当前位置: 仪器信息网 > 行业主题 > >

仪器微课堂

仪器信息网仪器微课堂专题为您整合仪器微课堂相关的最新文章,在仪器微课堂专题,您不仅可以免费浏览仪器微课堂的资讯, 同时您还可以浏览仪器微课堂的相关资料、解决方案,参与社区仪器微课堂话题讨论。

仪器微课堂相关的资讯

  • 仪器小课堂直播开始|探秘哈希西安维修中心
    仪器小课堂直播开始|探秘哈希西安维修中心哈希公司 7月2日周四14点哈希仪器小课堂直播间继续与您相约本期直播内容维修中心介绍工作间线上参观现场演示仪器维护保养、维修服务直播间抽奖击以下链接进入哈希仪器小课堂直播间本期开播时间:7月2日周四14点周四直播间见~END
  • 西南大学我来啦!岛津携手仪器信息网走进大学课堂
    2021年5月28日,岛津企业管理(中国)有限公司(以下简称“岛津”) “菁菁校园行x行业关怀季”活动继续进行,此次来到位于雾都重庆的西南大学。菁菁校园行活动中,岛津继续携仪器走进西南大学课堂,与西南大学学生面对面交流岛津分析仪器的前沿技术及特色应用,本次活动还特别邀请了四川大学分析测试中心的田云飞老师介绍XPS的原理及应用。活动中还演示了岛津紫外光谱、红外光谱及电子天平的使用方法,为西南大学化学化工学院学生的日常实验提供最切合使用场景的帮助,打开科研思路。西南大学师生积极参与了此次活动,并参与互动,好评如潮。行业关怀活动中,岛津工程师对西南大学化学化工学院中岛津气相色谱仪、液相色谱仪、气相色谱质谱联用仪及紫外光谱等仪器进行了常规巡检,解决学校老师及学生日常工作中实际所遇到的仪器使用相关疑难问题。西南大学(Southwest University)是教育部直属,教育部、农业农村部、重庆市共建的重点综合大学,是国家首批"双一流"建设高校,"211工程"和"985工程优势学科创新平台"建设高校。学校学科门类齐全,坚持以人才培养为根本,培养具有强烈社会责任感、深厚人文底蕴、扎实专业知识、富有创新精神和实践能力的高素质人才。西南大学西南大学化学化工学院实验中心副主任龚成斌致辞岛津分析计测事业部市场部尹宏瑞发表《液相色谱理论及应用》岛津分析计测事业部业务部曾力发表《气相色谱的技术及应用介绍》特邀四川大学分析测试中心田云飞发表《XPS原理及应用》现场传真岛津产品担当现场讲解并演示岛津紫外光谱、红外光谱及电子天平仪器行业关怀活动现场:岛津工程师正在巡检岛津仪器,发现使用问题,解答疑惑此次“菁菁校园行x行业关怀季”活动过后,岛津还对西南大学化学化工学院实验中心副主任龚成斌进行了简短采访,让我们听听龚主任的声音:【点击播放视频】“菁菁校园行x行业关怀季”活动后续还会走访更多高校,精彩还在继续,敬请关注。
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(一)
    XPS小课堂 光电子能谱图由一系列谱线(通常称为宽谱图)或一个至几个为数不多的谱线(通常称为窄谱图或高分辨谱图)所构成。谱线信息包含三要素:峰位(结合能)、峰强(以峰高计数强度或计数率表示,但在定量分析中以峰面积表达更加准确)、峰宽(以峰位强度一半处的宽度,即Full width at Half Maximum,简写为FWHM)。而在考察XPS的性能时,峰强(灵敏度)和半高宽(能量分辨率)是不可以、也是无法分割开来的。 01 XPS的能量分辨率 XPS的能量分辨率是仪器将两个相邻的谱峰分开的能力,通常能量分辨率越高,所采集到的光电子的越少,而能量分辨率越低,则采集到的光电子越多——不能离开能量分辨率来片面强调灵敏度的高低,同样也不能片面强调灵敏度的高低而忽略能量分辨率,因此要正确评估XPS的性能,需要在给定的能量分辨率下的去比较灵敏度的高低,或者可以在给定的灵敏度下来比较能量分辨率的高低。图1. Ag 3d5/2能量分辨率为0.422eV时,灵敏度300kcps 02 XPS谱线半高宽XPS的能量分辨率通常由Ag 3d5/2的半高宽来进行比较。谱线的半高宽从根本上讲,是所测谱线的发射谱线与两个展宽函数(X射线源和检测系统响应)的卷积结果。发射谱线的线型是洛仑兹型的,用来激发光电子的X射线也是洛仑兹型的,而检测系统的响应则是高斯型的,换言之我们看到的XPS的谱线的宽度是由三部分构成的,即发射谱线的宽度、X射线源的展宽和检测系统的展宽。 粗略来说测量到的XPS的谱线宽度大致是这样的: wA是样品原子能级的自然线宽——发射谱线的宽度是本征的,由其电子能级本身决定——电子能级寿命越长则谱线宽度越窄,电子能级寿命越长则谱线越窄,无法通过仪器的参数来改变; wx是X射线源的线宽——X射线源的展宽对特定的X射线源也是固定的,但是可以通过仪器的硬件设置改变,例如是否使用单色化的X射线源——500mm罗兰圆的单色化的Al Ka线宽0.25eV,非单色化则为0.85eV,所以使用单色化光源的分辨率就好于非单色化的X射线源; wD是检测系统的展宽;仪器的半球能量分析器半径和通能共同决定了检测系统的展宽——能量分析器半径越大,本征的能量分辨就越好;而通能越小能量分辨也就越好,但是信号强度也会下降——能量分辨(通能)和信号强度近似呈对数曲线关系。 03 通能(Pass energy)我们通常可以选择不同的通能来实现不同的能量分辨率。 XPS的能量分析器通常采用固定分析器传输(Fixed Analyzer Transmission,FAT)或称恒分析器能量(Constant Analyzer Energy,CAE)模式,待分析的光电子被减速到选定的通能而通过能量分析器,这是光电子在分析器的两个半球之间移动时的平均动能。FAT(CAE)模式的优点是能量分辨率在整个测量的动能范围内保持恒定。图2. XPS通能原理示意图 选择较低的通能时,可以获得了较好的能量分辨率,但同时灵敏度会降低,反之选择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。图3. 在相同的X射线源功率下,以不同的通能(20eV和10eV)测试Al 2p 图3清晰地显示了较小的通能(10eV)时,能看到单质态Al 2p出现明显的双峰劈裂,但是灵敏度相对较低(大致在7×103cps),而在较大的通能(20eV)时,单质态Al 2p的双峰劈裂几乎消失了,但是灵敏度显著提高(大致在2×104cps)。 本期介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,下期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 本文内容非商业广告,仅供专业人士参考。
  • “不一样”的课堂:流变学听两权威院士娓娓道来
    p    strong 仪器信息网讯 /strong 流变学是介于力学、化学和工程学等之间的交叉、边缘学科,应用范围十分广泛,如聚合物加工、石油、食品、血液、悬浮液、润滑剂等均与流变学有关,但由于其机理多用张量等比较复杂的形式展现,所以一直以来,流变学都被认为是一门“高大上”的学科。分析检测方面也是如此,虽然流变表征手段能够获得很多的样品信息,但许多研究工作者,一般会更倾向于使用常见的热分析检测手段。 /p p   随着对产业升级及技术革新要求越来越高,流变学如何从一门理论研究学科走向应用端成了更多流变界专家关注的重要命题。TA仪器作为流变技术的领导者,一直将推动流变学及其应用在全世界的发展作为自己的使命。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d5c1c8f8-1190-4020-b9f8-c5eb3364e65e.jpg" title=" IMG_5324_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 四位授课讲师 /strong /span /p p span style=" color: rgb(0, 176, 240) " (从左至右:Christopher Macosko院士,Amy Shen教授,Gerald G.Fuller院士,乔秀颖博士) /span /p p   2018年4月9日至10日,美国TA仪器在上海新园华美达广场酒店举办了“流变学原理与前沿应用大师课程”,这是一次“不一样”的课堂:课堂讲师分别是:美国工程院Gerald G. Fuller院士、Christopher Macosko院士,两位都是世界流变学最高奖项宾汉奖获得者,作为流变学权威,能同时在同一课堂授课更是难得。同时,两位杰出的青年流变学家Amy Shen教授和乔秀颖博士也参与了大师课程的部分授课内容。此次课程不仅吸引了来自中国流变学术界的领军人物前来“朝圣”,更有众多产业界的技术专家们纷纷慕名而来,课程席位一票难求!大家都希望近距离接触并体验如此“不一样”的课程。课堂授课内容既包含最基础的流变概念及原理,同时也就实际应用问题进行了探讨,更融合了很多有趣的课堂小实验,如置身全美顶级名校课堂,所有学员亲历了一场流变盛宴。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c0784c25-c631-499d-81e4-4d1501422b93.jpg" title=" IMG_5144_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 院校及企业学员签到 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/f99f079f-f707-4445-a8c6-0334b162b1e0.jpg" title=" IMG_5174_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 授课现场 /strong /span /p p   仪器信息网编辑有幸参加了本次课堂第一天的授课,“不一样”的课堂难能可贵,所以按授课时间顺序,以图文形式对授课内容作以简记,以飨读者。 /p p    strong 第一节:流变学介绍:主要现象,材料性能 /strong /p p strong   授课人:Christopher Macosko 院士 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/9c71c80d-25c4-42e7-98e0-00cbf6803e47.jpg" title=" IMG_5185_副本.jpg" / /p p style=" text-align: center " strong style=" color: rgb(0, 176, 240) text-align: center " 授课中的Christopher Macosko 院士 /strong /p p   首先,Christopher Macosk院士介绍了流变学的概念,一句话概括即是研究复杂材料的流动与变形的学科。接着以现场道具(硅胶泥、面包片涂奶油等)实例介绍了流变学的主要研 究内容,即应力、应变、应变速率,及他们之间的关系。同时也介绍了牛顿流体与非牛顿流体的不同流变表现,对日常生活中的一些现象用流变学语言进行了生动解释,如应力松弛,、挤出胀大,爬杆效应等。最后以表面活性剂溶液、聚合物溶液、缠结聚合物、乳胶、凝胶等常见研究对象为例,分别解析了他们的应力应变曲线关系图。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a785c8df-23d8-4600-8c63-430b3a096994.jpg" title=" IMG_5195_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 课下答疑时间 /strong /span /p p    strong 第二节:线性黏弹性 /strong /p p strong   授课人:Amy Shen教授 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/51d36e55-87ca-4513-ab70-0151598c8806.jpg" title=" IMG_5203_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 授课中的Amy Shen教授 /strong /span /p p   当应变振幅较小时,高聚物的流动呈现线性黏弹性。Amy Shen教授介绍了线性黏弹性的概念、相关公式机理。并重点介绍了Maxwell模型的内容及推导过程。 /p p    strong 第三节:线性黏弹性微观结构基础 /strong /p p strong   授课人:Gerald G . Fuller 院士 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e8d205ef-644c-46eb-a31d-afbaa0c9cee0.jpg" title=" IMG_5214_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 授课中的Gerald G . Fuller 院士 /strong /span /p p   Gerald G . Fuller院士首先以聚合物溶液、缠结聚合物、乳液等为例,讲解了松弛现象产生的微观原理。并讲道,线性黏弹性测试可用于探测复杂流体,软物质的微观结构,而线性黏弹性区的确定可以通过对材料施加一定外部刺激(应变或应力),材料的性能不依赖于外界刺激的这一段可以定位为线性黏弹区。不同材料的松弛时间可以通过材料内部松弛的物理机制来估计。最后,分别以聚合物稀液体的熵跃、刚性颗粒的旋转分散、乳液的表面张力、缠结聚合物链的蠕变等现象对松弛现象进行总结。