当前位置: 仪器信息网 > 行业主题 > >

小麦赤霉病

仪器信息网小麦赤霉病专题为您整合小麦赤霉病相关的最新文章,在小麦赤霉病专题,您不仅可以免费浏览小麦赤霉病的资讯, 同时您还可以浏览小麦赤霉病的相关资料、解决方案,参与社区小麦赤霉病话题讨论。

小麦赤霉病相关的资讯

  • 小麦赤霉病监测有了“看家神器”
    胡小平与赤霉病预报器小麦远程预测预报物联网监测系统 7月20日下午7点多,在中国农业硅谷的杨凌,一天前的那场雷阵大雨过后,气温是一点未降,反而使人感到周身湿气热浪袭人难耐,记者随西北农林科技大学植物保护学院教授安德荣等一行在杨凌高新农业示范区的临近周至县、眉县猕猴桃果园调研、采访一天,此刻身体感觉是又累又热,不想讲话 而头脑中的意识流是自然灾害、病虫害使农民生产生活不易,他们渴望能够解决实际难题的科技成果̷̷  记者不由感叹具有对农业生产提质增效明显的科技创新成果还是不够多,推广转化为生产力的少!  “据说我们学院胡小平教授的一项成果不错,了解一下?”安德荣建议。  “那就看看,了解一下。反正距返回西安的车次还有些时间。”记者回答。  严重的小麦赤霉病,出色的创新成果  农作物病虫害的预测预报基本都是农业科技人员在一个区域,选择不同的田块,再划样方进行观察、记录、统计及一级一级上报,省市植物保护总站汇总、分析并与以往年代资料比对等,作出预测预报方案和措施,再一级一级向下通报、执行̷̷  而一些农作物、果蔬的病虫害已成为影响我国农业提质增效的最主要限制性因素。如,小麦赤霉病已成为影响我国小麦高产稳产的首要病害,发生流行年份损失产量10%~30%,严重时达80%~90%。特别是小麦赤霉病菌产生的脱氧雪腐镰刀菌烯醇(DON)和玉米赤霉烯酮(ZEN)等多种毒素,也是常称的呕吐毒素,不仅会影响小麦品质安全,还会严重威胁人畜的生命健康,严重威胁着我国小麦生产和粮食安全。  据资料,2012~2015年全国黄淮海麦区连续暴发流行赤霉病,造成了巨大的损失。  我国科研工作者针对小麦赤霉病已开展了大量的研究工作,但直至目前,我国小麦赤霉病的流行规律、预测预报技术、毒素产生机理、抗病育种等方面仍然存在很多问题和诸多误区,缺乏有效的病害监测预警技术体系和全国统一协作攻关能力。特别是与发达国家相比较,在高新技术和设备的建设与应用、预测预报技术研究、基层专业测报人员队伍的人员数量及其稳定性等方面尚存在较大差距。同样,美国、加拿大等工业信息化发达又是世界小麦主产国,也未实现基于互联网的物联网远程预测预报。  可以说,小麦赤霉病的预测预报一直是一个世界性难题,虽然国内外有很多学者作了大量研究,但是能够准确预测且应用于实践的并不多见。  当胡小平教授在电脑上搜到www.cebaowang.com/wheatmonitor界面时,记者、安德荣等感到惊奇。因界面上实时显示出全国小麦赤霉病各个实时监测点仪器布置、运行、数据收集、分析处理、预测结果及实时远程传输和发布情况。  这是世界首台依靠太阳能解决田间动能问题,基于物联网的作物主要病害自动监测预警设备和平台系统,它解决了植物保护界亟需解决的难题,且所有硬件设备、数据分析及系统软件及模型参数等均是西北农林科技大学胡小平教授团队承前启后、历时多年自主创新发明的。该成果相关技术已获批国家专利多项和登记计算机软件著作权1项。另外,相关成果的部分内容以《多模型较单个模型预测效果更好》为题的论文,也在学界权威期刊《美国植物病理学报》发表,得到国际认同。该篇论文以小麦和燕麦赤霉病为例,从理论上分析比较了多模型和单个模型预测效果,证明多模型联合具有更好的预测效果。  其间,胡小平研究团队先后得到多项国家自然科学基金项目的支持。  艰难的转化之路  据悉,西藏自治区的农业部门就在当日早上与胡小平联系,希望将这套作物病害自动监测预警设备和平台系统销售推广给他们区域应用。  据了解,该系统与设备在2013~2016年对陕西关中的眉县、杨凌、兴平、临渭区、华县、华阴、周至等县小麦赤霉病作的监测与预测结果,按照肖悦岩教授的评测方法,其准确度均在80%以上,与当地小麦赤霉病实际发生情况相符。  “该系统已通过三年的田间试验,经不断完善系统解决方案,调整模型参数和优化产品结构,目前已生产出第六代型号样机,进一步提高了小麦赤霉病远程监测预警系统的稳定性和预测准确度,更有利于农户、农业技术人员及政府部门进行病害的防治决策和科学防控。”胡小平说。  当问及一台设备的成本和如何与一个企业合作,实现成果转化问题,以发挥成果作用时,这位刚才还侃侃而谈的教授,显得有点无奈。  “一套设备仅器件成本约需5万元人民币,目前测试、推广样品20台套都是用自己和团队发表高影响因子论文奖金、工作津贴等,委托一家电器生产企业生产的,有些费用还未付清。”胡小平低声说。  的确也难为这位博士生导师、教育部新世纪优秀人才支持计划入选者,现任西北农林科技大学植物病理学系主任,去做闯市场搞成果转化之类的事。  但谈到成果前景或项目进展时,胡小平激动地说,在国家自然科学基金、国家基础性研究“973”、农业部公益性行业专项、陕西省科技攻关等项目的支持下,课题组在利用大数据挖掘技术建立了小麦赤霉病预测模型,利用物联网技术研发成果作物病害自动监测预警平台系统的基础上,目前已经扩展完成对小麦条锈病、小麦白粉病的自动监测预警系统的研发,田间试验与示范也取得了预期的效果。其应用监测预警病虫害的种类范围将会不断扩大。  7月22日,记者写稿联系胡小平时,得知他正在深圳与一企业洽谈该项成果的转移转化事宜。
  • 2020年度中国生命科学十大进展公布
    2021年1月13日,中国科协生命科学学会联合体公布了2020年度“中国生命科学十大进展”(排名不分先后):【蝗虫聚群成灾的奥秘:4-乙烯基苯甲醚是蝗虫的群聚信息素】【首个新冠病毒蛋白质三维结构的解析及两个临床候选药物的发现】【器官衰老的机制及调控】【新冠肺炎动物模型的构建】【人脑发育关键细胞与调控网络】【发现行为调控抗体免疫的脑-脾神经通路】【进食诱导胆固醇合成的机制及降脂新药靶发现】【提高绿色革命作物品种氮肥利用效率的新机制】【小麦抗赤霉基因Fhb7的克隆、机理解析及育种利用】【抗原受体信号转导机制及其在CAR-T治疗中的应用】一、蝗虫聚群成灾的奥秘:4-乙烯基苯甲醚是蝗虫的群聚信息素蝗灾对农业、经济和环境构成重大威胁。中国科学院动物研究所康乐院士团队鉴定到一种由群居型蝗虫特异性挥发的气味分子4-乙烯基苯甲醚(4VA),并从化学分析、行为验证、神经电生理记录、嗅觉受体鉴定、基因敲除、野外验证等多个层面证明4VA是飞蝗群聚信息素。实验室合成的低剂量4VA能够吸引到大量野生蝗虫种群。该研究不仅揭示了蝗虫群聚成灾的奥秘,还被认为是昆虫学和化学生态学领域的一个重大突破,对世界蝗灾的控制和预测具有重要意义。研究中提出的基于昆虫化学感受操控的4种防治策略被认为是未来害虫绿色防控的新方向。《自然》杂志(Nature)配发编者按和专门评述文章,F1000 Prime评价推荐系统给予最高推荐,世界主要媒体都争相报道了这一重大发现。该成果发表于《自然》杂志(Nature,2020,584:584-588)。飞蝗群居型与散居型蝗蝻(幼虫)二、首个新冠病毒蛋白质三维结构的解析及两个临床候选药物的发现新冠疫情对人类社会造成了巨大影响。解析新冠病毒关键药物靶点的三维结构,揭示药靶的重要特征,开发特效药迫在眉睫。新冠病毒的主蛋白酶在病毒生活周期中起关键调节作用,是一个备受瞩目的药物靶点。上海科技大学等单位组成抗新冠联合攻关团队,在国际上率先解析了新冠病毒关键药靶主蛋白酶与抑制剂复合物的高分辨率三维结构,这也是世界上首个被解析的新冠病毒蛋白质的三维空间结构;阐明了抑制剂精确靶向主蛋白酶的作用机制;发现依布硒和双硫仑等老药或临床药物是靶向主蛋白酶的抗病毒小分子,且二者已被美国FDA批准进入临床II期试验,用于新冠肺炎的治疗。上述成果为抗新冠药物的研发奠定了重要基础。该成果发表于《自然》杂志(Nature,2020,582:289-293)。新冠病毒主蛋白酶(红色)与抑制剂(黄色)的复合物结构三、器官衰老的机制及调控积极应对人口老龄化是我国的重大战略举措,而科学研究衰老是应对老龄化的重要基础。中国科学院动物研究所刘光慧研究组、曲静研究组,中国科学院北京基因组研究所张维绮研究组及北京大学汤富酬研究组合作,系统解析了灵长类动物重要器官衰老的标记物和调控靶标;揭示了老年个体易感新冠病毒的分子机制;在系统生物学水平阐明热量限制通过调节机体免疫炎症通路延缓衰老的新机制;发现基于核心节律蛋白过表达的基因治疗可缓解增龄性小鼠骨关节变性并促进关节软骨再生。这些研究成果加深了人们对器官衰老机制的理解,为建立衰老及相关疾病的早期预警和科学应对策略奠定了重要基础。相关研究成果发表于《细胞》(Cell,2020,180:585-600;Cell,2020,180:984-1001)和《细胞研究》(Cell Research,2020,10:1-18)等杂志。系统解析灵长类动物器官衰老的标记物和调控靶标四、新冠肺炎动物模型的构建在新冠疫情防控中,动物模型是科研攻关五大主攻方向之一,是阐明致病机制和传播途径、筛选药物和评价疫苗的基础研究工作。发现与鉴定对新冠病毒敏感的动物、研制检测动物体内病毒的试剂、使动物准确模拟疾病临床表现,是造模的三个关键难题。中国医学科学院医学实验动物研究所的研究团队与中国疾病预防控制中心病毒病预防控制所、中国医学科学院病原生物学研究所合作,通过比较医学分析,培育了病毒受体高度人源化的动物,建立了模型特异的检测技术,证实了病毒入侵受体,遵循科赫法则证实了致病病原体,揭示了新冠肺炎免疫特征和病理特征,再现了病毒感染、复制、宿主免疫和病理发生过程,系统模拟了新冠肺炎的不同临床特征,在国际上第一个构建了动物模型。应用动物模型,阐明了系列疾病机理,筛选到了系列有效药物,完成了国家部署的80%以上疫苗评价,模型研制方法和标准提供给世界卫生组织(WHO),供国际研究使用。该成果发表于《自然》(Nature,2020 Jul;583:830-833)和《动物模型与实验医学》杂志(Animal Model & Experimental Medicine,2020 Mar 30;3:93-97)。不同年龄恒河猴感染新冠病毒后影像学及病理学改变五、人脑发育关键细胞与调控网络脑是人类智能活动的物质载体,研究发育过程中脑结构功能的建立,将揭示智能形成的细胞和分子机制,同时为相关医学应用提供理论线索与技术方案。中国科学院生物物理研究所王晓群课题组、北京师范大学吴倩课题组和北京大学汤富酬课题组展开合作,通过高通量单细胞组学分析对人类胚胎发育关键期的海马体、下丘脑、大脑皮层多亚区以及视网膜进行了细胞构成图谱及基因调控网络研究,对关键细胞类型的功能发育进行了追踪,揭示了多个脑区发育的关键时间节点与基因,详细绘制了人脑的动态发育蓝图,为相关疾病的诊疗提供了坚实基础。多篇研究成果相继发表在《自然》(Nature, 2020, 577:531-536)、《自然-通讯》(Nature communications,2020,11:4063)等杂志。人脑海马体发育过程中的细胞构成及基因调控网络六、发现行为调控抗体免疫的脑-脾神经通路我们的生活经验暗示,从冥想到体育锻炼等行为可能增强免疫力。然而,大脑活动是否可以直接控制发生在脾脏等淋巴器官内的免疫反应,长久以来并没有严格的实验证据支持。清华大学免疫学研究所祁海课题组、上海科技大学胡霁课题组以及清华大学麦戈文脑科学研究所钟毅课题组通力合作,在小鼠模型里发现,脾脏如果丧失神经支配,疫苗接种后机体就不能正常产生抗体。进一步实验表明,这是因为大脑内被称为中央杏仁核和室旁核的区域有一类CRH神经元与脾神经相连。激活CRH神经元,会增加脾神经活动,进而可以增进疫苗接种产生的抗体;反之,抑制CRH神经元会降低疫苗的效力。进而他们还设计出了一种小鼠的行为范式,可以通过激活这一新发现的脑-脾神经通路来达到增强抗体产生的效果。这些发现,首次建立了大脑活动可以增进抗体产生的一条神经通路,指出了将来利用锻炼、冥想等行为增强疫苗效果、加强人体免疫力的可能。该成果发表于《自然》杂志(Nature,2020,581:204-208)。“勤動”与增强免疫的大脑神经核团与通路 七、进食诱导胆固醇合成的机制及降脂新药靶发现胆固醇是生命活动必不可少的脂质,但太多会引起心脑血管疾病。人在进食碳水化合物时,胆固醇主要靠自身合成获得。合成胆固醇需要消耗很多能量,因此哺乳动物只在进食后才上调合成,饥饿时则抑制,这其中的机制长期不清楚。武汉大学宋保亮实验室在胆固醇领域取得新的突破,该团队发现进食碳水化合物后,血液中升高的葡萄糖和胰岛素促使肝脏中USP20蛋白被磷酸化修饰,USP20稳定胆固醇合成途径限速酶HMGCR,从而上调胆固醇合成。抑制USP20,降低血脂、减肥及增加胰岛素敏感性。该发现不仅揭示了人体的营养感应机制,还证明USP20可以作为新的降脂药物研发靶点。这一研究成果及其应用将惠及全民健康。该成果发表于《自然》杂志(Nature,2020,588:479-484)。进食诱导胆固醇合成的机制八、提高绿色革命作物品种氮肥利用效率的新机制面向国家粮食安全和农业可持续发展的重大战略需求,中国科学院遗传与发育生物学研究所傅向东研究团队在水稻高产和氮高效协同调控机制领域获得重要突破。研究发现了赤霉素信号转导途径新组分NGR5通过介导组蛋白甲基化修饰来调控植物响应土壤氮素水平的变化,同时与生长阻遏因子DELLA蛋白竞争性结合赤霉素受体GID1,实现赤霉素调控植物生长发育。在高产水稻品种中增加NGR5的表达可在减少氮肥的条件下,仍可获得高产。该发现找到了一条既能保证高产提高又能降低氮肥投入、减少环境污染的育种新策略,为培育“少投入、多产出、保护环境”的绿色高产高效新品种奠定了理论基础,在农业生产上有广阔的应用前景,能产生巨大的经济效益和社会效益。该成果以封面论文形式发表于《科学》杂志(Science 367 eaaz2046, 2020)。NGR5协同调控水稻产量和氮肥利用效率的新机制九、小麦抗赤霉基因Fhb7的克隆、机理解析及育种利用镰孢菌引起的小麦赤霉病被称为小麦“癌症”,抗源稀缺,是威胁粮食安全的重大国际性难题。山东农业大学孔令让研究团队历时20年,从小麦近缘属植物长穗偃麦草中首次克隆出主效抗赤霉病基因Fhb7并阐明其功能、抗病机理和水平转移进化机制。同时,利用远缘杂交将Fhb7转移到推广小麦品种中,赤霉病抗性表现稳定,且对产量没有显著负面影响。目前团队选育的多个抗赤霉病小麦新品系已进入国家及省级区域试验或生产试验,并被纳入我国小麦良种联合攻关计划,为解决小麦赤霉病世界性难题提供了“金钥匙”。另外,Fhb7对镰孢菌分泌的单端孢霉稀族毒素的广谱解毒功能,有望应用于其他作物抗镰孢菌病害的遗传改良,以及解决粮食和饲料中的霉菌毒素污染问题。该成果发表于《科学》杂志(Science,2020,368:eaba5435)。镰孢菌(Fusarium)侵染小麦籽粒后导致减产毁质十、抗原受体信号转导机制及其在CAR-T治疗中的应用CAR-T细胞治疗已经成功地应用于肿瘤的临床治疗,但面临细胞因子释放综合症和细胞持续性低等挑战。CAR的信号元件来自抗原受体TCR的CD3ζ链以及共刺激分子如CD28。目前对CAR的改造主要集中在共刺激信号元件,而忽视了抗原信号元件。中国科学院上海生物化学与细胞生物学研究所许琛琦研究组、北京大学医学部黄超兰研究组和美国加州大学圣地亚哥分校惠恩夫研究组合作,通过定量质谱和生化方法发现TCR的CD3ζ链具有特殊的信号转导功能,可以同时招募抑制性分子Csk和活化性分子PI3K。将CD3ζ胞内区加入临床使用的CAR序列中,可使得CAR-T细胞持续性更好,抗肿瘤功能更强,并且细胞因子释放综合症的风险降低。该成果发表于《细胞》杂志(Cell,2020,182:855-871)嵌合性抗原受体(CAR)的信号原件改造中国科协生命科学学会联合体自2015年起开展年度“中国生命科学十大进展”评选工作,旨在推动生命科学研究和技术创新,充分展示和宣传我国生命科学领域的重大科技成果。目前评选活动已连续开展6个年度。每年公布评选结果后,邀请入选项目专家编写和出版科普书籍,并举办交流会暨面向青少年的科普报告会,向公众揭示生命科学的新奥秘,为生命科学新技术的开发、医学新突破和生物经济的发展提供新的思路,极大提高了生命科学的社会影响力。本年度的评选,联合体成员学会推荐的项目较往年数量明显增加,体现了“中国生命科学十大进展”评选日臻完善,社会影响力与关注度不断扩大;获奖项目中非院士主导项目所占比例较往年大,体现了我国生命科学研究领域后备力量强大。更为显著的是,本次入选项目具有原创性突出、社会意义重大的特点,其中知识创新类项目“蝗虫聚群成灾的奥秘:4-乙烯基苯甲醚是蝗虫的群聚信息素”,在全球范围内首次揭示了蝗虫群聚成灾的奥秘,对世界蝗灾的控制和预测,解决世界粮食问题具有重要意义。知识创新类项目“首个新冠病毒蛋白质三维结构的解析及两个临床候选药物的发现”和技术创新类项目“新冠肺炎动物模型的构建”对解决当前全球面临的新冠肺炎疫情有重大意义。技术创新类项目“小麦抗赤霉基因Fhb7的克隆、机理解析及育种利用”和知识创新类项目“进食诱导胆固醇合成的机制及降脂新药靶发现”聚焦国计民生和全民健康等热点问题。
  • 科研人员研发出4套基于CRISPR/Cas系统的病原体核酸检测工具
    近日,中国农业科学院作物科学研究所作物分子育种技术和应用创新团队鉴定了RfxCas13d靶向RNA引发“反式切割”活性的基本特征,研制出基于RfxCas13d、LwaCas13a、LbCas12a与AsCas12a的多套核酸检测工具,并研发出田间实时可视化灵敏定性定量检测方法,为动植物病原体检测提供了高效、低成本的开发途径,具有广阔的技术开发场景与应用价值。相关研究结果在线发表在《中国科学:生命科学(Science China-Life Sciences)》上。 据谢传晓研究员介绍,植物真菌性病害、细菌性病害及病毒性病害严重危害作物生产与品质安全,如禾谷镰孢菌和拟轮枝镰孢菌是玉米穗粒腐、茎腐病、小麦赤霉病的罪魁祸首;水稻黑条矮缩病毒则通过灰飞虱在水稻、小麦和玉米宿主之间迁移传播,严重威胁水稻、小麦和玉米生产。建立快速、准确、灵敏及便携的病原体诊断技术,可为病害的早期预警与绿色防控提供重要依据。   针对以上植物病害病原体,团队成员研制了多套基于CRISPR-Cas12a和CRISPR-Cas13系统“反式切割”活性的病原体核酸诊断技术。通过优化样本处理方法,可实现田间实际样本粗提物稀释液的灵敏检测,且可利用小型手持式荧光仪或试纸条进行田间现场定性读取结果。此外,以禾谷镰孢与拟轮枝镰孢菌复合侵染为样本,建立了基于Cas12/Cas13联合应用的复合检测,实现了一个检测能诊断判读多种病原,进一步拓展了检测工具的应用场景与潜力。此外,该系列检测方法还可应用于食品安全质量检验、动植物检疫、转基因检测、动植物群体的基因分型与基因表达检测等,具有重要的应用价值。   该研究得到国家自然科学基金和中国农科院科技创新工程等项目资助。
