当前位置: 仪器信息网 > 行业主题 > >

无拟合参数

仪器信息网无拟合参数专题为您整合无拟合参数相关的最新文章,在无拟合参数专题,您不仅可以免费浏览无拟合参数的资讯, 同时您还可以浏览无拟合参数的相关资料、解决方案,参与社区无拟合参数话题讨论。

无拟合参数相关的资讯

  • 应用案例 | 基于深度神经网络的无需压力校准和轮廓拟合的气体传感光谱技术
    近日,来自安徽大学的周胜副教授团队发表了《基于深度神经网络的无需压力校准和轮廓拟合的气体传感光谱技术》论文。Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.甲烷(CH4)是天然气的主要成分,在工业生产和日常生活中广泛用作燃料。此外,甲烷是一种重要的温室气体,其浓度对全球气候产生重要影响。因此,甲烷的测量对环境监测、生物医药和研究具有重要意义。气体浓度通常通过各种微量气体传感器进行测量,例如气相色谱仪、半导体气体传感器和电化学设备。半导体气体传感器在适当的操作环境下具有ppm级别的灵敏度。激光吸收光谱技术具有高选择性、高灵敏度、快速和多成分监测等优势,目前广泛用于各种气体的检测。激光吸收光谱技术可以准确测量气体分子的特征吸收线,并基于可调谐激光有效降低其他气体光谱线的干扰。此外,它提供了实时原位气体检测的可能性,这对于从工业过程到环境变化的各种现象的理解和监测至关重要。气体分子可以通过其指纹吸收光谱进行有效识别,包括典型的所谓“展宽”参数和“空气展宽”参数。光谱线参数是压力和温度的函数。浓度测量的准确性取决于压力稳定性和光谱拟合精度。对于定量光谱分析,传统上通过准确的模型对光谱进行拟合,同时压力和温度必须定期校准,尤其是在相对大的环境波动情况下。因此,为实现所需的准确性,系统的复杂性增加了。Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement ofCH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening” parameters and “air-broadening” parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy. 目前,人工智能的快速发展为解决这个问题提供了一种新途径。人工神经网络已被用于气体识别,并在足够训练数据的条件下表现出良好性能。基于Hopfield自联想记忆算法的神经网络已用于识别五种类似的醇的红外光谱。反向传播神经网络用于从混合气体中识别目标气体,证明了卷积神经网络(CNN)模型可以有效提高识别准确性。此外,最近的研究表明深度神经网络也可以应用于振动光谱分析。卷积神经网络和自编码器网络被用于处理一维振动光谱数据。与传统气体检测技术相比,辅以深度学习的气体传感器可以实现准确的灵敏度测量,并降低异常检测的鲁棒性。深度神经网络(DNN)可以在经过足够样本训练后直接从吸收光谱中学习特征,实现不需要压力校准和轮廓拟合的气体浓度直接识别。这种网络为检索气体浓度提供了一种新途径,无需昂贵且复杂的压力控制器。为了展示提出的DNN辅助算法的性能,构建了一个基于DFB激光二极管的甲烷检测气体传感器系统。预测的浓度与校准值相当吻合。这项研究表明,基于DNN的激光吸收光谱在大气环境监测、呼气检测等方面具有显着潜力。Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection. A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achievesthe direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..实验装置用于获取甲烷(CH4)气体吸收光谱的实验装置如图1所示。一台近红外DFB激光二极管,最大峰值输出功率为20毫瓦,被用作光源。通过控制激光温度和电流,激光可以在6045 cm-1到6047 cm-1范围内进行调谐,宁波海尔欣光电科技有限公司为此项目提供激光驱动器,型号为QC-1000。所选CH4在6046.95 cm-1附近的吸收线在图2中基于从HITRAN数据库获取的光谱线参数进行了模拟。DFB激光二极管经过纤维准直器进行准直,然后由一块CaF2分束器进行对准,分束后的可见红光(632.8纳米)光束用作跟踪激光。随后,光束被送入一个7米有效光程的多程传输池,并且池内的压力由压力控制器、流量控制器和隔膜泵协同控制。一个典型频率为100赫兹的三角波被用作扫描信号,以驱动激光二极管。最后,激光通过一个InGaAs光电探测器进行检测,并被数据采集单元卡获取。信号随后传输到计算机,并由自制的LabVIEW程序进行分析。Experimental setupThe experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm&minus 1 to 6047 cm&minus 1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm&minus 1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimatedby a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program. QC-1000, Healthy photon Co., Ltd.Fig. 1. Experimental device diagram.Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm&minus 1 and the cross-section of the selected line obtained from the HITRAN database.结论总体而言,本项目开发了基于DNN算法和激光吸收光谱的概念验证气体传感器,并设计了基于DFB激光二极管的甲烷检测传感器系统。此外,通过计算RMSE和训练时间评估了DNN算法的性能,并优化了DNN层、神经元数量和epochs等参数,以获取最佳参数。提出了改进的系统来分析和预测气体吸收光谱数据,在甲烷浓度预测方面表现出良好的准确性和稳定性。不同浓度的甲烷预测值与相应的理论值线性拟合,证明其在实际领域应用中具有巨大潜力,尤其适用于恶劣环境。Conclusions Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.参考ReferencesPressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 112077https://doi.org/10.1016/j.measurement.2022.112077
  • 电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排
    2021年10月4日,Journal of Physical Chemistry letters 在线报道了中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室翁羽翔研究组(SM6组)题为“电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排(Structural Reorganization of a Synthetic Mimic of the Oxygen-Evolving Center in Multiple Redox Transitions Revealed by Electrochemical FTIR Spectra)”的研究工作。该工作利用傅里叶变换红外光谱仪在低波数波段研究了人工合成的锰簇在电化学氧化过程中的机构变化,为光合放氧中心裂解水的反应机制研究开辟了一条新途径。光合作用是自然界利用太阳光大规模地将二氧化碳和水合成有机物并放出氧气的过程。在地球与生命进化过程中,具有放氧复合体的放氧光合生物的出现,使地球大气层中的氧气从无到有、逐渐积累并恒定在大约21%的水平,大大加速了地球演化、生物圈形成与繁荣的进程。光系统Ⅱ核心复合体是光能驱动水氧化的重要场所,具有光解水放氧功能的系统II核心复合体是一个由多个蛋白亚基、锰簇、色素分子等辅助因子组成的色素膜蛋白复合体。其核心锰簇是含有五个金属离子的Mn4O5Ca。其中的三个Mn原子,四个氧原子和一个钙离子占据六面体的8个顶点,形成立方体结构。太阳光经捕光天线吸收后分步传给反应中心的叶绿素特殊对,并实现电荷分离,形成的正电荷将邻近的酪氨酸Z氧化成正离子自由基,后者进一步将锰簇物氧化,驱动水的氧化并放出氧气:早期闪光诱导动力学研究表明,氧气的释放需要4个持续的闪光过程才能完成一个放氧周期。Kok等在1970就提出天然锰簇物放氧中心存在一个由S0-S4的5个状态构成的循环反应模式(即Kok 循环)。S0,S1,S2 ,S3 和S4分别表示放氧锰簇物的不同氧化还原状态。每一次氧化诱导的状态改变都会丢失一个电子,而每循环一次则需吸收4个光子,积累4个氧化当量(失去4个电子,积累4个质子)才能把水分子完全裂解,释放氧气后再次回复到S0态,如图1所示。2H2O−4e−⟶4hvO2↑+4H+" role="presentation"的释放需要4个持续的闪光过程才能完成一个放氧周期。图1. Kok循环示意图光系统放氧中心复合物的晶体结构研究表明,放氧中心锰簇物是由锰离子和钙离子经D1和CP43蛋白上氨基酸羧基侧链结合而形成的生物自组装结构。由于D1蛋白对强光很敏感,在体内的代谢周转十分迅速,半衰期大约为十分钟。可见,在自然界中放氧中心锰簇物是依靠生物的自修复功能实现其持续运转的。天然氧中心锰簇物的不稳定性对光合作用水裂解的机制研究也带来了相应的困难。2015年中科院化学研究所张纯喜研究小组在光系统放氧中心人工拟合物的研究中获得重大进展,成功合成了新型Mn4O4Ca簇合物(Science, 2015, 348, 690-693)。迄今为止,该类化合物是与天然放氧中心锰簇物最为接近的人工拟合物,该拟合物中四个Mn离子的价态(+3,+3,+4,+4)与天然放氧中心锰簇物S1态一致,而且同样具有催化水裂解的功能。此人工合成物为天然放氧中心锰簇物裂解水过程的微观机制研究提供了良好的契机。相关实验研究中,位于红外光谱低频波段(
  • 济南兰光“软包材阻隔性数据拟合分析应用技术研究”项目顺利验收
    2012年年底,济南兰光与山东省产品质量监督检验研究院国家包装产品质量监督检验中心(济南)共同承担的国家质监总局科技计划项目&ldquo 软包装材料阻隔性数据拟合分析应用技术的研究&rdquo 顺利通过验收,鉴定委员会一致认为该项技术达到国际先进水平。   该项目是基于当前实验室阻隔性检测中&ldquo 良好的测试结果&rdquo 和现实中&ldquo 不佳的应用案例&rdquo 之间的矛盾而提出的。这是由于材料的阻隔性会随着环境温度的不同而改变,而实际应用中温度的波动幅度远超过实验室所能模拟的范围,因此往往实验室中阻隔性能表现良好的材料在现实应用中却易出现各种质量问题。   对此,该项目重点研究了软包装材料阻隔性数据拟合分析技术,建立了常用包装材料在-20℃到150℃温度范围内的气体渗透试验数据库。同时,兰光为配合试验数据验证成功研发了一款超高低温气体渗透装置,利用渗透腔、测试腔独立控制技术,能经济、快速、方便的实现非常规温度下包装材料阻隔性测试,以进一步保障食品、药品货架期的品质安全。(来源:济南兰光0531-85068566)
  • XPS软件ESCApe新功能 | 无需插件,轻松导出拟合数据到Excel!
    导读近年来,材料、环境、能源、信息产业及微电子等领域的迅猛发展促使表面科学成为最为活跃的研究科学之一,同时对于表面分析技术的需求也日益增长。X射线光电子能谱(XPS)技术作为一种表面分析技术,在鉴定材料表面的化学性质与组成方面具备独特的优势,已经广泛应用于基础科研、先进材料研制、高精尖技术等领域,促进了材料学的研究与发展。ESCApe软件是岛津XPS的仪器软件,兼具操作分析功能,功能强大,界面美观。为了更方便的将数据导出到Excel,最新版本ESCApe Ver. 1.4 进行了功能升级。今天,我们以案例分享模式,介绍一个镀锡板样品的全谱与窄谱分析数据的导出过程,我们一起来看看吧!— (文末附完整操作视频哦~) —XPS操作方法导出带标注的全谱1全谱Peak ID分析将全谱拖入Data Processing模块,下拉列表选择ESCA Spectrum和Peak ID,之后运行、保存;2调节输出的数据格式全谱保留在Data Processing模块,下拉列表选择ESCA Spectrum和Excel exporter,在Data Organiser中双击打开全谱,调节输出的格式:点击Fitted Model,显示出元素标注;选择Regions,显示出元素含量;(此处调节的格式即最终的保存数据格式,如果不双击打开全谱,直接运行保存,则保存的是不带元素标注的全谱);3导出数据到Excel选择保存位置、输入名称,选择全谱,点击运行,查看保存结果。导出拟合后的窄谱1窄谱拟合分析将窄谱拖到Modelling模块进行拟合等数据分析,具体操作可参考 XPS(X射线光电子能谱仪)|数据处理(二)2调节输出的数据格式将多个窄谱拖入Data Processing模块,下拉列表选择ESCA Spectrum和Excel exporter,在Data Organiser中双击打开其中一个窄谱,调节输出的格式:点击Fitted Model,显示出拟合数据;选择Components,显示出价态含量;(调节其中一个窄谱的数据格式,其他窄谱会默认按照这个格式进行导出,如果不双击打开窄谱,直接运行保存,则保存的是不带拟合数据的窄谱);3导出数据到Excel选择保存位置、输入名称,选择全部窄谱,点击运行,查看保存结果。本次案例的完整操作过程,点击观看!https://mp.weixin.qq.com/s/tZMLDS70UhXVr7sHfYVNAQ撰稿人:王文昌本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • KLA Instruments | Webinar课程:波长选择,膜厚范围,拟合度
    课程推荐KLA Instruments | Webinar课程:光学膜厚测量仪波长选择,膜厚范围,拟合度。※适合新老客户了解学习膜厚仪的使用;加深对产品的理解。FILMETRICS在尝试去测量几埃到几毫米厚的薄膜前让我们首先来考虑一下光源,光谱仪分辨率,光斑大小,以及光学系统镜口率之间的相互作用。这堂课里我们先假设薄膜的折射率是确定好的。在结束之前一定要记得让我们回答这个非常抢手的问题:“我的拟合度要好到什么程度才算好?”*点击“立刻注册”即可预约线上课程 CharlesChen是KLA公司光学及探针轮廓仪产品和KLA子公司Filmetrics薄膜测量产品的业务开发经理。他2004年以资深项目经理身份加盟Filmetrics。在此之前的十年里他分别在SpeedFAM-IPEC 和KLA-Tencor 参与并领导半导体化学机械研磨制程中在线制程控制技术开发。Charles在俄亥俄州立大学获得科学硕士和哲学博士。
  • 便携式水质多参数检测仪和水质多参数分光光度计的区别?