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/76507d2d-8988-4bb4-b08d-398f1182a357.jpg" title=" IMG_5244_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 课下答疑时间 /span /strong /p p    strong 第四节:线性黏弹性课堂实践 /strong /p p strong   授课人:乔秀颖 博士 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/54b89022-7e7e-4437-b902-a65c546c83a9.jpg" title=" IMG_5254_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 授课中的乔秀颖 博士 /strong /span /p p & nbsp & nbsp 线性黏弹性课堂实践上,课堂为每位学员准备了流变性能不同的两种硅胶泥样品(黄色和蓝色)。乔博士首先让大家通过用手推、拉、挤压动作,体验两种样品的 不同流动变形现象,并让大家考虑是什么影响了这两种样品的不同表现。最后,通过流变实验数据对比分析,为大家解惑两种样品流变性能差异的原因。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8fa0b327-4876-4201-b753-ff4aefd585d2.jpg" title=" IMG_5261_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 互动实验中 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/f3d38631-b1cd-4f2c-a872-ca75787ba544.jpg" title=" IMG_5306_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 课下答疑时间 /span /strong /p p    strong 第五、六节:一般粘性流体、剪切流变仪 /strong /p p strong   授课人:Christopher Macosko 院士 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/3dbb8cf8-46d3-4ebd-884d-e428ae32d66f.jpg" title=" IMG_5243_副本.jpg" / /p p style=" text-align: center " strong style=" color: rgb(0, 176, 240) text-align: center " 思考时间 /strong /p p   Christopher Macosko院士通过向学员展示水、油、聚合物等多种物质的流动性,表明了生活中常用材料的黏度范围很广,日常生活中的一些常见行为如涂抹护肤品,刷漆以及工业中的加工过程如挤出成型,注塑成型等过程需要的剪切速率也呈现数量级的差异。通过这些实例物体的典型流变数据参数,进一步演示推导了广义牛顿流体的本构方程,并分别介绍了多种数据拟合模型。接着第六节课, Macosko院士又向大家详细介绍了剪切流变仪的结构、工作原理、实际应用案例等,同时,结合一些实际案例,解析了剪切流变仪的数据解析过程。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d013921c-bc18-4743-b2bf-013d5f802a04.jpg" title=" IMG_5233_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 听课时间 /strong /span /p p    strong 第七节:剪切变稀,剪切增稠的微观结构基础 /strong /p p strong   授课人:Gerald G . Fuller 院士 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/24a3b283-d418-4e3a-9c6f-bc9df7b8e379.jpg" title=" IMG_5272_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 课上答疑时间 /strong /span /p p   课堂首先展示了剪切变稀、剪切增稠研究在历史上那些里程碑的发现:1984年,Laun通过不同体积分数的带电苯乙烯-丙烯酸乙酯共聚物悬浮液发现剪切黏度与体积分数和应力有关,并观察到剪切变稀、屈服和剪切增稠现象。 1989年,Russel发现黏度与无量纲应力与颗粒大小无关。2000年,Foss发现相对零剪切黏度只取决于体积分数。2005年,Lee发现第一法向应力差在高剪切速率下相对较小,改变信号变为负值(剪切 增稠)。接着具体讲解了剪切变稀和剪切增稠的概念及微观机理,以及在实际生活应用实例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/159f399a-7ddc-42bd-9ab7-093d14dbc565.jpg" title=" IMG_5259_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 课程道具集合 /span /strong /p p   以上是第一天的全部课程内容,课程第二天,还由Christopher Macosko 院士和Gerald G . Fuller 院士共同讲解了非线性黏弹性、拉伸流变仪、非线性现象的微观结构基础、应力/絮凝悬浮体、界面流变学、凝胶及实例分析、微流变测量等精彩内容。同时,两位院士还为大家精心准备了28道实际应用中的问题供学员第一天节课后回去思考,并将在第二天课程中一一揭晓答案。 /p p   整天课程下来,你会感受到课堂的内容非常丰富,笔者也听闻两位院士在课堂前一晚的晚餐期间,还在热烈的讨论讲课内容,再看课上的每一个实验道具、每个互动也足见两位院士为课堂精心的准备。据本次课程的组织方TA仪器中国区副总经理董传波先生介绍:两位院士均对流变学在中国的推广及传播满怀热情,对此次TA仪器组织的课程无偿授课,并在课程设计上亲历亲为,课堂上倾囊相授。他们对流变学的热爱令人感动!这场“不一样”的大师课程必将成为中国流变界内的一段佳话。更加荣幸的是,在授课茶歇期间,笔者有机会采访了Gerald G . Fuller 院士,对本次授课背后的故事、世界流变学发展现状等进行了交流,谈及讲堂上无限的授课热情时,Gerald G . Fuller 院士直接以“I love it”表达对流变学、对传播流变学知识的热爱。更多采访内容,请关注仪器信息网对Gerald G . Fuller 院士的后续专访报道。 /p p style=" text-align: center " ---------------------------------------------- /p p strong & nbsp & nbsp 附:授课专家介绍 /strong (排名不分先后) /p p style=" padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) " strong span style=" font-size: 19px line-height: 28.5px font-family: & #39 times new roman& #39 , serif " img src=" http://img1.17img.cn/17img/images/201803/insimg/e13772bc-1b29-4b5b-84b7-75e0e9fa981e.jpg" title=" 1.jpg" style=" max-width: 675px width: 160px height: 213px " height=" 213" hspace=" 0" border=" 0" vspace=" 0" width=" 160" / /span /strong strong Gerald Fuller /strong , 斯坦福大学化学工程系Fletcher Jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。Fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。 /p p style=" padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) " strong span style=" font-size: 19px line-height: 28.5px font-family: & #39 times new roman& #39 , serif " img src=" http://img1.17img.cn/17img/images/201803/insimg/df1537c1-b825-4109-a479-533c0d6f418a.jpg" title=" 2.png" style=" max-width: 675px width: 160px height: 180px " height=" 180" hspace=" 0" border=" 0" vspace=" 0" width=" 160" / /span /strong strong Christopher W. Macosko /strong , 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获AIChE及SPE的奖项及流变学会宾汉奖章。 /p p style=" padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) " strong span style=" font-size: 19px line-height: 28.5px font-family: & #39 times new roman& #39 , serif " img src=" http://img1.17img.cn/17img/images/201803/insimg/014e9720-c926-4034-9873-d2d0dec85778.jpg" title=" 3.png" style=" max-width: 675px width: 160px height: 229px " height=" 229" hspace=" 0" border=" 0" vspace=" 0" width=" 160" / /span /strong strong Amy Shen /strong ,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。Shen教授的研究主要聚焦于复杂流体的微流体,黏弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。Amy Shen最近还被流变学学会选为学术委员。2003年荣获Ralph E. Powe Junior Faculty Enhancement Award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 /p p style=" padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) " strong span style=" font-size: 19px line-height: 28.5px " img src=" http://img1.17img.cn/17img/images/201803/insimg/d2efebff-1eb7-4a33-b8f8-e5c6beb452c6.jpg" title=" 55.jpg" style=" max-width: 675px width: 160px height: 222px " height=" 222" hspace=" 0" border=" 0" vspace=" 0" width=" 160" / /span /strong strong 乔秀颖 /strong , 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯· 普朗克胶体与界面研究所进行博 士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 /p
  • 走进英国课堂:中学生发明仪器写科学报告
