当前位置: 仪器信息网 > 行业主题 > >

芯片光子学

仪器信息网芯片光子学专题为您整合芯片光子学相关的最新文章,在芯片光子学专题,您不仅可以免费浏览芯片光子学的资讯, 同时您还可以浏览芯片光子学的相关资料、解决方案,参与社区芯片光子学话题讨论。

芯片光子学相关的仪器

  • Vitae SPOTTER生物芯片点样系统是一款高通量、高灵活性的微阵列芯片点样系统,以阵列方式快速、准确地在玻片或薄膜上点样,制备生物样品微阵列芯片。微阵列芯片在基因组学、蛋白组学、药物筛选、细菌鉴定、癌症早期筛查等生命科学研究、临床诊断及食品安全检测等领域已经得到广泛应用。值得强调的是:VitaeSPOTTER为生物样品的TOF-MS分析提供了高通量样品制备手段。 技术参数 应用领域■ 芯片研发生产■ 药物筛选■ 蛋白/抗体微阵列点样■ 酶、蛋白基因组文库构建■ 重复喷点制作3D生物芯片■ 微量样品的点样■ 纳米材料点样■ 高密度微阵列点样
    留言咨询
  • SureScan 基因芯片微阵列扫描仪是紧凑式的新型系统,适于灵敏而准确的芯片应用。这款新型 SureScan 芯片扫描仪是安捷伦完整芯片解决方案的基石,代表了安捷伦扫描仪科技创新的最新成果。它具有极佳的检测限,凭借其卓越的灵敏度和分辨率,无论是从单个数据点或一次实验,用户都可以从中获得尽可能多的生物学信息。连续式芯片加载能力,可消除分批加载的限制;集成式的特征数据提取软件,可实现图像的自动转换;紧凑式的设计,可优化台面空间的利用率。技术参数:动态范围:104(16 位数据格式),105(20 位数据格式),106(XDR 扫描)分辨率:2、3、5、10 微米动态自动聚焦:连续调节扫描仪焦距,始终保持对焦自动装片机:24 片装芯片盒,无需用户干预集成的条形码识别器:可识别 128 码、39 码、93 码以及 CODABAR兼容的染料:Cyanine 3 和 Cyanine 5,以及 Alexa 647、555、660激光器信息:- 绿色固相激光器,532 nm- 红色固相激光器,640 nm- 功率:在 532 nm 和 633 nm 下为 20 mW,均控制到 13 mW最大扫描窗口:71 mm x 21.6 mmPMT 调节:每次运行前自动校准 PMT 增益;允许将信号水平从 100%(默认)调至 1%检测限:每平方微米 0.01 个发色团像素位置误差:在 5 微米的分辨率下小于 1 个像素均一性:5% CV 整体非均一性,平均局部非均一性通常为 1%(基于 100 微米的特征)扫描时间:双色同步数据采集:16 分钟(3 微米扫描),24 分钟(2 微米扫描)(扫描范围 61 mm x 21.6 mm)数据工作站和操作系统:安装了 Windows 7(64 位)的计算机;数据分析软件 — 包括 2 份安捷伦特征数据提取软件的永久性许可扫描仪近似尺寸:高:16.5 英寸(42 cm),宽:17 英寸(43 cm),深:26 英寸(67 cm)重量:125 磅(56.8 kg)
    留言咨询
  • 单光子芯片 400-860-5168转2623
    单光子芯片Sparrow单光子芯片是一种确定性产生单光子的专利技术。它是基于超精确的砷化镓量子点结构,当外部激光激发时将产生单光子。量子点发出的光子由纳米光子波导收集。按需光子流随后被定向到一个出耦合光栅,该光栅垂直地从芯片上发射光子。获得高纯度和一致的单一光子, 芯片必须冷却到低于6 K.SpecificationsQuantitySparrow 芯片20197Lodahl best Lap Chip 20192,3Sparrow 芯片2020 目标单光子纯度 (1-g(2)(0))95-98%98%98%单光子相干不可分辨性60-90%待出版公布90%光纤中的单光子效率1.3 MHz待出版公布20 MHz发射波长910-950 nm910-950 nm910-950 nm激发波长800-960 nm共振激发800-960 nm工作温度1.6 K励磁电源Typ. 1-4 μWTyp. 1-4 μWTyp. 1-4 μW激励脉冲宽度(推荐)10-30ps25 ps10-30ps衰减时间Typ. 500 psTyp. 500 psTyp. 500 psSparrow SPS 开放式模组• Sparrow单光子源(SPS)自由空间组件提供了封装在外壳中的SPS芯片,该芯片允许与大多数标准低温设置集成,并且有一个窗口可以进行可视检查,允许激光信号的输入和输出。芯片的工作温度为0- 6k,必须将外壳置于低温恒温器中才能获得。外壳是开放的,带有用于激励芯片和收集SPS信号的直接光学通路。激励源的波长必须为800-960 nm。芯片相对于外壳对齐,这样激发和发射都可以垂直于外壳。图2显示了组件周围的典型光学设置。• 图3所示。SPS芯片的自由空间外壳。芯片放置在金属板上,允许与低温恒温器耦合。在自由空间版本中,透明的上盖允许光信号的输入和输出。芯片被放置在一个相对于外壳窗口的角度,允许通过与外壳垂直的相同光路进出耦合。Sparrow SPS光纤耦合模组Sparrow芯片将在2020年推出光纤耦合版本。单光子源(SPS)光纤耦合组件为外壳中的SPS芯片提供一个单模光纤用于输入,另一个光纤用于输出信号。芯片放置在一个热锚,允许集成与大多数标准的低温设置。在这种设置是不可能的视觉检查芯片和所有集成芯片是通过锥形光纤。与自由空间版本的区别是在光纤耦合版本中,与芯片的光耦合是通过光纤耦合实现的。我们注意到,如图4所示的光纤耦合芯片的光学设置也是必需的。
    留言咨询
  • 型号灵山-2530成像原理光子计数灰阶深度18 bits像素尺寸70 μm像素阵列大小352*423=148,896成像面积24.64*29.61 mm2传感器材料Si能量阈值10、15、20、25、30 kev,软件可设曝光时间0.1-100 s, 软件可设上图时间2 s, 单帧数据通讯接口USB 2.0同步方式软件同步散热方式探测器表面空气散热
    留言咨询
  • 型号灵山-2121成像原理光子计数灰阶深度18 bits像素尺寸50-70 μm像素阵列大小288*288=82,944成像面积20.16*20.16 mm2传感器材料Si能量阈值10、15、20、25、30 kev,软件可设曝光时间0.1-100 s, 软件可设上图时间2 s, 单帧数据通讯接口USB2.0同步方式软件同步散热方式探测器表面空气散热
    留言咨询
  • GenePix 4100A微阵列基因芯片扫描仪无需在烦躁情绪中继续等待中心实验室或相邻实验室正在工作中的基因芯片扫描仪。现在可以以更优惠价格马上获得一款高性能的微阵列基因芯片扫描仪。Molecular Devices公司推出的GenePix 4100A微阵列基因芯片扫描仪具有高端基因芯片扫描仪所有的特质:如超高灵敏性,可靠性和易操作性。实惠的价格和紧凑设计使得它更佳适合小实验室中使用。GenePix4100A基因芯片扫描仪支持用户在5-100μm范围内随意调节其分辨率来获取数据。可针对具体实验的需求优化图像分辨率和文件的大小。GenePix4100A基因芯片扫描仪具有自动调节PMT增益的功能,可简便、快速对信号强度和通道的平衡进行优化。 主要特点:1,一款简洁、易用、高性价比扫描仪2,出众的成像精度3,出色的重复性4,可灵活的支持各种荧光染料检测5,可整合GenePix Pro图像分析软件仪器优势:1,可自主研究不同染料:GenePix 4100A 微阵列扫描仪可支持多种不同的荧光染料分子, 其光学设计集成了用户可选的 6 种不同的发射滤光片。2,结果可靠:定期使用随机附带的校准玻片组来对微阵列扫描仪进行校正, 以确保长期使用时光电倍增管 (PMT) 的重复性能。此外, 在扫描过程中会动态监测激光功率变化, 以确保获得稳定的信号输出, 同时硬件诊断报告将持续的对扫描仪性能状况进行记录。利用这些功能, 可以立刻识别并纠正错误信息。3,优化动态设置:GenePixPro 自动绘制像素强度分布的柱状图。根据扫描进度动态更新图像和柱状图;并可在扫描时优化扫描仪设置。4,调整应用分辨率:使用 40 微米预览扫描可定位微阵列并优化硬件设置, 而数据扫描可以用于准确定量。GenePix 4100A 微阵列基因芯片扫描仪支持 5 至 100 微米分辨率的样品, 满足您的任何要求。5,较高的信噪比:本检测系统采用低噪声、高灵敏的 PMT 将光子转变成电信号, 然后使用优质的超低噪声数模转换器技术将其数字化。调节PMT增益和平均多线扫描, 以在低信号样品检测上获得更高的信噪比 (SNR)。6,样本追踪:GenePix Pro 采集和分析软件自动读取预览扫描、数据扫描和保存图像的条形码, 并将导出获得的数据。动态监测激光光源GenePix4100A基因芯片扫描仪光源强度可针对每个像素点进行相应变化,实时的动态监测,确保每个像素点均可获得稳定的、持续的信号。采用先进的激光器,配合了独特的强度校正系统,保证在图像中的所有像素点具有相等的曝光效率。内置所有激光器均具有自动校正功能,可以动态的监测激光器微小的波动,大大提高了信号噪声比。