当前位置: 仪器信息网 > 行业主题 > >

荧光反演图

仪器信息网荧光反演图专题为您整合荧光反演图相关的最新文章,在荧光反演图专题,您不仅可以免费浏览荧光反演图的资讯, 同时您还可以浏览荧光反演图的相关资料、解决方案,参与社区荧光反演图话题讨论。

荧光反演图相关的资讯

  • 中国碳卫星获得首幅全球叶绿素荧光反演图
    p   2月28日,记者从中国科学院遥感与数字地球研究所获悉,该所研究员刘良云科研团队利用中国首颗二氧化碳观测科学实验卫星数据,开展了全球植被叶绿素荧光卫星反演研究,于近日成功获得首幅全球叶绿素荧光反演图。 /p p   叶绿素荧光遥感是碳卫星的一个重要应用。该卫星的主要载荷——高光谱二氧化碳探测仪设有3个通道,其中一个通道不仅能对全球大气中二氧化碳浓度进行动态监测,还能高精度反演植被叶绿素荧光。 /p p   科研人员介绍,卫星尺度的叶绿素荧光能够精确估算全球植被光合生产力,结合同步反演的大气二氧化碳浓度数据,二者协同将能够极大提升全球碳源汇观测能力。国际上部分科学家甚至认为,相比于温室气体探测本身,温室气体探测卫星对荧光的探测是最具创新性和革命性的观测任务。 /p p   该团队成功获得的首幅全球叶绿素荧光反演结果能够清晰显示2017年7月份北美玉米带、欧洲平原、东亚农业种植区与东南亚以及12月份亚马逊雨林等区域的植被旺盛生产力,且南北半球夏季与冬季植被生产力与碳汇能力的动态变化也非常准确。 /p p   科研人员将中国碳卫星的叶绿素荧光产品与同期的美国航天局轨道碳观测2号卫星产品相对比后认为,中国碳卫星的探测水平达到了国际最高水平,可以用来监测全球植被生长状况和植被生产力。 /p p   我国于2016年12月22日发射首颗二氧化碳观测科学实验卫星,使得我国成为全球第3个可提供碳卫星数据的国家。该卫星是“十二五”期间,由科技部立项、中科院负责工程总体、多家单位共同承担的科学实验卫星计划,旨在应对全球气候变化、监测全球二氧化碳浓度分布情况。刘良云科研团队长期从事植被叶绿素荧光遥感研究,是我国叶绿素荧光遥感研究的开拓者。 /p p br/ /p
  • 安光所团队在气溶胶光学厚度反演方面取得进展
    近期,安光所光学遥感研究中心孙晓兵研究员团队为满足单角度多波段偏振气溶胶探测的需求,提出了一种多波段强度和偏振信息联合利用的最优化反演算法,相关成果发表在学术期刊《Remote Sensing》上。   大气气溶胶光学厚度(Aerosol optical depth, AOD)用来表征气溶胶对太阳辐射的消光作用,在遥感大气校正及细颗粒物污染评估中都具有重要作用。孙晓兵团队提出的反演算法主要利用短波红外波段的偏振信息,在不需要地面先验信息的情况下,对地面和大气信息进行分离,然后使用标量信息来获得最终结果。利用该方法进行地气解耦,避免了地表反射率数据库更新不及时造成的反演误差和时空匹配误差。   研究人员利用搭载在高光谱观测卫星(GF-5B)上的高精度偏振扫描仪(POSP)的观测数据对该算法进行了验证。与不同地区AEROENT站点的AOD产品比对结果表明,该算法能反演不同地表上空的AOD;与MODIS的AOD产品进行比对,验证了算法在不同污染条件下的有效性。   该研究得到了航天科技创新应用研究项目、中国高分辨率对地观测系统项目、中国资源卫星应用中心项目资助。图1 POSP的反演结果与AEROENT产品比对图2 POSP的AOD反演结果(a)与MODIS产品(b)对比(2022年5月4日)
  • 闻歌识人 激光粒度仪如何反演“天机”?
    p style=" text-indent: 2em text-align: justify " 激光粒度仪作为粉体材料粒度表征的重要工具,已经成为当今最流行的粒度分析仪,在各领域得到广泛应用。现在市场上激光粒度仪品牌较多,有时对同一样品的测试结果也有较大差异,给用户造成很大的困扰。那么造成这种差异的原因是什么呢?除了样品制备和操作人员的差异外,最主要的原因是各激光粒度仪厂家采用的反演算法有很大差异。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201901/uepic/5398ee10-96c5-4b67-8e3e-64d47f2d388e.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" text-indent: 2em text-align: justify " 激光粒度仪的两个核心部分是光路系统和数据处理系统。光路系统主要影响测量范围,数据处理系统主要影响的是结果的准确性。数据处理系统包括信号的滤波、提取和反演算法,本文主要讨论反演算法。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/411dfc8a-5f31-4902-9cf3-db0c0f27f982.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-indent: 2em text-align: justify " 什么是反演?反演就是对反问题的求解过程。科学上的反问题很多,如精确制导、无损探伤、天气预报、CT技术、法医学、考古学等都是反问题,对这些问题的求解过程就是反演。还有我们常做的游戏“闻声识人”,一个人在唱歌,你通过歌声判断这个唱歌的人是谁,这和激光粒度仪通过光散射信号反推粒度分布很相似。如,如果是大合唱,那么你需要通过合音来推算出都有哪些人在参加大合唱,每个人的音量在合音中的贡献比例是多少(类似于多分散样品)。这些事例说明“反演”存在于生活中的方方面面。反演算法是通过数学的方法求解反问题,它的准确性完全依赖所用算法的适应性。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/d40b218f-6d73-4224-8144-e9de64c69092.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em text-align: justify " 激光粒度仪中的反演算法是对线性代数中的病态矩阵求解,病态矩阵是指对因数值的很小改变导致解有很大改变的矩阵。激光粒度仪中Mie散射系数矩阵A就是病态矩阵,且条件数较大,求解过程更复杂。我们可以通过矩阵关系式Ax=b,其中A为Mie散射系数矩阵,b为光散射向量,即激光粒度仪每个通道的信号组成的一维矩阵,x就是要求解的粒度分布数据。当b光散射向量有微小波动都会造成粒度分布x有剧烈波动,这是激光粒度仪反演算法的难点所在,并会直接影响激光粒度仪的重复性和准确性。 /p p style=" text-indent: 2em text-align: justify " 本文所说的全程自适应反演算法是指适应单分散、多分散、双峰、多峰等都能得到准确的、稳定的粒度分布结果的任何分布类型样品的反演算法。目前在市面上,很多激光粒度仪厂家在软件中会设置很多分析模式来适应不同类型的样品,如通用模式、单峰模式、多峰模式等。从下图结果可以看出,不同分析模式对同一样品测试结果会产生巨大差异,常用的“通用模式”分布图形较平滑,但它偏离样品的真实分布却很大,反而其它两种模式更适合样品的真实分布,当然这是在我们知道样品粒度分布特征的前提下进行的有针对性的模式选择。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/42d3f04c-f6de-4673-88e3-93114dbcd653.jpg" title=" 4.png" alt=" 4.png" / /p p /p p style=" text-indent: 2em text-align: justify " 与此不同的是,本文作者开发了另外一种全程自适应算法来测试样品的结果,这种算法是以非负最小二乘为基础,采用正则化参数动态变化的数学方法来实现的,软件中没有分析模式选项就直接进行反演计算,适合所有分布类型的样品,不论是单峰的、多峰的、单分散的、宽分布的都能得到准确的结果。目前这种算法已经应用到丹东百特所有型号的激光粒度仪中。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/0beae131-887f-498b-936d-ed14f8bddbcd.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em text-align: justify " 反演算法是激光粒度仪的灵魂,它就像一个黑盒子,你看不到它的内部,不清楚它的过程,但它对得到准确的粒度测试结果是至关重要的。现在,很多用户不太清楚反演算法对粒度测试的重要性,对测试结果准确性的判断不够客观,以为进口仪器测的结果就是准确的。还有不少人追求粒度分布图形光滑、漂亮,这些都是可能造成错误的结果。出现这种现象的原因是国外激光粒度仪进入中国较早,而他们给出的结果大多都是平滑好看的分布曲线,如R-R分布、正态分布等。此文的目的是告诉广大激光粒度仪用户,要进行客观地去判断仪器的优劣,而不是迷信哪一种仪器。最好的方式是配制几种已知粒度分布的样品来验证激光粒度仪及其反演算法,只要在同一个模式下所测结果与实际值一致,这种激光粒度仪及其反演算法就是真实可靠的。 /p p style=" text-indent: 2em text-align: justify " 激光粒度测试反演算法对粒度测试结果有着决定性的影响。通过歌声就能猜对唱歌人,是对声音和旋律有深刻了解的人才能做到的。 /p p style=" text-indent: 2em text-align: right " strong 作者: /strong /p p style=" text-indent: 2em text-align: right " 丹东百特仪器有限公司 /p p style=" text-indent: 2em text-align: right " 研发总监 /p p style=" text-indent: 2em text-align: right " 范继来 /p
  • 科研人员给出由磁层X射线二维图像反演三维磁层顶的“工具箱”