    英国的中学拥有一流的教学设施,电脑房的每台计算机都和因特网相连,且速度极快,服务器上还有20多套各门学科的光盘资料共享,可以随时查阅。机械技术课上配有车床、冲床和大批工具,这样学生可以就地取材,马上制作自己需要的模板、框架。学校经费充足,公立学校的经费直接从所属社区的税收中提取。   英国的中学也是以3年为界:前3年需要学习所有的课程加两门外语,从第4学年起可以放弃一部分学科,选定3门作为主修,且主修课范围不受限制,连语数外都可以不选。主修课在最后一年要参加GCSE考试,成绩按A、B、C、D给出。这类似于我国的高中毕业考试,压力远小于高考[微博]。如果对自己要求高一点,可以参加GCE考试,这项考试是以最高的A级标准命题的。但因为大学入学需要面试或是自己联系,所以无论是GCSE还是GCE,它们的成绩仅作为一项参考依据,并不能最终决定你到底进哪所大学。   必修课的减少直接分散了学生,使得每个教室都成了&ldquo 小班教学&rdquo 。人数一般是十几个,最多也就二十几个。有一个俄语班甚至只有4个学生!   英国的中学课堂强调动手能力、应用能力、创造能力和探索能力。   英国的物理课会有保证不低于1/3的课时被用来做实验,严格体现了&ldquo 实验引导理论&rdquo 的理念,而我们的实验课占总课时的比重大概只有1/10左右。化学课也是如此。英国学生做实验时虽然对细节不太注意(曾经发生过烧穿天花板之类的事故),但对于将会影响实验结果的关键步骤还是很严谨的。确实,很难想象对于物理这样靠实验发展起来的学科,不做实验的学生会有什么解决实际问题的能力。   又比如数学,在英国,除了我们学的数学外(他们称作puremaths,理论数学),还有应用数学(practicalmaths)。理论数学的课本很简单,只有指数、对数、数列和微积分5章,而平面几何、立体几何、解析几何根本就没出现在课本中,可能在初中就一带而过,估计内容也很浅显。数学的精华,则尽在应用数学中。对于这样一门理论性很强的课程,他们认为教会学生如何应用尤其重要。因此应用数学被专门列为一项课程,其意义不言而喻。   语文课也倾向于应用,主要任务是阅读文学著作(主要是莎士比亚的著作),作业也是熟读作品,上课时由教师对前一天布置阅读的那一段进行提问。教室里没有讲台,师生十多个人坐成一圈,更像是在进行一场讨论。教师提的问题大多只是针对作品本身的事实性问题,很少在生词或是写作手法上大做文章。除了这样的上课讨论外,教师还会要求学生写一篇读书报告,目的很明确:就是要培养和提高学生从所给材料中提取、处理信息的能力。   学校对学生创造能力和探索能力的培养非常重视。笔者听过一堂初中的电学课,讲的是脉冲,开始一听还吃了一惊,初中就学脉冲?其实实验的器材很简单,由底板和即插即用的零件组成,简直跟&ldquo 百拼电子世界&rdquo 一样。做实验实际上就是组装零件,找到哪几个量对脉冲的频率有影响。主要的装置已经做在一块塑料板下面,只要拿来用就行了。这样的方式,乍看可能是忽略了基础的原理教学,但细细体会,还是有其考虑的。既然脉冲已经发明,大量的生产和组装在高科技时代仅仅是&ldquo 劳动密集型工业&rdquo 。学会脉冲的原理并不难,难的是如何把它应用于生产中。所以学校要培养的就是学生利用现有零件,发明出新仪器的创造力。   笔者看见一台湿度探测仪,可以用来检测花园里是否需要浇水,可谁又能想到,这样的仪器,竟是出自一位初一学生之手!高年级学生的作品就更令人惊叹了。不光是作品,每人还附上了厚厚的一大本课题报告。比如在一台飞机旅客人数统计器的报告中,先是讲自己想到这个问题的由来,再是查资料得出的有关背景知识,接着是自己尝试过的几种原始模型,然后解释设计意图,最后是成品的性能介绍。像这样的作品很多,有&ldquo 人脑测速器&rdquo &ldquo 刹车安全检测装置&ldquo &ldquo 调音盒&rdquo &hellip &hellip 每一样作品都像是真正的科学课题。
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(二)
    XPS小课堂 上期我们介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,本期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 了解仪器的性能和样品的情况对测试XPS来说非常重要,通常来说首先应该获取样品的宽扫描谱图,以确定样品中存在的元素,然后进行精细谱的扫描获得元素的化学状态信息。 01 宽谱扫描的通能选择宽谱扫描是在整个结合能范围内的低能量分辨率、高灵敏度的采集,采集的能量范围为1200eV到-5eV。对于岛津的XPS来说,宽谱的测试的通能通常建议为160eV,步进为1eV。在该通能下仪器处于高灵敏度的模式,痕量、低浓度的元素都可以在此模式下尽可能地被检测到,高通能下可以获得高计数率以及在短时间内可获得很好的信噪比。 图1. 硅酸盐颗粒负载Au催化剂 如上图所示为硅酸盐颗粒负载Au催化剂,该样品表面Au的含量低于0.02%原子百分比,全扫谱图表明硅酸盐颗粒表面具有很强的O和Si元素信号,全扫谱图局部放大图中可以清晰的看到Au 4f 的双峰。 但如上期所说择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。在该采集条件下,很难确定元素的化学状态。 为了确定样品中元素的化学状态,我们需要在较低的通能下进行窄谱扫描。 02 窄谱扫描的通能选择对于岛津的XPS来说,通常建议采用通能40eV、20eV,步进0.1eV进行测试,可获得高能量分辨率的窄谱,可以确定测试元素局部化学环境变化产生的化学位移。 样品本身对能量分辨率也有影响,减小通能对于改善发射谱线本征宽度较小的谱线(如金属单质或高分子材料中的C 1s)会有比较明显的效果。图2. 不同通能条件下C1s的高能量分辨光电子谱图 如上图所示,当测试通能由80eV逐渐降低到5eV时,能明显观察到两个化学态的光电子谱峰分的更开,也能观察到更多的细节。 但对于本征线宽比较大的金属氧化物测试而言,通常会采用通能40eV,在该通能下会有比较好的灵敏度,即使进一步的降低通能到20eV,对于分辨率的提高(相比于40eV)也非常有限,因为本征线宽比较大,通能的减小对分辨率提高的贡献不大。 典型地说,20eV和40eV的通能对单质的Fe 2p可以看出明显的半高宽变化,但是对于Fe的氧化物2p峰来说,两个通能下的分辨率却差不多——为什么呢?因为Fe氧化以后,Fe原子(离子)趋于稳定,2p轨道的能级寿命变短,导致发射谱线的线宽变大,即Fe的WA变大了,通能从40eV变到20eV时导致的WD变小不足以在测量谱线的线宽W有明显的变化,但是对于Fe单质而言,WA足够小,通能从40eV变到20eV时导致的WD变小能够导致测量谱线的线宽W有明显的变化! 03小结XPS的测试,从本质上讲,就是在谱线分辨率和灵敏度之间找到一个较好的平衡点——看得见的基础上要分得开! 在测量金属单质和本征线宽较小的谱线(如高分子材料的C 1s)时,减小通能可以明显地看到测量谱线在变窄,但是在测量金属氧化物的时候,往往40eV的通能和20eV的通能在谱线分辨率方面差异不大,但是强度却下降不少(对数关系哦)。所以,我们经常使用的40eV或20eV的通能,就是这样的两个平衡点——20eV在分得开方面做得更好一点,对复杂的化学状态分辨(金属单质和高分子材料的C和O)更适合;而40eV的通能在看得见的方面做得更好一点,对于含量较低的元素(金属的氧化物)分析更适合。 当然,有时候要做更极限的分辨,如sp2和sp3杂化的C,可能要用到更小的通能10eV甚至5eV了,那时候灵敏度下降的更厉害一些,需要使用更高的功率和更多次的扫描才能获得信噪比更好的谱线了。 本文内容非商业广告,仅供专业人士参考。
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 北京博赛德云课堂-为您解读VOCs走航技术规范
    导读:近日《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》发布,本次北京博赛德云课堂BCT该技术规范内容做个解读分享,以及走航方法原理、走航应用与大家分享讨论,欢迎各位感兴趣的老师加入!背景近日,上海市市场监督管理局、江苏省市场监督管理局、浙江省市场监督管理局三省联合批准发布《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》(以下简称《规范》)DB31/T 310002-2021,《规范》规定了挥发性有机物走航监测的方法概述、试剂或材料、仪器和设备、监测方法等要求,并明确了示范区范围。本次北京博赛德云课堂BCT该技术规范内容做个解读分享,以及走航方法原理、仪器设备、走航应用案例等与大家分享讨论,欢迎各位感兴趣的老师加入!云课堂主题:走航监测技术以及应用分享时间:8月27日下午2:00-3:30讲师:闫丹丹 应用开发部讲师介绍:自2019年加入北京博赛德科技有限公司以来,一直专注于便携式气质和走航的应用方法开发,参与标准方法的制定和方法验证,参与多场国家和省级环境监测技能大比武的技术支持工作,具备丰富的走航技术经验。主要内容:走航监测的必要性介绍长三角走航监测技术规范和车载双通道方法BCT走航技术及应用分享入 群 听 课 步 骤 用个人QQ扫码上面直播群二维码,或者直接搜索QQ群号码:1070114802,入群后,群里会有“开始上课”的消息,同时在群聊天界面的右侧会有一个绿色的“加入”按钮,点击次“加入”按钮,BCT可以听课了。欢迎各位老师进群交流~-~
  • 人和科仪网络课堂正式上线啦!
    上海人和科仪自成立以来一直致力于提高中国实验室整体水平,从为客户提供全球一流品质的实验室仪器、设备,到为客户量身定制系统的低延时整体解决方案。为了实现&ldquo 为客户创造更多价值&rdquo 的承诺,人和不断努力为客户提供更多的贴心服务。 网络课堂正是我们为广大客户提供贴心服务之一。经过几个月的精心编制与拍摄,我们的人和网络课堂终于上线了!从今以后,您可以从这里更直观更便捷的了解高品质的产品和人和提供的全方位的服务。 新型仪器买回去要如何使用? 新型仪器的说明书不易理解? 现在这些都不再是问题! 因为人和科仪都会将他们的操作流程拍成视频让您跟着学,一遍学不会,还能下载之后还能继续学。 Grabner 全自动彩屏智能中-近红外汽柴油分析仪 MINISCAN IRXpert的仪器使用指导视频是我们网络课堂的开学第一讲。 通过对样品测试的实例演示,使教学更直观。 在往后的日子里我们会在网络课堂中为您推出更多的仪器使用指导视频。 视频详情请见:http://v.youku.com/v_show/id_XNjEyMDk3MDMy.html?f=20096714 如果你有想要更进一步了解的仪器欢迎来电咨询:4008 200 117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。 扫描以下二维码或是添加微信号&ldquo renhesci&rdquo ,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、SIEMENS、YAMATO等。】
  • 看GDS如何助力“灯厂”奥迪独领风骚?【GDS微课堂-6】
    汽车圈中只有两种灯,一种是奥迪的灯,另一种是其他车的灯。奥迪灯厂的称号在整个汽车圈中几乎无人不知,不得不称赞奥迪在车灯的设计上的的确用心,在其他车还在用卤素灯,氙气灯的时候,奥迪已经推出了“矩阵式LED大灯”,来感受一下它的炫酷效果。它不仅可以做成各种形状,还可以有各种颜色。图片来源:Pixabay因为与其他光源相比,LED寿命长、能耗低,并且环保无污染。随着全球性能源短缺问题的日益严重,寻找未来世界能源成为头等大事,而LED将是取代白炽灯、钨丝灯和荧光灯的潜力光源。LED是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,发射出光。这块发光芯片就像LED的心脏,负责控制LED,比如芯片的材料直接就决定了发光的颜色。对于厂家来说,技术升级的关键就在于如何开发出更高效、更稳定的 LED 芯片。它是个多镀层的结构,如下图所示,P-GaN下有InGaN和GaN构成的交替镀层,这个交替镀层就是LED芯片的活性结构,它的好坏直接关系到LED芯片的性能及质量,进而影响到LED发光。在GDS技术未普及前,人们常用SIMS(二次离子质谱)完成对LED芯片质量的分析研究。但GDS技术的出现,成功取代了SIMS,成为LED芯片分析的神兵利器。价格SIMS有两个致命缺点,一是价格偏贵,实际上只有少数“土豪”可以负担这样的费用,多数单位只能乖乖地将样品送至第三方检测,很不方便。而GDS的价格仅是SIMS的一半,大大降低了研发成本。图片来源:Pixabay分析速度另一个就是SIMS的测试速度特别慢,通常一个样品需要测试几个小时,一天也测试不了几个样品,效率低。而GDS的检测速度非常快,比如我们利用GDS测定LED芯片镀层中各个元素随深度的分布,只需要20s就能获得结果,和SIMS相比,简直就是从牛车换成了飞机。LED质量控制GDS能够快速测定LED芯片镀层中各个元素随深度的分布,进而根据LED芯片镀层的结构,判断产品质量是否合格。如上图,红色曲线为In元素,我们可以看到在:活性镀层处,In元素随时间变化,它的上升与下降非常清晰明显,说明这个产品的质量完全合格的。另外,GDS还能帮助厂家监控批次产品质量是否一致,直接反馈不同批次间产品的差异,怎么做呢?首先利用GDS快速获取不同批次芯片镀层的元素分布结果,然后进行对比。如上图,这是10个批次LED芯片的测试结果对比,大家要记住:只有曲线完全重合才能说明产品一致。这里的结果就不言而喻了。所以在生产线上,我们只需要将待检样品的测试结果直接与合格产品进行比对,重合即为合格产品,不重合即为不合格。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。您可点击阅读原文进行浏览,还可分享至朋友圈让更多科研工作者看到。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 小菲课堂|热像仪直接穿透厚厚的墙壁?有视频为证.....