    便携式水质多参数检测仪和水质多参数分光光度计的区别?便携式水质多参数检测仪和水质多参数分光光度计的区别?它们的共同点:使用范围:一、应用 ● 市政污水 ● 自来水、饮用水● 锅炉水、冷却水 ● 水处理 ● 环境监测 ● 工业过程监测二、测量模式:COD分光光度计 通过光源检测 测量模式 浓度,吸光度Abs,透光率% 便携式COD快速测定仪光源:进口冷光源(可达10万小时以上)两者都是通过光源检测,COD分光光度计 用的是氙灯, 便携式COD快速测定仪的光源是LID灯,两者及相同也不相同,总得大类来说是相同的,主要看客户自己的预算范围和精确度要求来选。因为都是分光光度的所以也都有波长测量范围:1.便携式COD快速测定仪波长测量范围:340-1100nm2.COD分光光度计波长测量范围:340–800 nm 三、显示屏的区别:便携式COD快速测定仪:七寸触摸彩屏COD分光光度计:LCD,带背光四:预存曲线:1.便携式COD快速测定仪:预存720条曲线,可进行7点拟合2.COD分光光度计:260多条五:电源:1.便携式COD快速测定仪:工作电源:AC220V±10 % / 50Hz2.COD分光光度计:使用5号电池为电源六、消解:1.COD分光光度计:需要单独购买消解仪2.便携式COD快速测定仪:内置双温区八孔消解系统七、检测装置: 1. 便携式COD快速测定仪:样品检测:旋转360°检测系统2. COD分光光度计:比色皿检测产品信息:XY-800s水质检测系统采用军用级高强度防水手提安全箱一体化设计,360°旋转检测模块,双温区消解模块,微电脑智能系统,彩色液晶触摸屏,进口光源,进口检测传感器,内置高容量锂电池,仪器性能稳定、测量准确、测定范围广、功能强大、操作简单.仪器特点:*360°旋转检测系统*双温区智能消解,同时消解多项目*进口光源,进口检测器*7英寸触摸彩色屏*内置大容量锂电池*内置热敏打印机*军用级高强度防水一体化设计 技术参数:1. 样品检测:旋转360°检测系统;2. 显示: 7英寸彩色液晶触摸屏3. 曲线校准:具有7点校正曲线功能。4. 光源:进口冷光源(可达10万小时以上)5. 检测准确度:≤±5%6. 波长测量范围:340-1100nm7. 波长准确度:±1nm8. 波长半宽:4nm9. 分辨率:0.00110. 重复性:≤±2%11. 存储:可存储40万组数据,可自由调用查看(可选配大容量储存500万组数据)12. 测量项目:COD 、氨氮、总磷、总氮、浊度、悬浮物、多项指标13. 测量范围:COD(低量程:15-150mg/L、高量程:150-2000mg/L)、氨氮(0.01-150mg/L)、总磷(0.01-2mg/L)、总氮(0.01-100mg/L)、14. 预存曲线:预存720条曲线,可进行7点拟合15. 双温区消解:双温区8孔多功能消解16. 消解温度范围:0-200℃17. 消解模块具有双保险高温过载保护;18. 专用水质消解系统,固化常规消解项目,一键式操作消解,消解完成自动报警提示。19. 打印方式:标配内置热敏打印机20. 数据传输:配备USB接口,选配:4G,WIFI,接口
  • ASD | 基于地面高光谱遥感技术估算城市河流水质参数
    城市河流水资源是重要的生态资源,是城市生活和生态的根本保障。但是近年来,河流水污染问题日益突出,城市水污染监测、水体保护、生态系统健康动态监测以及修复方法已经成为研究热点。水质监测是水污染控制的基础。传统水质监测主要基于野外采样后的实验室检测和分析,由于空间布局和采样点密度限制,在分析污染物在水面的连续迁移过程或大面积污染时,难以获得反映整个水体生态环境的总时空数据。遥感技术因其快速、实时和非接触操作的独特优势,逐渐成为水质参数反演和水质监测的有效工具。其中,地面遥感监测技术以其小范围、高精度和点源信息获取等优点而取得较好效果。因此,该方法在小流域水质监测方面具有一定优势,可以实现河流水质单一指标的高精度定量反演。然而,基于地面遥感技术进行水质监测时,还存在以下问题亟待解决。一是反演水质指标过于简单,反演精度较低,无法充分反映河流水质信息。其次,常用的回归和反演模型种类繁多,但对相关算法应用效果的系统比较和科学评估较少。因此,急需通过对比分析研究,为模型合理选择提供决策支持,提高水质反演效果。基于此,在本研究中,一组研究团队以邯郸市滏阳河为研究对象,通过室内测量获取水样的高光谱数据(ASD FieldSpec 4光谱仪)以及通过化学实验获取相应水质检测结果。然后引入偏最小二乘法(PLS)、随机森林(RF)和最小绝对值收敛和选择算子(Lasso)建立样本高光谱数据和6个对应水质参数(浊度(Turb)、悬浮物(SS)、化学需氧量(COD)、NH4-N、总氮(TN)、总磷(TP))的拟合模型,并进行验证和评估。在考虑高光谱数据非线性特性的基础上,上述三种算法的应用重点是消除数据之间可能存在的多重共线效应以及消除多种水质参数数据经光谱转换后可能存在的稀疏数据结构的影响。本文研究目的是寻找最佳反演算法,探讨高光谱监测技术代替实验室理化指标测试的可行性,评估反演模型对水质变化的预测效果。为城市河流水质监测提供更方便、更经济、更广泛的方法。图1 目标研究区水样收集断面分布图。图2 研究方法流程图。【结果】表1 PLS模型及其估算精度表2 Lasso模型及其估算精度表3 RF模型及其估算精度表4 水质参数最佳回归模型以及估算精度【结论】研究结果表明PLS模型对Turb,SS,COD,TN和TP的回归精度较好,但泛化性较差;RF模型对Turb,SS,COD,NH4-N和TP的预测效果优于PLS模型,具有更好的普适性;Lasso模型对COD,TN和TP有机污染物的反演效果最好,但对SS和NH4-N的反演效果较差。结果表明地面高光谱数据可以准确反演水体污染状况,实现大尺度、多参数水质监测。三种非线性反演算法具有较强的拟合能力,尤其是RF模型和Lasso模型在适用性和预测精度上相得益彰。与传统的回归模型PLS相比,机器学习算法综合实力更强,是城市河流水质参数分类、反演和预测的有效方法。提供了更高的反演精度和更好的鲁棒性。由于采集样本数据的限制,本研究仅分析了光谱和相应水质之间的关系。此外,讨论了三种算法的反演精度。对于后续研究,在更多补充数据的基础上,研究组将重点关注以下几个方面:一是研究不同时间条件下水质参数的变化规律;二是研究同一水质参数在不同采集位置相同时的光谱敏感波段。然后进一步探索不同采样周期下是否具有相同规律;三是进一步研究不同污染条件下基于光谱信息的污染状态反演精度和迁移规律反演能力。
  • 水泥新国标实施,科普来了-XRD直接测试熟料矿物相
    导读水泥行业新国标《GB/T 40407-2021 硅酸盐水泥熟料矿相X射线衍射分析方法》今年3月1号正式实施。新国标的最大意义在于国内首次引进了X射线衍射仪(XRD)直接测试水泥熟料中的矿物相含量,来控制水泥质量。岛津公司作为该国标的起草单位之一,这里为您科普该国标的技术背景,传统水泥分析方法的缺陷,XRD分析熟料矿物相的挑战,并展示岛津XRD在水泥熟料测试中的应用。 水泥的主要矿物相组成硅酸盐水泥,即国外通称的波特兰水泥,是全世界广泛使用的最普通的水泥,使用普硅水泥制造的混凝土是世界上用途最广泛的建筑材料之一。水泥的质量主要取决于熟料的矿物组成和结构。水泥熟料主要矿物相是硅酸盐,还有一些微量的矿物相如游离CaO或硫酸盐等,有时出现一些反应不完全的残留相,如石英SiO2,还有一些添加的用于改善水泥质量与性能的石膏等。 表1 熟料的常见矿物相前四种物相含量的差别是水泥标号的指标[1]。在水泥工业中,快速、稳定和准确地测出水泥熟料矿物组成对于及时调整熟料生产方案,优化水泥熟料矿物组成,有效监控水泥质量等方面有重大意义[2]。 传统的水泥分析方法及其缺陷国内水泥厂,对于熟料中矿物组成的监控,传统方法采用化学分析方法测定各氧化物的成分,测试速度慢;现在大多是通过波长色散荧光(WDXRF)来完成氧化物成分的测试,然后通过Bogue公式[3]计算C3S、C2S、C3A、C4AF含量。 然而,WDXRF只是以元素氧化物的形式换算出含量,其结果并不是水泥中真实的矿物形态。举例来说,使用WDXRF分析水泥,肯定会得到CaO、SiO2等成分。但CaO赋存状态是什么呢?水泥中的C3S、C2S、游离CaO以及石膏,这几种物质都是XRF结果中CaO的来源,也就是说,仅仅得到CaO的总含量是不够的,前述的这几种物质的不同组成都会影响水泥的性能,XRF的结果无法解决这个问题。 Bogue公式 Bogue公式计算出来的物相含量与实际含量相比可能会有很大的差异[4],如Bogue公式计算C3S含量偏低10%以上是经常出现的问题,因为Bogue公式假设熟料中的四种矿物C3S、C2S、C3A、C4AF是理想的纯化合物、是在热平衡条件下形成的。而热平衡条件在实际的水泥生产过程中并不存在。并且Bogue公式忽略了其它因素的影响,如镁、硫、钾、钠等微量元素的作用、原料的粒度、窑炉气氛及加热过程等等。 一个更合适的例子来自于文献[5],文章作者将商业熟料在1500℃再次加热一小时,同样元素组成的熟料样品,加热前后衍射图中C3A的衍射峰强度明显不同,这意味着C3A的含量改变了。很显然,Bogue公式无法处理这一状况。 图3 水泥熟料1500℃加热前后C3A衍射峰强度增加[5] XRD直接测试水泥矿物相的挑战国际上大约在1990年前后,开始着手研究使用XRD直接测试水泥的矿物相含量来控制水泥质量。在XRD衍射谱图中,每种物相都有自己特定的衍射花样,实际观察到的谱图是样品中各物相谱图的机械叠加,衍射峰强度和物相含量等因素有关。 不过由于水泥熟料结构和组成复杂,体系内存在同质多晶现象,如C3S存在7种可能的晶型,C2S存在5种可能的晶型,C3A有3种可能的晶型[5],而且不同矿物的衍射峰在26-40°(2Theta,Cu靶)范围内重叠严重,如C2S主要谱峰均与C3S重叠(图4);这里为了简要说明问题,图4仅仅只列出了C3S和C2S的各一种晶型,并只画出了较强的衍射峰位置,仅beta-C2S在图4角度范围内就多达134个衍射峰,如果C3S存在多晶型,这个谱图的复杂性可想而知。对于这种严重重叠的谱图,常规的物相定量方法统统无效,必须要使用Rietveld精修来完成水泥熟料的物相定量。图4 水泥熟料中,各物相衍射峰重叠严重 困难解决方法——Rietveld精修H.M.Rietveld于1967年在粉末中子衍射结构分析中,提出了粉末衍射全谱最小二乘拟合结构修正法[6]。1977年,Rietveld方法被引入多晶粉末X射线衍射分析中,开拓了对粉末X射线衍射数据处理根本变革的时代。与传统方法相比,Rietveld方法充分利用了衍射谱图的全部信息,即所谓的“全谱拟合”。经过几十年的发展,Rietveld方法不仅用于结构参数的精修,更拓展到无标样物相定量以及从头解晶体结构等领域。 由于Rietveld精修是利用全谱拟合,远比传统XRD定量方法只利用单个峰来的精确的多,常规XRD方法中分析水泥所遇到的诸多问题,如衍射峰重叠、择优取向、微吸收及纯标样制备难等问题可得到有效的解决。 水泥熟料Rietveld精修结果案例分享这里给出某熟料样品的Rietveld精修结果作为示例,Rietveld精修完成后,由精修软件可以直接读出C3S、C2S、C4AF、C3A等物相的含量。 图5是精修开始前的情况,黑色线是实测谱,红色线是计算谱。Rietveld精修是在假设的晶体结构模型和结构参数的基础上,结合某种峰形函数来计算多晶体衍射的理论谱,逐步调整这些结构参数与峰形参数,使得计算的理论谱与实测谱逐步接近,从而获得结构参数与峰形参数的方法。 图5 Rietveld精修开始前谱图 精修完成后(图6),可以看出,拟合良好,误差线较为平直。 图6 Rietveld精修后谱图 精修完成后,直接从软件中读出各物相含量,根据测得的结果,可知这是高贝利特水泥熟料样品。 表2 水泥熟料中各矿物相的含量结 语使用XRD直接定量测试硅酸盐水泥熟料的矿物相,从而可以进一步建立强度和矿物含量的关系,提升水泥质量的控制水平。准确的测定矿物的组成,不仅可以深入了解原料的性质对熟料形成的影响,还可以确定窑炉气氛以及加热的过程对熟料形成过程的影响。可以预期,随着GB/T 40407-2021的实施,XRD在水泥生产中会发挥越来越重要的作用。 撰稿人:章斌、崔会杰 参考文献[1] 李家驹. Rietveld方法X射线粉末衍射分析报告之一[J]. 现代科学仪器, 2007, No.111(1): 107-108.[2] 王培铭等. 基于Rietveld精修法的水泥熟料物相定量分析[J]. 建筑材料学报, 2015, 18(4): 692-698.[3] Bogue R H. Calculation of the compounds in Portland cement[J]. Industrial & Engineering Chemistry Analytical Edition, 1929, 1(4): 192-197.[4] Stutzman P, et al. Uncertainty in Bogue-calculated phase composition of hydraulic cements[J]. Cement and concrete research, 2014, 61: 40-48.[5] Aranda M A G, et.al. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products[J]. Reviews in Mineralogy and Geochemistry, 2012, 74(1): 169-209.[6] Rietveld H.M. A profile refinement method for nuclear and magnetic structures [J]. International Union of Crystallography, 1969, 2(Pt 2): 65-71. *本文内容非商业广告,仅供专业人士参考。
