当前位置: 仪器信息网 > 行业主题 > >

细胞外囊泡

仪器信息网细胞外囊泡专题为您整合细胞外囊泡相关的最新文章,在细胞外囊泡专题,您不仅可以免费浏览细胞外囊泡的资讯, 同时您还可以浏览细胞外囊泡的相关资料、解决方案,参与社区细胞外囊泡话题讨论。

细胞外囊泡相关的资讯

  • 小贝倾情助力细胞外囊泡研究 ——贝克曼库尔特“细胞外囊泡专题研讨班”纪实
    最近,小贝家分别在北京和广州举办了“细胞外囊泡专题研讨班”,获得老师和同学们空前热情的参与,有的甚至千里迢迢、不远万里专程参加。是什么引起大家如此高涨的参与热情呢?当前研究的热点——外泌体。对于外泌体(又称细胞外囊泡,Extracellular Vesicles),相信大家都不陌生,它是指细胞膜上脱落或由细胞分泌的,具有双层膜结构囊泡状异质性群体,包括外泌体(Exs)、膜微粒(MP)和微囊泡(EVs)。细胞外囊泡和细胞内囊泡,有着相似的磷脂双分子层结构,包含有蛋白和核酸等生物大分子,大小在40nm-1000nm,是细胞进行物质运输、信号转导、实现生理功能的重要工具。细胞外囊泡广泛存在于细胞培养上清及各种体液,参与细胞间通讯、细胞迁移和免疫调节等多种反应。囊泡水平升高与糖尿病、艾滋病以及癌症等疾病相关,有望成为这类疾病的诊断及评估疾病预后标志物。如今,越来越多的研究者开始着眼于对细胞外囊泡进行准确的定型和定量研究。2013年10月7日,诺贝尔生理学或医学奖授予了发现细胞囊泡运输调控机制的三位科学家。外周血中有着大量的外泌体,来自不同的细胞。另外,外泌体和肿瘤微环境、肿瘤细胞迁移有着神秘联系。对于这些未知的领域,目前还缺乏研究,主要原因在于对于这种200nm以下颗粒的检测,显微镜显得力不从心,电镜又高不可及。因此强大的工具和完美的解决方案的显得尤其重要。有鉴于此,我们有幸邀请到了来自 Beth Israel Deaconess Medical Center and Harvard Medical School的Vasilis Toxavidis和John Tigges——两位有着丰富的流式细胞术和外泌体研究经验的学者,请他们和国内的学者进行外泌体研究的交流,分享经验。8月24日,首都北京,骄阳似火,然而参加“贝克曼库尔特细胞外囊泡专题研讨班-北京站”活动的老师和同学,有着胜似骄阳的热情,有图为证。现场不得不临时加座,才能满足大家学习和交流的热情。8月29日,羊城广州,骤雨初歇,寒潮来袭,公路上随处可见台风肆略的痕迹,这些却丝毫没有阻挡来自全国各地的40多位老师的脚步。大家齐聚中山大学,热情参与我们广州站的活动。两场研讨班,早上均为报告部分。Vasilis Toxavidis和John Tigges从理论角度讲述了外泌体检测的问题、误区和解决方案;从散射光检测原理、流式细胞仪硬件、再到样本制备,系统的阐述了外泌体的检测,并以实例讲述了心肌细胞源外泌体和红细胞源外泌体的研究结果,提出了Nano Flow Cytometry(NanoFACS)的概念。首先,来自美国哈佛干细胞研究所资源总监、哈佛医学院贝斯以色列女执事医疗中心流式技术平台负责人Vasilis Toxavidis先为大家做了流式分析EVs的技术原理、硬件可行性等方面的报告。Vasilis以MoFloXDP和CytoFLEX为教学案例,深入浅出地讲解,时时博得与会者的掌声,给大家提供了流式在微颗粒检测研究的新思路。随后,美国哈佛医学院贝斯以色列女执事医疗中心外囊泡检测中心主任John Tigges进一步介绍了利用流式细胞术研究细胞外囊泡, 并结合HF患者EVs检测案例,抽丝剥茧,逐一分析如何解决细胞外囊泡检测中问题、缺陷,阐述EVs在疾病研究中的实际意义,使大家茅塞顿开。其幽默的演讲风格也深受老师们喜爱,引得台下提问连连,将整个研讨会推上了小高潮。接着,来自贝克曼库尔特生命科学部的霍德华,讲述了贝克曼库尔特的超高速离心机——Optima XPN在样本制备和外泌体获取方面的完整工作流程。超速离心分离,是从生物体液和细胞培养样品中分离纯化外泌体的黄金标准,可以准确地重复获取外泌体,同时最大限度减少蛋白质聚集体和其他膜离子的共纯化。上午的理论部分结束后,大家对细胞外囊泡检测,超离技术助力样本采集和精准流式技术助力囊泡研究有了全面、清晰、深刻的认识。北京站的实验操作部分,在中科院过程工程研究所的、阵容强大的三台CytoFLEX流式细胞分析仪旁展开。John Tigges和Vasilis Toxavidis现场演示了如何在CytoFLEX上进行外泌体的检测。利用CytoFLEX的WDM技术和灵活的滤光片调整特点,John Tigges轻松实现200nm以下的颗粒检测,并找到外周血中神秘的外泌体。CytoFLEX使用VSSC检测Megamix-Plus微球结果及线性表现:CytoFLEX检测血液中的细胞外囊泡结果:由于FAPD的优势CytoFLEX对颗粒大小的检测保持很好的线性。出众的分辨率不仅能将噪音与细胞外囊泡很好的分开,而且还可以对外囊泡群体进行细分,分别研究其抗体表达情况。广州站的实践操作部分在中山大学北校区医学院实验室进行。大家在两位美国专家的指导下,领略了MoFloAstrios EQ和CytoFLEX精准检测细胞外囊泡的神奇魅力。EVs的大小通常只有40nm-100nm,超出传统流式的检测范围。但MoFlo Astrios EQ的增强型双前向角设计和CytoFLEX的雪崩光电二极管以超高的分辨率和灵敏度,有效地区分噪音信号和检测囊泡。连续五轮操作培训,让操作者切身感受了一把迅速快捷、多参数细胞外囊泡检测。两场培训班内容丰富、实用,而又易于理解。到会的老师和同学纷纷表示获益匪浅。贝克曼库尔特的超高速离心机(Optima XPN)和超灵敏流式细胞仪(CytoFLEX)实现了双剑合璧,为科研工作者提供了完美且可行的外泌体检测解决方案。* 本产品仅用于科研,不用于临床诊断。(此项活动得到中国科学院过程工程所和中山大学的大力协助,特此表示感谢!)
  • 微流控芯片技术助力细胞外囊泡产量提高
    2022年12月24日,中国科学院深圳先进技术研究院杨慧课题组的最新研究成果发表在生物医学工程领域TOP期刊Materials Today Bio上。研究团队研发了一种微流控芯片技术,实现了细胞的工程化改造,并显著提高了细胞外囊泡的分泌量。深圳先进院客座博士生郝锐、博士生胡师为该论文的共同第一作者,杨慧为通讯作者,厦门大学萨本栋微米纳米科学技术研究院郭航教授为文章的共同通讯作者。2013年,诺贝尔生理学或医学奖颁发给发现“细胞的囊泡运输调控机制”的三位科学家。囊泡运输构建了人体生理学和病理学过程中的“智慧物流运输系统”,负责细胞间的物质递送和信息通讯。因此,细胞外囊泡被视为重要的生物标志物和天然的运载工具,在智能药物递送、重大疾病精准诊疗等领域展现了巨大的应用潜力。然而在常规培养条件下,供体细胞往往存在分泌效率有限、外囊泡产量低等技术问题,极大的限制了细胞外囊泡的实际应用。为了提高细胞外囊泡的分泌量,常用的技术手段包括分子调控、乙醇处理、pH调节等生化策略,因依赖于生化试剂添加物,易改变细胞生理状态而影响外囊泡的功能性和安全性。为应对这一挑战,杨慧团队提出一种名为“种子SEED芯片 (Small Extracellular vEsicles Developer)”的微流控编辑平台,能够高通量且无损伤的刺激细胞,提高细胞外囊泡的分泌量。“种子SEED芯片”由于借助了微流控芯片技术可在微观尺度精确操控流体的特点,该尺度相当于百分之一的头发丝直径,可以将物理场作用定位到细胞尺度,实现对细胞的高通量且高精度的操控。芯片内部引入“鱼骨型”微结构阵列,机械挤压刺激细胞,增强细胞外囊泡的分泌量,针对不同来源的细胞可实现微结构的特异性开发。研究中采用骨髓来源间充质干细胞作为应用对象,该技术成功使干细胞外囊泡的产量提高了数倍。上述干细胞外囊泡在生物医学研究及临床应用中具有重大潜力,但干细胞有限的扩增能力,极大限制了其分泌外囊泡的数量,为实际应用提出了挑战。此项工作成功构建了大规模生产细胞外囊泡的新范式,并以角膜损伤模型为例,验证了此方法生产的干细胞外囊泡能够显著促进组织修复。未来,基于微流控芯片技术增强细胞外囊泡分泌量的新策略有望发展成为一种平台型工具,并与胞内递送研究相结合,提高细胞外囊泡产量的同时,将具有临床治疗作用的外源物质装载到外囊泡中,为外囊泡装载研究以及精准治疗应用提供新的技术支持。
  • 冉冉升起的明日之星——干细胞来源细胞外囊泡篇
    细胞外囊泡(extracellular vesicles, EVs)/外泌体(exosomes)是几乎所有细胞在其生命活动中分泌的一种具有生物膜结构的纳米尺度的小囊泡。作为细胞间通讯的一种途径,广泛参与并调控着生命机体的多种生理和病理过程(图1)。外泌体独特的物理和生化性质,赋予了这些小囊泡诸多特性,如低免疫原性、良好的生物相容性以及高效的生物屏障穿透能力,使它们在疾病治疗领域备受关注。图1. 外泌体生物发生和分泌示意图来自美国化学协会的学者检索并分析了CAS数据库中EVs在治疗和诊断领域中应用研究的发表情况,统计结果显示干细胞来源EVs(stem cells derived EV, SC-EVs)的相关研究位列第2,其中间充质干细胞来源的EVs(mesenchymal stem cells derived EVs, MSC-EVs)研究热度最高,发表文章数量高达4000篇。图2. 不同细胞来源外泌体在疾病诊断与治疗领域研究的论文情况本期文章,小编对MSC-EVs在疾病治疗、食品以及医美等领域的应用进行了简单综述,并进一步梳理了目前基于MSC-EVs的临床进展。MSC-EVs的疾病治疗研究及其产业化MSC是一种来源于成体组织和器官的多能干细胞,MSC-EVs具备免疫调节特性,且可以促进血管生成,给予细胞保护和抑制细胞凋亡等功能,因此,MSC-EVs在疾病治疗中具有极大的潜力。研究表明,来自MSC-EVs的miRNAs,特别是miR-320C,能够促进骨关节炎软骨细胞增殖。在一项心肌缺血再灌注I/R损伤研究中,携带miR-182-5p的MSC-EVs显示出改善心功能和减少心肌梗死的心脏保护作用,并伴有减少体内炎症反应。另外,MSC-EVs携带的miR-27b可诱导促炎细胞因子的下降,用于治疗脓毒症。当然,MSC-EVs本身可通过表达杀菌肽及抗菌肽如LL-37、人β-防御素2、肝素和脂钙蛋白-2和/或通过免疫调节来治疗传染病。除了直接以天然MSC-EVs作为治疗或者辅助治疗剂外,具有特定组织器官靶向功能的功能化的MSC-EVs也成为新一代研究和探索的重点,以便在治疗疾病时获得更有针对性的特异性。如图3所示,CAS数据库检索2017-2021年外泌体在不同研究领域的论文情况,表明EVs在治疗和诊断领域中应用研究的文章发表呈逐年递增情况,其中,EVs的靶向递送研究稳居C位,数量高达6000+篇。图3. 外泌体在不同研究领域的论文情况及趋势此外,来自美国化学协会的学者收集并总结了部分投身于开发EVs靶向性功能的公司在靶向不同疾病类型的布局,其中癌症、神经系统疾病、肺部疾病和伤口愈合是最受关注的疾病类型(如图4所示)。图4. 有潜力的外泌体治疗公司和靶向的疾病类型来自华南理工大学的研究者们通过疏水插入法将纤维蛋白靶向肽CREKA修饰到MSC-EVs表面,显著提高了MSC-EVs在骨缺损部位的富集和停驻,调节炎症反应和促进细胞成骨分化以实现骨骼组织的修复。该研究表明靶向修饰在骨组织修复中具有很大的应用价值,为提高MSC-EVs的治疗效率提供了一种新的策略。位于美国加州的Aetholon Medical公司另辟蹊径,开发了一款名为Hemopurifier的研究性医疗设备。Hemopurifier将细胞膜分离技术和亲和层析(affinity chromatography)技术结合在一起,可特异性地从血液循环系统中捕捉表面具有特定聚糖修饰的纳米颗粒,而病毒以及肿瘤来源的EVs往往正是通过这些聚糖修饰逃逸免疫系统。Hemopurifier在黏附和捕获表面修饰聚糖的EVs和病毒颗粒的同时,将血细胞再次送回到患者体内。该技术获得美国FDA授予的突破性设备(Breakthrough Device)认定。Aethlon公司已经通过实验证明Hemopurifier能够捕捉多种类型肿瘤分泌的EVs,其中包括乳腺癌、卵巢癌和转移性黑色素瘤。迄今为止,Aetholon Medical已使用该技术用于多种癌种、埃博拉、丙型肝炎、HIV和COVID-19等疾病的治疗。基于MSC-EVs的临床治疗试验EVs的研究已经从实验室开始进入临床阶段。Clinical trials网站数据显示,截至文章发表时共有59个注册在案的基于EVs的治疗项目处于临床试验阶段,其中超过60%的项目为MSC-EVs。如表1所示,排名靠前的研究项目包括肺部疾病(11项临床试验)、SARS-CoV-2感染(9项临床试验)、癌症、心脏病和神经系统疾病(均有4项临床试验)。其中,FDA已授权Direct Biologics公司的骨髓MSC-EVs治疗产品ExoFlo再生医学先进疗法,用于治疗COVID-19急性呼吸窘迫综合征(ARDS)(NCT04657458)。它还在对溃疡性结肠炎(NCT05176366)、克罗恩病和肠易激病(NCT05130983) 、实体器官移植排(NCT05215288)和轻/中度COVID-19(NCT05125562) 进行临床试验。Aruna Biomedical公司正在研究神经干细胞来源的外泌体(neuralstem cells derived extracellular vesicles, NC-EVs),用于治疗卒中以及其他神经系统和神经退行性疾病,候选基因AB126具有穿过血脑屏障的能力和中枢神经系统特异性。临床前数据表明,NC-EVs在改善测试小鼠血栓栓塞性中风模型中的细胞、组织和功能结果方面比MSC-EVs更有效。表1. 外泌体治疗性临床试验(部分)其他应用:食品和化妆品(医美)此外,EVs在食品、医美等领域的应用也被不断发掘和报道。CAS资源库的检索显示,在过去3年中,与EVs在化妆品和食品中的应用相关的文献数量亦呈现急剧增加趋势(图5)。图5. CAS数据库中与化妆品(A)和食品(B)中外泌体应用相关的文献发表趋势MSC-EVs已被证明在皮肤美容中发挥重要作用,如促进伤口愈合、缓解皮肤老化和防止疤痕形成等方面。源自诱导多能干细胞的EVs能够调节MMP-1/3的表达并增强衰老皮肤成纤维细胞中I型胶原蛋白的表达。而来自脂肪干细胞的EVs能够通过PI3K / Akt信号传导途径促进伤口愈合,并增加成纤维细胞中I型和III型胶原蛋白的数量。多酚、维生素、多不饱和脂肪酸等生物活性化合物是常见的提高营养价值的食品补充剂。