  • Nature & Science论文年度盘点,这些高校发文最多
    在过去的2020年,Nature和Science(后文简写为N&S)两期刊总计刊出原创论文(类型为Article的论文)1702篇,相比2019年增加了102篇。中国内地高校作为通讯作者单位(含共同通讯作者单位)共发表N&S原创论文166篇,占比为9.8%,两项数据均再创历史新高(统计数据来自Nature和Science期刊官网,仅包含已经刊出的期刊;部分已经接收或在线发表,但尚未刊出的期刊,会在后续统计中计入其刊出日期的月份内)。近5年中国内地高校N&S发文数变化首轮“双一流”建设期内,内地高校的单年度N&S发文数增幅均保持在15篇以上,5年间的年度发文数从61篇增加至166篇,增幅高达172%;内地高校作为通讯作者单位发文的比例也从不足4%提升至近10%,尽管这一比例与美国高校(超过40%)仍存在极大差距,但已接近英国、德国两国高校,稳居全球第二集团。此外,相较于其他年份,2020年内地高校的N&S发文占比增长速度已初步呈现出放缓趋势,未来要保持快速增长势必需要投入更大的精力。2020年,西湖大学、山东农业大学和电子科技大学3所内地高校的研究成果荣登N&S封面:3月27日,西湖大学周强团队首次成功解析了新冠病毒的人类受体ACE2的全长三维结构,对研发精准的新冠肺炎诊断、治疗手段起到关键作用,此文章也是新冠疫情爆发以来全球首篇有关新冠病毒的N&S封面论文。5月22日,山东农业大学孔令让团队成功克隆了小麦抗赤霉病基因Fhb7,揭示了其抗病遗传及分子机制,为解决小麦赤霉病世界性难题找到了“金钥匙”。6月3日,电子科技大学邓旭团队成为设计出兼具疏水性和机械稳定性的微结构铠甲,为超疏水表面进入广泛实际应用提供了广阔前景。2020年中国内地高校三登N&S封面(图源:Nature、Science期刊官网)这些高光成果的不断涌现,足见除了绝对数量的快速增长,内地高校顶尖论文的影响力也在不断提升。从发表文章的学科归属来看,2020年内地高校的N&S发文覆盖了18个学科,有半数文章来自于生命科学领域,尤其以分子生物学的蛋白质结构解析方向最为热门。材料科学则是仅次于生命科学的另一重要研究领域,这一领域研究水平的快速提升也是内地高校N&S发文增加的主要推动力。2019年,内地高校发表的全部N&S论文中,仅有不到10%来自于材料科学,而到2020年,这一比例接近翻番提升至近20%。物理学方向的发文数量也达到了18篇,尤其以中国科学技术大学潘建伟院士团队的有关量子计算机的5篇研究文章最为耀眼。2020年12月18日,潘建伟团队的文章“Quantum computationaladvantage using photons”在Science刊出。该研究构建了76个光子的量子计算原型机“九章”,在计算玻色采样问题时,速度比目前最快的超级计算机快一百万亿倍,比谷歌发布的53个超导比特量子计算原型机“悬铃木”快一百亿倍。这是我国首次实现“量子霸权”,是量子计算领域的一个重要里程碑。此外,内地高校在化学、电子科学、地质学、天文学等学科也有不俗的发文表现。2020年潘建伟团队量子计算机相关研究成果一览分高校来看,今年内地共有63所高校作为通讯作者单位在N&S发表至少一篇文章,相较去年增加了10所。去年表现优异的高校今年依然维持强势,中国科学院大学、清华大学两所高校的发文数均超过20篇,位列前两位。北京大学、复旦大学分别以18篇、17篇的发文数居第3、第4位。上海科技大学和南方科技大学两所“明星双非”高校突出众多双一流高校的重围,跻身前10名的行列。2019年,上海科技大学作为通讯作者单位发表N&S论文6篇,在内地高校中排名第8位;2020年上海科技大学的发文数量增加超过一倍,达到了13篇,成为发文数进步最大的内地高校。南方科技大学的发文数较去年也增长了一倍。作为国际上最为知名的两大综合性学术期刊,Nature和Science旨在发表原创性强、观点新颖、影响广泛,并且对整个科学发展具有推动作用的突破性发现。自十九世纪创刊以来,两大期刊已经发表了摩尔根的“果蝇实验”、引力透镜效应、DNA双螺旋结构、南极臭氧空洞等诸多具有划时代意义的科研成果。由于竞争激烈,所有投稿至这两大期刊的原创文章中仅有不足8%被接收和发表。因此N&S发表的论文一定程度上代表着学科领域内的最高水平,而N&S发文数也是比较国家和机构科研产出质量的重要指标之一。内地高校N&S的发文数量和质量提升,从侧面反映了内地高校基础研究实力的增强。但同时也应意识到,在重要理论创新方面,我们与欧美强国之间仍有明显差距。如何克服急功近利的心态,追求“质”而非“量”,完成从“跟风者”向“引领者”的角色转变,仍然任重而道远。
  • “食品安全关键技术研究”两课题通过验收
    2009年7月24日,由湖南出入境检验检疫局检验检疫技术中心牵头,中国检验检疫科学研究院、中国科学院生态环境研究中心、中国科学院大连化学物理研究所、天津市检验检疫科学技术研究院、江南大学等单位参与承担的“十一五”国家科技支撑计划“食品安全关键技术”重大项目“食品包装材料检测与安全性评价技术研究”与“残留标示物高通量表征关键技术研究”课题顺利通过国家科技部现场评审验收。   通过课题实施,获得了一批科研成果。“食品包装材料检测与安全性评价技术研究”课题进行了PFOA和PFOS等动物毒理学试验,对食品新型包装材料和改性包装材料进行了安全性评价 建立了食品包装材料中酞酸酯、烷基酚、氟化有机物、氯化有机物、脂肪酸酰胺类、有机锡等有害物质的色谱和间接ELISA检测方法 提出了食品包装材料中20种重要有毒有害物质的安全限量值建议。 “残留标示物高通量表征关键技术研究”课题集成多柱、多模式分离与色质联用技术,建立了代谢组学高通量表征技术平台,实现了从依赖生物NMR谱图表征技术向色-质高通量表征技术的过渡,弥补NMR 的动态范围有限、难以同时测定生物体系中共存的浓度相差较大的代谢产物等缺陷 开发了界面友好、操作简便、功能强大的色谱峰匹配软件和全二维谱图对比软件 阐明模式毒物-镰刀菌毒素与植物交互作用的代谢产物通路,筛选、分离对小麦赤霉病菌和镰刀菌具有高度特异性及亲和力的抗体-抗真菌蛋白融合蛋白基因3个,获得转基因小麦株系9个,筛选获得抗镰刀菌株系4个 发现玉米赤霉烯醇在动物体内代谢的残留标示物1个。课题共获得发明专利1项,申报发明专利15项、实用新型专利2项,提出国家标准草案9项,申请计算机软件著作权2项,出版专著1部,发表论文29篇。课题获得的研究成果实用性强,将为我国食品安全控制提供技术保障。   本次课题验收评审会由中国生物技术发展中心组织召开,来自食品安全、疾病预防与控制、分析检测、财务审计等领域的11位专家,组成了以中国疾病预防控制中心陈君石院士为组长的专家组,对课题进行了现场评审验收。国家科技部社发司闫金副司长、中国生物技术发展中心贾丰副主任以及卫生部科教司、国家质检总局科技司和农业部科教司相关领导出席了会议。湖南省科技厅罗亚军副厅长及社发处、奖励办负责人等参加了会议。
  • 十一五期间国家科技支撑计划“食品安全关键技术”项目汇总
    “十一五”期间(2006-2010年),国家科技支撑计划重大项目“食品安全关键技术”课题共资助28个项目,其中与分析测试相关的课题20个(请参见下表)。截至本文发稿之日,这20个课题中共有9个已通过相关部门验收(本文根据已公布信息整理而成,如某课题已通过验收,但未对外公布,则不在本文统计之列)。 表1 “食品安全关键技术”资助课题情况 课题 编号 项目/课题名称 课题牵头承担单位 课题负责人 资助金额(万) 是否验收 验收时间 1 化学污染物暴露评估技术研究 中国疾病预防控制中心营养与食品安全所 吴永宁 已验收 2009.12 2 农药及内分泌干扰物的复合效应评估技术 中国人民解放军军事医学科学院 彭双清 3 抗生素残留引起细菌耐药性安全评价技术研究 中国农业大学 沈建忠 4 食品中农药残留风险评估技术研究 农业部农药检定所 王运浩 5 食品添加剂安全性评价研究 中国疾病预防控制中心营养与食品安全所 王竹天 180 已验收 2009.11 6 食品包装材料检测与安全性评价技术研究 天津市检验检疫科学技术研究院 王利兵 已验收 2009.7.24 7 食品新资源与功能食品的安全利用 中国疾病预防控制中心营养与食品安全所 李 宁 8 农药与兽药残留确证检测技术研究 中国检验检疫科学研究院 储晓刚 已验收 2009.11 9 化学残留物检测技术及相关产品的开发 军事医学科学院 高志贤 10 持久性有毒污染物检测技术研究 中国疾病预防控制中心营养与食品安全所 赵云峰 已验收 2009.11 11 食品中有害残留集成检测设备的研究 中国检验检疫科学研究院 陈志锋 12 残留标示物高通量表征关键技术研究 湖南出入境检验检疫局检验检疫技术中心 黄志强 已验收 2009.7.24 13 食品中微生物高通量检测试剂盒的研制 辽宁出入境检验检疫局 曹际娟 已验收 2008.10.13 14 食品中病原生物芯片检测技术及设备的研究开发 北京出入境检验检疫局 汪琳 15 细菌性食源性疾病溯源与预警技术研究 中国疾病预防控制中心营养与食品安全所 刘秀梅 16 食品污染溯源技术研究 中国农业科学院农产品加工研究所 魏益民 已验收 2009.6.28 18 粮油、蔬果等安全控制技术研究 浙江大学 朱 诚 19 动物产品兽药残留安全控制技术研究 四川大学 王红宁 20 重要食品安全标准的研究与制定 卫生部卫生监督中心 张志强 27 重大活动中食品安全保障技术研究及示范 北京市疾病预防控制中心 邵 兵 已验收 2009.6   备注:1. 课题是否验收情况截至本文发稿之日 2. 本表根据已公布的信息整理而成,如某课题已通过验收,但未对外公布,则不在统计之列 3. 本表仅列举仅列举“食品安全关键技术”项目中分析测试相关课题情况。 以下是部分课题情况:   课题1:化学污染物暴露评估技术研究   该课题根据第4次中国总膳食研究,按12个省获得铅、镉等重金属污染物和氯丙醇、丙烯酰胺、二恶英的膳食暴露的点评估国家数据,通过国家环境保护部向联合国提交了我国履行持久性有机污染物公约成效评估的基础数据。   该课题建立了膳食暴露评估用的食物消费量数据库和全国食品污染物监测数据库,以CAC编码系统与代码为基础,建立了中国食品的分类和编码系统,补充完善了CAC编码系统中加工食品编码的不足使之适合于中国的食品分类,在中国食品编码与国际接轨方面做了开创性的工作,建立了膳食暴露评估用的食物消费量数据库和全国食品污染物监测数据库。……【详细】   课题5:食品添加剂安全性评价研究   该课题以食品添加剂的风险评估作为切入点,与国家的实际工作紧密结合,重点在添加剂管理所需的各项基础性研究内容上,在食品添加剂、营养强化剂的新品种审批和安全性评价、食品添加剂相关标准管理工作中逐步探讨科学合理的评价原则和模式,编制了我国食品添加剂的风险评估指南,并建立了食品添加剂毒理学资料数据库。   在添加剂的安全性评价、效果评价、使用管理、质量规格、检测方法等方面都取得了很大的进步,极大推动了我国食品添加剂生产应用和管理水平的提高。……【详细】   课题6:食品包装材料检测与安全性评价技术研究   该课题进行了PFOA和PFOS等动物毒理学试验,对食品新型包装材料和改性包装材料进行了安全性评价 建立了食品包装材料中酞酸酯、烷基酚、氟化有机物、氯化有机物、脂肪酸酰胺类、有机锡等有害物质的色谱和间接ELISA检测方法 提出了食品包装材料中20种重要有毒有害物质的安全限量值建议。……【详细】   课题8:农药与兽药残留确证检测技术研究   该课题在大量农兽药及其代谢物残留分析实践和理论研究的基础上,应用先进设备处理样品和精准的检测手段,达到痕量级和超痕量级农兽药残留确证检测水准 该课题还在样品净化处理、检测质量控制、残留设备研发及应用方面取得进展,首次成功研制了一台集食品样品均质、过滤、氮吹浓缩、定容、凝胶渗透和固相萃取、浓缩等功能于一体的自动化、高通量样品前处理设备,该系统能够一次性连续处理样品16个,处于国际领先水平。……【详细】   课题10:持久性有毒污染物检测技术研究   该课题建立的食品中溴代二噁英(PBDD/Fs)的高分辨气相色谱-高分辨质谱法以及海产品中砷元素形态和汞元素形态的液相色谱-原子荧光光谱法等方法,在检测限、准确度、精密度等技术指标方面满足国内外该领域分析技术要求。   课题组研发的AF-610D原子荧光光谱仪、AF-610D2色谱-原子荧光光谱联用仪具备元素形态和总量测定的功能,其各项性能指标达到了国际领先水平。该产品的研制成功,将为我国卫生等有关部门开展砷、汞、硒等金属元素形态及砷、汞、硒、铅、镉等11种元素总量测定提供可靠的技术手段。目前该设备已进行产业化转化,形成了商业仪器。……【详细】   课题12:残留标示物高通量表征关键技术研究   该课题研究集成多柱、多模式分离与色质联用技术,建立了代谢组学高通量表征技术平台,实现了从依赖生物NMR谱图表征技术向色-质高通量表征技术的过渡,弥补NMR 的动态范围有限、难以同时测定生物体系中共存的浓度相差较大的代谢产物等缺陷 开发了界面友好、操作简便、功能强大的色谱峰匹配软件和全二维谱图对比软件 阐明模式毒物-镰刀菌毒素与植物交互作用的代谢产物通路,筛选、分离对小麦赤霉病菌和镰刀菌具有高度特异性及亲和力的抗体-抗真菌蛋白融合蛋白基因3个,获得转基因小麦株系9个,筛选获得抗镰刀菌株系4个 发现玉米赤霉烯醇在动物体内代谢的残留标示物1个。……【详细】   课题13:食品中微生物高通量检测试剂盒的研制   该课题研制出了ATP生物发光法微生物快速检测试剂盒,解决了食品微生物从多目标菌一次复合增菌、一次提取核酸、多目标菌一次同时检测的高通量快速检测技术难题,在食品微生物检测的节能、节时、节力三方面取得了突破性进展,打破了以往实验室检测试剂被国外公司“牵着鼻子走”的垄断现象,节约了30%的检测成本,缩短了30%的检测周期。……【详细】   课题16:食品污染溯源技术研究   课题组利用统计分析和信息技术,结合溯源对象的产业链过程分析,建立了一套完整的、富有特色的和具有知识产权的食用农产品及污染物溯源技术体系。   通过该技术课题的实施,在食用农产品产地溯源研究方面,建立了牛羊肉的同位素指纹、矿物元素指纹溯源技术和溯源数据库,以及茶叶产地的近红外光谱指纹溯源技术 在大型动物个体溯源方面,建立了牛、羊、猪个体虹膜识别与溯源技术以及猪个体的DNA指纹识别与溯源技术 在电子标签溯源方面,建立了包括食品分类技术、食品代码技术、条码技术、计算机技术、电子标签技术、网络技术为一体的食用农产品全程电子标签溯源技术体系,并在上述技术开发的基础上,建立了包括原产地溯源、污染物溯源、大型动物个体溯源和电子标签溯源的食品污染溯源系统与查询平台。……【详细】   课题27:重大活动中食品安全保障技术研究及示范   通过该课题的实施,建立了能与国际接轨的食源性“兴奋剂”检测技术 形成了一批能用于现场快速检测的检测试剂并组装成食品安全快速检测箱,在北京奥运会、青岛奥帆赛和汶川地震灾区得到了应用 开发出首都食品安全监控系统和进口食品安全电子预警系统,并在奥运保障和日常食品安全监管中发挥了重要作用。通过奥运会的成功示范应用,建立和完善了卫生监测、快速检测、远程在线监控等科学技术为支撑的八大监管手段。……【详细】   (本文根据网络媒体相关信息整理而成,可能存在某些遗漏或不妥之处,请读者批评指正,邮箱:yangdd#instrument.com.cn (发送邮件时请将#换成@))
  • “十四五”全国农药产业将建一批重点实验室 配备仪器设备