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • 张福根专栏|激光粒度仪应用导论之参数拾遗篇
    p style=" text-align: left text-indent: 2em " span style=" font-family: 宋体 text-indent: 2em font-size: 16px " 激光粒度仪测试报告显示的其他参考性数据大概有以下几类: /span /p p style=" text-indent: 2em " span style=" font-family:Symbol" · span style=" font-size: 9px font-family: & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /span strong span style=" font-family:宋体" 遮光比 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 遮光比是表征颗粒在分散介质中的浓度的指标。浓度太高,会导致散射光被颗粒散射2次以上(称为“复散射”),从而使测量结果失真;浓度太低,则散射信号太弱,信噪比低,测量结果重复性差,有时还会降低粗颗粒的测量灵敏度。一般而言,10%的遮光比是一个有参考意义的数值。当颗粒较粗,比如大于50 a name=" _Hlk520921096" /a µ m,遮光比可以适当提高;颗粒较细,比如小于1µ m,遮光比应该适当降低 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent: 2em " span style=" font-family:Symbol" · span style=" font-size: 9px font-family: & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /span strong span style=" font-family:宋体" 拟合残差 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" & nbsp & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 拟合残差用以表征反演获得的粒度分布所对应的光能分布与实测的光能分布之间的方均根误差。如果颗粒是圆球形、散射光能分布的测量误差为零、反演计算准确无误,那么拟合残差应该为零。但实际上由于测量误差的存在,颗粒形状大多偏离球形,以及反演算法的不完善,拟合残差为0是极少出现的。一个可以参考的数值是1%。大多数情况下拟合残差都小于1%。如果拟合残差显著大于1%,比如达到甚至大于2%,那么就要怀疑测量结果的可靠性了。导致拟合残差过大的原因有以下几种可能:(1)散射光能测量误差过大(一般出现在仪器测量范围的边缘,例如0.05µ m);(2)颗粒折射率的输入值与实际值严重偏离;(3)反演计算失败。 /span /p p style=" text-indent: 2em " span style=" font-family:DengXian color:#0070C0" 【进阶知识5】拟合残余过大时,为了查找原因,可以掉看 “光能拟合曲线”(如果仪器提供了这个功能)。结合激光粒度仪的原理,用户或者仪器供应商的技术支持人员可以分析造成拟合残差过大的原因。具体的分析涉及许多专业知识和经验,在此不展开讨论。 /span /p p style=" text-indent: 2em " span style=" font-family:Symbol" · span style=" font-size: 9px font-family: & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /span span style=" font-family:DengXian" 比表面积 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 比表面积用以表征颗粒样品的表面积大小,其定义是单位重量或单位体积颗粒样品的表面积之和,单位是m sup 2 /sup /g或者m sup 2 /sup /ml。如果颗粒是圆球形的,那么知道了样品的粒度分布,我们就可以计算出样品的比表面积。计算公式如下: /span /p p style=" text-align: center text-indent: 0em " span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" http://img1.17img.cn/17img/images/201808/insimg/e3d1f33b-c695-4d0f-b962-2695a2e9b4a9.jpg" title=" 12.png" / /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 体积比表面积除以颗粒的密度,就得到重量比表面积。可以想象,如果颗粒是非球形的,那么激光粒度仪根据粒度分布给出的比表面积就小于实际的比表面积。所以这个比表面积只有参考意义。 /span /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " strong span style=" font-family:宋体" 编者按: /span /strong span style=" font-family:宋体" 本文承接激光粒度仪应用导论之报告解读篇,对激光粒度仪测试报告进行了条分缕析,再加上之前的原理篇和结构篇,相信即使是零基础的读者朋友都对激光粒度仪不再陌生。张福根博士系列专栏对激光粒度仪的基本科普也告一段落。在后续的系列文章中,张博士将就主流激光粒度仪的性能特点、前沿技术等内容进行梳理品评,并将给出激光粒度仪选型的建议,敬请期待。 /span /p p style=" text-align: right " (作者:张福根) /p
  • DNA聚合酶分子马达精确动态工作机理研究获进展
    从细胞最基本的各种功能原件开始,进而精确认识其动态工作机理,是认识生命、有效干预生命过程的第一步。随着冷冻电镜技术的发展,蛋白质静态晶体结构可高效获取,为突破生命科学认知局限提供便利。解析蛋白质分子内部复杂部件的动态反应机理,是生命科学未来亟须解决的难题。明晰DNA/RNA聚合酶等马达分子精确动态工作机理,将为高效研发控制病毒复制的有效药物提供可行性前提。当前,模糊状态的工作机理,使控制病毒的有效药物研发耗时长、投入大、效率低下。  中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室SM1组研究员谢平运用广义第一性原理进行理论计算和模拟,探索生命活动的核心部件——各种分子马达的工作机理。鉴于生物科学研究手段限制(传统生化实验笼统平均化、晶体结构的数据静态化和新生代单分子实验数据的分散差异性及可观测数据局限性),聚合酶分子马达等功能蛋白分子的精确动态工作机制研究面临困难,至今不甚明了,只能给出卡通画式简单模型加以定性描述。2013年,谢平提出了DNA聚合酶Klenow片段(被广泛研究的高保真聚合酶模型分子)连续动态工作机理的理论模型。该模型解释了当时所有传统生化和单分子技术关于这一马达分子的实验数据,并对国际同行单分子实验结果实现了高度拟合。基于此模型,谢平提出Klenow聚合酶马达分子在受到外力时催化速率精确变化的理论预言。  近日,软物质物理实验室SM1组副研究员刘玉如和李伟,采用单分子操控技术检测该理论预言,实验结果与理论预言完全吻合。科研团队自主设计组装的高通量、高时空分辨率、高计算处理能力单分子磁镊仪器操纵系统,使纳米尺度实时高效测定Klenow聚合酶这一低持续性、多停顿的单分子催化反应速率成为可能。研究运用物理逻辑推理、理论计算与高质量实验结果的高通量分析,解析验证了DNA聚合酶Klenow在外力诱导下的催化活性变化,在实验中精确检测分子马达实时动态合成反应的速率变化。实验发现,在小外力(3.8pN)阻滞下,Klenow聚合酶的合成速率达到峰值,这一反直觉现象反映了高保真DNA聚合酶Klenow分子内部各部件之间的作用机制。  该研究首次诠释了DNA聚合酶Klenow的连续动态自动化工作机理。从DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。今后,该工作在新实验数据基础上继续深化和细化,将为未来高效研发控制病毒、细菌和癌症等重大疾病的有效药物奠定前驱基础。  相关研究结果发表在Chinese Journal of Physics上, 并被选为推荐论文(Editor’s Suggestion)。研究工作得到国家自然科学基金委, 科技部和中科院的支持。  图1.DNA聚合酶(Klenow聚合酶)的自动移位机理图(a),与底物DNA不同结合位点的相对结合能(b),理论预言聚合反应在不同外力下的催化速率(c)。对DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。根据酶分子内部fingers结构域不断开合和与DNA模板相互作用,提出理论预言——外力对Klenow聚合酶的催化速率具有显著影响,如图(c)所示,正向外力对催化速率没有影响;反向外力在小的力值(3.8pN)左右,使催化速率显著升高,更大的反向外力使催化速率降低。  图2.单分子磁镊技术对DNA聚合酶的催化反应进行实时动态监测。(a)和(c)分别为监测反向和正向外力的实验装置示意图;(b)和(d)分别为反向和正向外力作用下酶催化反应的动态曲线;(e)为不同外力作用下的酶催化速率分布统计。  图3.理论预言结果与实验测量结果吻合。实验测量结果为红色圆点表示;运用本研究实验体系微调后的参数拟合理论结果显示为黑色实线;运用历史文献参数拟合的理论结果显示为蓝色虚线。
  • 专家解读|GB/T 39560.12-2024 电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯
    多溴联苯、多溴二苯醚是一种新型持久性有机污染物,在环境及生物体内普遍存在且污染呈增长趋势,并对动物及人类健康造成潜在的危害,已对其进行严格管控。而邻苯二甲酸酯作为塑料产品中的增塑剂,被广泛应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品等产品中,因其给环境和健康带来严重危害同样已被社会广泛关注,并加以限制。电子电气产品作为人们日常生活必不可少的一部分,产品中所含有害物质对环境和人体健康的影响备受关注,国内外均出台了相关政策对其加以管控,比较典型的就是欧盟RoHS法规,其2.0版本中对多溴联苯、多溴二苯醚以及四种邻苯二甲酸酯物质进行了规定,要求出口到欧盟地区的电子电气产品均应执行法规要求。此外,为贯彻落实我国《“十四五”工业绿色发展规划》中有关推动生产过程清洁化转型,减少有害物质源头使用的重要工作,2024年6月29日GB/T 26572-2011《电子电气产品中限用物质的限量要求》国家标准第1号修改单正式发布,其规定的有害物质限量要求与欧盟RoHS法规管控物质完成一致,这也标志着中国RoHS正式与国际接轨。该修改单中明确规定,电子电气产品有害物质检测方法标准全部更新为GB/T 39560系列,而本标准作为GB/T 39560系列标准的第12部分,同样适用,并将于2024年10月1日开始实施,以此确保我国RoHS检测技术及结果与国际一致。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf一、制定背景 电子电气产品生产和销售企业,为应对欧盟RoHS法规以及我国《电器电子产品有害物质限制使用管理办法》要求,对产品中的限用物质进行检测,以确保符合性。由于法规要求不断更新,且所测试的有机类化合物相对复杂,导致目前所用的检测方法较多,出现同一样品按照不同项目多次处理和测定的情况,花费大量的检测时间和成本。根据有机物萃取和GC-MS检测技术原理,将不同类型的有机化合物通过方法优化,取得同时萃取和检测的方法,从而减少检测时间和技术成本,在确保满足法规要求的同时,为企业及第三方检测机构提供一套更科学、可靠的技术方法,对于保障电子电气产品的安全性和环保性具有重要意义。二、制定过程本标准等同采用IEC62321-12的标准,该国际标准同样为工业和信息化部电子第五研究所牵头制订,本标准在采纳该标准的同时,依托行业发展的战略背景,集合了国内电子电气行业一批权威的科研院所、检测平台、仪器生产厂家以及生产企业代表等22家单位,积极投身标准的制定当中。编制组历时3年对标准技术内容进行了充分而详实的论证,解决了多个技术难点,最终确保标准的实用性,并在相关领域得到推广应用。三、主要内容本标准详细规定了电子电气产品聚合物中PBB、PBDE以及四种邻苯的测试方法,包括适用范围、测定原理、样品制备、仪器参数、校准、质量控制以及附录参考文件等。1. 适用范围:本标准适用于电子电气产品聚合物中多溴联苯(PBB)、多溴二苯醚(PBDE)和四种邻苯二甲酸酯(邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP))的测定。并已经通过测试聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)、丙烯酸橡胶(ACM)、聚苯乙烯(PS)、聚氨酯(PU)和聚乙烯(PE)等材料的评估。测定范围为25 mg/kg至2000 mg/kg。2. 测定原理本标准采用超声波辅助萃取方法,将聚合物样品中的PBB、PBDE和邻苯二甲酸酯萃取出来,然后采用GC-MS进行定性和定量分析。