然而,它们的生物利用度差、水溶性较差和代谢改变可能会降低它们的效果。借由EVs作为载体,可实现其有效递送。展望干细胞EVs在疾病治疗的赛道俨然已成一匹黑马,但是EVs如何与靶细胞通信,以及如何实现组织器官选择性的潜在机制尚不清楚,而这些机制的研究是开发针对外泌体通讯的有效治疗方法和开发工程外泌体衍生的治疗载体的先决条件。此外,该领域尚无统一的分析表征标准、纯化方法、表征技术及数据分析等的差异都会导致难以获得稳定且批间一致性良好的EVs。这些均是横亘在EVs研究以及产业化道路上的问题。在此过程中,EVs的基础研究以及新分析技术的迭代,有望为干细胞EVs疗法带来新的见解和策略,并可能激发下一代递送系统的设计与开发。截至目前,纳米流式检测技术已经进入由中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定的两项全国团体标准中,以及由上海市生物医药行业协会依据协会制定的《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023)团体标准中,NanoFCM将紧跟行业发展,在外泌体大规模生产、纯化工艺和表征质控等过程提供完整的解决方案。参考文献Rumiana Tenchov, Qiongqiong Angela Zhou*,et al.Exosomes – Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics[J].ACS Nano 2022, 16, 17802&minus 17846Y W,et al. Requirements for human mesenchymal stem cell‐derived small extracellular vesicles[J].Interdisciplinary Medicine, 2023 1:e20220015.中国研究型医院学会.T/CRHA001-2021人间充质干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)中国研究型医院学会.T/CRHA002-2021人多能干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)上海市生物医药行业协会.T/SBIAORG001-2023间充质干细胞外泌体质量控制标准[S].上海,上海市生物医药行业协会(sbia.org.cn)部分数据来自于ClinicalTrials网站(ClinicalTrials.gov)
  • 邀请函 | 第五届全国细胞外囊泡大会
    细胞外囊泡是对包括外泌体、微囊泡、凋亡小体等在内的具有封闭膜的非细胞结构的统称。它们可以携带DNA、RNA、蛋白质等生物活性分子广泛参与各种生物学过程,是近些年的研究热点领域。每年有大量研究人员进入这一领域,为了加强国内细胞外囊泡领域的学术交流,提高我国细胞外囊泡研究的整体水平,推进细胞外囊泡研究成果的转化应用,中国研究型医院学会细胞外囊泡研究与应用专委会(CSEV)将于2021年11月5-7日在广州召开“第五届全国细胞外囊泡大会”。大昌华嘉作为仪器应用专家,深耕细胞外囊泡领域多年,针对细胞外囊泡研究应用场景,提供完善的解决方案。在此,我们诚邀各位业界同仁届时莅临展位,共商前沿科技。DKSH展位:B7会议时间:2021年11月5-7日(11月5日报道)会议地点:广东省广州市越秀区寺右一马路2号 珠江宾馆
  • 一文揭秘:流式细胞指纹与细胞外囊泡应用
    在现代生物医学研究中,流式细胞术(Flow Cytometry)已经成为不可或缺的分析工具。它能够通过分析单细胞的多参数特性,揭示细胞间的复杂异质性。而在这一领域,流式细胞指纹(Flow Cytometry Fingerprint)作为一种前沿技术,正在为我们揭示细胞微观世界的更多奥秘。本期,我们跟随贝克曼库尔特一同探究流式细胞指纹,特别是在纳米流式领域,CytoFLEX nano凭借其独特的技术优势,正在引领这一领域的进展。 什么是流式细胞指纹?流式细胞指纹是指通过流式细胞术获得的细胞或颗粒的特定光学特征,这些特征包括散射光和荧光信号。每一种细胞或颗粒都有其独特的指纹图谱,这些图谱反映了它们的物理和生物化学特性。通过对这些指纹图谱的分析,研究人员能够识别并分类不同类型的细胞,甚至可以在同一细胞群体中发现不同的亚群。传统纳米流式在细胞外囊泡(Extracellular Vesicles, EVs)领域的挑战尽管流式细胞术在细胞分析中取得了巨大进展,但在传统纳米流式领域仍面临一些独特的挑战。一个主要问题是缺乏免疫分型的共识,并且同时检测的荧光信号非常有限。目前,细胞外囊泡(Extracellular Vesicles, EVs)亚群的研究还在起步阶段,并没有像免疫学中那样成熟。免疫细胞可以通过多色免疫分析,利用不同的CD分子的表达谱型(指纹)去定义其亚群,但在EV的研究中,类似的标记和分类标准尚未建立,并且相较于免疫细胞,EV有着更丰富的多样性,可供标记的潜在靶点也更多。 CytoFLEX nano的突破2024年3月份发布的CytoFLEX nano作为一款先进的纳米流式细胞仪(查看:3i流式新品|贝克曼库尔特发布CytoFLEX nano纳米流式分析仪),通过结合散射光和荧光信号的综合分析,显著提高了检测的准确性和灵敏度。CytoFLEX nano纳米流式分析仪品牌:贝克曼库尔特型号:CytoFLEX6荧光通道检测能力,实现精准指纹描述CytoFLEX nano能够同时检测6 个荧光通道,提供更加全面和详细的EV荧光指纹信息。5散射光通道检测能力,释放无限潜力CytoFLEX nano分析仪通过提供5个侧向散射通道扩展了您的研究可能性。通过分析不同散射的比率来研究新群体,而无需依赖染料进行鉴定或分离。这种创新方法不仅提高了实验的灵活性和精度,还为细胞外囊泡研究提供了新的可能性和洞察力。CytoFLEX nano分析仪无疑是未来EV多样性研究的重要工具。高灵敏度,确保捕捉每一个潜在的实验现象与信号在一个细胞外囊泡(EV)上,可能只有10个抗原的拷贝,而目前的流式细胞仪无法测量如此少量的抗原。CytoFLEX nano流式细胞仪的主要优势在于其改进的散射和荧光灵敏度,使得可以测量更小的颗粒并检测低密度的抗原。高阶算法应用:利用Cytobank解析EV“指纹”高阶算法的引入为细胞外囊泡(EV)研究带来了一定的变化。Cytobank平台提供了一系列强大的高阶数据分析工具,如ViSNE、FlowSOM、SPADE和CITRUS,这些工具能够高效解析流式细胞数据,揭示复杂的生物学特征。这些高阶算法在解析EV“指纹”中的应用,使得研究人员能够更精准地解析流式细胞数据,发现传统方法难以识别的细微差异。例如:癌症诊断:利用ViSNE分析癌症患者血液中的EV,发现特定的EV亚群与癌症类型和阶段相关联,为早期诊断和个性化治疗提供了新的生物标志物。心血管疾病研究:通过FlowSOM聚类分析心血管疾病患者的EV数据,识别出与疾病进展相关的特定EV亚群,为疾病机制研究提供了重要线索。免疫监测:利用SPADE分析免疫治疗前后患者的EV变化,揭示免疫反应的动态过程,为评估治疗效果提供了新的视角。差异分析:使用CITRUS对不同病理状态下的EV进行差异分析,发现与疾病相关的特定细胞亚群,帮助识别潜在的生物标志物。von Lersner, Ariana K., et al. "Multiparametric single-vesicle flow cytometry resolves extracellular vesicle heterogeneity and reveals selective regulation of biogenesis and cargo distribution." ACS nano 18.15 (2024):10464-10484.所见即所得,利用CytoFLEX SRT实现分选与分析的相互验证。CytoFLEX nano不仅让研究人员能够在EV分析阶段实现“所见”,更通过CytoFLEX SRT的精确分选功能,将这些识别出的EV亚群进行进一步的分选和深入分析,实现“所得”。这种协同工作流程,确保了数据的准确性和可靠性。CytoFLEX nano与CytoFLEX SRT的结合,为EV研究提供了一个强大的工具组合。前者通过高灵敏度的多通道检测,实现对细胞群体的初步识别;后者则通过精准的分选功能,对这些群体进行进一步的验证和分析。这一协同工作流程,使研究人员能够在分子水平上揭示EV的复杂特征和生物学功能,开拓新的研究领域和应用前景。通过这种多种方法的联动,科学家们能够更全面地理解EV的特性,从而在疾病诊断、治疗和预防中发挥更大的作用。CytoFLEX nano和CytoFLEX SRT的完美结合,真正实现了分选与分析的相互验证,尽可能捕捉到每一个潜在的EV亚群。John Tigges, DirectorFlow Cytometry Core Facility and Center for Extracellular Vesicle Detection, Beth lsrael Deaconess Medical Center“Having all these scatters at hand together with the greater sensitivity gives you the power to ask, what could I do now?lt opens up new research possibilities.“拥有这些散射通道以及更高的灵敏度,让你可以问自己,我现在还能做些什么?这开启了新的研究可能性。” 数据示例通过流式分选验证散射光流式细胞指纹的真实性在细胞外囊泡(EVs)的研究中,准确识别和表征其特性是至关重要的。使用CytoFLEX Nano流式细胞仪,我们能够通过高灵敏度的散射光检测捕捉到EVs的初步指纹信号。然而,为了验证这些散射光指纹的真实性,我们进一步利用CytoFLEX SRT进行精确分选。通过分选前后的对比分析,并使用标准微球验证散射光信号的差异,我们确保了这些指纹的准确性和可靠性。使用CytoFLEX SRT对在CytoFLEX Nano上观察到的不同散射差异信号进行分选,并通过回测确认这些差异的真实存在。同时,CytoFLEX SRT的精确分选功能也得到了验证。 结语CytoFLEX家族和Cytobank的结合,为细胞外囊泡(EVs)研究提供了一个强大且全面的分析工具组合。通过纳米流式细胞术,研究人员能够捕捉到EVs的复杂指纹信号,并通过精确分选技术,进一步验证和深入分析这些信号的真实性。这种多方法学联动,不仅提高了数据的准确性和可靠性,还揭示了EVs在不同生理和病理状态下的潜在作用。高灵敏度的散射光和荧光检测能力,加上Cytobank平台的高阶算法,使得研究人员能够更全面地理解EVs的特性,从而在疾病诊断、治疗和预防中发挥更大的作用。通过这些先进技术的应用,EVs研究已经进入了一个新的纪元,开创了更多的研究领域和应用前景。CytoFLEX nano和CytoFLEX SRT的完美结合,为现代生物医学研究带来了前所未有的便利和创新。未来,我们有理由相信,随着技术的不断进步和应用的不断深入,流式细胞术将继续在EVs研究中发挥关键作用,为生命科学的探索开辟更多可能性。贝克曼库尔特CytoFLEX SRT桌面型流式细胞分选仪品牌:贝克曼库尔特型号:CytoFLEX
  • 细胞外囊泡检测研讨班——五月的学术盛宴
    五月的天气多了些燥热,空气里弥漫着太阳爆裂的味道,贝克曼库尔特的细胞外囊泡研讨班活动正在武汉、成都和深圳如火如荼的展开。具有双层膜结构囊泡状异质性群体的细胞外囊泡,参与多种生理和病理过程,细胞外囊泡研究显示出巨大的临床应用前景,来自美国哈佛干细胞研究所的Vasilis Toxavidis和美国哈佛医学院贝斯以色列女执事医学中心的John Tigges,两位有着丰富的流式细胞术和外泌体研究经验的学者辗转三地,和当地优秀的科研工作者们面对面的交流,迎来了一场场流式细胞术与细胞外囊泡研究的学术盛宴。5月24日 武汉站 武汉是细胞外囊泡检测研讨班第一站,九点的江城正为繁忙的道路拥堵而苦恼,前来听课的老师络绎不绝,早早赶到会场等待。在酷炫的武汉生物技术研究院的报告厅里,Vasilis和Toxavidis分别作了检测囊泡流式性能分析和流式检测细胞外囊泡的经验分享,贝克曼库尔特公司的全国离心机产品经理霍德华和流式应用专家刘飞分别介绍了超速离心技术及流式细胞术在外泌体研究中的经典应用。一张张投射在液晶屏上的PPT画面, 让听课老师们都表现出极大的热忱,流式与囊泡研究的碰撞,激发出思想的火花。下午的实验部分,各位老师利用CytoFLEX流式细胞仪,直接体验了一把将理论转化为实验结果的惊喜。5月26日 成都站天府之国的成都是研讨会的第二站,原本容纳一百多人的香格里拉酒店演播厅却提前出现“人满为患”的状况,后来不得不在走廊上额外添加座位。上午四场讲座,两位美国专家Vasilis Toxavidis和John Tigges的演讲引来台下老师阵阵掌声,大家踊跃提问解除心中疑惑;华西医院莫显明主任和张文庚副主任结合自己实验室优势分别作了标准化流式细胞术和肺单细胞图谱研究现状与发展的报告,将活动推向了高潮,在座的老师们深深体验到流式的博大精深。而下午的圆桌讨论,老师们根据自己的研究领域,参加不同的讨论小组,交流了解流式细胞术在不同领域的应用,老师们在热烈讨论中收获了满满的流式干货。5月28日 深圳站“长风逐细浪,大鹏入九天”,活动的最后一站来到了珠江三角洲的经济与科技前沿阵地深圳,世界瞬息万变,科学研究日新月异,促进了当地老师们对新技术的渴望。在深圳麒麟山庄报告厅,Vasilis Toxavidis和John Tigges介绍分享了利用流式手段检测100 nm的外泌体,让大家对流式技术又有了深入的认知,为大家打开了流式检测外泌体的大门。来自南方科技大学的黄巍副教授从es细胞转移研究的角度介绍了相关流式应用,南方医科大学的郑义教授则从干细胞研究角度介绍了流式的应用,贝克曼库尔特CytoFLEX系列流式细胞仪以其高灵敏度高分辨率成为广大研究者的不二之选。三场细胞外囊泡学术活动场场爆满,座无虚席,大家在轻松愉快的环境里领略了流式技术不同的风景,了解了贝克曼库尔特流式细胞仪在微颗粒检测中的独秀之美。此次活动的圆满结束,更加激励贝克曼库尔特坚定根植于广大客户的科研需求,不断发展创新,来年我们再约!* CytoFLEX流式细胞仪仅用于科学研究,不用于临床诊断。
  • 细胞外囊泡又双叒叕大显身手!