    农药是重要的生产资料,广泛用于农业、林业、卫生等领域控制有害生物,为保障粮食安全、农产品质量安全、生态环境安全发挥重要作用。为推进农药产业高质量发展,农业农村部会同国家发展改革委、科技部、工业和信息化部、生态环境部、市场监管总局、国家粮食和物资储备局、国家林草局制定了《“十四五”全国农药产业发展规划》(以下简称《规划》),提出将建设一批农药创新工程中心、部级农药应用创新重点实验室;推动校企共建协同创新实验室(基地),提升我国农药产业原始创新、协同创新和集成创新能力;分区建设一批农药安全风险监测点,配套完善相关设施设备;全面推进农药标准体系建设,以农药评价、产品质量、安全使用、残留限量、环境风险为重点,加强技术标准研制。强化标准引领,鼓励行业协会制定团体标准,健全农药标准体系。《“十四五”全国农药产业发展规划》农药是重要的农业生产资料,广泛用于农业、林业、卫生等领域控制有害生物,为保障粮食安全、农产品质量安全、生态环境安全发挥重要作用。“十四五”时期,是全面推进乡村振兴、加快农业农村现代化的关键五年,是促进农药产业转型升级、实现农业高质量发展的重要五年。依据《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“十四五”推进农业农村现代化规划》,特制定本规划。第一章 规划背景第一节 发展现状经过70年的发展,我国农药产业从无到有、从小到大、从弱到强,取得了长足发展,已成为农药生产、使用、出口大国。“十三五”期间,我国农药产业发展成效显著,农药创制能力不断增强,产品结构明显优化,在保供给、保安全、保生态方面发挥了不可替代的作用。生产能力不断增强。经过多年的发展,逐步形成农药原药、制剂、中间体等全链条生产体系。2020年全国农药生产企业1705家,其中规模以上企业693家,全国农药总产量170.5万吨(折百,下同),产值近3000亿元,利税超过200亿元,从业人员100万余人。农药产品满足国内需求的同时,还出口到188个国家和地区,2020年出口量126.9万吨,出口额117亿美元。我国有11家企业进入全球农药行业20强,综合实力和国际竞争力逐步增强。品种产品结构逐步优化。2020年全国农药品种数量714个,比2010年增加97个。目前生产中使用的高毒剧毒化学农药(不含杀鼠剂)品种10个,比2010年减少13个,使用量占比由5%降到1%以下。截至2020年底,农药登记产品总数41885个,比2010年增加12688个。其中,登记的杀虫剂占比由53.2%降到43.5%,杀菌剂、除草剂、植物生长调节剂由21.9%、21.1%和2.1%分别提高到26.0%、26.7%和2.8%。经营使用逐步规范。农药经营门店布局趋于合理,质量追溯体系初步建立,限用农药定点经营和购销台账管理全面推行。截至2020年底,全国农药经营单位32.5万家,其中23.3万家纳入农药监管信息平台。开展“双随机一公开”监督抽查,农药质量合格率逐年提高。“十三五”时期,农药抽检合格率由84.2%提高到96.2%。农药科学安全使用水平逐步提高,蔬菜水果茶叶等农产品农药残留抽检合格率稳定在97%以上。研发创新取得新进展。目前我国农药基本形成仿制与自主创新相结合的格局,改变了过去进口与仿制为主的局面。化学合成、生物发酵等新工艺、新技术取得突破,研发创制了毒氟磷、乙唑螨腈、环吡氟草酮、双唑草酮等50多种具有自主知识产权的新农药,现有的农药品种90%以上实现国产化。第二节 面临挑战“十四五”期间农业绿色发展、生态文明建设对农药产业发展提出了新要求,农药产业存在一些薄弱环节和明显短板,持续推进农药产业绿色高质量发展还面临着一些问题和挑战。生产企业小而散,淘汰落后产能任务重。我国农药企业多、规模小,产业集中度低,一半以上的企业没有进入化工园区,规模以下企业数量占60%,部分企业处于环保敏感区域。淘汰高污染高能耗产能任务重,部分企业从东部向中西部迁移,给当地生态环境带来不确定性风险。品种结构老化,更新换代任务重。现有登记农药品种中,登记使用15年以上的占70%左右,农药产品同质化严重、抗药性上升、药效降低、用药量增加,残留和环境风险加大,亟需加快农药更新换代,淘汰高毒高风险农药。创新能力薄弱,转型升级任务重。农药源头创新、核心工艺、关键中间体合成技术等与发达国家存在较大差距,农药创新投入不足,缺乏持续性的研发创新平台和机制,原始创新能力与农药生产大国地位不匹配。能耗双控、生态环境保护、安全生产等给农药产业发展提出了新要求,转型升级压力大。支撑能力不足,农药监管任务重。多年来农药行业管理人员队伍、设施设备等支撑能力不足,监管体制机制不顺。“十三五”期间建设了10个省级农药风险监测中心,与实际需求差距较大,多数省份和重点县缺乏必要的检验检测和信息化管理条件。第三节 发展机遇“十四五”时期,全面推进乡村振兴,加快农业农村现代化,农药产业在保障粮食等重要农产品有效供给和农业绿色发展的支撑作用越来越突出,任务越来越繁重。确保国家粮食安全需要农药稳定供给。“十四五”时期草地贪夜蛾、水稻“两迁”害虫、小麦条锈病和赤霉病等重大病虫害呈多发重发态势,防控任务重,需要持续稳定的农药生产供应。加之林草、卫生等领域需求增加,农药市场空间进一步扩大。绿色发展推动农药产业转型升级。进入新发展阶段,人民对美好生活的向往需要提供安全多样的农产品,对农药产业绿色高质量发展提出了更高要求,为转型升级带来了外部动力。营商环境优化助力企业做大做强。深入推进“放管服”改革,知识产权保护力度持续增强,市场化法治化营商环境利于激发企业市场活力和发展内生动力,加快自主创新,推进兼并重组,提高市场竞争力。高水平对外开放促进企业“走出去”。以国内大循环为主体、国内国际双循环相互促进的新发展格局日趋明显,共建“一带一路”和国际合作的深入推进,为我国农药企业开拓国际市场,促进优势产品出口,开展服务贸易,扩大产业境外布局提供了良好发展机遇。综上所述,“十四五”时期是加快农药产业转型升级的战略机遇期,必须加强前瞻性思考和系统性谋划,立足农业绿色发展和重大病虫防控需要,创新思路、完善政策、强化支撑,着力构建现代农药产业体系,不断提高农药国内供给能力和国际竞争力。第二章 总体要求第一节 指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届历次全会精神,立足新发展阶段、贯彻新发展理念、构建新发展格局、推动高质量发展,坚持节约资源和保护环境的基本国策,以构建绿色低碳发展的现代农药产业体系为重点,加强顶层设计,优化产业布局,调整产品结构,完善政策扶持,强化科技创新,补齐发展短板,推进农药产业转型升级,不断提高农药产业质量效益和市场竞争力,为确保粮食安全、农产品质量安全和生态环境安全提供有力支撑。第二节 基本原则——坚持安全发展。统筹发展和安全,严把市场准入关,强化市场监管,推进科学安全用药,保障农业生产安全、农产品质量安全和生态环境安全。督促农药生产、经营、使用者落实安全生产主体责任,提高安全生产水平。——坚持绿色发展。把绿色发展理念贯穿农药产业发展各环节,支持生物农药等绿色农药研发登记,推广绿色生产技术,推进减量增效使用和包装废弃物回收处置,形成资源节约、环境友好的农药生产方式和使用模式。——坚持高质量发展。优化生产布局,开发推广高效低毒农药替代高毒高风险农药,推进绿色化、智能化、连续化生产,着力打造农药产业升级版,培育大企业,创响大品牌。——坚持创新发展。加强科技创新,创制新农药、开发新工艺、应用新技术。推进管理体制机制创新,搭建数字化管理平台,全面推行行政审批网上便民化服务,完善质量安全追溯体系。第三节 发展目标到2025年,农药产业体系更趋完善,产业结构更趋合理,对农业生产的支撑作用持续增强,绿色发展和高质量发展水平不断提升。——生产集约化。推进农药生产企业兼并重组、转型升级、做大做强,培育一批竞争力强的大中型生产企业。到2025年,着力培育10家产值超50亿元企业、50家超10亿元企业、100家超5亿元企业,园区内农药生产企业产值提高10个百分点。——经营规范化。重点在粮食、蔬菜、水果、茶叶优势产区,打造农药标准化经营服务门店1万家,大力推行开方卖药、台账记录、追溯管理等规范化经营服务。到2025年,力争50%的农药经营门店实行标准化经营服务。——使用专业化。加强农药科学安全使用技术普及,大力推广生物防治、理化诱控、科学用药等绿色防控技术,着力发展专业化统防统治服务,不断提高农药利用效率。到2025年,三大粮食作物统防统治覆盖率达到45%,持续推进化学农药减量使用。——管理现代化。构建国家农药数字监管平台,完善信息化、智能化监管服务。健全管理制度,改善工作手段,形成上下一体、运行高效、支撑有力的现代化管理体系,全面提升农药监管服务能力和水平。专栏 1 “十四五”农药产业发展主要指标主要指标2020年2025年指标属性生产企业数量(个)17052500预期性农药经营单位(万家)32.530指导性农药产品登记数量(个)41885170.5生产领域24.822“十四五”时期,围绕农药产业发展的新目标,着力构建现代农药生产体系、经营服务体系、安全使用体系、监督管理体系、研发创新体系。第一节 构建现代农药生产体系(一)优化生产布局。根据国家级、省级化工园区(工业园区)总体布局,引导农药企业入驻符合产业定位、依法依规开展规划环评的合规园区,发挥园区区位优势和产业链优势,促进产业做优做强,加大退出高风险、高污染产能的力度,控制过剩产能。东部沿海地区,稳定化工园区农药发展,适度扩大优势园区规模,重点发展化学农药创制生产,淘汰落后产能。中西部地区,强化对入园农药项目的综合评估,严把生产许可关。优先发展生物农药产业和化学农药制剂加工,适度发展化学农药原药企业。在长江经济带、黄河流域、重点江河湖泊等环境敏感区,从严控制农药生产项目建设。专栏 2 发展农药产能重点园区(31个)华东江苏新沂市化工产业集聚区、如东县洋口化学工业园、淮安工业园区;安徽(淮北)新型煤化工合成材料基地;江西乐平工业园区、新干盐化工业城、永修云山经济开发区星火工业园;山东潍坊滨海化工产业园、商河化工产业园、汶上化工园区。(10个)华北河北石家庄循环化工园区、石家庄经济技术开发区赵县经济开发区东区(赵县生物产业园);内蒙古阿拉善高新技术产业开发区、乌海高新技术产业开发区乌达产业园。(4个)华中河南驻马店市高新技术开发区化工产业园(驻马店市产业集聚区);湖北荆门化工循环产业园、宜都化工园。(3个)华南广东韶关南雄高新技术产业开发区;广西贵港市覃塘区新材料科技园。(2个)东北辽宁葫芦岛经济开发区化工园区、阜新氟产业开发区;吉林化学工业循环经济示范园区、吉林经济技术开发区;黑龙江安达经济开发区、佳木斯市高新技术产业开发区。(6个)西北陕西榆神工业区清水工业园、蒲城县高新技术产业开发区;甘肃玉门经济开发区(玉门东建材化工工业园)、金昌市河西堡化工循环经济产业园;新疆生产建设兵团第七师胡杨河经济技术开发区。(5个)西南四川广安新桥工业园区。(1个)(二)提高产业集中度。根据资源禀赋、交通物流、科技发展等生产要素条件,坚持市场导向、创新驱动、政策扶持,着力打造一批农药产业集群,提高生产集约化水平。依托东部和环渤海地区先进技术和人才优势,培育一批高技术、高附加值的创新型、出口型企业。针对中西部生态要求和产业现状,重点培育一批生物农药优势企业和绿色农药制剂加工企业。鼓励企业兼并重组,全链条生产布局,推进农药企业集团化、品牌化、国际化发展,逐步改变农药企业多小散的格局。(三)调整产品结构。面向重大病虫防控和农药减量化要求,对标《产业结构调整指导目录》和《环境保护综合名录》最新要求,支持发展高效低风险新型化学农药,大力发展生物农药,逐步淘汰退出抗性强、药效差、风险高的老旧农药品种和剂型,严格管控具有环境持久性、生物累积性等特性的高毒高风险农药及助剂。充分利用新工艺、新技术,大力发展水基化、纳米化、超低容量、缓释等制剂,适应大中型施药器械和多元化用药需求。严格控制粉剂和有毒有害助剂的加工使用,逐步实现农药剂型的高效化、绿色化、无害化。专栏 3 农药产业发展指南优先发展生物农药:微生物农药(白僵菌、绿僵菌、枯草芽孢杆菌等)、农用抗生素(多杀霉素、春雷霉素等)、生物生化农药(性诱剂、植物诱抗剂等)、RNA及小肽类生物农药。化学农药:重点面向解决水稻螟虫、稻飞虱、小麦赤霉病、蔬菜小菜蛾、蓟马、烟粉虱、松材线虫病等重大病虫害防治品种偏少和抗药性替代等需求,加快发展第四代烟碱类、双酰胺类、小分子仿生类杀虫剂及新型高效低风险杀菌剂、除草剂等。适度发展杀虫剂:敌百虫、乐果、毒死蜱、三唑磷、吡虫啉、阿维菌素、氟虫腈、丁硫克百威、氟苯虫酰胺、氰戊菊酯、乙酰甲胺磷、啶虫脒、噻虫嗪、杀虫双等。杀菌剂:多菌灵、百菌清、福美双、福美锌、三唑醇、丙环唑、代森锰锌、石硫合剂、异菌脲等。除草剂:草甘膦、乙草胺、莠去津、丁草胺、2,4-滴、2甲4氯、莠灭净、麦草畏、甲草胺、敌草快、草铵膦、烯草酮等。植物生长调节剂:多效唑、复硝酚钠、丁酰肼等。杀鼠剂:敌鼠钠、敌鼠酮、杀鼠灵、杀鼠醚、溴敌隆、溴鼠灵、肉毒素等。逐步退出甲拌磷、甲基异柳磷、灭线磷、水胺硫磷、涕灭威、克百威、灭多威、氧乐果、磷化铝、氯化苦;禁止壬基酚用于农药助剂。(四)推行绿色清洁生产。按照生态优先、绿色低碳原则,鼓励企业加强技术创新和工艺改造,淘汰落后生产技术和工艺设备,促进农药生产清洁化、低碳化、循环化发展。大力推广微通道反应、高效催化、反应精馏成套技术,优化工艺设计和生产流程,鼓励设备更新,推动实现生产过程自动化、连续化、智能化,减少污染物及温室气体排放,降低能耗。建立健全农药绿色标准体系,完善生产管理制度,提升农药产品质量,加大污染治理力度,推动现有环境问题整改,促进农药绿色高质量发展。专栏 4 绿色生产技术1. 成套清洁生产技术开发。针对重大病虫草害、突发性病虫害、特色作物病虫害的防治需求,选择具有代表性的农药原药品种,研究开发一批农药清洁生产成套技术。2. 绿色生产技术。研究开发定向转化/拆分技术、高效“三废”治理技术、农药副产物资源化无害化技术、有毒有害物质(溶剂)替代技术、酶催化、反应精馏成套技术等,提高农药行业清洁生产技术支撑水平。3. 连续化生产技术。针对农药行业的硝化、氯化、氧化、加氢等危险工艺过程,研究开发和应用微通道反应等新型反应器装备及连续流工艺技术,提升反应过程安全性、提高收率、降本增效,实现生产过程清洁化、精准化、绿色化。4.制剂加工智能化。研究开发高效环保加工的共性关键技术,鼓励企业紧扣关键工序智能化、关键岗位机器人替代、生产过程智能优化控制、供应链优化,建设农药制剂加工的智能工厂/数字化车间。第二节 规范农药经营服务体系(一)优化经营网点布局。按照农药风险管控和供应便民的要求,分区域分层级优化农药批发市场和零售网点布局,严格控制限制使用农药经营网点数量,在农产品优势产区和产粮大县合理布局农药经营门店数量,满足病虫草鼠害防治需求。完善农药供应链条,在农药需求量大、交通物流便捷地区布局一批农药批发市场。大力发展农药经营社会化服务,促进农药经营由单纯的分散卖药行为向规模化、专业化和社会化的技物结合服务转变。到2025年,农药经营单位数量不超过30万家,限制使用农药定点经营门店数量控制在1.5万家以内,农药经营使用一体化企业达到2000家。(二)规范互联网农药经营。建立多部门协作配合的互联网经营农药监督管理体系,依法落实农药互联网经营平台管理责任,明确互联网经营者的法定义务和主体责任,制定互联网经营农药负面清单和网络经营行为规范,严格执行农药经营许可制度,实行线上线下一体化经营。推行农药网上实名购买、溯源管理。加强网络经营跨部门协同监管,严厉打击违法经营行为,防止互联网经营者违规销售农药造成安全隐患。(三)推进标准化门店建设。制定农药经营门店建设服务标准,在重点区域打造一批农药标准化经营服务门店,提升农药经营标准化管理水平及开方卖药、指导服务水平。完善农药经营台账,健全农药可追溯平台,实现农药溯源管理。到2025年,全国农药标准化经营服务门店1万家以上,力争农药标准化经营服务门店覆盖率达到50%,果菜茶重点区域基本实现全覆盖。专栏 5 农药标准化经营服务门店建设布局专栏 8 健全农药监督管理体系1. 提升风险监测能力。通过实施动植物保护能力提升工程,建设国家风险监测评估中心、区域风险监测中心(含站点)等项目,改扩建实验室等基础设施,更新仪器设备,建立数据平台,配备软硬件设备。完善抗药性监测体系。2. 优化农药登记试验单位布局。统筹考虑农田生态系统、森林生态系统和草原生态系统,优化试验单位区域布局和试验项目结构,满足不同类型农药登记试验的需要。第五节 建立农药研发创新体系按照生态环境保护法律法规、经济技术政策、产业政策和资源利用等要求,严守生态环境保护红线,各地区各有关部门结合农药产业发展中资源、生态、环境等因素,引导企业加强新增产能、新设生产企业的生态环境保护、资源利用、污染排放、风险防控等方面的评价管理,上下联动、部门合力推进规划落实,切实保护生态环境,夯实企业安全生产主体责任,促进农药产业高质量发展。
  • 2021年病虫害重发态势,高光谱成像在农林业竟这样用......
    据全国农技推广中心近日发布:预计2021年农作物重大病虫害呈重发态势,全国发生面积14.45亿亩次,同比增加19.2%。其中,草地贪夜蛾、草地螟、粘虫、稻飞虱、稻纵卷叶螟、小麦蚜虫等迁飞性害虫和二化螟、小麦条锈病和赤霉病、稻瘟病、马铃薯晚疫病等流行性病害,将在水稻、小麦、玉米、大豆、马铃薯等主要农作物70%以上的产区构成成灾风险,如不及时采取有效措施防控,可造成30%以上的产量损失。病虫害是病害和虫害的并称,植物病虫害通常会对农业产量造成重大损失,成为日益威胁粮食安全、生态系统完整性的严重问题,越来越受到社会的广泛关注。对病虫害的早期监测方法目前仍然停留在主要靠人工肉眼来识别、判断,存在效率低、误差大、滞后性严重等弊端;也有提前施药来预防病虫害的发生,但会产生用药不精 准、时机不成熟,造成农药浪费,环境污染的问题。而且随着社会老龄化问题的逐渐严重,农户单打独斗作业方式的弊端日益凸显,越来越不符合农业现代化的发展。奥谱天成高光谱遥感技术在全波段具备更为丰富的光谱信息,可反映植被不同生物物理特性的细微变化,目前已在农作物营养素诊断、分类识别、品质鉴定、食品加工、病虫害监测等方面有大量研究和不同程度的应用。尤其在粮食作物、经济作物、蔬菜作物、果品等农作物的病虫害监测方面。高光谱成像技术在精 准农业的应用:1、农作物生长监测和产量预估;2、农作物病虫害防治;3、农作物旱情监测;4、土壤水分含量和分布监测;5、农作物养分监测......无人机高光谱的柑橘黄龙病植株的监测与分类在柑橘树病虫害方面:高光谱成像仪对柑橘黄龙病进行了早期无损检测及病情分级,快速诊断、快速识别正常、缺素和黄龙病柑桔叶片。高光谱成像技术在农林业病虫害方面的应用越来越广泛,方法手段也在不断发展。当然高光谱成像仪也不仅仅只适用于农林业,也应用到了地质勘探、工业分选、公共安全和水质环保等方面。
  • 霉菌毒素对毛皮动物的危害表现和防治
    霉菌毒素是霉菌在适宜条件下在其污染的饲料中产生的可以引起动物中毒的代谢产物。毛皮动物食入含有霉菌毒素的饲料后,可造成肝脏、肾脏、中枢神经系统、生殖系统等多种实质器官的损害。目前,对毛皮动物危害最大的霉菌毒素包括黄***素、T-2毒素、玉米赤酶烯酮毒素等。 一、临床症状及病理变化1.黄***素。黄**素中毒的毛皮动物体温正常,精神沉郁,食欲不振或废绝,有的出现间歇性抽搐。发病动物红细胞数量显著减少,白细胞数量增加,血液凝固不良。发病死亡动物解剖可见全身多处肌肉出血,尤其是后腿皮下肌肉。肝脏肿大,呈黄褐色,脆弱,有出血点,胆囊扩张。肾脏苍白、肿大。淋巴结充血、水肿。 2.T-2毒素。T-2毒素是由多种真菌,尤其是镰刀菌产生的单端孢霉烯族化合物之一。产生T-2毒素的真菌在仓库中广泛存在,在寒冷和冻融交替时,该菌在含水量高的成熟玉米中容易大量繁殖。毛皮动物采食含有该毒素的饲料0.5小时后就开始出现体温升高、精神沉郁、拒食、呕吐、腹泻的临床表现,发病严重者可见口腔黏膜坏死。该毒素可使生长期毛皮动物发育停滞、消瘦,凝血时间延长。发病动物口腔、食道、胃、十二指肠等消化道黏膜出现出血、坏死等病理变化。肝脏、肾脏等实质器官变性、出血、坏死。 3.玉米赤霉烯酮。玉米赤霉烯酮毒素,又称F-2毒素,是由赤霉病谷物中镰刀菌产生的毒素,主要污染玉米、小麦、大米、大麦、小米和燕麦等谷物。玉米赤霉烯酮的耐热性较强,110℃下处理1小时才被完全破坏。玉米赤霉烯酮具有雌激素作用,主要作用于生殖系统,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡。妊娠期的动物食入含玉米赤霉烯酮的饲料可引起流产、死胎和畸胎。毛皮动物中毒后出现拒食、呕吐,配种期出现*唇红肿,阴道黏膜充血、水肿,分泌的黏液混有血液,拒配等临床表现。妊娠母兽早产、流产。哺乳期母兽无乳或者少乳。发病动物的病理变化也主要集中在*唇、阴道、子宫、卵巢等生殖器官。 二、防治措施1.加强饲料的保管,注意保持干燥,特别是在温暖多雨地区或季节,加强通风,防止饲料发霉。如若怀疑饲料品质,可以在饲料中添加有效的霉菌毒素脱霉剂进行预防。利用仪器对饲料原料进行筛查处理已发霉或霉变的饲料原料。 深芬仪器生产的CSY-YG701霉菌毒素快速检测仪能够快速定量检测粮食、饲料、谷物、食用油、调味品等食品中黄***素、T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮,适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。 2.如果确诊或者怀疑为霉菌毒素中毒应立即停止饲喂疑饲料,更换新鲜、可靠、维生素含量高的饲料。饲料中添加有效的霉菌毒素脱霉剂,吸附毒素,减少毒素被机体吸收。全群添加葡萄糖、维生素C、复合维生素B。发病严重的动物可以皮下分点注射25%葡萄糖,肌肉注射复合维生素B、维生素C。
