR只与空气中有机物分子反应,生成(M+1)+,不与空气中氮,氧,氢等无机分子反应,特别适合于空气中VOC等污染物的测定,灵敏度高,相比于EI源提高了100-1000倍。Ionicon Analytik 的PTR-MS仪器使用一种软离子化技术,这种技术是将H3O+ 中的质子传递给被研究的样品中所有质子亲合力大于水的化合物。常见的空气成分如N2 ,O 2 ,Ar,CO 2 等,其质子亲和力都小于水,不能和H3O+ 发生质子传递反应,因此完全不会干扰反应腔中痕量化合物的检测和定量。 该技术对痕量化合物检测的最低检测限达到几个pptv。软离子化技术在离子化过程中将分子裂解降到最低,大大地提高了质谱图的判断和解析。同时具有飞行时间质谱的很高的质量分辨能力(8000)。清华大学建筑系卖了一台,17万美金,相比于气质的7-8万美金,提到了约10万美金。ICP-MS:DRC技术是如何发展起来的?最高的ICP-MS是PE做的,为什么他们做得好呢?因为采用了动态反应池(DRC)技术。四极杆的ICP-MS有一个问题,就是多原子离子的干扰,比如说砷的原子量是74.9216,而ArCl+的分子量是74.9312,两者质量数差得很小,如果要将二者分开,那么质谱的分辨率要达到7800。而PE采用DRC技术,即在ICP上开一个小口,注入一定的反应气体,比如使用DRC测定水样中不同形态的铬和砷,由于氧气易与As+反应形成AsO+(m/z 91),从而不受ArCl+和CaCl+ 对质荷比为75时的干扰;氧气同时也能够减少ArC+对质荷比为52 的Cr+的干扰。有了DRC技术以后,PE的ICP-MS就迅速的卖开了。现在其他的厂商都有了类似的专利技术。仔细思考一下就是这么简单,只是注入了一种气体而已,就能达到这么好的效果。那么现在,我们中国也在做ICP ,我们怎么解决这个问题?现在那些公司都有专利,而且最近几年都不会过期,如果在这个方面没有专利,那么ICP就很难有突破了。DESI、DART、MALDI、ESI的技术发展缘起类似的还有DESI ,这是2004年普渡大学的库克斯教授发明的,DESI只是在电喷雾的基础上做了一些改进,将电喷雾的喷头往下转,将电喷雾的气溶胶先打在样品上,然后再对样品进行测量,这样一下子就把固体表面的样品分析的质谱问题给解决了,就这么简单了,然后库克斯教授在《科学》杂志上发了一篇论文,并在他在普渡大学的小工厂里进行生产,现在再给各个厂商的质谱配套。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291622_342443_1622715_3.jpgDESI还是有些技术缺陷,就是有些样品不太容易拿溶剂来做,如果喷上溶剂,样品就损坏了。日本电子公司,就采用等离子体替换了溶剂,这就有了DART源。原理非常简单,成本也很低,但是现在卖得很贵,也很受欢迎。田中耕一发明基质辅助激光解析附离子源(MALDI),其原理也非常简单。MALDI技术没有做出来之前,daojin的激光TOF早就出来了,但是只卖了2台,还基本上是送给别人用的,别人还不想要。但田中耕一的这项技术出来后,全世界的蛋白质组学都得用岛津的仪器了,daojin一下子就起来了。电喷雾离子源(ESI)技术就是John B Fenn将光谱学的技术运用到质谱上,从而解决了质谱测量蛋白质组学测量的问题,现在技术所有的LC-MS都采用ESI源,相关仪器的发展全部都起来了。从下图可以看出各种例子源的市场情况,ESI源已经占绝对优势了。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291622_342444_1622715_3.jpg(横轴是市场份额大小,纵轴是年份,从上到下是指从1970年至2009年)小结1:上述创新概念不是仪器设计与制造专业的专家或工程师提出的,相反都是由具有分析化学背景的学者提出来的,且他们最初的研究都属于分析化学方法学研究。因此,分析方法创新是分析仪器创新的重要源泉,这是分析仪器制造这门专业的独特性质决定的;小结2:上述新技术大都成就了一种新的分析仪器的产业化,特别是MALDI和ESI-MS,已经成为质谱分析仪器最具市场覆盖度的商品。但是,上述技术没有一项对精密加工提出太高的要求,虽然电喷雾取决于高压电源,MALDI取决于激光技术,而这些技术都是很成熟的。因此,我国分析仪器落后的原因并不是精密加工技术落后制约的,缺少创新思想是我国分析仪器真正落后的原因。小结3:上述成果有的是大学教授完成的,如ESI、DESI、PTR,有的是在公司内部的研究所完成的,如MALDI与DART,因此,分析仪器的创新没有以谁为主体的问题,任何人、任何单位、包括大学、研究所、公司都能够成为创新的主体。但是,有一点是共同的,即分析仪器创新都是由需求产生、由方法创新起步,产学研共同协作完成的。因此,调动所有与分析仪器应用部门、研究部门、产业化部门等各行各业的积极性,在一个政府搭建的平台上进行有效地合作,才能形成一个国家分析仪器不断创新的基础。二、方法创新到仪器产业化的中间环节 美国小型创业公司常常承载将新仪器技术产业化这一功能,我们呢? ICP-MS的DRC技术最初是由加拿大多伦多大学的Scott Tanner教授发明的,他当时刚博士毕业,在他老板开的Sciex公司中工作,并发明了这项技术。PE公司首先看到了DRC技术的市场前景,并购买了Sciex公司,并开始批量生产,并引发了ICP-MS技术的革新浪潮。最近Tanner后来又成立了DVS Sciences ,从事ICP-MS的免疫分析相关技术的研究,取得了一定进展,并将相关技术做成了仪器。他相信,还会有公司将他的发明与他的小公司仪器买走。毫无以为,科学家们像老母鸡一样,不断的“下蛋”,不断将这些小公司推出去,不断的研发仪器,并在市场上进行试探。即便失败了,也会因为有国家的扶持而不会处境非常艰难。这样购买该技术的大公司风险不大。但在中国,国家支持的都是一些基础研究的实验室,没有成果转化的动力。美国——运行以国家与企业经费共同资助的小公司。 中国——政府资助的重点实验室或工程中心?我们缺少一个把分析方法转化为样机的研发平台。三、中国分析仪器创新与发展的几点思考◆ 分析方法创新非常重要,应大力提倡(创新方法研究很有意义);◆ 大的创新都是由小分析方法的进步引发的,因此,在支持大项目研究的同时,应注意支持小项目的研究;分析仪器的诺贝尔奖某种意义上当初都被看做是小项目;◆ 要加强仪器研究条件平台的建设。◆ 由于中国的仪器公司目前不具备建立大而强的研发队伍的实力,政府应该承担起组织和支撑这类研发团队的义务。•改变单纯依靠项目资助的现状,在全国设立若干产学研结合的仪器研发中心,政府给与持续的财政支持,企业牵头但考核的并行标准是技术创新与