GC-MS可以同时进行多种化合物的分析,灵敏度高,准确性好,是测定PBB、PBDE和邻苯二甲酸酯的理想方法。3. 样品制备本标准在储备溶液准备中,给出了建议使用的标记物、内标物、储备液浓度以及储存条件等信息。在分析的一般说明中将可能影响分析过程的空白值以及外界环境影响因素等进行了阐述说明。样品制备是分析过程中至关重要的一步。本标准规定了样品的研磨、筛分和萃取等步骤。样品应研磨并通过500μm的筛子,或者切成小于1x1 mm的碎片。样品制备的粒径对于萃取效果影响较大,因此标准中对于样品的粒径大小进行了限值,以确保达到最佳的萃取效果。称取100 mg ± 10 mg样品,用预先清洗过的滤纸包裹后置于离心管中,用4mL丙酮/正己烷浸没样品,加入25μL标记物(1000μg/mL),使用超声波辅助萃取方法,将PBB、PBDE和邻苯二甲酸酯从样品中萃取出来。萃取完成的样品进行离心,转移上清液于25mL容量瓶中,重复两次以上萃取步骤,最终将三次萃取离心的上清液全部转移至25mL容量瓶中,定容至标记处,加入内标物后完成样品制备。标记物主要用于指示样品回收率效果,因此在样品制备的前端就应加入,伴随样品处理的全过程,以此进行监控。标准中同样规定了超声的萃取时间以及水浴温度等条件,试剂的选取以及萃取时间和温度的设置对于样品提取效果极为重要,能以最短的时间达到最佳的效果。需要注意的是,萃取过程中,超声浴中的水位应高于管内的萃取液位,并且由于有机溶剂在密封管中的挥发,水浴温度过高可能会造成危险。在操作过程中应关注温度变化,确保试验安全。4. 仪器参数GC-MS的仪器参数对分析结果的准确性和可靠性至关重要。本标准给出了GC-MS的仪器的推荐参数,包括色谱柱类型、进样方式、载气流速、柱温箱温度、传输线温度、离子源温度、电离方法和驻留时间等。这些参数可以根据不同的仪器和分析要求进行调整,同时给出对应目标物的定性与定量离子参考。5. 校准校准是定量分析的基础。本标准规定了使用标准物质溶液进行校准的方法。通过绘制校准曲线,可以建立分析物浓度和仪器响应之间的关系,从而进行定量分析。本标准对校准曲线的具体绘制方法以及推荐选择的浓度点进行了规定,包括标记物以及内标物溶液的配制方法,同时给出校准曲线的线性回归方程以及各参数的意义。需要注意,样品和标准溶液使用的溶剂应该相同,以避免任何潜在的溶剂影响。所有校准溶液在使用前应储存在低于-10℃的温度下。每个校准曲线的线性回归拟合的相对标准偏差(RSD)应小于或等于线性校准函数的 15%。校准曲线绘制过程中应尽可能采用线性回归校准。在不能达到线性回归符合的要求(小于或等于15%的相对标准偏差(RSD)),如果其它统计处理方式(例如相关系数或曲线达到 0.995 或更好)证明可接受,也可使用多项式拟合。此外,在建立十溴二苯醚的校准曲线时,标准中给出校准范围的建议调整要求。6. 计算根据拟合的线性方程进行样品浓度计算,当使用线性回归不能满足曲线的相对标准偏差要求时,可以使用多项式(例如二次)回归,但要满足所有的质量控制要求。如果样品中每种同系物的浓度超出各自的曲线线性范围,需对样品进行稀释,应尽量使其浓度在校准范围的中间部分。样品中的多溴二苯醚总量和多溴联苯总量不仅局限于校准溶液中的标准物质,除此之外的其他可经过确证的多溴二苯醚和多溴联苯物质也应算入总量。7. 质量控制本标准规定了严格的质量控制措施,通过分辨率对仪器进行监控,通过空白试验、基体加标、分析连续校准核查标准物(CCC)、标记物回收率、检出限以及定量限等指标对整个分析方法的过程进行质量监控,并详细阐述了实施过程,当上述所述质控内容不能满足标准中规定的要求时,所得的结果是不可信的,需要对各个环节进行逐一排查确认后,重新进行测试,从而确保分析结果的可靠性和准确性。8. 附录附录中对不同萃取剂的萃取效率实例、不同循环次数的萃取效率实例、气相色谱质谱图、各目标化合物的质谱图、国际实验室间比对12(IIS12)的统计结果进行了展示,对过程操作给予指导。以上为本标准的所有解读内容,通过本次标准解读,对标准的内涵和实施要求有了更深入的了解。这一标准的实施将极大提高检测技术的准确性和可靠性,促进相关行业的持续发展。本标准的制定和实施不仅符合国内市场的需求,更是我们接轨国际标准、参与国际竞争的重要步骤。其有助于提升我国产品在国际市场上的信誉度和竞争力,促进国际贸易的便利化。(作者:工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长/高级工程师 丑天姝)丑天姝,高级工程师,现任工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长。主要从事毒害物质检测、绿色供应链管理、环境地球化学、环境分析等相关研究。主要承担工信部高质量发展专项“高效液相色谱-高分辨离子淌度质谱联用仪”项目、“第二次全国污染源普查工业污染源产排污系数核算项目”、肇庆市科技项目“典型工业污泥低温干化关键技术研发与应用示范”、增城区科技项目“田螺废弃物中芳香基硫酸酯酶的提取及其应用研究”以及“增城市基本农田(菜地)土壤环境质量调查研究”等各类课题项目14项,参与制修订国际标准2项、国家及行业标准8项;发表论文6篇,获得专利3件;出版著作1部。
  • 该仪器项目参数设置不合理 被质疑有猫腻
    p   日前,广西建标建设工程咨询有限责任公司受贺州市环境保护局委托,现对水质重金属监测仪、流动注射分析仪设备采购招标公告(项目编号:HZZFCG2015货字340号)进行公开招标。 /p p   不料却在2016年1月20日收到广西南宁前端商贸有限公司关于该项目的质疑函,质疑事项如下: /p p   一、关于技术参数不合理性 /p p   1、招标文件第23页项目需求和说明第3项产品边台:“★1、台面部分:要求采用13mm厚绿色环保电子束固化技术(EBC)技术生产的实芯理化板,边缘加厚至26mm,边缘呈圆弧形,结构坚固致密,能抗强冲击,耐强酸碱,耐高温,更具有良好的承重性能。采用绿色环保电子束固化技术(EBC)生产,制造厂商出示证明函(盖章),产品拥有《中国绿色环保标志授权使用证书》并符合以下技术参数指标和“★为保证质量,投标人投标时须提供台面板生产厂家出具针对本项目的供货证明书原件及符合上述台面技术参数指标的检测报告复印件,并加盖生产厂家或区域全资子公司投标专用章,提供符合技术要求的有防伪背标的材质样板,否则投标无效。材质样板可与投标文件一并包装并递交。” /p p   这两处为加注“★”项,按照招标文件第24页其它要求:注:(说明:招标文件中,如标有“★”号项的“技术参数、性能、配置等要求”均为实质性要求,任意一项负偏离都将导致投标无效。非“★”号项条款未响应或不满足,将导致其响应性评审并扣分),因此上述两处为必须满足项,不满足则导致投标无效。 /p p   然后根据招标文件可以看到,项目采购总预算为¥1198000元。本次项目采购货物有3项:1、流动注射全自动水质分析仪 2、便携式水质重金属监测仪 3、边台。上述三项货物我们根据配置和参数可以大致了解到,其中第一项货物流动注射全自动水质分析仪市场成交价大概在85-110万左右,第二项货物便携式水质重金属监测仪市场成交价在18-25万左右,而第三项货物边台市场成交价则在几千元左右,可以非常明显的看到边台在本项目中根本不属于主要货物,且占项目预算比例极低,几乎可以忽略。 span style=" color: rgb(255, 0, 0) " 但正是这并不重要的边台,却两处加注“★”项作为本项目的主导参数,直接影响整个项目评标,然而百万级别的大型仪器流动注射全自动水质分析却没有一项技术参数或配置加注“★”项,可以看出这份招标文件的技术参数设置是不正常的,完全不符合常理。如此设置,是否是为了方便某供应商应标? /span 所谓边台,首先相对大型分析仪器价值低廉,技术含量低,另外本次项目明显为货物采购,而非实验室装修项目,其边台只是实验室内辅助设施。因此,边台不能够也不应该在本项目之中加注“★”项,作为主导参数。 /p p   二、关于技术参数倾向性和排他性 /p p   2、还是招标文件第23页项目需求和说明第3项产品边台:“★1、台面部分:要求采用13mm厚绿色环保电子束固化技术(EBC)技术生产的实芯理化板,边缘加厚至26mm,边缘呈圆弧形,结构坚固致密,能抗强冲击,耐强酸碱,耐高温,更具有良好的承重性能。采用绿色环保电子束固化技术(EBC)生产,制造厂商出示证明函(盖章),产品拥有《中国绿色环保标志授权使用证书》并符合以下技术参数指标和“★为保证质量,投标人投标时须提供台面板生产厂家出具针对本项目的供货证明书原件及符合上述台面技术参数指标的检测报告复印件,并加盖生产厂家或区域全资子公司投标专用章,提供符合技术要求的有防伪背标的材质样板,否则投标无效。材质样板可与投标文件一并包装并递交。” /p p   上述两项作为加注“★”项,其要求提供的相关证书、厂家授权、及材质样板,均为必须符合项,否则投标无效。本项目作为公开招标项目,需有三家供应商实质性响应招标要求,否则就会导致流标。在此我想请问贵公司作为招标代理机构, span style=" color: rgb(255, 0, 0) " 在制定招标文件技术参数需求时是否审核过相关技术要求等,是否有三家以上供应商或生产厂家能够满足边台的要求,据了解,现有市场上没有三家生产厂家能够同时响应上述边台要求,其要求明显指向某生产厂家,具有明显的倾向性和排他性。 /span /p p   综上所述,广西南宁前端商贸有限公司对本次项目招标文件提出质疑,我们认为本项目招标文件的部分技术参数的设置具有不合理性、倾向性、排他性,违反公平公正原则 “★”项设置明显不合理,不科学,对特定品牌进行倾斜,明显是对其它品牌产品给予了岐视待遇,没有体现政府采购的公平公正性。 /p p    strong 三、质疑答复 /strong /p p   广西建标建设工程咨询有限责任公司就质疑人反映的事项进行答复: /p p   回复一、边台虽然作为实验室辅助设备,此次采购占比不高,但此次有特殊用途(拟在密闭环境中使用)对技术要求较高,对抗腐蚀及甲醛释放量有严格的要求,该材料主要由酚醛树脂及三聚氰胺等成分组成,不合格的台面板产品可能会对实验室人员的人身健康造成一定的危害。因此,本次项目针对边台提出以上带“★”号的性能要求。 /p p   回复二、关于技术参数倾向性和排他性 /p p   根据台面技术参数要求,现有上海佰耐板、千思板、威尔森等品牌产品均可满足。质疑人所质疑是有倾向性和排他性不实。 /p
  • 隆重上市 | 合邦科仪VDC12 Plus透皮扩散仪性能验证表现
    体外释放实验(IVRT)是目前评价半固体制剂(如乳膏剂、软膏剂、凝胶剂等)处方工艺的重要手段,主要用于外用制剂的药学质量控制,是药物关键质量属性之一,可用于表征某些工艺、配方和/或生产的变更对药品的影响,也可用于药品开发过程中处方工艺的筛选研究。扩散池法是进行半固体制剂体外释放实验(IVRT)的可靠方法,该方法在美国药典 (USP) 1724 半固体药品性能测试中有详细记载。合邦科仪现重磅推出新产品——VDC12 Plus透皮扩散仪,用于软膏、硬膏、涂抹剂、洗剂、薄膜、气雾剂等的体外释放测试,其设计满足USP<1724>,FDA、EMA、PMDA等法规和指导原则的标准。VDC12 Plus透皮扩散仪搭载先进的自动取样技术,可完成自动排出气泡、自动取样、自动采集样品、自动补液、自动清洗,使药物透皮释放实验更加准确高效。VDC12 Plus 透皮扩散仪VDC12 Plus 透皮扩散仪产品特点:一体化设计一体化设计使得仪器整体尺寸更小,占用空间更少;同时优化管路设计,减少了管路死体积,让实验数据可靠性获得有效提升;7×2 设计可以两侧设计不同的实验参数,如温度、转速、取样时间。同时每组6+1的设计满足法规要求;一台仪器相当于两台,可以同时完成两组不同实验;空白位满足法规要求的空白位设计,在进行IVPT实验时,更方便设计非给药对照组,可排除皮肤基质及其他潜在杂质的干扰。为了验证VDC12 Plus透皮扩散仪的性能,我们对利多卡因乳膏样品的体外释放速率进行了测试,实验详情如下:01实验目的通过测试样品,对透皮扩散仪在体外释放实验过程中的性能进行验证。02样品信息样品剂型:利多卡因乳膏03主要分析仪器1)VDC12 Plus 透皮扩散仪(HB合邦科仪)2)分析天平3)液相色谱-紫外检测器(HPLC-UV)04体外释放实验参数溶出装置:透皮扩散装置温度:32℃ ± 1℃标准池:12 ml取样量:10ml取样时间:分别在第0.5h、1h、2h、3h、4h、5h、6h时进行取样05液相色谱方法参数流动相:甲醇:0.3%磷酸氢二铵 67:33色谱柱:C18-150×4.6mm流速:1.5 ml/min进样量:20 μl检测波长:210 nm06测试结果6.1 累计释放曲线6.2 拟合曲线在0.5h、1h、2h、3h、4h、5h、6h时间点,以单位面积累计释放量(ug/cm2)(y轴)对时间(h)(x轴)做图,拟合线性回归方程(部分取样模式)如下:6.3 释放速率07结论在0.5h、1h、2h、3h、4h、5h、6h时间点对样品(同时7个扩散池)平行进行实验。0h时,扩散池中未检出目标物;在0.5h-6h的7个取样点分别对7个扩散池的累计释放量做线性考察,释放速率的平均值为430.9;释放速率RSD为3.42%。FDA IVRT测试工业指南中提到,根据每个扩散池的释放速率(斜率)计算的批内精密度,其变异系数(%CV)应不大于15%。在上述实验中,采用合邦科仪VDC12 Plus 透皮扩散仪对利多卡因乳膏进行的体外释放实验(IVRT),7个扩散池的释放速率(斜率)RSD为3.42%,远远小于FDA IVRT测试工业指南中提到的15%,这表明合邦科仪VDC12 Plus 透皮扩散仪的性能完全符合FDA IVRT测试工业指南的法规要求。
  • 无掩膜光刻机助力可穿戴柔性微流控芯片研发,实现汗液实时监测!