    “学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化。同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题。”--中国科学院院刊 细胞外囊泡(EVs)作为递送载体,已被广泛应用于生化工程学、生物医学工程学、纳米材料学、分子影像学等交叉学科中。通过交叉学科的火花碰撞,利用前沿新技术,提高疾病治疗效果,造福广大病患。本文与您分享EV递送纳米抗氧化剂等应用案例,拓展您的课题研究思路。巨噬细胞EV参与“免疫调控-化学动力-乏氧激活 ”多级联动 2022年3月,深圳市第二人民医院李维平团队联合中国科学院大学化学工程学院魏炜团队共同发表题为“Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects”于《Signal Transduction and Targeted Therapy》期刊(IF:18.19)。 被称为“终结者”的胶质母细胞瘤(GBM)是颅内神经系统最常见的恶性肿瘤。临床治疗GBM以外科手术为主,辅助放化疗,但效果收效甚微。难以穿透的血脑屏障 (BBB) 阻止药物进入中枢神经系统,使得治疗难度雪上加霜。因此,亟需更为有效的药物递送策略。 研究人员利用M1型巨噬细胞来源细胞外囊泡(M1EVs),使其膜被两种疏水剂功能化:化学激发源CPPO(C)和光敏剂Ce6(C),并装载亲水缺氧激活原药AQ4N(A),构成的CCA-M1EVs可穿过BBB,并可趋化富集在GBM部位,通过调控巨噬细胞表型实现GBM微环境免疫调控,增加过氧化氢(H2O2)水平。H2O2和CPPO之间可进行反应,产生的化学能量进一步激活Ce6,产生大量活性氧,实现化学激发的光动力疗法(CDT)。由于该反应消耗氧气,肿瘤缺氧的加剧也导致无毒的 AQ4N 转化为有毒的 AQ4 用于化疗。因此,CCA-M1EVs在GBM中实现了免疫调控-化学动力-乏氧激活的多级联动协同作用,发挥了强大的治疗效果。 研究人员利用全自动Digital Western检测M1巨噬细胞和M1EV中CD9、CD81、ALIX、TSG101、iNOS、F4/80和GAPDH的蛋白水平(如上图b所示)。EV递送纳米抗氧化剂 2021年来自中科院过程所魏炜团队,联合上海交大医学院附属同仁医院等多家单位,共同发表题为“In situ growth of nano-antioxidants on cellular vesicles for efficient reactive oxygen species elimination in acute inflammatory diseases”于《Nano Today》期刊(IF:20.72)。 临床上常见的急性炎症疾病,有急性肠炎和急性肝损伤等等。病情严重的患者,会出现脏器功能紊乱甚至器官衰竭。急性炎症过程中,会产生大量的活性氧自由基(ROS)。ROS会引起细胞膜脂质过氧化,导致细胞膜通透性改变和进一步DNA损伤,进而引起器官功能障碍。ROS大量产生是体内炎症发生发展过程中的一个重要环节,因此需要高效手段,将药物富集在炎症部位,然后消灭ROS。 纳米抗氧化剂,例如氧化铈、氧化钼和氧化锰,可借助其催化活性清除ROS,以此减少ROS引发的组织损伤,并控制疾病进展。然而,这些纳米抗氧化剂在炎症组织中的蓄积量较低。研究人员利用红细胞囊泡递送纳米抗氧化剂,效果显著。该项研究的另一亮点是研究人员将具有组织修复功能的干细胞外泌体融合(ReMeV),并在此基础上原位生长氧化铈(shi)纳米晶体(Ce-ReMeV),用于重症急性肠炎和急性肝损伤的治疗,在有效清除ROS同时,还能修复受损组织和器官,在小鼠模型上取得了满意的效果。 研究人员利用全自动Digital Western检测外泌体 Marker(CD9)、外泌体和红细胞Marker(TSG101、HSP70)以及MSC生长因子(HGF)(如上图c所示)。每个样品仅需3μL。全自动Digital Western,为何备受大家的喜爱? 传统Western Blot(WB)属于劳动密集型技术,时间长、步骤冗长、人为操作引入过多误差,最终导致数据质量低......最重要的是实在太影响心情!图片取材于网络 全自动Digital Western技术平台的横空出世,一扫传统Western带给广大科研工作者的阴霾,每一天都是做WB的良辰吉日,让您从此享受WB!节省出大量宝贵时间去专注于阅读、思考、交流、仰望天空、参与社团、思考人性、(校园恋爱)等更有价值的事务。全自动Digital Western检测全流程(上样后,剩下的一切都交给她,一顿晚饭的功夫拿到结果) 全自动数字式Western,带给您的仅仅是3 μL超微量的上样量?3小时出结果?全程自动化标准化?更重要的是真正数字化的高质量数据和全膜结果,让您的数据不被质疑!撤稿?不存在的!扫码索取全自动Digital Western产品资料解放双手,从此爱上WB,告别实验Emo!
  • Webinar:“小贝开讲” 之流式细胞术在细胞外囊泡检测中的应用
    时间:2017年8月10日 19:30 - 20:30内容简介:细胞外囊泡(Extracellular Vesicles, EVs)是指从细胞膜上脱落或者由细胞分泌的双层膜结构的囊泡状小体,直径从40nm到1000nm不等。细胞外囊泡广泛存在于各种体液中,由于其携带多种蛋白质、脂类、DNA、mRNA、miRNA等物质,会参与到细胞通讯、迁移、免疫调节、组织再生等多种生理过程中,而成为目前的研究热点。对细胞外囊泡进行准确的定性、定量、分离及后续研究是目前主要的研究手段。目前关于细胞外囊泡研究的方法众多。而流式细胞术以其高速、高灵敏、高通量、多参数、可定量的特点,成为目前对细胞外囊泡的非常出色的检测方法。同时,带分选功能的流式也可以让您达到很好的分离效果。本次在线讲座,我们邀请了贝克曼库尔特生命科学部中国区流式产品经理周昱曦博士为大家介绍流式细胞术在微小颗粒检测方面的发展,以及使用流式细胞术对细胞外囊泡进行检测的流程介绍、优化以及相关的注意事项。主讲人简介:周昱曦 博士产品经理 贝克曼库尔特生命科学部贝克曼库尔特生命科学部中国区流式产品经理,负责非临床流式的产品管理工作。毕业于中山大学中山医学院。具有10年以上流式细胞分析、分选仪操作经验,从事流式应用支持、应用开发、市场推广超过5年。对科研流式应用及开发、仪器原理及特性拥有丰富经验。点击此处轻松报名。
  • 厦门大学颜晓梅团队通过纳米流式细胞仪在单囊泡水平上分析细胞外囊泡DNA
    2022年4月4日,厦门大学颜晓梅团队在Journal of Extracellular Vesicles(IF=26)在线发表题为“Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry”的研究论文,该研究通过纳米流式细胞仪 (nFCM) 可以检测直径小至 40 nm 的单个 EV 和 SYTO 16 染色后 200 bp 的单个 DNA 片段,用于研究单个囊泡处的 EV-DNA。通过同时对单个颗粒进行侧向散射和荧光 (FL) 检测并结合酶处理,本研究表明:(1) 裸 DNA 或与非囊泡实体相关的 DNA 大量存在于由细胞培养物制备的 EV 样品中(超速离心培养基);(2) 单个 EVs 中 EV-DNA 的数量表现出很大的异质性,DNA 阳性 (DNA+) EVs 的数量在 30% 到 80% 之间变化,具体取决于细胞类型;(3) 外部 EV-DNA 主要定位在相对较小的 EVs 上(例如,HCT-15 细胞系+ EVs 的释放增加,外部DNA+ EVs和内部DNA+ EVs的数量以及单个EVs中的DNA含量均显着增加。这项研究为深入了解 DNA 与EV的关联提供了直接和确凿的实验证据。细胞外囊泡 (EVs) 是由几乎所有细胞类型分泌的纳米级膜囊泡,通过将蛋白质、核酸和脂质从供体细胞转移到受体细胞来介导细胞间通讯。最近的研究表明,EV中存在基因组 DNA、线粒体 DNA 甚至病毒 DNA。通过 DNA 的包装和水平转移,EV 在维持细胞稳态、调节免疫反应和调节肿瘤进展方面发挥着至关重要的作用。最近,基于 EV 中的 DNA (EV-DNA) 开发了用于肿瘤诊断的液体活检测试。尽管已经认识到 EV-DNA 的生物学意义,但对 EV-DNA 的探索较少,许多基本特征仍存在争议,例如 DNA 是否与所有或部分 EV 亚群相关?EV-DNA 是否位于内腔和/或 EV 表面?DNA含量和EV大小之间有什么关系?EV-DNA 是单链 DNA (ssDNA) 还是双链 DNA (dsDNA)?对 EV-DNA 的研究通常通过从 EV 分离物中提取 DNA,然后进行丰度、片段长度和序列评估来进行。通过将 DNase 酶消化与 Fragment Analyzer 系统相结合,研究了 DNA 的相对丰度和定位(管腔内或与 EV 表面相关)。为了阐明 EV-DNA 在 EV 亚群之间的异质性,对分离的 EV 进行 DNA 分析通过密度梯度离心或不对称流场-流分馏已经进行。尽管批量分析能够识别不同 EV 亚群中的 DNA,但结果可能存在争议,因为 EV-DNA 无法与无细胞 DNA 区分开来。由于 EV 的大小和货物含量差异很大,因此迫切需要单粒子技术来破译 EV-DNA 的巨大内在异质性,并将 EV-DNA 与游离 DNA 或其他污染物区分开来。然而,EV 的纳米级粒径(大多数大小一直致力于开发一种高灵敏度的纳米流式细胞仪(nFCM)。它已实现对单个 EV、病毒、二氧化硅纳米粒子和金纳米粒子的光散射检测,分别小至 40、27、24 和 7 nm。对于荧光 (FL) 检测,检测到单个 R-藻红蛋白分子的信噪比为 17,有机染料的检测限确定为三个 Alexa Fluor 532 分子。在本研究中,尝试通过将酶消化与 nFCM 相结合,在单囊泡水平上分析外部和内部 EV-DNA。研究了 DNA+ EV 的百分比以及 DNA 含量分布与 EV 大小、ssDNA 和 dsDNA 之间的区别、EV-DNA 和组蛋白的关联以及抗癌药物治疗后 DNA 含量的改变。通过同时对单个颗粒进行侧向散射和荧光 (FL) 检测并结合酶处理,本研究表明:(1) 裸 DNA 或与非囊泡实体相关的 DNA 大量存在于由细胞培养物制备的 EV 样品中(超速离心培养基); (2) 单个EVs 中 EV-DNA 的数量表现出很大的异质性,DNA 阳性 (DNA+) EVs 的数量在 30% 到 80% 之间变化,具体取决于细胞类型; (3) 外部 EV-DNA 主要定位在相对较小的 EVs 上(例如,HCT-15 细胞系 外部 DNA+ EVs 的分泌可以通过抑制外泌体分泌途径显著减少; (4) 内部 EV-DNA 主要封装在相对较大的 EV 的管腔内(例如 HCT-15 细胞系为 80-200 nm); (5) 双链 DNA (dsDNA) 是外部和内部 EV-DNA 的主要形式; (6) EVs 中未发现组蛋白 (H3),EV-DNA 与组蛋白不相关,(7) 基因毒性药物诱导 DNA+ EVs 的释放增加,外部DNA+ EVs和内部DNA+ EVs的数量以及单个EVs中的DNA含量均显着增加。这项研究为深入了解 DNA 与EV的关联提供了直接和确凿的实验证据。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/jev2.12206
  • 重磅发布:细胞外囊泡研究国际指南MISEV2023
    近年来,细胞外囊泡 (Extracellular vesicles,EV)的研究热度正在持续增长,与EV相关的文献数量呈指数级增长,已成为生命科学和生物医学研究领域内的一大热点话题。前不久,国际细胞外囊泡学会(ISEV)发布了最新版的细胞外囊泡研究指南《Minimal information for studies of extracellular vesicles(MISEV2023): From basic to advanced approaches》,在MISEV2014和MISEV2018版本基础上整合了来自ISEV专家工作组和1000多名研究人员的反馈意见,加强了研究设计和实验细节,并为新的应用领域提出了建议和指导。MISEV2023重点对EV命名、样品收集和预处理、EV分离与浓缩、EV表征、EV研究技术方法、EV释放与摄取、EV功能研究、EV体内实验进行了介绍。(文末附全文链接)关于ISEV和MISEV简介MISEV指南由国际外囊泡协会(ISEV)编制,ISEV是研究和使用细胞外囊泡的科学家和临床医生的主要专业协会,通过其年会、专题研讨会和其他会议、同行评审期刊、在线学习平台以及与其他学会的合作,吸引了世界各地的不同研究人员群体。因此,ISEV具有独特的优势,可以指导制定和传播关于最佳实践指南和科学考虑的专家共识。MISEV 2014是ISEV发表的第一篇EV研究指南,旨在为EV研究提供可靠的支撑,MISEV 2018对EV研究发展过程中的方法和手段进行了深入的且批判性的评估,其中大部分内容至今仍然有效。而MISEV 2023与之前的版本一样,为EV研究人员提供了简明扼要的建议和指导,对 MISEV2018 中提出的要点进行了完善,并增加了对新发展领域的建议和指导。其目的是帮助EV研究和应用领域的从业人员针对每个EV来源、类型、研究问题或应用展开最佳实践。关于EV命名MISEV 2023保留了MISEV 2018的EV定义,但删除了2018年使用的“自然释放”的用词(新定义:EV是指从细胞中释放出来的颗粒,由脂质双层分隔,并且不能自行复制,即不包含功能性细胞核),以避免排除了通过细胞培养生产的EV。一般来说,ISEV建议使用通用术语“EV”和该术语的扩展,而不是使用具有误导性的术语,如与难以确定的生物发生途径相关的“exosomes(外泌体)”和“ectosomes(核外颗粒体)”。这两个术语是与假定的生物发生途径有关,需要谨慎使用且需要有强有力的证据。术语“exosomes(外泌体)”是指通过多泡体(MVB)释放的来自细胞内部的EV,而术语ectosomes(核外颗粒体,又称微囊泡Microvesicle、微粒Microparticle)是指细胞膜出芽形成的EV。由于目前大多数EV分离技术不能富集由不同机制产生的EV,且没有外泌体、核外颗粒体或其他EV亚型的通用分子标记。因此,ISEV不鼓励使用基于生物发生的术语,除非对此类EV群体进行了专门的分离和表征。相关术语及定义:EV的收集和预处理样本采集、预处理、储存等因素可能会对EV数量和质量造成影响,MISEV2023对需要注意的一些因素给出了建议。对于不同样本都适用的因素,给出了普适建议,另外也针对细胞培养物(cell culture‐conditioned medium,CCM)、细菌、血液、尿液、脑脊液、唾液、滑液、乳汁、实体组织共计9类EV来源样本的采集及处理给出了具体建议。