  • 【资料】质谱的发展历程

    【资料】质谱的发展历程

    [img]http://ng1.17img.cn/bbsfiles/images/2010/04/201004152158_212569_1604723_3.jpg[/img][size=2]上表摘自 复旦大学化学系 生物质谱仪器和技术开发实验室 网页。[/size]

  • 实验室分析仪器--质谱仪的定义、发展历史、种类及应用

    质谱定义  质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。  发展历史  从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源,以及随之而来的比较成熟的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。  质谱种类  质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类:  有机质谱仪:由于应用特点不同又分为:  ① [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])在这类仪器中,由于质谱仪工作原理不同,又有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-四极质谱仪,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-飞行时间质谱仪,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-离子阱质谱仪等。  ② [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])同样,有[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-四器极质谱仪,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-离子阱质谱仪,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-飞行时间质谱仪,以及各种各样的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱-质谱联用仪。  ③ 其他有机质谱仪,主要有:基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS),富立叶变换质谱仪(FT-MS)  无机质谱仪,包括:  ① 火花源双聚焦质谱仪。  ② 感应耦合等离子体质谱仪([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])。  ③ 二次离子质谱仪(SIMS)  但以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪,而称为快原子轰击质谱仪(FAB MS)。另外,有的质谱仪既可以和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]相连,又可以和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。  除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪、四极杆质谱仪、飞行时间质谱仪、离子阱质谱仪、傅立叶变换质谱仪等。  质谱技术的应用  近年来质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。  质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]进行分析,因为[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]使用EI源,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。如果在300℃左右不能汽化,则需要用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析,此时主要得分子量信息,如果是串联质谱,还可以得一些结构信息。如果是生物大分子,主要利用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]和MALDI-TOF分析,主要得分子量信息。对于蛋白质样品,还可以测定氨基酸序列。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。双聚焦质谱仪,傅立叶变换质谱仪,带反射器的飞行时间质谱仪等都具有高分辨功能。  质谱分析法对样品有一定的要求。进行[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析了。进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。对于极性样品,一般采用ESI源,对于非极性样品,采用APCI源

  • 气相色谱仪未来有多大的发展前景?

    目前,国内外从事分析行业的人员越来越多,分析仪器的研发与应用也呈现火热的上升趋势。色谱也成为分析行业里应用最为广泛的仪器,市场竞争力非常激烈,仪器厂商都在研制功能性更强更全面的色谱仪器,但是未来十年,二十年,几十年之后,色谱仪器会有怎样的发展前景呢? 现在,很多仪器研发厂家也逐渐由制造仪器为解决某领域应用而将方法与仪器销售而努力,这也反映了世界范围内仪器销售的趋势。但有些公司的发言人认为气相色谱仪的市场总体上还是比较低迷的,一些带有多检测器的气相色谱仪逐渐被气相色谱-质谱仪所取代,因为两者价格相差不大。很多实验室都换了气相色谱-质谱仪,而单独的气相色谱数量在减少。有些专家统计,五年前每10台气相色谱仪有1台气相色谱-质谱仪,而现在每3台气相色谱仪就有1台气相色谱-质谱仪。但是,市场替代不一定是坏事,在短期内除气相色谱-质谱仪外,没有一项技术能够取代对气相色谱仪的需求,即使是液相色谱-质谱仪也不能取代气相色谱仪的常规应用。 至少对于国产色谱仪器,无论从性能开发和市场销售,都是有可观的发展空间。目前,国外一些厂家的仪器占据了市场相当大的一部分,如岛津、安捷伦、PE、Agilent等等。同时,我们也看到了国内一些厂家的成长,如RIGOL是业界领先从事电子测量仪表的厂家,在延伸到液相色谱仪器研发方向也取得了不错的成绩,L-3000液相色谱仪一上市就得到了很高的评价。普析通用也逐渐成为国内厂商的大牌,在气相色谱领域做出了不小的成绩。还有很多国内厂家都在参与到激烈的市场竞争中。 我们眼前能做的,就是跟进当前仪器发展步伐,几十年之后发展前景,我们拭目以待。