    论文标题:WearableMicrofluidicSweatChipforDetectionofSweatGlucoseandpHinLong-DistanceRunningExercise发表期刊:Biosensors(IF5.4)DOI:https://doi.org/10.3390/bios13020157【引言】在传统的运动训练监测中,通常需要对被研究对象进行血液样品采集。通过对所采集的血液进行各类分析获取相应数据,达到运动训练监测的目的。由于从血液样品中获得的相关数据准确程度高,所获得的数据被认定为是运动训练监测领域的黄金标准。然而,在采集血液样品的过程中,通常会给被研究对象带来一定痛感,被研究对象对相关监测工作的配合意愿度低,导致数据收集存在一定的困难。由于血液和汗液的成分是渗透相关的,因此汗液中的某些代谢物也可反映疾病状态。随着技术的发展,汗液,唾液,眼泪等体液的运动训练监测方法日益受到重视。收集这类的体液样本不仅不会给被研究对象带来痛感,还可以对运动训练进行时时监控,从而更好地了解整个运动训练过程。近日,北京体育大学与上海微系统与信息技术研究所强强联合,通过将柔性微流控监测芯片和智能手机的相结合,实现对长跑训练者汗液中的血糖值和PH值的时时监控,从而更加精准地监控长跑训练过程中的相关细节。相关研究工作在SCI期刊《Biosensors》上发表。本文中所使用的小型台式无掩膜直写光刻系统-MicroWriterML3无需掩膜版,可在光刻胶上直接曝光绘出所要的图案。设备采用集成化设计,全自动控制,可靠性高,操作简便,同时其还具备结构紧凑(70cmX70cmX70cm)、直写速度快,分辨率高(XY:小型台式无掩膜直写光刻系统-MicroWriterML3【图文导读】图1.制备可穿戴柔性微流控芯片的概要图和光学照片。A)微流控芯片的概念解析图。B)和C)对汗液中葡萄糖和PH值监测的原理解释图。D)用微流控芯片收集汗液的示意图。E)柔性微流控芯片结构示意图。F)利用MicroWriterML3制备的柔性微流控芯片实物图。图2.用TritonX-100对聚二甲基硅氧烷(PDMS)进行亲水性处理。A)不同TritonX-100量对PDMS亲水性的影响。B)不同量的TritonX-100对PDMS亲水处理后,水接触角随时间的变化。图3.芯片中色彩和汗液中葡萄糖和PH值的对应关系。A)色彩和葡萄糖数值的对应关系。B)色彩和葡萄糖数值对应关系的拟合结果。C)汗液PH值和色彩之间的对应关系。D)色彩和汗液PH值的拟合结果。图4.用人工汗液样本对柔性微流控芯片对汗液中葡萄糖和PH值进行检测。A)芯片与不同人工汗液样品反应后的结果。B)RGB颜色值与葡萄糖对应的关系,以及相对应的拟合结果。C)RGB颜色值与汗液中PH值的对应关系,以及拟合结果。图5.柔性微流控监测芯片对长跑过程中汗液的葡萄糖和PH值的监测效果。A)使用血糖仪和制备的芯片分别在运动10分钟,20分钟和30分钟后对受试者进行血糖监控。B)血液中的葡萄糖和汗液中的葡萄糖随着运动的变换比较。C)在运动10分钟,20分钟和30分钟后,汗液的PH值的变换。并对受试者在饮用苏打水前后汗液PH值的变化进行了对比。D)运动饮料的补充方案。【结论】北京体育大学和上海微系统与信息技术研究的研究人员,使用小型台式无掩膜直写光刻系统-MicroWriterML3对负性光刻胶曝光,制备出符合实验要求的芯片模板,再利用倒模技术获得PDMS微流控芯片。通过TritonX-100对PDMS进行亲水性处理,最终获得适用于监测运动时汗液中葡萄糖和PH值的可穿戴柔性微流控监测芯片。该研究为柔性穿戴设备在运动训练监测方面的应用和发展提供了可能性和相应的方案。该成果最主要的优势是能够制备出基于PDMS的柔性微流控监测芯片。在制备该芯片过程中,需要及时修改相应的参数,得到优化的实验结果,十分依赖灵活多变的光刻手段。MicroWirterML3无掩膜激光直写机可以任意调整光刻图形,对负性光刻胶进行精准光刻,帮助用户快速实现柔性芯片的制备,助力体育运动学科的研究。相关产品:1、小型台式无掩膜直写光刻系统-MicroWriterML3
  • 重磅!两大激光雷达龙头Ouster和Velodyne拟合并
    11月7日,高分辨率数字激光雷达供应商Ouster和知名激光雷达传感器和解决方案全球企业Velodyne宣布,双方已达成最终协议,将以全股票交易的方式进行合并。据报道,合并后公司的市值约为4亿美元。根据两家公司于11月4日周五签署的协议条款,每股Velodyne股票将在收盘时交换0.8204股Ouster股票。以当前流通股计算,该交易完成后,Velodyne和Ouster的现有股东各自拥有合并后公司约50%的股份。在合并交易完成之前,两家公司将继续独立运营业务。目前合并后的公司命名尚未公布,合并交易预计将在2023年上半年完成。Velodyne的产品支持包括自动驾驶、驾驶辅助、地图和机器人等解决方案的应用,而Ouster的数字激光雷达传感器主要支持工业自动化、智能基础设施、机器人和汽车行业。此次两大激光雷达龙头企业合并,预计将推动显著的价值创造,并通过强劲的产品供应、提升的运营效率和快速增长的终端市场互补客户基础,带来强大的财务业绩表现。领导团队由现任Velodyne首席执行官Ted Tewksbury担任董事会执行主席,现任Ouster联合创始人兼首席执行官Angus Pacala担任合并后公司的首席执行官。两家公司在与专业目的收购公司(SPACs)合并后成为公开交易实体。Velodyne在2020年6月与Graf Industrial Corp达成协议后于2021年9月开始交易。Ouster在2020年12月与Colonnade Acquisition Corp完成协议后于2021年3月开始交易。Velodyne以其Puck激光雷达传感器而闻名,该传感器支持低速自动驾驶和驾驶员辅助应用。在过去的两个月里,该公司与斯坦利机器人公司(Stanley Robotics)、雅马哈汽车有限公司( Yamaha Motor)和Visimind Group签署了正式协议,将为他们供应和交付Puck传感器。Velodyne上个月还收购了一家专注于人工智能的软件公司Bluecity,双方已合作多年共同为智慧城市应用提供基于激光雷达的解决方案。Ouster的目标则是工业、机器人和智能基础设施市场,去年公司收购了用于汽车系列生产的数字固态激光雷达传感器开发公司Sense Photonics。通过此次收购,该公司还在公司架构中组建起了Ouster Automotive部门,专注于推动数字激光雷达在消费和商用车的大众市场采用。此外,Ouster公司于2021年11月推出了Digital Flash系列汽车激光雷达。对于此次合并,Ouster首席执行官Angus Pacala表示:“Ouster尖端的数字激光雷达技术能够带来强大的单位经济效益和新产品的性能收益,再加上Velodyne数十年的创新、高性能硬件和软件解决方案,以及已建立的全球客户足迹,使合并后的公司能够在快速增长的市场加速采用激光雷达技术,满足各种客户需求。我们的目标是在满足客户需求的同时,实现足够低的价格,以促进激光雷达的大规模采用。”而Velodyne首席执行官Ted Tewksbury博士则表示:“激光雷达是一项有价值的自动驾驶技术,能够显著提高自动驾驶的效率、生产率、安全性和可持续性。我们的目标是通过提供负担得起的高性能传感器,推动广泛的客户应用程序的大规模采用,并通过创造规模来推动盈利和可持续的收入增长,从而创建一个充满活力和健康的激光雷达行业。”国外激光雷达市场多家企业近期均传来负面消息,而这两家公司最近也都出现了亏损:- Velodyne今年第二季度净亏损4430万美元(合每股亏损0.22美元),此前2022年第一季度净亏损4910万美元(合每股亏损0.25美元)。今天(11月8日),Velodyne将会公布最新的第三季度收益。- Ouster于11月7日公布了第三季度财报,本季度公司净亏损增至3600万美元;此前该公司在2022年第二季度净亏损2800万美元。今年9月,Ouster还表示,2023年的现金支出目标为1.07亿美元,与2022年第二季度的年化现金支出相比减少了15%以上,同时该公司还宣布了裁员约10%的计划。截至2022年9月30日,Ouster和Velodyne的现金结余合计约为3.55亿美元,并计划在完成合并后的9个月内实现至少7500万美元的年化成本节约。而通过此次合并,两家公司将实现客户基础、合作伙伴和分销渠道的共享互补,同时还将带来更低的产品成本和创新的产品路线图,将加速激光雷达在快速增长的终端市场的采用。随着全球商业足迹和分销网络的扩大,合并后的公司预计将增加销量,降低产品成本,并推动自身的可持续增长。合并后公司将拥有超过20年的激光雷达技术创新综合经验,其知识产权组合将包括173项已授予专利和504项未决专利。此外,管理层计划将精简公司的运营支出,以建立一个与合并后公司预计收入增长相一致的整体成本结构。
  • 成果速递丨实验室台式XAFS谱仪用于精确分析多组分固体氧化物成分
    CeO2-Nb2O5复合氧化物,作为一种复合稀土氧化物陶瓷材料,常被应用于固体氧化物燃料电池、氧气传感器及异相催化等众多领域。之前不少的研究数据表明在高温固相法合成该复合稀土氧化物时,会部分形成Ce3NbO7+δ化合物。然而在大气氛围下的高温固相法合成这种带有部分还原的Ce氧化物是不太合理的。为了更加合理的验证CeO2-Nb2O5复合氧化物在高温固相法合成条件下得到的产物信息,研究人员综合利用了粉末X射线衍射(XRD)和实验室的X射线吸收谱(XAFS)等数据进行验证,并证实了之前研究中的一些错误观点,证明了Ce3NbO7+δ化合物并不存在。相关研究成果发表于Journal of Rare Earths, 2021, 39: 596-599.图1. (a) 合成样品,CeO2及CeNbO4的XRD谱图及精修结果;(b) 样品,CeO2及CeNbO4的XANES Ce L3 edge谱及线性组合拟合谱研究人员将化学计量比的CeO2和Nb2O5作为原料,利用基于大气氛围的高温固相法进行合成,得到产物。如图1所示,图a为产物及两种标准样的XRD图谱。图中数据和前人研究数据相吻合。经过XRD精修后,得到该产物主要含有54.8% wt%的CeO2和45.2 wt%的CeNbO4,对应的物质的量比为2.09:1。随后,该研究人员借助实验室台式XAFS谱仪测试了实验样品,CeO2、CePO4和Ce3NbO7+δ三种样品的Ce L3边XANES图谱,如图1b所示。CePO4的Ce L3 XANES展现了很强的白线峰特性,其吸收边位置在5725.8 eV。与之不同的是,CeO2主要包含三个低强度的峰,且吸收边位置在5726.7 eV。而合成产物的吸收边位置在5725.8 eV,介于Ce4+和Ce3+,说明样品中同时存在三价和四价的Ce离子。在通过线性拟合分析,以CeO2和CePO4的XANES谱图为基准,对样品的XANES谱图进行拟合,终得到非常理想的拟合结果。可以看出,根据线性拟合的结果,可以很好的重现样品的数据:0.65 CeO2和0.35的CePO4。这与之前XRD精修结果得到的四价和三价的Ce离子比例2:1较为吻合。综合精修XRD和XANES谱图,可以判定该样品的主要组成成分为CeO2和CeNbO4,而不会生成新的物质,诸如Ce3NbO7+δ等化合物。文章中,研究人员使用了美国easyXAFS公司的桌面式X射线吸收谱easyXAFS100+实现了对该样品的Ce L3 edge的XANES测试,同时结合Athena软件里面的线性组合拟合这一功能,实现了样品中主要成分的鉴定,得到了Ce4+和Ce3+的相对含量。该项研究为该领域中分析多组分的固体氧化物鉴定提供了重要的借鉴和指导意义。图2. easyXAFS公司的台式XAFS/XES谱仪实验室台式XAFS谱仪优势:1. 台式设计,可以在实验室内随时满足日常样品分析;2. LabVIEW软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试;3. 可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电/催化材料的结构变化;4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求 5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图3所示,其测得的Ni元素的EXAFS,Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致;图3. (a, b)台式XAFS/XES谱仪与同步辐射光源测得的Ni EXAFS及傅里叶变换后R空间对比谱图, (c、d)Ce和U L3-edge XANES谱图数据对比图6. 多种型号和配置可选,满足不同科研要求;7. 操作便捷,维护成本低,安全可靠. 参考文献:[1] S. K. Sun, L. M. Mottram, N. C. Hyatt. On the existence of the compound “Ce3NbO7+δ” prepared under air[J]. Journal of Rare Earths, 2021, 39: 596-599.
