当前位置: 仪器信息网 > 行业主题 > >

小分子药物

仪器信息网小分子药物专题为您整合小分子药物相关的最新文章,在小分子药物专题,您不仅可以免费浏览小分子药物的资讯, 同时您还可以浏览小分子药物的相关资料、解决方案,参与社区小分子药物话题讨论。

小分子药物相关的资讯

  • 基因泰克DiCE联手寻找高难靶点小分子药物
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/c0290159-fbc4-4ab5-91e7-f62c88308bf5.jpg" / /p p   strong  新闻事件 /strong /p p   昨天基因泰克宣布将与DiCE Molecules合作开发小分子药物。DiCE的技术平台是DNA编码化合物库(DEL)合成、指导演化、组合化学的复合体,从几亿到上十亿的化合物开始、利用独特优化系统号称可以为任何靶点找到类药配体。这个合作主要研究现在公认的非成药靶点。根据协议,DiCE将获得一定首付和各种里程金,但具体金额都没有公开。 /p p    strong 药源解析 /strong /p p   DiCE 是斯坦福大学Pehr Harbury教授于2013年创建的新技术公司,主要利用DEL技术搜索化学空间,为困难靶点寻找小分子配体。去年已经与赛诺菲签订了5年、最多12个靶点的合作计划,获得5000万首付和潜在每个靶点1.8亿各种里程金(总额可达23亿)。昨天是第二次与大药厂合作。 /p p   第一代DEL只是用DNA作为一个条形码记录每个化合物的合成历史。这与其它条形码、如不同长度的烷烃没有本质区别,但因为DNA可以通过PCR放大所以反应可以用很少量反应物、因此DEL库可以非常大,上10亿的库并不困难。后来David Liu等人利用DNA的互补双链不仅标记反应物、还可以作为模板控制哪些反应物参加反应。Liu创建了Ensemble并与多家大药厂合作开发困难靶点药物,但今年宣布解散。DEL到目前为止最大的成功据我所知是葛兰素的RIP抑制剂。这个发现不仅利用了DEL,而且还有很多其它最前沿的药物化学技术,值得大家学习一下(这里)。找到的RIP抑制剂选择性和其它性质在激酶抑制剂里确实非常优秀。 /p p   DiCE的平台虽然细节很少,但号称是加上筛选压力和遗传变异机制。选择压力比较容易想象,所有筛选平台都要找到个别“适者”、多数情况下就是与靶标蛋白结合的化合物,然后淘汰绝大多数不合时宜的化合物。DiCE的平台是多轮DEL合成。所谓遗传大概是指保留苗头化合物的需要性质,变异则应该是改变分子的某个模块。和天然蛋白只有20个氨基酸不同,DEL的模块可以远远多于20个。这个过程也可能重复合成第一代化合物库里面已经包括的化合物,但更系统的SAR可以增加筛选准确性(去除假阳性、回收假阴性)。 /p p   DEL可以在更广阔化学空间更高效筛选先导物,但适合DEL的化学反应是有限的、每个化学反应可以买到的起始原料是有限的。DEL涵盖的空间很大、但对寻找新药不一定最重要。虽然很多技术号称可以合成天然产物类似物,但多数只能合成简单的分子类型,DiCE似乎还只能合成多肽类似物。当然更重要的障碍是筛选压力(即优化系统)。优化指标现在还基本是一本糊涂账,我们即不知道哪些性质候选药物需要有、也不知这些万里挑一的化合物有哪些致命隐私。对于抗体药物选择性可以比较可靠地假设已经合格,但小分子药物城府要深得多,经常在关键时刻才交代脱靶活性。虽然GSK的RIP1抑制剂说明DEL可能非常有用,但Ensemble的倒闭也说明DEL也只是诸多技术中的一个。 /p p /p
  • 小分子、大分子药物生物分析及表征技术进展
    p   结构确认、生物分析、表征和质量控制方法等的研究是药物研发过程中的重要环节,这些研究必须尽可能准确、灵敏且具有选择性。在过去30年里,液相色谱和串联质谱(LC-MS-MS)技术一直是许多小分子药物分析的首选方法。在此期间,分析技术的高速发展为灵敏、可靠方法的开发提供了支持。但是当前制药/生物制药行业仍然渴求更强大的工具和更多样的方法,尤其是在市场上出现越来越多的大分子治疗药物的情况下。本文讨论了目前小分子及大分子药物生物分析过程中的问题,以及分析方法开发中的新趋势等。 /p p   液相色谱-质谱联用技术从上世纪90年代起即广泛应用于药物发现和研发实验室,因为这种技术有能力在含有成百上千种其他物质的样品中快速识别和量化低浓度化合物。LC-MS-MS技术在小分子药物的结构分析、ADME及生物分析研究中尤为重要。在化合物浓度不断降低的情况下,这项应用的难度在于对方法精确性和重现性的高标准要求。近年来,生物药物的发展非常迅速,这些大分子药物的分析也面临着一系列挑战,同时也推动了技术和方法的新进展。 /p p    strong span style=" color: rgb(0, 112, 192) " 小分子药物生物分析 /span /strong /p p   几十年来,药物开发人员一直在样本收集过程中使用生物分析手段来测定给定样本中药物的准确浓度。这些研究的准确性取决于分析方法以及实验室分析仪器的可靠性,所使用的方法及仪器应能够选择性、特异性地量化目标化合物。由于生物分析样本(如血浆、血液和其他复杂的基质)中经常含有高含量结构相关或非相关化合物,这一分析一直特别具有挑战性。这些因可能会导致亲缘试剂或其他不相关化合物共洗脱的交叉反应会影响实验的准确性和重现性。 /p p   多年来,为了应对这些挑战,人们开发了很多基于LC-MS-MS的方法,改善了药物定量实验的灵敏度、通量、准确性和重现性。一种常用的方法是在三重四级杆质谱系统中使用多重反应监测(MRM)技术来降低噪声,同时提高量化的选择性与准确性。最近这种方法已经扩展至MRM sup 3 /sup 技术,通过增加碎片化步骤而改善选择性。如今,三重四级杆质谱系统已被用于开发浓度低至pg/ mL的小分子药物的检测方法,且具有良好的重现性、线性范围和信噪比。 /p p   由于基质干扰,某些化合物在生物样品中特别难以分离,这可能会导致出现未分辨的峰或基线噪音过高,从而影响数据重现性、准确性和动态范围。通常,这这类问题可以是通过额外的样本处理过程或使用速度较慢的色谱来解决。然而,由于样品通量所带来的压力,这样的解决方式会为大多数药物开发实验室增加额外的时间、金钱和劳动力成本。过去的几年内,出现了有效的替代技术,即将离子迁移谱与LC-MS技术相结合,从而提高选择性。它可以以离子迁移装置的形式连接到TOF或者三重四级杆质谱的前端,或者也可以直接内置在TOF质谱系统内,但这种方法大都无法满足生物分析实验中速度、选择性和耐用性之间的平衡。最近,在分析的LC和MS阶段之间,已经开发出了多种不同的离子迁移分离装置。这些使离子根据迁移轨迹的不同而分开,而不是根据时间而分离,这样就去除了背景化合物的影响,从而提供了一个耗费更短MRM周期时间的系统,以便快速准确地检测复杂基质中的低浓度化合物。 /p p   目前,越来越多生物分析实验室采用基于微流LC的方法来分析低浓度水平的化合物。这项技术使用更小的色谱柱(直径小于1mm)和电极,以获得更快速、更灵敏以及更高分辨率的结果,同时将柱后分散降到最低。较低的流速也提高了电离效率、减少了离子抑制,同时大大降低了样品及溶剂的使用量,为制药开发过程带来了经济和环保方面的优势。微流LC所需要的样品体积较低,这也恰好符合制药行业在采用显微取样技术进行毒物学和生物分析研究等方面的需求。此外,微流LC还可以结合不同离子迁移质谱,从而灵敏地对生物样品中的化合物进行选择性分析。 /p p    strong span style=" color: rgb(0, 112, 192) " 大分子药物生物分析 /span /strong /p p   生物分析方法的准确性、耐用性和重现性仍然是药物研发人员以及监管部门所关注的关键问题。然而,传统的用于小分子药物生物分析的LC-MS方法通常并不适用于研究大分子药物,如抗体、生长因子、寡核苷酸和重组肽等。这些分子具有更大的尺寸以及复杂性,这就意味着在分析它们之前通常需要大量的样品制备过程,且它们的吸附特性以及背景蛋白的干扰会进一步影响定量的准确性。 /p p   LC-MS-MS方法经过优化后可直接分析10kDa以下的小肽 而在定量分析之前,通常需要应用免疫反应介导的样本提取和/或样品富集步骤来增强选择性。而对于更大的蛋白质,通常需要更复杂的工作流程,包括在使用LC-MS方法对代表性肽进行分析之前的蛋白质水解。这种间接分析的方法被实验人员广泛采用,但却非常复杂,并会受到诸如可变肽释放等的影响。此外,监管部门也还尚未对这些方法的验证方法发布指导原则。 /p p   如ELISA等的配体结合分析(LBAs)方法是一种成熟的蛋白质定量技术,且对于生物分析来说,它们的优势还在于其有能力同时检测人体循环中的游离药物以及药物的活性结构。然而,LBAs方法也有许多局限性,影响了它们在高通量药物开发中的应用。在最近的一项研究中,研究人员已经开始将LBAs方法与LC-MS方法结合起来。这些方法上的进展得益于三重四级杆及QTRAP质谱系统等技术的改进,包括灵敏度的提高,即可在低至毫克至微克的水平上检测大分子。这些新技术改善了电离与采样效率,增加了动态范围和可切换质量范围,而且允许不同质量的离子通过探测器。因此才开发除了很多经过验证的方法用以测定各类具有分析难度的药物,如细胞因子抑制剂、阿达木单抗、升糖激素、胰高血糖素、胰岛素类似物、胰岛素以及如用于自身免疫性疾病的英夫利昔以及用于乳腺癌的曲妥珠单抗等的抗体治疗药物。 /p p    strong span style=" color: rgb(0, 112, 192) " 大分子表征 /span /strong /p p   多数大分子药物在生产过程中容易发生序列改变和生物转化不一致的现象。这些改变对于药物的有效性、生物利用度和安全性都会造成影响。因此,药物分析实验室会定期进行蛋白质的表征研究,以监测序列降解和转录后修饰,如氨基酸的改变和糖基化。这些研究通常采用LBAs或毛细管电泳(CE)技术。CE技术是一种强大的、耐用的方法,但在完整的表征过程中却非常耗费人力和时间,特别是在处理复杂药物如抗体药物偶联物(ADC)时,其表征可能需要不同分析方法的反复运行以及复杂的数据处理过程。 /p p   近年来,技术的进展引发了几种蛋白质表征方法的改进。另外,CE技术与电喷雾离子化技术(CESI)的整合也促使了CESI-MS技术的发展,大大加速与简化了蛋白质分析。将CE技术的高分离效率与纳流LC结合,能最大限度地提高电离效率,并减少离子抑制。CESI-MS系统采用开管毛细管,最大限度地减少了死体积,从而提高了灵敏度和峰值效率。同时由于没有固定相,也避免了肽的丢失或过度保留。在最近的一个案例中,在使用单一蛋白酶消化后应用CESI–MS方法的单次运行之后,抗乳腺癌药物曲妥珠单抗被完全表征。该方法包含了100%的序列,而且鉴别了几个关键的氨基酸修饰 在同一分离中还完成了完整的糖肽分析。 /p p   生物转化如脱酰胺、氧化以及结构的改变是LBAs等的传统方法所面临的挑战。曲妥珠单抗结构中的一个关键位置在体内会发生脱酰胺作用,而在经过验证的ELISA方法中并无法识别这种脱酰胺现象。人们最近开了一种LC-MS-MS方法来定量监测这种生物转化作用,采用胰蛋白酶消化的方法,使用选择反应监测(SRM)对特征肽进行定量。实验结果表明,该方法能同时有效地定量分析脱酰胺信号敏感肽及其脱酰胺产物。 /p p    strong span style=" color: rgb(0, 112, 192) " 结论 /span /strong /p p   成功的药物开发及药物安全性研究依赖于大分子药物在研发或表征过程中某些步骤,及一系列相关分析测试过程。这些分析方法的准确性和重现性对工业界以及患者来说是非常重要的。多年来,由于激烈的竞争形势以及制药行业严格的监管特性,我们看到了分析技术的持续发展。尤其是近年来仪器本身及方法开发上的一系列进展,帮助人们开发了很多全新的治疗药物及更加复杂的化合物。在未来,这些研究还将需要更多快速的、选择性强的和精准的分析方法。 /p p   strong  注:本文为仪器信息网翻译,原标题为“Trends and Challenges for Bioanalysis and Characterization of Small and Large Molecule Drugs”,作者为SCIEX全球制药/生物制药高级市场经理Suma Ramagiri博士。 /strong /p p br/ /p
  • 新冠小分子药物赛道火热,如何加速上市过审成为关键
    2月11日,国家药监局批准辉瑞新冠口服药paxlovid进口注册,成为中国初款获批的新冠口服药。3月11日,辉瑞公司确认中国医药负责paxlovid在中国大陆市场的商业运营。 至此,国内小分子新冠药物研发进入“生死竞速”时刻。什么是小分子药物?一般来说,原料药物指用于制剂制备的活性物质,包括中药、化学药、生物制品原料药物。而小分子药物主要是指化学合成药物,通常分子量小于1000的有机化合物。在常用药物中,小分子药物的数量可占总量的98%。如生活中常见的镇痛、解热、消炎药——阿司匹林,是世界医药史上三大经典药物之一。 图1:阿司匹林化学结构式新冠小分子药物为何应运而生?因其独特的作用机制,小分子药物具有对变异株普遍有效的潜力。新冠病毒不断发生变异的过程中,表面结构蛋白很容易发生结构的改变,但是胞内过程相对保守,不易发生突变,因此作用于胞内过程的小分子药物具有对变异株普遍有效的潜力。因此,小分子化药是新冠治疗的又一选择。大部分小分子药物可以做成口服剂型。一是因为相对于需要静脉输液的中和抗体,具有便利性优势,尤其是无需住院的轻中症患者,可以在确诊后自己口服药物,不会对医疗资源(如医院床位资源、医护人员资源等)造成额外负担。二是产能优势,小分子口服药物的生产与大分子生物药相比相对简单,生产线和产能提升相对容易,能满足更多患者的需求。另外,整个治疗过程的费用更少。而针对新冠轻中症非住院患者,目前已有3 款小分子药物获批上市,分别是辉瑞的口服药 Paxlovid,默沙东的口服药 Mulnupiraivr,和吉利德的瑞德西韦注射液。目前在研药物中,进展较快的包括开拓药业的口服药普克鲁胺,真实生物的口服药阿兹夫定,君实生物的口服药 VV116,以及日本盐野义的口服药 S-217622。国内进入临床阶段的还有先声药业的口服药 SIM0417,更多小分子口服药处于临床前阶段。 图2:辉瑞的新冠*药Paxlovid国内外各个知名药企都在加速研发和上市新冠小分子*药,而这些药物在获得FDA/CFDA批准批准上市前及上市后,每批次都要经过一系列QC检查,其中溶出度检查至关重要!溶出度检查 问:《中国药典》规定了哪些药物制剂需要进行溶出度检查(通则0931)? 答: 片剂:口腔贴片、分散片、缓释片、控释片、肠溶片、口崩片等应进行溶出度或释放度检查; 胶囊剂:缓释胶囊、控释胶囊、肠溶胶囊等应进行溶出度或释放度检查; 除此之外,部分颗粒剂和透皮贴剂也要进行溶出度或释放度检查; 毋庸置疑,作为口服剂型的新冠小分子药物,也要做符合《中国药典》的溶出度检查。 问: 什么是溶出度? 答: 指活性药物从片剂、胶囊剂或颗粒剂等普通制剂在规定条件(溶出介质、温度、转速)下溶出的速率和程度。 在缓释制剂、控释制剂、肠溶制剂及透皮贴剂等制剂中也称释放度。 图3:溶出曲线 问: 溶出度检查方法有哪些? 答: 针对不同的药物剂型,都有特定的检查方法,如下: *法——篮法 第二法——桨法 第三法——小杯法 第四法——桨碟法 第五法——转筒法 第六法——流池法 第七法——往复筒法篮法和桨法适合普通制剂、缓释制剂、控释制剂、肠溶制剂等大部分药物制剂;小杯法适合特定制剂;桨碟法、转筒法适合透皮贴剂;流池法和往复筒法适合难溶制剂。溶出度仪为小分子药物质检把关 图4:PTWS 1420 14杯位溶出度仪Pharma Test溶出度仪优势1)根据取样方式,分为手动、半自动和全自动,多种取样方式可选,适合不同类型的操作习惯;2)根据溶出杯数量,分为6杯位、7杯位、8杯位、12杯位和14杯位,满足大部分用户的使用要求;3)完全符合USP和EP,以及中国药典的要求;4)Monoshaft™ 设计,在更换USP1、2、5、6法装置时,无需重新定高度,见图6;5)EPE自动取样器在取样点自动进入溶媒中并自动定位取样位点,取样结束后自动回位等待下一次取样;6)ITM可实时监测每个杯位温度,TMA可自动投药;7)1500W快速水浴升温功能,水浴槽可以简单的进行拆除和清洗,水浴扩散器可保证温度的均一性;8)具有方法管理和用户管理功能,可进行三级管理,SD卡自动储存无限种方法。 图5:Monoshaft™ 设计