  • 朱一心先生“揭秘”世界首台封闭可调气氛电喷雾离子源:国内质谱应在“歪门邪道”中寻发展

    朱一心先生“揭秘”世界首台封闭可调气氛电喷雾离子源:国内质谱应在“歪门邪道”中寻发展

    自80年代中期,John B.Fenn将电喷雾离子源应用于大分子质谱分析以来,全世界成千上万的科学家涌入了这一研究领域,质谱离子源作为质谱仪器的核心技术之一近年来得到了专家和仪器公司的重视,各大仪器公司也纷纷投入资金改进或者研发,如AB SCIEX的Trubo V、沃特世的ZSpray等2012年1月9日,受浙江好创生物技术有限公司最新研发成功的“封闭可调气氛电喷雾离子化源”通过了技术成果鉴定。http://ng1.17img.cn/bbsfiles/images/2012/05/201205091006_365765_2439370_3.jpg封闭可调气氛电喷雾离子源外观照片作为“封闭可调气氛电喷雾离子源”的领军人,朱一心先生如何看待离子源的技术现状及未来发展趋势?封闭可调气氛电喷雾离子源有什么样的技术优势?应用前景及产业化进程如何?浙江好创在离子源及质谱的研发道路上又有什么样的发展规划?基于此,仪器信息网编辑采访了该项技术的持有者——浙江好创生物技术有限公司董事长朱一心先生。据朱一心先生介绍说:“通过离子源研究得到的启发,我认为国内的质谱要发展就得找一些“歪门邪道”,在成熟的理论中寻找“偏门”,找专家没想到的领域,这是我的中心思想。我们只做他们不想做或者没有做过的事情,再就是专家已经做过,但没有达到理想结果的项目”。你如何看待离子源的技术现状及发展趋势?质谱仪器的关键技术有哪些?对中国质谱的发展您有什么样的建议?更多精彩内容见专访:朱一心谈离子源技术发展及其最新研制成果——访浙江好创生物技术有限公司董事长朱一心先生http://www.instrument.com.cn/news/20120508/077764.shtml