1.血液血液是EV研究中最常见的生物体液样本,但血液样本面临供体变化、分析前处理、血液中血细胞、血小板、脂蛋白及其他蛋白成分的影响。基于此,MISEV2023对血液样本的收集与处理给出了以下建议:• 相较于其他样本,供体对血液及血液EV的影响较大,因此当收集血液样本时,需详细的记录和报告。• 静脉采血应使用管径较大的采血针,以最大限度减少血小板活化和溶血。为减少细菌和皮肤细胞污染、避免组织因子介导的血小板活化,弃去少量抽到的血液是一种有效的做法(例如,人类抽血时丢弃前面的2-3 mL)。• 选用与下游分析兼容的采血管和抗凝剂。• 采血后,应避免过度摇晃和低温,并尽快处理为血浆或血清,以减少血小板激活和EV释放。• 制备血浆或血清时,应选择能够有效去除血小板但不影响EV的方法。若使用离心法,吸取上清时应从上向下吸上清液,并在沉淀上方保留一定量的血浆或血清,以免干扰沉淀导致血小板释放。• 血液EV的主要污染物/共分离物包括血小板、脂蛋白、溶血产物以及大量可溶性/聚集蛋白,检测时需说明任一污染物。2.尿液尿液是继血液之后第二大用于EV研究的生物体液样本,可以通过非侵入性的方式连续获得大量样本。尿液EV (uEV)研究的挑战源于uEV的来源细胞不同,以及受到液体摄入量、采样时间、饮食、运动、年龄、性别、药物以及健康状况的影响。基于此,MISEV2023对尿液样本的收集与处理给出了以下建议:• 应使用无细胞尿液/无细胞的尿液生物库。• 在适当情况下,报告uEV污染物/共分离成分(THP、白蛋白、其他过滤到尿液中的蛋白)的去除方法和去除效果。• 为实现标准化,收集uEV和非EV尿液(如肌酐、PSA等)数据,用于估计绝对或相对排泄率。3.细胞培养物MISEV2018针对CCM中提出的建议仍然有效,包括但不限于描述培养基的组成和制备,记录生产细胞的特征、细胞培养条件、物理或化学刺激物处理(如果有)、CCM收获的频率和时间间隔及方法、EV分离之前CCM的储存处理。如果细胞来源不是已建立的细胞系,则应报告采集和预培养条件,如酶消化。• 如使用血清或其他添加剂,需说明来源和用量。如果使用的添加剂已经去除了EV,需说明去除方法并评估去除程度(包括稀释,通过离心的方法去除EV时稀释可能是必要的)。• 应将非条件(空白)培养基作为对照进行处理和定性,以评估培养基本身对EV检测的影响。4.细菌细菌EV和细菌来源的多样性,很难就样品类型、预处理、分离、收集和表征给出普适性建议。MISEV2023建议在处理细菌样本时需要注意以下事项:• 除其他培养参数外,细菌培养物收获时需说明细菌生长阶段。• 尽量缩短EV分离/浓缩前的储存时间,尤其是在样本未经过滤的情况下。• 当细菌EV样本来自体内或环境,应考虑宿主EV和环境中非目标EV的影响。• LPS(脂多糖)和LTA(脂磷壁酸)可分别作为革兰氏阴性菌和革兰氏阳性菌的EV通用标志物,但在许多特定细菌物种中,该特定标志物仍然不可用。• 细菌EV的非囊泡共分离物可能包括毛、鞭毛、噬菌体和蛋白质、脂蛋白和核蛋白复合物。MISEV2023的建议旨在提高EV研究的严谨性、可重复性和透明度,帮助细胞外囊泡研究和应用领域的从业者根据EV来源、EV类型、研究内容、应用方向选择或制定最佳实践方案。需要说明的是,MISEV2023的内容建立在MISEV2014和MISEV2018的基础之上,前两份指南中的指导建议很大程度上仍然有效,读者在参阅MISEV2023时应结合之前的文件。下表列出了可供参考的文章:参考:1.权威发布!细胞外囊泡研究国际指南MISEV2023 2.干货分享|外泌体研究红宝书—MISEV 2023解读(一) 3.MISEV2023解读:全面认识细胞外囊泡附全文:J of Extracellular Vesicle - 2024 - Welsh - Minimal information for studies of extracellular vesicles MISEV2023 From.pdf
  • Cytek®Amnis®量化成像流式技术应用——细胞外囊泡篇
    细胞外囊泡(Extracellular Vesicles, EVs)作为蛋白质、mRNA、miRNA、脂质等信息物质在细胞间转运的载体, 是细胞与细胞间通讯的重要媒介,参与大量正常生理和病理过程,包括感染性疾病、自身免疫性疾病、心血管和其他炎症性疾病、癌症和凝血障碍等,因此研究EV在人类健康和疾病中的作用具有重要意义。EVs常分为三类外泌体 (30-150 nm) ,在胞体内区室中形成多囊泡小体,随后与质膜融合后从细胞中释放。微囊泡或微粒 (100-1000 nm) ,这是质膜起泡/出芽以及随后从细胞中释放的结果。凋亡小体 (1000-5000 nm) ,由凋亡细胞释放。目前还没有特异性标记物可以最终鉴定不同类型的囊泡。因此,我们把这些小的生物颗粒统称为细胞外囊泡。细胞外囊泡示意图EVs检测研究表明,不同疾病状态下,组织器官释放到体液中的EVs的数量及所包裹的物质是完全不一样的,因而通过检测分析EVs的特性即可对相关疾病进行精准诊断、预后判断及指导治疗。EVs具有尺寸小、异质性高且数量巨大等特点,一直以来,检测灵敏度都是EVs研究中的一个重大挑战。虽然一些关于EVs的检测是利用传统流式细胞术开展的,但也暴露出了明显的局限性,一方面由于传统流式仪器更适用于检测细胞,而细胞表面结合的荧光分子数量远远多于EVs表面;另一方面,一些传统流式仪器在检测小于500 nm单个颗粒上表现吃力。因此,想要准确的检测EVs,就需要更强大且具备高通量功能的检测工具。Amnis® 成像流式的技术优势近年来,随着Amnis® 成像流式技术的发展,越来越多的研究利用这项技术解决了EVs检测这一难题。Amnis® 技术的核心是使用时间延迟积分CCD (TDI-CCD)进行信号检测。与光电倍增管(PMT)相比,CCD具有更大的动态范围、更低的“噪声”和更高的量子效率,使其更适合测量微弱信号。与传统流式细胞术相比,这种方法信号整合时间更长,噪音低,灵敏度大幅增加,对研究EVs具有独特的优势。Amnis® 技术EVs应用案例分享以下研究体现了Amnis® 成像流式技术在小颗粒检测中的高灵敏度特点。检测脂质体和微球流式技术对比用常规流式技术 (A-B)和成像流式技术 (C-D)获得的200 nm大小的荧光标记脂质体和不同尺寸的聚苯乙烯珠(220、450、880和1300 nm)。Amnis® 成像流式可以清晰地分辨出缓冲液背景信号(灰色)以上的所有脂质体(粉色),而常规流式仅能通过荧光分辨出一小部分脂质体。健康人类供体的血浆微粒检测(a)从6名健康供体中获取无血小板血浆,并使用CD235(红细胞)、CD41(血小板)、CD45(白细胞)和CD146(内皮细胞)标记物进行染色以确定微粒细胞的来源。(b)利用CD14(单核细胞)、CD66b(中性粒细胞)和CD3(淋巴细胞)标记物进一步对白细胞微粒进行表型分析,以确定其来源细胞。下方是图库中事件的代表性图片。(c)表为N = 6例供体的绝对计数±SEM。如图所示,Amnis® 成像流式技术可实现不同来源的外泌体的精准鉴定与计数。单核细胞内化外泌体检测(a)用Amnis® 成像流式技术分析PKH67标记的外泌体。BF和FITC荧光图像(E)所示。(b) PKH67预标记外泌体与外周血单个核细胞共孵育。使用Amnis® IDEAS® 软件内化功能测量外泌体的内化程度。Amnis® 成像流式技术不仅实现了PKH67标记的外泌体鉴定,同时也实现了单个核细胞内化外泌体检测,且呈现直观图像佐证结果准确性。小结综上,Amnis® 成像流式技术做到了真正意义上的流式数据可视化。既具备传统流式可大量检测样本的特点,又利用高灵敏度TDI-CCD技术针对每个检测到的外泌体颗粒进行成像,并可通过海量形态学数据分析EVs与亲本细胞或靶细胞间的相互作用。Cytek® Amnis® ImageStream® x Mk II 成像流式细胞分析仪以上研究均通过 Cytek® Amnis® ImageStream® X Mk II 仪器完成。通过将流式细胞术的表型分析能力、高速度和高灵敏度等优势,与荧光显微镜技术在细胞形态学细节的洞察力和针对细胞功能研究的深度有机结合在一起,Amnis® ImageStream® XMk II 平台可高速获取每个细胞的多个图像,包括明场、暗场 (SSC) 和多达 10 色荧光标记。ImageStream® X Mk II 通过高分辨率成像,可以定位荧光蛋白表达位置(细胞膜、细胞质或者细胞核),实现超乎想象的广泛应用需求。技术特点应用广泛:样本利用率高达 95%,可以更高效的方式分析稀有细胞。简单易用:简单友好的用户界面,可实时观察全部细胞图像和统计学数据。配置灵活:最高可升级至 6 根激光器。功能强大:提供数百种量化成像分析参数,实现无与伦比的广泛应用。参考文献:Erdbrügger, Uta, and Joanne Lannigan. "Analytical challenges of extracellular vesicle detection: A comparison of different techniques." Cytometry Part A 89.2 (2016): 123-134.Headland, S., Jones, H., D'Sa, A. et al. Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry. Sci Rep 4, 5237 (2014). https://doi.org/10.1038/srep05237.Clark, R. Imaging flow cytometry enhances particle detection sensitivity for extracellular vesicle analysis. Nat Methods 12, i–ii (2015). https://doi.org/10.1038/nmeth.f.380.Gurunathan, S. Kang, M.-H. Jeyaraj, M. Qasim, M. Kim, J.-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307.https://doi.org/10.3390/cells8040307.
  • 2022“第六届细胞外囊泡基础与临床转化研究国际高峰论坛”成功举办
    2022年(第六届)细胞外囊泡基础与临床转化研究高峰论坛于8月19-20日在南京长江之舟华邑酒店成功召开。开幕式由大会共同主席、东南大学医学院院长刘必成教授主持。南京江北新区生命健康产业发展管理办公室副主任罗书琴、大会主席国际细胞外囊泡学会教育委员会执行主席、南方医科大学南方医院郑磊教授,会议学术顾问清华大学尹航教授出席开幕式并发表热情洋溢的致辞。会议上,大昌华嘉科学仪器部应用专家—李亚威围绕细胞外囊泡领域进行了广泛的学术交流和研讨,针对细胞外囊泡领域应用场景,提供完善的解决方案。并于会后与参会嘉宾们就会议主题进行更深一步的学术探讨。本次展出的纳米颗粒追踪分析仪ZetaView可谓是备受瞩目,由大昌华嘉科学仪器部所提供的专门用于表征纳米颗粒的粒径分布、数量浓度、zeta电位等信息的经典NTA技术手段。尤其是在细胞外囊泡(EV)研究领域,它不仅可以测定EV样品的粒径、浓度、zeta电位等信息,还可以通过荧光标记的方式,完成EV样品的纯度检测、Colocalization检测等。另外,ZetaView因其测试速度快、操作简便、易于维护等特点,极大地提高了用户的工作效率,备受用户认可。在为期两天的会议中,大昌华嘉向参会嘉宾们展示了外囊泡研究中所需要的先进设备及最新的解决方案,为后续的外囊泡研究提供了诸多实用可靠的依据,拓宽了广大研究者的思路。本次大会的成功召开为将来外囊泡研究注入了强大动力,期待不久的将来外囊泡研究取得更加突破性的进展。
  • 文献速递|动物活体成像系统在细胞外囊泡与神经退行性疾病关系研究中的应用
    ● 快讯近日,同济大学医学院附属上海市第十人民医院神经内科赵延欣教授及刘学源教授课题组在细胞外囊泡与神经退行性疾病关系研究领域取得了新的进展。该项研究从小细胞外囊泡的角度为阿尔兹海默症中发生的兴奋抑制失衡提供了新见解。相关研究成果已发表在国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR 2区)。图1|国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR2区)细胞外囊泡 (EV) 是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质。根据它们的大小,通常分为三种类型,小EVs (sEVs) (50-150 nm)、大EVs (100-1000 nm) 和凋亡小体 ( 5 μm)。其中,sEVs 通常可通过血脑屏障 (BBB),成为中枢神经系统 (CNS) 细胞之间通讯的关键介质,有证据表明,sEV 中的微小RNA (miRNA)参与到众多细胞和生物过程,例如神经元细胞的生长和凋亡。目前,E/I(兴奋/抑制)失衡假设被概念化为谷氨酸能和氨基丁酸(GABA)能突触输入之间的不平衡。E/I 失衡被认为是神经退行性疾病脑功能障碍的基础,包括阿尔茨海默病 (AD)、帕金森病 (PD)、精神分裂症和其他神经疾病。谷氨酸兴奋性毒性和 GABA 能神经元功能障碍似乎是 AD 中发生的神经元细胞死亡的关键原因。但是关于 E/I 失衡对AD的影响,其中的机制仍不明确。为了对该机制进行进一步阐释,赵延欣教授及刘学源教授团队在本研究中用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。然后,将不同来源的 sEV 添加到用 Aβ(β淀粉样蛋白)处理的神经元或注射到 AD 模型小鼠中。此后对经 Aβ 治疗的小鼠和神经元进行了评估。经GABA 处理的神经元释放的 sEVs 减轻了 Aβ 诱导的损伤,而谷氨酸处理的神经元释放的 sEVs 加重了 Aβ 的毒性。此外,本研究通过 miRNA 测序比较了从谷氨酸/GABA/PBS 处理的神经元中分离的 sEV 的 miRNA 组成。该研究进一步表明,sEV 中 miR-132 的变化加速了表征病理的生化改变。图2|实验方案示意图分离原代神经元后,用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。将不同来源的 sEV 添加到用 Aβ 处理的神经元或注射到 AD 模型小鼠中,并对小鼠进行MWM测试。文章中,在评估在小鼠体内系统传递的 sEVs 的分布的实验中,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。该实验中使用近红外染料DiR进行标记,同时进行了阴性对照实验(仅注射 DiR,不注射 sEV)。通过 APP/PS1 小鼠的尾静脉注射 DiR 标记的 sEV,使用Aniview100活体成像系统在注射后 24 小时拍摄小鼠的图像并评估分布情况。在带有 DiR 标记的 sEV 的小鼠的大脑和重要器官中均检测到荧光。随后,处死小鼠,取出器官并成像,目的为识别荧光信号来源的器官并使信号干扰最小化。此外,为了排除游离染料干扰实验结果的可能,在收集器官前用不含 sEV 的游离 DiR处理小鼠。实验结果显示,脑、心、肝、肺、脾、肠、肾均呈不同程度荧光。图3|sEV的体内外分布情况在注射 DiR 标记的 sEV 后 24 小时,使用活体成像系统对A - C活小鼠进行成像。a)、小鼠背面成像b)、小鼠腹侧成像c)、收集指定器官后使用活体成像系统成像本研究中证明了 sEV 的功能可以受神经递质平衡状态的调节,并对神经元中的 Aβ 毒性有不同的影响。并且该研究从 sEV 的角度为 AD 中发生的 E/I 失衡提供了新见解,并表明通过GABA 能系统对 sEV 进行生物学改造可能是预防或减轻 AD 发病机制的治疗途径。论文链接:https://doi.org/10.1186/s12951-021-01070-5