  • 独家专访|顾景凯教授畅谈小分子药物与纳米药物的药代动力学发展与挑战
    2002年SCIEX发布4000 QTRAP®系统产品时,首次将QTRAP®质谱推向市场,该质谱技术是一种将三重四极杆串联质谱与线性离子阱质谱高度结合的复合技术,可同时高灵敏地进行有机物的定量定性分析,目前已广泛应用于药物研发的各个阶段,同时也应用于蛋白、多肽的分析,是药物定性定量的分析利器。  2022年是SCIEX QTRAP®质谱进入中国的第20个年头,吉林大学顾景凯教授是QTRAP®质谱在中国的首批用户之一。作为药物研发领域的资深专家,顾教授不仅见证了“中国创新药物”市场突飞猛进的发展,也感受到QTRAP®质谱分析技术助力药物研发时的强劲推力。  药物分析贯穿药物从研发到上市乃至整个药物的生命周期,为药物研发和应用的全链条提供关键的技术和方法。随着纳米科技的迅速发展,纳米药物在疾病的早期诊断、预防和治疗等方面发挥出越来越重要的作用。为适应纳米药物相关的物理、化学及生物学特性,各种分离分析技术得以开发应用,那么当前纳米药物成分分析的常用方法有哪些?高分子药用辅料体内分析又面临哪些难题与挑战?未来纳米药代动力学研究的发展趋势如何?带着这些问题,仪器信息网特别采访了吉林大学顾景凯教授,与他进行了深入的交流。  吉林大学 顾景凯教授  相辅相成:仪器技术革命加速药物分析发展  2021年生物学界公布了一项重要研究进展,人工智能(AI)技术已能精准预测上万对蛋白质的三维结构,其工作量及效率远超多年来该领域科学研究者人力工作的总和。消息一经公布便引发全球关注,该进展也随之被顶级期刊Science、Nature评选为年度技术之一。这一现象背后,反映的是人类科学研究的革命、科学探索的迭代升级,都离不开科学技术/仪器技术的精进。  20世纪70年代,气相色谱、液相色谱、电化学分析和毛细管电泳分析等先进的仪器分析技术逐渐被用于药物及其制剂的常规杂质检查和定量分析。进入80年代后,为了适应新药研发,满足生物样品分析量少、药物浓度低等要求,各种微量和超微量分离分析技术得以开发应用。其中,最常用的分析方法有免疫测定法、气相色谱法、高效液相色谱法、高效毛细管电泳法及各种联用技术如气相色谱-质谱联用,液相色谱-质谱联用等。“90年代我们使用气相色谱法开展小分子药物分析,当时离子源技术不过关,联用质谱技术发展还不成熟,对现在来说司空见惯的肽、蛋白质、糖、核苷酸等化合物分析,在当时简直是不可思议的事。我最早是在1995年用热喷雾液相色谱-单四极杆质谱(LC-MS)开展药物分析研究,当时的仪器只能做全扫描和SIM(选择离子检测模式)。由于当时质谱技术分析化合物时的灵敏度与选择性不够高,致使药物的定性和定量分析研究工作进展非常有限。1997年以后,我开始全面接触基于大气压离子源(API,包括ESI与APCI)的液相色谱-串联质谱联用技术(LC-MS/MS),那时候全国医药口的LC-MS/MS还仅是个位数,当时我就察觉到,如果能利用结合了强大液相色谱分离能力及质谱的高选择性、高通量和高灵敏度的LC-MS技术替代传统方法去开展药物代谢和药代动力学的研究工作,也许一周就能完成当时传统分析方法三年的工作量。而且,LC-MS/MS技术从通量、灵敏度、定性和定量等各方面可以把研究结果提高几个数量级,所以我真切感受到技术革命带来的最大变化是研究者可以利用技术创新完成原来做不到的事情。近三十年间,我见证着质谱仪器相关技术的更新发展,我的研究内容也随之不断拓展和延伸,从最初的小分子药物向如今非常火热的大分子、高分子以及纳米药物逐步扩展”,顾景凯说道。  近几十年,药物分析技术的发展也从体外到体内,从小样本到高通量,从人工到自动化,由单一技术到联用技术。随着医学和生命科学的迅速发展,药物分析科学也呈现出多学科交叉融合的特点及优势,在此基础上发展起来的一系列质谱技术、超微量分析手段,被广泛用于新药研发、药品生产和临床应用的每个环节。  高分子药用辅料及其PEG化药物的定性与定量分析方法的创新突破  纳米药物的核心是药物的纳米化技术,包括药物的直接纳米化和纳米载药系统。纳米给药系统是对药物进行靶向递释、降低药物毒副作用的新手段。随着聚合物纳米载体在设计、合成方面不断取得进展,聚合物纳米材料在纳米给药系统中得到了广泛的应用。  聚乙二醇(Polyethyleneglycol, PEG)是美国食品药品管理局(FDA)认证的无毒、无害且具有良好生物相容性的生物医用高分子材料,常用作与亲水端来修饰药物和纳米制剂。聚乙二醇化(PEG化)是一种将聚乙二醇聚合物以共价方式连接到治疗药物上的技术,具有增加药物水溶性、降低毒性、延长药物循环半衰期以及减少酶降解作用提高生物利用度等优点。但对于PEG这类分子量不唯一,且呈多分散性的高分子聚合物,常用的质谱定量分析方法要实现精准定量还存在多方面的挑战。顾景凯团队近期在国际上率先公开发表了关于PEG、单价与多价态PEG化前体药物及代谢产物定性定量分析的文章,是高分子聚合物全轮廓定量与定性分析领域的一大突破,目前该方法已成功获得中国发明专利授权。  相比于单一直链型PEG,多价PEG化小分子药物可以大大提高载药量。然而,其体内动态释药规律及药代动力学过程也要比单一直链型PEG化药物要复杂的多。多价PEG化小分子药物除了围绕PEG化药物、PEG及游离药物等部分外还要同时考察不同价态PEG化药物的体内变化规律。随之而来对分析检测方法的考验更加严峻,基于此顾景凯团队利用SCIEX的高效液相色谱-四极杆串联飞行时间质谱技术,采用TripleTOF质谱的全谱分析模式(TOF-MS与MSAll),先通过高效液相色谱将样本中的多价PEG化药及其体内不同形态代谢产物的混合物进行分组分离,使同一组内的同分异构体或同系衍生物具有相同的液相保留行为,再通过质谱选取共有特征性碎片实现各组分的绝对定量,意即在全扫描模式下,所有待测物在Q1中全通过,在Q2过程中经适宜的碰撞能(CE)将待测物打碎,TOF质量分析器扫描通过的全部子离子,获得所有碎片的精确质量信息,然后进行定性与定量分析。  正如上文介绍的,顾景凯团队提出创新性分析方法,突破了串联质谱所无法全轮廓定量分析高分子药用辅料或PEG化药物的技术难题,使高分子聚合物或药物的全轮廓定量分析成为可能。当前越来越多的研究表明,许多过去被普遍认为是无活性的聚合物纳米材料可能具有某些活性或毒性。因此,建立针对聚合物纳米材料的体内定量分析方法,全面、深入地研究聚合物纳米材料的体内命运具有非常重要的药理学与毒理学意义。  直面高灵敏度定量定性分析挑战: SCIEX QTRAP®质谱大显身手  药代动力学是定量研究药物在生物体内吸收、分布、代谢和排泄的动态变化规律, 并阐明不同部位药物浓度与时间关系的科学。由于药代动力学的硬性要求,其对仪器的灵敏度、选择性以及分析通量等方面都提出非常高的要求。  “曲普瑞林是由十个氨基酸组成的合成肽,用于治疗激素反应性癌症,比如前列腺癌和乳腺癌,当前该药物已在市场上广泛应用。对于多肽类药物分析来说,由于其与内源性肽和蛋白质的质荷比相近的非常多,背景化学干扰非常强,所以对这类药物分析存在两大挑战,即灵敏度和选择性。通常使用三重四极杆串联质谱进行常规分析时,尽管利用了前端固相萃取净化,高效液相色谱分离以及MRM(多重反应监测技术)母离子选择性极高的分析手段,我们仍然发现有很强的背景干扰,并且信噪比达不到药代动力学的准确定量要求。由于QTRAP® 质谱是将三重四极杆串联质谱技术与线性离子阱质谱技术高度结合的复合技术,所以我们引进了QTRAP® 质谱技术,在四极杆选择、打碎的基础上,利用线性离子阱再次裂解即可获得选择性很高的孙离子。由于离子阱同时具有很强的离子富集功能,这时利用孙离子进行定量分析,就可以大幅度地提高灵敏度,我印象中提高了十几倍,因此成功地满足了药代动力学的定量要求。我们利用 QTRAP® 6500系统成功建立了多肽药物曲普瑞林的分析方法,这让我印象非常深刻。“顾景凯介绍道。  顾教授与研究生同SCIEX QTRAP质谱合影照片  推进超低浓度、超强干扰药物分析与纳米药代动力学:串联质谱与差分离子淌度大有可为  “不仅如此,我们还曾开发了一种选择性好、灵敏度和分析通量高的利马前列素分析方法。利马前列素临床使用剂量极低,用于后天性腰椎管狭窄症的给药剂量为5μg,达峰浓度(Cmax )仅为1.2 pg/mL,这要求利马前列素的定量下限至少达到0 .1~0 .2 pg/mL。同时,体内存在数十倍于利马前列素达峰浓度的内源性化学背景干扰,可以说该药物体内分析面临着以上“瓶颈”问题。  “基于此,我们的分析方法是通过液相色谱、SelexION™差分离子淌度(DMS)和SCIEX QTRAP® 6500系统三维度分离分析相结合的策略,可降低对液相色谱分离度的要求,缩短了分析时间,提高分析通量,有效避免基质中内源物干扰,减少必需萃取次数,缩短了样品处理时间,在国内率先成功地完成了利马前列腺素片的人体BE评价研究工作。“顾景凯介绍说。  ”这是国际上首次采用DMS-MS/MS实现了如此低药物浓度的准确定量分析,并且我们依照国家药品监督管理局药品审评中心相关技术指南的要求,前后共完成了7500个生物样品的分析,这也是差分离子淌度技术首次用于如此多的生物样品分析评价工作。“顾景凯补充道。  顾景凯也坦言,当前纳米给药系统的研究进展,国内已处于国际前沿,并且个别领域是国际领先。纳米药物载体的设计属于纳米药物产业上游,发展非常迅速,但针对纳米药物的药代动力学研究,国内外相对来说,是严重滞后纳米药物的设计与制备的,当前药物分析技术的能力远远达不到对纳米给药系统体内命运精准评价所提出的要求,目前主要还是主要依靠下游的药效或毒性评价来间接反映其体内命运,这严重制约了纳米药物的临床转化成功率。下一步需要通过新型的分离与分析手段,进一步推进纳米药代动力学研究的进程。  对于下一步的研究计划,顾景凯表示,当前团队研究方向主要有三方面,一是多糖类药物的分析 二是mRNA、LNP疫苗不同形态的体内准确分析 三是高分子药用辅料准确定量和定性分析。此外其团队也在开展基于药代动力学性质的前体药物设计合成,目前作为主要参与单位的前体药物已经上市,同时还有两个作为负责单位的前体药物处于IND研究阶段。
  • 上海有机所肿瘤免疫靶向小分子药物技术授权金额创纪录
    p   中国科学院上海有机化学研究所与信达生物制药(苏州)有限公司近期就肿瘤免疫靶向小分子药物的授权开发达成了合作协议。信达生物以首付款、研发里程碑和销售里程碑付款共计4.57亿美元另加销售提成的合作方式,获得上海有机所研发的吲哚胺 2,3-双加氧酶(IDO)小分子抑制剂的全球独家开发许可权。这是目前国内科研院所与本土生物制药企业达成的合作金额最高的项目,充分体现了分子创制的价值,有望成为中国院企创新药合作的重大里程碑事件。 /p p   创新药物的研发是当前国际科技竞争的战略制高点之一,对经济发展和社会进步具有重要而深远的影响。国际创新药物研发的一个重要趋势是以基础研究的突破为引领。目前,在国际创新药物研发中,肿瘤免疫治疗药物研发成为备受关注的新方向。中科院生物与化学交叉研究中心研究员王召印、朱继东致力于肿瘤免疫治疗小分子靶向药物及肿瘤免疫治疗的研究攻关,通过紧密合作研究,获得新型结构的高活性IDO抑制剂,成为肿瘤免疫治疗药物开发的“种子选手”。 /p p   科技创新绝不仅仅是实验室里的研究,而是必须将科技创新成果转化为推动经济社会发展的现实动力。信达生物制药致力于抗体创新药的研发,目前已与多家国际著名制药企业达成肿瘤免疫疗法的合作。中科院上海有机所研发的IDO抑制剂与信达生物当前正在开发的肿瘤免疫类抗体有着潜在的协同治疗效果。此次合作,是科研院所与中国生物药创新企业在重要的免疫疗法上的强强联合,将共同开创肿瘤免疫治疗的新天地,合作成果不仅有望惠及中国乃至全球病人,而且将推动中国生物药抢占国际市场,打响“中国创新”品牌。 /p p   近年来国内外临床研究证明,IDO抑制剂与PD-1抗体的联合疗法已取得令人满意的临床结果。PD-1是信达生物的“拳头产品”,目前信达生物与其国际战略合作伙伴合作开发的PD-1抗体已进入三期临床。此次院企联手,可使信达生物的PD-1产品“如虎添翼”,有望达到更加有效的治疗作用。 /p p   IDO可以抑制免疫细胞的活性,目前研究已发现在前列腺癌、胰腺癌、乳腺癌、胃癌等多种肿瘤细胞内都有IDO的过度表达。所谓IDO过度表达,是指肿瘤细胞通过过度释放IDO造成色氨酸耗尽而阻止免疫细胞增殖激活,从而使肿瘤细胞逃避免疫系统的监视而“逍遥法外”,这也是早期癌症难以被免疫系统发现的原因之一。IDO抑制剂可以对IDO的过度表达进行抑制,从而让肿瘤微环境中的免疫细胞重新恢复活性,精准杀死肿瘤细胞。 /p p /p
  • 小分子药物缓控释微球制剂获临床试验批准