    相信看过《速度与激情:特别行动》的菲粉们都知道小菲客串电影的这一幕强森通过FLIR热像仪直接看透墙后的人这样的效果是真实存在的吗?热像仪都可以穿透哪些东西呢?Q1热像仪能直接穿透墙壁吗?小菲明确告诉大家,从目前的技术来说,热像仪是不能穿透绝大多数钢筋混凝土材质墙壁的!“艺术源于生活,而高于生活”,这个电影是夸大了热像仪的穿透效果。在我们的生活中,墙壁一般是非常厚的,红外波段的透射率足以阻挡另一面的红外线辐射。如果你把一个红外热像仪指向一堵墙,它会探测到墙的热量,它后面的热量就“鞭长莫及”了。但是,如果墙里面的东西能够引起足够的温差导致的热传导,红外热像仪也是能够在墙的表面上感应到它的。比如:建筑维护专业人员经常使用热像仪来检测漏水(蒸发作用)或隔热层(热传导率变化)缺失等问题,而无需拆墙来评估问题。墙内的螺柱(垂直线)比隔热层冷,导致墙表面的温差案例指导:实地案例|FLIR红外热像仪——成功检测房屋外墙空鼓渗水Q2热像仪能穿透烟雾吗?红外热像仪是可以穿透一定程度的烟雾(固体小颗粒)探测到热量的,虽然烟雾中的烟尘颗粒有效地阻挡了可见光,但却挡不住红外线辐射,目前红外热像仪就广泛应用到消防行业。比如,FLIR K系列红外热像仪就专为消防员在工作中遇到的极端高温和浓烟环境设计,在明亮的LCD上可以显示清晰的热图像,让消防员能够轻松地穿过烟雾火灾并且做出正确决策。门口的人被烟雾遮住,肉眼看不见,却很容易被热像仪探测到当然由水汽凝结的雾,热像仪也是能穿透的。由于水滴的辐射散射,雾和雨可能会限制热像仪的拍摄范围,但在许多情况下,热像仪还是比可见光相机或人眼更能穿透雨雾,这也是汽车制造商将热像仪纳入自动驾驶汽车传感器套件的原因之一。(但值得注意的是:相比固体小颗粒,水汽造成的雾较难被红外穿透)在很多情况下,热像仪比可见光相机更清晰地探测到雾中的物体案例指导:浓烟密布让消防员“身陷险境”,FLIR红外热像仪带他们找到方向Q3热像仪能穿透玻璃吗?使用热像仪拍摄玻璃,我们会发现一个有趣的现象:玻璃就像一面反射红外辐射的镜子,如果你把热像仪对准窗户,你不会看到玻璃另一边的任何东西,但你会得到一个很好的热(镜面)反射。这是因为玻璃是一种在红外波段下高反射率材料,这意味着它能显示物体的反射温度,(而我们能看到玻璃中红外的镜像,是因为光滑玻璃的表面在发生红外波段的镜面反射)而不是让红外辐射穿透。同样的原理也适用于其他反光材料,比如抛光金属。通过数码相机能透过玻璃看到外面的树木,而热像仪看到的是摄影师反射的热量原理详情:小菲课堂|提升目标发射率,省钱又有效的方法在这里......Q4热像仪能直接穿透混凝土吗?这个问题的答案基本上与能否穿透墙壁相似,但热像仪可能探测到混凝土内部的某些东西,比如管道或辐射加热导致的与混凝土表面的温差,这样就可以被红外热像仪捕捉到!地暖管道在混凝土地板下清晰可见案例指导:实地案例|一名经验丰富的暖通工程师地暖管道泄漏的检测心得!Q5热像仪能直接穿透金属吗?在热成像领域,金属可能是一种比较棘手的材料。任何光滑或抛光的金属物体都可能会反射红外辐射,这就可能给使用热像仪检测管道或机械过热部件的人带来困难。但是氧化过的金属或被涂上冰铜材料的金属更容易精确测量。红外热像仪绝大多数情况下不可以“穿透”金属物体,但也有例外,比如用于制造热像仪镜头的金属锗材料,在红外波段的透射率就非常的高。而金属内部材料造成的温差,会反应在金属表层,这样用红外热像仪查看,同样可以达到检测效果。用热像仪很容易看到金属罐子有多满,因为里面的液体在金属表面造成温差案例指导:一款牛逼的红外成像测温仪应该具备哪些特性?Q6热像仪能直接穿透塑料吗?我们可以用红外热像仪做一个有趣的小实验:在一个温暖的物体或人面前举起一张薄薄的不透明的塑料片(如垃圾袋)。红外辐射将穿透塑料,使热像仪能够探测到塑料背后的带有温度的东西,而可见光却被阻挡。但是要说明一下,这个技巧只适用于非常薄的塑料,厚塑料就会阻挡住红外辐射(材料厚度与材料透射率成正比)。可见光大部分被塑料袋挡住,但红外辐射却能穿透案例指导:机器视觉:FLIR A615优化注塑工艺Q7热像仪能穿透黑暗吗?当然是可!以!的!热成像根本不受黑暗的影响,不需要可见光来显示热。当然热像仪和夜视仪也是有区别的,想要详细了解的小伙伴戳这里:小菲课堂 | 热像仪与夜视仪,我们该如何选择?黑暗中,热像仪能清晰扑捉到事物案例指导:动物园奇妙夜——菲力尔让您深夜与雄狮“共舞”!Q8热像仪能直接穿透树木吗?热像仪无法穿透树干探测物体,但热像仪可以帮助在森林地区发现人或动物。搜索和救援团队在大范围的荒野中进行搜索时,经常使用热像仪来发现热信号。热像仪不能穿透树木,但它可以帮助发现森林里的人或动物,因为他们的在热图像中比可见图像中更突出案例指导:FLIR热像仪提供实时监控,保障野生动植物的生命安全Q9热像仪的镜头是如何制成的?红外热像仪镜头是由锗类等物质或其他在红外光谱中吸收率和反射率低(透射率极高)的材料制成的。红外热像仪的工作方式与普通可见光相机不同。普通相机的功能或多或少与人眼相同,接收可见光谱中的辐射及反射(且我们看到的景物,绝大多数来自可见光的反射)并将其转换为图像。但是,红外热像仪是利用热量(即红外线或热辐射)而不是可见光拍摄图像,因此,红外热像仪的镜头需要用不同于普通相机的材料制成。原理详情::小菲课堂|红外热像仪镜头是由什么制成的?Q10如何挑选适合自己的红外热像仪?挑选适合自己的红外热像仪,一定要结合考虑测温范围(量程)、视场角 (FOV)、红外分辨率、热灵敏度(NETD)、焦距、光谱范围等。在确定哪种热像仪最适合您的需要时,请记住以上挑选要点。重要的是,选择热像仪时,不能只考虑一种参数,要根据您的需求综合选择。原理详情::小菲课堂 | 如何挑选心仪的红外热像仪?热像仪广泛应用在我们日常工作生活掌握它的各项原理有助于我们获得精确的检测结果如果你想要系统学习FLIR热像仪和红外热成像技术相关知识可以报名参加我们受欢迎的课程ITC红外培训在这里不仅可以学习理论知识还可以上手实操检测
  • 直播预告 | #小碳微课堂# 纯水/超纯水总有机碳TOC的检测原理
    大家好,我是小碳,这次小碳给大家带来的福利是我们新开设的小碳微课堂——TOC分析仪系列课程,内含TOC的检测原理、行业应用、仪器使用相关知识等等,都将陆续火热上线!#小碳微课堂#第一期将于4月24日开课快来报名吧!纯水/超纯水总有机碳TOC的检测原理时间2020年4月24日周五14:00-14:40费用免费总有机碳TOC(Total Organic Carbon)是水质检测中最重要的指标之一,它反映了水中有机碳物质的总量,TOC值越高,表明水受到的有机物污染越多。纯水/超纯水中的TOC含量,对制药、半导体等行业的生产非常重要,那么,- 如何测定水中的TOC呢?- 纯水/超纯水的TOC测定有哪些方法?- 这些方法有何不同?- 每种方法是否有特定的适用场景?- Sievers® 专利的膜电导检测技术有哪些优点?此次直播课程中,我们将向您介绍TOC检测的基本原理以及纯水/超纯水TOC检测的不同方法和应用,并针对以上问题作出解答。作为TOC分析仪系列课程的基础,了解TOC的检测原理有助于为您的应用选择合适的分析仪器,并在未来的仪器使用过程中,帮助您对TOC检测结果有更深层次的理解,欢迎收看! 报名方式- 扫下列二维码,进行会议注册,注册成功后,我们将于直播前给您发送邮件提醒及课程直播链接,直播时登录直播链接,验证注册时的手机号,即可收看课程。- 若您未收到邮件,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。- 如当天无法收看直播,您可以于课程结束的第二天后登录直播链接,验证注册时的手机号,收看课程回放。
  • 德图成为上海交大建筑环境专业“企业实验课堂”
    2009年12月23日,建筑环境07级全体学生在制冷所杜志敏老师的带领下,来到测量行业著名德企——德图仪器中国总部开展实验教学。   本次实验教学分为两大部分,首先产品经理王庆莉女士给同学们做了精彩的建环测试案例分析,如建筑环境学科中检测技术,如空调系统的温湿度、风速等调试与维护、室内空气品质及舒适度分析、建筑节能等。然后针对典型问题,利用德图的相关测量仪器开展了以下4个实验:物体表面温度的测量方式与比较,不同发射率下红外测温仪的测温精度比较,传感器刺入深度与扰流对流体温度测量准确性的影响,温度/湿度对热线式与叶轮式风速仪的风速测量精度的分析、比较。   此次企业实验教学是由晋欣桥教授牵头设立,针对本科必修课《建筑环境测试技术》,从课堂传授理论知识、校内实验室开展研究性实验、企业实验室开展应用型实验等三方面展开。其中,第三个环节最为重要。在建筑环境领域众多企业中,晋欣桥教授独独选择了与德图仪器合作,以测量参数的应用为切入角度,展开实验教学。本次实验教学得到了交大师生一致好评,有效协助建环学生理论知识的印证和强化,提高了他们的实际应用与动手能力。   另据悉,为加强与国内科研高校的合作与交流,激励学子努力成才,今年德图走进校园,德图正式启动校园宣讲会系列,在知名大学中的热能与动力工程、环境科学、测控仪器等相关专业中选择一批院校提供奖学金和培训基地,其中也包含上海交通大学的机械与动力工程学院。在12月22日,德图学院携手多位公司资深人士进入交大机械学院开办宣讲会,宣传公司和2010年的管理培训生招聘计划。德图一直注重与高校的合作,此次成为交大建筑环境专业的“企业实验课堂”,树立了一个新的合作典范。
  • 实验室技能小课堂--显微镜玻片的制作
    导读显微镜玻片做不好,哎呀,心痛!怎么办?实验技能小课堂开课了!!✨今天小编给大家总结了显微镜玻片的不同制作方法,希望能和大家一起渡过难关。 01涂片法 涂片材料有单细胞生物、小型藻类、血液、细菌培养液、动植物的疏松组织等。涂片时应注意:(1)载玻片要持平。(2)涂层须均匀且薄。(3)固定,可用化学固定剂或干燥法(细菌)固定。(4)染色,染色液要盖住全部涂面。(5)冲洗,用吸水纸吸干或烤干。(6)封片。 02压片法 将生物材料置于载玻片和盖片之间,施加一定压力,将组织细胞压散的一种制片方法,一般过程:(1)取材。(2)固定:取材后立即压片观察,可不作单独固定处理;取材后不立即视察,可将材料用固定液固定。(3)离析:对细胞团用水解分离液处理。(4)染色。(5)压片:将材料放在载玻片上,加一滴清水或染液,盖上盖玻片用拇指轻轻压片。(6)观察。 03切片法 观察机体各部的微细结构时常用,其中以石蜡切片最为常见。其制备程序大致如下:(1)取材与固定:取得新鲜材料后,切成适当的小块立即投入固定剂中进行固定。(2)脱水、透明与包埋:把固定好的材料的水分脱掉,经透明处理后,再浸入已融化的石蜡中进行浸透、包埋。(3)切片与染色:用切片机切成薄片,贴于载玻片上。脱蜡后进行染色。(4)封固:滴加中性树胶和盖片进行封固备用。
  • 恒创立达知识小课堂开播了,欢迎围观!