  • 中国分子育种不缺上游设备 未来大有可为
    都说中国是“种花家”,中国人是“种菜民族”。从小区绿化到南极科考,从普通农田到“天宫”空间站,哪里有中国人,哪里就会被我们撒下希望的种子。比如神舟十四号乘组在进驻空间站期间,就完成了人类历史上第一次太空水稻全生命周期培养实验。从2022年7月29日注入营养液启动实验,至11月25日结束实验,水稻种子在中国空间站内经历了120天的空间培育生长,完成了种子萌发、幼苗生长、开花结籽这一“从种子到种子”的发育全过程。植物能够在太空环境中完成世代交替,才能在食物上保证人类未来的太空长期驻留。此次在太空实现水稻“从种子到种子”,相比传统的太空育种,是一次非常大的进步。其实,太空育种是传统诱变育种方法在航天领域的延伸,靠太空强烈的辐射作用诱发作物种子发生基因突变,然后在众多变异中筛选出有利的变异,逐步培育出一个新的作物品种。但太空育种在基因变异筛选上的效率并不高,因为变异完全靠随机“碰运气”。如何提高育种的效率,培育更多具有优良性状的新型果蔬、粮食?可以将目的基因直接导入到受体细胞中、能够精准预测新作物表达性状的分子育种技术就在蓬勃发展,与太空育种、杂交育种等多种育种技术一道,为中国农业科技化添砖加瓦。中国分子育种不缺上游设备在传统育种技术上,中国也有着很多优势。比如杂交水稻等常规育种手段,就处于国际领先地位,助力我国水稻的增产与丰收。据统计,我国杂交水稻种植面积超过1700万公顷,占全国水稻总面积50%以上;杂交稻比常规稻增产20%以上,每年增产粮食可养活7000万人,约相当于一个湖南省人口;水稻更是以约占我国粮食总面积25%的播种面积,贡献了近32%的产量。作为主粮,水稻是全国近七成人口的主食。对中国来说,保饭碗,首先就要保大米。但随着人民生活水平的逐年增长,我们需要更丰富的食品,粮食、水果、坚果、畜牧、水产,方方面面都需要优质的品种。而很多传统的育种方式,也在向着向着高效、精准、定向的分子设计育种转变。而最近,亿欧智库联合华大智造共同发布的《2022年中国农业分子育种行业发展白皮书》(以下简称“白皮书”)也指出,农业生物育种共分为四个阶段,即1.0原始驯化选育阶段、2.0常规育种阶段、3.0分子育种阶段、4.0智能育种阶段。当前国际种业已经逐渐从3.0分子育种迈入4.0智能育种阶段,中国生物 育种正处于2.0常规育种向3.0分子育种阶段发展。白皮书指出,面临国内外生物育种技术的巨大差异以及日益动荡的国际局势,发展分子育种技术、推动分子育种产业化应用,既是保障中国农业安全的必然要求,也是中国生物育种产业从业者面临的重大机遇。分子育种与常规育种有着怎样的区别呢?常规育种一般是指利用系统选育、杂交育种和诱变(物理、化学和航天诱变)等选育新品种的方法。但育种时间长、效率低,还有可预测和可控制性差等种种缺陷,简而言之,常规育种这种凭经验选育的过程就像一个“黑匣子”。而分子育种是将分子生物学技术应用于育种中,就可以打开黑匣子,加快筛选速度,从而育出市场所需要性状的新品种。分子育种在缩短育种时间上很有优势。用常规育种手段定向改良一个农艺性状,需要回交6代才能得到理想的植株,一般需要5-6年时间,而利用分子育种技术,通过早期的基因型选择,只需要3年左右,育种时间可以缩短一半。分子育种还能降低田间测试材料数量。假设有2个抗病材料,传统育种方法需要足够大的回交群体才可能获得想要的材料,但分子育种技术可以通过基因型分型筛选,先把含有抗病基因的材料筛选出来,这样就可以节省很多耕地。还是以水稻为例,由于我国70%的淡水资源被用于农业生产,而农业用水的70%又是由水稻消耗的。因此,我们更想要具有高产、抗旱性状的水稻。培育出这种种质资源,对于节约水资源、提高农民收益等均有重要意义。分子育种也和半导体产业一样,需要上游先进设备、仪器的支撑。白皮书援引华大智造合作伙伴博瑞迪生物测算数据,依托华大智造DNBSEQ-T7超高通量测序仪,下游作物种企能平均缩短一半合格种源培育周期;选择准确率提高20%-30%;成本降低90%以上。从这一角度来看,上游基础支撑的发展已为中国生物育种从2.0常规育种向3.0分子育种发展扫清了技术障碍,甚至为国内中、下游企业在“全基因组选择”等分子育种前沿领域与跨国企业一较高下提供了坚实基础,将极大加速国内分子育种产业化进程。为什么分子育种落后国外?尽管上游不缺先进设备,但国内育种分子科研段与市场端依然存在脱节。当前科研院所仍是中国农业育种领域的主力,拥有最丰富的育种资源和育种人才。而科研院所育种往往以申请项目和课题形式进行,对基础性、长期性、战略性研究重视不足,育种研发与市场脱节,产业转化不足。也就是说,以课题为核心的育种研发,和发达国家以市场为核心的育种研发相比,科研成果产业链无论转化速度还是转化数量都会相对较弱。而且,中国育种企业数量分散,行业集中度不高。面对国外巨头,更是难以拧成一股绳,以2020年数据来看,世界Top5种企分走了全球市场的半壁江山(52%);而中国Top5种企的市占率却仅占中国市场的12%;如果聚焦到种猪领域,全球Top3企业市占率达47%,中国Top3企业却仅占中国市场的5%。中国种企规模小,格局分散,又会进一步限制其科技投入能力。白皮书认为,加快构建商业化育种体系需要以企业为主体,引导科研院所育种人才、技术、材料等育种资源向企业流动,最终通过“需求-研发-支撑”的市场化机制,推动中国种业由大到强。白皮书也指出,我国种业发展经历了五个阶段:“四自一辅”阶段、“四化一供”阶段、市场化改革阶段、深化改革阶段、发展变革阶段。目前的发展变革阶段,更需要龙头企业和重点种业企业的作为。从单体价值角度,畜禽单价显然高于作物,因此运用分子育种技术的投入回报更高;如果将视角放宽到世代间隔来看,这一优势将更被放大。因此,白皮书指出,相较于作物育种,畜禽培育周期更长,世代间隔时间更久,分子育种带来的收益自然更高。比如,随着人们对牛乳需求的多样性提升,近年来,水牛奶也成为乳品消费的新潮流。其实中国数十年前,就引进国外优良品种水牛,通过杂交改良、横交固定等育种方法,逐渐培育出了乳肉兼用型杂交水牛群体。但引进国外优良品种水牛进行杂交改良工作所需时间周期长,且会导致我国水牛优良品种的培育依赖国外核心种源,还可能导致国外水牛疾病传播至国内。因此,水牛业近年也在推行分子育种技术,开发水牛产奶性状的遗传力,为水牛优秀品种后代的选择提供依据。据了解,我们目前已经鉴定出五百多个与水牛产奶性状相关的候选基因。如有研究人员对384头水牛SCAP基因(SCAP为SREBP “Sterol Regulatory Element Binding Protein” Cleavage-Activating Protein的缩写,意指甾醇调节因子结合蛋白裂解激活蛋白)的分子特征、表达分析以及单核苷酸多态性与产奶性状之间的关系进行了研究,在水牛SCAP基因鉴定出了11个SNP(Single Nucleotide Polymorphisms,指在基因组上单个核苷酸的变异),其中有 6 个与水牛 305d(理想状态下,母牛年产1胎,干乳期60天,实际挤奶时间即305天)的产奶量显著相关。分子育种技术的兴起,不仅为水牛潜力的开发提供了强有力的支持,使水牛优良性状利用效率最大化速度加快,同时作为家畜分子育种技术的一个重要领域,也有利于畜牧业整体分子育种水平的提高。白皮书指出,中国是全球第二大种质资源库,资源总量超过52万份。但完成精准鉴定的比例却不足十分之一,未来中国分子育种发展既充满挑战,也蕴含着巨大的机遇。当然,这也需要国产测序仪相关企业需要持续推进高通量测序技术的研发,降低分子育种应用门槛。分子育种技术大有可为尽管在主粮上,我们已经实现“中国粮用中国种”,比如我国水稻、小麦两大口粮作物自主选育品种的种植面积占到95%以上。但随着气候变化引发的水资源短缺、大风暴雨等极端气候多变,以及城镇化发展导致的农村劳动力短缺,种田农民日渐老龄化,田间管理缺少青壮劳力等诸多问题,也对种子提出了更高要求。如何节水节肥?如何抗病抗寒?如何抗倒抗旱?如何耐盐耐碱?河南农业大学研究者李海泳、殷贵鸿就指出,借助分子标记辅助选择(MAS)、转基因等技术,在小麦抗旱、抗病、抗穗发芽等性状育种上,目前已经有88个抗旱、水分利用效率相关的数量性状基因座(QTL)及其连锁的分子标记被报道,TaARFs、DREB等30多个小麦抗旱、水分高效利用相关基因被克隆;这些抗旱相关基因被导入小麦后就能够提高植株的抗旱能力;有140多个能够抗叶锈病、秆锈病、白粉病、赤霉病、麦瘟病、叶枯病等多种病变的小麦近缘植物基因被正式命名,如偃麦草的抗黄矮病基因和冰草的多粒基因已经在小麦育种中发挥作用。也就是说,我们需要小麦具有怎样的性状,就从基因层面去选择能够起到作用的优质种质资源,包括近缘植物基因都可以利用到。据报道,为找到抗病基因,山东农业大学小麦种质创新与利用团队仅2016年以来就分析了4.5万株小麦实验群体,完成超过30万次DNA扩增。用了数年时间,才在全球首次从小麦近缘植物长穗偃麦草中克隆出抗赤霉病关键基因Fhb7,并揭示了其抗病分子机制。小麦育种的“卡脖子”难题,就在于如何找到那些基因,从而能够将这些良种推广到中国大地上。李海泳、殷贵鸿就指出,目前我国小麦育种中存在的“卡脖子”问题主要有品种遗传基础狭窄、原创性分子育种技术缺乏和精准的表型鉴定困难等。正如芯片中有数以亿计的晶体管一样,种子里也有数以万计的基因,在选育优良性状时,基因相互之间还有作用和影响。这就导致实际上能够产生的变化,并不是数以万计,而是几何级数的变化。如何把优良的基因发掘、鉴定出来,如何进一步地杂交、分离、重组、筛选,如何对数以万计的基因重新“排列组合”,这些难题,还有待中国产业界、科研界共同努力,逐步提高分子育种的种植面积。分子育种不仅通过高产抗病实现在原土地上替换传统育种,更可以通过耐寒耐冷增加耕种面积,从而保护18亿亩耕地红线。据了解,超早熟大豆品种的育成,使我国黑龙江一些高纬度地区大豆生产迈上新台阶;耐旱作物和耐旱品种的选育,也为半干旱地区农业生产的稳步增长作出了贡献。分子育种,简直就是上帝的手术刀,为农业“刻划”出无数具备新性状的新品种。比如,不仅是增产,还可以增加营养、风味等。如培育出能够延缓餐后血糖上升、控制糖尿病病人病情的高抗性淀粉、高膳食纤维含量的小麦品种,或者能增强免疫力的高花青素、高维生素含量的小麦,或者对高血脂、高血糖、动脉硬化等有一定疗效的高麦黄酮小麦,微量元素易被吸收的低植酸含量、高植酸酶活性小麦等。不过,由于小麦基因组庞大、遗传转化率低、和目的基因有遗传累赘等因素影响,分子育种技术在小麦上的应用,目前还是落后于玉米、水稻等基因组较小的作物。而且,还有很多性状没有找到关键基因或有待进一步细分筛选,如抗倒春寒、耐热、抗穗发芽、抗茎腐病、抗虫等。在打好种业翻身仗上,小麦等品种依然需要国内产业科研界的通力努力。而其他作物同样大有可为。中国农业科学院生物技术研究所刘哲源等研究者通过梳理专利发现,在蔬菜分子育种专利技术中,转基因技术最先发展起来,专利申请量在2011年达到高峰。但由于转基因技术具有基因敲除位点不可控、遗传不稳定、外源基因插入不可控以及不可避免插入标记基因等问题,进入21世纪后被新兴的分子标记辅助育种技术逐步取代。分子标记辅助育种技术21世纪初开始盛行,2004年起就成为蔬菜分子育种的主要应用技术,专利申请量远超转基因、基因编辑、全基因组选择等技术。在权重上,目前全球蔬菜分子育种技术专利主要集中于番茄、黄瓜、白菜和辣椒等。但人类需要具有优良性状的瓜果蔬菜何止千万种,借助分子育种技术,不仅要让番茄、黄瓜具有更多新的口味和品种,还有让更多瓜果蔬菜能够成为餐桌上的新宠儿。不过,刘哲源指出,在蔬菜专利申请上,中国是科研机构为主,而美国则是以塞米尼斯蔬菜种子公司、陶氏益农公司、陶氏杜邦先锋公司等大型机跨国集团为主。且中国在蔬菜分子育种相关专利中运用较多的是分子标记辅助育种技术,缺乏最近几年新兴的全基因组选择技术、基因编辑技术等。在分子育种技术上,中国还有很大发展空间。毕竟,相比于芯片,分子育种不缺上游设备,下游又有着极大需求,相关科研机构也具有相当水平。未来几年,随着高通量测序技术进步带来基因型分析成本的降低,以及科研机构与下游产业合作的进一步加深,产研转化顺畅之下,更多企业也将有机会在分子育种学术成果产业化上获益。参考文献:1. 刘哲源,康宇立,唐巧玲,李蕾,王友华.基于全球蔬菜分子育种专利的信息分析及技术展望[J].中国蔬菜,2022(09)2. 李海泳,殷贵鸿.从国家粮食安全角度探讨我国小麦育种发展趋势[J].江苏农业科学,2022,50(18)3. 我国奶水牛选育步入现代分子育种时代[J].农业科技与信息,2021(20)4. 丁蕾,张俊红,王涛涛,欧阳波,叶志彪,张余洋.蔬菜作物重要基因鉴定及其分子育种应用[J].分子植物育种,2022,20(22)5. 高海强.棉花纤维品质分子育种的现状及展望[J].农业技术与装备,2022(06)6. 朱立娟.玉米耐旱育种及分子育种策略探析[J].河南农业,2022(14)
  • 人工智能赋能农业,开启数字化新征程
    人工智能作为计算机科学的一个重要分支,伴随着信息技术的快速发展,已经渗透在医疗、教育、金融等众多领域,农业作为国民经济的基础性产业,也不例外,近年来,农业被评为最具前景的人工智能与机器学习应用场景之一。在我国,农业人工智能的应用主要涉及基于机器视觉技术的农作物图像分析和基于数据挖掘技术的农业大数据分析、算法模型构建等。其中,图像分析技术的应用有农作物根-茎-叶-种子的表型分析测量、农作物长势识别、杂草识别、病虫害识别、果蔬品质检测以及自动采摘等方面;大数据分析与算法模型构建的应用有农作物病害预测、虫害预测、墒情预测、产量预测、价格预测、专家系统等,能够对农作物的生产链进行实时的监管控制,从而提升作物的产出量和品质。伴随着农业领域多元性数据的存在与大量理解力问题的出现,单一机器学习技术已经难以解决。作为一家深研农业十余年的现代化企业,托普云农将前沿信息技术与农业专业深度融合,通过传统图像处理与最新深度学习等技术,构建起针对农业的多维混合算法模型,并使用积累多年的农业数据样本进行训练学习,满足当前多元化人工智能时代的发展需要,并深受业内关注。其中图像处理主要是对图像进行分割、前景提取、获取关键信息等,深度学习主要包括目标检测和图像分类等对目标进行识别分析。农业病虫害目标识别是人工智能技术的应用热点之一。托普云农通过大量数据样本对已构建好的算法模型进行训练学习,利用训练后的目标检测算法模型对各作物的病虫害进行识别,根据识别的病虫害数量对病虫害的严重程度进行判断与预警;根据识别的病虫害的种类给出病虫害档案,包括病虫危害情况、病虫害特征、病虫害原因、防治措施等。历经近十年的研究实践,托普云农已有60TB约2000多万张图库,15万张精选样本库,每月增量达3TB。目前已覆盖包括草地贪夜蛾、大螟、二化螟、稻飞虱等国家一二类农作物主要虫害109种的识别,病害识别覆盖小麦、玉米、水稻等6种农作物,涵盖赤霉病、灰斑病、稻瘟病等在内59种病害,平均识别一张图片3s左右,为粮食安全、生态保护提供了有力保障。植物表型研究在作物育种领域有着不可替代的作用。托普云农人工智能技术通过对农作物根-茎-叶-种等器官进行特征提取与降维、目标分割与定位、高精度图像识别与检测,现已实现了对玉米珠型、作物株高、剑叶夹角、籽粒果穗考种、作物形态测量、叶面积分析、亩穗数测量等的多个作物表型识别与测量。大数据分析与算法模型构建是人工智能技术的另一重要应用。托普云农通过监督机器学习算法,从大规模数据集中训练出墒情预测、作物病虫害预测、作物生长等模型,搭建成作物生长管理系统,由此为作物生产进行规划与管理;通过海量图像数据的积累以及高精度的目标检测和样本分类技术的应用,对病虫害分布及时自动感知,对虫害首发期、爆发期的有效预警预测;通过对传感器数据与视觉数据的分析以及统计模型的应用,进而预测作物产量。此外,托普云农的人工智能技术还应用于果实成熟期禁止打药监测等农事作业行为识别;烟火识别;文字识别以及人脸、动物、车辆、农机等集成第三方生态识别领域……有效保障农业生产安全、提高农业农村领域网格化治理能力,提升乡村居民幸福感。随着对人工智能的利用不断深入,农业生产管理与科研领域也展现出更多新的变革。在江苏海门的高标准农田里,从选种耕种、土壤成分监测、农田灌溉用水分析、病虫害识别预警、农业环境监测到农业专家系统、作物采收管理、产量预测、品质检验等全过程动态管理,极大提升了资源利用率和劳动效率,藏粮于地更藏粮于技。在乔司农业产业示范园里,通过对数据资源的采集、整合、分析,打造全域数字孪生、智慧农机系统、遥感监测系统、农情监测系统、种植管理系统、智能灌溉系统,形成了生产、预测、防控等全要素智能化管理,带动农业可持续发展。在江西湘东的数字种业园区里,结合科研和产业需求,建设现代化种业基地,打造智慧种业服务平台,涵盖6大应用场景,从育种、制种、种子检验、加工、仓储、流通等各环节强化信息监测以及溯源管理,探索水稻生长标准模型,创新园区服务体系,保障优质种业发展。在浙江古林的数字农田里,利用北斗导航、物联网、农业遥感、机器视觉等技术手段,打造农机高精度自动作业与导航系统、大田精细化生产灌溉管理系统、“天空地”一体化公共服务平台,并在超过1万亩的规模化种植基地进行集成示范,形成了一套可复制的产业应用模式,为更多水稻产区提供种植推广示范样板。当前,以数字孪生、人工智能、移动互联网、区块链等为代表的新一代信息技术与先进制造业加速融合,现代农业、服务业领域新产品新业态新模式竞相涌现。未来,在各种农业人工智能设备工作中,数据上“云”更便捷;在农业生产中,全要素数据采集汇聚、智能决策分析、精准作业指导和操控,节本降耗、提质增效、环境友好、生态安全;在农业科研中,基地管理、数据采集、数据挖掘分析更加便捷、智能,研发更加高效,目标更加精准。虽然现代农业与人工智能的深度融合还面临着许多困难和挑战,但是以人工智能为核心的智慧农业发展已是大势所趋。
  • 如何快速实现小麦测产?