    近日,中科院过程工程研究所生化工程国家重点实验室主任、中国科学院院士马光辉团队与北京辉粒、宜昌人福药业合作研发的小分子药物缓控释微球制剂(注射用RF16001),获得国家药品监督管理局颁发的《临床试验批准通知书》。该制剂将应用于长效局部术后镇痛领域,为首个均一缓控释微球制剂品种。  通常,患者术后往往会持续疼痛数天,这不利于身心健康,也会延长住院时间、带来医疗负担。  目前临床上常用阿片类药物、非甾体类抗炎药或局麻药减少术后疼痛,与这些传统镇痛药相比,注射用RF16001具有以下优势:单次给药即可实现长效镇痛,能更好地满足临床术后镇痛需求;无须使用镇痛装置,从而避免因此引发的并发症;作用于局部,全身不良反应较低,可显著提高患者依从性。相较于国外已上市的同类产品,其心脏毒性更小、安全性更高,对运输和存储环境要求较低,可降低药品成本,惠及更多患者。  据介绍,均一粒径的微球制备一直是我国科技领域的“卡脖子”技术。马光辉团队通过发展全新的微孔膜乳化技术,目前已在水包油型乳液(O/W)、油包水型乳液(W/O)、油包水包油型复乳液(O/W/O)、水包油包水型复乳液(W/O/W)等均一乳液及多糖、聚合物、生物材料等体系获得应用。在此基础上,还建立了颗粒制备过程中结构控制的新理论和新体系,发现和创制了多种颗粒的新功能,并深入研究了颗粒物理化学性质在药物剂型和疫苗递送应用中的构效关系,在生物医药、生化分离、免疫佐剂等领域获得了推广应用,取得了众多科研成果。
  • 小分子新型冠状病毒药物研发应急项目申报指南
    国科发资〔2021〕259号各有关单位:根据国务院应对新型冠状病毒肺炎疫情联防联控机制科研攻关工作的总体部署,按照国家重点研发计划“公共安全风险防控与应急技术装备”重点专项组织管理的相关要求,现将小分子新型冠状病毒药物研发应急项目申报指南予以发布。请根据指南要求组织项目申报工作。科技部将按照新冠肺炎疫情防控工作的特殊要求,遴选项目择优支持。有关事项通知如下。一、项目要求1. 项目应聚焦小分子新型冠状病毒药物研发的应急需求,突出结果导向,明确研究目标和时间节点,集中力量攻关。2. 项目研究涉及人体研究的,应按照规定通过伦理审查并签署知情同意书;涉及人类遗传资源采集、保藏、利用、对外提供等,应遵照《中华人民共和国人类遗传资源管理条例》相关规定执行;涉及实验动物和动物实验的,应遵守国家实验动物管理的法律、法规、技术标准及有关规定,使用合格实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。3. 项目产生的科学数据应无条件按期递交到科技部指定的平台,对项目各个承担单位乃至今后面向所有的科技工作者和公众开放共享。二、申报要求1. 申报单位根据指南支持方向的研究内容以项目形式组织申报,覆盖相应指南研究方向的全部考核指标,项目下不设课题。项目申报单位推荐1名科研人员作为项目负责人。2. 项目牵头申报单位和项目参与单位应为中国大陆境内注册的科研院所、高等学校和企业等,具有独立法人资格。国家机关不得牵头或参与申报。3. 项目牵头申报单位、项目参与单位以及项目团队成员诚信状况良好,无在惩戒执行期内的科研严重失信行为记录和相关社会领域信用“黑名单”记录。4. 项目(课题)负责人应具有高级职称或博士学位,为该项目(课题)主体研究思路的提出者和实际主持研究的科技人员 对项目负责人无限项要求,无年龄等要求,只要有能力、有决心为疫情防控和新冠病毒肺炎治疗贡献力量,均可参与申报。中央和地方各级国家机关的公务人员(包括行使科技计划管理职能的其他人员)不得申报项目(课题)。5. 申报项目受理后,原则上不得更改申报单位和负责人。三、申报方式1. 网上填报。请项目申报单位按要求通过国家科技管理信息系统公共服务平台(http://service.most.gov.cn)将项目申报书进行网上填报,提交项目申报书,详细说明申报项目的目标和指标,简要说明创新思路、技术路线和研究基础。专业机构将以网上填报的申报书作为后续形式审查、项目评审的依据。申报材料中所需的附件材料,全部以电子扫描件上传。确因疫情影响暂时无法提供的,请上传依托单位出具的说明材料扫描件,专业机构可根据情况通知补交。从指南发布日到项目申报书受理截止日不少于10天。项目申报单位网上填报申报书的受理时间为:2021年9月4日08:00至2021年9月13日16:00。技术咨询电话:010-58882999(中继线)技术咨询邮箱:program@istic.ac.cn2. 业务咨询电话:010-88225047科 技 部2021年9月3日
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • 血液中药物小分子高灵敏度LC/MS分析的诀窍
    随着生活水平的提高,人们的关注重心已经从温饱问题转移到更高的追求:精神水平的提升和个人生命的长度。增加人类寿命,势必要克服各种各样疾病的困扰。现代医学的研究重心在于尽早发现和精准治疗,表现为生命体中生物标记物(Biomarker)的浓度水平和治疗药物的代谢过程等研究。目前,医院临床实验室中的特定诊断通常使用免疫检测和分子检测手段,交叉反应和干扰较为严重;作为替代手段,LC/MS基于色谱和质量选择性对化合物进行分离,灵敏度更高;可有效监控治疗药物,节省时间和成本。 影响LC/MS实验结果的因素较多,在保证系统运行基础上,如何保证高灵敏度的实验结果呢?可从以下两方面考虑: 1. 前处理在LC/MS分析中,干扰物与分析物共流出,会影响液滴形成或引起共电离等问题,造成分析物离子化水平不稳定。磷脂类化合物是分析血液中生物样品时,造成离子抑制的一个主要原因:磷脂类化合物结构 传统的血液前处理方法,包括蛋白沉淀、液液萃取和固相萃取存在或多或少的局限性,例如只能沉淀克级蛋白和与目标分析物共萃取等。默克全新的固相萃取产品HybridSPE® -Phosphorlipid,基于物理和化学作用,可同时有效去除血液中的蛋白和磷脂,提高液质检测的灵敏度。HybridSPE® 产品 96孔板规格的HybridSPE进行“仿真沉淀”: 维生素D及相关代谢物的LC/MS实验维生素D可以促进儿童骨骼增长,降低老年人骨质疏松等。维生素D缺陷,自发现以来,一直是研究重点。维生素D以两种形式存在:维生素D2和维生素D3 ,两者在肝脏中进行代谢。其中25-羟基类代谢产物浓度水平,可用于维生素D相关疾病的诊断依据。最近研究表明,将非活性的3-epi维生素代谢产物与其他代谢产物分离开,更有助于疾病研究。采用LC/MS对代谢产物浓度研究的关键,在于血液中相关蛋白的去除。 维生素D及相关代谢物的结构和分子量信息维生素D及相关代谢物在色谱柱Ascentis Express F5(150 x 2.1 mm, 2.7 μm)上的分离 维生素D及相关代谢物经不同前处理方法得到的回收数据对比基于Ascentis Express F5色谱柱的选择性,可建立一个快速有效的LC/MS方法,用于体内维生素D代谢物的研究。采用HybridSPE® ,对血液样品进行处理,去除其中的磷脂和蛋白,可有效提高分析方法的重现性、稳定性和回收率。 2. 溶剂 溶剂等级不同,其所含有的杂质含量不同, LC-MS分析时会产生不同的基线背景和噪音,影响检测的灵敏度:通过注射泵将两种不同级别的乙腈直接注射入MS系统为保证高灵敏度的LC/MS分析,需采用高级别的溶剂,以利血平作为示例。 利血平测试将利血平标准品通过注射泵注入MS系统,将所得的信号强度与背景噪音强度进行比较:不同等级溶剂下得到的利血平LC/MS图谱 对利血平的分子离子峰的信噪比进行计算:不同等级溶剂下得到的利血平分子离子峰信噪比值 利血平分子离子峰信噪比值结果表明,采用超梯度级的乙腈,所得到的信噪比值不仅高于梯度级乙腈得到的结果,而且明显高于其他两个品牌LC/MS溶剂测得的信噪比值。 结论:为保证高灵敏度的LC/MS分析结果,可从两方面着手:1. 采用HybridSPE® 对样品中的磷脂和蛋白进行高效去除;2. 采用超梯度级的乙腈,降低LC/MS分析中的背景值,提高分析峰信噪比。
  • 蛋白质组学药物发现成果|μMap光催化临近标记支持小分子结合位点映射
    大家好,本周为大家分享一篇2023年发表在Journal of the American Chemical Society上的文章,μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping1。该文章的通讯作者是来自美国普林斯顿大学化学系的David W. C. MacMillan教授。  目前,药物发现主要分为两种方式:基于靶点的药物研发(Target-based drug discovery,TDD)和基于表型的药物筛选(Phenotypic drug discovery, PDD)。表型筛选主要是在细胞或动物水平开展实验,因此蛋白靶点以及蛋白-配体结合模式一开始就是未知的,如何在确定活性分子后快速地找到其作用通路、靶点、结合位点、结合模式(正构/别构)一直以来都是众多研究员所关心的问题。常规的蛋白质组学差异性分析能够帮助我们快速确认作用通路、发现潜在靶点,但却缺少更精细的结构信息。光亲和标记(Photoaffinity Labeling)能够有效地补充这方面的信息,将PAL探针靶向交联至靶蛋白结合口袋,再利用LC-MS去寻找标记位点或肽段,从而提供肽段或残基分辨率的结合位点信息。然而,由于PAL探针与蛋白是按照一定的化学计量比进行结合的,所以产生的标记信号和序列覆盖都非常有限。除此之外,每个PAL探针都有不同的二级碎裂模式,使质谱分析复杂化。基于此,David W. C. MacMillan团队开发了一种稳健且通用的光催化标记方法来定位蛋白结合位点。  如图1B所示,活性分子上连接有具有光催化功能的标签(Catalytic tagging),本文使用的是铱光催化剂。活性分子-铱光催化剂偶联物能够靶向至蛋白的结合口袋,在可见光的照射下,铱通过能量转移的方式催化附近的双吖丙啶探针生成卡宾自由基,卡宾自由基能够与邻近的氨基酸残基发生反应,从而实现结合口袋的邻位标记。值得一提的是,这种独特的μMap光催化临近标记法将靶向定位和邻近标记分配给不同的分子去完成,邻位标记不受限于靶向定位所需要满足的化学计量比的要求,可实现多个邻近位点的标记,具有信号放大的效果。此外,所有活性分子-铱光催化剂偶联物都可以配合使用统一的邻位标记探针,具有一致二级碎裂模式,有助于简化后续LC-MS数据分析。  图1 μMap光催化邻近标记法原理  为了确认该方法的选择性标记能力,作者以牛碳酸酐酶(CA)为例,探究磺胺类抑制剂-铱催化剂偶联物(图2A sulfonamide-Ir (1))能否触发CA上邻近结合位点的选择性标记。将CA与BSA蛋白按照1:1混合,向中加入sulfonamide-Ir,随后加入带有生物素标签的邻位标记探针(图2A Diazirine-PEG3-biotin(2)),根据Western blot的结果可知(图2B),sulfonamide-Ir (1)的加入触发了CA上的选择性标记,相比于未开启光照以及直接加入free-Ir的两组样品,加入sulfonamide-Ir的样品中CA条带明显变深,说明此条件下,CA上有较多的带有生物素标签的标记位点。随后,作者对样品进行柱上酶切,利用LC-MS鉴定标记肽段、定位标记位点(图2C-E)。值得注意的是,为了获得高置信度的标记残基信息,作者将free-Ir设置为对照组,通过统计sulfonamide-Ir组与free-Ir组中同一标记肽段信号强度的倍差变化(fold change)以及显著性差异分析,筛选出最可靠的标记位点。此次实验结果显示,邻近标记位点为Q135和H2,将其映射至CA的晶体结构上可知两个位点距离磺胺类小分子与CA的结合位点分别17和11Å,说明μMap光催化临近标记法在小分子结合位点的鉴定上是准确且可靠的。  图2 μMap光催化邻近标记法用于sulfonamide-CA结合位点的表征。为了展现μMap光催化临近标记法的普适性。作者将该方法应用到了其它一些蛋白-配体复合物模型上,如:(+)-JQ-1与BRD4(图3A)、dasatinib与BTK(图3B)、AT7519与CDK2(图3C)和lenalidomide与CRBN(图3D),以上实验均获得符合预期的结果。此外,作者还将μMap光催化临近标记法应用到了分子胶rapamycin介导的FKBP12-rapamycin-mTOR蛋白复合物结合界面的表征,展现了该方法“穿越空间”的结构表征能力,从蛋白FKBP12与小分子rapamycin互作到小分子rapamycin与蛋白mTOR的互作,描绘了整个结合界面的轮廓(图3E)。  图3 μMap光催化邻近标记法用于A)(+)-JQ-1与BRD4 B)dasatinib与BTK C)AT7519与CDK2 D)lenalidomide与CRBN E)FKBP12-rapamycin-mTOR蛋白复合物结合位点的鉴定。  以上均是在已知结合位点的蛋白-配体模型中开展的方法学验证实验,后续作者还将μMap光催化临近标记法应用到难成药靶点STAT3。MM-206是STAT3的小分子抑制剂,在临床前疾病模型研究中显示出较好的抗STAT3活性,但到目前为止还没有STAT3与MM-206结合的晶体结构报道,也没有关于MM-206与STAT3结合位点的信息。在本文中,μMap光催化临近标记的结果显示MM-206主要是结合在STAT3的CCD结构域上,大致在Q198和V291位点附近,属于一种变构调节剂(图4A-B)。最后,作者进一步探究了μMap光催化临近标记法在活细胞水平上的标记能力。如图C-E,使用μMap光催化临近标记法成功找到了(+)-JQ-1的结合蛋白:BRD2、BRD3及BRD4,并定位到了(+)-JQ-1与BRD4结合位点,大致在V90、K91、W81氨基酸残基附近。  图4 μMap光催化邻近标记法用于A-B)MM-206与难成药靶点STAT3结合位点的鉴定 C-E)组学样品中小分子(+)-JQ-1结合蛋白的鉴定及结合位点的锁定。  总之,本文开发了一种通过标记近端残基来绘制小分子结合位点的通用方法。该方法已被证明适用于一系列小分子配体-蛋白质、多蛋白质复合物和“不可成药”的靶点蛋白的互作表征,从单一蛋白到组学层面均展现出良好的应用前景。  撰稿:刘蕊洁编辑:李惠琳原文:μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping  参考文献  Huth SW, Oakley JV, Seath CP, et al. μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping. J Am Chem Soc. 2023 145(30):16289-16296.