  • 基于单个细胞外囊泡蛋白红外光谱的无创癌症识别
    作为动态生物分子,蛋白质在肿瘤产生和发展过程中会发生丰度和结构的变化。与肿瘤发生关联的蛋白质异质性为阐明癌症发病机制提供了诊断信息,因此特异性蛋白是肿瘤诊断和药物设计的重要生物标志物。小细胞外囊泡(sEV)是由细胞释放的纳米尺度(直径30–200 nm)的膜囊泡。来自源细胞的蛋白质、核酸和脂质等与肿瘤产生发展相关的生物载物可以选择性地包装到sEV中,并通过膜融合和内吞作用等生理途径传递到受体细胞,影响受体细胞的生理功能,进而促进肿瘤的发生和发展。图 1 细胞外分泌囊泡的提取和纯化由于肿瘤来源sEV中的蛋白质异质性与肿瘤的恶性程度相关,并反映了肿瘤进展和转移的能力,因此对sEV蛋白组分的研究,有助于阐明sEV在肿瘤转移和侵袭中的作用,并促进体液活检的发展和癌症标志物的开发。传统蛋白质组学仅限于获得肿瘤细胞衍生的sEV族群的蛋白质表达信息,其在用于研究单个sEV蛋白组分时缺乏分辨率和灵敏度,特别是对蛋白质结构信息的获取。因此单个sEV的分子分析和异质性评估在技术上仍具有挑战性。光学表征提供了无损、快速、非侵入性的便捷探测手段研究蛋白质的组分和结构信息,然而由于远场光谱学的微米级光斑与百纳米级sEV直径之间的尺寸差异,使得远场光谱技术仅限于开展对sEV族群的大样本分析,其检测灵敏度和特异性受到sEV的异质性和sEV纯化挑战的影响。针对单个sEV蛋白组分分析的瓶颈,中国科学院物理研究所/北京凝聚态物理国家研究中心L04组陈佳宁研究员,SM4组叶方富研究员与国家纳米科学中心朱凌研究员、杨延莲研究员、王琛研究员和中国科学技术大学附属第一医院马小鹏副主任医师合作。利用自搭建纳米红外光谱系统(nano-FTIR)的10 nm尺度红外光场局域增强,在蛋白质酰胺I带(1600–1700 cm-1)和酰胺II带(1510–1580 cm-1)的指纹光谱频段内,通过对直径160–200 nm,高度为50–60 nm的单个sEV开展原位红外指纹光谱研究。图 2 单个细胞外分泌囊泡的近场红外成像和原位红外吸收光谱结合酰胺I带吸收频率对蛋白质骨架结构的高度敏感性,通过对健康和不同恶性程度细胞来源的单个sEV的红外光谱进行统计分析发现由于蛋白质中的C-O键和氨基酸C-OH基团中的氢键随着癌症的发展遭到破化,酰胺I/II吸收比值随着sEV来源细胞系的恶性程度增加而增加;高恶性癌症细胞来源sEV中蛋白质二级结构α-螺旋+随机卷曲的含量发生显著下降,反平行β-折叠+β-转角显著增加,这种蛋白质二级结构的改变一方面与癌细胞来源sEV在癌症发展演化起到的生理功能有关,另一方面在癌变细胞中富含β-折叠+β-转角的蛋白质的生物合成消耗更多的能量,癌症中线粒体异常的有氧糖酵解表现出异常能量代谢(即Warburg效应)在癌症的发生和发展中起着至关重要的作用,而癌变细胞来源sEV中β-折叠+β-转角含量增加带来的更多能量消耗是Warburg效应的一种表现。图 3 单个细胞外分泌囊泡的蛋白指纹光谱作为癌症恶性程度的指标作为临床应用的探索,进一步分析了从两名乳腺癌患者的原发肿瘤组织中提取的sEV(I期,无转移;IIB期,有淋巴结转移)。相较于无转移患者来源的sEV,淋巴结转移患者的α-螺旋+随机卷曲比例显著降低,分子间反平行β-折叠+β-转角比例显著提高,病人组织来源sEV蛋白质二级结构占比的变化与细胞来源的sEV中的结论一致。研究结果显示了nano-FTIR在单个sEV分子鉴定的优势,证明了sEV蛋白异质性在癌症检测和肿瘤恶性评估中的意义和临床价值,为基于sEV的nano-FTIR分子指纹谱识别的癌症诊断提供了体液活检解决方案。图 4组织来源细胞外分泌囊泡的蛋白指纹光谱区分无转移和淋巴结转移的乳腺癌患者国科温州研究院博士后薛孟飞(中国科学院物理研究所毕业)和清华大学博士叶思源(国家纳米科学中心联合培养)为共同一作。陈佳宁研究员和国家纳米科学中心的朱凌研究员、杨延莲研究员为共同通讯作者。相关工作近期以“Single-vesicle Infrared Nanoscopy for Noninvasive Tumor Malignancy Diagnosis”发表在《JACS》杂志上,上述研究工作得到了科技部重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项、中国博士后科学基金和中国科学院青年创新促进会的支持
  • 胰腺癌早期诊断|细胞外囊泡检测技术
    癌症的早期诊断是提升患者后期生存率的关键,但大部分癌症患者往往确诊时已是中晚期,极大增加了治疗难度和治疗负担。如:胰腺癌早期症状不明显,因此只有5%的胰脏癌能在早期被诊出,大多胰腺癌患者初诊时已为末期,无法手术切除,其他治疗方式效果也不佳,十年存活率约为1%,是预后最差的癌症之一。发展胰腺癌早期诊断方法是提高该类癌症早诊率的重要手段。近日,美国加州大学研究团队在《Communications Medicine》杂志上发表题为“Early-stage multi-cancer detection using anextracellular vesicle protein-based blood test”的文章,发现了通过检测血液中细胞外囊泡(Extracellular Vesicles,EVs)的相关标志物,有望为胰腺癌早筛早诊提供新方法。前期研究表明,利用EVs作为诊断的靶标,通过人工智能的方式来分析EVs中含有的肿瘤蛋白,可以推测恶性肿瘤的恶性程度,具有早期诊断癌症的潜力。该研究根据EVs蛋白谱开发了一种基于血液EVs的生物标志物分类器,用于检测早期胰腺癌和其他多种癌症。使用团队开发的分离系统从血浆中纯化EVs,相对于传统的离心方法,在保证分离得到的EVs纯度足够高的情况下,操作更简便。通过对I期和II期癌症患者及对照组的初步研究,分析血浆中EVs的13种相关蛋白标记物,诊断出95.7%的I期胰腺癌,特异性超过99%,证实了该技术具有较好的特异性和灵敏度。该筛查技术对于早期癌症检测有潜在的应用价值,有望为胰腺癌及其他癌症的早诊提供新的方法,推动癌症早筛发展,提升癌症患者的整体存活率。论文链接:https://www.nature.com/articles/s43856-022-00088-6
  • 文献速递|基于细胞外囊泡的新型纳米材料通过 Let-7a 诱导舌鳞癌细胞凋亡
    近日近日,吉林大学动物科学学院实验动物中心王东旭教授课题组与吉林大学口腔医院口腔颌面外科刘炜炜教授课题组在细胞外囊泡与舌鳞状细胞癌关系研究领域取得了新的进展。相关研究成果已发表在国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)。▲图1|国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)近年来,针对舌鳞状细胞癌(TSCC)的治疗和诊断已取得了进展,但 5 年生存率仍然很低。治疗TSCC的方法主要为手术、放疗和化疗。在过去几十年中,中医药在癌症研究方面已被广泛应用。例如,从蜂蜜中提取的白杨素可以通过非编码RNA在多种癌细胞中诱导细胞凋亡并抑制增殖。并且,纳米结构也已被广泛研究用于癌症治疗中的药物递送和诊断,例如金纳米粒子 (AuNPs)。细胞外囊泡(EVs)是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质,EVs 的摄取特定于细胞类型。但白杨素与金纳米粒子在单独运用时对癌症缺乏特异性,有证据表明,纳米粒子与 EVs结合可作为靶向癌细胞的药物载体。因此,纳米材料与 EVs 结合可以提高癌症治疗的效率。为了探究该方法,王东旭教授与刘炜炜教授团队首先使用白杨素治疗 TSCC 细胞和分离的 EVs-白杨素。然后将四氯金酸(HAuCl4)与 EVs-白杨素一同孵育形成 Au-EVs。在 EVs-Con 和 EVs-chrysin 之间进行转录组测序筛选后,对 let-7a 家族进行了分析。该研究结果表明,Au-EVs 通过TSCC中的 let-7a 诱导细胞凋亡。▲图2 |实验方案示意图文章中,研究 Au-EVs在体内的抗肿瘤作用的实验使用了博鹭腾AniView600多模式动物活体成像系统拍摄观察。在该实验中,首先将SCC9 细胞注射到裸鼠体内。7天后,将Au-EVs注射到肿瘤下方,并在第8天和第15天用近红外光照射裸鼠并进行肿瘤生长分析。结果表明,Au-EVs具备肿瘤靶向性,且荧光强度随时间增加而增加。此外,近红外辐射可以淬灭 Au-EVs 的荧光。在第21天时收集肿瘤,与预期结果相符,Au-EVs 与 NIR 结合显着抑制了肿瘤生长,并且没有改变体内其他器官。这些结果表明,Au-EVs 有效地介导了等离子光热疗法(PPT)并抑制了体内肿瘤的生长。▲图3|注射Au-EVs 后的荧光强度本研究发现,Au-EVs作为一种新型纳米材料,在SCC9 细胞中具有吸收特异性。在经过近红外辐射后,Au-EVs 能够有效增强细胞凋亡。通过RNA-seq,筛选 EVs-chrysin miRNA,Let-7a-3p,并且过表达let-7a-3p会诱导细胞凋亡,此结果表明经NIR 处理的 Au-EV 显著抑制了体内肿瘤的生长。综上所述,本研究结果提供了一种能够提高 AuNPs 靶向性的纳米材料,并且该材料可能与针对 TSCC 的疗法相关。论文链接:doi: 10.3389/fbioe.2021.766380
  • 马光辉院士/魏炜研究员团队开发工程化细胞外囊泡治疗胶质母细胞瘤
    通过交叉科学研究,提出并发展生物医学前沿新技术,是提高重大疾病治疗效果的重要手段。胶质瘤是发病率和死亡率最高的中枢神经系统肿瘤,其中胶质母细胞瘤(GBM)是最恶性的肿瘤,也被称为“癌中之王”。临床上治疗GBM以外科手术为主,同时辅助放化疗,但是效果非常有限;以手术和替莫唑胺联合治疗为例,5年生存率小于5%。因此,亟需开发新型高效的GBM治疗策略。 GMB治疗棘手的原因主要有三方面。首先, 血脑屏障(BBB) 的存在阻止了药物进入中枢神经系统,需要发展更有效的药物递送策略;其次,单一化疗药物的使用易导致耐药性的产生,需要联合新的肿瘤杀伤手段;另外,GBM具有复杂的肿瘤微环境,对其快速生长和向周围组织的浸润起到重要作用,在治疗的过程中不容忽视。 近日,中科院过程工程所生化工程国家重点实验室 魏炜 研究员、 马光辉 院士、深圳市第二人民医院 李维平 教授,作为共同通讯作者 在 Signal Transduction and Targeted Therapy 期刊发表了题为: Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects 的研究论文。 该研究基于工程化细胞外囊泡发展了“ 免疫调控-化学动力-乏氧激活 ”多级联动的治疗新策略,为胶质母细胞瘤的治疗带来了新思路。针对胶质母细胞瘤治疗难题,过程工程所生化工程国家重点实验室基于具有定向趋化能力的巨噬细胞的细胞外囊泡 (EVs) 和工程化的设计,提出了“免疫调控-化学动力-乏氧激活”多级联动的治疗新策略,并联合深圳市第二人民医院交叉合作,进行了个体化创新药物制剂的研发。 研究团队首先基于胶质瘤患者的临床样本和小鼠模型进行了免疫组化的研究,发现胶质瘤恶性程度越高,肿瘤组织中浸润的M2型巨噬细胞/M1型巨噬细胞的比例也相应更高,并且这些巨噬细胞大多来源于外周血。在此基础上,研究团队提出了以M1巨噬细胞EVs作为载体,一方面可以利用M1巨噬细胞的趋化特性在GBM部位大量蓄积,另一方面可以通过调控巨噬细胞表型实现GBM微环境的免疫调控。图1 胶质瘤样本中巨噬细胞的表型及其来源分析:a. 胶质瘤患者临床样本中巨噬细胞表型分析示意图;b. 不同级别胶质瘤中M1、M2和Ki67(细胞增殖指标)的分析;c. 基于TCGA数据库分析不同级别胶质瘤中M2/M1比例;d. 基于TCGA数据库分析胶质瘤患者瘤内M2/M1比例与生存曲线的关系;e. GBM组织中小胶质细胞和M1巨噬细胞的共定位分析;f. 免疫荧光染色分析GBM组织中小胶质细胞和M2巨噬细胞的共定位;g. 小鼠胶质瘤样本中巨噬细胞表型分析示意图;h. 在不同胶质瘤细胞系(U87MG、G422和GL261)中M1、M2和Ki67的分析;i. 免疫荧光染色分析不同鼠胶质瘤组织中小胶质细胞和M1或M2巨噬细胞的共定位情况;图中标尺均为50 μm 研究团队进一步在M1EVs的细胞膜和内腔差异化装载了化学激发分子对 (CPPO和Ce6) 以及乏氧药物 (AQ4N) ,以此将肿瘤微环境调控、化学激发动力学及肿瘤乏氧治疗合理有序地集成于M1EVs递送系统中。上述仿生剂型 (CCA-M1EVs) 静脉注射后,M1EVs可以携带上述组分穿过BBB进入GBM病灶,进而实现多级联动治疗:M1EVs调控免疫微环境产生大量过氧化氢,从而激发CPPO和Ce6生成自由基 (ROS) ,同时该反应消耗氧气激活细胞毒性药物AQ4N。借助上述作用的协同,在小鼠原位胶质瘤模型和患者来源的 (PDX) 模型上显著抑制了疾病的进程,大幅延长了生存期。图2 基于M1EVs的仿生剂型构建方案、抗肿瘤机制及PDX疗效:a. 仿生剂型的构建示意图;b. 仿生剂型在GBM模型中的累积及免疫调节、化学激发动力学和乏氧触发化疗的协同作用示意图;c. 基于光声成像分析仿生剂型在PDX小鼠GBM病灶中的累积;d. 各组PDX小鼠的抑瘤效果(20天核磁成像);e. 各组PDX小鼠的生存期分析;f. 各组PDX小鼠的TUNEL分析(标尺50 μm) 十余年来,过程工程所生化室魏炜研究员和马光辉院士创制了一系列仿生递送新剂型,利用其体内的天然路径和属性,在动物模型上成功用于肿瘤、传染病、炎症性疾病的防治,并且部分剂型已通过医院伦理批准进入个体化临床前和临床研究。 深圳市第二人民医院 王晓君 博士和丁辉博士为该论文的共同第一作者,中科院过程工程所生化工程国家重点实验室魏炜研究员、马光辉院士和深圳市第二人民医院李维平教授为共同通讯作者。论文链接 : https://www.nature.com/articles/s41392-022-00894-3