    传统测量亩穗数,需要人员走进麦田,对多个抽样区域内的穗数、分蘖数进行精细计算,这其中不仅会受到自然环境干扰,还会存在人为的测量误差、记录误差等。同时,在疫情反复的背景下,人员布岗、用工安全等问题也难以得到保障,加之大部分项目需要测量的作物种类繁多,无疑给科研工作带来了更多压力与困扰。 如何快速实现小麦测产,彻底摆脱传统人工测量耗时久、误差大等痛点问题?针对亩穗测量难题,我们自主研发了小麦测产量软件——小麦亩穗数测量系统。这款测产软件小巧轻便,操作简单,只要拍一拍就能自动计算亩穗数! 如何快速实现小麦测产?小麦亩穗数测量系统利用图像识别和深度学习技术,实现目标和复杂背景的高精度分离,提取作物有效特征,并在小麦大数据库基础上建立高精度的识别模型,最终实现小麦表型性状的测量。只要1部手机、1个APP、1个标定杆,亩穗数、理论产量、种子总数量和千粒重指标通通不在话下! 当老师来到麦田里,只需将标定杆插入目标区域,用手机垂直拍摄,就可在测产APP上查看亩穗数、理论产量、种子总数量和千粒重指标等重要数据,准确率可达95%。如果希望数据能更加准,还可多点快速分析取样,或手动触摸屏幕进行修正,准确率高。 测量工作结束后,科研老师也不再需要纸笔记录,测产软件会自动对数据进行储存,当你需要时,还能以EXCEL的格式进行导出,分享至微信、QQ或者钉钉等常用软件进行查看。 推荐组合产品
  • 李振声:小麦育种专家——2006年度获奖人
    李振声,1931年2月25日出生,山东淄博人。遗传学家。1951年毕业于山东农学院(现山东农业大学)农学系。中国科学院遗传研究所研究员。育成小偃麦8倍体、异附加系、异代换系和异位系等杂种新类型 将偃麦草的耐旱、耐干热风、抗多种小麦病害的优良基因转移到小麦中,育成了小偃麦新品种四、五、六号,小偃六号到1988年累计推广面积5400万亩,增产小麦32亿斤 建立了小麦染色体工程育种新体系,利用偃麦草蓝色胚乳基因作为遗传标记性状,首次创制蓝粒单体小麦系统,解决了小麦利用过程中长期存在的“单价染色体漂移”和“染色体数目鉴定工作量过大”两个难题 育成自花结实的缺体小麦,并利用其缺体小麦开创了快速选育小麦异代换系的新方法-缺体回交法,为小麦染色体工程育种奠定了基础。1991年当选为中国科学院院士(学部委员)。2006年获得国家最高科学技术奖。   一粒种子,包含着多少生命的信息和秘密,或长成饱满的谷穗,或出落成娇嫩的花草,或成长为参天的大树。而一粒麦种,日后就是一捧粮食,是生存的希望。   57年前,李振声就是带着这份希望,开始了自己的育种生涯。为了让麦子更强壮,打出更多的粮食,他创造性地把牧草和小麦杂交,经过多年试验获得了抗病、耐热、高产的良种 他还曾带队去治理中低产田,带动了黄淮海农业综合开发……他的执著、智慧和坚韧,帮助亿万农民尝到了丰收的喜悦。   1942年,山东大旱,庄稼颗粒无收,那年李振声11岁,挨饿的感觉令他至今难忘,“野菜、榆树叶都是充饥的好东西,尤其是榆树皮,因为它是黏的,和糠混合起来,能做成窝窝头。”   李振声的童年是艰苦的,生在农家的他13岁时父亲去世,留下母亲一人抚养4个孩子。李振声高二时辍学到济南找工作,那时济南刚刚解放,一个偶然的机会,他在街上看到山东农学院在招生,并且可以提供学生上学期间的食宿。这对李振声来说真是巨大的吸引。   “哪有这样好的事情?管吃管住,还可以读书,这在过去想都不敢想。”提起当年的经历,李振声依然激动,就是那个决定把他带到了育种研究这个领域,让他得以在广袤的黄土地上施展才智。   后来他参加了考试,被农学系录取。小时候挨饿的经历让李振声懂得粮食的珍贵,这也成为了他学习农业、从事农业研究的原动力。   虽然已时隔半个多世纪,李振声对他的大学生活依然记忆犹新,系主任是原来燕京大学的沈寿铨教授,他上的小麦育种课很好听,从小麦的进化、分类、育种的理论与技术,深入浅出,很有吸引力。余松烈教授讲的遗传课,也很生动。   就这样,李振声研究育种的兴趣被激发出来了,并且很快看到了成果:李振声大二那年,放假时他把学校农场繁殖的几个优良品种(齐大195、扁穗小麦、鱼鳞白)带回了农村老家,在自家的地里先种了起来,来年收麦时,竟比当地的老品种增产了许多,于是乡亲们纷纷来换种。   “听到乡亲们的赞扬声,心里自豪极了!让我认识到科学技术确实对提高粮食产量有重要作用。”从那时起,李振声萌发了从事小麦育种研究的想法,这个决定影响了他的一生。   大学毕业以后,李振声被分配到北京,跟随导师土壤学家冯兆林先生从事种植牧草改良土壤的研究。1956年,李振声响应中央支援西北建设的号召,与课题组13位同志一起,调到陕西杨陵中国科学院西北农业生物研究所工作,一干就是31年。说起这段经历,李振声总是一语带过,只有说起他心爱的麦子,他才滔滔不绝,神采飞扬。   刚到西北,李振声就遇到小麦条锈病大流行,这意味着小麦会大幅减产。李振声为此吃不下、睡不香,“当时我就想,可不可以赶紧育新品种来解决这个问题,但是病菌变异的速度很快,而育种的速度慢,8年才能育成一个小麦新品种,而条锈病平均5.5年就能产生一个新的生理小种。”如果通过正常途径来育种,解决不了小麦病害的根本,于是李振声结合学过的牧草知识,开始尝试通过远缘杂交,将偃麦草的抗病基因转移给小麦,选育持久性抗病小麦品种。在这之后的几十年里,他的小麦和牧草杂交育种取得成功,也创建了蓝粒单体小麦和染色体工程育种新系统。   这些成就说出来只有几句话,但是实现起来却是个令人难以想象的艰难过程。   远缘杂交是个长周期而且风险大的尝试,“当时下决心时,就知道很可能失败,但是比起农民对好收成的渴望,这压力就不算什么了。”   远缘杂交的难题有3个:杂交不容易成功、产生的品种容易不育、后代性状“疯狂分离”。对小麦与长穗偃麦草的杂交来说,最困难的是第3个问题,草的性状遗传能力太强,要用小麦对草及其杂种进行杂交、回交好几代,才能使双亲的遗传能力达到平衡,有时一个杂种单株看着很好,而下一代则面目全非了。   1964年初,远缘杂交已进行了8年,但是还没有育成品种,在当时的社会环境下,李振声被认为研究工作脱离实际。幸运的是,他搞远缘杂交研究的同时开展了常规的小麦品种间杂交育种工作,他选育的“生选5号、6号”已开始在生产上推广应用,增收明显。工作队最后的结论是,毕竟他已有两个品种在生产上发挥作用了。这样,李振声才算过了关。   1964年的6月14日,对李振声来说是意义非凡的一天。小麦成熟前连续40天阴雨,结果那天突然放晴,一天的工夫,几乎所有的小麦都青干了。本来是一场天灾,但是李振声突然发现,有一个小偃麦杂种株系(小偃55)保持正常生长,穗叶茎呈金黄色,它的亲本长穗偃麦草也未青干,顿时他欣喜若狂。之后用它们做母本经过两次杂交,历时15年,终于育成了一个具有相对持久的抗病性、高产、稳产、优质的小麦新品种———小偃6号。现在小偃6号已成为我国小麦育种的重要骨干亲本,是我国北方麦区的两个主要优质源之一,其衍生品种已达数十个,累计推广3亿多亩。为此,他获得了2006年国家最高科技奖,成为继袁隆平之后第二个获此殊荣的农学家。   李振声曾说,“和小麦打了半个多世纪交道,真正给我打分的是农民,我最开心的事是看到农民丰收时的高兴劲儿。”   在李振声看来,和农民打交道是很快乐的事。1969年,他被下放到宝鸡县联合大队去蹲点,一蹲就蹲了4年。本来是去接受农民再教育的,却和农民打成了一片,居然最后还被树为典型。这都是源于他的农业技术给农民带来了真正的实惠。   那年,大队里的红薯烂得很厉害,李振声检查了红薯窖,很快发现,4队的温度太低(6摄氏度),软腐病很重 5队的温度太高(16摄氏度),湿度太大,发了芽。采取措施后,很快问题得到缓解,因此被县上通报,广为宣传推广。   还有一次,他帮助生产队考察了小麦苗情,统计了各队一、二、三类苗的比例,并分别提出了相应的管理措施。有两个队麦田三类苗较多,其中一个队按李振声的建议,加强了管理措施,第二年获得了丰收 另一个队没有采取措施,减了产。有了这个对比,小麦丰产栽培措施得到了全面推广,第二年大队小麦平均亩产,从原来的180公斤提高到250公斤以上,公社亩产200公斤以上,过了“纲要”。李振声研究育种的几十年里,随着品种改良和栽培技术的改善,小麦的产量明显提高,但“粮食满仓”的景象并没有阻止他在育种行业里不断探索的脚步。他的论文集首页写着白居易的诗:“千里始足下,高山起微尘。吾道亦如此,行之贵日新。”   吃过大旱的苦,所以今年的小麦旱情,成了李振声最牵挂的事情。“麦子还没有足够高产、足够抗旱。育种事业还有很长的路要走。”已经78岁的李振声语气平缓而坚定。78岁高龄,他仍坚持到实验室搞研究,他希望在有生之年能多出点成果,能为粮食增产和安全多做一点贡献。   “虽然高产的品种在实验田里亩产可以达到700公斤,但我国粮食平均亩产才300公斤。小面积上的产量突破只展示了一种前景,但要解决大面积粮食增产问题还要靠土、肥、水、种等综合措施的改善,而不是单靠品种改良能解决的。”李振声说,小偃6号的育成和大面积推广,证明远缘杂交确实是改良小麦品种的一条重要途径。但是,育种过程耗费的时间长达20多年,这不利于多出成果。   于是李振声另寻捷径,运用从偃麦草中得来的蓝粒基因创造了一套蓝粒单体小麦。“蓝粒单体小麦在一个麦穗上可以长出4种颜色的种子,深蓝、中蓝、浅蓝和白粒,不需要用显微镜,只根据种子颜色就可以知道它的染色体数目,深蓝的42条,中蓝和浅蓝的41条,白粒的40条。40条染色体的小麦叫缺体,用它与某些远缘亲本植物杂交,比较容易将外源染色体转移到小麦中,更方便染色体工程育种。”李振声指着办公室墙上的图,兴奋地比画着。   1995年,一本莱斯特布朗的《谁来养活中国?》在当时引起了不少人关注,李振声对其中的观点感到吃惊————中国人将养活不了自己。在此后的几年里,他在一直调查论证,汇集我国近15年的有关数据,与作者预测的情况进行对比,结果发现他的预测结果没有兑现。“对比的结果是,布朗的3个推论都不正确,都不符合中国实际。第一,人口增长速度比他预计的慢了1/3 第二,人均耕地减少的速度不像布朗预计的那样严重 第三,我国粮食15年合计进出口基本持平,净进口量只有439.7亿公斤,相当于总消费量的0.6%,微不足道。”于是,在2005年的博鳌亚洲论坛上,经过精确的统计和大量的论证,李振声发表讲话,认为中国人自己能养活自己,有力地回应了有关对中国粮食不能自给的质疑。他自信地表达了自己的研究成果:中国完全可以养活自己。“现在如此,将来我们相信凭着中国正确的政策和科技、经济的发展,也必然能够自己养活自己。”   在今天丰富的面食背后,就是以李振声为代表的这样一群科研人员,与亿万农民一起,同甘共苦,忘我耕耘,在努力维护着小麦的质量、粮食的安全和国家的尊严。   “以兴趣始,以毅力终”是对李振声育种生涯的写照。对他的采访,是一堂愉快的生物课,但不是一堂丰富的人生课。记者一直试图将话题引到科研以外的领域,但每次他都一语带过,然后再度谈起小麦、育种、粮食增产、节约型农业这些他关心一辈子的话题。谈到高兴处眼睛里会流露出兴奋的光芒,让人不忍打断。每每涉及专业知识或重要数据,他都会立刻起身,去拿几支麦穗,或从书架上取下几本大部头的著作,一定要给记者讲个清楚。   “记住一个人的故事,远没有明白一个科学道理更有意义。”他开导记者。他给自己提了个要求,就是一定要让记者明白育种是怎么回事,然后才会有更多的读者明白。   走在人生道路上,李振声朝思暮想的,就是小麦育种这一件事。即便在梦里,他常见的仍是一片麦田的金黄。他常挂在嘴边的一句话就是,野生植物是个非常大的基因库,而且它们本身也在不断变化、优胜劣汰的。听得出来,他为人生没有更多的时间来解开这基因之谜而感到遗憾。所以,他加倍努力地带学生。   “先生对我们最大的教育,是他的科研精神,他对待工作严肃认真、一丝不苟,十分敬业。”李振声最得意的学生童依平说,“往往在田间工作大半天,我们年轻人都感到很累,他仍然不知疲倦地调查、记录。”   一个好老师的启发,能改变一个人的一生。在李振声的科研生涯中,有过3个人,对他影响最大。“华罗庚先生讲怎样学习?概括起来有4句话:天才在于积累,聪明在于勤奋 别人起床时,我已学习4个小时了 我研究数学是从小学教科书的数学一、二、三、四、五、六册开始的 要学会读书,要能将一本厚书读薄。”虽然是几十年前听过的课,李振声依然记得清晰。   在李振声的印象里,钱三强先生讲怎样做研究,艾斯奇先生讲唯物论和辩证法,都是相当宝贵的课。“虽然和他们从事的不是一个行业,但是他们思想的精华和有效的工作方法,给了我很大的鼓舞和帮助。”   尽管李振声身体不太好,但他还是不断地寻找机会,去各地的小麦试验田走走,回到他奋斗过的西北看看,他是如此热爱那片土地和他倾注了一生心血的育种事业。和李振声一起翻看他从前的照片,就会发现:笑得很灿烂的,多半是在麦田里拍摄的,那金色的麦田和饱满的麦穗,让他幸福无比。
  • 世界粮食日,关注粮食安全丨玉米、大米、小麦和玉米油中的玉米赤霉烯酮的测定
    介绍01为加快粮食产业经济发展,推进粮食产业供给和结构性质改革,国家粮食局推出“优质粮食工程”,并开展“中国好粮食”行动。睿科集团积极响应政策的同时,凭借丰富的实验室经验,针对相关政策标准制定了系列解决方案,并将各种自动化设备应用于前处理过程,尽可能地帮助实验员提高工作效率,保证粮油产品检测的准确性。值此世界粮食日(2021年10月16日)来临之际,我们分享用Fotector Plus高通量全自动固相萃取仪分析粮油中玉米赤霉烯酮的解决方案。试样经过90%乙腈水溶液提取,提取液经离心、稀释后用含有玉米赤霉烯酮特异抗体的免疫亲和柱自动净化。用5 mL水淋洗柱子将免疫亲和柱上的杂质除去,以甲醇洗脱免疫亲和柱。将洗脱液在55°C条件下氮吹干,用1 mL初始流动相定容,经高效液相色谱仪上机分析。图-1玉米赤霉烯酮结构式本应用文章参考GB5009.209-2016《食品中玉米赤霉烯酮的测定》第一法,采用免疫亲和柱净化,高效液相色谱检测,建立了复杂粮油样品基质中玉米赤霉烯酮高灵敏度的前处理和分析方法,得到四种常见粮油基质中玉米赤霉烯酮的加标回收率在88.0%-112.0%之间,RSD值小于5%。仪器与耗材02Auto Prep 200全自动液体样品处理工作站;Fotector Plus高通量全自动固相萃取仪 ;Auto EVA 80 全自动平行浓缩仪;玉米赤霉烯酮免疫亲和柱 (Romer,1500ng/3mL);高效液相色谱: Waters ACQUITY UPLC I-Class配备大体积流通池;甲醇(Merck,色谱纯);乙腈(Merck,色谱纯);吐温-20(Sigma,试剂纯);超纯水(Waston);PBS盐包配标净化浓缩标准曲线配制03使用Auto Prep 200全自动液体样品处理工作站可实现标准品的全自动化配制,将单标母液(1000 mg/L)通过工作站的直接稀释模式,配制成浓度为10 mg/L的工作中间液,紧接着可通过程序设置,吸取该工作液,配制一条浓度分别为0.01 mg/L,0.02 mg/L,0.1 mg/L,0.2 mg/L和0.5 mg/L的标准工作曲线。图-2. Auto Prep 200 液体工作站配标程序样品提取与前处理04大米、玉米、小麦样品准确称取5 g粉碎过的样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以7000 r/min的转速离心5 min;取5 mL上清液于试管中,加入20 mL 0.1%吐温-20的PBS缓冲液混匀,以7000 r/min的转速离心5 min,取10 mL上清液于80 mL上样管中,待用。玉米油样品准确称取5 g样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以5000 r/min的转速离心5 min;余下步骤同上。固相萃取净化条件全自动固相萃取仪Fotector Plus高通量全自动固相萃取仪固相萃取柱玉米赤霉烯酮免疫亲柱 (1500ng/3mL)淋洗超纯水洗脱甲醇表-1 固相萃取净化条件以2 mL/min的速度精确上样10 mL待测液,5 mL水清洗样品瓶,5 mL水淋洗免疫亲和柱,气推30 mL吹干免疫亲和柱,推速为80 mL/min。最后用2 mL甲醇以0.5mL/min的速度洗脱样品,收集洗脱液用Auto EVA 80 全自动平行浓缩仪于55°C、1 L/min条件下吹干,用初始流动相定容至1 mL,过滤膜上机分析。详细步骤见图-3。检测条件05
  • 现代化育种迎来福音,用手机就能轻松测算小麦亩穗数!
    一年之计在于春,目前全国各地正在陆续开展春耕备耕工作,小麦种植地区也在进行小麦化学除草、春灌等田间管理工作,确保小麦增产增收。  今年以来,种业如何发展这一问题在多个重要场合成为热点。2021年中央一号文件及两会期间,“农业芯片”——种子问题备受关注,解决好种子“卡脖子”问题,成为接下来农业发展任务的重中之重。  春种一粒粟,秋收万颗子。小麦作为我国主要的粮食作物之一,小麦产量直接关乎到我国的粮食安全,因此如何培育最优品种的小麦,实现小麦产量提升是育种专家的重要任务之一。小麦亩穗数作为组成小麦产量的重要衡量指标,是小麦育种和栽培工作中必要的测量内容,对于小麦优种选育有着重要的参考意义。  传统测算方式,实割实测  目前,到小麦成熟季,小麦产量测算主要通过人工手动统计,需要育种专家深入田间实割实测,再通过获得数据推算小麦产量。  在收割前一周,专家们需要深入田间地头,实地观察麦田长势,预估小麦产量。等到了实割实测现场,专家们要顶着烈日对麦田进行标识测量、拉尺放样,然后弯腰弓背亲手割取小麦样本,几个回合下来往往都是汗流浃背。随后再经过脱粒去杂、测水称重等环节,几番辛苦才能完成整个小麦产量测算的前期工作。经过所有环节后,专家们还要称出小麦重量、含水量,再加上测量的固定面积,将数据代入专门公式才能最终测算出小麦的实收产量。  不难看出,小麦实收产量的传统测算方式不仅费时费力、环节繁琐而且没有统一的标准化计数方案。在另一种测算小麦理论产量的方法中也存在同样问题,小麦理论产量可通过亩穗数、穗粒数、千粒重来获取,但是目前,获取小麦亩穗数的方式仍然有赖于人工肉眼计数统计,数据准确度有待提高,那有没有办法可以快速获取小麦亩穗数呢?  智能测算方式,快速获取  针对传统小麦亩穗数的测算痛点,浙江托普云农科技股份有限公司自主研发了小麦亩穗数测量系统,通过搭配硬件采集特定面积内的小麦图像信息,系统利用深度学习、图像识别等人工智能技术可快速计算出小麦亩穗数量,取代人工方法统计,并可实时查看多张照片的测算和分析结果,通过软件自动生成报表功能,有效实现数据的编辑、筛选、导出和分享,为育种和考种专家提供便利。  利用麦穗数和亩穗数测算结果,用户根据实际测量获取的穗粒数及千粒重数据,就可以快速计算得出小麦的理论产量,有效提高科研效率,积极促进小麦高产栽培和良种选育工作。  目前,随着农业技术的发展,传统作物的产量测算方式正在逐渐被更发达的科技手段而取代,人工智能技术也越来越深入在农业领域的方方面面。相信在人工智能技术的不断应用实践下,农业科研发展及新农人将迎来更便利、快捷的服务模式。
  • 多重基因剪刀“拿下”小麦白粉病 实现抗病高产育种
    隔八年,曾广受关注的小麦白粉病“缉凶案”终于迎来了续篇。  中科院遗传与发育生物学研究所研究员高彩霞团队和中科院微生物研究所研究员邱金龙团队用多重“基因剪刀”,实现了对小麦重要感病基因序列的精准操控,获得了既高抗白粉病又高产的新材料。相关研究2月10日发表于《自然》。这意味着,号称小麦三大病害之一的白粉病终于被我国科学家“拿下”。  “这一具有重要理论与实际应用价值的研究工作,将成为作物育种领域标志性的成果。”中国工程院院士、西北农林科技大学康振生对此评论说,它展现了基因组编辑在作物分子设计育种中的巨大潜力,对保障粮食安全具有重大意义。  “另一只靴子”落地  据农业农村部统计,我国每年受白粉病影响的小麦面积达到1亿亩左右,重病田甚至会减产40%。将这一严重威胁粮食安全的真菌“缉拿归案”,是很多育种专家的梦想。  目前,分子育种家都是通过抗性基因帮助作物抵抗白粉病。但就像病毒预防一样,这种途径不具有广谱性和持久性,很容易随着白粉病新小种的出现而失去效用。  病原菌的成功侵染需要利用植物感病基因,能否通过阻断这个病害与植物连接的“桥梁”来获得广谱持久的抗性呢?  这是科学家想做但又不敢去做的一件事,因为感病基因的敲除具有两面性:抗病的同时,也会影响植物生长。  科学家很早就知道MLO是小麦的感病基因,但由于普通小麦是异源六倍体,MLO基因有3个拷贝,几乎不可能通过天然突变方式同时敲除这3个基因。2014年,合作团队利用“基因剪刀”定向敲除MLO的3个拷贝,不出所料地获得了对白粉病具有广谱持久抗性的小麦新材料。  相关研究在《自然—生物技术》发表后引起了世界范围内的极大关注。该研究入选了该刊创刊20周年最具影响力的20篇文章,并入选《麻省理工科技评论》2016年“全球十大技术突破”。高彩霞也因引领了植物基因组编辑的浪潮,入选《自然》2016年度“十位中国科学之星”。  不过,这个故事还有后续——正如在其他多种植物中观察到的一样,研究团队发现敲除感病基因MLO的小麦出现了一定程度的负面表型,如早衰、植株变矮、产量下降等,限制了其在生产上的广泛应用。  对此,研究团队选择迎难而上。  在当时敲除MLO后得到的100多个基因组编辑小麦突变体中,他们发现了一个“宝贝”材料——突变体Tamlo-R32。它在表现出对白粉菌的抗性的同时,生长发育和产量完全正常。  这个与众不同的材料让高彩霞坚信,感病基因突变抗病并非“死胡同”,“沿着这条路走一定能够做成”。  现在,经过八年协力攻关,“另一只靴子”终于落地。在发表于《自然》的新研究中,他们解开了Tamlo-R32突变背后的秘密,克服了感病基因MLO突变引起的负面表型,实现了抗病高产“鱼与熊掌”的兼得。  层层推进破悬疑  在敲除MLO得到的大量突变体中,Tamlo-R32为何一枝独秀?这个产量甚至超过普通野生型小麦的材料是怎么出现的?如何通过基因组编辑获得该突变体并将其导入小麦主栽品种中?  2014年之后,围绕Tamlo-R32这个“主角”的系列悬疑,成为高彩霞和合作者要破解的谜题。  但这做起来并不容易。  普通小麦基因组十分庞大,是人类基因组的5倍、水稻基因组的40倍。其序列重复性相当高,基因组结构极为复杂。  一开始,由于小麦基因组数据并不完善,研究团队只能通过一系列漫长的传统遗传学实验进行分析,最终确定在小麦3个染色体组A、B、D中,A和D基因组上都存在预期的突变。  “只有这两个基因组发生改变,还不足以抵抗白粉病,所以B基因组上一定有问题。”高彩霞说,受限于当时的基因组数据,研究团队在这个问题上探索了4年始终未能解决。  直到2018年,借助新完成的小麦基因组重测序数据和染色体精细图谱,这个“暗箱”终于被打开了。  