    恒创立达知识小讲堂KBr溴化钾单晶生长方法是什么? 由于广大客户及专业人士对于专业知识获取的要求,恒创立达准备在仪器信息网资讯栏目中开始不定期更新恒创立达知识小讲堂栏目。今天为大家奉上更劲爆专业知识,深化关于溴化钾碎晶/粉末生产方法,让大咖们更深入的了解傅里叶红外光谱仪相关耗材的生长方法。了解到我们恒创立达对耗材专业度,从细小出发,从专业深化,从质量取胜的宗旨服务好每位用户。 小恒今天就带大家了解一下制备溴化钾的方法之一,提拉法。提拉法,是1917年由丘克拉斯基(Czochralski)发明的一种合成晶体的方法,所以也称“丘克拉斯基法”,是一种从熔融状态的原料生长晶体的方法。设备和装置主要有:坩埚、高频加热线圈、提拉杆等。 提拉法的原理是利用温场控制来使得熔融的原料生长成晶体。用于晶体生长的的原料放在坩埚中加热成为熔体,控制生长炉内的温度分布(温场),使得熔体和籽晶/晶体的温度有一定的温度梯度,这时,籽晶杆上的籽晶与熔体接触后表面发生熔融,提拉并转动籽晶杆,处于过冷状态的熔体就会结晶于籽晶上,并随着提拉和旋转过程,籽晶和熔体的交界面上不断进行原子或分子的重新排列,逐渐凝固而生长出单晶体。 具体操作方法如下:将预先合成好的多晶原料装在一个坩埚中,并被加热到原料的熔点以上,原料熔化为熔体。在坩埚上方有一个可以旋转和升降的提拉杆,杆的下端带有一个夹头,其上装有籽晶,降低提拉杆,将籽晶插入熔体中,只要温度合适,籽晶既不熔掉也不长大,然后缓慢地向上提拉和转动晶杆。同时,缓慢地降低加热功率,籽晶就逐渐长粗,小心地调节加热功率,就能得到所需直径的晶体。 提拉法可以在很短的时间,比如几天,或者一到两周内快速地生长出一块足够进行研究的晶体,因此,提拉法在新晶体探索和物性研究上应用十分广泛。如果能够设计、研究出一套适合的生长控制条件,提拉法也很容易在实验室环境或者工厂化的环境中快速生长出优质的、大尺寸的单晶。 今天恒创立达小课堂给大家介绍了提拉法,针对溴化钾单晶具体的制备方法与合成条件,我们下节课再进行了解和讲解,我们下节课再见。
  • 科学课堂的 4 大教学要点
    在一个设备齐全的科学实验室中,激发孩子们探索精神的同时确保他们的安全是最基本的要求。 与普通教室相比,科学实验室本质上是完全不同的。 一般的教室,只需配置几张桌子、大型显示屏和一块白板就足够了,学生只需带着笔记本电脑。 然而科学实验更关注动手能力,配合一系列专业设备,才能确保科学实验安全、完整地进行。 拥有一个配置完备的科学实验室将减轻准备工作的压力,将课堂的精力释放在应该的地方——动手参与和实验启发。 关注教学实验室被证明是重要的。 2019 年,人口普查局的一项研究表明,女性仅占 STEM 劳动力的 27%,但 74% 的中学女生表示对工程、科学和数学感兴趣。 更不用说科学在我们的现代生活中发挥了更大的作用。 正如非洲科学院传播与宣传高级顾问伊丽莎白马林科拉 (Elizabeth Marincola) 在《转化医学杂志》(Journal of Translational Medicine) 中所写,“随着科学研究步伐的加快,普通公民越来越多地面临着必须在他的日常生活运用科学素养解决问题。一些国家最复杂和最紧迫的公共政策议题核心是科学问题。”为了继续开展教育工作,增加学生STEM教育和专业的兴趣,这一切都必须从设备齐全的科学实验室开始。 那么如何配置一个科学实验室呢,请看......1. 实验室个人防护设备必须随手可得 在实验室环境中,安全始终是第一要素,当您在有儿童或年轻人的教育环境中时,安全变得更加重要。 2018 年发表在《化学教育杂志》上的一项研究发现,自 1988 年以来,已有 164 名儿童和教师在使用易燃溶剂的课堂演示中受伤。为了减轻和预防潜在的事故,为科学实验室配备适当的个人防护设备是至关重要的,例如洗眼器、灭火器和防火衣。 学生必须能够获得合适的护目镜和手套,为其提供足够的保护。2. 具有内置安全功能的实验设备 除了对新手用户友好之外,配置完备的科学实验室还应使用具有内置安全功能的仪器设备,如果教师在处理别的事情或参与实验,这些设备提供额外的监控。 奥豪斯 Guardian 7000 虽然对于大学以下的实验设备都稍微先进一些,但Guardian 7000是由 SmartPresence 和 SmartLink 技术提供支持的仪器,它可以确保长时间和短时间的安全实验操作,以及强大的耐化学耐热的坚固结构,不会过热,而且易于清洁。3.坚固的玻璃器皿 即使是钢化玻璃,只要有一点裂缝,都会变得脆弱,因此正确存放、维护和检查试管、烧杯和烧瓶对安全来说非常重要。 除了从一开始就确保您的玻璃器皿制作精良,使用合适的夹具和实验支架将帮助您避免破损和事故。4.高质量显微镜 一台合适的显微镜应该是易于使用的,并且可以随着学生在学习过程中的进步,逐步提供开放的功能。显微镜选择多种多样 - 从入门到高级 – 只要可以提供精确的样品分析,就不必拘泥于课堂的要求。 选择结构坚固、放大倍数能达到最佳效果的显微镜。 考虑那些可以放大到 2000 倍(有许多可以负担的选择)以获得最好的显微效果。有兴趣获得本文中提到的任意一款奥豪斯产品的报价吗? 请单击下面的链接询价: 需要报价:Guardian 7000需要报价:PR系列分析天平 需要报价:实验室夹具
  • 讲师变“主播”,快来获取磐诺“云课堂”新资讯!
    受新冠肺炎疫情影响,磐诺定于3.10-3.12的首期线上培训如期上线并顺利结束。非常时期各行各业都陆续推出线上培训课程,磐诺也在思考,究竟怎样的课程设计会真正对用户有用。▲ 课程安排多人讲师,做有价值的事业人人参与,人人发言,才能让面对大小屏幕而非真人的培训“热”起来。本次培训设计了十节课程,分别由不同领域的工程师和专家主持授课。▲ 点击查看大图近千名师生通过线上直播、互动、答题等方式参与。不一样的培训方式,一样的交流知识。打破常规一人讲,众人听的模式,让一人讲堂变成多人论坛。有质有量,提供有品质的服务培训期间,磐诺各位工程师在线讲解色谱硬核“技术”,从设备原理、维护实操等“干货”一一解析,课程期间,课堂助理实时在线互动解疑,让“云课堂”气氛保持活跃。▲ 课堂互动深入实践难点,通过系统课程和提问交流,高效破解常见仪器问题。▲ 课堂互动用心培训,我们不愿将就网络直播不能实现直接互动,如何提高参与感,成为本次培训设计的重点。与以往线上培训不同的是,网络直播对课程要求更高,磐诺团队也做了一系列准备工作:考察直播平台、讲师内容准备、试讲试播体验、反复调整优化。课程结束后,我们收到用户反馈:“去过磐诺公司参加培训,这次又来参加线上培训,每次都没让我失望过,课堂内容令我受益匪浅!”事实上,用户和听众有收获,我们培训也就有意义。磐诺积极收集、处理反馈建议的同时,也在不断改进课程质量,为更加全面的优质服务做好准备工作。
  • 清华站回顾 | 眼见为“实”的深度光谱应用课堂圆满结束!