  • 一文了解质谱技术在检验医学领域的发展现状与未来展望

    2008年,PUBMED数据库中以"mass spectrometry"为关键词的文章量已超过1万篇/年,近十年来明显呈逐年攀升的趋势。目前常用于临床诊断领域的质谱技术包括[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)、四极杆[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱和[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])等。  早期质谱技术主要用于同位素测定和无机元素分析。随着技术的进步,其应用涵盖了石油工业、化学工业以及有机物分析等领域。  20世纪60年代,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联合质谱模式的出现使得质谱技术首次进入生物医学领域。20世纪70年代末,随着大气压电离技术的成功研发和日趋成熟,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱(liquid chromatography-mass spectrometry,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])模式以高灵敏度、高分辨率和高准确性等特点,深受科研人员和临床检测的青睐。  20世纪80年代,快原子轰击、电喷雾和激光辅助解吸等"软电离"技术的发展,使生物大分子转变成[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子成为可能,更适合蛋白质、酶、核酸和糖类等生物大分子聚合物的检测,大大拓宽了质谱技术在生物医学领域中的应用。  1994年美国《分析化学》杂志登载的相关综述中宣布"生物质谱学的时代已经到来"。  质谱检测技术在国外医学检验领域的应用概况  欧美发达国家最早将质谱技术引入医学检验部门,发展相对成熟。目前,服务于临床诊疗的质谱检测项目已达400余项,主要涉及临床化学、临床免疫学以及临床微生物鉴定等领域,亦被用于建立临床化学检测项目的参考测量程序和研制参考物质。随着临床对个体化和精准化医疗需求的增加,基于质谱技术的基因组学、蛋白组学、代谢组学等研究成果正不断转化至临床实践。最近全自动化的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析仪器问世,这将大大推动质谱分析技术在医学检验领域更广泛应用。  1、质谱技术在临床微生物中的应用  临床微生物检验在感染性疾病诊断、用药指导、医院感染控制、抗菌药物管理等多方面均扮演着不可或缺的角色。基于表型的传统微生物鉴定方法,包括革兰染色、微生物培养和生化试验等,因检测同转时间较长、方法敏感性欠佳,影响病原微生物鉴定的速度和准确性,一定程度上影响了感染性疾病早期的诊疗。  得益于快速、准确、灵敏、自动化及高通量等优势,质谱技术在微生物领域的应用范围越来越广,已用于多类型样本中细菌和真菌的直接鉴定,并在微生物耐药性分析、分型和毒力研究等方面也已显现成效。在欧美等发达国家,质谱技术已在临床微生物实验室逐渐得到普及,在很大程度上取代传统微生物鉴定方法服务于临床诊疗。  质谱技术对微生物的精准鉴定和分析基于已建立的微生物胞膜蛋白质、脂多糖、核酸等的指纹数据库。根据数据库的不同,微生物鉴定结果有所差异。近年来,欧美发达国家致力于完善商业化的鉴定数据库,如Mayo Clinic Custom MALDI-TOF MS数据库目前已经囊括1 599个质谱词目,包括了商业数据库中未入库的微生物数据。  2、质谱技术在检测标准化中的应用  质谱技术常作为参考方法,用于建立参考测量程序和为校准品赋值。