让研究团队吃惊的是,Tamlo-R32突变体的B基因组上竟然发生了高达304Kb(超过30万DNA字母)的大片段删除——这导致该突变体的染色体三维结构被改变,使上游基因TaTMT3(与糖转运蛋白相关)表达水平上升,进而克服了感病基因MLO突变引起的负面表型,最终实现了抗病和产量的“双赢”。  悬疑破解了,但要精确实现304Kb这一大的基因组片段剪切,并非易事。“‘剪刀’的效率要特别高。”高彩霞对《中国科学报》说,抗白粉病基因编辑研究十年来,目前已拥有7项核心技术专利,研究团队还开创了一系列基因组编辑新技术。  正是基于这些核心技术,研究组通过叠加使用“基因剪刀”,在敲除MLO感病基因的同时,删除了TaMLO-B附近的大片段DNA,从而成功将这一抗病高产优异性状引进到我国多个小麦主栽品种中。  由于MLO的基因功能在不同植物中相对保守,研究者进一步发现,在模式植物拟南芥中过表达TMT3也能克服其感病基因突变产生的负面表型。“这证明了叠加的遗传改变可以克服感病基因突变带来的生长缺陷,为作物抗病育种研究提供了新的理论视角。”论文第一作者、邱金龙团队助理研究员李盛楠说。  至此,研究团队终于讲完了利用感病基因进行小麦抗病育种的故事。回顾其中的挑战,高彩霞有些风轻云淡地说:“我们知道路就在那里,只要坚持不懈就一定能够到达。”  这个历经“八年抗战”取得的研究成果获得了审稿人的一致好评。多位审稿人表示这项研究“具有很大应用潜力”。其中一位审稿人指出:“这项工作在探索没有负面效应的抗病小麦育种上迈出了重要一步。”  基因编辑除了“剪刀”还是“橡皮”和“铅笔”  “基因组编辑的一个优点是可以更方便、快捷、精准地进行作物育种和改良。”李盛楠说,研究团队用了数年时间了解Tamlo-R32的突变机制后,仅用了几个月就利用基因组编辑技术在多个小麦主栽品种中获得了抗病且高产的种质资源。而传统杂交育种则需要五六年的时间。  在2019年和2020年于北京和河北赵县进行的大田试验中,联合团队进一步证明了新种质资源的可靠性:常规MLO突变体造成的株高矮化在10%左右,产量降低16%左右;而新突变体具有超出或至少保持与亲本一致的产量。  “培育和推广抗病新品种是防治植物病害最经济、高效和环境友好的策略。”康振生评论说,“这项研究验证了基因组编辑技术的发展对作物性状改良具有重大推动作用,尤其对经典遗传改造难以实施的多倍体复杂基因组农作物的改良,对保障粮食安全具有重要意义。”  “和传统育种技术相比,基因组编辑育种的优势非常明显。”高彩霞对比说,传统杂交育种要引入一个抗病基因,需要进行6~8代的回交,整个过程非常漫长,而且其前提是杂交的亲本种要有抗病基因。通过突变育种(辐射、化学诱变等方法)具有盲目性和随机性,找到理想的突变体无异于大海捞针。而基因组编辑为精准定向育种提供了可能。  “通过基因组编辑可以不添加任何外源性的基因,只需要把靶向的序列修改好,大大节省了时间、减少了工作量。”她补充说。  高彩霞指出,基因组编辑技术经过10年的发展已经不仅仅是“一把剪刀”的概念。进化至“2.0时代”的碱基编辑和引导编辑还可以是一块“橡皮”或一支“铅笔”。“如果一个序列有点多,你可以把它剪掉;如果组成DNA的四个字母ATCG有一个错了,你可以用‘橡皮擦’把它擦掉,然后用‘铅笔’写入正确的字母,而‘铅笔’‘橡皮擦’是不留在细胞里的。”  好消息是,今年1月底农业农村部制定公布了《农业用基因编辑植物安全评价指南(试行)》,进一步规范了农业基因编辑植物的安全评价管理,促进我国生物育种技术和产业发展。“在这个政策的鼓舞和鞭策下,相信我国很快会有更多的基因组编辑材料进入田间和市场。”高彩霞表示,下一步将深入开展小麦白粉病新种质资源的开发和推广应用。  相关论文信息:https://doi.org/10.1038/s41586-022-04395-9
  • 特色应用| 岛津气味分析系统助力小麦储藏年份鉴别方法研究
    岛津中国创新中心与国家粮食和物资储备局科学研究院杨永坛研究员团队在粮食储藏年份的鉴别方法研究中取得新进展。研究基于岛津固相微萃取-气相色谱三重四极杆质谱对小麦中挥发性风味物质的种类和含量进行分析,通过多元统计分析筛选不同储藏年份小麦中的特征差异化合物,并以此为基础建立小麦储藏年份的分类鉴别模型,为小麦的储藏年份鉴定提供技术支撑。研究成果以“基于挥发性风味物质分析的小麦储藏年份鉴别方法研究”为题,已发表在《食品安全质量检测学报》。背景介绍小麦是中国最重要的口粮之一,小麦产业发展与国家粮食安全和社会稳定密切相关。小麦具有较长的后熟期,在温湿度适宜的环境下可储藏3至5年。随着储藏时间的延长,小麦的化学成分、组织结构、生理特性等均不断发生变化。我国国情决定了庞大的小麦储备量,对于中央储备粮承储库,国家要求在粮食收储和轮换入库过程中必须收购当年新粮,确保品质优良的新鲜小麦入库。而小麦加工行业则需收购经过后熟期的小麦, 原因是新鲜小麦蛋白质、脂肪和矿物质等营养成分尚未完全转化,导致食用品质不佳而不适宜直接加工。因此,国家粮食储备库和加工企业收购小麦时,对于小麦储藏年份鉴别存在客观需求。传统的小麦储藏时间分析方法主要有感官鉴定法、愈创木酚反应法、脂肪酸值法和红外光谱法等。感官鉴定法通过色泽、气味和外观形态来判定小麦品质,需依赖评价人员的经验,易受其主观性的影响;愈创木酚反应法显色深浅差异不明显,对相邻年份小麦样品判断存在困难 脂肪酸值法基于小麦储藏过程中化学成分的变化,在一定程度上可以判断小麦的新陈, 但在粮堆发热时霉菌活跃可能导致脂肪酸作为营养物质被消耗, 还需要结合其他指标进行综合判定;红外光谱法样品制备过程繁琐, 应用于小麦籽粒样品时存在前处理较复杂的局限性。小麦储藏过程中伴随着挥发性物质的产生和变化,主要来源包括小麦自身脂质的氧化和水解、蛋白质和氨基酸的降解、糖类的代谢以及微生物活动产生的挥发性物质等,挥发性风味物质的变化是反映小麦储藏品质及营养价值改变的重要特征。固相微萃取技术能对含量较低的挥发性物质进行富集,具有快速、灵敏、无需溶剂的优点,基于固相微萃取-气相色谱三重四极杆质谱开发小麦中挥发性风味物质的检测方法有望为粮食储藏年份无损鉴别提供重要技术手段。研究内容本研究采用固相微萃取-气相色谱三重四极杆质谱(GCMS-TQ系列),结合专属型多反应监测(MRM)数据库,建立了小麦中挥发性风味物质的分析方法。实验从采集自2018、2019、2020、2021和2022年的小麦籽粒样品中检出了94种挥发性化合物,去除其中可能来源于包装材料或环境的化合物后,检出的挥发性风味物质有73种,包括醇类、醛类、酮类、杂环类、酸类等多种化合物类型(如图1a)。按检出化合物类型对风味物质的相对含量数据进行凝聚层次聚类分析,2018 年和2019年小麦样品与其他3个年份聚为两类,表明小麦中挥发性风味物质与储藏年限存在一定的相关性,其中酯类、酸类、醇类和烃类化合物在储藏年限大于3年时含量明显高于储藏3年内(如图1b)。图1. (a)2018年山东小麦样品中所含挥发性风味物质类型组成图;(b)2018年至2022年小麦挥发性风味物质的凝聚层次聚类分析结果。各年份小麦样品获得的挥发性风味物质偏最小二乘法判别分析(PLS-DA) 结果如图2a所示,5个年份的样品呈明显的聚类状态,表明不同年份间的小麦中的挥发性化合物存在明显差异。从检出的所有化合物中以变量投影重要性(VIP)大于1作为阈值,筛选出37种不同年份间小麦中的差异化合物,其中VIP 值在前15 位的化合物如图2b所示。交叉验证(图2c)及置换检验(图2d)的参数均说明,基于小麦中特征挥发性化合物建立的样本储藏年份判别模型可靠, 不存在过拟合现象。注:a为PLS-DA;b为VIP值;c为PLS-DA交叉验证,*表示目前所选交叉验证的最佳结果;d为PLS-DA模型置换检验结果。图2. 2018至2022年小麦风味物质的PLS-DA结果进一步探讨不同年份间小麦中挥发性风味物质的含量分布差异,可以看出有两类挥发性化合物出现规律性变化。4种内酯类化合物含量随储藏时间延长而增加 (图3a),3种醇类化合物含量同样随储藏时间延长而增加 (图3b)。图3. 不同储藏年份小麦特征差异物箱线图结论基于岛津固相微萃取-气相色谱三重四极杆质谱仪开发建立小麦中挥发性风味物质的分析方法,对2018至2022年收获的小麦样品中的挥发性风味物质种类和含量进行检测和分析,应用多元统计分析方法筛选不同年份的小麦间具有显著性差异的化合物,并基于特征差异化合物构建了小麦储藏年份的样本判别模型,有望解决小麦流通环节储藏年份鉴别的难题,为保障粮食品质和节粮减损提供有利分析工具。岛津多功能自动进样器-气相色谱三重四极杆质谱仪参考文献:[1] 张玉荣, 张晓, 田甜, 等. 加速陈化过程中小麦品质变化及陈化指标筛选[J]. 河南工业大学学报(自然科学版), 2020, 41(5): 91‒ 97. ZHANG YR, ZHANG X, TIAN T, et al. Changes of wheat quality during accelerated aging and screening of aging indicators [J]. J Henan Univ Technol (Nat Sci Ed) , 2020, 41(5): 91‒ 97.[2] 张欢欢, 吴小良, 祁鸣, 等. 小麦新陈度鉴定的现状分析和新方法探讨[J]. 粮食加工, 2016, 41(3): 17‒ 20. ZHANG HH, WU XL, QI M, et al. Present situation analysis and new method discussion of wheat freshness identification [J]. Grain Process, 2016, 41(3): 17‒ 20.[3] NIU YN, XIE GD, XIAO Y, et al. Spatiotemporal patterns and determinants of grain self-sufficiency in China [J]. Foods, 2021, 10(4): 747.[4]郭瑞,张晓莉,李盼盼等. 基于挥发性风味物质分析的小麦储藏年份鉴别方法研究[J].《食品安全质量检测学报》, 2023, 14 (24): 303-312.本文内容非商业广告,仅供专业人士参考。
  • 你说的白,是什么白:小麦粉中硫脲的测定
    2019年,国家粮食和物资储备局办公室在第330号通知[1]中公开了国家标准《小麦粉》征求意见稿,其中小麦粉的定义为:小麦粉wheat flour是指由普通小麦(六倍体小麦,Triticum aestivum L.)经过碾磨制粉,去除部分麸皮和胚并达到一定加工精度要求的、未添加任何物质的、能够满足制作面制食品要求的产品。与《关于进一步加强小麦粉质量安全监管的公告》(2017 年第132号)[2]中关于小麦粉(通用)中添加物的要求,即“取得‘小麦粉(通用)’生产许可的企业,不得在小麦粉中添加任何食品辅料”,保持一致。 早前被允许添加之后又被禁止的过氧化苯甲酰(Dibenzoyl peroxide, BPO),在近几年的食品安全抽检中时有被检出,其非法添加的目的主要是给新生产的小麦粉脱色[3]。然而在小麦粉的加工和储藏过程中,经常会出现颜色加深的现象,即褐变。发生褐变的主要原因是,小麦籽粒中的多酚氧化酶(Polyphenol oxidase, PPO)催化酚类物质氧化生成褐色或黑色的醌类物质[4],从而影响了小麦粉的色泽,降低了小麦粉的品质。 根据GB 2760-2014 附录B[5]中,对食品漂白剂的定义:能够破坏、抑制食品的发色因素,使其褪色或使食品免于褐变的物质。针对小麦粉的酶促褐变,一些不法的的商贩会通过添加具有还原性的硫脲(Thiourea)进行漂白,硫脲能够抑制多酚氧化酶的活性,阻止褐变的发生,在一定程度上将醌类还原成酚类,掩盖不好的品质,达到提亮增白的效果。而硫脲的非法添加会刺激呼吸道和肠道,抑制甲状腺和造血器官的机能,引起咳嗽、胸闷、头痛、嗜睡、无力、面色苍白、面部虚肿、基础代谢降低、血压下降、脉搏变慢、白细胞减少等症状[6]。早在2001年,世界卫生组织国际癌症研究机构就将硫脲列在了3类致癌物清单中。 原食品药品监督管理总局于2016年发布第196号公告[7],公布了食品补充检验方法《小麦粉中硫脲的测定 BJS 201602》,填补了国内硫脲检测标准的空白。为了进一步规范企业的生产行为,加强小麦粉质量安全监管,总局于2017年发布第132号公告[2],其中明确规定“严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料”。 在此背景下,赛默飞实验室对高效液相色谱法测定小麦粉中硫脲的实验条件,开展了相关研究工作。 01样品前处理准确称取均质小麦粉1.0 g(精确至0.01 g)于15 mL旋盖螺口圆底离心管中,加入10.00 mL 80:20乙腈水,旋紧盖子,涡旋分散30 s,水浴超声提取20 min(由于超声时间较长,水浴温度会升高,建议加入冰袋控温),10000 rpm 4℃ 冷冻离心10 min,取上清液过0.2 μm亲水PTFE微孔滤膜,滤液上机测试。02色谱条件● 液相色谱仪:UltiMate™ 3000 HPLC 液相色谱系统● 色谱柱:Syncronis™ HILIC, 250×4.6 mm, 5μm (P/N: 97505-254630)● 柱温:20 ℃● 进样量:5 µL● 流动相:A为乙腈,B为水● 洗脱程序:A:B=90:10,等度洗脱● 流速:1 mL/min● 检测波长:246 nm● 采样频率:5 Hz● 采集时间:12 min03实验结果与讨论3.1色谱条件优化 3.1.1 色谱柱选择硫脲标准品溶液在Syncronis HILIC色谱柱上获得了出色的峰型和优异的灵敏度。图1. 硫脲标准品溶液色谱图(1.00 μg/mL) (点击查看大图) 3.1.2 样品溶剂的选择在HILIC模式下,采用80:20乙腈水作为标准品稀释液时,10.0 μg/mL硫脲标准品得到了尖锐且对称的峰型。图2. 硫脲标准品溶液色谱图(10.0 μg/mL)(A:稀释溶剂为纯水,B:稀释溶剂为80:20乙腈水)3.1.3 柱温的选择当色谱柱柱温选择20 ℃ 时,硫脲峰与杂质峰可达到基线分离。同时,采集时间由10 min延长至12 min,可避免11 min左右的杂质峰延迟至下一针进样时出峰。图3. 30℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)图4. 20℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)3.2样品前处理优化本次试验中前处理流程为:称取1.00 g小麦粉,加入10.00 mL 80:20乙腈水(提取溶剂与标准品稀释溶剂保持一致),涡旋混匀,高速冷冻离心,取上清液过膜,上机测试。处理一批次8个样品,耗时约1小时。而标准推荐的前处理流程,在提取、过滤(离心)后,加入了旋蒸浓缩10 mL 80:20乙醇水提取液的操作,耗时较长,且样品通量小。因此优化后的前处理流程,提高了样品通量,减少了溶剂用量,效率得到提升。 3.3线性范围、方法检出限及方法定量限在优化的色谱条件下,硫脲标准工作液线性范围为0.20-5.00 μg/mL,线性方程y=0.9109x-0.0300,线性相关系数r2=0.99992,线性关系良好。硫脲线性方程图及标准曲线点叠加色谱图。在优化前处理条件下,硫脲方法检出限为2.0 mg/kg,定量限为5.0 mg/kg。 图5. 硫脲线性方程图及标准曲线点叠加色谱图(点击查看大图)3.4回收率和精密度小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围在 91.2%~95.0% 之间,相对标准偏差在 0.57%~2.36% 之间(n=6)表1 小麦粉基质 2.0、5.0、20.0 mg/kg三水平加标回收率范围和精密度(点击查看大图)图6小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围和精密度(点击查看大图)图7小麦粉基质中硫脲方法检出限 MDL 浓度 (2.0 mg/kg) 加标 (点击查看大图)图8小麦粉基质中硫脲方法定量限 LOQ 浓度 (5.0 mg/kg)加标(点击查看大图)图9小麦粉基质中硫脲10倍方法检出限浓度 (20.0 mg/kg)加标(点击查看大图)04结论本方法针对食品补充检验方法《小麦粉中硫脲的测定 BJS201602》进行了优化,简化了前处理流程,优化了色谱条件,线性范围、方法检出限及定量限、加标回收率及精密度均能满足方法确认的要求。该方法简单、便捷,适用于小麦粉中非法添加物硫脲的快速测定。 参考文献:[1] 国家粮食和物资储备局办公室. 关于《小麦》《小麦粉》国家标准公开征求意见的通知 国粮办发[2019]330号[EB/OL]. http://www.lswz.gov.cn/html/zmhd/yjzj/2019-11/11/content_247627.shtml[2] 总局关于进一步加强小麦粉质量安全监管的公告(2017年第132号)[J]. 现代面粉工业,2017,31(06):28.[3] 于鸿飞. 国内外小麦粉标准的差异及我国现行小麦粉标准的修订研究[D]. 西北农林科技大学,2011.[4] 黄海霞,张真,吴金芝. 小麦多酚氧化酶特性及褐变控制研究[J]. 安徽农业科学,2008,36(31):13574-13575,13638.[5] GB 2760-2014. 食品安全国家标准 食品添加剂使用标准[S]. 2014[6] 焦安浩. 硫脲的危险性及安全管理措施研究[J]. 化工管理,2021(07):95-96[7] 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告[J]. 中国食品卫生杂志,2017,29(01):25.[8] Thermo Fisher Scientific Technical Guide 21003:HILIC Separations Technical Guide-A Practical Guide to HILIC Mechanisms, Method Development and Troubleshooting[A/OL]. https://assets.thermofisher.cn/TFS-Assets/CMD/brochures/TG-21003-HILIC-Separations-TG21003-EN.pdf . 2014
  • 2023年6月份有210项标准将实施——农业食品类标准领衔
    2023年6月份有210项标准将实施我们通过国家标准信息平台查询到,在2023年6月份将有210项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:6月份新实施标准占比在6月份新实施的标准中,农林牧渔食品相关标准占据了60%,医药卫生类标准分别占据29%。其中与农林牧渔食品相关的标准有126个,包含多个产品通则、检测标准及技术规范,特别注意的是农药残留和重金属的检测;而环境方面重点是水质和空气中的有机物检测、土壤中的重金属检测。在6月份新实施的标准中,包含了多品类科学仪器,如:液相色谱 - 串联质谱仪 、电感耦合等离子体质谱仪 、液相色谱仪 、紫外分光光度计 、离子色谱仪 、高分辨气相色谱 - 高分辨质谱仪 、X 射线荧光光谱仪 ;除此之外,环境环保领域还涉及到了电化学 、气相色谱-冷原子荧光光谱 仪 联用和液相色谱-原子荧光 仪 联用。