  • HORIBA | 平时使用仪器遇到这些困惑,你怎么办?——拉曼/荧光/椭圆偏振光谱仪
    使用光谱仪器时,如何巧妙制样?针对不同的样品,测试方法有哪些区别?仪器测试结果如何分析解读…11月13日,HORIBA的资深工程师们,就拉曼、荧光、椭圆偏正光谱仪器日常使用技巧,为大家分享了自己多年的宝贵(xue)经(lei)验(shi)。分享过程中,同学们也纷纷提出自己的问题,不知道是否也有你的困惑,我们一起看看吧:荧光光谱1.为什么样品信号之前的背景光平台不是平的?在进行磷光寿命测试时,前端的小段曲线是由光源产生的,即激发光还没有完全消失,就开始了样品信号采集,后边部分属于光源消失后磷光衰减的信号,进行寿命拟合的时候只要选择后边尾部即可。2.问水拉曼峰怎么测?1)开启仪器;2)将标准盛有三重去离子水的比色皿放入样品仓;3)打开软件,选择Spectra——emmission功能;4)点击Run进行信号采集即可。参数详见如下:激发波长350nm,水拉曼峰值,峰值波长397nm。实验条件:激发波长350nm,带宽5nm,0.5nm步进,发射波长扫描范围365~450nm,带宽5nm,积分时间1s;样品要求:必须是超纯水,三重蒸馏水或去离子水,HPLC级(18.2 MΩ,5.用HORIBA的荧光光谱仪测荧光寿命,是用上升沿还是下降沿拟合寿命的?对于荧光寿命,拟合时上升下降沿的信号都要用到,对于磷光寿命,仅用下降沿部分拟合即可。具体拟合步骤及要点可与工程师联系。椭圆偏振1.请问老师,这个可以测量颗粒物表层吸附物质的厚度吗?纳米级别,烟尘颗粒由于椭偏光斑在微米至毫米尺度,无法分析离散态的纳米级别颗粒表层2.老师您好,请问衬底是石英片,可以测膜的厚度吗?可以,只要薄膜光学透明即可使用椭偏测试拉曼光谱1.CLS那个没看懂?简单的来说,CLS是数据统计的分析方法。夹峰法是以单个谱峰的峰强、峰面积、峰位的特性为拉曼成像依据。而CLS是以整张光谱或者某段光谱为依据,赋予不同的颜色。适用于已知混合物的拉曼成像。2.细胞的那个是这么做的呀?详细请见文章ACS Appl. Mater. Interfaces, 2017, 9 (7), pp 5828–5837,文章的拉曼部分在北京DEMO实验中心完成的,欢迎讨论。3.用JobinYvonLabRam HR800仪器,325 nm 的激光测薄膜光致发光,有时PL谱的曲线有波动,就是线一抖一抖的,请问能怎么改善呢?能测到发光峰,但是曲线上有很多小的正弦波。两个方面:一个需要标准样品测试,检验仪器本身是否有问题。另一个方面,考虑薄膜的厚度问题,是否刚好发生多次反射。之前有经历,特定的玻璃片上测样品,也有小正弦波,更换玻璃片之后就没有了。4.那请问如果是贴壁细胞呢 直接光斑扫描?贴壁细胞,做完封片,可以直接通过平台移动实现细胞成像。5.指甲油有要求吗?指甲油不要涂到样品上?指甲油本身有很好的拉曼信号,不能直接涂到样品上,建议选择亮色,这样能够看清楚指甲油的本身分布。若样品量比较大,建议选择大号的盖玻片,操作相对简单。6.请问G/D的物理意义G峰为石墨烯的特征峰,归属于sp2碳原子的面内振动,出现在1580 cm-1附近,该峰能够表征石墨烯的层数。D峰为石墨烯的无序振动峰,出现在1350 cm-1附近处,表征石墨烯中的结构缺陷或边缘。所以G/D峰,可以反映石墨烯的层数和缺陷分布。7.测细胞必须要涂指甲油吗?不是必须,封片的好处是减缓水份蒸发。8.老师,做矿物的话激光波长用多少合适大多数矿物532 nm激光比较合适,对于有荧光背景的,考虑红光激发。9.半導體異物量測方式?測試過532,633,785 laser量測都只有螢光訊號,異物大小約1~3um若异物在表层,可以考虑325 nm尝试下。若还是不行是否可以考虑用PL成像来区别异物。10.如何衡量石墨烯条带的边缘质量?见问题6,G/D比值成像及D峰成像都是不错的选择。11.鲁老师,请问罗丹明溶液633直接测拉曼,如何计算光斑内有效分子数?影响影子的计算方法我们在上一次的报告中有提到。详细可参见Phys. Chem. Chem. Phys., 2015,17, 21149-21157。文章是用XploRA仪器实现的,欢迎讨论。12.样品中有水,可以用3D得到水分布吗样品若是半透明的,可以实现水的分布的3D. 常见的地质样品,包裹体中的水分可以用3D表征。这是一篇文章,里面用拉曼证明了油水凝胶中的水分分布,你可以参考下。Nature Communications 8, Article number: 15911 (2017) doi:10.1038/ncomms15911。文章的拉曼部分在北京DEMO实验室完成的,欢迎讨论。13.请问测拉曼时荧光效应太强,背底太高可以怎么改善?一般是某些样品会出现,跟样品有关系,可是又需要样品的拉曼数据抑制荧光背景的方法:更换不同的激发波长;长时间激光照射光漂白;数值处理等。目前有效的是更换不同的激发波长测试。14.请介绍一下实时在线原位拉曼技术?在线原位技术是一个比较宽泛的命题,常见的有有机化学合成在线检测,高温高压在线检测,锂电池在线检测,电化学在线检测。若大家都有兴趣,我们可以专门利用一次讲座交流。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 是TA,让你的福斯近红外更强大
    福斯ANN(人工神经网络)定标帮您实现——近红外定标“即装即用”即使在有很多变量的情况下(如不同的原材料、不同的产品品种、多个不同参数),福斯近红外也可以做到“即装即用”。例如:福斯近红外肉类定标在开发过程中使用了大约 30,000 个光谱数据,这些数据采集自 1989 年以来全球安装的超过 1,500 台福斯近红外肉类分析仪。安装后一个定标即可检测猪肉、牛肉、羊肉、鸡肉等各种畜禽肉;覆盖原料、半成品和成品;检测指标包括脂肪、水分、蛋白质和胶原蛋白等多种不同参数。处理大样品数据库不会出现因数据库庞大而造成的定标误差大或者过拟合的问题。提高了定标的适用范围,并且向定标中添加新样品时,不影响原定标的测试准确度。例如:如下两图来自福斯本地近红外专家,使用实际样品检测得到。同样的一组定标样品和验证样品,上面使用ANN定标的比下面使用PLS定标的有明显优势。大大减少定标模型的调整工作ANN 定标能够节省时间、让操作人员更轻松,同时降低人为失误的风险。还可以大大减少定标验证工作,更大程度减少验证时间和相关成本。如果涉及很多产品和参数,使用该方法可以显著节省成本。丹麦福斯创新中心正如每天在丹麦福斯创新中心工作的化学计量专家 Lars Nørgaard 所说:“我的工作是优化福斯近红外的ANN 定标,对仪器的各种参数进行设定以处理日益繁杂的任务,这让我感到激动和骄傲。”以下背景知识摘自百度百科:ANN(人工神经网络)人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。
  • 扬州将研发水质监测机器人 院士团队拟合建激光产业园
    p   近日,2018“智汇开发区· 高层次人才交流洽谈会”在扬州举行。中科院院士王立军等40位国内高校专家教授会聚扬州,共同为扬州经济把脉支招。现场,水质监测机器人、高性能碳纤维复合汽车刹车片等11个项目集中签约。 /p p   11个项目集中签约 /p p   扬州将研发水质监测机器人 /p p   近年来,扬州经济技术开发区始终秉承“兴城先兴人”的理念,确立人才优先发展战略,持续实施“顶尖科学家引进计划”“创业创新领军人才引进计划”等人才工程,集聚了一大批高层次人才,形成了“人才促发展、发展兴人才”的良好局面。此次,开发区希望通过高层次人才交流洽谈会,借助高校院所的资源优势,搭建“政府-高校-企业”的沟通之桥,希望更多专家为开发区多把脉支招、多提宝贵意见、多推荐优秀人才和优质项目,多推动科研成果来区转化落地,为加快提升开发区创新发展水平和核心竞争力提供智力支撑。 /p p   活动现场,进行了水质监测机器人项目、高性能碳纤维复合汽车刹车片项目等11个项目的签约仪式。“目前市场上的刹车片主要以金属和陶瓷为主,而采用碳纤维复合摩擦材料制作的汽车刹车片,性能更优越,无振动,噪音小,摩擦系数更稳定。”高性能碳纤维复合汽车刹车片项目相关负责人介绍,碳纤维复合材料的性能及发展趋势顺应了汽车工业的发展需求,特别是随着新能源汽车的发展,碳纤维复合材料在汽车上将得到越来越广泛的应用。 /p p   “水质监测机器人主要可以应用在河道巡航、河道扫描、清淤等领域。”项目相关负责人介绍,水质监测机器人项目具有水下无人驾驶、自动避障、防搁浅以及高清视频等技术性能,可以广泛应用到河道巡航、河道扫描、清淤等领域。 /p p   与院士团队合作 /p p   拟共建扬州激光产业园 /p p   除了这11个项目签约落户之外,扬州经济技术开发区还与中科院王立军院士团队签订了意向性协议,拟在激光产业全面合作,共同建立扬州激光产业园。 /p p   王立军是中国科学院长春光学精密机械与物理研究所研究员,长期从事大功率半导体激光及应用技术研究,先后作为第一完成人获国家技术发明二等奖和国家科技进步二等奖。他在国内首次提出并率先开展了无铝量子阱大功率半导体激光器研究,突破了一系列重大关键技术。 /p p   其团队成功研制出了具有自主知识产权的高功率半导体激光器,打破了国外对该项技术的垄断。团队所在的单位激光技术及应用研究方面一直走在国内前列,是国内最早研制出半导体激光器的单位,也是国内最早开发出半导体激光加工设备、半导体激光医疗产品和激光显示样机的单位之一。 /p p   扬州激光产业园项目落户地点暂定开发区西安交大科技园,将以大功率半导体激光器及激光照明产业化为首期建设目标,并分批次建设涵盖固态激光雷达、激光医疗、激光照明和显示、激光检测等8个研发实验室。与企业共建成立涵盖半导体激光光源、智能制造、激光医疗仪器和监控成像的4个产业研发中心。 /p p   筹建绿色光电研究院 /p p   激光雷达技术应用很广泛 /p p   此外,市开发区将筹建绿色光电产业技术研究院,拟邀请王立军担任专家委员会主任。 /p p   近年来,扬州光电产业发展势头很好,LED、太阳能电池都是朝阳产业,特别是筹建绿色光电产业技术研究院的设想,很有创意,我研究的是光电领域,对此很感兴趣,与扬州合作可以优势互补,将我们研究所的成果在扬州转化。”在谈及扬州的光电产业时,王立军表示,希望与扬州企业进行产业化合作,也希望有机会在激光检测、激光医学、激光照明领域和扬州企业对接。 /p p   对方介绍,中科院长春光机所在激光雷达技术方面有很好的基础,激光技术的应用很广泛,现在新款手机基本都采用激光技术,使图像采集更逼真 此外,激光无线传能技术还能解决无人机充电续航的问题。 /p
  • Spectroquant便携式五参数测试仪
    Spectroquant® 便携式余氯、总氯、臭氧、二氧化氯、PH五参数测试仪 产品性能和特点 仪器坚固耐用,防水防尘 轻便易携带,适合现场和实验室分析 预置标准曲线,操作简便 一机多用,可同时测量多个参数 经济实用,无忧服务 技术参数检测波长:528 nm 检测时间:3 - 4 秒自动关机:8分钟不触碰键盘 机器外壳:ABS 便携箱尺寸:270 x 225 x 80 mm (长x 宽x 高) 仪器尺寸:190 x 110 x 55 mm (长x 宽x 高, 不含比色管适配器) 仪器重量:0.4 kg 环境温度: 0° C -40° C 湿度要求: 30 - 90 %, 无冷凝 CE-认证: DIN EN 50 081-1, VDE 0839 part 81-1 1993-03 DIN EN 50 082-2, VDE 0839 part 82-2 1996-02 订货指南: 主机订货号: 1.73607.0001 标准配置仪器主机及便携箱,9伏电池,16mm比色管适配器,适配器遮光盖,3根24mm比色管,操作说明书。 仪器为预制标准曲线型光度计,和Spectroquant® 试剂系统一起使用 测试参数 测试范围mg/l 测试次数 比色管规格 仪器内置方法号 货号 余氯 0.02 &ndash 5.00 200 24mm U.1 1.00598.0002 余氯 0.02 &ndash 5.00 1200 24mm U.1 1.00598.0001 总氯 0.02 &ndash 5.00 200 24mm U.1 1.00602.0001 总氯 0.02 &ndash 5.00 1200 24mm U.1 1.00602.0002 余氯、总氯 0.02 &ndash 5.00 200(各100) 24mm U.1 1.00599.0001 *氯试剂1 (液体) 0.02 &ndash 5.00 200 24mm U.2 1.00086.0001 *氯试剂2(液体) 0.02 &ndash 5.00 400 24mm U.2 1.00087.0001 *氯试剂3(液体) 0.02 &ndash 5.00 600 24mm U.2 1.00088.0001 臭氧 0.02 &ndash 3.40200 24mm U.3 1.00607.0001 臭氧 0.02 &ndash 3.40 1200 24mm U.3 1.00607.0002 二氧化氯 0.05 &ndash 9.50 200 24mm U.4 1.00608.0001 氰尿酸 2 &ndash 160 100 24mm U.5 1.19250.0002 pH pH 6.4 &ndash 8.8 280 16mm U.6 1.01744.0001 吸光度 - 100 &ndash 2500mA 16/24mm Abs *注: 余氯测试= 氯试剂1+氯试剂2 总氯测试= 氯试剂1+氯试剂2+氯试剂3 应用场合 氯是自来水行业常用的消毒剂,但是杀菌消毒之后,水中必然会有部分残余氯。