  • 抗肿瘤分子靶向药物研究重点实验室在南京建成
    [提要] 位于南京徐庄软件园的江苏省抗肿瘤分子靶向药物研究重点实验室今天正式竣工,江苏省副省长何权出席了竣工典礼,称这是江苏首家设在企业的省级重点实验室。抗肿瘤分子靶向药物研究重点实验室于2008年10月获江苏省科技厅批准,经过三年建设,投资2亿元,形成了完善的抗肿瘤分子靶向药物研究综合技术平台。   中新网南京1月8日电(记者陈光明)位于南京徐庄软件园的江苏省抗肿瘤分子靶向药物研究重点实验室今天正式竣工,江苏省副省长何权出席了竣工典礼,称这是江苏首家设在企业的省级重点实验室。   何权说,江苏是医药大省,也是医药强省。加大科研投入,将使民族医药的自主创新成为可能。   抗肿瘤分子靶向药物研究重点实验室于2008年10月获江苏省科技厅批准,经过三年建设,投资2亿元,形成了完善的抗肿瘤分子靶向药物研究综合技术平台。   就在一个月前,先声药业宣布与著名国际生物制药企业百时美施贵宝公司(bristol-myers squibb company)达成战略性合作关系,将携手研发抗肿瘤药物bms-817378。据了解,该化合物为小分子met/vegfr-2 抑制剂,目前仍处于临床前阶段。合作旨在加快临床概念验证实验的步伐。根据协议,先声药业获得在中国研发和将bms-817378商业化的独家授权。先声药业首席科学官王鹏博士说,“这是一次具有突破意义的合作,它证明了中国领先的医药研发企业可以与国际性大公司合作,加速产品研发进度,并推动中国国内临床试验的开展。”   先声药业集团是中国内地第一家在纽交所上市的化学生物药公司。近三年来,先声药业研发累计投入5.1亿元,超过5200万美元。在国内的医药企业中,在研发方面投入方面先声药业显得先声夺人。抗肿瘤分子靶向药物研究重点实验室的建成,将加快中国在抗肿瘤药物的研发和应用的步伐。
  • 世界首个分子机器人诞生,可为药物研发提供新思路
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/307468d8-22e8-4e5a-a7d1-32f151a82e74.jpg" / /p p   科技的魅力,存在于求证假设模型的执着中,显现在通过各种工具“看”到未知世界的惊讶中,还在于用已知条件创造未知的乐趣中。 /p p   分子机器人的成就,显然属于最后一种情况——科学家把基本规律当成魔法棒,念动咒语,分子们就乖乖听话了。 /p p   近期,《自然》杂志发表论文,介绍了英国曼彻斯特大学制造的世界首个分子机器人。它总共由150个碳、氢、氧和氮等原子组成,大小只有百万分之一毫米,将几百亿个这种机器人堆起来,也只有一粒盐那么大。 /p p   如此微小的分子机器人,却能根据“指令”操控单个分子,用机器手臂搭建分子产品,过程与搭建乐高机器人的过程极其相似,只是换成了原子。 /p p   虽然建造这类分子机器人极其复杂,但所用的技术都是基于简单的化学反应,原子和分子相互作用的基础原理,以及小分子如何构建大分子等化学知识。 /p p   由于非常微小,分子机器人具有很多优势,能降低材料需求、加速药物研发、大幅减少能源消耗及推进产品微型化等,因此,未来有望在诸多领域带来令人激动的应用。 /p p & nbsp /p
  • 扫描隧道显微镜助力“药物击靶”可视化:原来药物分子也会“玩乐高”
    p   8月5日,Science Advances期刊发表我国学者论文,其上登载了一张“药物击靶”显微镜照片。据论文通讯作者之一的中国医学科科学院基础医学研究所副研究员王晨轩介绍,这是科学家首次直观看到“药物击靶”的状态,可用于指导药物分子的设计。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 489px " src=" https://img1.17img.cn/17img/images/202008/uepic/a84d5415-9f82-46e6-9b7b-49dcd99b74d4.jpg" title=" 微信图片_20200813111429.png" alt=" 微信图片_20200813111429.png" width=" 500" height=" 489" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 363px " src=" https://img1.17img.cn/17img/images/202008/uepic/3faeb35b-438a-4004-a05c-ddb29962f12d.jpg" title=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" alt=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" width=" 600" height=" 363" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong   照片显示:当药物分子(硫黄素T)要与生命体内的靶蛋白结合、起药效时,不是像人们想象的单个分子去结合蛋白,而是自动像“乐高积木”一样组装后,合力“击靶”,这种“机灵劲儿”与之前人们的想象完全不同。 /strong /span /p p   本以为它只身赴命,没想到它两两成对、凑四成团、甚至6人成伍& #8230 & #8230 这个新发现可能带来哪些颠覆性改变?据王晨轩介绍:“教科书中有一个经典的‘锁钥模型’,是说药物分子能够‘击靶’必须要和蛋白严丝合缝,像一把钥匙开一把锁,但现在的显微镜观测结果表明,药物分子用寡聚态的方式‘工作’,或许我们只需要半个钥匙就能开锁。” /p p   “药物设计是个‘配钥匙’的过程。人们已知一个疾病相关的蛋白质结构,想设计一种反向性的药物,需要有机化学家、计算机辅助药物设计的理论化学家等一起构筑一个和蛋白质活性中心匹配的足够大的钥匙才能工作。药物合成越长越难,每个基团像“粘胳膊”一样,到了产业化的时候对工艺的要求更是指数级的增加。如果药物其实只需要合成原来的很小一段,1/4或者是1/8,那么难度将大大降低。此发现可以简化药物合成路径。 /p p   据悉,蛋白质的照片拍摄很困难,先是晶体衍射法,再是冷冻电镜的方法,但是至今仍不是所有的蛋白都能拍摄成功,原因是都必须要让蛋白排列成有序的阵列,才能满足成像要求。“这就好比,只有阅兵式上的解放军方阵才能成像,而后面的群众大联欢方阵是拍不上的。”王晨轩打了个特别形象地比方,因此要拍摄和药物分子结合的蛋白分子,就要用新的拍摄设备。 /p p   扫描隧道显微镜勇最初是物理学家用来探测原子、亚原子的微观结构,具有超高的分辨能力。王晨轩说,把物理设备引进生物领域是上世纪90年代的事情,需要完成对设备的硬件、软件、算法的全新研制,中国团队在国际上是较早进入这一领域的。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/202008/uepic/bdfe1e18-3132-4394-88b3-5eff33787fac.jpg" title=" 1597292515109044001.jpg" alt=" 1597292515109044001.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p   由于它是通过量子力学中的隧穿效应,通过记录穿越样品的电子直接捕捉蛋白质和药物分子的“模样”,最开始的扫描隧道显微镜操作必须在真空中。中国科学家团队很早解决了常态下用扫描隧道显微镜观测的问题,在世界上首次使用了扫描隧道显微镜,实现了在大气室温下对化学分子的观察。 /p p   为了拍摄首张“药物击靶”显微镜照,医科院基础所王晨轩、于兰兰、张文博,与国家纳米科学中心的王琛、杨延莲、方巧君团队等几代科研人打磨多年,不仅发明了蛋白质对基底的吸附技术、分子伴侣的固定技术、扫描探针的脉冲技术等一系列专利技术,还对整个“拍照”的流程进行优化和摸索。 /p p   “整套(拍照)技术非常复杂,很难形成照搬流程,只能像是匠人之间的口口相传,需要知识、经验和揣摩,专业人员可能需要一年或者几年的训练时间跟着走下来,才能系统掌握。”王晨轩说。 /p
  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens withthe Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamicproteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 动力学的未来,GCI分子互作技术为药物研发按下“快进键”
    Creoptix公司是光学生物传感器的领军企业,于2022年1月加入马尔文帕纳科,成为旗下提供研究分子间相互作用技术的子品牌。Creoptix总部位于瑞士的苏黎世,致力于提供高质量的动力学数据,研发了高灵敏度的WAVE分子相互作用仪,为研究分子间相互作用力提供分析利器,使科学研究者可以做以前不可能做的事情,看到以前看不见的数据。2022年6月,马尔文帕纳科在线发布Creoptix新品WAVE分子相互作用仪。为了进一步了解新品WAVE分子相互作用仪的创新点与亮点,近日,仪器信息网编辑采访了马尔文帕纳科制药和食品行业中国区销售经理叶飞,同时,也借此机会对马尔文帕纳科在中国的技术支持、售后服务等方面进行深入了解。马尔文帕纳科制药和食品行业中国区销售经理 叶飞新品WAVE亮相,多项参数吸睛叶飞首先向我们介绍了Creoptix 新品WAVE分子相互作用仪核心竞争优势:“分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。不同于传统的基于表面等离子共振(Surface Plasmon Resonance,SPR)技术的解决方案,WAVE采用专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,以及外置的微流控技术和基于Google AI 技术的自动化软件,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。”Creoptix WAVE 分子相互作用仪亮点1:新一代动力学分析—GCI技术随着科学技术进步和前沿研究的深入,分子互作技术呈现“多元化、互补化”发展态势。叶飞表示:“虽然是分子互作赛道新的参与者,WAVE却是在认真了解和研究了目前市场上存在的多种非标记分子互作技术的局限与问题后发展起来的新原理技术。基于波导干涉测量,WAVE创新提出将传感器表面折射率变化转化为时间依赖的相移信号,通过延长光与样品相互作用的长度(2mm),从而实现优越的信噪比。再结合3 mm 的互作传感区域,信号噪音低于0.01 pg/mm2 (0.01 RU),能够非常稳定的检测低配体活性、低偶联水平下的结合,消除了物质迁移限制效应(MTL)的影响,同时可以稳定的检测长解离信号,这对于具有极强亲和力的抗体分析而言无疑是很重要的。”Creoptix WAVE工作原理示意图亮点2:突破传统动力学检测—waveRAPID技术筛选通量、检测时间以及结合数据可靠性是生物药研发领域十分关注的几个问题。叶飞详细介绍说:“Creoptix创新推出的waveRAPID技术(单浓度动力学测定方法),突破了传统动力学的检测方式,只需一个浓度的样品,无需多次稀释样品和多浓度DMSO校正,不仅大大减轻了用户稀释工作量,节省了样品准备所占用的实验时间,同时单浓度实验还降低了人与人之间的稀释差异;不仅如此,对于目前非标技术中弱相互作用(如片段药物筛选)大多依赖稳态亲和力分析的现状,waveRAPID实现了更短的进样时间和解离时间,让生物药物动力学分析过程的总时间较其他技术大为减少,也让再生条件摸索更加容易;在数据分析上,waveRAPID采用独特的算法提取传感图解离段中的kon和koff信息,既提高了分析速度(waveRAPID 比传统动力学检测约快5-10倍,koff可达10s-1),又完美的避开了让很多研究者都很头疼的溶剂效应(bulk effect),让复杂样品分析更轻松。WAVE还提供专属的Biologic Package,提供配体筛选与CFCA(无需标准曲线的浓度测定方法)等多种生物药物分析工具套装,为用户提供活性浓度等重要评价指标。”亮点3:创新性微流控技术,助力临床样品分析“马尔文帕纳科专注于开发用于药物发现和生命科学的下一代生物分析仪器。WAVE 配置独特的外置微流控设计从而保护传感器表面不受污染或损坏,可在几秒钟内更换。此外,无微流阀的设计有效避免系统线路阻塞问题,较大限度地减少停机时间,也为大颗粒的动力学分析提供了可靠的解决方案。”叶飞补充说:“由于WAVE独特的无堵塞、免维护、可抛弃式流路设计,它将在粗制样品分析、膜蛋白分析、血清血浆等临床样品分析中具有广阔的应用空间,一旦完成相应的方法开发,其未来应用市场应该至少有几十亿美元的规模。”作为中国市场的“新人”,拥有众多全球用户分子间相互作用是生命科学和药物研发中的关键问题之一,也是研究的热点领域。在分子互作技术领域,已经有很多传统的荧光和免疫的方法,如ELISA, CoIP,FRET等,这些传统方法的问题和局限性也被广大研究者所了解。正是如此,非标记分子互作分析技术才在近些年蓬勃发展起来。作为新一代动力学分析技术的代表产品WAVE,由于推向中国市场的时间较短,目前国内的用户还不够多,但在全球却拥有众多忠实用户。叶飞介绍说:“全球用户中有著名的跨国药企如安进,罗氏、诺华等;著名的高校如乌普萨拉大学、苏黎世大学、维也纳生物中心;诊断试剂公司包括Mologic和Idorsia;专业外包服务公司如PepScan, LeadXpro, 2Bind,Domainex等。”“此外,在近三年中,多篇应用WAVE的研究论文发表于Science,Cell和Nature及其子刊,充分地说明了通过WAVE系统获取的数据已经得到了研究者和业内专家的认可和信赖。这些用户使用WAVE的代表领域包括基于片段的药物筛选(FBDD)、针对膜蛋白GPCR的小分子及生物药物开发、多肽药物的研发与优化、针对临床样本的诊断试剂开发、植物功能的分子机理研究等等。”超70%的员工提供安装等一揽子服务“马尔文帕纳科不仅仅致力于提供高性能的产品,更加关注客户的使用体验,超过70%的员工为服务工程师和应用科学家,提供安装、操作培训、方法开发流程培训等一揽子服务,确保用户第一时间掌握产品的使用方法。”叶飞进一步表示,“针对WAVE分子相互作用仪这个新产品,马尔文帕纳科在上海和北京的应用实验室投入了WAVEdelta型号的Demo样机,用于为用户提供测样和培训服务。另外,公司还有两位应用专家,其中韩佩韦博士在分子互作和微量热领域有10多年的技术支持和应用经验,可以把马尔文帕纳科的成功经验用最专业的方式分享给用户。同时国内的售后工程师经过了专业的培训,可以第一时间响应用户的安装和服务需求。我们坚信WAVE分子相互作用仪的高灵敏度、快速响应、样品制备简单、故障率低等特点,能够有效解决用户使用部分技术的痛点。和马尔文帕纳科MicroCal、Zetasizer、NanoSight、OMNISEC等产品线一起为客户的研发工作保驾护航”。后记:在叶飞看来,任何一款新原理技术,市场通常都会有个信息传导、了解和接受的过程。以SPR产品为例,从上个世纪90年代就开始在中国推广,历经10余年才逐渐开始被用户所认知和了解,又过了10余年,该技术才被药典所接受。“因此,作为新一代动力学分析技术的Creoptix WAVE,我们目前的最大瓶颈就是了解的人较少,知名度尚浅,国内用户还较少。然而,随着我们在WAVE发布会,仪器信息网等线上和多个线下会议持续曝光,相信在非标记技术已经逐渐深入人心的今天,Creoptix WAVE会很快得到广大用户的认可和信赖”,叶飞最后讲到。
  • 兰州化物所药物分子定位递送多模式成像示踪研究取得新进展
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 癌症是威胁人类生命与健康的重大疾病,药物治疗(化疗)是治疗癌症的有效手段之一。为进一步提高疗效、降低毒副作用,抗癌药物的定位递送和精确释放成为抗癌药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析科学解决的难点和核心问题。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 中国科学院兰州化学物理研究所师彦平研究员团队近期 strong 利用荧光成像和质谱成像相结合的多模式成像分析技术成功实现了实时精准示踪定向结直肠的新型前药定位递送、释放、分布与代谢的全过程。 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ee9f6066-0d03-4b96-ba02-2f83b4e4a4ce.jpg" title=" lanhuasuo.png" alt=" lanhuasuo.png" / /p p style=" text-align: center " strong style=" text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 14px " 利用多模态成像分析技术实现定向结直肠的新型前药的实时精准示踪 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 研究人员创新性地设计合成了一种新型的偶氮基前药AP?N=N?Cy,该偶氮基前药由前体药物分子(AP)通过多功能的偶氮苯基团与近红外荧光团(Cy)相连接而成。研究结果表明: strong 该偶氮基前药不仅可作为对偶氮还原酶响应的近红外探针以实时示踪药物递送过程,而且还可作为抗癌药物分子(AdP)的递送平台。 /strong 基于偶氮还原酶会特异性地在结肠中分泌,该偶氮基前药实现了在结肠中特异性的定位递送与靶向释放。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 该偶氮基前药可以口服,并且在到达结肠前具有高稳定性和低毒性。鉴于抗癌药物分子释放与荧光开启过程的同步性,可利用荧光成像方法对抗癌药物分子在体外、离体和体内的递送进行精确示踪,并利用质谱成像在分子水平上对AdP和Cy在不同组织中的生物分布进行精确分析。据了解, strong 这是首次通过多模式成像方法在体内对结肠特异性的药物释放和生物分布进行实时的精准示踪。 /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 该研究成果近期发表在 strong Analytical Chemistry(2020,& nbsp 92:& nbsp 9039-9047) /strong 上,以上工作得到了国家自然科学基金和中国科学院青年创新促进会的支持。 /span /p p br/ /p
  • 中科院上海药物所合作发现小分子抑制剂诱导的CDK-Cyclin K变构激活解离新机制
    近日,中国科学院上海药物研究所药物发现与设计中心罗成研究员团队与大连化物所生物技术研究部生物分子结构表征新方法研究组王方军研究员团队合作,通过整合赖氨酸反应性分析质谱(LRP-MS)和非变性质谱(nMS)的结构质谱策略,发现了小分子抑制剂SR-4835诱导细胞周期蛋白依赖性激酶12/13-细胞周期蛋白K复合物(CDK12/CDK13-Cyclin K)变构激活解离的抑制新机制,为CDK12/CDK13小分子抑制剂的理性设计开拓了新思路。2023年5月19日,该工作以“Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation”为题,发表在《美国化学会志》(Journal of the American Chemical Society)上。CDK12和CDK13在转录和mRNA加工中发挥重要的调节作用,靶向抑制CDK12和CDK13已在体外模型中被证明是多种癌症治疗的有效手段。但是还没有CDK12/CDK13的小分子抑制剂被批准在临床使用。目前仍然缺乏对小分子抑制动态相互作用分子机制进行高通量表征的方法,极大限制了CDK12/CDK13抑制剂的理性设计和相关药物研发。在本工作中,合作团队发展了整合LRP-MS和nMS的结构质谱策略,系统研究了多种小分子抑制剂调控下CDK12/CDK13-Cyclin K复合物的动态构象变化和整体蛋白组装。研究团队通过前期发展的LRP-MS策略获得了包括抑制剂结合口袋、结合强度、界面分子细节和动态构象变化在内的分子作用结构信息;发现SR-4835能够使CDK12/CDK13-Cyclin K相互作用界面赖氨酸标记反应性(溶剂可及性)显著增大,推测其诱导了CDK12/CDK13-Cyclin K复合物的解离。进一步,利用自主研发的高灵敏度静态电喷雾离子源和nMS分析证明了SR-4835能够有效减弱CDK12/CDK13-Cyclin K的相互作用,并通过免疫共沉淀试验在活体细胞水平进行了验证。相关研究结果展示了LRP-MS整合nMS在分子水平评估和理性设计激酶抑制剂的巨大潜力。 图1.赖氨酸反应性分析质谱研究CDK12/CDK13-Cyclin K变构机制王方军团队致力于发展生物大分子质谱新仪器和新方法,在大连相干光源搭建了高能紫外激光解离—串联质谱仪器,已在蛋白质及其复合物动态结构和相互作用的质谱分析中取得了系列研究进展(J.Am.Chem.Soc.,2023;Cell Chem.Biol.,2022;CCS Chem.,2022;Chem.Sci.,2021)。罗成团队基于药物设计和化学生物学技术,在蛋白质动态调控与创新药物早期发现取得系列研究进展(Nature,2021 Cancer Cell,2023 Nature Communi,2022等)。该工作的共同第一作者为大连化物所1822组联合培养硕士研究生白玉、刘哲益副研究员以及南京中医药大学/上海药物研究所联合培养博士研究生李元卿。该工作的通讯作者为王方军研究员与罗成研究员。项目获得科技部前沿生物重点专项、基金委、中科院和临港实验室等项目的资助。
  • 倒计时两周!BPC闪耀8月金陵,重燃大小分子创新药物研发!