具体2023年6月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(126个)GB/T 41899-2022 食品容器用涂覆镀锡或镀铬薄钢板质量通则 GB/T 41898-2022 食品金属容器内壁涂覆层耐蚀力和致密性的测定 电化学法 GB/T 41711-2022 食品金属容器内壁 涂覆层抗酸性 、抗硫性、抗盐性的测定 SC/T 9441-2023 水产养殖环境(水体、底泥)中孔雀石绿、结晶紫及其代谢物残留量的测定 液相色谱 - 串联质谱法 NY/T 895-2023 绿色食品 高粱及高粱米 NY/T 873-2023 菠萝汁 NY/T 749-2023 绿色食品 食用菌 NY/T 706-2023 加工用芥菜 NY/T 705-2023 葡萄干 NY/T 682-2023 畜禽 场场区 设计技术规范 NY/T 471-2023 绿色食品 饲料及饲料添加剂使用准则 NY/T 437-2023 绿色食品 酱腌菜 NY/T 4325-2023 农业农村地理信息服务接口要求 NY/T 4324-2023 渔业信息资源分类与编码 NY/T 4323-2023 闲置宅基地复垦技术规范 NY/T 4322-2023 县域年度耕地质量等级变更调查评价技术规程 NY/T 4321- 2023 多层 立体规模化猪场建设规范 NY/T 4320-2023 水产品产地批发市场建设规范 NY/T 4319-2023 洗 消中心 建设规范 NY/T 4318-2023 兔 屠宰与分割车间 设计规范 NY/T 4317-2023 温室热气联供系统设计规范 NY/T 4316-2023 分体式温室太阳能 储放热 利用设施设计规范 NY/T 4315-2023 秸秆捆烧锅炉 清洁供暖工程设计规范 NY/T 4314-2023 设施农业用地遥感监测技术规范 NY/T 4313-2023 沼液中砷、镉、铅、铬、铜、锌元素含量的测定 微波消解 - 电感耦合等离子体质谱法 NY/T 4312-2023 保护地连作障碍土壤治理 强还原处理法 NY/T 4311-2023 动物骨中多糖含量的测定 液相色谱法 NY/T 4310-2023 饲料中吡啶甲酸铬的测定 高效液相色谱法 NY/T 4309-2023 羊毛纤维卷曲性能试验方法 NY/T 4308-2023 肉用青年种公牛后裔测定技术规范 NY/T 4307-2023 葛根中黄酮类化合物的测定 高效液相色谱 - 串联质谱法 NY/T 4306-2023 木瓜、菠萝蛋白酶活性的测定 紫外分光光度法 NY/T 4305-2023 植物油中 2,6- 二甲氧基 -4- 乙烯基苯酚的测定 高效液相色谱法 NY/T 4300-2023 气候智慧型农业 作物生产 固碳减 排监测与核算规范 NY/T 4299-2023 气候智慧型农业 小麦 - 玉米生产技术规范 NY/T 4298-2023 气候智慧型农业 小麦 - 水稻生产技术规范 NY/T 4297-2023 沼肥施用技术规范 设施蔬菜 NY/T 4296-2023 特种胶园生产技术规范 NY/T 4295-2023 退化草地改良技术规范 高寒草地 NY/T 4294-2023 挤压膨化固态宠物(犬、猫)饲料生产质量控制技术规范 NY/T 4293-2023 奶牛养殖场生乳中病原微生物风险评估技术规范 NY/T 4292-2023 生牛乳中体细胞数控制技术规范 NY/T 4291-2023 生乳中铅的控制技术规范 NY/T 4290-2023 生牛乳中 β- 内酰胺类兽药残留控制技术规范 NY/T 4289-2023 芒果良好农业规范 NY/T 4288-2023 苹果生产全程质量控制技术规范 NY/T 4287-2023 稻谷低温储存与保鲜流通技术规范 NY/T 4286-2023 散粮集装箱保质运输技术规范 NY/T 4285-2023 生 鲜果品冷链 物流技术规范 NY/T 4284-2023 香菇采后储运技术规范 NY/T 4283-2023 花生加工适宜性评价技术规范 NY/T 4282-2023 腊肠加工技术规范 NY/T 4281-2023 畜禽骨 肽加工 技术规程 NY/T 4280-2023 食用蛋粉生产加工技术规程 NY/T 4279-2023 洁蛋生产 技术规程 NY/T 4278-2023 马铃薯馒头加工技术规范 NY/T 4277-2023 剁 椒 加工技术规程 NY/T 4276-2023 留胚米加工 技术规范 NY/T 4275-2023 糌粑生产技术规范 NY/T 4274-2023 畜禽屠宰加工设备 羊悬挂输送设备 NY/T 4273-2023 肉类热收缩包装技术规范 NY/T 4272-2023 畜禽屠宰良好操作规范 兔 NY/T 4271-2023 畜禽屠宰操作规程 鹿 NY/T 4270-2023 畜禽肉分割技术规程 鹅肉 NY/T 4269-2023 饲料原料 膨化大豆 NY/T 4268-2023 绿色食品 冲调类方便食品 NY/T 4267-2023 刺梨汁 NY/T 4266-2023 草果 NY/T 4265-2023 樱桃番茄 NY/T 4264-2023 香露兜 种苗 NY/T 4263-2023 农作物种质资源库操作技术规程种质圃 NY/T 418-2023 绿色食品 玉米及其制品 NY/T 392-2023 绿色食品 食品添加剂使用准则 NY/T 3376-2023 畜禽屠宰加工设备 牛悬挂输送设备 NY/T 3357-20 23 畜禽屠宰加工设备 猪悬挂输送设备 NY/T 2984-2023 绿色食品 淀粉类蔬菜粉 NY/T 2799-2023 绿色食品 畜肉 NY/T 274-2023 绿色食品 葡萄酒 NY/T 216-2023 饲料原料 亚麻籽饼 NY/T 211-2023 饲料原料 小麦次粉 NY/T 2109-2023 绿色食品 鱼类休闲食品 NY/T 1991-2023 食用植物油料与产品 名词术语 NY/T 1405-2023 绿色食品 水生蔬菜 NY/T 1326-2023 绿色食品 多年生蔬菜 NY/T 1325-2023 绿色食品 芽苗类蔬 菜 NY/T 1324-2023 绿色食品 芥菜类蔬菜 NY/T 130-2023 饲料原料 大豆饼 NY/T 116-2023 饲料原料 稻谷 NY/T 1049-2023 绿色食品 薯芋类蔬菜 DB42/T 2004-2023 棉花 - 油菜双 直播机械化生产技术规程 DB42/T 2003-2023 东方百合鲜切花设施生产技术规程 DB1410/T 134-2023 花生抗旱栽培技术规程 DB1410/T 133-2023 小麦人工授粉育种技术规程 DB1410/T 132-2023 旱地谷子地膜覆盖沟穴播生产技术规程 DB1410/T 074-2023 旱地优质冬小麦生产技术规程 DB1507/T 82-2023 寒地水稻 浅湿干 节水灌溉栽培技术规程 DB1507/T 81-2023 大兴安岭南麓黑土地培育技术规程 DB44/T 2419-2023 全生 晒柑普 茶生产技术规程 DB5203/T 37-2023 朝天 椒 病虫害绿色防控技术规程 DB5203/T 36-2023 花椒栽培技术规程 DB5203/T 35-2023 高粱高效种植技术规程 DB14/T 2718—2023 农村电子商务平台农产品交易服务规范 DB14/T 2717—2023 农产品(果蔬)供应链管理通用要求 DB50/T 1381-2023 早熟 梨 品质评价规范 DB50/T 142-2023 马铃薯 脱毒种 薯繁育技术规程 DB1405/T 039-2023 园林 草坪建 植与养护技术规范 DB41/T 1519-2023 规模化猪场生物安全技术规范 DB41/T 1517-2023 规模化蛋鸡场生物安全技术规范 DB41/T 708-2023 规模牛场口蹄疫生物安全控制技术规范 DB41/T 1628-2023 砖墙钢骨架结构日光温室设计规范 DB41/T 2401-2023 钢骨架结构塑料大棚设计规范 DB41/T 2395-2023 春茶采摘气象指数 DB41/T 2394-2023 小麦种子包衣技术规程 DB41/T 2393-2023 芝麻主要病虫害综合防治技术规程 DB41/T 2392-2023 小麦抗茎基腐病评价技术规范 DB41/T 2391-2023 小麦抗赤霉病评价技术规范 DB36/T 1723-2022 优质晚稻早熟品种早晚季连种栽培技术规程 DB36/T 1722-2022 晚稻常规粳稻栽培技术规程 DB36/T 1721-2022 龙回红 脐橙栽培技术规程 DB36/T 1720-2022 牧草裹包青贮技术规程 DB36/T 1719-2022 家禽粪污异位发酵 床操作 技术规范 DB36/T 1718-2022 多花黑麦草补播改良天然草地技术规程 DB36/T 1717-2022 菜用甘薯栽培技术规程 DB36/T 1716-2022 猕猴桃采收与贮藏技术规程 DB36/T 1715-2022 西方蜜蜂育王技术规程 DB36/T 1714-2022 双低油菜 “ 菜油两用 ” 栽培技术规程 环境环保标准(14个)HJ 1293-2023 农药制造工业污染防治可行技术指南 HJ 1292—2023 铸造工业大气污染防治可行技术指南 NY/T 1121.9-2023 土壤检测 第 9 部分:土壤有效 钼 的测定 NY/T 1121.14-2023 土壤检测 第 14 部分:土壤有效硫的测定 HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 HJ 1270-2022 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱 - 高分辨质谱法 HJ 1269-2022 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集 / 气相色谱 - 冷原子荧光光谱法 HJ 1268-2022 水质 甲基汞和乙基汞的测定 液相色谱 - 原子荧光法 HJ 1267-2022 水质 6 种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 DB44/T 2417-2023 建设用地土壤污染修复效果评估监测质量控制技术规范 DB14/T 2725—2023 锅炉污染物减排优化方法及能效评价 DB41/T 2388-2023 铸造工业大气污染防治技术规范
  • 关注小麦粉中毒素,让居家战“疫”美食更安心
    导读一场疫情,让不少网友解锁厨艺技能之余,也感受到了厨房、美食的温暖力量。人们足不出户便可上演一出“疫情下的舌尖”,面包、蛋糕、包子、馒头、油条、披萨… … 只要有一包小麦粉在手,谁还不是厨艺界一颗冉冉升起的新星呢?小编近来查询了国家和省级市场监督管理局自2019年2月~2020年2月发布对小麦粉的质量抽检数据。结果显示,近一年来监管部门共检出33批次不合格小麦粉,不合格原因主要是真菌毒素超标,其中呕吐毒素的不合格率高企。 01 什么是呕吐毒素呕吐毒素(Vomitoxin),又称脱氧雪腐镰刀菌烯醇(DON),属单端孢霉烯族化合物,通常是由生长在谷类物品(如小麦、玉米和大麦)霉菌镰红菌素生成的,可引起猪的呕吐,故得名。当人摄入了被DON污染的食物后,会导致厌食、呕吐、腹泻、发烧、站立不稳、反应迟钝等急性中毒症状,严重时损害造血系统造成死亡。国际癌症研究机构将呕吐毒素被列为3类致癌物。我国食品安全国家标准《GB 2761-2017食品中真菌毒素限量》中规定谷物及其制品中呕吐毒素限量为1000 μg/kg。 02岛津解决方案实验部分 检测仪器本实验使用超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统。图1 岛津超快速三重四极杆液质联用仪 前处理方法参照GB 5009.111-2016《食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》标准中“第一法 同位素稀释液相色谱-串联质谱法”中的样品提取和净化方法。 主要方法参数色谱柱:Shim-pack XR-ODS III(75 mm x 2.0 mmI.D., 1.6 μm)流动相:A相-0.01%氨水,B相-乙腈洗脱方式:梯度洗脱离子化模式:ESI(-) 分析结果 标准品色谱图呕吐毒素(DON)及其乙酰化衍生物15-ADON和3-ADON的标准品色谱图如下图所示。校准曲线配制不同浓度的混合标准工作液,按上述条件进行测定。DON,15-ADON和3-ADON分别以13C-DON、13C-15-ADON和13C-3-ADON为内标物,以浓度比为横坐标,峰面积比为纵坐标,内标法制作校准曲线。回收率考察在空白小麦中添加标准溶液,加标浓度为10 μg/kg,平行测定3次,DON、15-ADON、3-ADON3种毒素回收率均在94.8~110.2%之间,回收率良好。 实际样品分析在某市售小麦粉样品中检出DON和 3-ADON,含量分别为130.85和6.40 μg/kg,低于1000 μg/kg的限值要求。03小结使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用建立了测定小麦粉中呕吐毒素及其衍生物的方法,方法快速、简单,灵敏度高,可适用于谷物及其制品中该类毒素的检测。 岛津公司作为全球著名的分析仪器厂商,长期以来一直关注国内外食品和药品安全,积极应对,及时提供全面、快速有效的整体解决方案或数据库。为了更好地帮助广大用户开展生物毒素残留分析检测,岛津公司已推出了《食品中真菌毒素检测整体解决方案》和《LC-MS/MS生物毒素分析方法包》,供相关用户参考使用。以下为最新版生物毒素分析方法包包含的毒素品种:
  • 英国批准新型转基因小麦种植试验
    近日,英国环境、食品与农村事务部已批准其新型转基因小麦田间种植试验的申请,它将在近期开始小规模种植,以验证这种转基因小麦可能带来的产量变化。  洛桑研究所是英国历史悠久的农业技术开发机构,与埃塞克斯大学和兰开斯特大学合作开发了新型转基因小麦。去年11月,洛桑研究所向政府申请在研究所下属的一个农场进行田间种植试验。经过专业委员会评估和公众咨询后,政府批准了这个项目。按计划,田间种植最快在今年春季开始,并将持续至2019年。  据洛桑研究所介绍,新开发的转基因小麦比普通小麦光合作用效率更高,也就是说,转基因小麦将阳光中的能量转化为生物质的过程更高效,能够提高产量。此前研究团队曾表示,希望转基因小麦在试验种植中能增产15%。  参与这个项目的洛桑研究所科研人员马尔科姆霍克斯福德说,通过这项试验,团队可以评估转基因小麦在真实环境中的生长状况,在同样资源和土地面积等条件下,检验其产量能否大幅超过普通小麦。  英国目前没有商业种植的转基因作物,用于科研的田间种植试验也非常少。
  • 我国撰写“小麦印度腥黑穗病”国际标准
    2010年4月,深圳检验检疫局动植中心章桂明研究员参与制定的“小麦印度腥黑穗病Tilletia indica”国际标准(草案)完成编写工作,在南京通过了由全国农业技术推广服务中心、南京农业大学、辽宁省农科院等7位国际植物保护公约(简称IPPC)及国际知名专家的审议,出色地完成了标准起草阶段的工作。该标准草案现已提交IPPC诊断方法技术小组进一步审议。   小麦印度腥黑穗病危及小麦生产,是影响国际贸易的世界性检疫病害,迄今已有40余个国家将其列为检疫性病害。该病害对不同地理气候区域具有广泛的适应性,可通过种传、土传和气传等多种传播途径,且存活力很强,在土壤中存活多年,甚至在经加工的面粉中冬孢子仍可保持活力,一旦传入将难以根除。世界各国均十分重视该病害的检疫工作,不遗余力地投入,建立灵敏度高、特异性强的检测方法,希望在国际贸易中占据有力地位。   深圳检验检疫局章桂明研究员长期从事小麦印度腥黑穗病的研究工作。10年来,他先后完成了“小麦印度腥黑穗病菌与近似种的形态学比较”、“小麦印度腥黑穗病菌及其近似种分子系统发育”、“小麦印度腥黑穗病菌和黑麦草腥黑粉菌常规PCR和双重PCR检测方法”等9个课题的研究工作,取得了一系列具有世界先进水平的科研成果,出版了《植物病原真菌检测方法平台的建立小麦印度腥黑穗病菌和黑麦草腥黑粉菌检测方法研究》专著一部。   基于深厚的科研积淀和学术影响力,2007年章桂明研究员接受IPPC的邀请,参与“小麦印度腥黑穗病菌检疫”国际标准的制定工作,同时接受此项工作的还有英国中央实验室和澳大利亚农林业部的两位专家。在标准草案起草过程中,章桂明对标准的结构设计、内容编排、文字处理,做了大量细致的工作。特别是在该国际标准中应用了其研究成果中的两套小麦印度腥黑穗病菌“实时荧光检测引物和探针”和一个“单个孢子直接破壁方法”专利,首次将代表中国的小麦印度腥黑穗病菌检测方法———未萌发冬孢子检测方法,写入了国际标准。
  • 小麦粉中滑石粉鉴定
    正常小麦粉中矿物质(以灰分计)的含量:特制粉不超过 0.75%,标准粉不超过1.2%,普通粉不超过1.5%。小麦粉中掺入了石膏、滑石粉等,皆能使小麦粉中的灰分增加。在灰分中测出钙离子、硫酸根、二氧化硅,就能定性掺入的物质。(1)灰分的测定方法:称取样品2克放入预先550℃的灼烧恒重的坩埚中,在电炉上加热至炭化,再放入550℃的马费炉中,灼烧2小时,取出冷却降温。如果灰化不完全,再加水或硝酸使灰分湿润,微温至干,然后再放在马费炉中灰化2小时,取出冷却至200℃,移至干燥器中,30分钟后称重,计算灰分。正常小麦粉的灰分为0.75%~1.5%,如果小麦粉中检验出的灰分在1.06%~2%,认为有可疑现象,如果灰分在2%以上,说明小麦粉中掺入了石膏等无机物。采用这种测定方法,可测小麦粉中掺入1%的石膏或滑石粉。(2)二氧化硅定性方法:将测定完灰分含量后的灰分中,加入2倍量以上的研成细末的氢氧化钾,混合均匀,于600℃熔融,冷后加水溶解,向水溶液中滴加(1:1)盐酸,使之呈酸性,如果有胶状物析出(H3SiO3),说明检出了二氧化硅,同时作空白对照。 正常的小麦粉,一般用此法检不出二氧化硅,但掺入大白粉、滑石粉在1%以上时,则可检出。(3)钙离子和硫酸根检验方法:取样品灰分,加(1:1)盐酸溶液 10毫升,加热溶解、过滤,滤液分成两份,一份溶液中加入1%氧化钡溶液1毫升,如果产生大量沉淀,说明检出了硫酸根,同时作空白对照。再在另一份滤液中加入饱和草酸铵溶液1毫升,滴加(1:1)氨水呈弱碱性,产生大量沉淀,则为阳性,同时作空白对照。灰分中如果仅检出钙离子、硫酸根,可认为是掺入石膏,如果同时检出二氧化硅及上述两种离子,可认为是检出了滑石粉或大白粉。当前市场上出售的大白粉,是将滑石粉精制加工而成,其成分与滑石粉相同。
  • 安徽小麦产品质量检测中心通过验收
    1月27日,安徽省质量技术监督局派出专家组由科技处夏显金处长带队对安徽省小麦产品质量检测中心进行验收,市质监局唐杰局长、许良胜副局长、王智副局长全程参与此次验收工作。专家组对安徽省小麦产品质量检测中心的技术能力、实验室建设、装备与科研、运行状态、队伍建设、地方政府承诺落实情况及资金投入等六个方面进行现场验收。   专家组认为:安徽省小麦产品检测中心实验室环境和相关硬件设施已达到筹建要求,相关仪器设备配置到位,技术力量已能满足检测工作的需要,管理机制比较完善,顺利通过此次验收。   验收通过后,安徽省小麦产品质量检测中心将是省内唯一一家专门的小麦及其产品检验检测机构,不仅能够为蚌埠小麦及其制品的发展提供检测服务,还将立足蚌埠,服务全省,辐射周边,进一步做大做强
  • 2018年农业科教环能工作要点发布 强调做好第二次全国农业污染源普查
    p style=" text-align: center " strong 2018年农业科教环能工作要点 /strong /p p & nbsp & nbsp & nbsp & nbsp 2018年,农业科教环能工作总体思路是:以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大精神,认真落实中央农村工作会议、中央1号文件和全国农业工作会议、农业部1号文件精神,按照质量兴农、绿色兴农和效益优先的要求,以农业供给侧结构性改革为主线,大力实施乡村振兴科技支撑行动,加快农业科技创新与推广应用,加强新型职业农民培育,打好农业面源污染防治攻坚战,以试点创建和模式探索示范引领农业绿色发展,以科技创新和制度创新“双轮驱动”农业农村现代化,努力开创农业科教环能事业新局面。 /p p & nbsp & nbsp & nbsp & nbsp 一、以优化布局和机制创新为抓手,持续提升农业科技供给水平 /p p & nbsp & nbsp & nbsp & nbsp strong 1.启动乡村振兴科技支撑行动。 /strong 瞄准国际前沿,强化生物遗传改良、土壤演变规律、资源高效利用等基础研究,重点突破农业合成生物学、作物高光效育种、物联网等10项前沿颠覆性技术。深入实施转基因生物新品种培育重大专项,加快基因组编辑、多基因聚合等新技术研究,培育突破性重大产品。瞄准制约产业转型升级的重大瓶颈,攻克劳动替代型与自动化、农业废弃物循环利用、农业绿色投入品等20项核心关键技术,支撑引领乡村产业兴旺。瞄准大宗农产品、名特优新产品等提质增效,集成应用100项技术模式与装备,培育一批新产业新业态。依托已创建的“三区三园”、美丽休闲乡村等,集聚优势资源,在全国打造1000个科技引领乡村振兴示范样板。 /p p & nbsp & nbsp & nbsp & nbsp strong 2.强化现代农业产业技术体系建设。 /strong 围绕乡村振兴对科技成果的迫切需求,加快体系创新导向重大转变和服务重心重大调整,着力加强减量高效技术、生态循环模式、智能农机装备、绿色标准规范等技术创新和试验示范。加强运行管理,以解决产业实际问题为导向,完善行业部门对体系“提问题、定任务、作评价”的考核评价机制。加强体系之间的联合协作,构建共性技术横向协同创新机制。加强体系地方创新团队建设,承接体系研发成果,因地制宜开展名特优新产品研发,加快推进体系成果的集成熟化与推广应用。充分发挥体系人才和智力优势,为政府决策提供咨询服务和应急支撑。 /p p & nbsp & nbsp & nbsp strong & nbsp 3.做强国家农业科技创新联盟。 /strong 推动联盟积极参与乡村振兴科技支撑行动,重点打造20个标杆联盟。聚焦西北旱区生态循环、东北地区秸秆综合利用、南方稻区重金属污染防治等区域难题,优质奶业、谷物收获机械、深蓝渔业等产业技术瓶颈,推动联盟在技术攻关和模式创新上取得突破。聚焦产学研用实质性融合,推动农业废弃物资源化利用等联盟构建实体化运行机制,小麦赤霉病综合防控等联盟完善一体化协作机制,农业大数据等联盟健全共建共享机制。拓宽支持渠道,构建财政经费、企业资金、社会资本等多元投入机制。规范联盟管理,确保联盟目标聚焦、任务明确、运转高效、持续发展。 /p p & nbsp & nbsp & nbsp & nbsp strong 4.建好现代农业产业科技创新中心。 /strong 以科技创新为基础、产业化为方向,促进创新要素集聚、关键技术集成、关联企业集中、优势产业集群,打造现代农业硅谷和区域经济增长极。按照先建、后认、再挂牌和建一个成一个的要求,继续指导江苏南京、山西太谷、四川成都等3个产业科技创新中心,强化政府支持、出台配套政策、吸纳创新资源,力争建成创新能力强、龙头企业强、辐射带动强的示范样板。指导意向创建的产业科技创新中心,明确建设思路,完善建设方案,聚焦地方产业发展需求,适时启动新的产业科技创新中心建设。 /p p & nbsp & nbsp & nbsp & nbsp strong 5.推进农业基础性长期性科技工作 /strong 。继续开展国家农业科学实验站建设,按照任务合同要求,指导做好长期定位观测监测工作。在布局试运行站点基础上,首批确定命名36个站点,综合考虑学科布局完整性和区域代表性,适时增加命名站点数量,并给予优先支持。加强农业科学数据中心和分中心建设,提升数据管理的规范化和信息化水平。加强制度建设,适时出台国家农业科学实验站、农业科学数据等管理办法。强化观测监测能力建设,进一步提升条件保障水平。 /p p & nbsp & nbsp & nbsp & nbsp strong 6.深化农业科技体制机制改革。 /strong 遴选部分科研院所开展分类评价改革试点,将科技与产业的关联度、科技自身的创新度、科技对产业的贡献度纳入评价标准,转变创新导向,增强创新活力。开展科技成果权益改革试点,推动科研机构完善科技成果使用、处置、收益管理制度,落实依法赋权、分类管理等机制,激发科技人员创新创业积极性。科学确定部属研究院所事业单位分类改革方案,妥善处理拟转企研究所遗留问题。加大农业知识产权保护力度,发布《2017农业知识产权创造指数报告》,保护科技人员权益。 /p p & nbsp & nbsp & nbsp & nbsp strong 7.加强农业转基因生物安全管理 /strong 。按照农业转基因生物监管工作方案,狠抓研究试验、南繁基地、育制种基地监管,坚决打击非法种植。强化进口转基因农产品流向监管,建立追溯体系。完善约谈、督导、巡查、信息报送等机制,强化责任追究和案件曝光。组建全国农业科普传播联盟,以“讲好基因的故事”为主题,鼓励开展科普创意大赛。组织全国巡回宣讲活动,持续开展网络宣传与常态化科普,持续推进进校园、进课堂、进社区等科普活动。 /p p & nbsp & nbsp & nbsp & nbsp 二、以激发活力和提升效能为目标,着力加快农业技术推广与转化 /p p & nbsp & nbsp & nbsp strong & nbsp 8.