1974年,Siekmann等最早建立了采用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱技术的检测醛固酮的参考方法,此后采用质谱技术的参考方法的扩展至检测非肽类激素、代谢物和某些底物等方面。  1997年,国际物质量咨询委员会(CCQM)将同位素稀释质谱原理定为一级(基准)测量原理之一,自此基于同位素稀释质谱原理的方法在生物和临床化学溯源性和标准化研究中受到重视。截止2015年,JCTLM公布的79个分析项目中,有近一半的参考测量程序采用的是[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术,主要用于药物、代谢物和底物、非肽激素、蛋白质和维生素和微量营养物项目检测。质谱技术为医学检验标准物质的研制提供了技术保障,是目前临床检验参考方法的最佳选择。  3、质谱技术临床应用的规范化  2007年CLSI首先发布C50A Mass Spectrometry in the Clinical Laboratory文件,内容主要涉及质谱技术在临床检验部门开展的总体原则,但未提供方法开发、确认和质量评估等方面的参考。  2014年CLSI出台C62-A Liquid Chromatography-Mass Spectrometry Methods指导文件,阐述仪器常规使用和方法开发前所需考虑的要点,提出了方法研发、性能预确认、性能确认、质量评估和实施后监测的最佳方案,旨在为临床检验部门提供全面、普适的方法开发和确认路径框架,使质谱的检测性能符合临床应用需求。标准化指南文件引导美国质谱分析技术的临床应用步入科学规范的发展之路。  质谱检测技术在我国医学检验领域的应用现状和未来发展  1、我国质谱检测技术的应用现状  我国临床医学检验部门的质谱技术应用处于起步阶段,无论是数量还是种类都与欧美等发达国家相距甚远。仅有少量第三方医学检验机构和三甲医院开展质谱技术相关的临床检测项目,且大多仅作为临床研究,无法满足临床个体化和精准化诊疗日趋增长的需求。专业人才的稀缺,方法建立和性能评价经验的匮乏,临床应用指南和管理政策的缺失,以及临床转化研究的欠缺,这些都严重阻碍质谱技术转化至临床实践。  对于我国临床检验部门现状而言,质谱技术临床应用的发展需求远重于监管需求。如何满足日益增长的临床需求,鼓励质谱技术在医学检验中得到科学普及和规范应用是我们需要考虑的问题。  2、我国质谱检测技术的发展  专业人才培养是医学检验部门迎接质谱检测时代来临的基础。不同于临床常规检测,质谱技术专业人才需经过长期培训、临床实践和经验积累,医学检验部门应在引入质谱技术前充分重视专业人员的培养工作。目前国内临床医学检验部门缺乏大量有经验的质谱技术专业人才,这严重制约了质谱技术快速转化至临床实践。  我国医学检验部门对质谱检测新项目建立和方法性能评价的经验相对不足,大多参照国外文献和少部分国内经验进行方法学建立、性能评价、设立评估标准和质量管理。这种自我管理模式为内部质量管理和外部标准化带来巨大挑战,因此亟待我国相关部门出台针对质谱相关的临床实践指南以规范质谱临床检测。  国内不同医学检验部门间技术水平与服务能力参差不齐,人员素质和检测系统存在显着差异,若放松对质谱技术临床应用的监督和管理,任其恣意发展,最终带来的只能是"乱象"。而直接参照美国FDA的监管设想则将可能极大阻碍我国质谱技术在医学检验领域的发展。  在商品化检测方法正式投入临床使用前,厂商会招募正常人群、疾病对照组以及疾病组以建立和验证检测方法的正常人参考范围,设立适当人群的医学决定水平。  3、质谱检测技术的应用前景  个体化和精准医疗的发展在很大程度上依靠准确可靠的检测结果,尤其高新检测技术(例如质谱技术)。质谱技术的临床应用成果在临床生化检验、临床免疫学检验、临床微生物检验以及临床分子生物诊断等领域中已开始显现成果,成为临床常用检测技术的一种重要技术。质谱技术的临床应用前景广阔。我们应该满怀热情地欢迎质谱技术进入医学检验领域,科学积极地推进质谱技术的临床应用,为临床医疗决策提供更加精确可靠的结果和信息。