  • 上海交通大学陈万涛/严明发现小细胞外囊泡介导肿瘤进展及免疫逃逸分子机制
    肿瘤微环境(TME)影响患者对免疫治疗的响应度。携带大量生物活性分子的细胞外囊泡(EVs)可以在细胞间传递信号并重塑 TME。因此,在制定抗肿瘤治疗策略时,应综合考虑 EVs、TME 和免疫细胞之间复杂的相互作用。2022年5月,上海交通大学医学院附属第九人民医院陈万涛/严明团队,在Journal of Extracellular Vesicles(IF=26)在线发表题为“CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment”的研究论文,该研究表明头颈鳞癌细胞来源的小细胞外囊泡(sEVs)运载的 CD73 可以重塑 TME 并促进肿瘤进展、介导免疫逃逸。研究内容解析【1】 HNSCC 细胞来源的 sEVs 中高表达 CD73从原代培养的头颈鳞癌(HNSCC)细胞及配对正常黏膜细胞上清中分离 sEVs。蛋白组学分析显示,与正常黏膜细胞相比,HNSCC 细胞来源的 sEVs 中高表达 CD73(图 f-h)。图1 | HNSCC 细胞来源的 sEVs 中高表达 CD73【2】HNSCC 源 sEVs-CD73 被巨噬细胞内化以促进 HNSCC 进展CD73 是由 NT5E 基因所编码的一种膜结合形式的外核苷酸。TCGA 数据分析表明,NT5E 基因在包括 HNSCC 在内的多种肿瘤中高表达,并且与 HNSCC 患者较低的总体生存率密切相关。免疫组化结果显示,CD73 在 HNSCC 肿瘤组织中高表达,并且与患者不良预后和高淋巴结转移率相关。免疫浸润分析表明,NT5E 表达与巨噬细胞密切相关(图 c),免疫荧光结果也表明 CD73 与巨噬细胞共定位(图 d-e)。进一步分析显示,高 NT5E 表达、高巨噬细胞浸润的 HNSCC 患者总体生存率最低(图 f)。图2 | sEVs 中的 CD73 与肿瘤相关巨噬细胞和 HNSCC 恶性进展密切相关小鼠移植瘤注射 sEVsCD73,结果显示 sEVsCD73 主要与巨噬细胞共定位(图 h-i),表明 sEVsCD73 被巨噬细胞吞噬。同时体内实验结果表明(图j-n),肿瘤细胞来源的 sEVs 可以重塑引流淋巴结微环境,形成利于肿瘤转移的转移前微环境,sEVs 携带的 CD73在这一过程中发挥重要作用。【3】sEVs 通过 CD73 调节巨噬细胞介导的免疫抑制与对照相比,与肿瘤细胞共培养的巨噬细胞中 CD73 表达水平上升(图 b);而与 RAB27A 敲除以抑制 sEVs 释放的细胞共培养的巨噬细胞相比,其 CD73 含量与正常对照组相当(图 b),表明 CD73 主要通过 sEVs 运输。sEVs 中 CD73 的水平会影响 CD73+ 巨噬细胞的比例,使其随着共培养体系中 sEVsCD73 的累积而增加。当 sEVsCD73 被巨噬细胞内化后,其吞噬作用明显增强(图 c),同时分泌促癌炎性细胞因子 IL6、IL10、TNFα、TGFβ 能力显著增加(图 e-f),预示 CD73+ 巨噬细胞具有更强的促瘤作用。流式分析显示(图 h),sEVsCD73 使巨噬细胞免疫检查点(PD-1,PD-L1,LAG3等)表达上调,表明 CD73+ 巨噬细胞可发挥更强的免疫抑制能力。图3 | HNSCC 细胞源 sEVs 中 CD73 对巨噬细胞功能的影响【4】sEVs 中的 CD73 在体内促进免疫逃逸并促进肿瘤进展接下来评估 sEVsCD73在介导体内免疫抑制和肿瘤进展中的作用。与对照组相比,Rab27a 敲除组(SCC7Rab27aKO)的小鼠肿瘤生长速度慢、肿瘤偏小,表明 sEVs 可促进肿瘤进展。然而,注射外源性中高表达的 CD73 的 sEVs(sEVsSCC7-Nt5eOE 和 sEVsSCC7)则会显著促进肿瘤的发展,但 NT5E 敲除的 sEVsSCC7-NT5EKO并没有此作用(图 b-d)。结果表明 sEVsCD73 在 HNSCC 的进展中具有重要的作用。同时,流式分析显示,sEVsCD73 可招募巨噬细胞、Tregs 细胞,而 CD8+ T 细胞浸润数目减少。此外,在瘤内注射了含 CD73 的 sEVs 后,这些免疫细胞尤其是巨噬细胞表面 CD73、PD-1 的表达水平均有所增加。该体内实验结果提示,sEVsCD73 可诱导免疫抑制,从而促进肿瘤细胞免疫逃逸。图4 | sEVs 中敲除 CD73 可拯救免疫抑制并抑制了体内肿瘤生长【5】携带 CD73 的 sEVs 通过激活 NF-κB 通路调节巨噬细胞功能对经过 HNSCC 源 sEVs 处理的 M2 巨噬细胞进行转录组测序。利用韦恩图分析M2+HNSCC 源 sEVs(M2+sEVs)相对于对照组 M2 上调的基因,以及 M2+CD73 敲除的 HNSCC 源 sEVs(M2+sEVsNT5EKO)相对于 M2+sEVs 下调的基因。通过对两组差异基因取交集,筛选出了共 143 个可能受到 sEVsCD73 调控的候选下游基因(图 a),而 NFκB1 是与这些差异表达基因最为相关的转录因子(图 b),富集分析也显示 NF-κB 通路富集最为显著(图 c)。进一步实验显示,sEVsCD73 可以显著促进 p65 在巨噬细胞细胞核内积聚(图 f),激活NF-κB 通路,并促进下游基因转录。图5 | sEVs 中 CD73 通过 NF-κB 通路调节巨噬细胞的免疫功能【6】sEVsCD73 是抗 PD-1 治疗潜在的检查点和治疗靶点从 HNSCC 患者血清中分离 sEVs,ELISA 检测显示其 CD73 含量高于健康人血清 sEVs(图 a-c)。并且高水平的循环 sEVsCD73 可能预示着更高的淋巴结转移率和更大的肿瘤大小(图 d)。为研究 sEVsCD73 在抗 PD-1 治疗中的作用,通过体内实验进一步评估 sEVsCD73 敲除联合抗 PD-1 药物对小鼠头颈鳞癌的治疗作用。当 sEVs 中 CD73 敲除时,PD-1抗体的治疗效果发生明显的改善(图 f-h)。将瘤组织取出并进行流式分析,在接受抗 PD-1 药物后,巨噬细胞、Tregs 细胞的浸润数量有所下降,CD8+T 细胞的数目增加。同时,免疫细胞表面的 CD73 和 PD-1 表达下降,说明免疫抑制的现象有所缓解。这一现象在 RAB27aKO+anti-PD-1 组最为显著,说明抑制肿瘤细胞的 sEVs 释放会提高抗 PD-1 逆转免疫抑制的效率。然而在加入外源性的 sEVsCD73 后,巨噬细胞、Tregs 细胞的浸润数量明显上升,CD8+T 细胞的数目减少。此外,免疫细胞表面的 CD73和 PD-1 表达上升,表明 sEVs CD73 显著抑制了抗 PD-1 药物对免疫应答的重激活作用。以上结果表明,肿瘤细胞源 sEVs 携带 CD73 通过 TAM 介导免疫抑制并减弱抗 PD-1 的治疗效果。sEVsCD73 可用于预测 HNSCC 的转移,是潜在的 HNSCC 抗 PD-1 治疗的联合免疫治疗靶点。图6 | sEVsCD73 可减弱抗 PD-1 治疗敏感性原文链接:https://doi.org/10.1002/jev2.12218
  • “小贝开讲”之胞外囊泡的超离“二维”精准纯化模式
    时间:2018年3月29日 14:00 - 15:00内容简介:超速离心一直是胞外囊泡分离和纯化的标准推荐方法之一。但没有一种单一的分离纯化方法可以完美无缺地精准纯化出特定目标颗粒,不同方法均具有其优点及局限性。我们将以胞外囊泡的分离纯化为例,深入分析超速离心如何通过不同的实验设计,分别从颗粒的“直径大小”和“密度”两个维度综合利用,从而有效去除各种或大小或密度与目标囊泡想接近的各种杂质,为下游的精准分析提供更加可靠的精准纯化样品来源。2016年和2017年,我们分别开设过两场外泌体纯化方式介绍的在线专题讲座,分享了如何高通量、可重复地获取完整的、高纯度的外泌体颗粒,介绍了超速离心这个当今外泌体分离纯化的经典方法。讲座受到了很多外泌体研究者的好评和鼓励,并持续不断的与多位相关研究老师互动,一起探讨和交流。为满足更多研究者和技术人员的对于渴望深入了解和掌握使用超离对外泌体进行分离和纯化的要求,今年我们再次开设相关主题的在线讲座。讲座将结合过去两年我们与用户沟通交流后得出的各种经验和教训,总结了一套更加深入、更加具体的外泌体超离纯化流程优化方案,从而使外泌体的纯化过程更加稳定和可重复,更加适用于后续的临床检测和工业生产的需要。如果您在外泌体分离纯化过程中碰到了疑难问题迟迟未有解决?欢迎您来参加我们的在线讲座,讲座后我们将预留足够的答疑时间,您有何相关问题都可与我们沟通,我们将与大家充分共享相关的经验。主讲人简介:霍德华贝克曼库尔特生命科学部离心机产品经理 从事细胞与分子生物学实验室科研及相关产品的应用支持和市场推广工作15年,对各种细胞、核酸、蛋白的常用和前沿技术及仪器具有广泛而深入的了解,曾参与了多个实验室多种技术平台的构建与优化。目前在贝克曼库尔特公司负责离心机产品线的全国市场及应用推广业务,可为客户提供离心机及周边相关的实验完整解决方案支持。近年来,已协助国内外多家客户成功搭建外泌体相关的超速离心分离纯化技术平台,并为各地贝克曼库尔特离心机的新老用户提供了多场专题培训及疑难解答,在各种超离应用领域,特别是外泌体分离纯化上积累了丰富的经验。 如需报名或索取相关资料,请在线留言,告知需要参加的讲座名称。
  • 我国科学家发现细菌外膜囊泡调节巨噬细胞可抑制肿瘤转移
    近期,复旦大学研究团队在《ACS Nano》上发表了题为“Sequentially Triggered Bacterial Outer Membrane Vesicles for Macrophage Metabolism Modulation and Tumor Metastasis Suppression”的研究,证实了定向调节巨噬细胞的可能性,同时该团队开发的递送系统可实现对肿瘤微环境中不同类型细胞的靶向调节作用。  肿瘤微环境中不同类型细胞代谢过程存在异常,许多研究尝试通过调节肿瘤细胞和其他细胞在肿瘤微环境中的代谢途径来抑制肿瘤生长。细菌外囊泡因其外泌体样结构,可作为核酸药物的载体被巨噬细胞吞噬,从而完成对巨噬细胞的基因靶向治疗。基于此,该团队设计了一个以细菌外囊泡为载体的化学药物与Redd1-siRNA的共递送系统。同时,研究人员通过在细胞外囊泡表面增加甘露糖修饰以加强对M2巨噬细胞的靶向作用。通过乳腺癌模型,该团队观察到巨噬细胞活化、肿瘤免疫激活和肿瘤微环境重塑等现象,证明该系统具有较大的研究潜力。  该研究初步实现了对肿瘤的定向共递送作用,为后续肿瘤递送研究提供了一个新思路。   注:此研究成果摘自《ACS Nano》杂志,文章内容不代表本网站观点和立场。  论文链接:https://pubs.acs.org/doi/10.1021/acsnano.1c05613
  • 牛津大学Nature子刊揭示T细胞突触囊泡研究新方法
    在过去的10年里,人们发现一些超分子效应物会在细胞-细胞连接的界面上传递信息。免疫突触(immunological synapse)是抗原递呈细胞(antigen-presenting cell, APC)和T细胞相互作用的过程中,在细胞与细胞接触部位形成的一个特殊结构,是促进抗原、共刺激/共抑制、细胞因子三种激活信号从抗原递呈细胞传递到T细胞的分子枢纽。在与抗原呈递细胞作用过程中,T细胞会释放第四类信号—跨突触囊泡(trans-synaptic vesicles, tSV),介导免疫细胞之间的双向通信,但是它们作用的具体方式和原理仍不清楚。近日来自牛津大学的Michael L. Dustin教授在Nature Communications上发表题为“T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles”的文章,开创性地提出了脂质双分子层珠子(Glass Bead Supported Lipid Bilayers, BSLB)作为一种多功能的合成APCs来捕获、表征tSV,为研究tSV提供了一种新的检测手段。该研究发现与细胞外囊泡(EVs)相比,tSV中有更多的RNA结合蛋白和更高含量的microRNA,验证了tSV作为细胞间信使的特殊作用。文章首先通过BSLB模拟APC呈递细胞,研究与T细胞相互作用过程中tSV的转移和释放。T细胞-BSLB共培养物的延时成像显示,BSLB可促进来自受刺激T细胞的CD40L的转移,这在被转移的tSV组成的BSLB上留下了突触印记(图1-a)图1. BLBS原理进一步,作者将BSLB上的tSV洗脱下来,并利用NanoFCM对tSV和细胞上清获得的EVs进行综合表征和对比。发现tSV颗粒大小在82.13± 0.75nm,而EVs的粒径为65± 25nm,明显小于tSV的粒径大小。用NanoFCM的Exo粒径标准品(含68, 91, 113, 155 nm四种尺寸的SiO2球),对EVs和tSV的粒径进行分群,发现与EVs相比,tSV中大于113nm和155nm的颗粒所占比例更高(图2-d);tSV中TCR、CD40L、CD81阳性的tSV颗粒粒径显著大于对应的EVs阳性的颗粒(图2-e)。图2. tSV和EVs颗粒大小亚群分类进一步地,对tSV和EVs进行CD81和TCRαβ双标,发现tSV中两种标志物双阳的比例高于EVs,且TCR阳性的tSV粒径也显著大于TCR阳性的EVs(图3)。后续作者研究发现不同种类的T细胞来源的tSV内容物具有明显区别;tSV比EV携带更多的RNA结合蛋白和特有的microRNA等,感兴趣的读者可以阅读原文进行了解。总的来说作者提出了珠状脂质双分子层(BSLB)作为一种多功能的合成APCs来捕获、表征和促进对tSV生物发生的理解,开发了一种免疫细胞间信息传递和交流研究的新方法。图3. tSV和EVs功能亚群分析文章中利用NanoFCM对tSV和EVs的亚群进行精细分类,根据颗粒的大小将tSV和EVs分成四个不同大小的亚群,通过抗体标记,可对tSV和EVs 功能亚群进一步精细研究。利用NanoFCM单颗粒水平和超高分辨率的优势,可对tSV的不同亚群进行精细分类和研究,有望加快研究者对tSV的精细化研究进程!参考文献Céspedes P F, Jainarayanan A, Fernández-Messina L, et al. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles[J]. Nature communications, 2022, 13(1): 3460.