所有这些功能特征保证获取的数据具有高度重复性,避免了再一次费时、费力的重复相应实验。 8位滤光轮可大大提高荧光染料检测的灵活性GenePix4100A基因芯片扫描仪光路中设计有一个8位的发射滤光片转轮(如图一),标配有红色和绿色滤光片。根据需要还可以再装6个滤光片,提高了灵活性,以便于满足其它多种荧光染料的检测。作为质控程序的一部分,我们通过使用滤光片转轮中的空位置或中性密度滤光片, 也可以用扫描仪的635nm进行反射成像,允许用户检查未标记的DNA阵列点形态上变化。 采用非共聚焦光路采用非共聚焦光路的GenePix 4100A基因芯片扫描仪可用于微阵列芯片成像分析。其它类型基因芯片扫描仪大多利用共聚焦技术对厚样品的进行薄切片分层式成像,如组织样本,证实其并不适合进行微阵列扫描成像。微阵列芯片上大多数背景信号来源于非特异性的杂交反应,它们与样品位于同样的焦平面上(如图二)。此外,绝大多数微阵列基因芯片表面为非均一平面,由于共聚焦成像系统具有非常窄的景深,会受到各种不同基质载体的焦平面的变化而产生波动。GenePix基因芯片扫描仪具有大景深检测能力,可以在各种微阵列芯片表面收集更多的光学信号,同时也能够避免附近杂散光的干扰。 软件和硬件的高度结合所有GenePix4100A基因芯片扫描仪家族成员在设计之初就被要求能与GenePix Pro微阵列分析软件完美整合在一起。(如图三)扫描仪和软件之间这种无缝式的通信方式确保了其科高效的获取和分析相应实验数据,也能够实时检测扫描仪工作状态。可选的Acuity微阵列信息分析软件,具有数据库储存能力、群集算法、高级统计学能力和可视化界面。 仪器应用: 1,基因组学:针对基因组序列本身, 微阵列可用于识别全新基因、转录因子的结合位点、DNA 拷贝数变化、基础基因序列变异(如新发现病原体菌株或人类致病基因的复杂突变)。2,转录组学: 使用高密度微阵列芯片, 给复杂疾病转录水平的研究检测带来影响。通过目前最新微阵列检测技术的发展, 现在可以总体上定量分析转录水平, 并将这些数据与疾病相关信息进行整合。基于微阵列的转录组学可利用受影响和未受影响的个体绘制出某一疾病的关键基因区域, 然后通过识别关键区域中的差异表达基因来确定致病基因。3,蛋白质组:尽管尚未实现全蛋白质组分析, 微阵列芯片仍然促进了蛋白质组学领域取得长足进展。蛋白质组学展现出广泛动态复杂性;哺乳动物中不同蛋白质的数量一定超过基因数量, 因而需要合适的技术以进行相应分析。GenePix 微阵列基因芯片扫描仪具有很高的灵活性, 尤其是整合GenePix SL50 自动芯片装入系统后, 可大大提高检测通量, 可为研究人员提供优质的工具。4,表观遗传学:基因是承载着遗传信息的基本单位, 但这些信息仅在由表观基因组适当编码时才产生影响。DNA 甲基化模式是细胞类型特异性的, 与染色质结构相关。DNA 微阵列基因芯片可用于识别甲基化模式, 而且 GenePix 微阵列基因芯片扫描仪自动化解决方案使研究人员能够更快认识这些模式。5,新应用:微阵列研究的创造性和广泛适用性是没有限制的。各种应用微阵列进行大批量的定量分析强调了这一点。GenePix 微阵列基因芯片扫描仪可提供较灵活的研究解决方案和更大的自由度。
    留言咨询
  • 直接转换零暗噪声超低功耗超高帧率千兆以太网通讯体积轻巧方便型号若水-2121成像原理光子计数像素计数深度12 bits 像素尺寸70 μm像素阵列大小288*288=82,944成像面积20.16*20.16 mm2传感器材料Si能量阈值7~35 kev,软件可设死区时间2.88 μs最大帧速3000 frame/s,高速时可缓存后上传最大计数率~1E+7 cps/pixel通讯接口RJ45,千兆以太网同步方式内部自同步+外部信号同步散热方式探测器表面空气散热,外部可增加主动降温装置加强散热
    留言咨询
  • 大范围可调谐窄线宽激光器结合III-V族材料直接带隙高效率发光的特性和硅基波导结构紧凑低损耗的优势,III-V族硅基外腔芯 片集成激光器具有大调谐范围、窄线宽和高输出功率。产品性能: 波长调谐范围:O、S、C、L波段可选,780nm、850nm等其他波段可定制; 输出功率:输出功率大于20mW@C波段,可集成BOA,功率大于100mW; 线宽:瞬时线宽和积分线宽分别kHz和百kHz量级,可定制更窄线宽; 强度噪音:小于-145dBc/Hz@3M-26GHz。单波长超窄线宽激光器将高Q值的无源波导谐振腔芯片和III-V族有源芯片耦合,输出的一部分激光经谐振腔延时后至反馈回有源芯片,实现自注入锁定,有效压缩激光线宽,提高激光器的稳定性。产品性能:工作波长:1550nm、1310nm,其他波长可定制;激光器本征线宽为百Hz量级(SYCATUS A0040测试) 可集成BOA,功率大于200 mW。增益芯片、助推放大芯片增益芯片可配合光栅、标准具和波导平台等构成外腔 激光器,实现窄线宽和大调谐范围的激光输出。助推放大 芯片可以将激光器功率放大至百mW以上,满足激光雷 达、微波光子等高功率应用需求。产品性能:可提供芯片粒、COC贴装; 工作波段中心波长:1580nm、1550nm、1310nm; 增益芯片支持100nm调谐范围@1580nm;助推放大芯片输出功率大于100mW@C+L波段。1550nm 大功率激光器芯片参数测试条件蕞小典型蕞大单位输出功率P。300mA@25C8090_mW阈值电流 Ith25C_1530mA正向电压V 250mA_1.52.1V斜率效率SE60mW/25C0.30.4_W/A中心波长λ。50mW/25C-0.5_±0.5nm-20dB 带宽Δλ50mW/25'C__0.1nm温度系数 dλ/dTIOP= 300mA_0.08_nm/CSMSR50mW/25'C40__dB快轴角度 (FWHM)θ⊥_28_deg.慢轴角度 (FWHM)θ⊥_23_deg.注:本产品只提供封装好的芯片,并非为裸片更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 仪器简介:全分析系统(Miniaturized Total Analysis System, &mu -TAS)是一个多学科交叉的新领域,它借助微机电加工技术与生物技术,将采样、稀释、加试剂、反应、分离、检测等化学分析的全过程都集成在一块邮票大小的微芯片上,因此被通俗地称为&ldquo 芯片实验室&rdquo (Lab-on-a-chip)。可广泛应用于生物医学领域中的应用氨基酸分析、核酸分析、蛋白质分析、细胞分析、药物手性分析;同时在新药物的合成与筛选、食品和商品检验、兴奋剂检测、环境污染的监测、刑事科学、军事科学及航天科学等方面也有着广泛的应用。技术参数:灵敏度 10-9(FITC) 迁移时间重复 RSD&le 1.54%(FITC)(n=10) 高压电源 0~6000V 不带电流显示 0~3000V 带电流显示 三维光路调整精度 0.25/360mm 温度范围 常温 激光类型 固体激光器 滤光片类型 窄带、高通、低通一套 光电倍增管 单光子可测 电极 4/6/8(个) 铂金电极 倒置显微镜 40倍 供电电源要求 220V,50Hz 软件环境 Win98,Win2000,WinXP 外观尺寸 28cm× 33cm× 45cm 重量 20kg主要特点:产品描述:微全分析系统(Miniaturized Total Analysis System, &mu -TAS)是一个多学科交叉的新领域,它借助微机电加工技术与生物技术,将采样、稀释、加试剂、反应、分离、检测等化学分析的全过程都集成在一块邮票大小的微芯片上,因此被通俗地称为&ldquo 芯片实验室&rdquo (Lab-on-a-chip)。与传统的电泳分离手段相比较而言,具有微型化、可集成化、速度快、进样量小等特点。可广泛应用于生物医学领域中的应用氨基酸分析、核酸分析、蛋白质分析、细胞分析、药物手性分析;同时在新药物的合成与筛选、食品和商品检验、兴奋剂检测、环境污染的监测、刑事科学、军事科学及航天科学等方面也有着广泛的应用。 产品特点: 1.采用激光诱导荧光检测,采用共聚焦光路,检测灵敏度高,为紫外/可见光检测器的100,000倍,可与玻璃、高聚物、石英芯片等芯片配套使用。 2.分离效率高。将样品的分析时间减小到数分钟甚至数秒中之内,分析速度大大提高,并且重复性高。 3.样品消耗量少。样品和试剂消耗降低到纳升甚至皮升级。 4.采用六路电压夹流进样,六路高压单独控制,各路高压都在0-3KV可调,高压浮地形式,安全性好。。 5.三维调节台,检测点可根据不同芯片规格或检测要求,可以调节。 6电极三维可调,适用于不同通道构形和规格的芯片。 7.一体化的芯片电泳平台。集成度高,操作简便。 8应用范围广。可适用于氨基酸、PCR产物、蛋白等多种样品的分离分析。 9检测范围广,发射光波长500nm以上都可以被检测到。 10配套软件(附后)
    留言咨询