    BPC 2022 第八届创新药系列专题会议将于2022年8月9-10日在南京全新亮相。大会分设4大专场,从创新抗体药物(新靶点/ADC/双多抗/… )和小分子创新药物(PROTAC/AI/CMC/IND/NDA… )两大维度出发,特邀100+创新药研发领军企业、科研学者、法规监管专家与科学家深入新药“源头”进行分享,以临床价值为目标,探索“大小分子”多线发展策略。大会结构粉丝福利本媒体作为BPC 2022第八届创新药系列专题会议的官方合作媒体,为粉丝申请到10张免费参会票,扫描下方二维码领取,数量有限,先到先得。* 该门票为BioCon-Antiboby和PharmaCon两会入场券,仅限药企/科研院校/政府研究机构使用,不含会议资料和自助午餐。详情欢迎咨询:17721120767 (同微信)。大会议程创新偶联药物专场——ADCs/XDCs药物R&D与CMC开发 8月9日(Day1)差异化立项之“三元件与五要素” • 靶点/适应症与抗体部分及偶联方法9:00-9:30 PI视角:ADC药物针对消化道肿瘤未满足临床需求的开发可能与进展(拟)束永前,江苏省人民医院肿瘤中心主任、南京医科大学第一/二附院肿瘤中心主任、苏州市立医院肿瘤中心主任9:30-10:00糖链定点ADC:小分子“hide inside”策略与优势黄蔚,中国科学院上海药物研究所研究员10:00-10:30ADC药物中更优抗体的属性研究谭淼,科伦博泰大分子研发 VP10:30-11:00茶歇与交流11:00-11:30 非天然氨基酸技术定点偶联优化设计ADC的稳定性与有效性张韶辉,Ambrx研发运营执行副总裁兼中国区总经理(Online)11:30-12:15 圆桌讨论:机遇与挑战并存, 如何提高生物导弹ADC药物临床转化与开发的成功率?1.有效性挑战-耐药 2. 适应症选择 3. 风险隐患决策点 主持人:夏钢,浙江医药CSO谭淼,科伦博泰大分子研发VP赵永新,多禧生物董事长曹国庆, 明慧医药创始人、董事长&CEO12:15-13:30 午餐与交流13:30-14:00 创新全人双抗设计/筛选及双靶点ADC新药开发案例杨勇飞,百奥赛图(北京)医药科技股份有限公司,抗体新药研究院总监• Linker及Payload 14:00-14:30 DS-8201后时代ADC技术平台的设计与发展思路花海清,映恩生物研发副总裁14:30-15:00 基于体内活性、旁观者效应和安全性的新一代ADC亲水性Linker研究开发刘海东,普方生物药化部高级总监15:00-15:30茶歇与交流15:30-16:00 创新 Linker 设计及 ADC 药物开发与临床前药效研究案例周清,上海诗健生物科技有限公司创始人兼CEO16:00-16:30 第四代抗体偶联药物的结构特点和未来展望蔡家强,苏州宜联生物CSO16:30-17:15 圆桌讨论:差异化的偶联药物开发中“三部件”如何突破与创新?主持人:周清,诗健生物创始人&CEO李虎,乐普生物副总裁兼上海美雅珂副总裁秦刚,启德医药科技(苏州)有限公司董事长/总裁刘东舟,华东医药CSO兼创新药研发中心总经理蔡家强,苏州宜联生物 CSO创新偶联药物专场——ADCs/XDCs药物R&D与CMC开发 8月10日(Day2)从1到N之复杂结构研发与CMC开发策略• 创新开发到CMC工艺与质量 9:00-9:30 加强审评检查分中心建设,推进生物医药产业创新发展李冉,国家药品监督管理局药品审评检查长三角分中心综合业务部临时负责人9:30-10:00 ADC药物开发中参数分析与CMC策略魏紫萍,百力司康生物医药(杭州)有限公司共同创始人、董事长和首席执行官10:00-10:30 PAT新技术在冻干工艺开发与生产中的应用刘祥运,德祥科技产品经理10:30-11:00 茶歇与交流11:00-11:30 偶联药物中涉及偶联部分的CMC问题与探索杨金纬,浙江新码生物化学总监 11:30-12:15 圆桌讨论:ADC及XDC药物开发从Discovery到成药性/CMC的挑战与考量要素主持人:魏紫萍,百力司康生物医药(杭州)有限公司共同创始人、董事长和首席执行官赵永浩,江苏康宁杰瑞研发总监伍维思,无锡诺宇医药科技有限公司首席技术官刘树民,康源久远CEO12:15-13:30 午餐与交流• 其他偶联药物开发 13:30-14:00 抗体偶联药物的创新与未来冯振卿,南京医科大学教授、博士生导师;国家卫生健康委员会抗体技术重点实验室主任14:00-14:30 基于肿瘤研发策略与机制研究的双抗ADC开发案例赵永浩,江苏康宁杰瑞研发总监14:30-15:00 RDC药物在肿瘤的精准靶向治疗及诊疗一体化中的应用伍维思,无锡诺宇医药科技有限公司首席技术官15:00-15:30 茶歇与交流15:30-16:00 全球首创的PEG-BsADC技术及最新临床前数据刘树民,康源久远CEO16:00-16:30 创新其他偶联药物的设计与开发确认中创新抗体药物专场——靶点、双/多特异性/功能抗体药物早期研发与成药性/可开发性8月9日(Day1)下一步开发之抗体工程/分子设计与更优成药性/可开发性 • 双/多特异性/功能抗体 9:00-9:30抗体工程改造平台构建及创新双特异性抗体开发应天雷,复旦大学基础医学院上海合成免疫工程技术研究中心主任9:30-10:00 T cell engager &免疫治疗抗体技术平台:双抗更优成药探索陈汉阳,天劢源和研发副总裁10:00-10:30 纳米抗体开发技术及应用案例分析许龙,上海百英生物科技有限公司研发总监10:30-11:00 茶歇与交流11:00-11:30 抗PD-L1/TIGIT双特异性抗体创新开发设计与药效优化朱向阳,华奥泰生物CEO11:30-12:15 圆桌讨论:差异化创新单抗、双/多抗药物,如何创新? 分子设计/结构优化 靶点选择/组合逻辑 适应症选择 biology挑战:MOA研究主持人:朱祯平,博士朱向阳,华奥泰生物CEO黄岩山,浙江道尔生物科技有限公司创始人、CEO赵晓峰,先声药业研发高级总监12:15-13:30 午餐与交流13:30-14:00 抗体药物的重新设计和“老药新用”马步勇,上海交通大学药学院教授14:00-14:30 下一代T细胞导向双特异性抗体开发及细胞因子风暴与改进安全性研究Christian Klein,罗氏瑞士研发中心负责人(online)14:30-15:00 新型生物药免疫原性方法建立的关键考量以及案例分享祝永琴,熙宁生物高级技术总监15:00-15:30 茶歇与交流15:30-16:00 IL-15/IL-15R与双抗融合构建创新三抗分子与开发设计屈向东,启愈生物技术(上海)有限公司创始人、董事长、总经理16:00-16:30 CD3/CD19/CD20 T细胞介导三抗的设计与开发张洁,恩沐生物联合创始人兼COO16:30-17:00 肿瘤“靶向免疫”治疗的免疫学与多抗GNC药物研发朱义,百利药业董事长&CSO创新抗体药物专场——靶点、双/多特异性/功能抗体药物早期研发与成药性/可开发性8月10日(Day2)拒绝“内卷”之通路/靶点发现与组合策略/生物学/机制与早期研发• 差异化靶点/靶点组合/通路研究/适应症开拓8:30-9:00 单细胞技术发现结直肠肿瘤靶点研究苏冰,上海市免疫学研究所所长9:00-9:30PD-L1×TGF-βRII双抗的肿瘤微环境机制研究与转化医学廖成,恒瑞医药副总经理9:30-10:00 PKPD模型如何助力提升创新抗体药临床研究的效率邵凤,江苏省人民医院国家药物临床试验机构办副主任10:00-10:30 后PD-1时代: 抗体药物的开发策略和新靶点凌虹,维立志博SVP/CSO10:30-11:00茶歇与交流11:00-11:30 新型癌症免疫治疗Treg-Teff调节剂——TNFR2抗体激动剂和拮抗剂 殷刘松,盛禾(中国)生物制药有限公司执行总裁兼首席科学官 11:30-12:00 创新药临床转化现状与发展趋势郑晓南,中国生物医药产业链创新与转化联盟常务副理事长兼秘书长12:00-13:30 午餐与交流13:30-14:00 基于免疫学研究的药物开发:IL-2的生物学和治疗前景陈波,齐鲁制药集团创新药物研究院副院长兼免疫炎症部负责人14:00-14:30 靶向肿瘤新生抗原的新型生物技术药物潘利强,浙江大学药学院院长助理、百人计划研究员、浙大一院兼聘教授14:30-15:00 抗体药物优化设计及非肿瘤适应症开拓(拟)刘恒,天辰生物医药(苏州)有限公司总经理15:00-15:30 茶歇与交流15:30-16:00 PD-1/ILT4双特异抗体的作用机制及开发策略陈明久,博奥信生物技术(南京)有限公司总裁16:00-16:30 高抗肿瘤活性与安全性的CLDN18.2x4-1BB双特异性抗体开发罗羿,普米斯生物技术新药生物学总监小分子创新药发现与创新论坛 8月9日(Day1)靶向不可成药——研发具有竞争壁垒的小分子创新药• 靶向蛋白降解与PROTAC9:00-9:30 PROTAC在激酶非催化功能发现和调控中的应用丁克,中科院上海有机所/暨南大学教授9:30-10:00基于蛋白稳态调控的新药发现董晓武,浙江大学药学系副主任,浙江大学创新药物研究中心副主任10:00-10:30自动化高通量筛选助力快速找到新药进入IND刘旸,贝克曼库特 Application Manager10:30-11:00茶歇与交流11:00-11:40基于临床价值的创新药药理毒理研究关注点程鲁榕,CDE 前药理毒理审评专家11:40-12:10冷冻电镜结构解析指导PROTAC向分子胶的演化颜晓东,佰翱得副总裁12:10-13:30午餐与交流13:30-14:00靶向自噬-溶酶体降解“不可成药”靶点的分子机制丁澦,复旦大学生命科学学院教授• AIDD/CADD/SBDD/FBDD/DEL等前沿技术制药14:00-14:30分子伴侣介导的蛋白降解平台 (CHAMPTM)助力小分子新药发现叶龙,珃诺生物医药科技(杭州)有限公司新药开发(CMC),执行总监14:30-15:00 FBDD及DEL平台助力First-in-Class 新药发现李翔,保诺-桑迪亚,药物发现总裁15:00-15:30 茶歇与交流15:30-16:00基于AI for Science新范式的药物研发新工具与新流程范梦奇,深势科技生物医药事业群副总裁16:00-16:30PROTAC Nano-SPUD药物研发平台和进展概述冯焱,领泰生物创始人、总经理16:30-17:00AI赋能药物研发案例分享任峰,英矽智能联合首席执行官兼首席科学官17:00-17:45圆桌讨论:1.应对PROTAC药物成药性挑战,我们有哪些应对策略?2.我们准备好了吗?新兴跨界技术赋能新药发现中的挑战与落地思考 任峰,英矽智能联合首席执行官兼首席科学官党群,真实生物总裁夏明德,英诺湖医药创始人、董事长和首席执行官申华琼,纽欧申医药创始人、首席执行官戴晗,维亚生物创新中心负责人 小分子创新药发现与创新论坛 8月10日(Day 2)基于临床需求的差异化药物发现 • 肿瘤药物发现与创新-对于疾病的深入理解8:30-9:00抗肿瘤免疫治疗小分子药物研究张翱,上海交通大学药学院院长9:00-9:30选择性Axl激酶抑制剂FC084的研发习宁,北京范恩柯尔生物科技有限公司创始人、CEO9:30-10:00靶向恶性实体瘤的小分子靶向偶联新药研发段建新,艾欣达伟医药董事长10:00-10:30话题待定10:30-11:00茶歇与交流11:00-11:30新一代EP4受体小分子拮抗剂YY001的临床前开发周文波,上海宇耀生物科技有限公司CEO11:30-12:00CAS SciFinder Discovery Platform助力创新药发现与创新程小燕,CAS 解决方案专家12:00-12:45圆桌讨论:小分子药物在抗肿瘤领域的机遇与挑战——差异化药物的靶点选择与立项思考主持人:华烨,烨辉医药科技有限公司创始人/CEO张劲涛,捷思英达董事长兼CEO段建新,艾欣达伟医药董事长胡邵京,思康睿奇(上海)药业有限公司创始人、董事长兼CEO12:45-13:30午餐与交流13:30-14:00中国创新药及出海临床试验三期临床开发策略与研究进展徐英霖,徐诺药业董事长兼首席执行官• 非肿瘤药物发现与创新(抗感染、CNS、慢病等)-对于疾病的深入理解14:00-14:30创新药发现:从靶标结构到临床药物徐华强,凯思凯迪创始人及董事长,中科院受体结构与功能重点实验室创始主任14:30-15:00 RORγt小分子药物的发现与临床前研究王永辉,上海辉启生物医药科技有限公司创始人、董事长15:00-15:30茶歇与交流15:30-16:00针对慢性乙肝治愈的创新疗法和解决方案唐国志,维申医药联合创始人、CEO16:00-16:30帕金森靶点验证与小分子新药发现周显波,中泽医药CEO16:30-17:00抗乙肝病毒活性天然小分子作用机制及1类新药研发许敏,昆明理工大学生命科学与技术学院,教授,博士生导师 小分子创新药CMC申报与开发专场8月9日(Day1)冲刺最后一公里——CMC申报与上市9:00-9:10开幕致辞潘广成,中国化学制药工业协会执行会长 • 差异化靶点/靶点组合/通路研究/适应症开拓9:10-9:50对创新药(化学药)临床试验期间药学变更技术要求的相关解读李眉,原CDE化学药品及生物制品室室主任兼化药组组长9:50-10:20高活性药物从早期开发到商业化生产的控制策略王新峰,赛默飞Patheon™ 制药服务部全球SME10:20-10:50茶歇与交流10:50-11:30案例浅析:化学新药研发中基于科学的各学科间相互协调及设计李三鸣,沈阳药科大学教授11:30-12:00小分子药物基因杂质研究策略马建国,维亚生物高级副总裁、浙江朗华制药有限公司总裁12:00-13:30午餐与交流• IND/NDA申报策略与实践13:30-14:10小分子创新药评价,处方开发及IND法规要求探讨王志宣,赛诺菲中国研发中心,CMC商务&外部合作总监14:10-14:40新药研发中的关键晶型问题陈岑,苏州晶云药物科技股份有限公司/全球商务负责人14:40-15:20美国药典药用辅料中有机杂质的控制策略介绍袁耀佐,江苏省食药检院检验技术研究室主任15:20-15:50茶歇与交流15:50-16:30基因毒杂质的挑战和控制策略郑枫,中国药科大学药物分析系教授/博士研究生导师16:30-17:10中国电子递交元年——eCTD法规解读以及准备思路的分享阙兆麟,辉瑞(中国)研究开发有限公司,药品注册文件出版团队经理17:10-17:55圆桌讨论:1. 面对各种大小变更,我们该如何尽可能减少变更、符合监管要求与平衡成本最优?2. 我们该如何以最少的工作量与成本合理设计与布局,以满足NDA申报核查要求?李敏,华海药业副总裁、上海华汇拓医药科技董事长滕尚军,亚盛医药化学开发与生产副总裁王志宣,赛诺菲中国研发中心,CMC商务&外部合作总监张津州,再鼎医药高级总监 小分子创新药CMC申报与开发专场8月10日(Day2)小分子创新药CMC申报与开发专场• 创新药物质量分析与开发8:30-9:10 话题待定李文捷,药捷安康CMC副总裁(确认中)9:10-9:50“以病人为中心”的药品质量风险控制杨劲,中国药科大学药代中心教授9:50-10:20 欧美儿科药物开发法规和指导原则解读毕明达,维亚生物副总裁10:20-10:50 茶歇与交流10:50-11:30 美国药典分析方法生命周期通则1220解析刘捷,美国药典委员会中华区总部科学事务部副总监11:30-12:10 临床期间/preNDA药学工艺变更的申报要求与桥接试验策略(拟)郭振荣,美迪西药学研究板块执行副总裁12:10-13:30 午餐与交流• 化学药高端制剂摸索优化、工艺开发与质量分析13:30-14:10 新型治疗实体的药物递送:挑战与机遇陈霖,Bayer研发总监14:10-14:50 制剂工艺验证中的过程控制和关键工艺参数的确认吴正红,中国药科大学药学实验中心副主任、教授14:50-15:20 茶歇与交流15:20-16:00 3D打印药物制剂开发与CMC质控策略左翔昊,三迭纪研发副总监16:00-16:40 研发创新体系突破技术难点疑点江新安,产品创新与研发管理专家、项目管理专家 *截止更新于7月26日12时,以大会现场为准扫描下方二维码咨询参会/议程/合作事宜详情咨询:180 1793 9885/177 2112 0767欢迎联系组委会咨询电话:180 1793 9885参会电话:177 2112 0767邮箱:marketing@bmapglobal.com 网址:www.bmapglobal.com/bpc2022
  • 美谷分子第二届高通量药物筛选与发现研讨会在北京召开