  • IVIS视角 | 姜黄外泌体样纳米囊泡用于结肠炎治疗
    植物外泌体样纳米囊泡(plant exosome-like nanovesicles,PELNVs)是源于植物真核细胞的多泡体,通过后者与质膜融合释放到细胞外的一种膜性小囊泡。与此同时,来源于药用植物的姜黄(Curcuma longa)作为一种中药,常用于降血脂、抗肿瘤、抗炎等疾病,姜黄素作为从姜黄中所提取的一种天然疏水多酚,姜黄外泌体样纳米囊泡除了具有相应药理作用外,还兼具纳米载体的独特形态与组成特征,相比哺乳动物来源和人工合成的纳米囊泡,姜黄植物外泌体纳米囊泡具有来源广泛、价廉易得、功能丰富等优势,因此具有大规模生产的可行性。炎症性肠病(IBD),是一种特殊的慢性肠道炎症疾病,主要包括克罗恩病(CD)和溃疡性结肠炎(UC)。随着生活水平的提高和饮食结构的变化,我国IBD发病率有不断攀升的趋势,已逐渐成为我国消化科的常见病。发展IBD诊疗新技术、新方法,将为IBD的综合防治提供有效依据,研究人员受姜黄药物价值的启发,进一步研究了姜黄外泌体样纳米囊泡在IBD治疗中的作用及分子机制。作者首先将植物姜黄用萃取器均质,然后采用蔗糖梯度超离心法获取姜黄外泌体样纳米囊泡(TDNPs),并通过透射电镜、原子力显微镜、质谱分析等方式对TSNPs 1和TDNPs 2做出相关比较(图1)。图1. TDNPs的分离、纯化与表征接下来,作者研究了TDNPs 2的靶向性,使用IVISense™ DiR 750 (XenoLight™ DiR)标记TNDPs,灌胃结肠炎小鼠。通过Perkinelmer的IVIS成像系统对消化道、肠系膜淋巴结(MLN)和重要器官(心、肝、脾、肺和肾)进行成像,发现与PBS组、TDNPs 1治疗组的小鼠相比,TDNPs 2治疗组的小鼠结肠中有强烈的DIR信号,证实了TNDPs 2优先作用于炎症结肠部位(图2)。图2. TDNPs 2优先作用于炎症结肠部位随后在TDNPs 2优先定位于炎症结肠的条件下,进一步研究了TDNPs 2对DSS诱导结肠炎的影响,通过构建小鼠结肠炎模型,使用炎症探针通过化学发光成像进行监测。Lcn-2作为一种有吸引力的肠道炎症生物标志物,被用来监测肠道炎症的进展。作者通过研究Lcn-2在DDS、DSS+TDNPs 1、DSS+TDNPs 2三组中的水平变化,证实了TDNPs 2可减轻DSS诱导的结肠炎。IVIS生物发光结果显示,DSS组和DSS+TDNPs 1治疗组小鼠的腹部显示较强的生物发光信号,表明消化系统内存在严重的炎症反应。相反,虽然DSS+TDNPs 2治疗组的小鼠腹部仍有部分生物发光信号,但强度远低于DDS组和DSS+TDNPs 1治疗组小鼠。作者同时还评估了结肠组织中髓过氧化物酶(MPO) 、促炎细胞因子(TNF-α、IL-6和IL-1β)和氧化应激相关蛋白HO-1的表达水平,证实了TDNPs 2具有明显的抗炎和抗氧化作用(图3)。同时作者评估了TDNPs 2是否能够加速结肠炎的快速消退。通过体外伤口愈合试验,证实了TDNPs 2处理的细胞具有最快修复创面的速度,能够显著缓解DSS诱导的溃疡性结肠炎及促进炎症的快速消退。图3. 口服TDNPs 2可减轻DSS引起的结肠炎随后该团队为满足潜在临床应用,首先评估了TDNPs 2对Caco2细胞的毒性,通过MTT、ATPLite、细胞凋亡、活化caspase-3/7等证明了TDNPs 2具有良好的生物相容性。接下来,通过H&E染色对肝脏等器官进行组织学分析,证实了TDNPs 2在体内的生物安全性。最后作者研究了TDNPs 2是否影响NF-κB信号通路,NF-κB是一种重要的核转录因子,在调节炎症反应中发挥着重要作用。姜黄素是一种NF-kB抑制剂,具有广泛的性能。作者通过检测NF-κB p65依赖的荧光素酶活性、磷酸化NF-κB p65表达和p65转位到细胞核的共聚焦成像,表明了TDNPs 2可以抑制LPS对NF-κB通路的激活。同时为了研究TDNPs 2在体内对NF-κB通路的抑制作用,采用NF-κB-RE-Luc转基因小鼠对NF-κB进行了研究。通过采集重要器官(心脏、肝脏、脾脏、肾脏和肺)和结肠并成像。IVIS生物发光结果显示,心肝脾肺肾的生物发光信号相似,表明NF-κB在这些器官中的活性相似。相反,结肠的生物发光信号,TDNPs 2治疗组较DSS组明显降低。表明了TDNPs 2是通过抑制NF-κB信号通路发挥保护作用(图4)。图4. TDNPs 2通过抑制NF-κB信号通路发挥保护作用参考文献Oraladministration of turmeric-derived exosome-like nanovesicles withanti-inflammatory and pro-resolving bioactions for murine colitis therapy. JNanobiotechnol 20, 206 (2022).https://doi.org/10.1186/s12951-022-01421-w
  • BD发布FACSymphony™ A1流式细胞仪,拓展在微囊泡和纳米材料领域应用
    2021年7月22日,碧迪医疗在上海宣布BD FACSymphony™ A1 流式细胞仪正式上市。北京大学肿瘤医院张志谦教授、浙江大学免疫学研究所汪洌教授、四川大学生物治疗国家重点实验室研究员胡洪波、复旦大学医学院徐薇教授、碧迪医疗大中华区生物科学业务副总裁胡轶清博士等嘉宾出席发布仪式,共同见证新品上市的荣耀时刻,并围绕流式细胞术在生命科学领域价值与应用前景进行分享及深入探讨。发布仪式碧迪医疗持续释放价值 流式细胞术可望更可及流式细胞术是目前最先进的细胞定性定量分析技术之一,与传统细胞检测相比,具有参数多、速度快、精度高、准确性好等优点,目前已广泛应用于基础免疫学、分子生物学、微生物学、肿瘤等领域,其分析结果是科学进步的重要依据,同时还助力临床科研发现,有助于临床诊疗水平提升。近年来,伴随生物医药产业的兴起,流式细胞术在生物医药研发及生物制药领域的应用也日趋广泛,在细胞蛋白的高通量筛选、靶向抗体定位、疫苗研发以及肿瘤标志物测定等工作中均有应用,细胞疗法的技术进步也将进一步拓展流式细胞术的应用场景。然而遗憾的是,由于新冠疫情、硬件投入能力等客观因素,相当一部分研究者的流式细胞研究需求难以得到充分满足,一定程度上阻碍了流式细胞术应用价值的释放。如何打破先进研究平台可望而不可及的传统印象,让更多因经济因素导致研究受限的研究者们也能拥有出色的研究工具,充分发挥科研经费价值,推动更多先进科研成果产出,成为行业难题。以小见大 A1有望拓展生命科学研究前景作为流式细胞术的发明者与领导者,碧迪医疗长期致力于流式细胞术的科研价值挖掘,此次最新推出的FACSymphony™ A1搭载高于同行业2倍功率的4种常用激光器,提供多达19个检测参数的能力,在充分响应全球市场需求,延续业界领先性能的同时,拓展流式领域常规颗粒大小检测最下线从500nm到90nm,不断提升应用效能,降低用户使用门槛,用户仅需相对较少的费用支出即可满足绝大部分流式细胞实验需求,为研究者提供更多优质选择。Symphony™ A1浙江大学免疫学研究所汪洌教授表示:“流式细胞仪是免疫学研究的利器,但其应用门槛较高,在充分发挥科研经费价值的目标之下,我们希望单一平台能够覆盖更为广泛的研究范围,助力临床科研成果高效产出,我们非常欣喜地看到FACSymphony™ A1流式细胞仪这方面做出了卓越的努力,其在国内的应用前景值得期待。”A1的努力并不仅于此。以近年来兴起的小颗粒研究为例,北京大学肿瘤医院张志谦教授在致辞就表示:“近年来,越来越多的顶级科研成果证实了小颗粒检测研究的价值。FACSymphony TM A1流式细胞仪新增小颗粒检测可选项,能够实现对于小颗粒的精确定性定量分析,有望成为科研人员的得力助手。”生物医药领域的应用则对流式细胞仪提出了更多要求。四川大学生物治疗国家重点实验室研究员胡洪波表示:“生物制药领域流程更加复杂,对于成本控制也更为敏感,灵活小巧且拥有广阔适用领域的A1高度适合生物制药行业需求,相信该类先进研究平台的应用将使全行业共同获益,让更多本土研究得以高效率转化,最终造福中国患者。”后疫情时代 为中国生命科学研究持续加码自从1973年推出全球第一台商业化流式细胞仪(FACS),近50年来,碧迪医疗始终致力于流式细胞术的技术进步与临床应用。碧迪医疗美国定制化产品研发团队负责人Geoffrey Osborne表示:FACSymphony™ A1 流式细胞仪是碧迪医疗现有流式细胞仪家族的重要补充,目的是为科学家提供可靠稳定的科研助手,轻松实现多参数细胞检测的同时,拓展了流式细胞技术在微囊泡和纳米材料等领域的应用场景。我们相信更多中国研究者在FACSymphony TM A1 流式细胞仪的帮助下能够取得丰硕和优质的科研成果。碧迪医疗大中华区生物科学业务副总裁胡轶清博士表示:“近年来,疫情爆发为全球公共卫生行业带来严峻挑战,FACSymphony™ A1 流式细胞仪正是碧迪医疗在后疫情时代为推动中国生命科学研究进步所做出的一项重要努力,其出色的性能与多功能性,以及较低的使用门槛使得研究者构建先进研究平台的难度进一步降低,更多研究者与机构有望从中获益。未来,碧迪医疗持续践行‘植根中国,服务中国’的不变承诺,持续加码流式细胞术在中国的推广应用,助力健康中国。”
  • “中草药囊泡研究与应用专家共识”上线
    中草药作为中药材是中华民族在与疾病长期斗争的过程中积累的宝贵财富。国务院印发的《中医药发展战略规划纲要》中也倡议充分利用现代科学技术推动中药发展。中草药囊泡作为疾病治疗药物或药物载体具有免疫原性低、安全性高、可大批量低成本生产制备等优势,对于中草药囊泡的研究和应用符合国家对促进中医药传承创新发展和中医药科技战略发展目标的要求。但同时目前人们对于中草药囊泡的研究比较浅显,面临一些挑战:如中草药囊泡提纯方法的开发和标准化、特异性标志物的筛选、生物安全性评价研究等。为了克服中草药囊泡的这些缺点,应优化其分离方法以获得稳定的纳米囊泡,并评估其形态特征、定量和活性成分等与功能相关的详细信息。对于中草药囊泡来说,分离与鉴定,质量控制等环节仍存在争议与分歧,尚缺乏统一标准。中草药囊泡研究与应用是中医药现代化新机遇,应用前景无限,机遇与挑战并存。为推动中草药囊泡的发展,由全国中草药囊泡研究与应用专家委员会牵头,汇聚来自全国中草药囊泡领域的专家力量,率先形成“中草药囊泡研究与应用专家共识”,致力于建立安全、有效、可控的精准化中草药囊泡研究和应用体系,该共识发表于2024年1月的《中草药》杂志上。共识中对中草药囊泡命名方法、分离方法、质量控制及其应用进行了比较详细的描述。其中,厦门福流生物(NanoFCM Inc.)自主研发的纳米流式检测技术被正式纳入其中,作为中草药囊泡质量控制环节的重要表征标准,承担了中草药囊泡粒径、浓度和纯度表征的重要角色。Reference 参考文献 中国研究型医院学会细胞外囊泡研究与应用专业委员会中草药囊泡研究与应用专家委员会.中草药囊泡研究与应用专家共识(2023年版)[J].中草药,2024,55(1):12-22.
  • “干细胞外泌体质量控制标准”又一团标上线
    干细胞衍生的细胞外囊泡(stem cell-derived extracellular vesicles, SC-EVs)作为一种“无细胞的干细胞疗法新秀”,已在多种疾病中表现出显著的治疗效果。与传统干细胞移植相比,SC-EVs结构组成简单,不存在免疫排斥、成瘤等干细胞移植风险,表现出更高的治疗安全性。根据全球市场报告,到2030年全球外泌体市场预计将达到10.3亿美元,其中干细胞外泌体相关的研究和产业化稳坐C位。Clinical Trials搜索结果显示,目前全球已有167项注册在案的外泌体相关疗法的研究,其中31项围绕干细胞来源的外泌体所开展,覆盖呼吸道疾病、传染病及肿瘤等多个方面。EVs的高度复杂性和异质性,导致其临床转化和工业生产仍存在着诸多亟待突破的瓶颈。国际细胞外囊泡协会联合领域内300多位专家发布研究指导——Minimal information for studies of extracellular vesicles 2018(MISEV2018),以规范化该领域内相关研究并给予研究者们相关实验指导;此外,FDA也发布了关于干细胞和外泌体产品的公共安全公告,强调了基于SC-EVs治疗的标准化及其法规建立。对于SC-EVs研究来说,分离与鉴定、质量控制等环节仍存在不同程度的分歧和争议,尚缺乏统一标准。为了推进SC-EVs在疾病治疗领域的研究与应用,2022年1月1日,中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定了两项全国团体标准——《人多能干细胞来源的小细胞外囊泡》(T/CRHA 002-2021)和《人间充质干细胞来源的小细胞外囊泡》(T/CRHA 001-2021)正式发布启用。其中,厦门福流生物(NanoFCM Inc.)自主研发的纳米流式检测技术被正式纳入其中,作为SC-EVs的重要表征标准。 上海市生物医药行业协会依据协会团体标准管理办法规定,结合国内外研究进展和参编单位的实践经验,制定了《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023),并于2023年3月27日起正式实施,以进一步推动SC-EVs相关技术的落地、建立行业标准、规范行业发展并为研究人员提供指导!该团体标准规定了间充质干细胞外泌体的质量控制方法,适用于间充质干细胞外泌体的制备、储存、运输和应用等多个环节的质量控制。 在该标准中,纳米流式检测技术承担了外泌体粒径、浓度和表面标志蛋白表征的重要角色,具体操作方法详见标准(标准文件点击链接下载):https://pan.baidu.com/s/12qLuckmS-zi2Ft1w9iDPQw?pwd=w9zg (提取码:w9zg)扫描二维码获取厦门福流生物科技有限公司自主研发的纳米流式检测仪覆盖了传统流式200 nm以下的检测盲区,除了外泌体,在核酸药物、病毒、细菌等天然及合成纳米粒子多维表征均有应用,具有快速、高通量、多参数等优势。目前客户遍布全球顶级研究机构和制药企业。为了更好的服务外泌体领域客户,2022年Q2我们全新发布了外泌体解决方案,涉及外泌体粒径分布、颗粒浓度,生化性质等多参数表征,可在纯化方法评估、质量控制、载药策略选择及疾病诊断等场景下应用。EVers福利为了庆祝NanoFCM进入新的干细胞外泌体团体标准,打通了流式进入干细胞外泌体临床和产业化质控之路,我们计划为20个干细胞外泌体临床研究和产业化的客户提供限时限量的免费检测,活动时间:即日起——5月31日,可扫码添加下方微信号,向NanoFCM客服获取测样申请表。(注:活动解释权归厦门福流生物有限公司所有)
  • 达普生物联合南方医科大学南方医院正式推出单囊泡分析仪器 ExoStar!