  • 人体仿真系统——一种用于新一代体外模型的完整仿真人体器官芯片的解决方案洞察生物学的新平台我们已经迎来了药物发现和开发的新时代,这是一个被更具预测性的人类生物学模型所驱动的时代。以往的药物研发依赖于传统模型,但传统模型无法准确再现人体生物学或对治疗的反应。因此,只有10%的项目药物能顺利获批。幸运的是,我们现在有了更好的方法。通过使用人体仿真系统,您在实验室中就可以模拟人类疾病和其对候选药物的反应。该系统使用先进的仿真人体器官芯片技术。较动物、微球等传统模型而言,该系统能更忠实地模拟真实的人体生物学状态。因此,您可以更深入地理解人类疾病,并在药物研发过程的早期更准确地理解候选药物的影响。一个系统,无限应用与传统模型相比,仿真人体器官芯片技术再现了人体内的微环境,更真实地模拟人体反应。与其他方案不同的是,人体仿真系统为使用器官芯片再现人体物学提供了一个开放的平台。因此,您能够为任何研究的任何感兴趣的器官应用建模。应用包括:排泄毒性:更准确地预测候选药物的排泄毒性特征。炎症:癌症探索炎症和免疫应答的复杂机制。微生物组:深入了解人类宿主-微生物组的相互作用。传染性疾病:研究感染性疾病,并评价治疗有效性。癌症:对复杂的肿瘤微环境建模,评价免疫治疗的安全性和有效性。神经科学:促进神经退行性疾病的药物发现和开发。所支持的器官芯片包括:肺气道芯片:原代共培养模型,以细胞分化和功能性纤毛增加为特征,再现气道生理学的关键特征肺泡芯片:肺泡-毛细血管界面的原代共培养模型,具有气液相界面,可循环拉伸以模拟呼吸脑芯片:最全面的神经血管单位体外模型,具有动态和可调的微环境中的 5 种细胞类型结肠芯片:仅有的将原代类器官和结肠内皮细胞与机械力结合以模拟体内生理学的模型十二指肠芯片:原代类器官和十二指肠内皮细胞在机械力下共培养,以解决细胞系的局限性问题肝芯片:四种人类细胞类型在动态微环境中共培养,以支持体内类似的基因表达、功能和生理学近端肾小管芯片:在流动中共培养原代人肾细胞以改善细胞功能和对候选药物的反应设计您自己的芯片:采用人体仿真系统的开放平台方法,您能够通过我们的基础研究套装和您自己的细胞来源为任何器官创建芯片仿真人体器官芯片技术的预测能力您可以通过采用器官芯片更准确地预测全身器官对候选药物的反应。无论您使用我们的器官特异性工具包中发现的合格细胞还是您自己的细胞来源,每个器官芯片都可再生模拟人体反应所需的微环境。细胞串扰:使用两种不同的培养通道再生复杂的生物学,同时通过多孔薄膜实现细胞间相互作用。灵活的细胞来源:可使用多种人类细胞来源,包括原代细胞、诱导多能干细胞(iPSC)、类器官和细胞系。生物学复杂性:将相关生物成分整合到每个芯片中,包括组织-组织界面、流体流动、免疫细胞相互作用、微生物和机械力。独一无二的毒理学预测性在迄今为止最大的器官芯片研究中,研究人员对 780 个肝芯片进行了评价,以评估 27 种已知肝毒性和无毒性药物的盲态组的毒性风险。肝芯片的灵敏度为 87%,特异性为100%,优于动物模型和微球模型。该结果支持肝芯片在临床前毒理学评估工作流程中的应用。同时,已发表的肝微球数据显示,同一药物组的灵敏度为 47%,特异性为100%。一项计算经济学分析表明,基于这种性能,肝芯片可以通过提高研发效率,每年在小分子药物研发中节省 30 亿美元。完整的仿真人体器官芯片解决方案人体仿真系统结合了灵活、开放的仪器、耗材和软件系统。每个组件旨在提高芯片仿真人体器官技术易得性和易用性,使您能够为您的药物发现和开发项目创建稳健和可重现的数据。器官芯片:在我们系统的中心,每个器官芯片都承载器官特异性微环境中的人体活细胞,以改善人类相关性。Pod便携式模块:作为器官芯片和 Zoe-CM2&trade 培养模块的界面,Pod 上装载芯片,承装培养基和排出物,且能与实验室设备兼容。Zoe-CM2&trade 培养模块:Zoe 通过自动化培养芯片(最多 12 个)所需的精确条件,维持器官芯片中细胞的寿命。Orb 中心模块:Orb连接到标准实验室输出,为最多 4 个 Zoe-CM2 提供气体。软件:我们的软件套件帮助您设计器官芯片研究,远程控制和监测您的 Zoe-CM2,并分析您的结果。
    留言咨询
  • Micronit 微流控液滴发生芯片 Droplet芯片图片简介微流体液滴发生器是产生高度单一分散微尺寸液滴的好工具。相比传统的工艺,微流控液滴的产生提供了更高的精度和可重复性,通过调节分散相和连续相之间的相对粘度、表面张力和速度,几乎可以产生任何大小的液滴。平行液滴发生器使单分散乳液的高产量生产成为可能,可应用于制药、化妆品和食品行业。Micronit微流控液滴发生芯片,分为流动聚焦芯片、侧边进样芯片、8通道芯片和T型芯片等,覆盖面全。由于采用了表面处理技术,每一种芯片都有水包油(O/W)和油包水(W/O)版本;芯片喷嘴直径有多种选择(常见的10μm、50μm和70μm),适合生成不同大小的微滴。Micronit超过15年的微流控芯片研发历史,有力保证他们芯片的高质量与高可靠性。 规格参数 流动聚焦液滴产生芯片参数(topconnect)参数\型号FF_DROP_75FF_DROP_50FF_DROP_10材质硼硅酸盐玻璃硼硅酸盐玻璃硼硅酸盐玻璃芯片大小45mm * 15mm45mm * 15mm45mm * 15mm芯片厚度1800 μm1800 μm1800 μm通道宽度130 μm非固定非固定通道高度125μm83μm17μm内部体积4.3 μl3 μl0.52μl进样口222出样口111喷嘴75μm50μm10μm 流动聚焦液滴产生芯片参数(sideconnect)参数\型号FF_DROP_SC_5FF_DROP_SC_10FF_DROP_SC_50材质硼硅酸盐玻璃硼硅酸盐玻璃硼硅酸盐玻璃芯片大小15mm * 15mm15mm * 15mm15mm * 15mm芯片厚度1400 μm1400 μm1400 μm通道宽度非固定非固定非固定通道高度8μm17μm83μm内部体积0.09 μL0.18 μL1.1μL进样口333出样口111Nozzle高度75μm75μm50μm 喷嘴与生成液滴关系喷嘴高度适合生成液滴大小5 μm nozzleDroplets 9 μm10 μm nozzle9 μm Droplets 20 μm50 μm nozzle40 μm Droplets 90 μm75 μm nozzle65 μm Droplets 140 μm *更多内容,请参阅附件。 功能图解配套芯片夹具应用系统药物研究分子生物学研究免疫学研究酶催化研究气泡形成矿物油乳液生产颗粒生产液滴微混合、微反应
    留言咨询
  • qsense 生物芯片 400-860-5168转1902
    Q-SensorsTM,在芯片上实现你的梦想你知道么,Q-SenseTM 最近推出了18款新涂层芯片。这些芯片可以使用在广泛的领域,用以解决各种各样的科研难题。也许其中的一款就是您急切需要的! 在这里我们同时向您介绍我们芯片的新名称,Q-SensorsTM,它是芯片质量的保证。凭借这些专门为QCM-D系统配置的芯片,您可以在实验中获得最优的效果。我们产品的质量– 您科研上的成功优质的、种类繁多的QCM-D系列芯片时Q-SenseTM公司引以为傲的产品。这些芯片在我们哥德堡总公司,一个世界一流的仪器生产工厂制造。您所购买的QCM-D芯片都是质检合格并且可以确保QCM-D实验的可靠运行。我们产品的广度– 您实验中的机会Q-SenseTM标准系列芯片囊括一系列芯片表面如:基本元素、氧化物、高分子、铁/钢和功能性材料,以及更多用以满足客户需求的表面。 我们的客户研究范围广泛,从最基本的分子间相互作用到药物科学,从环境化学、能源开发再到表面活性剂、去污剂研究。 往下看,是否有一款适合您科研的芯片?请查阅下列Q-SenseTM 标准系列芯片(如需定制芯片,请联系我们)。我们也增加了些客户使用建议,来启迪您的科研灵感—建议是有限的,您的灵感是无限的!芯片描述应用实例应用范围铝电极电化学,嵌锂能源氧化铝水处理厂,纳米颗粒环境AlSO高岭石模拟能源,采矿非晶含氟聚合物 AF1600 (杜邦)聚四氟乙烯,不粘表面,惰性表面蛋白质表面,清洁剂和洗涤剂分析,石油钛酸钡用于电容介电陶瓷生物素(吸附金表面)生物,生物化学相互作用蛋白质相互作用,分子生物学,抗原硼硅酸盐玻璃实验室器具,注射器,炊具药品,清洁剂和洗涤剂分析碳酸钙矿物(例如石灰石,白垩,大理石, 石灰华)能源,采矿纤维素 (吸附二氧化硅表面)织物,过滤器,纤维酶的相互作用,清洗,电化学,生物燃料铬涂层腐蚀,电子钴矫形植入物,电池,颜料医疗器械,能量,电镀铜电线,电缆,涂料腐蚀,防污金通用表面硫醇,任何只要在金表面吸附的金 (Ti 作为粘附层)通用表面电化学His-标签捕捉生物系统, 生物化学相关抗体,蛋白质 - 蛋白质作用,探测的构象变化羟基磷灰石骨骼,牙齿,仿生材料,矿物生物材料,医疗器械铁内燃机,纳米粒子耐腐蚀,环保交通,能源氧化铁 (Fe2O3 和 Fe3O4)赤铁矿和磁铁矿模仿,管道,纳米粒子, 矿物质太阳能,催化剂,腐蚀,生物膜,环境交通,能源镁矿物质能源,矿业,自行车,汽车,手机钼矿物质能源,矿业NHS-胺偶联生物系统,生物化学相关蛋白质相互作用,分子生物学,抗原 - 抗体作用尼龙“6.6”尼龙织物清洁剂和洗涤剂分析PEI(聚醚酰亚胺)添加剂,絮凝剂胶粘剂,水处理,化妆品,湿强剂铂电极燃料电池,催化转换器,能量聚苯乙烯疏水表面,过滤器细胞研究,惰性表面,过滤器,医疗设备聚甲基丙烯酸甲酯有机玻璃,骨粘固剂,牙科填充剂生物医学,镜头,水族馆,汽车前灯聚偏氟乙烯塑料,制药过滤器,离心管容器物质吸附相互作用,制药业硅半导体能源,蚀刻碳化硅稀有矿产碳硅石 碳载体能量,催化剂,电子二氧化硅玻璃蚀刻处理,硅烷化,清洁和洗涤剂分析氮化硅生物材料,集成电路电子,医疗设备碳氧化硅碳载体,电极催化剂,LED灯,刹车片,石墨烯生产,能源银纳米颗粒,抗菌涂层环境友好型交通,涂料,材料钠钙玻璃家用玻璃制品,实验室器皿清洁产品,表面的相互作用钢 (SS2343, US 316 & L605)支架,耐酸钢,不锈钢环境问题,医疗装置,血液凝结钽电极,电抗器合金,电子,能源氮化钽电极电子钛医用植入体医疗器械,生物材料钨电极蚀刻氧化锌矿物质采矿,能源,橡胶制造, 陶瓷,炉甘石洗剂硫化锌矿物质能源,矿业,发光和光学材料,颜料氧化锆陶瓷,燃料电池,膜材料合金烧结,能源