  • 【原创大赛】临床质谱发展探索-方法验证规范化

    [align=center][size=14.0pt]临床质谱发展探索[/size][font='Times New Roman',serif][size=14.0pt]-[/size][/font][size=14.0pt]方法验证规范化[/size][/align]近年来[font='Times New Roman',serif],[/font]各种检验新理论和新技术不断涌现[font='Times New Roman',serif],[/font]极大地推动了临床检验学科的发展。液相色谱串联质谱([font='Times New Roman',serif]liquidchromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/font])技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体。在采用[font='Times New Roman',serif][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/font]技术开展临床检验前[font='Times New Roman',serif], [/font]必须建立相应的检测方法并对其进行验证。由于临床检测多针对生物样本(血清、血浆、全血、尿液、唾液、脑脊液、干血滤纸片、组织等)[font='Times New Roman',serif],[/font]因此在方法开发过程中[font='Times New Roman',serif],[/font]需要对样本前处理方法、色谱条件和质谱条件进行开发和优化[font='Times New Roman',serif], [/font]确保建立的方法适合临床检测需求。为了保证检测结果的准确、可靠[font='Times New Roman',serif],[/font]证明分析方法的性能符合临床检验的目的和要求[font='Times New Roman',serif],[/font]必须对建立的[font='Times New Roman',serif][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/font]方法进行全面而严格的方法学验证。自[font='Times New Roman',serif]2001[/font]年[font='Times New Roman',serif]5[/font]月起,我国开始发布质谱规范化指导文件,并分别在[font='Times New Roman',serif]2007[/font]年[font='Times New Roman',serif]10[/font]月、[font='Times New Roman',serif]2012[/font]年[font='Times New Roman',serif]2[/font]月、[font='Times New Roman',serif]2014[/font]年[font='Times New Roman',serif]10[/font]月、[font='Times New Roman',serif]2017[/font]年[font='Times New Roman',serif]10[/font]月和[font='Times New Roman',serif]2019[/font]年[font='Times New Roman',serif]3[/font]月更新了指导文件。国家标准化管理委员会在[font='Times New Roman',serif]2020[/font]年第[font='Times New Roman',serif]4[/font]号中国国家标准公告中发布了最新的《质谱分析方法通则》[font='Times New Roman',serif](GB/T 6041—2020)[/font]。该标准将代替[font='Times New Roman',serif]GBT 6041—1985[/font]、[font='Times New Roman',serif]GBT6041—2002[/font]。新标准将在[font='Times New Roman',serif]2021[/font]年[font='Times New Roman',serif]2[/font]月[font='Times New Roman',serif]1[/font]日实施。那么质谱为什么需要方法验证规范化,其意义是什么。规范方法验证的目的是统一标准,质谱作为一种高度复杂的技术,其内部原理复杂且易受到环境、溶剂、基质等影响,因此制定一份方法验证的规范是必要且必须的。目前[font='Times New Roman',serif][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/font]在临床实验室扮演着不可或缺的作用,因为它在特异性、灵敏度、多组分检测等方面有着无可比拟的优势,但这并不意味着[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]技术一定能产生准确的结果,因为建立的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]方法中,需要考察的因素和排查的影响因素太多太多。例如单个样品进样顺利时,大量样本持续进样会不会顺利?样品置于进样器或桌面太久会不会其中的成分衰减?那么我们在临床质谱实施过程中,应对考虑到的因素有以下几点:[font='Times New Roman',serif]1. [/font]方法实施后监控:[font='Times New Roman',serif]SOP[/font];性能监控;仪器维护;质量评价;质量控制;[font='Times New Roman',serif]PT/EQA[/font]。[font='Times New Roman',serif]2. [/font]方法验证:精密度;最低定量限;线性;准确性;精密性;残留;干扰;基质效应。[font='Times New Roman',serif]3. [/font]方法开发:基质选择;采血管类型;内标选择;试剂和样品稳定性;样品处理方法;液相色谱方法;质谱检测条件。[font='Times New Roman',serif]4. [/font]评估方法可行性:改善医疗水平;资源的可用性。质谱检测项目属于[font='Times New Roman',serif]LDT[/font]的范畴。美国临床病理学会和临床实验室改进咨询委员会对[font='Times New Roman',serif]LDT[/font]定义为:实验室内部研发、验证和使用,采用生物化学、细胞遗传学、分子生物学试验方法,以诊断为目的,分析[font='Times New Roman',serif]DNA[/font]、[font='Times New Roman',serif]RNA[/font]、线粒体、蛋白组和代谢组疾病等生物标志物的体外诊断项目;[font='Times New Roman',serif]LDT[/font]仅能在研发的实验室使用;可使用购买或自制的试剂,但不能销售给其他实验室、医院或医生;[font='Times New Roman',serif]LDT[/font]的开展不需要经过食品药物管理局[font='Times New Roman',serif](Food and Drug Administration[/font],[font='Times New Roman',serif]FDA)[/font]的批准。今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习!