    人类赖以生存的空间被地球内禀磁场形成的磁层保护着,磁层的外边界称为磁层顶。近些年,研究人员发现磁层顶附近区域在软X射线波段是明亮的。软X射线的辐射机制是太阳风电荷交换(Solar Wind Charge Exchange,简称SWCX)过程,即太阳风中高价重离子和地球大气逃逸的中性成分发生碰撞,由激发态向基态跃迁的过程中发出光子。因此,太阳风能到达的区域就会辐射X射线,而X射线波段明亮和黑暗的交界线就是太阳风发生绕流的边界,即磁层顶。基于此,中国科学院和欧空局联合提出了太阳风-磁层相互作用全景成像卫星项目(Solar wind Magnetosphere Ionosphere Link Explorer,简称SMILE),对日下点附近的磁层顶、部分极尖区和地球极光进行成像探测,同时对磁场和等离子体进行原位测量,旨在揭示太阳风-磁层相互作用的基本模式,从系统尺度上深入认知太阳风-磁层-电离层耦合的基本物理过程。SMILE卫星计划于2024~2025年发射。在X射线二维图像数据和磁层物理规律的认知之间起到桥梁作用的是如何由图像数据分析出三维磁层顶位形。这是SMILE项目预先研究的核心内容。近日,中国科学院国家空间科学中心太阳活动与空间天气重点实验室王赤院士与孙天然研究员总结了由磁层X射线二维图像反演三维磁层顶的四种方法,给出了磁层成像数据分析的“工具箱”。该综述文章总结了切向拟合法(Tangent fitting approach, TFA,图1)[Sun et al., 2020]、边界拟合法(Boundary Fitting approach, BFA)[Jorgensen et al., 2019a, 2019b]、切线方向法(Tangent direction approach, TFA)[Collier and Connor, 2018]、和计算机断层分析法(Computerized tomography approach, CTA)[Jorgensen et al., 2022, Wang et al., 2022]这四种方法的优点和局限,指明了各自的适用范围,如表1所示。天气室徐荣栏研究员、孙天然研究员与美国新墨西哥理工大学的Anders Jorgensen等人合作,给出了磁层顶反演的CT方法。针对CT方法,天气室孙天然与系统室李大林副研究员、博士生王荣聪等人开展合作,采用人工智能技术对轨道未能覆盖的观测角度进行图像补全,反演得到三维磁层顶位形,如图2。孙天然及合作者对磁层X射线研究进展进行了综述。表1 磁层成像数据分析的“工具箱”[摘自Wang and Sun, 2022]图1 采用切向拟合法TFA,由磁层X射线图像(左)反演三维磁层顶(右)[摘自Sun et al., 2020]图2 人工智能应用于CT反演方法。左、中图为X射线辐射率在子午面和赤道面的等值线,右图为三维磁层X辐射率反演结果 [摘自Wang et al., 2022]该系列成果发表在空间物理权威期刊Geoscience Letters、Journal of Geophysical Research等杂志上。研究得到了基金委重点项目、中国科学院前沿科学重点研究计划、空间科学战略先导计划、中国科学院研究基金和国家重点实验室专项研究基金、青促会优秀会员资助计划等的支持。References:1.Wang, Chi*, and Sun, Tianran* Methods to derive the magnetopause from soft X?ray images by the SMILE mission, Geoscience Letters, 9:30, 2022, https://doi.org/10.1186/s40562-022-00240-z 2.孙天然*,张颖洁,韦 飞,彭松武,尧中华,王赤*,地球磁层软X射线信号的辐射特性研究,地球与行星物理论评,2022,accepted3.Wang, Rongcong, Li Dalin*, Sun Tianran*, Peng Xiaodong, Yang Zhen, Wang J.Q., A 3D Magnetospheric CT Reconstruction Method Based On 3D GAN and Supplementary Limited-Angle 2D Soft X-ray Images. Journal of Geophysical Research: Space Physics, 2022, accepted4.Jorgensen, A. M.*, Xu, R., Sun, T., Huang, Y.,Li, L., Dai, L., & Wang, C. A theoretical study of the tomographic reconstruction of magnetosheath X-ray emissions. Journal of Geophysical Research: Space Physics, 2022, 127, e2021JA029948. https://doi.org/10.1029/2021JA0299485.Sun T.*, Wang C.*, Connor H. K., Jorgensen A. M., Sembay S Deriving the magnetopause position from the soft X-ray image by using the tangent fitting approach Journal of Geophysical Research: Space Physics 2020, 125, e2020JA028169. https://doi.org/10.1029/2020JA0281696.Sun T. R.*, Wang C.*, Sembay S. F., Lopez R. E., Escoubet C. P., Branduardi-Raymont G., et al. Soft X-ray imaging of the magnetosheath and cusps under different solar wind conditions: MHD simulations Journal of Geophysical Research: Space Physics 2019, 124. https://doi.org/10.1029/2018JA026093 7.Jorgensen A. M., Sun T.*, Wang C., Dai L., Sembay S., Wei F., et al. Boundary detection in three dimensions with application to the smile mission: The effect of photon noise Journal of Geophysical Research: Space Physics 2019a, 124. https://doi.org/10.1029/2018JA0259198.Jorgensen A. M.*, Sun T.*, Wang C., Dai L., Sembay S., Zheng J. H., Yu X. Z. Boundary Detection in Three Dimensions With Application to the SMILE Mission: The Effect of Model-Fitting Noise Journal of Geophysical Research: Space Physics 2019b, 124. https://doi.org/10.1029/2018JA026124
  • 安光所利用差分吸收光谱技术实现了对对流层臭氧廓线的反演
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。   臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。   多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。   钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • 科学团队利用差分吸收光谱技术反演对流层臭氧廓线
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • 科学岛团队利用差分吸收光谱技术反演对流层臭氧廓线
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。   臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。   多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。   钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • 第二届含氟温室气体论坛 | 方雪坤:基于反演研究含卤温室气体排放来源与规律
    “第二届含氟温室气体论坛——履行《基加利修正案》的科学与技术”在北京大学顺利召开。会上浙江大学方雪坤研究员作了题为“基于反演研究含卤温室气体排放来源与规律”的精彩报告。含卤气体主要包括消耗臭氧层物质和含氟温室气体。对含卤气体排放的精准定量是重要的研究主题,也是消耗臭氧层物质和温室气体减排的重要科学依据。方雪坤研究员对反演溯源方法进行介绍,包括大气观测数据、传输模型和反演算法,并基于反演评估了若干重要含卤温室气体排放变化,从而更准确地认识含卤温室气体的时空排放规律。图1 方雪坤研究员作报告最后方雪坤研究员对含氟温室气体排放的未来研究方向与挑战提出展望。开展反演研究是精准认识含氟温室气体排放的重要手段,溯源结果能够克服基于生产与消费数据和排放因子的清单不准确或缺失的问题,未来在臭氧层保护、双碳目标中能提供重要的科学支撑。图2 排放估算越来越受到蒙特利尔议定书大会关注
  • 卫星遥感监测反演燃煤电厂二氧化碳排放量研究取得进展
    近日,中国科学院空天信息创新研究院遥感卫星应用国家工程研究中心石玉胜研究团队在燃煤电厂二氧化碳(CO2)排放的遥感反演估算研究方面取得进展。2月22日,相关研究成果以《基于轨道碳观测者2号和3号卫星观测和高斯羽流模型反演燃煤电厂二氧化碳排放》(CO2 emissions retrieval from coal-fired power plants based on OCO-2/3 satellite observations and a Gaussian plume model)为题,在线发表在《清洁生产》(Journal of Cleaner Production)上。   为应对气候变化对人类可持续发展的威胁,联合国可持续发展目标13(SDG 13)设立为“采取紧急行动应对气候变化及其影响”,中国积极响应气候行动,实施“双碳”国家战略。二氧化碳作为最重要的温室气体之一,主要来自化石燃料燃烧。中国燃煤电厂二氧化碳排放量约占全国二氧化碳总排放量的50%。然而,现有的燃煤电厂温室气体排放清单由于统计数据更新滞后和排放因子不准确,已无法代表电厂真实排放量。   随着遥感技术的发展,地面上的气体排放信息可以由空间的传感器通过电磁波辐射感知,利用大气模型对卫星识别排放信息进行反演,为估算电厂二氧化碳排放量提供了新方法。该方法基于实测卫星数据,较少受到人为因素影响且时间分辨率较高,为不同地区的估算提供了统一标准。因此,开展卫星遥感监测与反演,准确估算中国燃煤电厂二氧化碳排放量,不仅是电力行业开展碳减排的前提条件,而且可以提供独立客观的碳排放监测数据,助力中国碳盘点以及评估重点行业碳减排效力。   该研究团队结合多源碳卫星遥感数据(轨道碳观测者2号和3号)和优化后的高斯羽流模型开展长时间序列燃煤电厂二氧化碳排放量自上而下的遥感反演工作,在针对不同装机容量电厂【超大型(≥5000 兆瓦)、特大型(4000-5000兆瓦)、大型(≥3000兆瓦)】开展二氧化碳排放卫星识别的基础上,结合高斯羽流模型反演中国区域燃煤电厂的最新二氧化碳排放量数值,并优化模型大气背景值确定子模块,有效提高模型拟合相关系数,从而提高反演结果的精度。   结果显示,风速是影响碳卫星数据观测二氧化碳柱浓度大小的主要影响因素。当风速增加到10米/秒附近时,本研究中所有电厂的大气二氧化碳柱平均干空气混合比(XCO2)增强量均小于1百万分率(ppm),意味着卫星碳排放反演精度将受到限制。研究估算的二氧化碳排放数值范围从超大型电厂(中国托克托)的63千吨/天到大型电厂(中国上都)的37千吨/天,经过验证,与大多数燃煤电厂自下而上的排放清单数值一致性较高,但部分电厂排放清单由于年限过长、机组更新换代、燃煤类型等原因与本研究显示出差异。该研究扩充了重要点源碳排放实时监测的技术手段,有助于国家和地区制定有针对性的碳减排政策。此外,预估的具体排放值可用于优化排放清单,监测识别偷排漏排问题,为大气化学模型提供更准确的输入数据。   研究工作得到国家自然科学基金、国家重点研发计划和中科院等的支持。