    2022 年 10 月,达普生物联合南方医科大学南方医院正式推出单囊泡分析仪器 ExoStar。ExoStar 是一种基于液滴微流控技术的单分子绝对定量技术的分析仪器,原理是将待测细胞外囊泡(EVs)与抗体偶联核酸复合物一起孵育,所述抗体偶联核酸复合物由 EVs 普适性表达和/或特异的抗体与核酸偶联而成,随后,将预处理好的 EVs 与核酸信号扩增体系在微流控芯片上经液滴生成仪产生微液滴,实现单个 EV 的包裹,接着将装有液滴的 EP 管移至普通 PCR 仪器上进行热循环反应,随后将液滴转移至液滴分析芯片,通过液滴分析仪的识别读取每一个微液滴荧光信号后,根据荧光信号及泊松分布原理实现对单囊泡的绝对定量。南方医科大学珠江医院党委书记王前、南方医科大学南方医院检验科主任郑磊与达普生物创始人许潇楠、达普生物市场总监朱林为单囊泡分析仪器 - ExoStar 揭幕。从 EVs 的首次发现至今,有关 EVs 的研究突飞猛进。特别是近年来,随着 EVs 作用机制及其与疾病之间关系的深入研究,证实 EVs 已成为一类具有广阔应用前景的新型生物标志物。但是,EVs 可被任何有核细胞分泌,展现了巨大的异质性,携带特异标志物的 EVs 极易被大量正常 EVs 信号稀释,会忽视、掩盖或者遗失单个 EV 的所携带的分子信息,可能导致那些低丰度的特异 EV 亚群信息的缺失。单囊泡分析技术平台可以实现EVs数字化超灵敏检测,对特异 EVs 亚群实现精准分析。可见对 EV 群体进行单个 EV 精度的分析显得越来越迫切。单囊泡分析仪器 ExoStar 应用场景细胞外囊泡(extracellular vesicles, EVs)是由细胞向细胞外环境释放的直径在 30-2000 nm 的具有脂质双分子层膜的膜性结构。细胞把特异的生物活性分子如核酸、蛋白质等包裹到 EVs 中或结合于 EVs 表面,使其稳定地存在于几乎所有生物液体中,如血清、尿液、羊水、脑脊液和唾液等,可以通过非侵入性的方式获得。目前,已有许多研究表明 EVs 蛋白可作为多种疾病的标志物,包括恶性肿瘤、心血管疾病、感染性疾病、自身免疫性疾病等。因此,通过精准的分类分析这些携带特异标志物的 EVs 亚群,有望获取疾病信息,在疾病早期诊断、治疗决策、疗效评估和耐药监测中具有巨大的发展潜力与临床应用前景。Exostar 将 EVs 检测精度提升至单囊泡水平,可有效避免传统批量检测方法中低丰度标志物信息被掩盖的缺陷。此外,Exostar 基于抗体特异性识别 EV 上的蛋白标志物,经抗体核酸标志物巧妙将蛋白质信息转换为核酸信号,进一步级联放大信号,实现特异蛋白标志物EV亚群的精准定量分析,特异性和灵敏度高。目前,Exostar 可同时检测单个 EV 上的 3 类蛋白标志物,实现 EVs 亚群的 8 分类定量分析,已在乳腺癌、肝癌等肿瘤疾病上进行验证与应用。后续通过改变蛋白标志物的 panel 可进一步扩展应用至其他疾病。单囊泡分析仪器 ExoStar 系统特点检测灵敏度高:可将 EVs 检测精度提升至单囊泡水平专利微流控液滴生成技术:液滴大小均一,扩增稳定,以保证数据精准自动化程度高:有效避免人为操作误差平面拍照式检测:可实现数据回溯封闭式芯片:可杜绝污染通用性广:通过改变蛋白标志物可扩展应用至其他疾病单囊泡分析仪器 ExoStar 部分数据展示单囊泡分析仪器 ExoStar 发布会第六届全国细胞外囊泡大会(CSEV 2022)于 2022 年 10 月 14 日在广州市广东迎宾馆隆重召开。会上,达普生物与南方医科大学南方医院合作开发的单囊泡分析仪器 - ExoStar 顺利揭幕。南方医科大学珠江医院党委书记王前、南方医科大学南方医院检验科主任郑磊以及CSEV组委会专家、达普生物创始人许潇楠、达普生物市场总监朱林、南方医科大学南方医院检验科刘春辰博士参加揭幕仪式。基于达普生物的星云数字 PCR 平台和微液滴技术,达普生物与南方医科大学南方医院郑磊教授研究团队合作开发单囊泡分析仪器 - ExoStar 及其相关检测试剂盒,致力于解决细胞外囊泡定量工作。相关研究成果“Single-Exosome-Counting Immunoassays for Cancer Diagnostics”发表于《Nano Lett》(IF:12.262)、“Multiplexed analysis of small extracellular vesicle-derived mRNAs by droplet digital PCR and machine learning improves breast cancer diagnosis”发表于《Biosensors and Bioelectronics》(IF:12.545)。达普生物与南方医科大学南方医院合作历程2018 年郑磊教授团队与姚舒怀教授团队首次基于液滴微流控技术报道了一种单个 EV 的数字化检测新方法。2021 年达普生物与郑磊教授团队开发了一种基于 4-plex ddPCR 技术并联合机器学习算法的新策略,通过分析 sEVs 来源的 mRNA,构建了 3 种乳腺癌诊断模型。2022 年《肿瘤液体活检关键技术研究及应用》荣获 2021 年度广东省科学技术奖科技进步奖一等奖!达普生物科技有限公司达普生物科技有限公司孵化于香港科技大学,于 2018 年由多位海归博士共同创立。在深圳、嘉兴、香港三地设有研发中心,研发团队近 100 人,建立了集微流控芯片、仪器及试剂生产为一体的 GMP 厂房。公司专注于将液滴微流控技术应用于精准医学领域,致力于成为集微流控芯片、仪器、试剂的研发和生产于一体的完整解决方案提供商。公司自主研发、生产两大技术平台:数字 PCR 系统和单细胞组学系统,应用于癌症研究、癌症早期筛查、靶向治疗、无创产前诊断、病毒定量检测、高通量药物和抗体筛选等领域。南方医科大学南方医院南方医科大学南方医院是南方医科大学第一附属医院、南方医科大学第一临床医学院,承担临床医疗、医学教育、医学科研和预防保健等任务,是大型综合性三级甲等医院和国家区域医疗中心。医院综合实力雄厚、学科特色突出、管理水平先进、文化底蕴深厚、是在全国乃至国际享有崇高声誉影响的高水平研究型医院。医院拥有国家级重点学科 5 个、国家级临床重点专科 17 个,国家临床重点专科建设项目 1 个,临床医学、口腔医学为一级学科博士学位授权点。近年来,在国内权威医院排行榜中,医院稳居国内综合医院前 15–20 名,10–15 个专科进入全国前十或得到提名。参考文献:[1] van Niel, G. D'Angelo, G. Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018, 19, 213-228.[2] Zabeo, D. Cvjetkovic, A. Lasser, C. et al. Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 2017, 6(1): 1329476.[3] Urbanelli L, Buratta S, Tancini B, et al. The Role of Extracellular Vesicles in Viral Infection and Transmission. Vaccines(Basel)2019,7(3):102.[4] Atsunori Tsuchiya, Shuji Terai, Ikki Horiguchi et.al.,Basic points to consider regarding the preparation of extracellular vesicles and their clinical applications in Japan,Regenerative Therapy 21 (2022) 19e24
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。   细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。   1. 外泌体提取及方法学评价   到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。   1.1 离心法   这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。   1.2 过滤离心   过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。   1.3 密度梯度离心法   密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。   1.4 免疫磁珠法   免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。   1.5 色谱法   色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。   2. 外泌体测量各种方法的比较   2.1 电子显微镜   扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。   2.2 动态光散射技术   动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。    图1 大颗粒和小颗粒光强波动及相关曲线   在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。   2.3 纳米微粒追踪分析术   纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。   NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。 图2 NTA激光光路图      激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。   根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径   在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。   由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。   NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。 图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关   NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量   由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。   3. 总结   外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。   (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)   注:文中观点不代表本网立场,仅供读者参考。
  • 低电压、无负染,以“柔”克刚!脂质体、囊泡成像福音,生物型透射电镜LVEM
    脂质体—高效的载药颗粒-----以无厚入有间,游刃有余 脂质体是一类由双层脂质分子结构的封闭囊泡型人工膜。由于其和细胞膜的脂质双分子层有高度相似的特性,脂质体可以与细胞膜相融合,从而将其囊泡内包裹的载物释放到细胞内。利用这一特性,研究者们克服了传统药物递送中的诸多障碍,得以将药物分子/颗粒包裹在脂质体中,直接将药物递送到细胞内部,使之成为了一类高效的药物载体。尤其在近期的新冠疫情中,各类mRNA疫苗纷纷采用了脂质体作为递送载体,有效地避免了核酸被降解,提高了mRNA进入细胞的效率。脂质体的应用使得mRNA疫苗真正成为了一种稳定、高效可以广泛使用的疫苗,也促进了脂质体研究的广泛开展。 在脂质体的应用研究中,质量控制往往为重要也为困难的一环。脂质体的质量(如其包封率、载药率与稳定性)很大程度上取决于其囊泡的结构是否均匀、稳定,这就需要研究人员对脂质体进行透射电镜成像,来直接观测脂质体的囊泡结构、粒径等形态信息。传统生物样品透射成像的桎梏------刚者易折,过犹不及 随着科研的进步,人们对成像仪器的要求与日俱增。但是即便在高分辨成像设备多如牛毛的今天,生物样品的透射电镜成像却一直是一个难题。所谓“电镜易得,样品难求”,如何制得一个无损的电镜样品从而拍摄到清晰、高反差的生物样品图片,一直是生物样品透射电镜成像中的大的难题,也是脂质体等脆弱的囊泡类生物样品在电镜成像中亟待解决的难题。 这个难题很大程度上是由透射电镜的高电压与制样中的染色/负染步骤导致的。 生物样品一般由C、H、O、N等原子序数较低的“轻质”元素组成,在传统透射电子显微镜高达120kV的高能电子束轰击下,很快就会被击穿甚至灰飞烟灭,不能留下任何图像。也就是说生物样品在传统的透射电镜成像中太过于“脆弱”,需要给这些样品穿上一层“盔”,这层盔就是用一些电子密度高的物质(如重金属盐等)对生物样品进行染色。而在本文中所说的脂质体等囊泡状的生物样品制样过程中,这个染色步骤就叫做“负染”。 负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,但是负染的处理手段也会带来显著的问题: 、就是生物样品制样复杂,在制样染色过程中,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变; 二、重金属盐离子本身会对生物样品的形貌造成不可逆的损害,这种损害在传统制样过程很难避免; 三、负染所得的“负像”并不能真实地反映生物样品的形貌特征,尤其对于脂质体等囊泡结构,囊泡表面局部凹陷,可能会有少量染液遗留在凹陷处,或者载网表面有负染液残留的痕迹等,这些负染液在电镜观察时就会产生“假象”; 四、对于制样操作者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度,染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在染色制样条件的摸索中了; 五、传统透射电镜操作复杂,维护困难,而实验平台的透射电镜往往一“时”难求,生物样品的佳观测时间往往较短,经常会出现获得好的生物样品,却发现电镜早要在一周后才能预约的尴尬局面; 后,即便已经采用了负染等手段,脂质体类的囊泡生物样品还是非常脆弱的,在成像过程中经常会出现囊泡被长时间电子流照射给“轰碎”的状况,这就迫使操作者加快操作速度,更加手忙脚乱。摆脱传统电镜桎梏的生物型透射电镜------柔者易存,易低为高 Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,一次性地摆脱了上述所有的生物电镜成像难题,为生物样品的电镜成像提供为便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度;无需染色:突破以往生物/轻材料成像需要重金属染色的局限性;高分辨率:无染色条件下能够达到1.5 nm的图像分辨率;多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换;高效方便:真空准备只需要3分钟,空间小,环境需求低;易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。 生物样品友好 -------柔者以利万物 LVEM生物型透射电镜采用的5kV与25kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对于脂质体等囊泡结构成像条件温和,摆脱了染液与负染过程本身可能对囊泡结构造成的损害,所得图像为“正像”,更加真实地展现囊泡的结构特征。 生物样品细节损失少------见微知著明察秋毫 如下图所示,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM生物型透射电镜采用的5kV与25kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。小型化设计,操作更加方便------芥子须弥内藏乾坤 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM电镜从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。操作界面智能化,更加方便。LVEM生物型电镜案例 LVEM生物型透射电镜对生物样品成像友好,除了脂质体之外,对于病毒颗粒、外泌体、噬菌体、DNA、细胞切片等生物样品的成像效果也非常,可以满足研究人员多样化的成像需求,且其操作简便,制样简单,是使生物科研工作者研究更加游刃有余的“科研利器”。部分用户单位:
  • 【聚焦外泌体】之从细胞培养上清液中分离外泌体的准备
    对于外泌体研究的新手来说,细胞培养上清液是非常好的实验材料,外泌体相对容易收集。我们可以首先从细胞上清开始来熟悉整个外泌体的研究流程,充分了解整个流程需要使用的仪器、试剂以及准备时间,对我们后续的实验安排有很大帮助。其中比较重要的一点是要确定有足够的初始细胞上清液来收集外泌体,以保证我们能够拿到足够多的蛋白、核酸来进行后续分析。我们可以逆向思维,通过后续检测所需蛋白/核酸量——外泌体量——细胞上清量,来确定初始细胞上清体积。先从细胞上清开始,熟悉了整个过程后,我们再进行其他相对较难的实验材料进行研究。01细胞系选择无论贴壁细胞或是悬浮细胞,能分泌更多外泌体的细胞系肯定是优先选择的。一般说来,肿瘤细胞的外泌体分泌水平要高一些,但并不是所有肿瘤细胞系都能分泌足够多的外泌体,我们可以借鉴文献中的细胞系推荐1。以常用基因转染的HEK293为例,是比较公认的分泌外泌体水平较高的细胞系。或者,以每100ml的细胞上清收集到的外泌体蛋白可达到5~20μg范围作为标准2,例如我们可以从100ml的细胞上清中获得10μg的外泌体蛋白,如果后续要做蛋白质组学分析(需50μg蛋白),那么初始细胞上清就需要扩大到之前的5倍,500ml,500ml上清差不多是通过离心方法可处理的大样品量了。如果后面收集到的外泌体蛋白都不够进行一次WB,那就要考虑一下是不是要换个细胞系了。如果外泌体蛋白小于3μg,那么考虑到扩大体系的实验难度和后续实验的顺利进行,那证明我们用的细胞系不太合适做外泌体研究。*虽然很多生物样品或是细胞系在文献中没有出现过,许多外泌体相关的数据库(ExoCarta, Vesiclepedia, Evpedia等)可以提供帮助,在上面我们可以查到有哪些细胞系已经有人成功进行外泌体提取了。或者也可以咨询一些做外泌体的生物公司,看看他们是用哪些细胞系来制备商业化的标准外泌体样品的。02优化细胞培养条件及细胞系选择影响外泌体质量和回收率的另外一个重要因素是在收集之前细胞的培养状态。好的收集时间段是细胞状态好、生长旺盛,即处于对数期的细胞3,并且在细胞传代之前收集细胞上清,这个时候细胞所分泌的外泌体量达到高4。准备好的细胞上清液,细胞密度也要适合,贴壁细胞如果细胞密度过高会出现接触抑制,对所分泌的外泌体也会有影响。所以,理想的条件是在细胞融合达到70%~80%后的40~48h后收集外泌体(此时约融合至90%)。要注意,为了避免FBS外泌体的污染5,收集外泌体的40~48h之前需换成无血清培养基,注意此时40~48h仅作为推荐参考。像有些细胞在无血清培养基培养24h后没有发生存活率和细胞形态改变,那么可以进行上清收集。如果出现死细胞增加、细胞形状改变、状态变差等情况时,使用EV-delepted FBS培养基来代替无血清培养基,EV-delepted FBS可以直接购买也可以自己制备(使用SW 41Ti转头在4℃,35,000rpm(Rmax 210,000 ×g)离心16h后小心收集上清)。但是这样仍无法完全避免血清外泌体的污染,需要清楚样品中血清外泌体的含量,增加一组没有培养细胞的培养基的平行样品作为阴性对照是必要的。03外泌体的提取方法目前被大家认可的方法就是超速离心,因为超离的方法可以收集到完整的细胞外囊泡群,并且几乎所有的实验材料(细胞上清、血液、体液等)都可以通过超离的方法来进行外泌体提取。当然超离的方法也有需要改善的地方,比如样品量很小的情况下,超离对外泌体的回收率不高,但是超离作为一种物理分离的方法,可以在不破坏外泌体群体特性的情况下进行分离的。当前,除了超离外还有许多外泌体分离方法,每种方法都有它的优势和劣势,首先我们需要理解各种分离方法的原理和特点,再根据我们的实验需求才能找到合适的外泌体提取方法。超离方法是可以获得整个外泌体群体,适合于研究整个外泌体群体特性。Yoshioka博士:众多外泌体分离方法中,我们使用超离沉降的方法作为实验室提取外泌体的标准方法5(见下图)。这个Protocol主要包括三个步骤:1.小心收集细胞上清并低速(4℃,2,000xg,10分钟)去除悬浮细胞(死细胞)。2.用0.22μm孔径过滤器过滤上步中收集到的包含外泌体的上清液,去除大颗粒和细胞碎片。3.将上步中的滤液进行超离处理,使用贝克曼库尔特SW 41Ti水平转头、13.2ml超净离心管(Product Number:344059,Beckman Coulter),4℃下35,000rpm(Rmax 210,000xg)离心70分钟。离心过后外泌体在离心管底聚集成沉淀,通常是肉眼不可见的。然后用预先过了0.22μm孔径过滤器的PBS进行清洗,洗掉与外泌体一起沉降的成分,例如微颗粒和蛋白。小心倾倒掉第3步超离后的上清,残留少量液体进行2~3s的涡旋振荡重悬沉淀,然后加入PBS,重悬后的样品同样的条件再进行一次超离。再次超离过后的外泌体仍然需要重悬,倾倒掉上清后,再进行2~3s的涡旋振荡重悬,这时的外泌体样品就可以进行下步分析了。从离心管中转移外泌体样品到储存管(比如1.5ml微量离心管)时,在吸取时我们可以用移液枪先大概测量一下样品体积,后面在储存管中补充PBS到我们之前预估的样品体积,比如,我们想收集到100μl的外泌体样品,但是从离心管中转移到微量管中只有80μl(注意:使用13.2ml超净离心管,平均下来每次收集到的外泌体样品大概80μl),我们加20μl PBS到微量管中再混匀一下就可以保存了。外泌体样品可以在4℃保存,并且要尽量早的用于分析。另外,外泌体样品是不能反复冻融的,与细胞类似,反复冻融过程会破坏外泌体。现在大家普遍认为外泌体是具有异质性的,整个外泌体群还可以细分为亚群(例如尺寸、蛋白表达等),不同的亚群也具备不同的特性,正如前文所说,通过超离的方法可以收集完整的外泌体群体。也有些文献也报道过使用不同的离心条件,可以将尺寸大小不同的外泌体亚群分开。目前,还没有特别统一的外泌体超离提取步骤,像转头类型、离心管类型、离心力以及离心时间等离心条件在不同的文献上都会有些许的差异。04参考文献1. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]2. Valadi H et al. Nat Cell Biol. 2007 9(6): 654–6593. Beckman Coulter. Interview article: Basics and Vision of Exosome Research. 20154. Urabe F et al. Clin Transl Med. 2017 6(1): 455. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制