    2016年10月20日,由Molecular Devices(美谷分子,简称MD公司)举办的第二届高通量药物筛选与发现研讨会在北京举办。来自全国各地科研院所、制药企业的150余名MD公司用户参加了研讨会。  会议现场  本次研讨会由美谷分子仪器(上海)有限公司高通量药物发现部业务经理黄国庆主持。  美谷分子仪器(上海)有限公司高通量药物发现部业务经理黄国庆  研讨会伊始,首先由MD公司全球副总裁、大中华区总经理江滔先生致开幕辞。  MD公司全球副总裁、大中华区总经理江滔  江滔先生介绍道,Molecular Devices(美谷分子)创立于上世纪80年代美国硅谷,长期为生命科学研究及药物研发提供相关解决方案。主要产品覆盖微孔板检测分析、高通量筛选、高内涵成像、高效克隆筛选等。目前,MD公司是丹纳赫集团一员,与Leica、Sciex、Beckman Coulter及PALL等公司同属丹纳赫生命科学部。2005年,MD公司在上海设立了第一个中国代表处,之后于2012年在国内正式成立商务公司,即美谷分子仪器(上海)有限公司。  高通量药物筛选与发现研讨会每年举办一次,大部分研讨会报告由MD公司的产品用户带来。  报告人:杨建国博士 桉璐生物技术(上海)有限公司首席执行官  报告题目:ClonePix在高产细胞株筛选中的方法发展  桉璐生物技术(上海)有限公司首席执行官杨建国博士  报告人:黄长江博士 烟台迈百瑞国际生物医药有限公司高级副总裁  报告题目:抗体药物偶联物的分子设计与偶联工艺  烟台迈百瑞国际生物医药有限公司高级副总裁黄长江博士  报告人:周景文博士 江南大学生物工程学院教授  报告题目:工业生物技术中的高通量筛选策略  江南大学生物工程学院教授周景文博士  报告人:连忠辉 北京亦庄国际生物医药投资管理有限公司副总工程师  报告题目:高通量细胞筛选服务平台的建立与应用  北京亦庄国际生物医药投资管理有限公司副总工程师连忠辉  报告人:顾津明博士 上海恒瑞医药有限公司生物医药研发部执行总监  报告题目:在中国建立世界一流的抗体发现平台  上海恒瑞医药有限公司生物医药研发部执行总监顾津明博士  报告人:杨巍博士 诺和诺德(中国)研究发展中心生物制药研究部分子生物学部门总监  报告题目:高通量克隆和筛选技术在蛋白药物研发中的应用  诺和诺德(中国)研究发展中心生物制药研究部分子生物学部门总监杨巍博士  报告人:何柯博士 上海恒瑞医药有限公司研究员  报告题目:基于高通量筛选技术的单克隆细胞株开发策略  上海恒瑞医药有限公司研究员何柯博士  报告人:Steve Wiltgen博士 MD公司全球产品经理  报告题目:使用ClonePix和其他自动化方法加速抗体药物发现进展  MD公司全球产品经理Steve Wiltgen博士  研讨会现场座无虚席,气氛非常热烈,每位报告人都为现场参会者耐心解答了各类问题,会议间歇期间,与会者还积极地互相交流了关于实验以及产品使用的相关问题。  现场答疑  茶歇交流
  • 【会议预告】德祥将前往第五届小分子创新药开发与合作大会
    第五届小分子创新药开发与合作大会大会时间:2022/10/13-2022/10/14大会地点:上海扬子江丽笙精选酒店3F宴会厅*提示:进入会场均须持有 48 小时以内核酸阴性证明+健康码“绿码”,会议期间必须全程佩戴口罩,如您需在酒店住宿,除上述条件以外还须保证“行程码”7 天之内未涉及国内中高风险地区。1、德祥展位上海扬子江丽笙精选酒店3F展位号:A05 2、大会背景新药领域小分子仍是目前主要的药物形式,且因其独特的优势屹立于新药研发主战场而不倒。随着新技术、新靶点的涌现,PROTAC技术等作为新兴小分子药物研发的利器,掀起了小分子药物研发的新浪潮,也迎来的新一轮的发展机遇。万怡医学主办的“第五届小分子创新药开发与合作大会”将于10月13-14日在上海盛大召开。大会以“技术革新引领小分子药物新浪潮”为主题,特邀60+领袖讲者,600+行业专家聚焦最前沿的技术和行业资讯,以主旨报告、圆桌讨论、VIP欢迎晚宴、一对一商务对接等多种形式,打造全方位产学研资讯交流合作平台。德祥科技也同样受邀参加本次大会。3、大会安排
  • 颜宁与高帅合作新作出炉!冷冻电镜助力揭示药物调控钙离子通道分子机制
    论文题为“Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels”(《索非布韦和碘胺酮药物联用阻断L型钙离子通道引起严重不良作用的分子机制》),通过高分辨冷冻电镜、结合细胞活性、分子模拟等实验,揭示了丙肝特效药索非布韦与抗心律失常药碘胺酮联合使用产生严重副作用的分子机制,为开发更加安全的丙肝治疗药物奠定了结构基础,为药物副作用临床研究带来新的启示。高帅和美国普林斯顿大学博士后姚霞博士为共同第一作者,高帅和颜宁为共同通讯作者。索非布韦作为靶向丙肝病毒NS5B聚合酶的药物使得丙肝的治愈率达到近乎百分百,碘胺酮为抗心律失常药物主要通过抑制心脏的离子通道发挥作用。索非布韦与碘胺酮联合用药后,发现患者出现严重的心律过缓现象,甚至出现一例死亡的病例,深入研究后发现索非布韦或其类似物可以增强碘胺酮对L型钙离子通道的抑制作用。通过高分辨冷冻电镜结构发现,碘胺酮主要通过疏水作用结合在钙离子通道开放窗位点,其叔胺基团指向离子孔与索非布韦的磷酸基团存在静电相互作用,将索菲布韦稳定在离子孔里面,阻碍钙离子的通过。此外我们通过细胞实验发现索非布韦与碘胺酮存在协同抑制作用,与二氢吡啶类降血压药物(尼菲地平等)抑制无协同作用,与心血管药物维拉帕米存在竞争性抑制作用,我们通过结构分析解释了这两种心血管药物不产生类似副作用的原因。更重要的是,我们通过分子对接技术发现,仅需要改变索非布韦的磷酸手性就可以打破分子之间的相互作用,提高抗丙肝药物的安全性。这是继2021年7月Nature、2022年4月Cell Research发表靶向钙离子通道的镇痛药物齐考诺肽,抗晕动症药物桂利嗪药物作用机制以来,高帅在该领域的又一系统性、突破性进展,展现了结构生物学对药物研发、药物评价的积极作用,为新型创新药的研发奠定了重要的结构基础。
  • 1000万!云南省天然药物药理重点实验室分子药理学研究平台(共享设备)采购项目
    一、项目基本情况项目编号:C53A00623001502项目名称:云南省天然药物药理重点实验室分子药理学研究平台(共享设备)预算金额(万元):1000最高限价(万元):1000采购需求:采购(1)激光共聚焦双转盘高内涵成像系统1套;(2)多功能微孔板检测系统1套;(3)超速离心机1套;(4)CO2培养箱1套;(5)生物安全柜1套;(6)纯水仪1套;(7)病理扫片分析工作站1套;(8)低氧培养系统1套。具体内容详见第五章 项目需求及技术要求。★注:1、投标人须对所投项目所有产品进行完整投标,不可缺项漏项,否则按不实质性响应招标文件处理。2.本次招标接受进口产品,进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品;合同履行期限:(交货时间)合同签订后180天内交货。本项目(否)接受联合体投标。二、获取招标文件时间:2023-10-07 15:37至2023-10-12 17:00,每天上午09:00至11:30,下午14:00至17:00(北京时间,法定节假日除外)地点:云南省公共资源交易系统(网址:http://ggzy.yn.gov.cn/#/homePage);方式:进入云南省公共资源交易系统,凭企业数字证书(CA)在网上获取采购文件及其它采购资料。售价(元):0三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:昆明医科大学地址:呈贡新区雨花街道春融西路1168号联系方式:贾老师0871-659228782.采购代理机构信息名 称:云南招标股份有限公司地址:云南省昆明市人民西路328号联系方式:0871-653298703.项目联系方式项目联系人:朱红宇、杨婧、尹号芬、鹿雯、罗红坚电 话:0871-65329870
  • 【阿拉丁】连接子 - 抗体与药物结合的关键因素
    连接子 - 抗体与药物结合的关键因素抗体-药物偶联物(Antibody-drug conjugate, ADC)结合了抗体的高特异性和小分子药物的强细胞毒性。这种组合结合了抗体的独特和非常敏感的目标能力,可以区分健康组织和癌组织。它还具有细胞毒性药物的细胞杀伤能力,可能最大限度地减少剂量限制性毒性,同时最大限度地提高所需的治疗效果。ADC的主要优点是可以在体循环中作为药物使用,最终在靶肿瘤细胞中释放游离药物。在这一过程中,连接子在释放有效药物靶向肿瘤细胞,决定ADC的药代动力学特性、治疗指标和选择性,甚至整体成功方面发挥着关键作用。目前使用的连接子可分为可切割连接子和不可切割连接子两大类,它们之间的区别在于它们在细胞内是否会被降解。一、用于连接的可切割连接ADC连接子的主要类别是可切割连接子。可切割连接子被设计为对细胞外和细胞内环境差异(pH、氧化还原电位等)表现出化学不稳定性,或者可以被特定的溶酶体酶切割。在大多数情况下,这种连接子被设计成在键断裂后释放有效载荷分子。这种无迹可循的药物释放机制使研究人员能够根据已知的游离有效载荷的药理学参数估计共轭有效载荷的细胞毒性。2.1 可切割接头的类型可裂解接头腙是一种酸不稳定基团,当ADC被转运到核内体(pH 5.0-6.0)和溶酶体(pH约4.8)时,它被用作可切割的连接子,通过水解释放游离药物。组织蛋白酶B响应连接子组织蛋白酶B是一种溶酶体蛋白酶,在多种癌细胞中过表达,参与人类许多致癌过程。组织蛋白酶B的底物范围相对较广,但它优先识别某些序列,如苯丙氨酸-赖氨酸(Phe-Lys)和缬氨酸-瓜氨酸(Val-Cit)。这种序列的c端切割肽键。Val-Cit和Val-Ala连接物偶联p -氨基苄氧羰基(Val-Cit- pabc和Val-Ala- pabc)是adc最成功的可切割连接物。PABC片段使自由有效载荷分子以无迹方式释放。双硫键连接子谷胱甘肽敏感连接子是另一种常见的裂解连接子,其策略依赖于细胞质中较高浓度的还原分子(如谷胱甘肽)(1-10 mmol/L)。二硫键嵌入在连接子中,在循环中抵抗还原性裂解。然而,内化后,大量细胞内谷胱甘肽减少二硫键,释放自由有效载荷分子。为了进一步提高循环中的稳定性,通常在二硫键旁边安装一个甲基。焦磷酸二酯连接子该阴离子连接子具有比传统连接子更高的水溶性和优良的循环稳定性。此外,在内化后,焦磷酸二酯通过内核体-溶酶体途径快速裂解,释放未修饰的有效载荷分子。图1. 可切割连接子。(Kyoji Tsuchikama & Zhiqiang An. 2018)二、不可切割的连接子不可切割连接子由稳定的键组成,抵抗蛋白质水解降解,确保比可切割连接子更高的稳定性。不可切割连接子依赖于细胞质和溶酶体蛋白酶对ADC抗体成分的完全降解,并最终释放与降解抗体衍生的氨基酸残基连接的有效载荷分子。与可切割连接子相比,不可切割连接子的最大优点是其等离子体稳定性增强,与可切割连接子相比,这可能提供更大的治疗窗口。此外,与可切割的偶联物相比,它有望降低脱靶毒性,因为不可切割的adc可以提供更大的稳定性和耐受性。图2. 不可切割的连接子。不可切割连接的化学稳定性可以承受蛋白质水解降解。单抗的细胞质/溶酶体降解可以释放与降解的单抗衍生氨基酸残基相连的有效载荷分子。(Kyoji Tsuchikama & Zhiqiang An. 2018)三、总结结论保证游离药物在肿瘤细胞内的特异性释放是选择Linker的最终目的。该连接子对ADC的稳定性、毒性、PK特性和药效学等具有重要意义。每个环节都有其优点和缺点。在选择连接子时,必须考虑许多因素,包括单克隆抗体和细胞毒性药物中的现有基团、反应性基团和衍生功能基团。最后,需要通过个案分析确定如何优化选择合适的连接物、靶点和毒性分子,平衡ADC药物的有效性和毒性。表1. 连接子类型及优缺点比较参考文献1. Kyoji Tsuchikama & Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell. 2018 9:33-46.2. Jun Lu. Feng Jiang. Aiping Lu. and Ge Zhang. Linkers Having a Crucial Role in Antibody–Drug Conjugates. Int J Mol Sci. 2016 Apr 17(4):561.3. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics. 2015 16(3):257-71.阿拉丁提供相关产品,详情请见阿拉丁官网:Linkers - A Crucial Factor in Antibody–Drug Conjugates (aladdin-e.com)
  • Biotage助力药物分子开发全流程 ——访美国贝勒医学院贾斯汀· 安林(Justin Anglin)博士
    作为全美久负盛名的顶级医学院之一,贝勒医学院在生物医药领域一直处于世界领先地位,此次我们造访了其药物研发中心(Center for Drug Discovery),了解了其最新的研究进展,同时研发中心主任贾斯汀安林(Justin Anglin)博士向我们展示了正在进行的男性避孕的新药开发项目。在整个药物研发中心的新药开发过程中,Biotage提供了整套从合成到研发的快速解决方案。 在此次交流过程中,贾斯汀安林(Justin Anglin)博士向我们介绍了他们正在努力攻克的项目以及相关Biotage产品的互动交流。以下为相关内容: 能否介绍一下您目前正在研究的项目? 我们正在研究应用于激酶靶点的抑制剂,使其用于治疗各类肌肉坏死或者萎缩等病变,很多病人在长时间的住院之后,很容易出现这一类肌肉病变或者萎缩问题;通过机理研究,我们发现通过抑制此类激酶可有助于肌肉生长并阻止肌肉萎缩,因此,我们希望可以找到一些抑制剂能够诱导肌肉生长并阻止其萎缩。此外,我们还在进行一个男性避孕药项目的研究,马蒂马祖克(MartyMatzuk)是此项目的负责人,这也是他负责的最大项目之一;他通过对整个基因组进行基因敲除,确定了几十个潜在的药物靶点,他知道哪些基因是精子特有的,因此我们通过DNA编码库对这些小分子配体进行了系统的筛选;通过这样一系列的筛选,我们希望能够找到一种安全的男性口服避孕药。关于此项目的建立,我们走访了很多用户,人们对此都保持着积极乐观的态度,此用药可以进一步增加男女双方之间的信任,提供更多的安全保障,为男女平等架起更加友善的桥梁。 可以简单介绍一下目前您实验室的项目分工情况吗? 我们一直在做项目,包括刚刚提及的肌肉调节以及男性避孕等项目,一直以来,大家都在为项目做着相关的研究性工作,我负责项目的分配,也在积极的投入到具体的实验研究当中去,目前包括我在内,实验室有五名成员,每个人都在独立运行,管理着自己的项目。同时我们和德克萨斯州的一些其他实验室也有相关的合作。 目前有多少项目是需要用到Flash快速纯化系统(过柱机)的呢? 所有的项目都需要,除了Medchem项目之外,所有的潜在药物活性分子都需要通过Biotage的仪器进行纯化,以确保纯度。 作为一名经验丰富的药化专家,在您看来,Flash色谱系统在您的项目中起到怎么样的作用呢?Biotage Flash色谱系统在我们的研究过程中起到了非常关键的作用,如果没有很好的纯度和质量控制,后期的毒理药理实验是很难想象的,Biotage Flash系统为我们的纯化节约了大量的时间,通过Isolera 纯化后的样品,可在质谱和核磁下得到非常清晰的结果,可以保证其纯度和质量,这样让我们对后续的研究更有信心。 在实验室工具的选择上面,那些因素因为是您首要考虑的?在我看来,效率和质量是我最在乎的两个点,比如Isolera,在我们使用它的时候,我们觉得它为我们带来了便利和速度,并且持续的高效稳定,这就是我们选择Isolera最重要的原因,所以此后为了更高效率的处理纯化后的馏分,我们引进了V-10 Touch,这两个设备搭配起来之后,样品的纯化以及溶剂蒸发一气呵成,Biotage提供的一整个实验流程的解决方案为我们提供了巨大的便利。 可否具体描述一下Biotage全流程解决方案是如何改变您的实验过程的呢? 贝勒医学院在化学和生物领域拥有着领先世界的技术,我们的DNA编码化合物库非常优秀,但需要进行大量的化合物的合成和测试,Biotage提供了从合成到蒸发的整个全流程的仪器服务,在此基础上,我们可以非常快速的得到目标化合物,目前来看,Biotage仪器在我们的整个研发过程中都不可或缺。通过Intitiator+,我们可以在一个小时内,完成八个目标化合物的合成,而在以前,同样的八种样品的合成,最起码需要12个小时以上;另外合成结束后,我们可以使用Isolera + V-10Touch的系统组合在一天之内分离并旋干16种以上样品,节约了大量的人力,物力以及时间成本。当使用Isolera 系统进行反向分离的时候,我们倾向于使用13×100mm的收集支架,另外对于V-10 Touch而言,20mL的瓶子是我们最常用的样品瓶型号。“Biotage全流程服务,让研发更加快速高效” 在日常实验中,您使用Biotage仪器的频率高吗?高,几乎每天都在使用,从目前来看,如果没有Biotage的仪器,实验室的运转很可能都会出现问题。 在现有的组织架构下,您是如何安排和学生一起进行研究工作的呢?目前我有一个来自莱斯大学的本科生,她非常聪明,她也非常喜欢使用Biotage的仪器,另外我还有一个来自生物系的学生;同时作为BCM smart项目的一部分,每年暑假我们还有来自全国各地不同学校的暑期学生参与到我们的项目当中来。在医学院,我们主要以研究为导向,所以我们并不会总是有化学专业的学生,我认为,对于不熟悉medchem的学生来说,看到目前实验室的配置可能会让他们有些许震惊,尤其那些来自教学实验室的学生。不过所有人都会很快并熟悉使用Biotage的仪器,这对他们来说比较简单,同事也可以帮助他们完善一些关于制备色谱方面的知识。 您的现有的项目条件,您还有哪些期待和规划呢?我希望,后期可以在现有的V-10 Touch基础上加上一个多样品处理转盘,这样我们就不需要手动换样品了,如果经费充足,我甚至想要再买一台V-10 Touch,这样可以解决目前运力不足的问题。我有看到布莱恩默瑟正在试用新款Flash制备,后续我们也希望可以引进新款;另外我们目前还有一个多肽项目,我们正在考虑引进一台Alstra全自动微波多肽合成系统。
  • 限量福利 | PharmLink 2022 第五届小分子创新药开发与合作大会上海站开启报名,速来!