    留言咨询
  • 人体器官芯片是2010年诞生的一项变革性生物医学新技术,人体器官芯片指的是一种在芯片上构建的器官生理微系统,它以微流控芯片为核心,通过与细胞生物学、生物材料和工程学等多种方法相结合,可以在体外模拟构建包含有多种活体细胞、功能组织界面、生物流体和机械力刺激等复杂因素的组织器官微环境,反映人体组织器官的主要结构和功能特征。它可在体外模拟人体不同组织器官的主要结构功能特征和复杂的器官间联系,用以预测人体对药物或外界不同刺激产生的反应,在生命科学和医学研究、新药研发、个性化医疗、毒性预测和生物防御等领域具有广泛应用前景。(一)功能应用 Kirkstall Ltd.专利技术的Quasi Vivo器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。 (二)性能特点Quasi Vivo 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势: 功能延展性强允许独立、可控的空气、气体或液体层流流向顶端和基底外侧 满足多器官共培养,细胞间的信号传递等实验要求可选择气液界面,液液界面,支架和流动方案的多样化培养方式 成像友好;易于获取样本 模拟生物力学和浓度梯度便携和易于操作,占地面积小,节省空间,可兼容标准实验室的孵化器 (三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。在本研究中,作者使用upcyte人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。 4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275. 医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo“芯片上的器官”流动培养系统,用于测试聚合物样品。 (四)产品用户概况全球使用Kirkstall Quasi Vivo器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd. 成立于2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。 北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • 生物芯片扫描仪 400-860-5168转3078
    Innopsys 成立于1999年,总部位于法国,分部设立于美国的芝加哥,一直致力于生物医学领域相关仪器和软件的自主研发和生产。凭借着强大的研发团队以及每年大约30%销售额的研发投入,使INNOPSYS的产品一直聚焦于生物医学前沿的领域。提供给客户最完美的解决方案。2006年,Innopsys正式发布了InnoScan 系列芯片扫描仪。凭借着技术创新以及种类齐全的机型,Innopsys迅速成为芯片扫描市场的领军企业。符合ISO9001和13485 标准的InnoScan系列产品被广泛用于科研、临床诊断、医药研发等众多领域。迄今为止,InnoScan全球装机量超过500台。 特点:开放的芯片检测系统,兼容多种材质的标准尺寸玻片(25mm×75mm)扫描速度快-分辨率10μm/pixel ,3.5 min即可完成整张玻片双通道扫描Confocal PMT可实现多种颜色的同时扫描,极大缩短扫描时间扫描过程中,可实时自动聚焦。根据芯片片基高度变化,自动调节焦距以获得较好扫描结果相对于传统16-bit 图片(104的动态范围),20-bit 图片(106 的动态范围)可呈现可靠的结果 红外机型完美解决了膜类芯片高自发荧光等固有问题超高分辨率,能够轻松应对复杂芯片扫描-组织芯片、细胞芯片等Autoloader可以实现24张玻片的高通量扫描符合ISO 9001 / 13485标准,适用科研和体外诊断分析 应用:基因芯片—基因表达,基因突变,SNP检测,CGH检测,转基因检测,分子筛查检测等蛋白芯片—功能蛋白表达,蛋白与蛋白、配体、生物大分子或者小分子结合检测、抗原或者抗体的筛选检测等糖类芯片—细菌、病毒检测,肿瘤学标志物筛选检测等细胞芯片—细胞标志物检测等组织芯片—病理学筛查检测等体外诊断相关的芯片检测 技术规格:Innoscan® 710Innoscan® 710IRInnoscan® 910Innoscan® 1100AL最大分辨率(μm/pixel)3310.5激发波长 532nm 635nm 670nm 785nm 532nm 635nm 488nm532nm 635nm扫描时间分辨率10μm/pixel—单张玻片双通道扫描仅需 3.5 min※ 710、710IR、910型号均可以选配Autoloader,实现高通量扫描
    留言咨询
  • Vena8玻璃盖玻片™ 生物芯片含8条平行的毛细管,可涂上蛋白质或接种细胞或微生物,随后在剪切流下进行药物相互作用、成像或分子生物学研究。在这一范围内的生物芯片中,底部基质为玻璃盖玻片(与芯片分离或粘附在芯片上)。玻璃盖玻片可不进行处理,也可用固定在高密度PEG涂层的螯合铜离子来处理。通过移液器将蛋白质移入毛细管,然后通过多聚组氨酸标签的结合,微毛细管表面轻松被包覆。 产品特性:Ø高放大倍率;适用于高孔径值(NA)的油镜物镜Ø明视野/相衬/荧光/共聚焦显微镜Ø适用于一系列细胞悬浮液和全血Ø微毛细管容易被各种不同的粘附分子包覆Ø玻璃盖玻片可不进行处理,也可用固定在高密度PEG涂层的螯合铜离子来处理Ø剪切应力/剪切速率可预先设置,在检测过程中可逐渐增加Ø流动条件下实时成像Ø没有鲁尔锁连接,增加了闭死容积Ø应用包括但不限于: 血栓检测;如,使用带有玻璃盖玻片的生物芯片,玻璃盖玻片用固定在高密度PEG涂层的螯合铜离子进行处理。生物芯片适用于高流速/剪切应力 生物膜应用;如,特别是无盖玻片时:用户可将任何类型的板边贴于生物芯片底部干细胞培养 Vena8玻璃盖玻片生物芯片技术参数产品名称Vena8玻璃盖玻片™ 生物芯片生物芯片涂层-蛋白质系列VCAM、ICAM、MAdCAM、纤连蛋白、vWF、纤维蛋白原、胶原蛋白等 细胞类型T细胞:原代细胞&细胞系,如HUT 78单核细胞:原代细胞&细胞系,如THP-1嗜酸粒细胞中性粒细胞血小板PBMCs、全血等干细胞细菌基质(盖玻片)厚度170 μm = 0.17 mm材料Topas和玻璃盖玻片每块生物芯片的通道数8低流速生物芯片通道尺寸160 μm (高) x 1600 μm (宽) x 28 mm ≡0.16 mm (高) x 1.6 mm (宽) x 28 mm每通道容积7.168 μL涂覆所需蛋白质的量~20 μL高流速生物芯片通道尺寸80 μm (高) x 800 μm (宽) x 28 mm ≡0.08 mm (高) x 0.8 mm (宽) x 28 mm每通道容积1.79 μL 应用领域:Ø使用最小样品体积(全血、细胞悬浮液、蛋白质等)进行流量检测Ø免疫荧光和共聚焦显微镜检查
    留言咨询
  • 微流体生物芯片 400-860-5168转4032