  • 中科院团队卫星遥感监测反演二氧化碳研究获进展
    中国科学院空天信息创新研究院(中科院空天院)2月23日向媒体发布消息说,该院遥感卫星应用国家工程研究中心石玉胜研究团队在燃煤电厂二氧化碳排放的遥感反演估算研究方面取得进展,他们的研究扩充了重要点源碳排放实时监测的技术手段,有助于国家和地区制定有针对性的碳减排政策。该研究团队介绍说,二氧化碳作为最重要的温室气体之一,主要来自化石燃料燃烧,中国燃煤电厂二氧化碳排放量约占全国二氧化碳总排放量的50%,但现有的燃煤电厂温室气体排放清单由于统计数据更新滞后和排放因子不准确的问题已无法代表电厂真实排放量。随着遥感技术的发展,地面上的气体排放信息可以由空间的传感器通过电磁波辐射感知,利用大气模型对卫星识别排放信息进行反演,为估算电厂二氧化碳排放量提供了一种新的方法。这种方法基于实测卫星数据,较少受到人为因素影响且时间分辨率较高,可为不同地区的估算提供统一的标准。因此,开展卫星遥感监测与反演,准确估算中国燃煤电厂二氧化碳排放量,不仅是电力行业开展碳减排的前提条件,还可以提供独立客观的碳排放监测数据,助力中国碳盘点以及评估重点行业碳减排效力。中科院空天院团队在二氧化碳排放领域开展卫星遥感监测反演研究的相关成果论文,近日在环境科学与生态学专业期刊《清洁生产》在线发表。该研究估计的具体排放值还可用于优化排放清单,监测识别偷排漏排问题,为大气化学模型提供更准确的输入数据。论文第一作者、中科院空天院硕士研究生郭文月称,研究团队结合多源碳卫星遥感数据(“轨道碳观测者”2号、3号卫星)和优化后的高斯羽流模型,开展长时间序列燃煤电厂二氧化碳排放量自上而下的遥感反演工作,在针对不同装机容量电厂(超大型(≥5000兆瓦)、特大型(4000-5000兆瓦)、大型(≥3000兆瓦)开展二氧化碳排放卫星识别的基础上,结合高斯羽流模型反演中国区域燃煤电厂的最新二氧化碳排放量数值,并优化模型大气背景值确定子模块,有效提高模型拟合相关系数,从而提高反演结果的精度。研究结果显示,风速是影响碳卫星数据观测二氧化碳柱浓度大小的主要影响因素:当风速增加到10米/秒附近时,本研究中所有电厂的大气二氧化碳柱平均干空气混合比增强量均小于1百万分率,意味着卫星碳排放反演精度将受到限制。该研究估算的二氧化碳排放数值范围从超大型电厂的63千吨/天到大型电厂的37千吨/天,经过验证,与大多数燃煤电厂自下而上的排放清单数值一致性较高。不过,部分电厂由于年限过长、机组更新换代、燃煤类型等原因,其排放清单与研究结果显示出差异。为应对气候变化对人类可持续发展的威胁,联合国可持续发展目标设立“采取紧急行动应对气候变化及其影响”(SDG-13)专项,中国也积极响应气候行动,实施“双碳”(碳达峰、碳中和)国家战略。论文通讯作者、中科院空天院副研究员石玉胜表示,他们团队本次研究进展,将有望为助力推进中国“双碳”战略、实现联合国SDG-13目标等,提供新的思路方案和科技支撑服务。(完)
  • 基于大气浓度观测反演温室气体排放量,进而验证传统自下而上清单结果的方法
    第三届中国温室气体监测研讨会”将于2023年11月18日至19日在上海召开,会议由复旦大学大气与海洋科学系承办,采用线下会议的形式。 一、会议背景 2015年《巴黎协定》签署,目标将全球平均气温较前工业化时期上升幅度控制在2摄氏度以内,并努力将温度上升幅度限制在1.5摄氏度以内,随后全球各国积极为应对气候变化行动制定计划。2020年9月中国明确提出2030年前“碳达峰”与2060年前“碳中和”的双碳目标。及时掌握准确的温室气体排放信息是实现《巴黎协定》目标和双碳战略的前提。《政府间气候变化专门委员会(IPCC)2006年国家温室气体清单指南2019修订版》首次完整提出基于大气浓度观测反演温室气体排放量,进而验证传统自下而上清单结果的方法。2020年世界气象组织(WMO)成立全球温室气体综合信息系统(IG3IS)计划,并组织编写《城市温室气体排放监测最优做法》(Urban Greenhouse Gas Emission Observation and Monitoring Best Research Practices)和《国家温室气体排放监测最优做法》。为了促进中国温室气体监测的同行交流,2019年和2020年分别在中国科学院大气物理研究所和线上举行了第一届和第二届“中国温室气体监测研讨会”,研讨了中国温室气体监测进展和应用,成立了“中国温室气体监测联盟”,并在AAS、AOSL和CCR联合发表专刊“Atmospheric GHG measurement and application in China”。近几年来,我国环境、气象、海洋、林业等业务部门分别开展了全国尺度、试点城市、重点行业、海洋及林业等的温室气体排放和碳汇监测。国家科研计划以集成化、自动化、智能化为主攻方向,推动形成一批自主知识产权的监测装备。但是,如何准确定量多种温室气体排放时空变化规律,特别是区分自然源和人为源CO2排放,依旧是国内外科学研究和业务体系的难点和挑战。在国内外新形势下,第三届“中国温室气体研讨会”将聚焦温室气体监测评估对双碳目标的支撑以及新技术新方法的应用,推动我国温室气体监测同行交流,为建立有效的温室气体监测体系提供精准的科学理解、技术支撑和解决方案。二、目的1)促进中国温室气体监测同行交流2)研讨温室气体监测评估对双碳目标的支撑3)推动中国温室气体监测仪器自主研发和应用三、会议主要信息会议时间:2023年11月18至19日注册时间:2023年11月17日14:00-20:00会议地点:粤海酒店 牡丹厅(上海市虹口区逸仙路328号)交通和住宿指南见下文五、组委会姚波(联合主席,复旦大学大气与海洋科学系/大气科学研究院)曾宁、刘毅、韩鹏飞(联合主席)(中国科学院大气物理研究所)陈辉林(南京大学大气科学学院)刘诚(中国科技大学精密机械与精密仪器系)吕洪刚(国家海洋环境预报中心)牛振川(中国科学院地球环境研究所)孙康(中国环境监测总站)王绍强(中国地质大学(武汉)地理与信息工程学院)六、会议内容专题1:区域、城市尺度及海洋等的碳监测和反演——案例和经验专题2:监测和反演的质控及自上而下(Top-down)和自下而上(bottom-up)方法的比对验证专题3:温室气体监测新技术新方法和国产温室气体监测仪器研制进展七、会议日程11月17日下午:会议报到、注册11月18日上午:开幕式及特邀报告下午:专题1报告及集体讨论11月19日上午:专题2及集体讨论下午:专题3及集体讨论、闭幕总结报告形式:口头报告或快闪八、会务费用会议不收取注册费,往返交通及食宿自理
  • 黄金部队给稀土矿藏设定“光谱身份证”
    45671682015-01-27 14:27:16.0吴敏 王林琳武警黄金部队给稀土矿藏设定“光谱身份证”我国首次发现稀土资源新标志2141895中国武警/enpproperty-- 中国军网-军报记者(解放军报记者吴敏、特约记者王林琳)&ldquo 正如人民币在紫外线下会显现出不同颜色的荧光图案,稀土元素在一定的波长范围内也会呈现不同的光谱特征。&rdquo 1月26日,武警黄金部队遥感地质研究室主任、高级工程师陈勇敢博士告诉记者,他所带领的科研团队成功通过卫星高光谱遥感数据捕捉获取大地上的稀土矿藏分布情况。这一成果在我国遥感地质找矿领域尚属首次,标志着我军在未知领域寻找稀土矿产资源的技术水平迈上新的台阶。 稀土是21世纪重要的战略资源,在坦克、飞机、导弹等国防战略武器制造中应用广泛,能够大幅度提高武器的战术性能。武警黄金部队长期担负勘测区域地质调查、多金属矿产资源勘查任务。然而,由于自然环境恶劣,使用传统方法勘测稀土矿藏需要在野外现场采集化探样品,不仅耗费数以百万计的资金,还常常让基层官兵冒着生命危险。这一现状将被新技术改写。该项技术将野外勘测作业搬进实验室,仅需一个科研小组便可在短时间之内完成数万平方公里的勘测。 近年来,随着卫星遥感信息技术的发展,应用高光谱遥感数据开展矿产勘测成为新的发展方向。但是,由于普通金属元素在不同矿物中表现出的光谱差别,容易造成同一元素在不同化合物中的特征吸收光谱出现差别。因此,应用遥感信息技术开展元素信息的探测尚存在诸多困难。 &ldquo 简单地讲,正如白光由七色光构成。通过棱镜折射可将白光分解为七色光,继而准确捕捉并证明其中红光的存在。&rdquo 陈勇敢博士介绍说:&ldquo 稀土元素所拥有的特征谱带基本不随赋存状态的不同而变化,能够证实其自身存在。我们通过研究稀土元素及其化合物在可见光-近红外波段的光谱特征,构建了半定量反演地物中稀土元素含量的模型。这一结论,通过环境卫星的数据反演,证实其在自然界中存在。这就像给稀土元素设定&lsquo 光谱身份证&rsquo ,然后通过卫星识别&lsquo 身份证&rsquo 信息,足不出户就能在自然界中搜寻稀土矿藏。&rdquo 目前,该项研究成果已在我国内蒙古白云鄂博稀土富集地区应用,并取得成功。该技术不仅为快速勘探未知区域稀土资源提供新的方法和标志,还有望为地质学家认识地壳演化、判定沉积环境和盆地类型等研究领域提供帮助。 45671682015-01-27 14:27:16.0吴敏 王林琳武警黄金部队给稀土矿藏设定“光谱身份证”我国首次发现稀土资源新标志2141895中国武警/enpproperty-- 26日,武警黄金部队遥感地质研究室主任、高级工程师陈勇敢博士通过卫星高光谱遥感数据捕捉获取大地上的稀土矿藏分布情况。
  • 李福生教授团队:手持式能量色散X射线荧光光谱仪及其应用研究
    手持式能量色散X射线荧光光谱仪及其应用研究(李福生,电子科技大学教授、博士生导师)摘要光谱分析及信息科学被广泛应用于工业检测、污染防治等领域。X射线荧光光谱(X-Ray Fluorescence spectrometry, XRF)由于具有快速、无损、精确等优点,在环境污染监测、中草药鉴别、金属回收等方面具有十足的研究潜力和广阔的应用前景。人工智能及高端装备研究团队立足于自主研发的手持式X射线荧光光谱元素分析仪(TS-XH4000),利用X射线荧光光谱分析技术结合先进的人工智能算法开展土壤污染监测、土壤质量综合评价、铁粉元素测量等研究工作。团队研发的新一代手持式X射线荧光光谱仪采用具有可实现盲测,检出限低,可测微量元素等优势。1.引言能量色散X射线荧光光谱分析技术由于其快速、无损和精确的检测优点,目前已经被广泛应用于煤质分析、安检过程、资源勘采、货物通关、环境检测和中草药检测等领域[1][2][3]。能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪[4]。目前国内外同类手持式X射线荧光光谱分析仪主要包括美国品牌Niton生产的分析仪[5],日本生产的Olymbus光谱仪[6]和日立光谱仪[7]等。这些光谱仪普遍存在精准度一般、采购成本较高、难以单独定制等问题。而本团队设计的X射线荧光光谱仪历经几代研发,采用智能AI算法,可实现盲测,检出限低,可测微量元素;采用全球首创9mm*5mm腰形窗口,保护探头、便于测细小物品及不规则物品;安全性高,所有仪器均配有已申请专利的探头保护盖,自检安全保护;且工作状态有灯带提示,配有物料感应功能,利于物体识别,很好保护操作者的安全。