推动基层农技推广体系改革创新。 /strong 探索公益性推广与经营性服务融合发展机制,引导农技人员为新型农业经营和服务主体提供技术承包、技术转让、技术咨询等形式增值服务,并合理取酬。推动农业科研院校发挥科技和人才优势,加快科技成果转化应用,优化技术推广服务,加强农业农村人才培育。通过购买服务等方式,支持有资质的市场化主体从事可量化、易监管的农技推广服务。推动农技推广补助项目转型升级,创新支持方式,优化实施任务,实行全程绩效管理,对15%项目县进行实地考评,加大实施绩效所占权重。 /p p & nbsp & nbsp & nbsp & nbsp strong 9.开展农业重大技术协同推广计划试点。 /strong 选择部分省份,以重大技术为主线,支持农业科研院校、推广机构、新型农业经营主体等优势互补、分工协作,组建技术指导服务团队,建设农业技术试验示范基地,开展农业重大技术集成熟化和示范推广,完善“农业科研试验基地+区域示范展示基地+基层农技推广站点+新型农业经营主体”的链条式农业技术推广服务模式,实现农技服务与生产需求有效对接。 /p p & nbsp & nbsp & nbsp & nbsp strong 10.加大农技推广服务特聘计划实施力度。 /strong 在贫困地区特别是“三区三州”深度贫困地区以及其他有需求地区,从农业乡土专家、种养能手、新型农业经营主体技术骨干、科研教学单位一线服务人员中招募一批特聘农技员,帮助贫困农户科学发展特色产业,开展技术指导服务,宣传脱贫攻坚政策,激发贫困地区群众脱贫致富的内在活力。 /p p & nbsp & nbsp strong & nbsp & nbsp 11.推广绿色高效技术模式。 /strong 组织推广10项重大引领性农业技术,加强集成熟化,开展示范展示,组织观摩交流。遴选推介100项优质安全、节本增效、绿色环保的农业部主推技术。结合农业部主推技术和本省农业产业发展需要,各省农业部门组织示范推广3—5个绿色高效技术模式,以县域为单元,形成技术操作规范,落实到试验示范基地、农技人员和示范主体,实现技术快速入户到田。 /p p & nbsp & nbsp & nbsp & nbsp strong 12.做好农技推广信息化服务。 /strong 加强农技推广信息平台建设,推动专家、农技人员和服务对象在线学习、互动交流,提高中国农技推广APP在农技人员中的覆盖面和使用率。充分利用信息化手段,开展农技人员业务培训管理、项目绩效考评等工作。通过互联网、移动通讯、广播电视等渠道,组织先进适用农业技术的推送,为广大农民和新型农业经营主体提供精准实时的指导服务。 /p p & nbsp & nbsp & nbsp & nbsp 三、以完善政策和提高质量为重点,大力培育新型职业农民 /p p & nbsp & nbsp & nbsp & nbsp strong 13.推进全面建立职业农民制度。 /strong 会同相关部门,研究制订以职业认证、教育培训、定向扶持等为核心内容的职业农民制度体系,推动出台专门文件。抓好一批全国职业农民制度建设示范省、示范市和示范县,加快完善配套政策,创新体制机制,将新型职业农民培育工作纳入农业农村经济考核,推动地方确立职业农民制度框架。 /p p & nbsp & nbsp & nbsp & nbsp strong 14.壮大新型职业农民队伍。 /strong 依托新型职业农民培育工程,大力实施现代青年农场主培养计划、新型农业经营主体带头人轮训计划、农村实用人才带头人培训计划和农业产业精准扶贫培训计划。2018年培训100万人以上,重点是面向粮食等重要农产品生产,培育新型农业经营主体带头人和农机、植保等专业化服务人员 面向名特优新产品生产,培育专业技能型人员 面向休闲观光等新产业新业态,培育管理经营型人员。 /p p & nbsp & nbsp & nbsp & nbsp strong 15.完善新型职业农民培育模式。 /strong 采取“一点两线全程分段”方式,分层分类分模块,切实提高培育的针对性、规范性和有效性。探索政企合作模式,采取政府购买服务等方式,支持农民专业合作社、龙头企业、农业职业教育集团承担培育任务。支持新型职业农民采取“弹性学制、农学交替”的方式,接受中高等职业教育。 /p p & nbsp & nbsp & nbsp & nbsp strong 16.提升新型职业农民培育条件能力。 /strong 统筹利用农广校、涉农院校、农业科研院所、农技推广机构等各类教育培训资源,加快构建“专门机构+多方资源+市场主体”的农民教育培训体系。充分运用信息化手段,开展在线学习、在线服务和在线考核,实现培育工作线上线下融合发展。继续认定一批全国新型职业农民培育示范基地,加强标准规范、名师队伍、精品课程和教材建设。 /p p & nbsp & nbsp & nbsp & nbsp 四、以降低环境污染和提高资源利用水平为要求,坚决打赢农业面源污染防治攻坚战 /p p & nbsp & nbsp & nbsp & nbsp strong 17.实施秸秆综合利用行动。 /strong 指导各地以县为单元编制全量化利用实施方案,提高秸秆处理利用的区域统筹水平。构建政府、企业、农民三方利益联结机制,集成推广一批县域秸秆全量化利用模式。建设150个秸秆综合利用试点县,打造20个典型示范样板。分区域、分作物、分层级,举办现场交流活动。编制秸秆利用政策清单,培育壮大市场主体,建立五料化利用长效机制。 /p p & nbsp & nbsp & nbsp & nbsp strong 18.抓实地膜回收行动。 /strong 加大农用地膜新国家标准宣贯力度,加快加厚地膜推广应用。研究制定地膜污染防治办法。做好100个地膜治理示范县建设,构建加厚地膜推广应用与地膜回收补贴挂钩机制,开展地膜生产者责任延伸制度试点。培育地膜回收市场主体,不断完善农膜回收体系。加大地膜捡拾机具、资源化利用技术等研发和示范力度,继续开展可降解地膜对比试验。 /p p & nbsp & nbsp & nbsp strong & nbsp 19.强化耕地土壤污染防治。 /strong 在江苏、河南、湖南开展耕地土壤环境质量类别划分试点,探索推进污染耕地分类管理。分区域、分作物品种制定污染耕地安全利用技术要求,开展利用试点。划定特定农产品禁止生产区,严格管控重度污染耕地。继续实施湖南长株潭地区重金属污染耕地修复与种植结构调整试点。 /p p & nbsp & nbsp & nbsp strong & nbsp 20.探索绿色低碳循环农业模式。 /strong 开展生态循环农业试点县(园)创建,抓好100个以沼气为纽带的生态循环农业示范点建设,推动果沼畜种养循环发展。指导生态循环农业试点省、示范市、示范基地建设,推广生态循环农业技术、模式。强化政策扶持和科技供给,构建产业链主体利益链接机制,培育绿色低碳循环农业企业,打造产业化发展的“领跑者”和行业“标杆”。 /p p & nbsp & nbsp & nbsp & nbsp strong 21.发展农村可再生能源。 /strong 出台《关于加快推进农村可再生能源发展的意见》。建设100个农村可再生能源综合示范村,多能互补,因地制宜推广生物质能、太阳能、农村节能等技术。加强已建农村沼气工程的安全生产管理,妥善处置废弃农村沼气设施。盘活已建户用沼气,拓展功能,推进农村厕所革命。实施秸秆气化农村清洁能源利用工程,进一步拓宽农村清洁能源供给渠道。建设一批秸秆打捆直燃清洁供暖示范点。组织农村清洁炉具博览展示会,编制发布《清洁炉灶升级换代发展规划》。 /p p & nbsp & nbsp & nbsp strong & nbsp 22.加强农业生物多样性保护。 /strong 加快推动外来物种管理立法,完善国家重点管理外来入侵物种名录。强化外来入侵物种风险评估、监测预警与综合防控,示范推广生物天敌防治与生物替代技术。加大珍稀濒危农业野生植物资源保护力度,推动制定第二批国家重点保护野生植物名录,开展重点保护物种资源调查与抢救性收集,继续实施农业野生植物原生境保护工程。 /p p & nbsp & nbsp & nbsp strong & nbsp /strong span style=" color: rgb(255, 0, 0) " strong 23.组织农业环境监测调查。 /strong 切实做好第二次全国农业污染源普查。以农田氮磷和畜禽养殖排放为重点,开展农业面源污染例行监测,布设耕地土壤环境质量监测国控点,开展耕地土壤环境质量和农产品协同监测,完善农业环境监测网,掌握农业环境质量总体状况和变化趋势。 /span /p p & nbsp & nbsp & nbsp & nbsp strong 24.强化农业资源环境保护绩效考核。 /strong 制定农业环境监测评价指标体系,科学设置农业投入品强度、废弃物综合利用程度、污染物减排效果等指标,开展以省、县为单位的年度评价试点。紧紧围绕“一控两减三基本”目标任务,做好12个省农业面源污染延伸绩效考核,压实工作责任,形成农业环境保护压力传导机制。 /p p & nbsp & nbsp & nbsp & nbsp 五、以思想政治和作风建设为主线,打造坚强有力的农业科教环能工作队伍 /p p & nbsp & nbsp & nbsp & nbsp strong 25.围绕中心谋划工作。 /strong 坚持用习近平新时代中国特色社会主义思想和党的十九大精神武装头脑,牢固树立“四个意识”,不断增强“四个自信”,自觉在思想上政治上行动上与以习近平同志为核心的党中央保持高度一致。全面落实党中央、国务院实施乡村振兴战略的各项决策部署,紧紧围绕农业部党组中心工作,推进农业科教环能工作取得新成效。 /p p & nbsp & nbsp & nbsp & nbsp strong 26.改进政风行风。 /strong 从机关政风建设、科研学风建设、系统行风建设三个层面入手,加强党员干部的教育、管理、监督,进一步提升全系统规范化管理水平。组织向王一成和最美农技员等先进典型学习活动,以榜样引导系统党员干部践行“一懂两爱”要求。把党风廉政建设放在突出位置,与科教环能工作同部署、同落实、同检查、同考核。 /p p & nbsp & nbsp strong & nbsp & nbsp 27.大兴调查研究。 /strong 坚持问题导向,围绕推进农业科技创新、基层农技推广体系改革、新型职业农民培育、农业面源污染治理等工作重点难点问题,引导组织系统党员干部尤其是领导班子成员,聚焦调研主题、安排专门时间、切实沉下身子,深入基层听真话、察实情、获真知,发现和总结基层鲜活经验。完善调研成果交流共享和转化应用机制,切实把调研成果作为科学决策的重要依据,转化为推动工作的具体措施。 /p
  • 万深检测科技推出新品人工智能稻谷、小麦穗形粒数考种仪
    万深新近推出2款人工智能落地的新品:稻谷穗形粒数考种仪、小麦穗形粒数考种仪 万深的SC-S型稻谷穗形粒数考种仪和SC-T型小麦穗形粒数考种仪,均由800万像素自动对焦拍摄箱体、智能化稻穗分枝数粒测长分析软件、或智能化小麦穗形粒数测长考种分析软件、穗子放置与尺寸标定板等组成。是免培训的傻瓜式分析仪,其专用于水稻快速测产与育种考种,以及灌浆成形后到半成熟期的小麦快速测产与育种考种,可大幅度提高测产考种工作效率。万深SC-S型稻谷穗形粒数考种仪可以一键化自动分析稻谷大穗中各小穗粒数、一次枝梗长、着粒密度及各平均值等,按分枝序列来定位自动分析最多34个一次枝梗长、对应穗粒数、枝梗着粒密度及各平均值的总耗时 万深SC-T型小麦穗形粒数考种仪可以按分枝序列来定位一键化自动分析20个小麦穗的各穗粒数、穗长穗宽、及各穗平均值等,自动数粒误差 万深检测科技这2款新近推出人工智能新品,皆操作人性、简洁、智能,可查看和保存结果标记图,并导出至EXCEL表。展现出了落地后的人工智能技术的强大魅力。万深检测历来聚焦用户的各类痛点问题,以智能科技实力说话,在业界具有广泛、良好的用户口碑。应用万深系列仪器在国内外学术刊物上发表的中外高端学术论文已逾938篇(详见万深检测科技官网)
  • Resonon | Resonon Pika L在估算冬小麦动态收获指数上的应用
    作物收获指数(HI)是评价作物产量和栽培效果的重要生物学参数,是进一步提高作物产量的重要决定因素。对作物育种、作物生长模拟、精准农业作物管理、作物产量估算及其它方面的应用研究具有重要意义。近年来,遥感凭借其在速度、精度和覆盖范围等方面的优势已逐渐成为获取大尺度作物HI的有效技术手段。而无人机(UAV)遥感技术也迅速发展,成为农业遥感监测的新手段。目前,UAV遥感传感器主要包括数码相机、多光谱相机和高光谱相机。其中,高光谱相机具有较多的波段,可以获取与作物生长状况密切相关的波段信息,可以为作物动态生长监测提供丰富的信息源,并可靠收集作物HI动态变化信息。然而,目前利用UAV高光谱遥感估算作物HI并无相关报道。基于此,在所附文章中,来自中国农业科学研究院的一组研究团队以冬小麦为研究对象,充分考虑其开花期至成熟期生物量和灌浆过程的变化以获取作物动态HI(D-HI)的空间信息。动态fG(D-fG)参数估算为开花期至成熟期期间不同生长期累积的地上生物量与对应时期地上生物量的比值。作者基于无人机高光谱遥感(DJI M600 Pro UAV+ Resonon Pika L 高光谱成像)数据进行了D-fG参数估算,提出了一种获取冬小麦D-HI空间信息的技术方法,并验证了所提出方法的精度。通过UAV高光谱数据计算的归一化差异光谱指数(NDSI)和D-fG测量值之间的相关关系筛选出D‑fG估算的敏感波段中心和最佳波段组合,从而实现D‑fG的准确估算。最后,基于D-fG遥感参数和D-HI估算模型,准确获取冬小麦D-HI空间信息。Pika L 高光谱成像仪研究区域中国河北省衡水市深州县(37.71°~38.16°N,115.36°~ 115.80°E)。图1 研究区位置和UAV飞行样地分布。图2 本研究应用方法概述结果表1 D-fG和NDSI之间关系及其精度验证图3 基于敏感波段中心λ(724 nm,784 nm)的D-HI估算结果(2021年5月25日)。图4 基于敏感波段中心λ(724 nm,784 nm)的D-HI估算结果(2021年6月4日)。结论通过将静态fG参数转化为动态D-fG参数,提出了一种基于UAV高光谱数据的D-fG遥感参数获取冬小麦D-HI空间信息的方法并进行验证。最后,准确估算了冬小麦D-HI的空间信息。其中,选取5对敏感遥感波段中心以估算D-fG参数:λ(476 nm,508 nm),λ(444 nm,644 nm),λ(608 nm,788 nm),λ(724 nm,784 nm)和λ(816 nm,908 nm)。验证了基于遥感的D-fG估算值,RMSE为0.0436-0.0604,NRMSE为10.31%- 14.27%,MRE为8.28%-12.55%。同时,5对敏感高光谱波段中心的D-HI空间信息估算精度较高,RMSE为0.0429-0.0546,NRMSE为9.87%-12.57%,MRE为8.33%-10.90%。基于高光谱敏感波段中心λ(724 nm,784 nm)的D-HI估算结果精度最高,RMSE、NRMSE和MRE值分别为0.0429、9.87%和8.33%。本研究中D-fG和D-HI的估算结果具有较高的准确性,证明了所提出的基于UAV高光谱数据估算冬小麦D-HI空间信息的方法的可行性。这对未来利用卫星遥感进行大尺度作物D-HI估算具有一定的参考意义。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311697&idx=1&sn=4d80ee946dd13c8de0696546b9c40941&chksm=bee1a0ee899629f8f3cb273e4a62f4d8ee9c0401ce1a9fddd5448755c2ae8e66b0654c58b3fc&token=1416149618&lang=zh_CN#rd
  • 测定小麦粉溴酸钾含量的国标通过审定
    23日,记者从福建省质监局获悉,由福建省质监局中检所负责起草的国家标准《小麦粉中溴酸钾含量的测定 离子色谱-电感耦合等离子体质谱联用法》日前通过审定。据悉,该标准的发布实施可以有效测定小麦粉溴酸钾的含量,防患于未然,有效维护广大消费者的合法权益。   溴酸钾是一种食品添加剂,通常在小麦粉中使用,添加了溴酸钾的面包、馒头等面制品会更白、更有韧性。它能有效降低成本,因此国内许多面粉企业都使用溴酸钾。但溴酸钾对皮肤、眼睛和黏膜有刺激性,误服则发生呕吐、腹泻、高铁血红蛋白血症、肾脏功能障碍等症状。
  • 中国允许俄罗斯全境小麦进口,涉及三种检测方法
    海关总署网站24日消息,根据我国相关法律法规和《中华人民共和国海关总署与俄罗斯联邦农业部关于〈俄罗斯输华小麦植物检疫要求议定书〉补充条款》的规定,允许俄罗斯全境小麦进口。海关总署公告此前的对俄小麦进口政策是分别审批检疫单个联邦主体(州、边疆区、自治共和国、联邦直辖市等等)的小麦,然后再单独开放该联邦主体的小麦进口。此次允许俄罗斯全境小麦进口最受关注的莫过于小麦矮腥黑穗病菌的检测。小麦矮化腥黑穗病菌(Tilletia controversa Kohn)属中国一类检疫性有害生物,主要危害小麦作物,可造成农作物矮化、分蕖增多等病症。为了防止该植物病原菌随小麦、大麦、黑麦和其他寄主植物种子传入我国,在进境植物检疫时,需正确掌握小麦矮化腥黑穗病菌的检疫和鉴定方法。据了解,小麦矮化腥黑穗病菌是危害麦类作物的一种担子菌,属担子菌亚门(Basidiomycotina ),冬孢菌纲 (Teliomycetes ),黑粉菌目(Ustilaginales),腥黑粉菌科(Tilletiaceae),腥黑粉菌属(Tilletia )。病原菌在麦类作物苗期形成系统侵染。被侵染作物结实时,籽粒被病菌的繁殖体—冬孢子侵占,成为菌瘿。该病原菌的冬孢子形态学特征、自发荧光显微学特征和萌发生理学特征与其他腥黑粉病菌不同,是鉴定该病原菌的依据。小麦矮化腥黑穗病菌的冬孢子星球形、椭圆形或不规则形,具网状饰纹和无色到淡色的胶质鞘,直径(含胶质鞘)为 16.80 μm—32.19 μm,通常为 18 μm—24 μm 冬孢子萌发适宜温度为 2℃-8℃,萌发 时形成先菌丝(担子),在其顶端产生初生小孢子(担孢子),初生小孢子经“H”形交配后产生新月形次生小孢子。小麦矮化腥黑穗病菌可引发小麦矮腥黑穗病,特征表现为罹病植株矮化,病穗麦粒变为病原菌冬孢子构成的病瘿,不能食用,导致严重的产量损失并影响小麦加工产品品质。而网脊高度值(腥黑穗病菌冬孢子外胞壁的向外突起的垂直高度值)是小麦矮化腥黑穗病菌和其近似种—小麦网腥黑穗病菌(Tilletia caries Tul.)冬孢子最重要的区别特征,前者的网脊高度值(平均值±标准差)为1.43 μm ± 0.14 μm,后者为0.53 μm ± 0.19 μm。当某个冬孢子的网脊高度值大于0.95 μm时,视为小麦矮化腥黑穗病菌冬孢子,小于或等于 0.95 μm时,视为小麦网腥黑穗病菌冬孢子。冬孢子的自发荧光和萌发生理试验也可以作为进一步鉴定的依据。参考资料:NY/T 2289-2012 小麦矮腥黑穗病菌检疫检测与鉴定方法、GB/T 18085-2000 植物检疫 小麦矮化腥黑穗病菌检疫鉴定方法
  • 河南小麦国家工程实验室在郑州正式奠基动工
    “农业大省”新名片——   小麦国家工程实验室3年左右建成   将成为中西部地区第一个关于粮食的国家实验室   河南省小麦平均亩产已由1949年的不足百斤,增加到目前的近800斤   从“饲料粮”到“面包粮”,从“低产田”到“高产田”,从不能自给自足到每年400多亿斤原粮调运外省,河南农业发展的每一个台阶,都留下了“科技”的身影,“科技是第一生产力”的理论在我省农业现代化进展中体现得淋漓尽致。未来粮食核心主产区至2020年达到1300亿斤的目标最终依靠的还是技术。《中原经济区规划》提出,农业科技提升工程:建设小麦国家工程实验室,建设一批省级涉农重点实验室和工程技术研究中心,助推河南“农业大省”向“农业强省”的跨越,河南的农业科技研发将更有“地位”。   小麦国家工程实验室2015年建成   2011年5月,国家发展改革委批准了小麦国家工程实验室(郑州)项目资金申请报告,以河南省农业科学院为依托建设小麦国家工程实验室,这是中西部地区第一个关于粮食的国家实验室。   2012年8月,小麦国家工程实验室在郑州正式奠基动工,预计3年左右建成。   省农科院小麦研究中心主任,也是未来小麦国家工程实验室主任许为刚曾表示,实验室建成后将成为河南这个“农业大省”的一张新名片,重点解决当前小麦研究中广适性超高产品种少、育种速度慢等问题,形成支撑小麦平均单产提高5%以上的技术能力,为黄淮海麦区小麦增产提供技术支撑。   良种对小麦生产的贡献率达40%   今年我省粮食生长过程可谓“艰苦”,干旱、病害、虫害等侵扰接连考验。就是在这样不利的情况下,我们依然交出了夏粮“十连增”,秋粮生产突破500亿斤,创历史新高的优秀答卷。   在粮食产量增加的背后因素中,单产提高的贡献率超过65%,省农科院研发的优良品种居功至伟。河南省农业厅厅长朱孟洲曾表示:粮食增产的背后,一个重要的因素就是科技创新的巨大推动力。据了解,我省小麦品种经过9次换代,平均亩产已由1949年的不足百斤,增加到目前的近800斤,增长了近10倍,小麦良种对小麦生产的科技贡献率达40%,位居全国第一。   “新名片”将提升河南农业地位   省农科院一个专家表示,未来的小麦国家工程实验室建成后,我省小麦科技研发将上一个大台阶,服务对象将不仅仅是河南一省,还将对全国小麦种植区提供技术帮助,这将提升我们河南农业在全国的地位。   记者从河南省农业科学院获悉,除了小麦国家工程实验室之外,我省还将陆续建立多个设备齐全的农业科研实验基地,基本上覆盖我省所有的农作物品种,并采取措施吸引更多的农业专业人才,力争到2020年,以小麦国家工程实验室为“核心”,形成强大的农业科研体系。   省农科院的专家胡琳认为,依托强大的科研条件和环境,新品种的培育周期将会加快。   相关链接   现代农业支撑体系建设   重点工程(节选部分):   农产品流通体系建设工程:建成一批农产品综合批发交易市场。   农产品质量安全体系建设工程:每个中心城市建设农产品质检中心,每个农业大县市建设农产品质检站。   农业信息化建设工程:建设完善的覆盖市、县的农业监测预警信息系统和农业综合信息服务平台,在每个乡镇建设农业综合信息服务站和专业信息服务站。   农业气象防灾减灾工程:建设市县气象灾害监测、预报预警、防御和信息服务系统。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制