    Each biochip contains 8 capillaries in parallel which can be seeded with endothelial cells for culture of 8 monolayers in parallel and subsequent study of cell-cell interaction studies under shear flow. Each 10 pack contains 80 assays. Each 5 pack contains 40 assays.主要特点: 用于细胞滚动、粘附分子研究或细胞间相互作用研究 适用于各种细胞悬浮液(原代和细胞株)包括T细胞、单核细胞、外周血单个核细胞、中性粒细胞、嗜酸性粒细胞、血小板和全血(肝素化)。 Vena8荧光+ TM和 Vena8TM:可以用标准移液器将一系列的粘附因子包覆毛细管外壁。不同的黏附分子包括VCAM(血管细胞粘附因子),ICAM(细胞间粘附因子),MAdCAM,纤维连接蛋白,vWF(人血管性血友病因子/瑞斯托霉素辅因子)、胶原蛋白、纤维蛋白原等。 Vena8内皮细胞+ TM和VenaECTM:容易种植和培养各种内皮细胞(层)包括HUVEC(人脐静脉血管内皮细胞),HMVEC(人微血管内皮细胞),HCAECs(人冠状动脉内皮细胞)等等。 生物芯片具有良好的光学特性,可在显微镜下进行清晰的观察和进一步的研究。 剪切应力范围:0.05-20 dyne/ cm2,可以通过MirusTM Nanopump精确控制。 剪切应力的大小及连续变化的参数可以设置。 在流动状态下实时成像。VenaT4生物芯片,主要特点如下:适合白细胞和癌症细胞等的迁移、侵袭和趋化性实验可以进行全血和血细胞分析(如白细胞)聚碳酸酯膜,空隙大小为2-10µm每个芯片有4个微流道,每个容量仅14μL。可以将化学引诱物固定在基质胶(ECM gel)里面配合Kima泵使用,长时间提供流体剪切力,可进行长期的迁移研究利用Mirus™ Nanopump可以提供并控制0.05–200dyne/cm2的流体剪切力,剪切流可为脉冲流或平稳流在流体剪切力环境下,实时成像、实时观察可使用明场/相称/荧光显微镜,20x, 40x长工作距离显微镜下观察,芯片光学性能良好 VENA8 ENDOTHELIAL+微流体芯片的主要特点:Vena8荧光+ TM和 Vena8TM:可以用标准移液器将一系列的粘附因子包覆毛细管外壁。不同的黏附分子包括VCAM(血管细胞粘附因子),ICAM(细胞间粘附因子),MAdCAM,纤维连接蛋白,vWF(人血管性血友病因子/瑞斯托霉素辅因子)、胶原蛋白、纤维蛋白原等。Vena8内皮细胞+ TM和VenaECTM:容易种植和培养各种内皮细胞(层)包括HUVEC(人脐静脉血管内皮细胞),HMVEC(人微血管内皮细胞),HCAECs(人冠状动脉内皮细胞)等玉研仪器是Cellix公司中国区总代理,向您提供全套的流体剪切力下细胞研究的方案。如果您对Cellix微流体细胞工作站及相关产品,或者对其应用及实验解决方案感兴趣,请致电021-35183767 免费索取相关产品资料。 请关注玉研仪器的更多相关产品。 如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 激光雷达核心器件~SPAD 单光子雪崩二极管效率测试仪/新型单光子探测器特性分析设备SPD2200是针对最新型的单光子探测器SPD ,Single Photon Detector ,dToF LiDAR 激光雷达收发光核 心芯片测试仪,常应用于dToF的SPAD(Single Photon Avalanche Detector)光感测器(或称SPAD光电探测器,SPAD传感器)的特性测试分析设备。单光子探测器可以对单个光子进行探测和计数,在许多可获得的信号强度仅为几个光子能量级的新兴套用中,单光子探测器可以一展身手。SPD2200是针对最新型的单光子探测器(SPD,Single Photon Detector),如应用于dToF的SPAD(Single Photon Avalanche Detector)光感测器的特性测试分析设备可整合分析如下参数:全光谱性能参数测试分析:(SR,Spectral Responsivity)全光谱量子效率(EQE , External Quantum Efficiency)全光谱光子探测率(PDP,Photon Detection Probability)暗计数DCR(Dark Count Rate)崩溃电压BDV(Break-Down Voltage)SPAD的单光子雪崩二极管特性参数分析: JitterAfterpulsing probabilityDiffusion tailSNR
    留言咨询
  • ...................................................................................................................................................................................................................................................................................................................................... 用途:应用于微电子及光电子工艺电子器件:精密芯片,LED外延式芯片,LCD,BGA,精密光学仪器及光学元件,镀金铜线等;该系列产品被大量应用于在无尘净化车间电子器件及材料的安全防氧化保管。全自动氮气柜HSD系列(1%~60%RH)介绍Product Introduction 1.全自动氮气柜柜体采用1mm及1.2mm钢板制作,多处加强结构,承重性能好,重叠式结构设计,密封性能。2.表面处理采用先进的有18道工序组成的橘纹烤漆,耐腐蚀性强。 3.门镶3.2mm高强度钢化玻璃,防前倾耳式结构设计。带平面加压把手锁一体化设计,有防盗功能。底部安装可移动带刹车脚轮方便移动及固定(防静电机型脚轮为防静电)。4.LED超高亮数码显示,温湿度传感器采用品牌honeywell,温湿度独立显示,使用寿命长。湿度可设定且具有记忆功能,断电后无需再设定。5.湿度显示范围0%~99%RH,温度显示范围-9℃~99℃。显示精度:湿度±3%RH 温度±1℃6.配备氮气节约装置,当箱内湿度到达设定值时,系统会自动切断氮气供应,当超过设定值时,系统会智能打开氮气供应。相比市场其他直充氮气机型可节约70%氮气消耗量。大程度降低使用成本。7.采用多点供气系统。氮气通过30多个小孔冲入箱内,箱内氮气分布比较均匀。避免了普通单点供气而产生的死点死角现象。8.行业内一家拥有智能化控制系统的氮气柜。自动判断机器内湿度来决定工作时间,节省能源,延长产品使用寿命。产品机芯采用中外合作先进技术,使得产品性能稳定,质量大有保障。主机外壳采用高温阻燃材料,降低安全隐患。防静电机型表面处理采用先进的防静电烤漆,静电阻值为106-108欧姆,美观大方,耐腐蚀性强.,机型颜色为黑色。备注:普通不防静电柜子颜色为电脑白,防静电柜子颜色为黑褐色,型号为HSD98FD(可选配)。全自动氮气柜用途:应用于微电子及光电子工艺电子器件:精密芯片,LED外延式芯片,LCD,BGA,精密光学仪器及光学元件,镀金铜线等;该系列产品被大量应用于在无尘净化车间电子器件及材料的安全防氧化保管。 主要技术参数Specifications
    留言咨询
  • 微细加工技术是实现微机电系统的基础,也是微机电系统的核心技术和研究热点。微细加工技术在微电子、微光学、微流控芯片、蛋白及细胞阵列化等领域也有广泛应用。微细加工技术泛指制作微小尺寸器件或薄膜的方法,加工尺度从亚毫米级到纳米级,而加工单位一般从微米级至原子或者分子线度。微细加工技术种类很多,涉及多种物理、化学方法,这里主要根据加工方式以及加工环境介质进行分类。应用类别设备名称设备型号工艺参数镀膜低压力化学气相沉积(LPCVD)HORIS L6471-1可沉积SIN,TEOS,poly等薄膜 1-50片/炉热氧化炉管热氧化退火快速退火炉RTPAnnealsys AS-One 150最高温度到1500℃, 升温速率最大200℃/sFIB加工聚焦离子束 FIBThermo Fisher Scios 2 HiVacTEM样品制备SEM形貌观测场发射环境扫描电镜ESEMThermo Fisher Quattro SSEM能谱分析电子束蒸发镀膜-金属电子束蒸发FU-20PEB-950蒸镀金属薄膜、可做lift-off工艺镀膜、8寸基片向下兼容电子束蒸发镀膜-介质电子束蒸发FU-12PEB蒸镀介质薄膜一炉可镀10片四寸基片磁控溅射镀膜-金属磁控溅射系统FSE-BSLS-RD-6inch溅射金属薄膜、6寸基片原子层沉积等离子体增强原子层沉积系统ICPALD-S200当前以Al2O3为主DLC镀膜类金刚石薄膜化学沉积系统CNT-DLC-CL200干法刻蚀干法刻蚀机北方华创硅Bosch和超低温刻蚀、SiO2与石英深刻蚀,8英以下IBE刻蚀离子束刻蚀系统(IBE)AE4三维结构材料刻蚀,刻蚀陡直度优于85度,刻蚀精度10nm等离子体去胶微波等离子体去胶机Alpha Plasma紫外光刻紫外光刻机SUSS MA6BA6GEN4对准精度:±0.5um,分辨率600nm电镀电镀机WPS-200MT镀Cu、镀Au、镀镍/镍合金临界干燥超临界点干燥仪Automegasamdri-915B划片切割机划片机Disco D323晶圆键合晶圆键合机SUSS MicroTec SB6Gen2阳极键合AFM测试高分辨原子力显微镜Oxford Cypher ES原子力显微镜Park Systems NX20电子束光刻电子束光刻机Elionix ELS-F125G8不含匀胶等费用,材料费根据用胶类型另计  我们提供快速MEMS器件 / 微纳米结构加工设计服务, 欢迎留言咨询。咨询电话:4008770879