本团队光谱仪的所有核心技术都归自己所有,不受国外任何技术限制。本团队所设计和研发的型号为TS-XH4000-SOIL的手持式能量色散XRF光谱仪(基于 AMPTEK INC.的 SDD 探测器)利用智能能量色散荧光分析法可以同时得到检测样品的X荧光光谱图及样品中所含元素种类和含量,测量元素范围为Na(11)-U(92)。此外,团队结合新型人工智能算法,例如BP神经网络[8]、支持向量回归[9]、贝叶斯优化算法等[10],设计了计算机校正软件,实现了基于X射线荧光光谱的中草药真伪鉴别,基于X射线荧光光谱的土壤重金属元素含量和铁粉含量的精确定量分析。2. 仪器组成本团队自主研发的手持式X射线荧光光谱仪集成先进智能算法、人体学设计外观结构、各型接口等,可在合金回收、土壤污染检测、中草药鉴别等众多领域应用。该光谱仪主要由激发源(X射线光管)、探测器、滤光片、多道脉冲幅度分析器等部分组成,结构示意图如图1所示。X射线管配有电源(最大电压50kV,最大电流200mA)。在仪器测量之前,需要先根据死时间、光谱信号噪声、光谱分辨率等指标将仪器的相关参数调整至最佳,然后通过检测纯元素的X射线光谱,完成能量刻度的定标,实现从通道数到能量刻度数的转换。接着,将定量模型算法需要的变量、算法参数、补偿系数、预处理流程等设定到主控内存中,完成采集完信号后并解析信号,最终反演物质的元素含量等信息,并通过WIFI或蓝牙将仪器所测量的精度显示到PC端。图1 手持式X射线荧光光谱仪的结构示意图本团队还设计了谱图预处理及模拟谱图生成的软件,其软件界面如图2所示。其主要功能包括:能量刻度转换、初级光源预处理、初级光源生成、Sigma计算、 XRF光谱模拟等功能。该程序可以生成多元素样本的 XRF光谱图及光谱大数据,为人工智能对样品的定性和定量分析提供数据支持,旨在实现元素的无标样的定性定量分析。图2 X射线荧光光谱分析仪控制程序主界面3. 土壤元素实验分析土壤质量综合评价与土壤中各种元素的含量有着密切的联系。因此本实验研究了XRF技术结合SVR算法定量分析土壤中铜(Cu)元素含量的可行性。如图3所示,本实验使用的设备是由课题组研究生产制造的手持式ED-XRF光谱仪,型号为TS-XH4000-SOIL,该设备的X射线管在45KV和25uA下正常工作。实验中采用了55个国标样品作为土壤标准样品,样本中每个待测元素都具有足够宽的含量范围和适当的含量梯度。图3 土壤样本与XRF光谱仪在验证中,将实验样品分为训练集和测试集两个集合,分别用于外部验证和内部验证。然后,基于灵敏度分析得出Cu元素主要受到Fe、Co、Ni、Cu等组分信息的影响,选择最优输入特征为该4种元素。使用最优输入特征和全部特征作为输入,基于贝叶斯优化算法找到最优模型参数,分别建立了预测土壤样品Cu元素含量的SVR定量预测模型。同时以全部特征作为输入建立了单参数PLS模型,通过5倍交叉验证(CV)选择单参数PLS模型的最优主成分个数为9。基于校准集数据分别建立了三种模型,利用这些模型对13个测试集和42个训练集数据中的Cu元素含量进行预测,结果如图4所示。图4 Cu元素的预测结果 (a):经过特征降维的SVR模型 (b):全部特征作为输入的SVR模型 (c):PLS模型可以看到,对训练集数据进行直接预测时,采用全部特征作为输入的SVR模型取得了最好的效果,其预测结果和原数据几乎一致(R2C= 0.9988, RMSEC = 6.9356),然而,对于测试集数据采用全部特征作为输入的SVR模型获得了非常差的结果(R2P= 0.9146, RMSEP = 73.8296)。基于4个高灵敏度特征的SVR在预测测试集时获得了非常好的效果(R2P= 0.9918, RMSEP = 22.8803),预测数据的一致性较好。在XRF技术结合SVR定量分析中,变量选择对于测试集的预测精度有关键作用。4. 中草药元素实验分析本实验采用30份金银花样品主要选择产地为山西、河南、湖南与广西省,其中每个产地各选择5份,共20份,并将样本命名为JYH-01~JYH-30。7份外观相似的山银花样品,产地为湖南省,样本命名为SYH01~SYH-07。3份粉末相似的商陆、多穗金粟兰、宽叶金粟兰样本,命名为DB-01~DB-03。三类真伪中药材的XRF数据集各有其特有的性质,本文使用t-SNE算法可以提取出三组XRF数据集的前350 维特征,将这些特征降维映射至二维图片中进行可视化分析,如图5所示。可以明显的看出这三组真伪中药材的 XRF数据集在图片二维空间中位于三簇不同的位置。从而三组样本在含有以上5种元素重要相关信息的350维数据在映射至二维中有了明显的区分,比原始XRF光谱图更容易理解与分析。图5 基于金银花、外观相似伪样本、粉末相似伪样本三组XRF样本集的t-SNE特征降维可视化图为更直观地了解这土壤和中草药XRF数据集的固有特性,利用t-SNE算法将350维的XRF特征映射到二维空间并在同一幅图中进行可视化分析。如图6所示,两个数据集在二维空间聚集成了两个分布位置不同的簇。首先,两组样本在含有重要相关信息的350维数据在二维图中有了明显的区分,比原始XRF反射光谱图更易于分辨。图6 两组XRF样本集的t-SNE特征降维可视化图5. 铁粉元素测量及实验分析针对手持式X射线荧光分析技术在铁粉行业的应用,本团队开展X射线荧光背景散射内标法用于铁粉元素测量的应用研究。首先,通过低电压高电流、高电压低电流、不同采集板的增益,选择合适的设备参数获取较优的特征X射线信号。接着,分别采用SiPIN、SDD类型探测器的手持式X射线荧光分析仪建模,Si-Kα峰、Fe-Kβ峰加背景散射线内标对铁粉中的元素含量进行建模。最后,根据含量已知的铁粉样品对所建立模型的确定度系数R2和均方根误差RMSE进行评估,选出不同场景情况下合适的应用模型。表1 SiPIN探测器时铁粉中Fe元素预测结果表2 SiPIN探测器时铁粉中Si元素预测结果表3 SDD探测器时Fe元素预测结果表4 SDD探测器时Si元素预测结果如表1和表2所示,为采用SiPIN探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9070, RMSE为0.0007; Fe-Kβ峰加背景散射线内标法的结果,R2为0.88,RMSE为0.0037。如表3和表4所示,为采用SDD探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9869,RMSE为0.0002; Fe-Kβ峰加背景散射线内标的结果,SDD探测器Fe建模结果,R2为0.9099,RMSE为0.0033。采用SDD探测器定量结果验证结果更好,这与SDD探测器性能良好有关。6. 总结本团队基于自主设计和研发的手持式ED-XRF光谱仪,结合人工智能算法对土壤重金属元素含量、中草药成分和铁粉元素含量进行准确定性、定量分析。所设计的TS-XH4000-SOIL光谱仪具有高精度和高可靠性,提出的先进人工智能算法框架可以有效校正土壤和铁粉XRF光谱和待测元素含量的复杂映射关系。因此,本团队研发的光谱仪和相应的人工智能算法软件在环境监测和保护、冶金行业及其他分析化学领域都有着广泛重要的应用。参考文献[1] 甘婷婷, 赵南京, 殷高方, et al. 水体中铬,镉和铅的X射线荧光光谱同时快速分析方法研究简[J]. 光谱学与光谱分析, 2017, 37(6):7.[2] 王袆亚, 詹秀春, 袁继海,等. 偏振能量色散X射线荧光光谱测定地质样品中铷锶钇锆元素不确定度的评估[C]// 第八届全国X射线荧光光谱学术报告会.0.[3] 张辉, 刘召贵, 殷月霞,等. 能量色散X射线荧光光谱法测定中草药中的Cd元素[J]. 分析测试技术与仪器, 2019, 25(3):5.[4] 张颖, 汪虹敏, 张辉,等. 小型台式EDXRF现场快速测定深海沉积物中稀土元素[J]. 海洋科学进展, 2019, 37(1):11.[5] Ene A, Bosneaga A, Georgescu L. Determination of heavy metals in soils using XRF technique[J]. Rom. Journ. Phys, 2010, 55(7-8): 815-820.[6] Adame A. Development of an automatic system for in situ analysis of soil using a handheld Energy Dispersive X-Ray Fluorescence (EDXRF)[J]. 2020.[7] Antunes V, Candeias A, Carvalho M L, et al. GREGÓRIO LOPES painting workshop: characterization by X-ray based techniques. Analysis by EDXRF, μ-XRD and SEM-EDS[J]. Journal of Instrumentation, 2014, 9(05): C05006.[8] Li F, Yang W, Ma Q, et al. X-ray fluorescence spectroscopic analysis of trace elements in soil with an Adaboost back propagation neural network and multivariate-partial least squares regression[J]. Measurement Science and Technology, 2021, 32(10): 105501.[9] Yang W, Li F, Zhao Y, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with PCA–ANOVA and support vector regression[J]. Analytical Methods, 2022, 14(40): 3944-3952.[10] Lu X, Li F, Yang W, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and bayesian optimized support vector regression[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 238: 104842.作者简介李福生,电子科技大学教授,博士生导师。在核粒子能谱分析、蒙特卡洛模拟、人工智能与云计算技术、模式识别及智能系统、控制科学及多智能体、智能制造及智慧工厂等方面的研究与应用成果斐然,具有丰富的理论研究基础和工程应用经验。曾就职于美国GE-贝克休斯公司、荷兰皇家壳牌集团等国际 500强企业的科研院,并兼任美国北卡罗莱纳州立大学客座教授。近年来在国际权威杂志发表高水平论文30多篇,拥有2项国际发明专利和50多个国内专利,出版学术专著1册,参与多个国际重大研发项目。在仪器研制方面,成功研发了多代高精度手持式X射线光谱成分分析仪,且已经过上海市计量测算技术研究中心的专业鉴定,具有高灵敏度、高准确度、快速无损等特性,可广泛应用于石油、天然气煤层气勘探与开采,铀矿探测以及金属、食物、植物、土壤的检测等,对实现我国在地质考古、公共安全、环境保护、食品安全等领域的探测设备核心部件的升级及市场国产化产生了重大影响。e-mail:lifusheng@uestc.edu.cn
  • 一天2篇Nature!南京大学在二维材料领域取得重要突破!