过多的余氯含量不仅污染环境,同时会增加水的腐蚀性,对人体也会造成伤害。因此该指标一直是自来水厂、瓶装水生产线、游泳池等关键性运行指标。针对广大的用户群,默克公司推出了经济型Picco便携式余氯、总氯、臭氧、二氧化氯、PH测试仪,完全符合相关行业标准的要求。 GB 5749&mdash 2006饮用水中消毒剂常规指标及要求 消毒剂名称 与水接触时间 出厂水中限值 出厂水中余量 管网末梢水中余量 Merck测量范围 氯气及游离氯制剂(游离氯,mg/L) 至少30min 4 &ge 0.3 &ge 0.05 0.02 &ndash 5.00 mg/L 一氯胺(总氯,mg/L) 至少120min 3 &ge 0.5 &ge 0.050.02 &ndash 5.00 mg/L 臭氧(O3,mg/L) 至少12min 0.3 0.02如加氯,总氯&ge 0.05 0.02 &ndash 3.40 mg/L 二氧化氯(ClO2,mg/L) 至少30min 0.8 &ge 0.1 &ge 0.02 0.05 &ndash 9.50 mg/L 同时,默克公司根据这些行业的应用特点,推出符合ENISO7027标准和USEPA标准的Turbiquant® 1100、1500系列浊度仪,以及Pharo300紫外可见分光光度计和Pharo100可见分光光度计进行常规毒理性指标和一般化学指标的检测。Merckoquant® 定性、半定量分析试纸条和Aquamerck® 通用型测试盒等产品,也能满足您现场应急检测的需求。 GB 5749&mdash 2006水质常规指标及限值 指 标 限 值 Merck测量范围 毒理指标 砷(mg/L) 0.01 0.001-0.1 mg/L 镉(mg/L) 0.005 0.002-0.5 mg/L 铬(六价,mg/L) 0.05 0.01-0.22 mg/L 铅(mg/L) 0.01 0.01-5 mg/L 氰化物(mg/L) 0.05 0.03-0.7 mg/L 硝酸盐(以N计,mg/L) 10,地下水源限制时为20 0.1-25 mg/L 甲醛(使用臭氧时,mg/L) 0.9 0.1-1.5 mg/L 3、感官性状和一般化学指标 色度(铂钴色度单位) 15 0-1000浑浊度(NTU-散射浊度单位) 1,水源与净水技术条件限制时为3 0.01-1000NTU 铝(mg/L) 0.2 0.02-0.5 mg/L 铁(mg/L) 0.3 0.05-1 mg/L 锰(mg/L) 0.1 0.03-0.5 mg/L 铜(mg/L) 1.0 0.15-1.6 mg/L 锌(mg/L) 1.0 0.025 mg/L 硫酸盐(mg/L) 250 50-500 mg/L 总硬度(以CaCO3计,mg/L) 450 12-537 mg/L 使用简介 默克公司全线产品涵盖实验室定性、半定量分析试纸条,半定量快速测试盒、PH试纸、试纸条、反射仪系统、比色计和分光光度计、浊度仪等,如您对其他应用和产品感兴趣,请您与我们联系。联系电话:021-51693889 1.检测样品的pH值需要保持在4-8之间,否则可以适用氢氧化钠或碳酸溶液进行调节。 2.往24mm的比色管中加入10ml的水样。 3.加入一药勺的试剂Cl2-1。 4.震荡比色管直到固体物质溶解。 5.反应1分钟。 6.将比色管盖子盖好,并确认套好塑胶环,将比色管插入闭塞槽进行测试。 其它相关产品: 大龙实验室产品惊喜大促销-参数-报价-价格-恒奇仪器 德国VITLAB优质容量瓶特价促销-参数-报价-价格-恒奇仪器 美国Branson(必能信)珠宝及光学器件清洗器-B200-参数-报价-价格-恒奇仪器 美国AIRMETRICS便携式PM2.5/PM10/TSP空气采样器-参数-报价-价格-恒奇仪器 连续式数字滴定器-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES普通无粉乳胶手套-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES丁腈检验手套-参数-报价-价格-恒奇仪器 merck优级纯溶剂和无机酸碱盐-参数-报价-价格-恒奇仪器 merck指示剂-参数-报价-价格-恒奇仪器 培养基添加剂(一)-参数-报价-价格-恒奇仪器 颗粒状脱水培养基(九)-参数-报价-价格-恒奇仪器 优级纯溶剂-参数-报价-价格-恒奇仪器 pH标准浓缩缓冲溶液-参数-报价-价格-恒奇仪器 电导率标准溶液-参数-报价-价格-恒奇仪器 常用有机合成试剂-参数-报价-价格-恒奇仪器 痕量分析试剂、农残级分析试剂、超纯试剂-参数-报价-价格-恒奇仪器 无水溶剂-参数-报价-价格-恒奇仪器 当量溶液-参数-报价-价格-恒奇仪器 原子吸收、离子标准溶液、ICP标准溶液-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)2000bdc连续流大功率超声波破碎系统-参数-报价-价格-恒奇仪器 美国Branson(必能信)超声波破碎仪/细胞破碎仪(sonifier)-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)SLP系列超声波细胞破碎仪-参数-报价-价格-恒奇仪器 美国Branson(必能信) IC系列超声波清洗系统-参数-报价-价格-恒奇仪器 美国Branson(必能信) DHA1000型大容量超声波清洗器-参数-报价-价格-恒奇仪器 美国Branson(必能信)原装台式超声波清洗器-参数-报价-价格-恒奇仪器 DR5000多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 DR890便携式多参数水质分析仪-参数-报价-价格-恒奇仪器 LDOTM 便携式溶氧仪-参数-报价-价格-恒奇仪器 DR2800多参数水质分析仪(分光光度计)-参数-报价-价格-恒奇仪器 2100AN实验室浊度仪-参数-报价-价格-恒奇仪器 2100N台式浊度仪-参数-报价-价格-恒奇仪器 2100Q便携式浊度仪-参数-报价-价格-恒奇仪器 DR1010 COD分析仪-参数-报价-价格-恒奇仪器 BODTrak 生化需氧量分析仪-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质圆底烧瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质蒸发皿-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品罐-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质宽口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-经济型-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA 材质经济型洗瓶-参数-报价-价格-恒奇仪器 德国VITLAB 移液管架(可放置94支移液管)-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 FG3便携式电导率仪-参数-报价-价格-恒奇仪器 FE30台式电导率仪-参数-报价-价格-恒奇仪器 瑞士梅特勒托利多FG2基础型便携式PH计-参数-报价-价格-恒奇仪器 METTLER电位滴定仪-参数-报价-价格-恒奇仪器 MJ33水分测定仪-参数-报价-价格-恒奇仪器 卤素快速水份测定仪-参数-报价-价格-恒奇仪器 梅特勒XS精密天平-参数-报价-价格-恒奇仪器 梅特勒XP精密天平-参数-报价-价格-恒奇仪器 超越系列XS分析天平-参数-报价-价格-恒奇仪器 超越系列XP分析天平-参数-报价-价格-恒奇仪器 Newclassic MS天平-参数-报价-价格-恒奇仪器 Newclassic ML天平-参数-报价-价格-恒奇仪器 便携式荧光溶解氧DO分析仪-参数-报价-价格-恒奇仪器 美国Myratek便携式悬浮物/TSS测定仪(Portable TSS Analyzer)-参数-报价-价格-恒奇仪器 WTW BOD培养箱TS 606i/1006i-参数-报价-价格-恒奇仪器 WTW 实验室浊度仪Turb 550/555-参数-报价-价格-恒奇仪器 WTW 实验室多参数计inoLab pH Cond 720/inoLab Multi 720-参数-报价-价格-恒奇仪器 WTW 实验室电导率仪inoLab Cond 720/730/740-参数-报价-价格-恒奇仪器 WTW 实验室溶氧仪BOD测定仪inoLab Oxi730/740-参数-报价-价格-恒奇仪器 WTW 实验室离子浓度计inoLab pH ION735-参数-报价-价格-恒奇仪器 WTW 实验室pH酸度计inoLab pH 720/730/740-参数-报价-价格-恒奇仪器 WTW 便携式光度计/COD测定仪-参数-报价-价格-恒奇仪器 WTW 便携式浊度测试仪-参数-报价-价格-恒奇仪器 WTW 便携式多参数测试仪Multi 340i-参数-报价-价格-恒奇仪器 WTW 便携式电导率仪-参数-报价-价格-恒奇仪器 WTW 便携式离子浓度计 pH ION 340i-参数-报价-价格-恒奇仪器 笔式电导率/TDS/盐分计-参数-报价-价格-恒奇仪器 9P多参数水质分析仪-参数-报价-价格-恒奇仪器 4P,6P便携式PH/电导率仪-参数-报价-价格-恒奇仪器 美国麦隆指针式 电导/TDS/pH表-参数-报价-价格-恒奇仪器 美国麦隆Ultrameter Ⅱ多参数电导/pH表-参数-报价-价格-恒奇仪器 意大利kartell样品瓶-参数-报价-价格-恒奇仪器 意大利kartell灰色小口瓶-参数-报价-价格-恒奇仪器 意大利kartell广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利KARTELL移液管架-参数-报价-价格-恒奇仪器 移液管、滴定管自动冲洗装置-参数-报价-价格-恒奇仪器 连续移液器及吸头-参数-报价-价格-恒奇仪器 外置活塞移液器-参数-报价-价格-恒奇仪器 Transferette electronic电动移液枪-参数-报价-价格-恒奇仪器 Transferpette8道12道移液器-参数-报价-价格-恒奇仪器 Transferpette S8道/12道移液器-参数-报价-价格-恒奇仪器 Transferpette单道移液枪-参数-报价-价格-恒奇仪器 TransferpetteS单道整支灭菌移液枪-参数-报价-价格-恒奇仪器 seripettor简易瓶口分配器-参数-报价-价格-恒奇仪器 Dispensette 瓶口分配器-参数-报价-价格-恒奇仪器 数字显示滴定器-参数-报价-价格-恒奇仪器 大龙高速微量离心机-参数-报价-价格-恒奇仪器 大龙高速个人离心机-参数-报价-价格-恒奇仪器 大龙高速微量冷冻离心机-参数-报价-价格-恒奇仪器 瓶口分配器-参数-报价-价格-恒奇仪器 StepMate连续分配器-参数-报价-价格-恒奇仪器 MicroPette 手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 TopPette手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 圆周(线性)数显型摇床-参数-报价-价格-恒奇仪器 10通道型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 96孔板混匀仪-参数-报价-价格-恒奇仪器 可调式&固定式混匀仪-参数-报价-价格-恒奇仪器 数显型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 不锈钢紧急冲淋器-参数-报价-价格-恒奇仪器 紧急喷淋装置-参数-报价-价格-恒奇仪器 白大褂-参数-报价-价格-恒奇仪器 台式洗眼器-参数-报价-价格-恒奇仪器 组合式紧急冲淋洗眼器-参数-报价-价格-恒奇仪器 安全喷淋洗眼器-参数-报价-价格-恒奇仪器 安全鞋-参数-报价-价格-恒奇仪器 金佰利擦拭纸-参数-报价-价格-恒奇仪器 Ansell 4-644PVC手套-参数-报价-价格-恒奇仪器 Ansell 8-354氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 29-865氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 78-150抗低温手套-参数-报价-价格-恒奇仪器Varian PCX固相萃取柱-符合测试三聚氰胺国标方法-参数-报价-价格-恒奇仪器 NOVA60多参数水质分析仪-参数-报价-价格-恒奇仪器 