    留言咨询
  • 产品介绍器官芯片(Organ-On-Chip)分析被誉为更快、更精确的药物开发和精确医学的要素。它提供了对疾病的更好的了解,以及改进了新疗法的开发。器官芯片通过研究人体细胞和组织来提供精确的、与生理相关的临床前数据,而不需要昂贵和耗时的动物研究。 器官芯片(Organ-On-Chip)研究使科学家能够专注于药物靶点、毒性机制和药物相互作用,将药物推向临床试验,避免代价高昂的失败。生理相关性一直是原代细胞和干细胞在体外检测中应用的驱动力。PhysioMimix 能够快速轻松地创建3D组织模拟物与自动化控制微流体,用于长期细胞培养,产生信息丰富的分析。选择正确的细胞是实验成功的因素。维持细胞表型对于研究复杂的生物过程,器官内或器官间相互作用,自分泌/旁分泌因子,以及对病原体和外来生物的反应有举足轻重的影响。 PhysioMimix 器官芯片(Organ-On-Chip)兼容种类繁多的原代细胞、干细胞和细胞系,为您独特的研究需求提供更大的灵活性。无论您是否需要更大限度地挖掘现有培养体系的潜力,或是承担了复杂的多器官研究, PhysioMimix的硬件,耗材和分析模板组合套件,使得器官芯片可轻松入门。产品特点 台式一体机:结构紧凑且与实验室现有设备兼容; 方便使用:用户可在1分钟内设置完成开始运行; 开孔设计:支持您2D到3D的细胞培养过渡,如屏障芯片腔室可以很容易地放入商业化的transwell; 实时监控:取出样品进行分析; 程序可保存:以更少的用户输入进行长期自动化实验; 组织&细胞:与一系列预先形成的组织和细胞类型兼容,具有灵活性; 多器官:通过微流体连接两个器官以研究串扰; 降低每颗芯片的成本:一板12孔甚至48孔的设计,更多的实验孔意味着实验的成本得以降低; 数据置信度提高:板内设置多个对照孔或者副孔,使得到的数据置信度提升; 更早地洞见数据:相较其他设备具有更高的通量和更强的处理能力,使整个过程可以更早地洞见数据。应用领域 类器官培养:肝、肠、肺、肾、脑等单器官或多器官 疾病模型:NASH、乙肝 (HBV) 、肿瘤学、肺炎(COVID-19) 等 安全性毒理学:药物性肝损伤(DILI)、免疫介导的毒性、遗传毒性等 ADME /药理学:药物吸收、药物代谢、药物生物利用度等PhysioMimix微流控类器官系统模块组成 耗材种类客户体验PhysioMimix系列用于微流控和器官芯片(Organ-On-Chip)细胞培养,可兼容多种基于细胞表型的分析实验。CN Bio的器官芯片(Organ-On-Chip)平台目前正被美国监管机构食品和药物管理局(FDA)以及制药和生物技术实验室使用。重要文献 疾病模型[Infectious disease] Ortega-PrietoAM et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018 Feb 9:pp-pp.[Diabetes and NASH] Kostrzewski Tet al. Three-dimensional perfused human in vitro model of nonalcoholic fatty liver disease. World J Gastroenterol 2017 23(2): 204-215.[Oncology] Wheeler SE et al. Spontaneous dormancy of metastatic breast cancer cells in an all-human liver microphysiologic system. Br J Cancer 2014 111(12): 2342-2350. 多器官系统[2-Organs] Chen WL et al. Integrated Gut/Liver Microphysiological Systems Elucidates Inflammatory Inter- Tissue Crosstalk. Biotechnology and Bioengineering, 2017 114 (11): 2648-2659.[2-Organs] Dalrymple A et al. The characterization of a human two Organ-on-a-Chip (lung-liver) system which has the potential to measure systemic responses in vitro. Poster presented at Society of Toxicology 57th Annual meeting 2018 Mar 11-15: San Antonio, Texas.[4/7/10-Organs] Edington et al. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep, 2018. IN PRESS. 药物研发[Drug Safety] Long TJ et al. Modeling Therapeutic Antibody-Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform. Drug Metab Dispos 2016 44(12): 1940-1948.[Drug Metabolism] Vivares A et al. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 2015 45(1): 29-44.[Drug Metabolism] Tsamandouras N et al. Quantitative Assessment of Population Variability in Hepatic.Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System. J Pharmacol Exp Ther 2017 360(1): 95-105.
    留言咨询
  • 器官芯片是一种多通道的三维细胞培养装置,主要用于生产和培养多种细胞组成的类器官。器官芯片由两大部分组成,一是多种类型细胞按真实器官中的比例和顺序搭建出来的 有序结构;二是器官培养微环境,包括器官芯片的基质、分泌物和应力。 器官芯片是微流控芯片技术和细胞生物学、药理病理等学科紧密结合的结果,使人们 有可能在体外模拟体内真实器官的功能,为大规模的药物筛选奠定基础。通过复制血脑屏障(BBB)建立的血脑屏障器官芯片模型,是研究细胞与细胞之间相互作用,细胞之间物质和信号传递的优秀模型。该芯片可应用于以下研究:细胞与细胞之间的物质交换和信号传递血液剪切力对细胞的影响药物对细胞的影响图一、血脑屏障器官芯片示意图芯片参数: 材质PDMS外周腔室宽度100 μm腔室高度100 μm连接沟道尺寸3*3*3 μm中心腔室直径1.5 mm开孔尺寸0.7 mm血脑屏障器官芯片的示意: 外周腔室用于培养第一种细胞,而中心腔室用于培养第二种细胞。多孔结构能够使外 周腔室中的细胞和中心腔室细胞之间进行交流。 图二、血脑屏障器官芯片实物图 图三、血脑屏障器官芯片中心腔室局部放大图
    留言咨询
  • 掌控CellASIC ONIX2微流控活细胞实时分析系统将长期动态细胞培养与活细胞延时成像技术*的结合在一起,通过微培养控制器精确调控细胞生长区域的温度和气体成分,完全摆脱了外置培养箱的限制,实现了显微镜下对细胞的长期持续观察。培养基,血清, 37度, 5%CO2,这就是生物学的全部吗?依赖于培养箱的静态细胞培养与体内环境存在巨大差异,传统的细胞培养和分析究竟让我们失去了什么?CO2培养箱混合培养,无法单独调节个人实验所需液流、气体、温度甚至湿度。无法进行功能分析。无法对细胞状态长期实时监控。2D静态培养与在体环境相距甚远。在此基础上得到的数据是否客观准确仍是我们需要关注的生物学问题。微流控芯片灌流系统,再现体内微环境 活细胞体外功能研究在基础生物学,药物机制研究和疾控模型建立等方面有着极为重要的作用和意义。细胞所处的微环境会影响细胞健康状态与细胞表型,因此,在体外条件下突破传统静态和大空间活细胞培养方法的限制,建立密闭空间更为精确的动态控制系统(温度、气体、液流),无疑将活细胞功能研究及整体细胞生物学研究提升到一个新的水平, CellASIC ONIX2即是针对这一空白领域专门设计的一个动态细胞培养微环境控制平台,它极大的超越了传统方法的局限,高度再现体内微环境,将细胞培养与功能分析*结合,实现与众不同的实验思路。芯片培养板上的微流控设计 检测活细胞对预设的液流体系、温度以及气体环境变化的反应。CellASIC ONIX2微流控芯片具备高精度活细胞成像与多功能分析的系统特征。微流控活细胞实时分析系统系统特征可同时进行四个独立的加药实验。适用于所有倒置显微镜。底板为超薄玻璃质地,保证图像清晰度。