    6月26日,复享光学深度光谱应用课堂清华篇在清华大学材料学院成功举办!本次活动由清华大学材料学院与复享光学联合主办,针对复享光学自主研发的显微角分辨光谱仪的原理和应用,以线下交流、线上同步答疑的形式为学校师生进行培训宣讲,并由复享光学应用专家提供设备操作教学,吸引了北京诸多著名高校老师学生前来交流学习。独出机杼,别出心裁;复享光学应用专家孙沛智博士以独到的见解和生动的比喻为大家阐述了显微角分辨光谱技术的科学背景及应用案例,大家纷纷表示“秒懂”、“已get”,并引发了在场师生们的广泛交流,针对复享光学显微角分辨光谱仪的强大功能产生了浓厚的兴趣,且对其广阔的应用领域进行了深入探讨。眼见为实,精密测量;在午后的上机演示环节,复享光学应用专家姜自敏博士详细介绍并演示了仪器的操作方法,系统性的讲述了相关应用的实验范例,让ARMS不再是学生们眼中“高冷”的测量仪器,许多同学对ARMS测量结果纷纷表示认可,相约测样。轻松驾驭,相约“顶刊”;复享光学一直以来致力于关注光子技术前沿,积极探索光谱技术的应用场景,通过结合多维光场的感知与关键物质特性的计算重构,再融合先进的深度学习技术,构建AI时代的全面深度光谱分析框架,为诸多先进制造应用场景提供强劲的光学分析引擎,并使之在科研创新、先进制造、薄膜光电和光子集成场景中得到应用普及。未来,复享光学将走进更多高校,与老师、学生们探讨各种专业光谱技术问题,交流最前沿的信息和成果,敬请期待我们的下一站吧~
  • 高端!当电镜走进这些中小学课堂
    经过数十年的发展,电镜已经成为现代科学技术中不可缺少的重要工具,材料、生物、医学、冶金、化学和半导体等各个科研领域都离不开它。随着科研工作条件的不断改善,以及电镜技术的不断智能化、操作简单化,电镜技术逐渐在更多科研工作者的工作中得到应用,但同时,也有许多高校没有配置这种科研设备,尤其是高性能电镜。很难想象,电镜这类许多高校学生都较少触及的科研级设备能够走进中小学生的视野,有趣的是,日立的“日立理科教室”活动便将电镜搬进了中小学课堂,而且这项活动已经在全球多个国家开展了超过30年。近日,一个“日立理科教室”将电镜搬进美国一所小学课堂的视频广受关注,电镜的到来,让学生们“大开眼界”:“从来没这样观察过事物”孩子们兴奋地表示。将电子显微镜带往学校,这一过程虽困难重重,但却感动了美国乃至世界上其他地方的学校。“我希望通过显微镜激发孩子们的求知欲。”日立高新技术(美国)有限公司 罗伯特戈登先生这样说到。他把先进的电子显微镜送到学校,让孩子们以全新的角度来观察身边的事物,以此分享科学的乐趣。“电子显微镜让我们看到许多肉眼看不见的自然产物——树叶的断面、砂砾的内部、蚊子的口器… … 放大十万倍甚至几十万倍,世界竟然会变得如此不同。” 罗伯特戈登先生介绍道,“这种魅力,使得孩子们纷纷为之着迷。”将电镜搬进中国中小学课堂据悉,2016年起日立将“理科教室活动”项目带入中国,培训现地员工,开展对中小学生的讲解活动。迄今这一项目已陆续在上海、大连、苏州、深圳等多所中小学校开展,逾两千名中小学生已通过日立“理科课堂”开启了他们的微观世界之旅。2019年9月, “日立理科教室”活动将日立电镜搬进上海华二初级中学教室, 252名初一学生与电镜零距离接触2020年11月,日立电镜走进北京日本人学校,与中学生们零距离接触中小学学生们学习电镜、应用电镜课堂上,志愿者老师用生动、幽默、通俗的语言讲解科学原理,使枯燥的知识趣味化。借助能够把物体放大3万倍的日立电子显微镜,学生们得以在前所未见的微观世界探索生物的奥秘,求知欲望被充分激发。学生们依次观察头发(1000倍)、蚊子口器(3000倍)、叶孔(1000倍)、荷叶(1500倍)等日常所见的事物在微观视角下的神奇景象搬进课堂的日立电子显微镜 TM3030关于日立“理科教室活动”自1990年起,日立使用自产的台式电子显微镜在全球展开“理科教室活动”,利用电子显微镜可放大十几倍乃至上万倍的优异性能,引领学生们观察头发、蚊子、荷叶等日常所见的事物在微观视角下的神奇景象。“理科教室活动”带领青少年探秘已知事物中的未知世界。课程针对不同年龄阶段的学生设置了不同的学习内容。对小学生重在演示,引起对自然科学的兴趣;针对中学生的授课则重在讲述科学原理、展示科研的成果与用途。“ 让肩负着科学的未来的孩子们对科学更感兴趣”是开展 “理科教室活动”这一项目的初衷。加强基础学科科研人才培养,培养综合素质优秀或基础学科拔尖的学生,造就科技关键领域人才。
  • 下周课程预告---杜马斯定氮仪直播课堂
    杜马斯定氮仪直播课堂 如何在短时间内获得样品中总氮的含量?Elementar在杜马斯快速定氮分析仪的研发脚步从未停歇,1964年推出第一台杜马斯定氮仪,随着市场的需求不断变化,对生物质样品的分析需要更大的样品量,因此,在1989年,我们进一步推出了全球首款克级样品量的杜马斯定氮仪,也逐步推动了杜马斯燃烧定氮法在法规中的应用,如今,国际上已经将杜马斯燃烧法应用于食品/饮料/宠物食品/饲料和肥料等领域。下周我们将亮相杜马斯直播课堂,此课程全部免费,赶紧扫描二维码,预约下周课程。
  • 「小梅课堂」系列直播重磅上线啦!
    「小梅课堂」系列直播重磅上线啦!为助力广大合作伙伴们顺利复工复产,不断学习知识技能,提升工作方法和效率,梅特勒-托利多重磅推出「小梅课堂」系列直播!因为交通、物流等影响,如何保证复工设备的最大化使用效率?如何选择设备仪器?如何减少设备的停机风险?如何解决称量不准确的问题?这些大家日常工作中遇到的问题,小梅将在直播间为大家一一解答,娓娓道来。此外,我们的专家们还将在直播间与大家互动问答,宅在家的各位也能让自己的技能树枝繁叶茂,开花结果哟!以下为近期直播课程,敬请关注,赶紧扫码报名,多多转发哟! 1梅特勒热分析直播交流会第三/四期 时间:2月27、28日 08:30 -12:00 为满足热分析应用人员对行业应用,案例分析等知识的需求,以及促进行业内热分析专家之间的技术交流与经验分享。梅特勒-托利多热分析仪器部2020年将举办一系列热分析在线直播技术交流会,我们热情期待各大高校、科研院所、各行业公司的热分析专家、教授、科研工作者、研发及质量控制技术人员的参与。 在线报名 2自动化化学结晶工艺技术网络研讨会 时间:2月27日 14:00-16:00结晶理论和工艺开发的盛宴,尤其是如何使用原位分析工具开发符合产品质量的理想工艺。在线报名 3疫情期间来认识CNAS校准? 时间:2月28日 16:00-16:30 疫情期间,就聊你想听的-因为交通和物流的影响,如何保证复工设备的最大化使用效率,如何减少设备的停机风险,如何解决称重不准确的问题。 在线报名 4水份问题– 如何提升注塑的产量并确保质量时间:3月5、19日 09:30 -10:00 合适的水份含量的原料可确保无故障的共混和注塑过程、光滑的物理表面和注塑部件的理想机械性能。针对测量塑料中水份含量的主要挑战以及国际标准中存在的水份测定不同方法,本课程将在原理上为您论述为何梅特勒-托利多HX204快速水份测定仪才是适用于生产现场进行简单准确水份含量测定的理想仪器。敬请期待!在线报名 5实验室天平培训时间:3月4日 14:00 - 15:00 在这个非同寻常的时候,梅特勒-托利多与大家一样心系武汉,关注疫情,对许许多多奋斗在一线的英雄表示崇高的敬意,并且积极配合各项防控工作,与全国人民一起抗击疫情。 特殊时期,我们无法去到每个现场,为您讲解天平的相关知识,因此我们特别推出梅特勒-托利多实验室天平在线培训课程,创建一个可以与您交流分享的线上平台。在线报名 怎么样,看完预告是不是更加期待这些会议的到来?欢迎各位届时莅临我们的直播间!小梅在直播间等你哟!
  • “钢铁侠”背后的清洁能源之梦【GDS微课堂-5】
    同学们好呀!在上上节课的“微课堂3”中,我和大家探讨了在打造钢铁侠的战衣盔甲,GDS发挥了什么作用。这节课,我们来看看大热的清洁能源和GDS的关系~提到“钢铁侠”的原型埃隆马斯克(Elon Musk),大家反应应该是 SpaceX(太空探索技术公司)以及Tesla Inc.(特斯拉公司)。其实,除了太空旅行和自动驾驶领域,马斯克还是美国居民太阳能电池板的大供应商太阳城公司(SolarCity)的董事会主席。图片来源:Pixabay你知道马斯克为什么这么看重太阳能吗?因为加速全世界向可持续的清洁能源的转变,是马斯克从少年开始就有的梦想,而太阳能无疑是合适的选择。太阳能作为一种持久、普遍、巨大的能源,可以说是取之不尽用之不竭,且相比于其他能源,不会对生态环境造成污染,是好利用的清洁能源之一。图片来源:Pixabay目前太阳能的有效开发方式主要为太阳能电池。太阳能电池又称为“太阳能芯片”或“光电池”,是一种有半导体镀层的特种器件,它能将照在太阳能电池板上的太阳光转变成电能输出。太阳光照在半导体PN结上,形成新的空穴-电子对,在PN结内建电场的作用下,光生空穴流向P区,光生电子流向N区,接通电路后就产生电流。在这一过程中,实际发挥作用的就是玻璃基底或金属基底上那层薄薄的镀层。因此可以说太阳能电池光电转换效率的高低、稳定性和大面积重复性的好坏与镀层的性能息息相关。而GDS能够快速、灵敏地检测镀层样品中各元素随深度分布的情况,非常适合分析太阳能电池。接下来我们来看看3个典型案例,感受一下GDS如何在整个镀层制作过程中提供镀层结构、掺杂元素及工艺条件优化信息,从而提高太阳能电池的性能。案例一提供镀层结构信息我们先来看看下面两张图,是通过GDS获取的铜铟镓硒太阳能电池的深度剖析图。考考大家,你能分辨出哪个是正常质量的电池,哪个是加工失败的电池吗?图一图二图一中横坐标是深度,纵坐标是各元素含量随深度的变化,我们可以看到各元素含量随着深度改变的变化趋势基本一致,说明元素在各层分布均匀,多数元素在加工过程中得到很好地融合,镀层结构良好,所以它是正常质量的电池;图二中我们可以直观的看到不同深度下各种元素含量差异明显,说明这些元素在加工时没有充分融合,导致太阳能电池不具备光电转化功能,所以属于加工失败的产品。怎么样?这样分析一下是不是立刻就分清楚了呢?案例二提供掺杂元素信息实际镀层加工过程中,我们会利用掺杂元素来改善镀层性能,提高太阳能电池的效率,而掺杂元素在镀层中的含量及位置,对太阳能电池的整体性能影响非常大。但是实际掺杂元素的含量都比较低,对掺杂元素的监控也就变成了一个难题。当然,遇见GDS,这都不是事了。我们以不锈钢为基底的太阳能电池为例,利用GDS进行了检测:图三:不锈钢为基底的太阳能电池中各元素随深度的分布图四:0-40s低含量元素放大图数据来源:Prog. Photovolt: Res. Appl. (2013) ? 2013 John Wiley & Sons,Ltd.通过图三,我们可以直观地了解到各个镀层、交界层及基底中元素的变化趋势,并通过这些信息表征镀层的质量及相互渗透等现象,和上面的案例类似,这里就不多做说明了。而图四通过对0~40s低含量元素的放大,则更清晰地显示出掺杂元素B、P在a-Si:H层中的分布,可以看到,相比较而言B的分布比P更集中且与界面间的渗透更少。通过这样的方式,GDS就可以帮助研究人员轻易的实现对掺杂元素的监控了。案例三提供工艺条件优化信息这里举个简单的例子,现在有三种不同结构的镀层材料,我们如果想判断哪种材料的光电转化能力强,该怎么做呢?