    近日,南京大学电子科学与工程学院王欣然教授、王肖沐教授和施毅教授团队在二维材料领域取得重要进展,相关成果分别以“Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire”和“Observation of Chiral and Slow Plasmons in Twisted Bilayer Graphene”为题,5月4日同期在线发表于《自然》。一、发现扭角石墨烯中等离激元新物态表面等离激元,对光场具有亚波长尺度的局域能力,在微纳光子学和集成光电器件、超分辨成像等领域有广阔的应用前景。传统等离激元金属和环境介质的光学性质密切相关,容易受到金属欧姆损耗和环境因素影响。拓扑特性中的边缘态可以对等离激元实现保护,抑制损耗,探索这类等离激元新模式有望帮助解决等离激元纳米光子器件损耗高的关键问题。王肖沐教授和施毅教授研究团队,在扭角石墨烯材料中提出并实现了一类全新的等离激元模式:手性贝利等离激元。研究团队根据扭角石墨烯的结构手性,揭示了强关联能态的拓扑特性,预言了非零贝利曲率在中红外频段可以引入反常霍尔电导。在此基础上,团队制备了具有长程高度有序摩尔超晶格的扭角石墨烯材料,并系统地研究了红外表面等离激元响应。观测到了具有手性特征的贝利等离激元边缘态,并验证了通过电场调控实现的开关操作。研究成果通过拓扑边缘态保护等离激元,有效降低了损耗,在中远红外光电器件、量子计算和纳米光学等方面具有巨大应用潜力。图1 扭角石墨烯示意图(a)及光学显微镜图像(b)(c)扭角石墨烯纳米条带中的红外等离激元响应。在15微米(650cm-1)长波红外范围内,手性纳米条带中出现新的具有拓扑特性的贝利等离激元新模式。扭角石墨烯是一类具有丰富多体相互作用的强关联电子材料。通过改变层间扭转角度,掺杂等条件,可以对电子的能态进行灵活地调控,实现超导、拓扑等奇异物态。研究团队指出,由于扭角石墨烯自身的非中心对称结构,在打破时间反演对称性的条件下,会产生非零的贝利曲率,进而在材料中引入非零的横向光电导(即反常霍尔电导)。将这种拓扑能态与等离激元结合,可以有效降低其散射损耗。研究团队依据这样的思路,制备了大面积的“魔角”(1.08°扭角的双层石墨烯),并在其上构筑了具有手性结构的纳米条带。图2 光照强度(a)和静电掺杂(b)对手性贝利等离激元边缘模式共振能级劈裂的调控作用。在这种同时打破空间和时间反演对称性的条件下,非零贝利曲率在纳米条带中通过拓扑边缘态形成了手性贝利等离激元新模式。实验上,手性等离激元以共振峰位的劈裂为标志。而通过光强和掺杂,可以调控贝利曲率的大小,进而调制能级劈裂的开关。手性等离激元存在的另一个证据是零磁场法拉第效应,即光通过材料时其偏振方向会发生偏转。实验中实现了高达15°的极化旋转。这些非磁场下的奇异光学效应,在制作偏振片等重要光学应用上有着广泛的前景。南京大学王肖沐/施毅教授团队,专注于于高性能红外光电器件的研究工作。近年来,获得了以弹道雪崩光电探测器(Nature Nanotechnology,14,217(2019))和能谷光电子器件(Nature Nanotechnology,15,743(2020))为标志的系列创新成果。本次的研究工作,是该团队在广泛国际合作支持下,通过体系强相互作用和谷电子特性对光子进行有效调控实现的一个突破性进展。南京大学电子科学与工程学院硕士生黄天烨为第一作者,电子科技大学李雪松教授课题组完成了单晶石墨烯的生长工作,明尼苏达大学 Tony Low教授课题组完成了主要计算工作,中科院沈阳金属所杨腾研究员、北京计算所邵磊副研究员的课题组协助完成了部分计算工作。南京大学微制造与集成工艺中心在微加工方面给予了重要的支持。该工作得到国家科技部重点研发计划、自然科学基金重点项目、江苏省双创团队和中科院先导计划等项目资助。二、突破双层二维半导体外延生长核心技术集成电路摩尔定律是推动人类信息社会发展的源动力。当前,集成电路已经发展到5nm技术节点,继续维持晶体管尺寸微缩需要寻求材料的创新。近年来,以MoS2为代表的二维半导体在电子器件和集成电路等领域获得了迅速的发展,王欣然教授课题组在该领域长期积累,2021年在《Nature Nanotechnology》连续报道了大面积MoS2单晶制备以及MoS2驱动的超高分辨Micro-LED显示技术两个成果。尽管学术界和工业界在单层二维半导体生长方面已经取得了很大的进展,但是单层材料在面向高性能计算应用时依然受限。相比于单层MoS2,双层MoS2具有更窄的带隙和更高的电子态密度,理论上可以提升驱动电流,更适合应用于高性能计算。然而,由于材料生长热力学的限制,“1+1=2”的逐层生长方法难以给出均匀的双层,因此层数可控的二维半导体外延制备一直是尚未解决的难题。图3 双层MoS2生长机制针对该问题,王欣然教授与东南大学合作,另辟蹊径,提出了衬底诱导的双层成核以及“齐头并进”的全新生长机制,在国际上首次报道了大面积均匀的双层MoS2薄膜外延生长。研究团队首先进行了理论计算,发现虽然单层生长在热力学上是最稳定的,但是通过在蓝宝石表面构建更高的“原子梯田”,可以实现边缘对齐的双层成核,从而打破了“1+1=2”的逐层生长传统模式局限(图3)。研究团队利用高温退火工艺,在蓝宝石表面上获得了均匀分布的高原子台阶,成功获得了超过99%的双层形核,并实现了厘米级的双层连续薄膜。原子力显微镜、透射电子显微镜、拉曼光谱和荧光光谱等多种表征手段均证明了双层薄膜的均匀性。进一步,团队证明了双层MoS2与蓝宝石衬底具有特定的外延关系,以及双层MoS2的层间具有2H和3R两种堆垛模式,并在理论上给出了解释。图4 双层MoS2的晶体管器件性能研究团队进一步制造了双层MoS2沟道的场效应晶体管(FET)器件阵列,并系统评估了其电学性能(图4)。相比单层材料,双层MoS2晶体管的迁移率提升了37.9%,达到~122.6cm2V-1S-1,同时器件均一性得到了大幅度提升。进一步,团队报道了开态电流高达1.27 mA/μm的FET,刷新了二维半导体器件的最高纪录,并超过了国际器件与系统路线图所规划的2028年目标。该工作突破了层数可控的二维半导体外延生长技术,并且实现了最高性能的晶体管器件。南京大学电子科学与工程学院博士生刘蕾为第一作者,王欣然教授、李涛涛副研究员和东南大学王金兰教授、马亮教授为论文共同通讯作者,南京大学施毅教授、聂越峰教授、王鹏教授以及微制造与集成工艺中心对该工作进行了指导和支持。该研究得到了江苏省前沿引领技术基础研究、国家重点研发计划和国家自然科学基金等项目的资助。
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p   从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。 /p p   限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。 /p p   对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。 /p p   大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title=" 1.png" width=" 600" height=" 429" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 429px " / /p p style=" text-align: center " 图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自 sup 5 /sup /p p   然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。 /p p   一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。 /p p   于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title=" 2.png" / /p p style=" text-align: center " 图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献 sup 8、9、10 /sup 和 sup 11 /sup /p p   之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题: /p p   1 如何将飞秒激光有效的导入微型显微镜 /p p   2 如何在微型显微镜内进行扫描/图像重建 /p p   3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。 /p p   4 如何有效的对荧光信号进行收集 /p p   5 如何使整个系统在动物剧烈运动时仍保持稳定 /p p   6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /p p   本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title=" 3.png" width=" 600" height=" 470" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 470px " / /p p style=" text-align: center " 图3 FIRM-TPM示意图,来自 sup 12 /sup /p p   新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title=" 4.png" width=" 600" height=" 437" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 437px " / /p p style=" text-align: center " 图4 FIRM-TPM实物图,来自 sup 12 /sup /p p   树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title=" 5.png" width=" 600" height=" 283" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 283px " / /p p style=" text-align: center " 图5 三种模式在结构学成像中的成像质量对比,来自 sup 12 /sup /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title=" 6.png" / /p p style=" text-align: center " 图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自 sup 12 /sup /p p   从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。 /p p   纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。 /p p   然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。” /p p   1. Denk, W., Strickler, J. & amp Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990). /p p   2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005). /p p   3. Zipfel, W.R.,Williams, R.M. & amp Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003). /p p   4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013). /p p   5. Minderer, M.,Harvey, C.D., Donato, F. & amp Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016). /p p   6. Hamel, E.J., Grewe,B.F., Parker, J.G. & amp Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015). /p p   7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011). /p p   8. Helmchen, F., Fee,M.S., Tank, D.W. & amp Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001). /p p   9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & amp Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008). /p p   10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009). /p p   11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009). /p p   12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017). /p p   13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & amp Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008). /p
  • atp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪
    FT-ATPatp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪FT-ATPatp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪:该设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。  仪器特性:  实用性 —— 可根据环境检测需求设定上下限值,做到数据快速评估预警,表面洁净度快速筛查。  灵敏度高 —— 10-15~10-18 mol  速度快 —— 常规培养法18-24h以上,而ATP只需要十几秒钟 .  可行性 —— 微生物数量与微生物体内所含ATP有明确的相关性。 通过检测ATP含量,可间接得出反应中微生物数量  可操作性 —— 传统培养方法需要在实验室由经过培训的技术人员进行操作;而ATP快速洁净度检测操作非常简便,只需简单的培训即可由一般工作人员进行现场操作。  体验更好 —— 试子套管采用插拔式灵活设计,可定期清洗长期使用,延长仪器寿命。  主要参数:  1、显示屏:3.5英寸高精度图形触摸屏  2、处理器:32位高速数据处理芯片  3、检测精度:1×10-18mol  4、检测范围:0 to 9999 RLUs  5、检测时间:15秒  6、检测干扰:±5﹪或±5 RLUs  7、操作温度范围:5℃到40℃  8、操作湿度范围:20—85﹪  9、ATP回收率:90-110%  10、检出模式:RLU、大肠菌群筛查  11、50个用户ID 设定  12、可设定的结果限值个数:251个  13、自动判断合格与不合格  14、自动统计合格率  15、内置自校光源  16、开机30秒自检  17、配有miniUSB接口,可将结果上传至PC  18、配备 软件驱动U盘代替传统光盘  19、仪器尺寸(W×H×D):188 mm×77mm×37mm  20、使用可充电锂电池免电池更换  21、备用状态(20℃):6个月  22、中文操作手册  23、稳定的液体荧光素酶  24、润湿的一体化采集拭子  风途ATP荧光检测仪用途广泛,可用于: 食品、医药卫生、医药、日化、造纸、工业水处理、国防以及环保、水政、海关出入境检疫及其他执法部门等多种行业 。  随机配置:ATP荧光检测仪(手持)主机、铝合金手提箱、驱动U盘、PC数据线、数据分析软件、中文操作手册
  • 荧光显微技术实现深层观测实现新突破
    借助荧光显微技术,研究人员可以深入观察活体动物内部器官组织和活细胞,但该技术局限于被观测物的表面厚度不能超过1毫米。现在,德国专家发明了一种新方法,可以观测更厚表层下的活体动物器官组织。   利用动物蛋白质对光的选择吸收特性,科学家早已发明了用荧光显微镜观测活体动物内部器官组织和活细胞的技术,但光在动物内部组织的聚焦性能太弱,使显微镜下的图像变得非常模糊,因此这项技术一直局限于研究表层厚度不超过1毫米的活体。德国慕尼黑技术大学和海姆赫茨研究中心的研究人员利用自己开发的“多谱耦合层析摄影”技术(MSOT),成功地拍摄了清晰度很高、表层厚度超过6毫米的斑马鱼三维脊椎图。在这项新技术开发中,研究人员利用声波聚焦取代了光学聚焦来重构图像,这一技术突破将使未来研究大型活体动物的内部器官组织和活细胞成为可能。   通过荧光显微镜技术,科学家还可以对生物分子进行光学标注,研究在纳米尺度内的分子图像。研究人员利用这种方法可以减少荧光着色活体组织的背景干扰信号,未来不仅可以研究其它脊椎动物的细胞功能,还可用于开发直接针对动物器官和组织的新药。
  • Turner Designs 推出新型水下荧光仪
    色氨酸是一种能溶解在水中的氨基酸盐,具有特定的激发波和发射波长。属有机物质。存在于高生物活性的水系统或工业废水中。因此色氨酸还可作为追踪废水源头的重要参数。 市场上已有的能够测量色氨酸的仪器都很笨重、复杂、昂贵并且需要专业的的人员经过长时间的培训才能操作。这些仪器往往提供大量的数据信息,而最终用户只是需要得到一个简单的色氨酸的相对荧光相应值。 相比之下,Turner Designs的色氨酸监测仪是一种简单、低成本、可以提供0至5V模拟信号输出的水下荧光仪。该仪器体积小巧、轻便,可以和市场上绝大多数接收器或平台集成。同样也可与其他手持多参数仪平台集成。例如,与Turner Designs的C3三光学荧光仪集成时,色氨酸监测仪可以探测低至3ppb的浓度。下图展示了探头输出信号随水中色氨酸浓度的变化曲线:
  • 长春应化所红光荧光粉制备实现新突破
    由中科院长春应化所科研人员研制的“一种发光二极管用红光荧光粉及制备方法”,实现了红光荧光粉制备的新突破,为使LED更广泛地用于照明、显示和背光源等领域进一步奠定了基础,近日获得国家发明专利授权。 据介绍,LED以其节能、耐用、无污染等优点作为最有希望的下一代照明方式而被广泛引起重视。目前,实现白光LED有多种方案,其中采用蓝光LED芯片和黄色荧光粉组合来实现白光发射,是当前制备白光LED最为成熟的技术方案。但该方法合成的白光因为光谱中缺少红光,显色指数较低,光效不高,因而尚不能在通用照明中发挥LED照明应有的作用。解决办法之一是使用红、绿和蓝三种颜色的发光材料被蓝光LED芯片激发产生白光,但是目前能够被蓝光LED激发的红色发光材料较为缺乏。 长春应化所研制的“一种发光二极管用红光荧光粉及制备方法”,以磷酸盐为基质,以铕为激活剂制备了一种红光荧光粉,该荧光粉的激发带和氮化镓光源的发射峰重叠较好,能够有效被蓝光氮化镓光源激发产生红光发射。同时,这种红色荧光粉的制备方法简单,原料便宜易得,生产成本低廉,产品化学性质稳定,易研磨,不会对环境造成危害。因此,本发明提供的新型发光二极管用红光荧光粉具有重要的应用价值。
  • 高达72靶标!中国团队实现高阶多重荧光PCR技术突破!
    实时荧光PCR (rtPCR) 是目前应用最广的核酸检测技术,检测模式采用闭管检测,相对于开管检测而言,rtPCR极大降低了扩增产物的污染机会,节省了时间和人力,便于实现自动化,更可以利用阈循环数(Cq值)支持定量检测。然而,rtPCR的一个很大局限在于单个反应所能检测的靶基因数目有限。根据目前主流荧光PCR仪器检测通道数目,单个反应所能检测的靶基因数目很难超过4-6个,限制了该技术在涉及多靶点的复杂疾病上的应用。在PCR反应后添加熔解分析步骤,可在一定程度上增加可检测靶基因数目,但是,伴随荧光探针类型的增加,荧光背景及检测成本也随之升高,尤其是,探针结合区任何核酸变异都可能引起熔点偏移,导致结果误判,使得该法对于靶标数目的提升依然受限。与那些广受瞩目的高通量检测技术相比,已有30年历史的rtPCR似乎正成为一种“低阶”核酸检测技术。在2022年2月24日在线发表于《美国国家科学院院刊》(PNAS)的一项研究中,厦门大学生命科学学院李庆阁团队报道了一种称为“MeltArray”的荧光PCR新技术,一举将荧光PCR的单管检测能力提高到一个数量级以上,并通过多个临床应用场景,系统展示了该技术强大而灵活的检测能力。“MeltArray”巧妙地利用了Taq DNA聚合酶的5' -瓣状内切酶活性,在PCR反应中,该活性将位于引物下游的“媒介探针”切割,生成“媒介引物”,“媒介引物”进而与分子信标报告探针结合,在Taq酶聚合活性作用下,沿着分子信标延伸生成具有特定熔点的荧光双链,最终使媒介探针特异识别的靶标获得一个包括荧光类型和熔点值的“二维”标记。由于每个分子信标可以允许多个媒介引物形成一系列具有不同熔点的荧光双链,单个MeltArray多重荧光PCR反应可检测的总靶基因数目就等于反应中分子信标数目乘以其所容纳的媒介引物数目。作者在文中展示了单个荧光通道可检测12个靶标,6个荧光通道的仪器可以检测多达72个靶标!这是单个闭管PCR一步法迄今所能检测的最大靶基因数目。该技术实现的关键是获取一种具有“多泊位”的报告探针,以容纳众多的媒介引物。研究人员首先比较了线性探针和分子信标分别用作报告探针的优劣,分子信标因具有清晰的背景而胜出。接着,作者考察了分子信标的“多泊位”能力。他们小心翼翼地从两重PCR开始,首先证明一个分子信标可以允许两个“媒介引物”停泊;又通过一个四重PCR,证明了一个分子信标可以允许四个“媒介引物”叠加式停泊,由此,提出了一个分子信标可以容纳任意多个媒介引物的假设。