对液流、气体以及温度实现动态精确控制。层流设计可以快速进行液体交换并实现标准化梯度设定。液流管路间隙保证系统与细胞间的持续物质交换并避免流体压力产生。 密闭微环境可灵活设定实验条件 不同细胞类型对生长环境的要求不同,CellASIC ONIX2微流控培养板针对哺乳动物、细菌、酵母和藻类等进行*设计,优化细胞生长环境,在活细胞动态监测,特别是长期持续观察实验中,确保为细胞生长提供稳定的良好微环境,满足您不同的实验需求。 人性化设计,操作简单直观 利用“load-and-go”微流控培养板,只需几分钟就可以轻松获取数据。软件实现全程自动化操作,实验步骤简单易行。“手自一体式” 操作考虑您全方面的实验需求,即可实现全程自动化控制,也兼容手动调节。完成实验程序设定以及实验过程操控,利用显微镜操作自动成像。 洞悉 精准成就发现 CellASIC ONIX2平台帮您实现真正的动态细胞生物学研究。已有的大量实验数据显示,利用这一平台可以精确调控动态实验进程,实验结果准确可靠,令您在不同的生物学领域中获得*的体验。 创见 创新点亮梦想 CellASIC ONIX2微流控活细胞实时分析系统源自科学家设计,创你未想、构你所见,具备微小体系给药系统与高质量细胞成像窗口,满足悬浮细胞、贴壁细胞、原代细胞、组织压片等实验室常规需求。同时以应用为导向,结合高精度微流体技术,针对性设计微流控芯片培养板,服务精细化研究细胞趋化迁移、单细胞分区培养、胞体固定等特殊要求,预见未来细胞水平研究对于活细胞、单细胞和微环境精密调控的刚性需求。CellASIC ONIX2进行细胞迁移/侵袭实验的优势 CellASIC ONIX2的哺乳动物细胞梯度芯片板,通过上下两个通道间的不同药物或相同药物的不同浓度,在中央区域内形成梯度差,于细胞迁移实验。细胞水平建立低氧/高氧诱导模型 CellASIC ONIX2可以精确调控气体成分,调节精度可达0.1%,相比外置培养箱和大体积工作站,密闭环境气体成分切换速度快, 为肿瘤,心血管疾病,干细胞研究及自噬研究提供良好平台。 微流控活细胞实时分析系统
    留言咨询
  • 生物芯片点样仪-适合各种应用的快速点样系统Arrayjet提供各种范围及通量的喷点式生物芯片点样系统。哪一款点样仪是您应用的理想选择?Mercury 系列为英国Arrayjet公司自主研发的满足于科研和工业市场的芯片点样仪,Mercury 100 高通量芯片点样仪,采用飞行喷墨点样技术,实现行业内第一快速的、非接触式超微量液处理。独特的高通量进样器配合128个平行喷头,实现点样操作快速、无污染和更低的上样体积,使珍贵样品物尽其用。全面的环境控制模块和光学质控模块,确保芯片质量。Mercury 100高通量芯片点样仪(6块SBS进样板/100片标准载玻片)Mercury 100的优势:高效:飞行喷墨式点样,具备128个平行喷点通道,6块SBS进样板和100片标准载玻片快速:点样速度711个样片点/秒精准:完整的环境控制模块以及防样品蒸发保护(最大程度降低点样过程中样品浓度变化);工业级喷墨点样头;CV 5%(可实现精准的点上点样)高兼容:兼容各种样品类型 ,兼容各种基片类型应用方向:各种高通量核酸/蛋白/糖类芯片RPPA基于不同种类基片(玻片、微孔板、膜类等)的生物标志物诊断和微生物检测药物发现:小分子与大分子的互相筛选化合物筛选定制片基点样半导体生物传感器微流控芯片Arrayjet生物芯片点样仪由Command CentreTM 软件控制操作,简便易用的自动导向功能使您能够便捷地设计所需的芯片样式并可实现可视化预览。
    留言咨询
  • VenaT4™ 生物芯片 400-860-5168转4784
    VenaT4™ 生物芯片含4条平行且封闭的微毛细管,微毛细管通过孔隙大小为2-10 μm的膜由底部4个微孔分开。应用包括通过嵌入生物芯片的膜对白细胞进行迁移、转运、侵袭和趋化性研究。ECM蛋白可涂覆在膜上,该膜将流动通道和含有趋化因子的微孔分开。然后可使用Cellix的微流体泵注入细胞悬浮液,该微流体泵支持一系列剪切应力/剪切速率,用于基于动态流的检测。在连续施加剪切应力的情况下可观察到白细胞的迁移,从而模拟血管的生理条件。10个VenaT4生物芯片为一包,每包可完成40次实验。 产品特性:Ø20x, 40x 长工作距离放大显微镜Ø4微孔,每微孔容积大约14 μL,将化学引诱剂固定在ECM凝胶中Ø聚碳酸酯膜,孔径大小为2-10 μmØ适用于Kima泵,可进行长期研究或用于缓慢迁移的细胞Ø明视野/相衬/荧光显微镜Ø适用于白细胞和癌细胞的迁移、转运、侵袭和趋化性实验Ø适用于全血和血细胞分析(如白细胞)Ø塑料生物芯片的光学清晰度高,可在显微镜下进行细致的研究Ø通过Mirus Evo纳米泵、ExiGo、UniGo和4U泵可轻松达到和控制0.05-200 dyne/cm2的剪切应力/剪切速率Ø剪切应力/剪切速率可预先设置,在检测过程中可逐渐增加Ø流动条件下实时成像 VenaT4™ 生物芯片技术参数产品名称VenaT4™ 生物芯片用于生物芯片涂层的蛋白质系列层粘蛋白、VCAM、ICAM、纤维蛋白原等 用于悬浮检测的细胞类型T细胞:原代细胞&细胞系,如HUT 78单核细胞:原代细胞&细胞系,如THP-1嗜酸粒细胞中性粒细胞PBMCs、全血等趋化因子范围IL-8、SDF-1、MCP-1等最小样品量~12 μL最大样品量100 μL (输入/输出端为Vena微孔)剪切应力精度0.5% CV细胞悬浮剪切应力范围0.05–10 dyne/cm2;阶跃剪切应力为 0.05 dyne/cm2 (100 µL 注射器) 全血剪切应力范围2.25–200 dyne/cm2 (1 mL 注射器) 容积流率100 nL/min–20 µL/min (100 µL 注射器);5 µL/min–1 mL/min (5 mL 注射器) 样品量抽取准确度±1%剪切应力准确度±0.5%样品量抽取精度1% CV 应用领域:Ø器官芯片研究:使用Cellix的4U或UniGo泵提供的培养基灌注,在芯片的4个微孔上培养心脏、肺、肝、肾或其他器官细胞。随后,药物或细胞在覆盖的微通道内流动,以此进行药物浓度研究或迁移和侵袭研究Ø趋化性、迁移和侵袭检测:用含有目标化学引诱剂的凝胶填充微孔。细胞在覆盖的微通道内流动,研究底部微孔细胞粘附、趋化、迁移和侵袭的情况
    留言咨询
  • 生物芯片点样仪-适合各种应用的快速点样系统Arrayjet提供各种范围及通量的喷点式生物芯片点样系统。哪一款点样仪是您应用的理想选择?Mercury 系列为英国Arrayjet公司自主研发的满足于科研和工业市场的芯片点样仪,Mercury 1000 超高通量芯片点样仪,采用飞行喷墨点样技术,实现行业内第一快速的、非接触式超微量液处理。独特的高通量进样器配合128个平行喷头,实现点样操作快速、无污染和更低的上样体积,使珍贵样品物尽其用。全面的环境控制模块和光学质控模块,确保芯片质量。Mercury 1000超高通量芯片点样仪(6块SBS进样板/1000片标准载玻片)Mercury 1000的优势:高效:飞行喷墨式点样,具备128个平行喷点通道,6块SBS进样板和1000片标准载玻片快速:点样速度711个样片点/秒精准:完整的环境控制模块以及防样品蒸发保护(最大程度降低点样过程中样品浓度变化);工业级喷墨点样头;CV 5%(可实现精准的点上点样)高兼容:兼容各种样品类型 ,兼容各种基片类型应用方向:各种高通量核酸/蛋白/糖类芯片RPPA基于不同种类基片(玻片、微孔板、膜类等)的生物标志物诊断和微生物检测药物发现:小分子与大分子的互相筛选化合物筛选定制片基点样半导体生物传感器微流控芯片Arrayjet生物芯片点样仪由Command CentreTM 软件控制操作,简便易用的自动导向功能使您能够便捷地设计所需的芯片样式并可实现可视化预览。
    留言咨询
  • 血管化3D类器官芯片 400-860-5168转2623
    向你推荐一款开放式器官芯片平台使用 DynamicOrgan 系统构建人类体外疾病和感染模型。该系统包括泵、生物芯片、耗材,并可自由使用标准实验室设备。一个动态系统,将帮助您快速获得对人类生物学的更广泛、更有意义的见解,而无需大额资本支出。具有细胞培养室、生物或生物相容性人造膜以及各种通道几何形状的生物芯片为器官芯片技术提供了概念基础。这种生物芯片的通道用于将器官的人类细胞引入细胞培养室,以类似体内的方式排列、组合和分离这些细胞,并不断为这些细胞提供营养。它们提供了一个框架,可以实现类似于人体血液的类似体内的流动模式。集成膜用作排列人体细胞的支架,为它们提供结构支撑和可以介导机械刺激的柔性基质。在这里,创建了复杂的组织和组织-组织界面,促进了强烈的细胞间通讯、信号传导和运输过程。以下是我们特色的四个类型芯片的结构图, 可提供生理流动条件及剪切力和免疫环境共培养通过微流控泵对组织进行灌注,可以实现不同的流动模式:脉动泵和层流泵,例如在健康人体中。观察培养基从储库开始流过我们的一个生物芯片,通过通道进入具有上皮和内皮细胞层的生物芯片室。以下是该设备做过的肠道、肺泡、肝脏、类血管培养的成像图片,请您参考!