很简单,我们可以把三种材料经过相同加工处理后(在550℃退火),再利用GDS检测镀层中元素分布,研究这三种材料的镀层融合情况,分析终形成的镀层结构,如下图中a/b/c图显示:其中黑线为Mo,蓝线为Cu,橙线为In,红线为Ga,绿线为Se。(a) Cu-In-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In-Ga+Se结构中,Ga元素(红线)没有均匀的混入镀层,而是聚集在后交界面。(b) Cu-In+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In+Se结构中,Cu、In和Se的混合很均匀。(c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;数据来源:F. Oliva et al. / Thin Solid Films 535 (2013) 127–132我们可以看到,在Cu-Ga+Se结构中,各元素的含量随深度的增加差异较大,并未均匀混合,因此得出CuGaSe2的生成反应并未完成。这样一比较,你知道选哪种材料了吧?对的,选(b),Cu+In+Se结构的材料在经过550℃的退火后,各元素间融合更加均匀,太阳能电池的光电转化功能也就越强。此外,我们还可以对同一种材料进行不同加工工艺,从而分析不同条件对材料镀层性能的影响。如下图中,c图依旧是Cu-Ga+Se结构经过550℃退火的结果,d图中Cu-Ga+Se结构不仅经过550℃,同时延长了退火的浸泡时间。 (c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;(d) 延长了退火时间后,Cu-Ga+Se结构太阳能光伏电池的元素分布状况;两张图对比后,我们可以看出,延长退火时间可以促进Ga元素向吸收层扩散,利于元素间更好的融合,从而提高太阳能电池光电转化效率。通过上面的几个例子,相信大家都能感受到,利用GDS可以很好的掌控太阳能镀层制作过程,研究相关工艺处理后镀层性能的提高。而在实际使用过程中呢,因为GDS可以同时测定Na、Cu、In、Ga、Se、Mo、Sn等70余种元素,又不需要制备样品,而且GDS自身分析速度也较快(几微米/分钟),所以说有了GDS,提高研究效率,都是分分钟的事情啦。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界
  • 非甲烷总烃-福立网络直播课堂开课啦
    或许你总是在使用仪器时遇到这样的问题不熟悉仪器导致实验过程频频出错?操作维护不当使得仪器磨损太快?实验结果不尽人意?日常琐碎问题得不到解决答案?福立网络直播课堂5月,福立仪器将正式启动福立网络直播课堂,搜集整理时下客户呼声最高的问题,以此在直播中一一解答。作为致力于为客户提供一体化服务的色谱品牌,福立以多维度全方位关怀客户难题,为福立客户以及行业内人士搭建一个开放、包容的学习交流平台。5月26日上午10点,福立仪器将在官方微信视频号进行非甲烷总烃网络课程首播。直播内容脱离书本理论的桎梏,结合实操现场讲解,以更加简洁直白的形式,解答使用者在实验中所遇到的常见问题。同时提供实时互动空间,实现讲师与用户的双向交流,高效率高质量的完成教学内容。讲师简介此次直播将邀请熟稔用户日常操作难题的福立资深工程师,以一对多的方式为您解疑答惑。邓伟:福立仪器售后服务总监,负责管理统筹福立色谱售后相关工作,精通色谱仪器结构、原理及技术特点,具有丰富的应用方案制定经验。长期从事色谱售后相关维护维修,解决处理客户各项疑难杂题。刘胜虎:福立仪器气相技术经理,从事色谱售后工作10年,对气相色谱的日常维修、维护,及应用方案拥有丰富经验。负责售后服务内容标准化,提升客户GC使用体验。除去干货满满的教学内容,精心制作的课件资料,讲师现场答疑互动,更设有抽奖环节,精美小礼物等你来抽取。直播全程不收取任何费用,福利多多惊喜多多,感兴趣的你快来准时参与观看吧!
  • 在线课堂:市政供水全流程解决方案
    在线课堂:市政供水全流程解决方案哈希公司叮叮叮,哈希线上课堂开课了,让您足不出户,了解最新水质行业知识。6月,我们将为大家带来多款市政供水用全新仪表和全新的市政供水全流程解决方案,从产品和应用两个角度来为大家来进行解释。 参加费用:免费 参与方法:文章底部,点击阅读原文,即可报名主题市政供水全流程解决方案日期6月23日时间14:00-16:00讲师任廷晟渠道腾讯课堂不要犹豫,点击下方阅读原文,参加报名吧!END
  • 【步琦维修小课堂】Pure制备色谱管路中产生气泡的原因及排查手段
    步琦 Pure 制备色谱从 19 年发布至今,已经成为瑞士步琦色谱产品线的当家花旦,并且活跃于各种一线的研发实验室中。在这几年里,我们广泛收集客户的意见和反馈,发现仪器管路中的气泡是大家最为关心的问题之一。在本次的维修小课堂中,我们会给大家分享如何排除气泡问题,以及日常使用时的注意事项。如何判断气泡来源得益于 Pure 泵头外置的设计,我们可以很轻松地通过泵头上的管线判断气泡的来源。如果气泡在泵头内生成,则代表气泡由泵头及上游部件(流动相入口,阀门等)产生。如果气泡只生成于色谱柱的出口,则有可能是色谱柱未平衡完毕或者样品与流动相反应所生成。▲ Pure C-810 泵头内的气泡如何排查气泡问题 1拧紧仪器流动相管线的接头流动相管线接头的松紧会直接影响流速准确性和管路气密性,如果产生气泡,我们只需要用手尝试顺时针拧紧接头即可。流动相管线在仪器的后部,是两根管线中较粗的一根,可以参考下图的红圈。▲ Pure 仪器后部流动相管线入口2将溶剂瓶放置于顶部托盘内夏天时,南方地区的实验室内温度经常会接近 30 度,导致二氯甲烷等低沸点溶剂在桶内产生气泡,溶剂抽取会非常困难。Pure 制备色谱标配了一个顶部的溶剂瓶托盘,可以放置四瓶 4L 的溶剂。放置于顶部的溶剂由于虹吸效应会自行流至阀门口并形成正压,这样即使在高室温环境下抽取低沸点溶剂时,也可以有效改善气泡过多的现象。▲ 放置于 Pure 仪器顶部托盘内的流动相3尝试清洗泵腔泵腔内的异物也会导致泵头管线内生成气泡。Pure 的泵腔可以通过一些步骤彻底清洗,请参考以下视频:日常使用时的注意事项通过上述的排查方法我们可以发现,泵腔的彻底清洗是其中最为繁琐的。Pure 有一个简易的全机自动清洗程序,如果能保持清洗习惯,完全可以避免上述复杂的步骤。选择工具中的 NPRP,即正相反相。这个功能一般是在正反相切换时,用异丙醇作为过渡溶剂清洗全机管路而使用的。▲ 工具菜单中的 NPRP进入此功能后我们只需要准备 300mL 异丙醇和一个1号位有空试管的收集架即可。按照图示的步骤,将所有流动相管线至于异丙醇中,安装旁通管线,把收集架放置在左侧,然后按下清洗管线,系统会自动运行清洗程序。▲ 正相 反相功能菜单这个功能可以用异丙醇冲刷全机的管路、阀门、泵腔和流通池,并且可以确保泵腔内充满异丙醇。我们十分建议在需要长期停机前,如节假日前的最后一个工作日运行一次此程序,避免泵腔的密封圈和单向阀长期浸泡在侵蚀性的溶剂中。如需要购买各类配件套件(Customer Kit, PM Kit和Extended Kit),或 PM 预维护保养服务,请拨打 400-880-8720 咨询。Customer Kit,建议每年更换一次,客户可自行更换。PM Kit,建议每年更换一次,由工程师收费上门更换。Extended Kit,建议仪器使用第五年或超过五年,需更换一次,由工程师收费上门更换。仪器型号产品名称货号C-810PM 服务11CSN11179C-810Customer Kit11062655C-810PM Kit11062660C-810Extended Kit11062665C-815PM 服务11CSN11175C-815Customer Kit11062656C-815PM Kit11062661C-815Extended Kit11062666C-830PM 服务11CSN11176C-830Customer Kit11062657C-830PM Kit11062662C-830Extended Kit11062667C-835PM 服务11CSN11180C-835Customer Kit11062658C-835PM Kit11062663C-835Extended Kit11062668C-850PM 服务11CSN11177C-850Customer Kit11062659C-850PM Kit11062664C-850Extended Kit11062669
  • 限量定制 | 空中教室“学习小组”,开启专属于您的线上课堂
    季春,“蔡司空中教室”新鲜上线琳琅满目的课程使您个人在面对显微设备时不再手足无措 那么作为成像设备平台管理者,您是否还有更进一步的需求呢? 疫情期间需要保障研究进程,帮助成员/学生快速熟悉设备针对不同的研究课题及方向灵活掌握各类成像知识基础课程需要耗费大量时间反复培训 这个孟夏,“蔡司空中教室”为您量身打造推出“学习小组”栏目 在这里,您可以:1、 定向邀请小组成员,不管大家相隔多远,随时开启线上“小灶”2、 定制个性化成像课堂,根据不同需求随心选择相关课程3、 实时掌握了解每一个小组成员的学习进展4、 使用随堂测试功能,全面评估成员学习效果 解决您的困扰,分享您的负担,快来把“蔡司空中教室”用成您的显微成像小助教吧! 扫描下方二维码(关注“蔡司显微镜”公众号)申请首批20个尝鲜名额,获得可定制课程的“学习小组”管理员权限! 扫描二维码参与活动 小Tips:现在利用以下线上多渠道入口均可进入“蔡司空中教室”噢!1、 微信公众号2、 小程序搜索3、 扫描设备二维码
  • 飞纳电镜 2019 用户课堂 - 上海站
    2019 年 4 月,飞纳电镜第一场用户免费小课堂在上海拉开帷幕。由飞纳电镜的应用、售后工程师授课,答疑,提供全方位的培训,帮助飞纳电镜用户进一步提高扫描电镜及能谱操作水平。 飞纳课堂从电镜基本操作入手,帮助用户巩固扫描电镜规范操作流程;电镜高级操作技巧讲解让很多用户受益匪浅,学习了更多扫描电镜拍摄技巧;用户通过分享 PPT,用扫描电镜图片直观地表达出他们在电镜操作中遇到的问题,让工程师有针对性地提出解决方案。用户分享 PPT课程结束后,飞纳电镜专门安排了用户上机操作练习,部分用户携带自己的样品,通过学习到的操作技巧,在工程师的指导下学习拍摄扫描电镜图片。培训期间,用户与工程师进行沟通与交流,消化培训内容,通过课堂考核并拿到操作合格证书!用户上机操作联系2019 年,飞纳电镜推出 “用户课堂”,帮助用户巩固和提升扫描电镜操作水平,学习更多操作技巧,拍摄优质的扫描电镜图像。飞纳电镜用户课堂上半年安排第二期 北京时间:2019 年 5 月 20 日地址:飞纳电镜 demo 室 - 北京北京市 | 石景山区 | 京原路 19 号院 4 号楼 | 景阳写字楼 303 室 第三期 广州时间:2019 年 6 月 17 日地址:飞纳电镜 demo 室 - 广州广州市 | 天河区 | 元岗路310号 | 自编 4 栋 406 单元报名方式拨打飞纳电镜官网的电话报名哦!