根据目前荧光PCR仪器的熔点分辨率,利用两个分子信标,实验验证了单个荧光通道即可检测12个靶基因。最后研究人员构建了一个阵列式结构的“媒介子”库及其对应的分子信标报告探针,以实现检测的标准化。为降低多重PCR中多对引物并存可能产生的引物二聚体干扰,研究人员又引入了“PCR抑制”概念,至此提出了MeltArray的完整技术原理(图1)。图1 MeltArray的技术原理为验证MeltArray的多重检测能力,作者首先设计了一个20重PCR的 MelArray检测体系,覆盖人类Y染色体无精子因子区域 (AZFa、AZFb、AZFc和AZFd)的18个序列标签位点和2个参照基因(SRY基因和ZFX/Y基因)。在正常男性样本,20个位点全部存在,即均有熔解峰,而患者男性则会出现1个或多个熔解峰的缺失——该实验是一个典型的多靶标同时出现的例子(图2)。实验结果表明,该MelArray体系仅利用三个荧光通道,就实现了20个靶标的同时检出。为评估模板量对MeltArray检测能力的影响,作者考察了从100 ng到100 pg的健康男性和女性的基因组DNA,在该范围内,所有模板均被稳定检出。随着DNA模板量的逐渐降低,熔解峰高度有所下降,但20个峰的熔点值均未发生变化。最后,作者通过对757份样本的双盲检测,证实了MeltArray体系的准确性。图2 MeltArray技术应用于20重人类Y染色体微缺失的检测受以上结果鼓舞,作者开始挑战更多的靶标数目。这次,他们使用六个荧光通道设计了一个62重PCR的MeltArray检测体系(图3),用于识别61种O抗原合成基因及1个大肠杆菌管家基因yccT。我们看一下此时每个通道的检测数目,按照荧光波长从低到高的次序,六个荧光通道检测的靶标数目分别是11、9、12、12、8和10个!各个通道的重复实验结果采用3倍标准偏差显示,每一个靶标对应的熔点值均稳定且能明确区分。最后,作者利用该体系鉴定了167株大肠杆菌培养株的血清型,除了覆盖范围之外的4株,检测结果与全基因组测序结果完全一致,而且比传统抗血清法多鉴定出11株,还另外纠正了其鉴定错误的1株。图3 MeltArray技术用于61种大肠杆菌O血清型分型上述两个例子均为定性检测,那么,MeltArray可否另外进行定量检测呢?为回答这一问题,研究团队设计了一个24重PCR的呼吸道病原体检测体系(图4),他们将其中的19种非定植菌/病毒和1个内控基因设置为熔解分析模式,即定性检测;另外4种细菌设置为实时PCR检测模式——即TaqMan探针模式,即定量检测。需要指出的是,作者选择变性阶段进行实时荧光检测。他们相信,实时检测的对象是探针酶切后积累的荧光信号,无论变性阶段还是延伸阶段,检测结果应该一致。在变形阶段,任何报告探针产生的荧光都会趋于一致,而不影响实时检测结果。事实证明了作者的这一设想。该体系在定性检测19种靶基因的同时,成功实现了4种靶基因的定量检测。24重PCR的MeltArray检测体系分析灵敏度达10 copies/μl。通过对67份肺炎或呼吸道感染患者的肺泡灌洗液样本的验证,证实了检测结果的可靠性。图4 实时PCR和熔解曲线分析同时应用于呼吸道病原体的定性和定量检测突变分析是核酸检测另一重要应用领域,为考察MeltArray可否用于突变分析,研究团队以KRAS突变为例,设计了一个称为“微测序”的突变鉴定体系,即在单个反应管内一一鉴定出发生在KRAS基因密码子12和密码子13上的9种类型的突变(图5)。在这里,作者利用了探针杂交的特异性,利用10条媒介探针,对上述9种突变类型和野生型分别加以二维标记。实验表明,该体系具有极佳的突变检测特异性,可耐受高达500 ng的野生型基因组DNA,可检测的突变等位基因频率达到5%-10%,优于Sanger测序——其最低突变等位基因频率在10%-20%之间,检测限低至30个拷贝每反应。最后作者利用该体系检测了167份结直肠癌组织样本的KRAS突变类型,获得了与Cosmic数据库一致的突变频率分布,同时也表明,MeltArray比Sanger测序具有更灵敏的突变检测能力。图5 MeltArray技术用于KRAS突变的微测序MeltArray的以上四个应用场景,实际上对应了分子诊断的三大应用领域,即遗传病、传染病(又分别涉及到病原体鉴定及病原体定性、定量检测这些细分领域)和肿瘤的分子诊断,显示出MeltArray做为通用核酸检测技术的典型特征。当前,实现类似靶标数目的检测均需“开管检测”技术,如芯片、质谱、微球、电泳等,然而这些技术普遍存在设备昂贵,操作复杂、周转时间长等缺点,且国产化率低,在国内外市场上不温不火,长期进展缓慢。相对而言,MeltArray采用广泛可及且已国产化的荧光PCR仪器,具有明显的成本低、操作简便、自动化程度高、周转时间短等诸多优势,结合本文所展现的强大而灵活的技术优势,不仅成功推动荧光PCR这一“老技术”再上“新台阶”,也完美填补了长期存在于低阶PCR和高通量检测二者之间的技术空白!厦门大学生命科学学院黄秋英助理教授、博士生陈冬梅、杜琛为共同第一作者,李庆阁教授、廖逸群副教授为共同通讯作者,共同作者包括厦门大学硕士生刘巧巧、林素、梁兰兰、许晔副教授。该研究得到了国家科技重大专项(No. 2017ZX10302301 & No. 2017ZX10303406)、国家自然科学基金(No. 81672110)、福建省社会发展高校产学合作项目(No. 2019Y4002)、厦门市科技计划项目(No. 3502Z201830070 & No. 3502Z20183013)的资助。本文所描述的MeltArray技术已在中国、美国、欧洲、日本、韩国获得专利授权,并向澳大利亚等国递交了专利申请。李庆阁团队长期从事荧光PCR尤其是多重荧光技术平台研究,2001年报告一种新的寡核苷酸杂交反应模式(Nucleic Acids Research),发明置换探针和置换引物(中、美、日、澳及欧洲专利授权);2004年提出置换探针基因分型技术(Nucleic Acids Research);2006年发明探针编码实时PCR(Clinical Chemistry,中国发明专利授权);2011提出自淬灭探针的多色探针熔解曲线变异分析技术(Journalof Molecular Diagnostics,中、美专利授权),2013年提出基于连接反应的“荧光—熔点”二维标记技术(Nucleic Acids Research, 中、美、欧洲专利授权)。声明:仅用于分享,不代表平台立场,如涉及版权等问题,请尽快联系我们,会及时更正,谢谢!
  • 首幅大气氨气柱全球分布图发布 风云卫星具备定量探测全球氨气浓度能力
    日前,我国科研人员通过分析风云气象极轨卫星上搭载的红外高光谱大气探测仪观测光谱的特点,探索建立了一套适用于风云卫星氨气柱浓度的全物理反演算法,并成功获得风云卫星首幅大气氨气柱全球分布图。这意味着风云卫星已具备定量探测全球氨气浓度的能力。氨气是大气中重要的碱性气体,与酸性气体快速反应后生成的硫酸铵和硝酸铵等二次气溶胶,是雾和霾期间大气细颗粒物PM2.5的主要污染成分。铵盐气溶胶还会通过散射影响太阳辐射,破坏地球辐射收支平衡,引起地球气候变化。因此,对氨气进行全球监测非常有必要。然而,传统的氨气浓度获取主要依赖于地面原位观测,很难满足实际需求,尤其是极地、沙漠、海洋、森林等的数据获取困难。我国风云三号系列气象极轨卫星从第四颗星开始(风云三号D星、E星、F星),搭载了红外高光谱大气探测仪,为实现氨气全球探测提供了可能。中国科学院大气物理研究所副研究员周敏强和中国气象局研究员张兴赢合作攻关,建立了适用于风云卫星氨气柱浓度的全物理反演算法。该算法在反演氨气时,可进行臭氧、二氧化碳、水汽、地表温度等干扰参数的同步反演。研究发现,风云卫星上的红外高光谱大气探测仪可以很好地捕捉全球氨气高值区,获得大气氨气柱分布图。周敏强指出,这次研究建立的反演算法虽已论证风云卫星的全球氨气定量遥感观测能力,但目前在海洋和高纬度地区反演精度较低。未来,研究团队将进一步改进反演算法,引入神经网络算法,提升反演精度,提高海洋和高纬度地区有效观测数据的质量。
  • 我国超分辨率荧光显微镜研制取得新突破
    通过采用独特的分子设计,我国光电国家实验室朱明强教授课题组近日研发了一种超级荧光分子开关,将基于二芳基乙烯的荧光分子开关比提高了4个数量级,达到1万倍以上,响应速率也大幅度提高。并且,课题组还利用这种超级荧光分子开关的新特性,制作出具有超级光敏感和应用潜力的全光晶体管,这对我国研制新型超分辨率荧光显微镜意义重大。相关成果的论文日前已经在国际知名的《自然· 通讯》杂志上发表。   据介绍,在过去很长一段时间,世界各国科学家认为光学显微镜有一个极限,即无法获得比半光波长更好的分辨率。但在&ldquo 荧光分子&rdquo 的帮助下,科学家可以突破这种极限。2014年,美国及德国三位科学家就是因为&ldquo 研制出超分辨率荧光显微镜&rdquo ,将光学显微镜带入了纳米维度,获得诺贝尔化学奖。   在&ldquo 纳米&rdquo 级的超分辨率荧光显微镜下,科学家可以实现活体细胞中单个分子通路的可视化,能够观察到分子是如何在大脑神经细胞之间生成神经突触,可以追踪帕金森病、阿尔兹海默症和亨廷顿症患者体内相关蛋白的累积情况,还能跟踪受精卵在分裂形成胚胎时蛋白质的变化过程等。
  • 蓝天碧水净土保卫战——原子荧光“不可或缺”
    要打好蓝天、碧水、净土保卫战,需加强对环境污染物的监控与治理,尤其是以汞为代表的环境污染物。汞是一种毒性很强的污染物,具有易迁移、高生物富集、高生物毒性等特性,已被公认为全球性的环境污染物质,也被我国列为环境监测常规项。无机汞毒性远不如有机汞,且环境中的部分无机汞以较为稳定的化合物状态存在,因此以总汞的量来判定环境危害水平(等级)是有所缺陷的。目前国内实施的环境检测标准和方法,其检测项目大多是总汞,检测烷基汞的标准相对较少。早期的GB/T 14204-1993 《水质 烷基汞的测定 气相色谱法》是用的最多的烷基汞检测方法标准,然而该分析方法有机试剂用量大、前处理复杂、检出限高、重现性较差,已远不能满足现有环境中烷基汞的检测需求。同时,该标准和环境标准中仅有的烷基汞检测标准HJ977-2018《水质 烷基汞的测定 吹扫捕集气相色谱冷原子荧光光谱法》都无法适用于土壤、固废的检测,使得无法综合性的评估环境中烷基汞的污染水平。2022年,生态环境部推出了HJ 1268-2022《甲基汞和乙基汞的测定 液相色谱-原子荧光法》和HJ 1269-2022《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》。对环境领域而言,这两个标准的推出为环境监测中烷基汞的检测提供了新的方法,为广大监测工作者提供了方法依据与指导,填补了土壤中烷基汞检测方法的空白,完善了国家对于汞污染监测的评价体系。值得注意的是,这两个标准最终都采用了原子荧光光谱法,这也正证明了原子荧光测汞的优越性与可靠性。近些年来其他领域亦不乏推出有原子荧光光谱法相关的标准,例如GB/T 2449.1-2021《工业硫磺中的砷的测定》、正在编制中的《水质As(Ⅲ)和As(Ⅴ)的测定》和《土壤和固废中的甲基汞的测定》等标准。这些标准均集中在总砷及有机砷、总汞及烷基汞的检测领域,也标志着原子荧光光谱经过四十多年的发展终于稳定了其在砷、汞分析领域的检测地位。这主要是因为原子荧光光谱法在砷、汞、硒等元素的测量领域表现出了卓越的检测能力,而且在砷元素的检测上没有氯氩干扰问题、在汞元素的检测上有着相对非常低的污染处理成本、在硒元素的检测上有着较高的检测灵敏度,因此在常规分析领域,原子荧光保持了短期内无可取代的地位。在锑、锗、锡等元素的测量上也有着抗基体干扰能力强的特点,在一些复杂样品分析领域,如地矿和有色冶炼领域也保持着较高应用份额。北分瑞利的原子荧光事业始于上世纪90年代,在张锦茂老师带领下组建了一支高效、专业且不断发展壮大的研发与经营团队,30年来持续坚持稳定的将研发力量投入到原子荧光仪器的发展中。先后研制成功了低温点火原子化技术、静力式排废三级气液分离器、主动式尾气捕集技术、在线紫外消解装置、面加热点火陶瓷技术、复合材料尾气吸附回收技术、在线反应流路梯度控温技术、RFID智能元素灯技术、低压汞灯电源调制技术、低压汞灯稳定性控制技术、等现代原子荧光光谱仪的基础技术。在业内率先推出了液相色谱-原子荧光联用仪、便携式原子荧光光谱仪、气相色谱-原子荧光联用仪,扩展了原子荧光的应用方向。在原子荧光关键零部件的国产化上也取得了重要的技术突破,研制成功了注射泵的PEEK活塞注射器,彻底解决了注射泵的寿命问题并获得了美国专利授权,原子荧光光谱仪的自主技术走上了国际舞台。北分瑞利一直秉承平价仪器高端配置的策略,将最前沿的技术成果同步应用在主力仪器型号上,将高性价比的仪器展现在广大分析工作者面前,努力推动着原子荧光光谱法的普及应用。产品详情:北分瑞利AF-3000系列原子荧光光谱仪产品详情:北分瑞利MAS-100型烷基汞分析仪