    留言咨询
  • 海思科技 吴先生 HS 10S 微组装芯片粘片机 半自动粘片机 可做点胶贴片 以及共晶粘片 综合贴片精度±5umAM-X平台是一套完整的微组装系统,其核心模块集成了高精度贴装系统,预固定系统和生产数据分析三个部分。采用微米级龙门双驱结构可方便组成在线生成系统。可搭载吸嘴加热模块、料盘/晶圆放置盘、超声模块、激光加热模块、UV点胶及固化模块、热氮及甲酸工艺保护气体模块、基低预热模块、过程监控模块、芯片倒装焊接模块。应用领域:Micro LED、miniLED阵列芯片贴片微光学芯片、显示芯片封装下一代手机上的公制03015、008004器件大型医疗设备(核心成像模块组装)光器件(激光器LD钯条组装、VCSEL、PD、LENS等组装)半导体( MEMS器件、射频器件、微波器件和混合电路)硅芯片、GaAs芯片、体硅器件、AlGaInN等AM-X系统会实时记录每一件产品的贴装数据,可以自由灵活的查询到生产状况,同时根据动态数据进行调整贴装补偿数据,以达到理想的生产状态工作方式 桌面式手动-半自动 Z轴行程 150mm工作范围 15*80(可定制) T轴行程 手动器件尺寸范围 0.1~30mm XY轴解析度 1μ综合贴装精度 ±5μ 3σ Z轴解析度 3μXY驱动形式 步进电机+滚珠丝杆 T轴解析度 0.05°(手调) 键合力控制 20-1000g 照明系统 白色/黄色环形光源过程监控系统 可测量长度、面积
    留言咨询
  • MiniCore 3组织芯片点样仪独特的技术MiniCore设计基于一种创新的打孔机制,采用同轴打孔技术,其供体针,受体针和芯柱是同心的。这种方法简化了自动化,消除了打孔针之间错位的风险。 性能和效率MiniCore组织芯片点样仪首次安装于2008年6月,由法国Alphelys公司研发,目前已经发展到第三代,它增加了更多的功能,提高了使用的便捷性,更多的可追溯性和效率。组织芯片阵列的构建是众所周知的一项繁琐的任务,对病理科工作人员来说是非常耗时的。MiniCore3构建组织阵列的速率约为每小时250个孔,同时保持高质量。MiniCore3的旋转台可以同时容纳多达7个供体块或6个供体块和两个受体块的组合作为典型的例子,一次同时构建两个相同的组织阵列,非常显著的节省时间。人体工程学 供体块中打孔坐标的选择是很容易和快捷的,直接在屏幕上显示供体块的图像加上匹配的H& E控制载玻片。Min iC or e领3人体工程学的设计已经特别研究了一个舒适和容易 工作的位置。Min iC or e 3自动管理受体和供体蜡块的位置,以 及两个蜡块的打孔深度 ,以 保证所有打孔之间最佳的组织学匹配。质量和可追溯性 无论您选择的打孔针尺寸从 0.6mm到2 .0m m ,或供体块的质量,M in iC ore 3都可以保证完成高质噩的组织阵列 从供体块转移到受体块的图像将自动显示在屏幕上以供操作者验证.在采集供体孔困难的时, 操作者可以实时做出反应,决定是否再次尝试或者需要更换供体块,使组织阵列在不丢失或者损坏标本的清况下完成MiniCo re3保证了从组织阵列的设计到构建组织阵列演绎的完整可追溯性Min iC ore 叙3自 动捕获带有ID 供体块的图像并将所有操作记录到一个Exce l电子表格中,该电子表格将根据操作者输入的任何注释编辑设计和重建数据.Min iC ore 3 还包括一个审计追踪 以记录每一个步骤和错误到一个日志文件.Min iC ore 3 是一款真正的实验室仪器 符合组织芯片专业的高质量标准的.灵活性: M皿Core3 的交付包含一台已经安装了MiniCore 控制工作站和EasyTM ACreato 顷 组织阵列设计软件的电脑。EasyTMACreato 谗从excel 电子表格中导入样本ID列表。设置如打孔尺寸 ,点 之间的距离, 网格大小,组织类型(正常,肿瘤… ),每个组织类型和每个供体块的重复数,组织阵列拷贝数,构建序 列(排序或随机)可以根据需要调整。 感兴趣的临床项目 也可以与标本ID一起导入, 因此将被合并到组织阵列项目Excel 文件中。可以在一分钟之内设计一个新的组织阵列项目。MiniCore 3可以使用EasyTM ACreator 生成一组文件自动的构建组织阵列。 技术规格:尺寸:W350*D450*H350mm重量:大约12KG工作速度:15mm/s精度:1um点到点移动时间:0.2秒每个受体/供体块的工作面积40mm*25mm供芯长度:完全可调供体芯转移到受体块的深度:完全可调石蜡在受体/供体块中的最大厚度:10mm电源:85-250V,50-60Hz,Max 1A CE认证 具体配置如下:产品数量MiniCore半自动组织芯片点样仪1DELL笔记本电脑11 mm打孔针1USB 数据线1EasyTMACreator 软件安装光盘1EasyTMACreator 软件使用指南1MiniCore 控制软件1 选配件:0,6 mm打孔针 01-MIN-P061,0 mm打孔针 01-MIN-P102,0 mm打孔针 01-MIN-P20保修条件 软件保修软件由售后支持提供,允许特定的或标准的升级软件已安装。 所有的软件享受一年的免费更新。此保证不包含为符合硬件性能的软件要求而可能需要的任何硬件更新。EXCILONE 不会因任何原因引起更改或遗失数据而承担法律责任硬件保修电脑享受DELL公司1年的保修。所有其他硬件部件(保险丝和打孔针除外)都享受一年的保修期。 维修合同应用,请来电咨询。
    留言咨询
  • QSensorsTM,在芯片上实现你的梦想你知道么,QSenseTM 最近推出了18款新涂层芯片。这些芯片可以使用在广泛的领域,用以解决各种各样的科研难题。也许其中的一款就是您急切需要的! 在这里我们同时向您介绍我们芯片的新名称,QSensorsTM,它是芯片质量的保证。凭借这些专门为QCM-D系统配置的芯片,您可以在实验中获得预想的效果。我们产品的质量– 您科研上的成功优质的、种类繁多的QCM-D系列芯片时QSenseTM公司引以为傲的产品。这些芯片在我们哥德堡总公司,一个世界先进的仪器生产工厂制造。您所购买的QCM-D芯片都是质检合格并且可以确保QCM-D实验的可靠运行。我们产品的广度– 您实验中的机会QSenseTM标准系列芯片囊括一系列芯片表面如:基本元素、氧化物、高分子、铁/钢和功能性材料,以及更多用以满足客户需求的表面。 我们的客户研究范围广泛,从最基本的分子间相互作用到药物科学,从环境化学、能源开发再到表面活性剂、去污剂研究。 往下看,是否有一款适合您科研的芯片?请查阅下列QSenseTM 标准系列芯片(如需定制芯片,请联系我们)。我们也增加了些客户使用建议,来启迪您的科研灵感—建议是有限的,您的灵感是无限的!芯片描述应用实例应用范围铝电极电化学,嵌锂能源氧化铝水处理厂,纳米颗粒环境AlSO高岭石模拟能源,采矿非晶含氟聚合物 AF1600 (杜邦)聚四氟乙烯,不粘表面,惰性表面蛋白质表面,清洁剂和洗涤剂分析,石油钛酸钡用于电容介电陶瓷生物素(吸附金表面)生物,生物化学相互作用蛋白质相互作用,分子生物学,抗原硼硅酸盐玻璃实验室器具,注射器,炊具药品,清洁剂和洗涤剂分析碳酸钙矿物(例如石灰石,白垩,大理石, 石灰华)能源,采矿纤维素 (吸附二氧化硅表面)织物,过滤器,纤维酶的相互作用,清洗,电化学,生物燃料铬涂层腐蚀,电子钴矫形植入物,电池,颜料医疗器械,能量,电镀铜电线,电缆,涂料腐蚀,防污金通用表面硫醇,任何只要在金表面吸附的金 (Ti 作为粘附层)通用表面电化学His-标签捕捉生物系统, 生物化学相关抗体,蛋白质 - 蛋白质作用,探测的构象变化羟基磷灰石骨骼,牙齿,仿生材料,矿物生物材料,医疗器械铁内燃机,纳米粒子耐腐蚀,环保交通,能源氧化铁 (Fe2O3 和 Fe3O4)赤铁矿和磁铁矿模仿,管道,纳米粒子, 矿物质太阳能,催化剂,腐蚀,生物膜,环境交通,能源镁矿物质能源,矿业,自行车,汽车,手机钼矿物质能源,矿业NHS-胺偶联生物系统,生物化学相关蛋白质相互作用,分子生物学,抗原 - 抗体作用尼龙“6.6”尼龙织物清洁剂和洗涤剂分析PEI(聚醚酰亚胺)添加剂,絮凝剂胶粘剂,水处理,化妆品,湿强剂铂电极燃料电池,催化转换器,能量聚苯乙烯疏水表面,过滤器细胞研究,惰性表面,过滤器,医疗设备聚甲基丙烯酸甲酯有机玻璃,骨粘固剂,牙科填充剂生物医学,镜头,水族馆,汽车前灯聚偏氟乙烯塑料,制药过滤器,离心管容器物质吸附相互作用,制药业硅半导体能源,蚀刻碳化硅稀有矿产碳硅石 碳载体能量,催化剂,电子二氧化硅玻璃蚀刻处理,硅烷化,清洁和洗涤剂分析氮化硅生物材料,集成电路电子,医疗设备碳氧化硅碳载体,电极催化剂,LED灯,刹车片,石墨烯生产,能源银纳米颗粒,抗菌涂层环境友好型交通,涂料,材料钠钙玻璃家用玻璃制品,实验室器皿清洁产品,表面的相互作用钢 (SS2343, US 316 & L605)支架,耐酸钢,不锈钢环境问题,医疗装置,血液凝结钽电极,电抗器合金,电子,能源氮化钽电极电子钛医用植入体医疗器械,生物材料钨电极蚀刻氧化锌矿物质采矿,能源,橡胶制造, 陶瓷,炉甘石洗剂硫化锌矿物质能源,矿业,发光和光学材料,颜料氧化锆陶瓷,燃料电池,膜材料合金烧结,能源
    留言咨询
  • 产品说明 垂直腔面发射激光器阵列芯片(SLD)是边发射半导体光源。垂直腔面发射激光器阵列芯片(SLD)的独特特性是与输出激光二极管(LD)类似的高输出功率和低光束发散度,但具有更宽的光谱和低相干性,类似于发光二极管(LED)。超辐射发光二极管(SLD)在几何形状上与激光器类似,但是没有内置的LD反射机制用于受激发射以实现激光。与LD相比,超辐射发光二极管(SLD)操作的主要区别是:有源区内的增益更高,电流密度更高,光子的不均匀性和载流子密度分布更强。超辐射发光二极管(SLD)具有与LED相似的结构特征,通过降低刻面的反射率来抑制激光作用。超辐射发光二极管(SLD)本质上是高度优化的LED。虽然超发光二极管(SLD)像低电流水平的LED一样工作,但是它们的输出功率在高电流下也是超线性地增加。产品特点: 中心波长:750-1640nm 典型3dB带宽:10-110nm 典型输出功率:0.2-45mW 典型波纹:0.1-1dB产品参数: 中心波长(nm)光谱宽度(nm)输出功率(W)孔距(um)数组大小(um)型号9051035122 x 1222440 x 2430IPVSC09019401035122 x 1222440 x 2430IPVSC0902
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制