  • 【盘点仪器技术】发展速度最快、最慢的仪器技术是什么呢

    有人说:近年来质谱技术是发展最快的仪器技术,而离子源技术又是质谱技术中发展最快的,质量分析器技术则是质谱技术中发展最慢的。有人说:色谱、光谱是发展最快、最成熟的仪器技术那你认为:1、发展速度最快的仪器技术是什么呢?2、发展速度最慢的仪器技术是什么呢?===============================================================================盘点仪器技术系列:http://bbs.instrument.com.cn/shtml/20120409/3969305/最自豪的,也是最应扶持的仪器技术http://bbs.instrument.com.cn/shtml/20120409/3969322/最失意、最尴尬的国产仪器技术居然是GCMShttp://bbs.instrument.com.cn/shtml/20120409/3969335/发展速度最快、最慢的仪器技术是什么呢http://bbs.instrument.com.cn/shtml/20120409/3969354/最具潜力的仪器技术http://bbs.instrument.com.cn/shtml/20120409/3969373/你认为对人类健康贡献最大的仪器技术是什么呢

  • 【转帖】浅析气相色谱仪未来发展趋势

    近年来,[color=#000000][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/color]技术发展的基本特点主要热点集中在综合性能的不断提升及具体应用相结合的专用分析系统或技术附件的开发方面。[b]1、仪器及附件[/b]  以提高分析通量为目的,应用于快速分析的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器,是近两年在仪器平台发展方面比较有代表性的一个进步。这样的一种进步是以色谱炉箱结构和程序升温控制系统优化、电子流量控制系统控制精度、范围和调节性能提升、检测器性能改进及超细内径或直热式特种色谱柱应用为基础的,是仪器整体技术水平提升的一个结果。国外主要几家[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]生产厂家这两年都先后推出了各自具有上述特点的新一代产品,如Agilent公司的7890A、PE公司的clarus600等。另外高性能质谱检测器作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本配置,也开始成为一种趋势,上述厂家在这方面都有自己相应的产品。  仪器发展的另一个特点是以芯片加工技术为基础的模块化集成的便携式或微型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的市场化。国内太极集团公司研发的微型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]也是典型的模块化设计,功能齐全,有很好的市场前景。  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]*[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术也是近两年吸引研究人员关注的较新技术,新推出的配有飞行时间质谱检测器的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]*[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]仪器更是为这一技术的应用提供了新的元素。如:Agilent公司的7890A微板流路控制技术在提高[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]控制性能的同时,还可以实现快捷有效的中心切割,在一定程度上可实现全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的功能。  各种仪器平台配套的色谱附件的发展则是近两年较有特色的现象,相信这样的趋势还将继续发展下去。众多的小型科技企业是提供这类产品和技术的主要力量。另外独立的模块化仪器功能附件,如:色谱炉箱、气体流量控制系统、自动进样器、检测信号处理系统等也有了专业化生产的趋势。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制