    邀请函小分子作为新药领域的主要药物形式,凭借其在肿瘤、自身免疫性疾病、神经系统疾病、感染性疾病等治疗独特的优势(研发成本相对较低,工艺相对熟练),依然是新药研发的主战场,且随着新技术、新靶点的不断涌现,将掀起小分子药物研发的新浪潮,小分子药物创新将迎来的新一轮的发展机遇。迎机遇,谋发展,促合作,由万怡医学主办的“PharmaLink 2022第五届小分子创新药开发与合作大会”将于10月13-14日在上海扬子江丽笙精选酒店盛大召开。大会以“技术革新引领小分子药物新浪潮”为主题,特邀60+领袖讲者,800+行业专家聚焦最前沿的技术和行业资讯,以主旨报告、圆桌讨论、VIP欢迎晚宴、一对一商务对接等多种形式,打造全方位产学研资讯交流合作平台。诚邀您十月共聚上海,共襄盛会!小分子创新药开发与合作大会组委会大会信息1、会议信息:PharmaLink 2022第五届小分子创新药开发与合作大会2、会议时间: 2022年10月13-14日3、会议地点:上海扬子江丽笙精选酒店4、主办单位:万怡医学“技术革新引领小分子药物新浪潮”会议特色参会群体日程框架大会关键词生物标志物、伴随诊断、新药设计、靶点筛选、筛选技术(DEL、AIDD、PROTAC、FBDD)、难成药靶点、抗癌药物开发、人工智能、临床试验、抗肿瘤新药、DMPK、药代动力、化合物筛选、临床前CRO、毒理研究、安全性评价、CNS创新药、模式动物、类器官、管线布局、老龄化疾病药物、NASH、代谢性疾病药物、源头创新大会日程全体大会:小分子药物新技术、新发展抗肿瘤原研药开发与全球化之路小分子抗癌药物研发的现状与趋势合作共赢,提供一站式服务助力药企管线开发中国本土创新药的挑战及展望圆桌讨论A:小分子创新药研发布局与发展趋势专题一:生物标志物与新药研发生物标志物检测加速新药临床研究从新生抗原发现到生物标志物发掘挖掘全新生物标志物以拯救临床失败药物伴随诊断为肿瘤免疫治疗保驾护航小分子创新药研发新趋势-新型小分子抗肿瘤药物设计分享圆桌讨论B:肿瘤生物标志物市场现状分析与发展前景预测专题二:药物筛选新技术与新型靶点实践TIGIT靶点药物研发及市场前景人工智能驱动创新药研发及在临床试验中的运用“不可靶向”靶点创新药物的开发新型药物筛选技术开发对新药研发的重要作用创新型4-1BB×EGFR双抗HLX35临床试验与进展圆桌讨论C:“新”靶点的探索赋能创新药研发专题三:抗肿瘤小分子药物的春华秋实抗肿瘤新药的差异化设计与开发抗癌小分子药物的DMPK 研究考量小分子抗肿瘤药物的药代动力学研究变构抑制剂策略突破“难成药”靶点,开发KRAS G12C抑制剂构建安全有效的动物模型,助力小分子化合物筛选圆桌讨论D:小分子创新药:挑战与新技术高选择性Aurora A小分子口服抑制剂开发策略药物设计与晶型筛选非小细胞肺癌治疗药物的研发与临床开发进展小分子药物的成药性研究抗肿瘤小分子药物的源头创新与构建聚焦胚胎通路的新型抗肿瘤药物开发专题四:中枢神经系统疾病药物布局与进展中枢神经系统疾病药物布局与进展可突破血脑屏障的小分子药物研发构建针对CNS的创新药研发体系与管线药理学模型与CNS药物发现抗抑郁药研发痛点挖掘与药物布局类器官技术革新药物筛选与研发差异化发展,开发CNS未满足市场专题五:代谢性疾病治疗药物开发治疗非酒精性脂肪肝炎药物的研发难点与管线进展NASH小鼠模型构建技术与服务从跟随到创新,抗痛风创新药的研究与开发AI技术打造药物研发新模式老龄化疾病药物开发的挑战与机遇小分子GLP-1受体激动剂联合治疗代谢性疾病往届精彩回顾商务合作PharmaLink 2022开放主题演讲、产品展示、晚宴赞助、专题论坛冠名、合作邀约等多种赞助形式,为您提供全方位品牌宣传创新方案和合作平台,诚邀您的参与!可为小分子创新药CRO/CDMO、生物技术、冷链运输、产业园区、实验室仪器厂商、临床试验机构、制药装备企业、医药工程设计企业、仪器耗材、原辅料/代理商、注册咨询机构、海外药品研发机构、临床试验机构、杂质对照品、参比制剂、第三方检测机构、分析设备、生产工艺设备、知识产权等企业提供多形式的宣传展示。合作联系人:Winnie Zhu | 朱老师Mobile: +86 18817502898、19145584879(同微信)E-mail:Winniezhu@healife.com参会/媒体联系人:Karen Xu | 徐老师Mobile: +86 17717489261(同微信)E-mail:Karenxu@healife.com注册报名A类注册费2688元/人• 所有会场进出听会资格• 全套会刊资料• 所有讲者授权的视频材料• 两天自助午餐• VIP社交晚宴B类注册费1688元/人• 所有会场进出听会资格• 全套会刊资料• 所有讲者授权的视频材料• 两天自助午餐大会观摩券588元/人:仅含入场胸牌,可听会和参观展区扫描下方二维码即可报名限时活动扫描下方二维码完成报名并上传您的相关证件,审核通过后即可获得免费观摩券一张,限量100名扫描上方二维码即可填写信息并报名,需上传身份证明图片:(和提交的信息一致)• 企业:需提交本人名片• 医院/科研机构:需提交工作证或胸牌审核通过后,五个工作日内将发送报名成功的短信,若未收到,则没有报名成功
  • 议程首曝 | PharmaLink 2022 第五届小分子创新药开发与合作大会,10月上海见!
    迎机遇,谋发展,促合作,由万怡医学主办的“PharmaLink2022第五届小分子创新药开发与合作大会”将于10月13-14日在上海盛大召开。大会以“技术革新引领小分子药物新浪潮”为主题,特邀60+领袖讲者,800+行业专家聚焦最前沿的技术和行业资讯,以主旨报告、圆桌讨论、VIP欢迎晚宴、一对一商务对接等多种形式,打造全方位产学研资讯交流合作平台。一、参会报名扫描上方二维码填写表单并上传您的相关证件审核通过后即可获得大会免费观摩券一张二、组织机构主办单位:万怡医学指导单位:上海市生物医药产业促进中心、长三角G60科创走廊支持单位:上海市药理学会、上海市生物化学与分子生物学学会、上海市浦东新区生物产业行业协会、广东医谷、SAPA中国分会、江苏药物研究与开发协会、上海股权投资协会、上海市神经科学学会、武汉东湖国家自主创新示范区生物医药行业协会、江苏省创业投资协会、药渡合作媒体:86175仪器网、BIOMED、SOHOblink、测序宝、癌图腾、分析测试百科网、化工仪器网、风云药谈、会会药咖、活动家、来宝网、蓝色彩虹、杉树园、生物咖啡茶、生物世界、生物探索、生物通、肽度、新康界、药方舟、药鹿、医药荐客、仪器信息网、制药在线、中国生物器材网、中美健康咨询网、露森科研、药圈时汇、基因君、洞见、CBG资讯大会官网:www.pharma-link.com.cn三、大会日程全体大会:小分子药物新技术、新发展10月13日 上午08:55-09:00 领导致辞09:00-09:30 小分子抗癌药物研发的现状与趋势曾庆平,复星集团全球合伙人,复星弘创创始人兼 CEO、总裁09:30-10:00 抗肿瘤原研药开发与全球化之路童友之,开拓药业创始人、董事长、首席执行官10:00-10:20 TBD晶泰科技10:20-10:40 茶歇及展区互动参观10:40-11:10 中国本土创新药的挑战及展望吴劲梓,歌礼制药创始人、董事会主席、首席执行官11:10-12:00 圆桌讨论A:小分子创新药研发布局与发展趋势曾庆平,复星集团全球合伙人,复星弘创创始人兼 CEO、总裁童友之,开拓药业创始人、董事长、首席执行官刘东舟,华东医药首席科学官12:00-13:30 午餐专题一:生物标志物与新药研发10月13日 下午13:30-14:00 生物标志物检测掘加速新药临床研究李培麒,基石药业早期开发副总裁14:00-14:30 小分子创新药研发新趋势-新型小分子抗肿瘤药物设计分享谢志逸,英派药业常务副总裁、首席医学官14:30-14:50 TBD保诺-桑迪亚14:50-15:10 茶歇及展区互动参观15:10-15:40 挖掘全新生物标志物以拯救临床失败药物张连山,恒瑞药业全球研发总裁15:40-16:00 伴随诊断为肿瘤免疫治疗保驾护航16:00-16:30 FGFR抑制剂的开发与进展姜华,和誉医药BD负责人16:30-16:50 医药行业连续流开发和产业化实践叶伟平,深圳市华先医药科技有限公司董事长16:50-17:20癌症检测的前沿领域:合成生物标志物张大为,苏州韬略生物科技有限公司总经理17:20-18:00圆桌讨论B:肿瘤生物标志物市场现状分析与发展前景预测谢志逸,英派药业常务副总裁、首席医学官李福根,海和药物高级副总裁叶 斌,华辉安健首席科学官18:00-20:00Pharmalink2022研发CEO之夜(合作厂商招募中)专题二:药物筛选新技术与新型靶点实践10月13日 下午13:30-14:00 基于E3连接酶的Protac诱导的体内靶蛋白降解技术张继跃,奥瑞药业有限公司联合创始人、首席执行官14:00-14:20 新药研发中的关键晶型问题陈岑,苏州晶云药物科技股份有限公司、全球商务负责人14:20-14:50 药物发现--从“经验设计”到“合理设计”王铁林,亚虹医药新药发现高级副总裁14:50-15:10 茶歇及展区互动参观15:10-15:30 创新分子砌块启迪新药发现余善宝,药石科技副总裁15:30-16:00 靶向蛋白降解药物研发与前景刘华庆,百济神州药物化学执行总监16:00-16:20 安全、节能、减排、降本,倚世助力新药创新张辉,倚世科技副总经理、首席科学官16:20-16:50 基于蛋白靶向降解技术的新药开发韩笑然,睿跃生物药物发现总监16:50-17:20高选择性BTK-PROTAC和GSPT1分子胶降解剂研发实例舒永志,美志医药联合创始人兼CEO17:20-18:00圆桌讨论C:“新”靶点的探索赋能创新药研发刘华庆,百济神州药物化学执行总监汪 俊,凌科药业首席科学官王铁林,亚虹医药新药发现高级副总裁杜 武,海创药业资深副总裁18:00-20:00Pharmalink2022研发CEO之夜(合作厂商招募中)专题三:抗肿瘤小分子药物的春华秋实10月14日 全天09:00-09:30 抗肿瘤新药的差异化设计与开发李磐,真实生物副总经理、小分子新药研发负责人09:30-10:00 AI+疾病模型的创新靶向药研发张海生,希格生科创始人兼CEO10:00-10:20 创新药专利布局策略徐婕超,弼兴合伙人、专利代理师、技术经纪人10:20-10:40 茶歇及展区互动参观10:40-11:10 变构抑制剂策略突破“难成药”靶点,开发KRAS G12C抑制剂龙伟,加科思化学副总裁11:10-11:30 利用二维液相技术提升药物杂质研究的效率肖尧,安捷伦科技液相色谱市场经理11:30-12:15圆桌讨论D:小分子创新药:挑战与新技术谢嘉生,广东医谷执行总裁李 磐,真实生物副总经理、小分子新药研发负责人张劲涛,捷思英达创始人、董事长、CEO单 波,徳琪医药首席科学官徐英霖,徐诺药业董事长、首席执行官兼总裁包悍英,璎黎药业临床开发副总裁12:15-13:30 午餐13:30-14:00 高选择性Aurora A小分子口服抑制剂开发策略张劲涛,捷思英达创始人、董事长、CEO14:00-14:20 合成后期修饰再药物分子设计中的运用14:20-14:50 多靶点小分子抗肿瘤创新药研究吴豫生,同源康医药董事长兼总裁14:50-15:10 茶歇及展区互动参观15:10-15:30 蛋白降解剂的发展趋势与差异化窦登峰,成都先导 先导化合物发现中心副总裁15:30-16:00 抗癌靶向药物的研发与临床开发进展胡邵京,思康睿奇(上海)药业有限公司创始人16:00-16:30 基于亲和性的质谱筛选平台和抗肿瘤药物的开发邓永奇,凯复医药董事长、总经理16:30-17:00 小分子抗肿瘤药物的新技术和新思维谢雨礼,苏州偶领生物医药有限公司创始人、总经理专题四:中枢神经系统疾病药物布局与进展10月14日 上午 09:00-09:30 中枢神经系统疾病的新药研发与引进童岗,神领锐医药联合创始人、首席药学官09:30-10:00 中枢神经小分子药物设计思路陈晨,璧辰医药创始人10:00-10:30 CNS新药研发难点与机遇周显波,中泽医药联合创始人、CEO兼CSO10:30-10:50 茶歇及展区互动参观10:50-11:20 可突破血脑屏障的小分子药物研发颜士翔,本草八达总经理11:20-11:40 CNS药物的大脑渗透性研究郭建军,湖南恒兴医药科技有限公司执行董事、CEO11:40-12:10 抑郁及成瘾新药开发思路分享谭震,深圳瑞健生物科技有限公司总经理12:10-13:30 午餐专题五:代谢性疾病治疗药物开发10月14日 下午13:30-14:00 治疗慢性肝病创新药的全球开发刘利平,君圣泰创始人、总裁兼首席科学官14:00-14:30 GLP-1:代谢疾病治疗的“基石药物”14:30-15:00 治疗非酒精性脂肪肝炎药物的研发难点与管线进展关洪平,宁康瑞珠生物制药(珠海)有限公司联合创始人、首席科学官15:00-15:20 茶歇及展区互动参观15:20-15:50 复杂代谢类慢病药物研发进展15:50-16:20 Ⅱ型糖尿病药物开发的挑战与机遇张怡,华领医药药品开发部高级副总裁、首席医学官16:20-16:50 I型糖尿病药物研发新进展黎兵,上海研健新药研发有限公司首席执行官*最终议程安排以现场公布为准四、特色活动1、PhamraLink 2022研发CEO之夜10月13日18:00-20:00 VIP定向邀约制小分子新药研发CEO之夜--“群英会”:群英齐聚,在凉爽的初秋夜晚,品美酒佳肴,会业界好友,听大咖故事;交流、共享、碰撞、融合,力图为小分子药物研发行业精英创造轻松愉悦的社交聚会,搭建各企业之间更高效的交流平台。2、会前一对一商务配对系统9月19日正式上线! 全员皆可参与会前一对一商务配对系统:为协助与会企业找到理想供应商、对接意向买家, 特搭建一对一商务配对平台,助您提前链接参会嘉宾,实现线上线下相结合,让与会者不受地域及时间限制,与众多业内同仁建立联系,增加商贸机遇。3、《我与大咖面对面》10月13日-14日 圆桌讨论环节 全员皆可参与论道小分子创新药之《我与大咖面对面》:大会五个圆桌环节均预留了互动问答时间,在场所有嘉宾都将有机会被抽中成为“幸运提问官”,向台上任意大咖提问,当场即为您答疑解惑。4、社交茶话会10月13日-14日 茶歇&午餐环节 午餐需持餐券入场社交茶话会:在紧张且注意力需高度集中的会议中,适当的休息时间不仅会让整个人放松下来,还能在使人情绪稳定之后听会效率大大提升。或与老朋友叙叙旧,或与新朋友聊上几句 一边品尝精致点心,一边结识业内精英,一举两得,岂不快哉!5、兑神秘盲盒礼品10月13日-14日 09:00-18:00 全员皆可参与PharmaLink小超市兑神秘盲盒礼品,奖品丰富:展区打卡奖:现场参与会场展区打卡,领取多重好礼大会早到奖:每天上午8:40和下午13:10,参与大会现场抽奖大会彩蛋奖:每天下午18:00大会现场惊喜彩蛋抽奖现场抽奖99.99%中奖率!等您来拿!部分奖品预览(奖品以现场实物为准)五、部分参会企业AstraZeneca润捷化学强生越秀金控Cullgen倍特药业英诺湖医药奥赛康Novartis青峰医药二叶制药腾迈医药VastProTechFaubel都创医药和黄艾美斐华海药业云顶新耀大橡科技安琪爾基因APEXBIO图腾生物上海枢境白泽医学美迪西军科正源华大海洋北鲲云正隆医药杨森荣昌制药东阳光药业时迈药业信立泰睿智化学分迪药业海思科医药葆元生物前沿生物分子细胞科学天士力医药京新药业保诺桑迪亚福安药业华领医药贝达医药瑞阳制药复星集团德昇济歌礼制药步长泰州医药赛神医药罗欣药业璎黎药业歌礼生物梧桐树药业德琪医药乐威医药格物致和诺禾致源智睿医药力鼎投资海正药业研健新药至本医疗原基华毅生物皓元医药科志康颐德药业珍宝岛药业和记黄埔石家庄四药中轩华夏键合医药恒瑞医药施贵宝华东医药红日药业宏沣投资爱思唯尔BPS bioscience挚捷资本沪亚生物哈药集团华明道康百奥赛图华北制药海和药物海纳药业必贝特医药华润双鹤阿诺医药康龙化成邦耀生物基石药业苑东生物君圣泰生物加科思云杰生物智康弘仁原启生物制药开拓药业鲁南制药
  • 癌症治疗:纳米粒子-药物结合物临床转化应用取得新进展