  • HORIBA任命全球荧光产品线经理(图)
    外媒11月9日消息 光谱解决方案供应商Horiba Scientific宣布任命Cary Davies 为其荧光部门全球产品线经理。  去年年初,HORIBA收购PTI(Photon Technology International, Inc.)及其附属子公司资产,收购完成后,PTI成为HORIBA Scientific的一部分。[详细]  Cary Davies曾在PTI担任过销售经理、产品经理等职位,拥有着29年荧光光谱仪器应用与销售的工作经验。  此外,Cary Davies还曾在PTI姊妹公司OBB(Optical Building Blocks) 担任过全球产品线经理。
  • Life Tech QuantStudio12K Flex实时荧光定量PCR系统
    QuantStudio 12K Flex实时荧光定量PCR系统 &mdash &mdash 全功能qPCR尽在其中 最大的通量和拓展性:一个工作日可生成110,000个定量PCR数据 出众的灵活性:兼容96孔、快速96孔、384孔、TaqMan® 微流体芯片和OpenArray® 芯片模块 增强型光学系统:21种多色荧光组合,可区分1.5倍的拷贝数差异 广泛的应用:兼容所有的TaqMan® 和染料试剂盒,并支持数字PCR 简单的流程:配套自动化芯片上样仪,操作时间短 如欲了解更多产品,点击进入 观看视频: Follow Life Technologies: FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE. © 2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. iPad is a registered trademark of Apple, Inc. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes. View the Life Technologies privacy policy. Life Technologies中国区办事处 销售服务信箱:sales-cn@lifetech.com 技术服务信箱:cntechsupport@lifetech.com 客户服务热线: 800-820-8982 400-820-8982 www.lifetechnologies.com
  • 利用荧光DNA探测分子 单个碱基突变也能被发现
    DNA序列中最轻微的变异也会影响深远,无论对研究还是医学应用,可靠识别这些序列都非常重要。据物理学家组织网近日报道,美国华盛顿大学和莱斯大学研究人员合作,开发出一种荧光DNA探测分子,能检查出一段目标DNA链中单个碱基的变化。而这些微小突变可能是造成某些疾病的根源,或耐抗生素细菌的原因。这一成果有助于诊断和治疗像癌症、肺结核这样的疾病。相关论文发表于7月28日的《自然· 化学》杂志网站上。   不同的DNA序列为不同生物设定了独特的基因标记。现代基因组学研究表明,仅一个碱基对的变化都足以引发严重的生物后果,可能决定了一种疾病能否被治愈,也解释了疾病的突发或某些疾病对常规抗生素治疗无效的原因。论文领导作者、华盛顿大学电力工程和计算机科学与工程副教授乔治· 塞利格说,比如造成肺结核的细菌有很强的耐药性,这种能力通常来自其基因序列中的少量突变。现在,人们已能预先查出这种突变。   &ldquo 我们真正改进了以往的方法。&rdquo 塞利格说,&ldquo 新方法不需要任何复杂的反应或添加酶,就只用DNA。这意味着无论温度及其他环境变量怎样变化,该方法都是稳定的,所以很适合用于低资源设置中的诊断。&rdquo   这种探测分子经过专门设计,采用了新的编程机制,能与一个可疑的DNA序列结合,对其双螺旋链生成互补的DNA序列。把含有两种序列的分子在盐水试管中混合,如果两条链的碱基对都是完好的,它们自然地匹配在了一起,探测分子会发出荧光 如果不发光,则意味着上面有碱基对发生了突变。与以往技术不同的是,探测分子会检查目标DNA双螺旋的两条链是否发生了突变,而不是一条,这使检验更加全面具体。   此外,探测分子由许多寡核苷酸构成,克服了合成上的局限,可以探测更长的DNA序列中更详细的变异信息,达到200个碱基对,而现有探测突变的方法只能检查20个。   目前,研究人员与华盛顿大学商业化中心一起对该技术提出了专利申请,他们希望把这种技术和诊断试纸结合用于疾病测试。
  • 中国国际科技促进会发布《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准
    根据《中国国际科技促进会团体标准管理办法》的要求,《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准已经完成立项、编制起草、征求意见、评审、修改、审查、批准及备案等标准制定流程,经中国国际科技促进会标准化工作委员会审批通过,正式发布,现予以公告,即日起实施。详情见正式文件。 中国国际科技促进会标准化工作委员会2023年7月17日关于《激光照明用稀土荧光陶瓷可靠性性能的试验方法》团体标准发布的公告.pdf关于《稀土激光荧光陶瓷热稳定性的测定》团体标准发布的公告.pdf
  • 满足明场和荧光成像需求,鑫图发布新一代高灵敏彩色sCMOS科学相机Dhyana 400DC!
    近年来,鑫图全力进入sCMOS相机的开发,全方位进行相关的软硬件、算法集成等前瞻性基础研究工作, Dhyana作为鑫图高端sCMOS相机品牌,推出后受到各界人士广泛关注! 400DC是鑫图采用最新彩色sCMOS图像传感技术,结合核心色彩还原算法,推出的新一代彩色科学相机,能同时满足明场高质量色彩还原的需要,又极大拓展了色彩在荧光等暗场成像中的应用可能。 不仅如此,为满足高端科研需要,400DC同时提供诸如高速录像、荧光合成实时预览等多种高级图像处理功能!最高可达2000fps的快速录像,就算是单分子荧光自旋成像如此超高难度的挑战,也能游刃有余! 鑫图致力于为每一位用户发掘科学摄影的无限潜力, 400DC是鑫图继高灵敏科学级CMOS黑白相机后,为满足更多色彩应用需求开发的又一诚挚之作,科研级的灵敏度、极低的噪声,卓越的动态范围以及完美色彩还原能力为科学影像带来了迄今最高品质的真实色彩体验!
  • 福建物构所稀土纳米探针荧光免疫分析研究获进展
    镧系解离增强荧光免疫分析技术(DELFIA)作为目前最灵敏的荧光生物检测方法,在科学研究和医疗领域已获得广泛的商业应用。商用的DELFIA试剂盒采用传统的分子探针如稀土螯合物作为标记物,存在着稀土离子标记比率低(最高10~30个稀土离子)、光化学稳定性差和价格昂贵等缺点。与稀土螯合物相比,稀土纳米发光材料具有化学稳定性高、可修饰性好、潜在生物毒性低等优点,是目前普遍看好的新一代荧光生物标记材料。然而,由于稀土离子4fN电子组态间的禁戒跃迁特性,直接利用稀土离子自身的敏化发光无法达到高灵敏检测的需求。因此,科学家设想能否结合DELFIA技术,将稀土纳米晶作为纳米探针替代分子探针稀土螯合物,利用纳米晶高度浓缩的稀土离子(每个纳米晶含成千上万个稀土离子)来提高其标记比率,并借助DELFIA增强液将纳米晶溶解生成大量强发光的稀土胶束,从而达到提高发光与检测灵敏度的目的。   在国家自然科学基金杰出青年科学基金、科技部&ldquo 973&rdquo 计划和重大科学仪器开发项目、中科院战略性先导科技专项和创新国际团队项目等支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室陈学元研究小组和结构化学国家重点实验室黄明东研究小组合作,发展了一种基于稀土纳米晶溶解增强的荧光免疫分析技术(DELBA)。该技术沿用了商用DELFIA的操作流程,简单地以稀土纳米探针替代分子探针稀土螯合物,利用稀土纳米晶高度浓缩的稀土离子提高其标记比率,极大地增强了体系的发光与检测灵敏度。项目组通过高分辨荧光光谱、元素分析等手段,以~9 nm NaEuF4为纳米荧光探针和&beta -萘甲酰三氟丙酮(&beta -NTA)为增强剂,揭示了稀土纳米晶溶解增强的发光机理,并实现了对人体广谱肿瘤标志物癌胚抗原(CEA)的高灵敏DELBA检测,检测极限达0.1 pg/mL,比商用DELFIA试剂盒降低了近3个数量级,为迄今CEA检测最优值。进一步地,该团队利用发展的DELBA技术测试了肿瘤医院20例血清CEA值,结果与商用DELFIA试剂盒基本一致,并通过测定变异系数、回收率等验证了该方法的准确度和可靠性。上述工作以通讯形式于8月11日在线发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014, 53, DOI: 10.1002/anie.201405937),并申请了中国和PCT国际发明专利。   此前,该团队在基于稀土纳米荧光探针的肿瘤标志物检测方面已取得系列研究进展。例如,利用LiLuF4:Yb3+,Er3+上转换纳米荧光探针实现了对疾病标志物人绒毛膜促性腺激素&beta 亚单位(&beta -hCG)的上转换荧光(UCL)检测(Angew. Chem. Int. Ed. 2014, 53, 1252 Frontispiece) 利用超小CaF2: Ce3+/Tb3+纳米荧光探针实现对人体肿瘤标志物可溶性尿激酶受体(suPAR)的时间分辨荧光共振能量传递(TR-FRET)检测(Angew. Chem. Int. Ed. 2013, 52, 6671)。   基于稀土纳米探针的溶解增强荧光免疫分析原理示意图:a-传统DELFIA b-新技术DELBA
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制