  • 在线课堂:CODmax III蜕变上市
    在线课堂:CODmax III蜕变上市哈希公司叮叮叮,哈希线上课堂开课了,让您足不出户,了解最新水质行业知识。5月为在线课堂的污染源主题月,在线课堂,精彩不容错过。5月的在线课堂的主要内容是水污染源水质监测各方面知识。水污染源是环境监测中的一项重点,5月中,哈希专家将据此主题,为大家带来满满的干货,助力大家解决工作中的实际难题。 参加费用:免费 参与方法:文章底部,点击阅读原文,即可报名日期主题5月20日下午14:00CODmax III蜕变上市5月26日下午14:00水污染源在线仪表解决方案在这里,有:工程师专家直播讲解在线抽奖,精美礼品相送闪迪32G优盘3.0、羽博便携充电风扇、小米Redmi小爱音箱、米家保温杯、小米电动牙刷等奖品直播抽奖END不要犹豫,点击下方阅读原文,参加报名吧!
  • 诚挚感谢6000位E课堂用户,让我们与爱同行-记湖北恩施治坪小学捐赠走访CSR活动
    导 语 2020年春节,突如其来的疫情牵动了亿万人心,在疫情的特殊时期,为了更好的支持用户学习,为停工停课不停学提供保障,岛津在线学习E课堂将基础知识、软件操作两大系列的全部课程由日常的299元调整为1元公益课程,以方便客户学习。同时我们将1元公益课程收入作为公益捐献。感谢6000位(二月至五月报名用户)来自食品、医药、环境、教育等不同领域E课堂用户的支持与期待,随着国内疫情的逐渐稳定,在公司大力支持下,岛津分析中心和工会一同联手对湖北恩施治坪小学开展对口援助帮扶,希望这样的活动能够更好的传递爱心,信守对社会的捐赠承诺。 九月浅秋,湖北恩施,云雾环绕的大山中,“以科学技术向社会做贡献”的岛津公司,在以井上副董事长为代表,由上海、南京、武汉、重庆、成都五个分公司成员组成的13人访问团,驱车3小时,来到了白云深处的湖北省恩施土家族苗族自治州巴东县野三峡镇治坪小学,进行实地走访,践行岛津公司企业社会责任(Corporate Social Responsibility,简称CSR),为农村地区的教育基础设施的改善尽微薄之力。 捐赠走访现场——我们是爱心的播种机、宣传队 在治坪小学谭校长的带领下,岛津一行参观了校园。指着光荣榜,执教28年的谭校长一脸自豪,如数家珍,这些都是从治坪小学出去的孩子们,这位现在就读武汉大学,这位现在就职于武汉市字节跳动… … 岛津公司为治坪小学捐赠了不锈钢旗杆及升旗台、餐桌椅、交换机、彩色复印机、音乐打铃器、篮排球、音响设备等教学生活相关设备。谈到彩色复印机、音乐打铃器,谭校长心情非常激动,不住地说这些是我们期待已久的。 下午一点,一场别开生面的岛津科普讲座点亮了孩子们的笑脸。岛津工会主席,可亲可敬的徐卫革先生化身“科学哥哥”,从航空设备娓娓道来,通过讲故事的方式向孩子们介绍分析仪器在我们生活中的用途,从茅台酒的真假鉴定,到食品添加剂,到古文物鉴别,孩子们听得津津有味,对生活中无处不在的科学知识充满探索的欲望。 在仪器介绍环节,分析中心钱立立博士化身“科学姐姐”,通过做赛跑游戏的方式给孩子们介绍了仪器产生色谱峰的原理,并结合恩施地区当地的特色,富硒小土豆、恩施玉露茶,向孩子们介绍了特色元素硒,以及汞、金、银这些常见的元素,在问题抢答环节,孩子们踊跃举手,积极互动。 当介绍到诺贝尔获奖者田中耕一先生时,孩子们充满了崇拜之情,徐先生问孩子们“知识给我们带来什么?”孩子们回答“地球的未来”“科技的未来”。的确,未来属于孩子们,而我们,正是要为这些孩子们的未来贡献自己的一份力量。 最后,井上副董事长与孩子们一起朗诵“书山有路勤为径,学海无涯苦作舟”,鼓励孩子们好好学习。 赠人玫瑰,手有余香。治坪小学谭校长表示:你们的无私大爱,帮助孩子们,一步步实现着“知识改变命运”的梦想。我们全体师生衷心感谢岛津公司的关心和帮助,我们要以优异的成绩来回报社会,更要教育我们的学生,要刻苦学习、发愤图强,用智慧改变贫穷,改变命运,长大后为振兴家乡、振兴中华贡献自己的力量。 结 语 一元公益,一份爱心。诚挚感谢6000位E课堂用户的爱心奉献,今后,我们将持续公益事业,继续践行企业社会责任,期待更多的用户参与进来,和我们一起继续传递爱的力量,照亮孩子们的梦想。
  • 元素测定、薄膜分析、样品制备,巧用GDS实现多方位分析【GDS微课堂-8】
    运营一个公司需要不同部门的合作,打好一场胜仗,需要不同的兵种配合。在分析仪器世界里,如果将仪器巧妙组合,让它们充分发挥各自特长,也会事半功倍。因为各种仪器的侧重点不同,单一技术只能得到表面某一方面的信息,但不同仪器亲密合作,就可以对样品进行多方位、多角度、多层次的检测,终得到全面准确、甚至超出预期的科研结果。那你知道GDS都有哪些小伙伴吗?他们怎么相互合作呢?今天我们请了三位小伙伴,来认识一下他们吧!01拉曼光谱仪GDS可以获取不同深度处元素的含量分布信息,结合拉曼光谱仪能够进一步得到物质的化学结构信息。接下来,让我们一起看下两者是如何配合的。GDS和小曼今天收到了一份委托,需要测定不同实验条件下产物是什么,以及怎样分布。实验条件如下:采用阳溅射法在含氟乙二醇溶液中制备了具有纳米孔结构的氧化铁薄膜。在不同的温度(350℃、400℃、450℃)下进行退火。GDS和小曼分别对三份实验产物进行了检测,结果如下:GDS我测定了不同深度处实验产物的元素浓度变化,以350℃退火温度下的实验结果为例,可以明显看出:随着溅射时间的增加,不同深度处(X轴)Fe元素的浓度不断变化,其他元素亦是。综合400℃和450℃退火温度下的实验结果,元素浓度(谱峰强度)相近,可见实验产物较为类似。但产物是什么?还需让小曼揭晓。GDS分析图拉曼光谱仪将不同退火温度下强拉曼峰与拉曼谱图库做对比,我发现:350℃退火温度下主要产物是磁铁矿,400℃和450℃退火温度下是赤铁矿,与上图GDS的结果吻合。拉曼光谱图综合上述结果,我们获取了Fe、C等元素随深度改变的浓度变化信息,并在此基础上,进一步测得不同退火温度下产物分别为磁铁矿和赤铁矿。02椭圆偏振光谱仪由上文我们知道GDS能够得到薄膜在不同厚度的元素含量分布,此外,GDS还能从元素深度的变化来获取镀层的结构、均一性、厚度等信息。结合椭偏仪擅长解析薄膜厚度和其光学常数的优势,两者合作就能够准确获得镀层的结构,并对镀层光学特性有更全面的了解。椭圆偏振光谱仪Hi,我是椭小偏,做表面分析的同学应该对我很熟悉吧!我和GDS是老朋友了,我们经常协作完成测试。近我们对薄膜太阳能电池进行了分析,下面一起看下实验结果。GDS先来说说我的发现,下图我们可以看到电池镀层不同深度处各元素的含量变化,并且我发现Mo基底表面还有两层镀层:层主要含Cu、Se、Sn,而第二层含S、Zn,由此我得到了镀层的元素分布信息。椭圆偏振光谱仪我测试的是一款Cu2ZnSnS4太阳能光伏电池。下图张是电池的光学常数折射率n和消光系数k随波长的变化曲线;第二张图是我模拟出的镀层模型,由图可知:底层为Mo基底;中间是Cu2ZnSnS4层,厚度1472nm;上层厚度为227nm且镀层内存在孔隙,从上往下孔隙率从95%下降到6.8%。Cu2ZnSnS4太阳能电池的折射率n和消光系数k随波长的变化各镀层的厚度和表层孔隙率模型综合上面两种太阳能电池的实验结果,可知GDS能够测得镀层元素分布,椭偏仪可测得光学常数和镀层结构,两者合作为我们进一步解析材料提供了更为丰富的信息。03能谱仪(EDS)能谱仪(EDS)主要是利用不同元素X射线光子特征能量不同,来获取材料的元素种类以及含量等信息,如材料表面微区成分的定性和定量分析、固体材料的表面涂层分析等等,常和SEM扫描电镜、GDS等合作,来获取更为全面的镀层信息。EDS能谱仪大家好,我能够分析材料元素组成和含量等信息,但我获取的是镀层表面信息,无法探测较深的镀层,SEM姐姐推荐我来找GDS帮忙。GDS没问题,快将测定样品告诉我,我来帮你把表层剥蚀掉,你再分析~让我们来见证一下当GDS遇到EDS后产生的花火吧:GDS测试结果从上图的GDS结果可以看出,0~5.8μm为纯锌层,5.8~7.8μm为含有锌、铁和铝的合金层。为了方便能谱仪对合金层进行测试,GDS剥蚀掉了表面的纯锌层,露出铁铝合金层,以便EDS进一步剖析该层元素分布,结果图如下:EDS在GDS剥蚀后测试的结果从测试结果可以看出,在合金层中,Al、Fe、Zn元素的浓度比例分别为3.64%、71.32%和25.05%。铁铝合金层电镜图由上述实验结果可知,GDS能够帮助EDS和SEM剥蚀表面,制作可供分析的合格样品,全面立体地展示出样品结构信息和元素分布,并得到元素随深度变化的分布曲线,为进一步解析镀层提供了更为全面的信息。今天的测试结果到这里就结束了,至此我们知道GDS跟拉曼光谱仪、椭圆偏振光谱仪、EDS能谱仪合作,能够对物质进行全面表征,综合获得材料的化学结构、元素分布、光学常数等信息,这也为深入剖析材料提供了可供参考的方式。通过上面的几个例子,大家是不是对GDS与其他分析技术的合作有了更直观的认识呢?如果还有别的联用方式,也欢迎大家跟我们分享~至此,GDS微课堂全部结束啦!在这个系列里,我带大家了解了GDS的基本原理、基本功能、常用概念、应用范围,并详细讲解了GDS在钢铁、锂电池、太阳能电池以及LED行业中的应用,后,还和大家分享了GDS与其它表面分析技术是如何协作的。不知道同学们掌握的如何了?可以点击往期回顾,再复习一遍。不仅限于GDS,之后我们还将带来一系列其他光谱技术,请一直关注我们哟!往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制