    抗体-药物结合物(ADC)在靶向给药方面具有非常明显的优势,但其不足以克服肿瘤异质性所带来的给药局限。近日,来自美国康奈尔大学、斯隆凯特林癌症研究所和一家肿瘤药物公司的联合团队,采取分子工程的路径,开发了一种由超小(小于10 纳米)纳米颗粒-药物构成的缀合物(NDC),这种缀合物与ADC有许多相似之处,且在克服肿瘤异质性方面具有显著优势。相关成果4月22日在线发表于《材料化学》上。科研团队表示,NDC开发的关键挑战包括纳米颗粒载体和细胞毒性药物之间的连接化学设计,以及满足制造控制、稳定性和药物释放的严格标准。只有解决了这些关键环节,才可成功实现NDC的临床翻译。在这项研究中,科研团队采用相关化学方法和分子工程手段,通过精确调整粒子表面化学,将化疗药物和靶向部分共价连接到聚乙二醇(PEG)涂层包覆的超小二氧化硅纳米颗粒平台上,形成缀合物。这种方法利用颗粒表面PEG链之间的间隙来装载药物,与ADC相比,这种缀合物能够显著增强药物装载能力,同时保持良好的生物分布和药代动力学特征。为了在癌症治疗中实现高血浆稳定性和有效药物释放,科研团队开展了相关测试,将环戊二烯硅烷分子插入到颗粒的PEG层中,并与硅芯表面的硅醇基团缩合。通过进一步反应,环戊二烯基团随后被官能团化,从而实现点击化学,细胞毒性有效载荷最终通过可切割连接物点击到颗粒上,实现在癌组织内释放药物。科研团队表示,该研究产生的靶向NDC药物,最近已进入一二期人体临床试验。纳米颗粒-药物构成的缀合物结构示意图
  • Alpha助力发现小分子化药耐药性
    Alpha助力发现小分子化药耐药性大部分化疗药物如铂类药物等,都是通过破坏肿瘤细胞中的DNA来抑制细胞的生长,从而达到治疗效果。然而,“聪明”的肿瘤可以采用另一种替代性的DNA跨损伤合成(translesion synthesis,TLS)途径来完成复制并获得耐药性。针对TLS的靶向化治疗是非常有前景的开发方案。来自麻省理工学院和杜克大学的研究人员发现一种可阻断TLS途径的小分子化合物并发表在CELL上。同时,用这种化合物和顺铂联合治疗体外肿瘤细胞和荷瘤小鼠时,都有显著的效果。这样有临床应用潜力的明星分子是如何被发现的呢?在哺乳动物细胞中,TLS的发生包括两个步骤,首先插入TLS DNA聚合酶,如POL kPOL i、POL h或REV1,在损伤处引入一个核苷酸;接下来是募集b族聚合酶复合物POL z (POL z4: REV3L/REV7/POLD2/POLD3)进行3’端的延伸。而其中起主要作用的是约100个氨基酸的REV1 C-terminal domain (CTD),它可以招募插入TLS的其他聚合酶POL k、POL i和POL h,并通过与REV7的相互作用来招募POL z。基于此,作者首先分别构建了His8-tagged REV7/3和FLAG-tagged POL k RIR-REV1 CTD表达系统并对融合蛋白进行纯化,然后基于ELISA方法对化合物库中高达~10000种化合物进行筛选,并将目标锁定了JH-RE-06。然后作者采用高灵敏定量AlphaScreen技术,通过抗FLAG供体微珠、抗His受体微珠构建匀相反应体系,进一步确定了化合物JH-RE-06对REV1-REV7的阻断作用,并得出了其IC50值为0.78 mM。随后,作者在分别在多种人类癌细胞和人类黑色素瘤小鼠模型上进行了验证,证实此化合物可以提高癌细胞对顺铂类化合物的敏感性和长期化疗的有效性,并对其他以DNA为作用靶标的类似药物,都有同样的类似效果。作者用清晰的思路论述了筛选和验证化合物的过程,并进一步讨论了化合物耐药性机制:JH-RE-06能与Rev1结合并生成二聚体,而一旦形成这样的二聚体结构,则不能与Rev3 / Rev7 TLS DNA聚合酶结合,直接阻止了TLS的发生和癌细胞的快速复制,同时,也更进一步制止了突变产生的可能性,避免了癌细胞获得耐药性。在整个实验过程中,采用ALPHA技术对初筛得到的化合物JH-RE-06的功能验证是非常重要的一步:ALPHA的方法采用单体氧作为能量扩散的载体,其扩散距离可以达到200nm,发光原理为化学反应发光,具有背景干净、信噪比高的特点,同样适合于复杂样品的检测,如组织液、血清、组织裂解液等,步骤少、方法简单、均相反应、不需要洗涤,因此实验结果质量更高。同时推荐选择具有HTS ALPHA检测模块的多功能酶标仪进行抗体的筛选,可以大大缩短检测时间。参考文献Jessica L. Wojtaszek, Nimrat Chatterjee, etal. (2019).A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell. 178, 1–8,June 27
  • 关于举办“生物药物分离纯化技术学术分论坛&实验技能班”的通知
    【简介】   &ldquo 生物药物分离纯化技术学术分论坛&实验技能班&rdquo 于中国国际纳米技术产业发展论坛暨纳米技术成果展同期举办。论坛着眼于生物医药分离纯化研发与生产中的实际问题,聚焦最新分离纯化介质,新方法,新途径,特邀国内一线实战型的著名专家作专题报告,探讨分离纯化解决方案。   实验技能班邀请具有蛋白纯化培训和项目指导经验的中国科学院资深专家主讲。培训包括理论讲解和实际操作,内容涵盖蛋白质纯化方案的设计及实验过程,以及色谱填料装柱、柱效评定、分离、再生等操作全过程,旨在帮助学员在短时间内掌握蛋白质等生物大分子分离纯化全过程,并提高学员的实际动手操作能力。   【时间、地点】   生物药物分离纯化技术学术分论坛   报到时间、地点:2014年9月24日,苏州国际博览中心6A馆一楼   论坛时间、地点:2014年9月25-26日,苏州国际博览中心6A馆   生物药物分离纯化技术学术实验技能班   报到时间、地点:2014年9月26日,苏州纳微科技有限公司   培训时间、地点:2014年9月27-28日,苏州纳微科技有限公司   【承办单位】   中国生物工程杂志、苏州纳微科技有限公司   【演讲嘉宾】   姜韬:中科院遗传与发育研究所 发育生物学研究中心 高级工程师   演讲题目:生物工程下游的几个重要问题&mdash 疫苗、抗体纯化重点问题以及下游样品预处理问题   马百平:军事医学科学院 放射与辐射医学研究所 研究员 博士   演讲题目:天然产物的分离纯化   张维冰:华东理工大学 特聘教授 苏州汇通色谱分离纯化公司 董事长   演讲题目:中低压色谱生物分离的技术特征   林东强:浙江大学 生物工程研究所 所长 教授 博士生导师   演讲题目:混合模式层析新方法及其应用研究   李荣秀:上海交通大学 生物制造实验室(重大新药创制&rdquo 国家科技重大专项生物技术新药中试放大及分离纯化技术平台)主任 教授   演讲题目:定制亲和纯化技术对生物药生产经营的战略作用   SAM.XIE:苏州纳微生物分离纯化有限公司 总经理、博士   演讲题目:生物制药层析过程的参数优化及工艺验证   江必旺:北京大学深圳研究生院 纳米中心主任 教授 苏州纳微科技有限公司 总裁   演讲题目:纳微米球的可控制备及其在生物药物分离纯化上的应用   其他嘉宾:(待定)   演讲题目:工业化HPLC发展趋势及其在制药工业上的应用   【会议征稿】   本次会议就生物制药专题进行征稿:研究论文要求报道比较完整、全面的原创性研究工作 综述性文章要求分析和评述本领域相关的现状和发展、国内外最新的研究进展和动态、科技成果转化应用等方面内容,要有独到见解和指导性意见。经评审符合要求的论文,将优先、快速发表在全国生物学核心期刊《中国生物工程杂志》。   具体投稿要求与方式,请登录《中国生物工程杂志》网站www.biotech.ac.cn,参考《中国生物工程杂志投稿须知》并在线投稿。   【参会费用】   生物药物分离纯化技术学术分论坛会务费:现场报名,2000元/人 2014年9月19日之前注册,1800元/人 2014年7月31日之前报名并付费,1500 元/人,1300元/学生,同时可以获赠价值300元的纳微公司相关产品(色谱填料或色谱柱)兑换卷。会务费包含:讲课费、会议资料、参会证、礼品、茶歇、午餐以及分论坛晚宴。   生物药物分离纯化技术学术实验技能班培训费:2200元/人(含午、晚餐费),2900元/2人,住宿统一安排,费用自理。   凡同时报名参加分论坛和实验技能班,可以享受优惠价3200元/人。   付款信息:   户名:苏州纳微科技有限公司   开户行:工行苏州工业园区支行   帐号: 1102020309000256725   提示:汇款后请将底单传真之会务组,以便核实。   【参展】   分论坛会场预设10个展位,收费标准:3800元/个。展位有限,欲订从速(每个展位免费提供2个参会名额,享受注册会员参会待遇),欢迎相关厂商报名参加。   【住宿安排】   您可以通过会务组安排预定以下酒店,也可自行安排,费用自理。   如家快捷酒店苏州园区独墅湖高教区店(经济连锁型酒店):标准大床房/双床房,200元/间夜(含早餐),有班车。地址:苏州工业园区星湖街218号鲜橙广场。   书香世家酒店月亮湾店(四星级):标准双床房,370元/间夜(含早餐) 标准大床房,350元/间夜(含早餐)。有班车。地址:苏州独墅湖高教区若水路398号。   【联系方式】   苏州纳微科技有限公司   联系人:朴京林 0512-62956000-812 187 6288 2635   展位咨询与预定: 林海春 0512-6295 6302 1801310 1169   传真:0512-62956018   邮箱:info@nanomicrotech.com pjl@nanomicrotech.com   地址:苏州工业园区星湖街218号生物纳米科技园C1栋   网址:Http://www.nanomicrotech.com   中国生物工程杂志   苏州纳微科技有限公司   2014年6月   生物药物分离纯化技术学术分论坛&实验技能班参会回执表 单位名称 通信地址 邮编 姓名 性别 职称 电话/手机 E-mail 参加项目 (论坛/实验技能班)   生物药物分离纯化技术学术分论坛&实验技能班住宿预订表 单位名称 联系人 电话 手机 E-mail 姓名 性别 住宿信息 (如家快捷/书香世家) 单住/合住 入住日期 离店日期   提示:以上回执表均需盖章 会务组在收到住宿预订表后,会为您发送《酒店预订确认函》,请收到《酒店预订确认函》后将住宿费用汇款至我方账号。   生物药物分离纯化技术学术分论坛&实验技能班展位申请表 企业名称 联系人 企业性质 □国外企业 □国内企业 □合资企业 □其它 地 址 邮 编 参展类别 □仪器设备与技术 □实验室常用设备与技术 □环境监测仪器 □实验器材 □计量仪表 □工业在线及过程控制仪器 □检测技术信息 □计量仪表 □其它 展位申请 ___________ 个 展 位费 大写:_____________________________ 小写:¥____________ 联 系 人 电话/手机 E-mail 关注的主题报告 希望约见的专家 其 他
  • 廿五载岛津杯 十三届药分情 全国药物分析优秀论文征文中
    自1992年起,《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会迄今已连续成功举办了十二届。会议紧扣学科热点和焦点问题,突出学术交流功能,吸引了来自包括澳门在内全国各地的业界学者积极参加。对促进药学学科的发展发挥了重要作用,业已形成精品系列会议和药物分析学科的重要学术交流平台。 前四届会议由《中国药学杂志》编辑部主办。为了进一步扩展学术交流的能力,自第五届起,会议转由中国药学会药物分析专业委员会主办、《中国药学杂志》编辑部(社)承办。作为大会冠名的协办方,岛津公司一路陪伴,共同走过二十五载春秋。在这浓情岁月里,承载的是岛津对药物分析事业的鼎力支持之情。历届岛津杯都吸引了数百位药物分析领域的专家学者参加。大家济济一堂,新老朋友相聚,交流最新检测技术、讨论药分学术进展,成为药学届的一大盛会。第十二届岛津杯大会合影岛津杯的成功举办,离不开业界专家学者的大力支持。我们来听听老中青三代药物分析工作者是怎么说的。(视频链接地址:https://v.qq.com/x/page/x05269mhruy.html)每一张奖状,浓缩一段历史;每一座奖杯,讲述一份情谊。 翻阅历届岛津杯奖状和奖杯的照片,岛津杯药物分析优秀论文颁奖的现场仿佛历历在目,令药分人为之自豪!第十三届《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会,将于金秋九月在美丽的天府之国蓉城举办。立即投稿,加入这一药物分析届的盛会!《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会征文通知(第一轮) 各有关单位及科研人员: 为推动我国药物分析事业的发展,促进药物分析技术的交流, 由中国药学会药物分析专业委员会主办,《中国药学杂志》社承办, 岛津企业管理(中国)有限公司协办的《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会拟定于 2017 年 9 月14-16 日在四川省成都市举行。本次会议的主题为“创新驱动精准药物分析、保驾护航药品质量安全”。 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自 1992 年创办起,至今已成功举办了十二届。会议对促进我国药学学科发展发挥了重要作用,已成为中国药学会精品系列会议和国内药物分析学科最为重要的学术交流活动之一。本次会议将邀请中国药学会、中国药学会药物分析专业委员会部分领导、药物分析专业委员会全体委员及国内知名药物分析专家参会。 会议将设主会场专题报告、优秀论文分会场报告交流和在校学生优秀论文交流论坛。征文通知如下。 1 征文内容 1.1 生物医药研发和质量分析的新理论、新技术、新方法; 1.2 药物一致性评价研究; 1.3 中药质量检验控制的现代化分析新手段和新技术; 1.4 化学药物、抗生素药品等的质量分析研究; 1.5 药用辅料、包装材料与药品质量; 1.6 药物血药浓度监测、生物利用度、溶出度和药代动力学等方面研究; 1.7 基因、蛋白、代谢、细胞组学等分析检测方法研究; 1.8 在校学生在药物分析领域研究中的新思路、新成果。 2 征文要求 2.1 未公开发表及未在全国性会议上交流过,有一定的创新性; 2.2 论文体例、格式请参见《中国药学杂志》2017 年第 1 期稿约; 2.3 论文被录用后,将通知作者;论文录用与否,一律不退稿,请自留底稿; 2.4 征文截止时间:2017 年 8 月 10 日(以邮戳为准)。纸质稿件及信封上请注明“ 岛津杯征文” 字样, 电子稿件请发至daojinbei@126.com (邮件标题请注明岛津杯征文)。如希望在“在校学生优秀论文交流论坛”上交流,也请注明,并附在校就读证明。 3 会议时间及地点 时间:2017 年 9 月 15-16 日,14 日报到。 地点:成都(具体详见第二轮通知)。 4 论文评奖 对到会交流的论文将组织专家进行评奖,评选出优秀论文一等奖 3 名(3000 元/名)、二等奖 6 名(2000 元/名)、三等奖 10 名(1000 元/名)。 在校学生优秀论文交流论坛,一等奖 1 名(2000 元/名)、二等奖 2 名(1000 元/名)、三等奖 5 名(500 元/名)。获得一、二等奖的论文在征得作者同意后将在《中国药学杂志》上发表。 5 联系地址及联系方式 地址:北京市朝阳区建外大街 4 号建外 SOHO 九号楼 1805 室 (邮编:100022)。联系人:田菁; 电话:010-58698009 转 813。 关于中国药学会药物分析专业委员会:中国药学会药物分析专业委员会成立于1981年,长期致力于推动我国药品研发创新、检验检测技术转型升级,为确保广大人民用药安全有效做了大量学术与技术保障支撑工作。在促进我国药物分析学科战略发展、提升学科科研、药物分析新技术、新方法研究、药物分析人才队伍建设以及支撑药物开发、临床评价及临床合理用药监测等方面发挥着重要的作用。关于《中国药学杂志》:《中国药学杂志》是中国科学技术协会主管、中国药学会主办的综合性药学学术期刊,前身为《药学通报》,于1953年1月创刊,是新中国成立后我国第一本药学领域的专业性学术期刊,是一本反映我国药学各学科进展和动态的专业性学术期刊,以药学科研工作者及其他医药卫生行业人员为读者对象,内容涵盖药学研究与实践全领域。现任主编为中国药学会名誉理事长桑国卫院士。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制