ET1200 红外分光油分析仪-参数-报价-价格-恒奇仪器 Chemvak系列防腐蚀隔膜真空泵-参数-报价-价格-恒奇仪器 Staurt样品浓缩仪(氮吹仪)-参数-报价-价格-恒奇仪器 ATAGO数字式阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO手持式折射计-参数-报价-价格-恒奇仪器 ATAGO MASTER系列手持式折射计-参数-报价-价格-恒奇仪器 ATAGO手持数字折射计-参数-报价-价格-恒奇仪器 ATAGO手持数字糖度计PR-&alpha 系列-参数-报价-价格-恒奇仪器 ATAGO迷你数字折射计PAL系列-参数-报价-价格-恒奇仪器 WTW BOD分析仪 OxiTop IS6、IS12-参数-报价-价格-恒奇仪器 WTW COD快速测定仪(PhotoLab S6+ CR 3200)-参数-报价-价格-恒奇仪器 Picco COD分析仪-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪P100在线型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪L100实验室型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪F100便携式-参数-报价-价格-恒奇仪器 WTW 便携式pH酸度计-参数-报价-价格-恒奇仪器 梅特勒SevenEasy pH计-参数-报价-价格-恒奇仪器 FiveEasy系列台式pH计(FE20)-参数-报价-价格-恒奇仪器 WTW 菌落计数器BZG 30-参数-报价-价格-恒奇仪器 WTW 便携式溶氧测定仪Oxi 3205/3210/3310-参数-报价-价格-恒奇仪器 Pharo300多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 Pharo100多参数水质分析仪(可见分光光度计)-参数-报价-价格-恒奇仪器 测试盒-参数-报价-价格-恒奇仪器 梅特勒-托利多PB-S经典系列标准型精密天平-参数-报价-价格-恒奇仪器 梅特勒-托利多AB-S/FACT经典系列先进型分析天平-参数-报价-价格-恒奇仪器 Hitech-Kflow系列超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA实验楼中央纯水整体解决方案 &mdash CENTRA S200/R200-参数-报价-价格-恒奇仪器 英国ELGA UHQ小型超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Option实验室必备Ⅱ级纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Ultra提供实验室用超纯水-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Classic经济型超纯水仪-参数-报价-价格-恒奇仪器 德国Heidolph最新旋转蒸发仪-参数-报价-价格-恒奇仪器 ATAGO自动恒温数显折光计RX-5000&alpha -参数-报价-价格-恒奇仪器 ATAGO数字式半自动旋光仪 POLAX-2L-参数-报价-价格-恒奇仪器 ATAGO全自动旋光仪/旋光糖度仪 AP-100-参数-报价-价格-恒奇仪器 显微镜-参数-报价-价格-恒奇仪器 标准型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 培养皿-参数-报价-价格-恒奇仪器 接种环-参数-报价-价格-恒奇仪器 Merck微生物检测耗材-参数-报价-价格-恒奇仪器 德国VITLAB 移液管泵-参数-报价-价格-恒奇仪器 德国VITLAB 安全洗耳球-参数-报价-价格-恒奇仪器 烧杯-参数-报价-价格-恒奇仪器 双刻度低型烧杯-参数-报价-价格-恒奇仪器 DURAN® 多孔螺旋盖系统-参数-报价-价格-恒奇仪器 DURAN® Premium Bottle-参数-报价-价格-恒奇仪器 DURAN® GLS 80宽口玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室棕色玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室玻璃瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 蓝之创发布便携式常规五参数水质分析仪新品
    LZC-W系列便携式水质常规五参数检测仪产品简介水质检测中的常规五参数,包括:温度、pH、溶解氧、电导率、浊度。是水质污染检测的基本指标,在中国生态环境部发布的《环境监测仪器发展指南》中提出,“水质自动监测项目分为水质常规五参数和其它项目,水质常规五参数包括温度、pH、溶解氧(DO)、电导率和浊度,其它项目包括高锰酸盐指数、总有机碳(TOC)、总氮(TN)、总磷(TP)及氨氮(NH3-N)。” 水质常规五参数在我国水污染防治中发挥着重要的作用。检测水质常规五参数的意义:? pH:地表水水质中pH值的变化会影响藻类对氧气的摄入能力及动物对食物的摄取敏感度; 电导率:主要是测水的导电性,监测水体中总的离子浓度。包含了各种化学物质、重金属、杂质等等各种导电性物质总量。? 溶解氧:地表水中溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。溶解氧是地表水监测的重要指标,是水体是否具备自净能力的表示。? 浊度:浊度值的高低,直观反映的是水体的浑浊程度。浑浊程度主要是受水中的不溶性物质引起,不溶性物质包括悬浮于水中的泥沙、腐蚀质、浮游藻类和胶体颗粒物等。降低浊度的同时也降低了水中的细菌、大肠菌、病毒、隐孢子虫、铁、锰等。? 温度:地表水温度的变化,会对水生野生动物产生重大的负面影响,影响生物生长和鱼虾类动物进食的速度,以及它们的繁殖时间和效率。HX-W型便携式水质五参数检测仪采用电极法进行各测定指标的检测,整机体积小,便于携带,可广泛应用于地表水、河湖水、市政污水、工业废水、水产养殖、科研环保等行业。功能特点1、 彩色触控屏设计,全中文界面,操作简便快捷;2、 仪器设计小巧轻便,内置大容量锂电池,方便野外水质测定操作;3、 测定指标灵活切换,测定迅速、响应时间块、测量准确度高;4、 整机采用高强度铝合金外壳,耐腐蚀、强度高,防水效果好;5、 大容量数据存储,便于对历史测量数据的查询、打印;6、 可外接便携式热敏打印机,现场打印测定结果;7、 配套有数据采集分析软件,可将数据上传至计算机;8、 可通过蓝牙方式将数据导出至手机APP,实现远程的数据分享(选配); 仪器操作简便,用户无需掌握复杂的专业知识,运行成本低,抗干扰能力强。参数指标仪器型号HX-W型测量配置PH/溶解氧/电导率/温度/浊度打印功能热敏打印机(选配)电池电源内置锂电,可连续工作24小时数据传输USB接口、蓝牙(选配)仪器尺寸260mm*155mm*50mm仪器重量1.3kgpH测量方法玻璃电极法测量范围0~14.00PH分辨率0.01PH准确度≤±0.02PH溶解氧测量方法电化学探头法(膜电极法)测量范围0~20.0mg/L分辨率0.1 mg/L准确度≤±0.3mg/L电导率测量方法电极法测量范围0~200mS/cm分辨率1μS/cm准确度≤±1%温度测量方法电极法测量范围-20.0~120.0℃分辨率0.1℃准确度≤±0.5℃浊度测量方法电极法测量范围0~400NTU分辨率0.1NTU准确度≤±5% 创新点:该水质分析仪采用高强度、耐腐蚀整体设计,防水效果好、强度高?。新产品将有效填补国内水质在线检测仪器缺乏对数据的及时整合与综合分析能力的技术空白得到破解。 便携式常规五参数水质分析仪
  • 75万!南平市产品质量检验所采购电感耦合等离子体发射光谱仪等设备
    项目概况 受南平市产品质量检验所委托,福建晖源工程咨询有限公司对[350700]fjhy[GK]2022001、南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目组织公开招标,现欢迎国内合格的供应商前来参加。 南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2022-03-25 09:30(北京时间)前递交投标文件。一、项目基本情况 项目编号:[350700]fjhy[GK]2022001 项目名称:南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目 采购方式:公开招标 预算金额:750000元 包1: 合同包预算金额:750000元 投标保证金:7500元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100404-光学式分析仪器电感耦合等离子体发射光谱仪1(套)否2技术参数部分2.1 光学系统▲2.1.1:整个中阶梯光学系统无任何移动部件,所有光学元件均密封于35℃恒温光室中,保证最低的检出限和优异的长期稳定运行。2.1.2:中阶梯光栅+CaF2棱镜交叉色散多色器系统,波长连续覆盖167?785nm,无任何波长断点。■2.1.3:光学系统需让每一个波长在通过这个独特的自由曲面镜时,让每一个波长都很完美的形成聚焦,使检测器边缘波长的边缘效应影响降到最低。2.1.4:测定方式:紫外和可见区由同一狭缝,同一检测器同时测定,一次分析测定全谱覆盖,真正的全谱直读,一个样品选择任意多的元素波长,测试时间都不变;■2.1.5: 波长校正: 采用氩的发射谱线自动进行周期性的波长校准, 保证分析波长的正确性,没有汞灯或氖灯校准的预热和耗材问题。每半年或需要的场合可采用15种元素标准混合溶液进行波长例行校核。2.1.6:吹扫型光室:对189nm以下波长测定,可选择氩气或者氮气进行光路吹扫。吹扫流量:标准的光室吹扫气体流量为0.7L/Min,测定低紫外波长谱线时,电脑控制,增加3L/min 的气体流量,所有光室吹扫气体流量均由质量流量计(MFC)控制。■2.1.7:分辨率:光学分辨率<0.007nm (在As 188.980nm 处实际测量半峰宽) 。2.1.8:杂散光:≤2.0mg/L(10000mg/L Ca溶液在As 188.980nm处测定)。2.2 检测器 2.2.1:需要检测器覆盖从167-785nm整个波长范围;整个波长范围内所有元素一次测定一次读出。 2.2.2:紫外区平均量子化效率:独特的背投照射技术,使平均量子化效率≥75%,检测器表面无任何光转换化学涂膜。 ▲2.2.3:检测器冷却:半导体制冷,-40℃,暗电流和背景噪音低。检测器充氮密封,无需气体吹扫,开机即可点火,提高分析效率,降低气体消耗。 2.2.4: 防饱和溢出:针对每一个像素进行防饱和溢出保护,彻底消除谱线饱和溢出问题。2.2.5:积分方式:智能化积分,同时以最佳信噪比获得高强度信号和弱信号,使高低含量元素可以同时检测。2.3 射频发生系统 ▲2.3.1: 自激式27.12MHz固态发生器,耦合效率大于75%。2.3.2: 功率范围:700?1500W,10W增量,连续可调,计算机控制进行功率调节。■2.3.3:高效强劲的自激式固态发生器轻松应对从无机到有机各种复杂基体的样品,快速的功率反馈速度确保样品基体变化时仍然获得稳定准确的结果。2.4 观测方式★2.4.1:垂直火炬双向观测方式;更快分析效率;更高样品分析通量▲2.4.2:尾焰去除:需要有能够高效去尾焰CCI冷锥接口。检出限较垂直观测提高5-10倍,具有高的分析灵敏度。2.4.3: 冷锥接口无切割气体的消耗,降低运行成本。2.4.4: 观测位置调节:等离子体观测位置由计算机控制。 2.5 样品导入系统■2.5.1:进样系统:标配双通道玻璃旋流雾化室和玻璃同心雾化器,其它多种类型的雾化器和雾化室可选。■2.5.2:炬管:标配一体化炬管,快速插拔式炬管,无需气体管路连接和炬管准直定位,便于安装和维护,其它多种类型的炬管可选,同时可配置中心管为陶瓷或者石英的可拆卸式炬管。▲2.5.3:气体控制:所有等离子体相关气体均为质量流量计(MFC)控制,软件在线调节:等离子体气:8?20L/min,增量0.1L/min;辅助气:0?2.0L/min,增量0.01L/min;雾化气0-1.5L/min,增量0.01L/min;补偿气(用于可选附件):0?2.0L/min,增量0.01L/min; ▲2.5.4:蠕动泵:5通道蠕动泵,转速0-80rpm可调,全计算机控制,具有快泵功能。2.5.5:雾化器压力可以由用户自己设定阈值,当压力低于阈值下限或超过阈值上限的时候,软件会弹框提示雾化器压力异常,需要用户去检查进样系统。3、软件性能:3.1:软件需易学易用,可快速进行方法的开发、顺序的编辑。 3.2:计算机全自动化控制,仪器设置和参数选择可自动完成,包括气体流量、功率、点火、诊断等。具有自动安全连锁系统。3.3: 背景校正功能:包含传统的单边、双边离峰法背景校正技术,同时,具备多点自动拟合法(FITTED)背景校正技术。 ▲3.4: 谱图自动解析功能:快速自动谱线拟合技术(FACT),在线校正基体谱线干扰。3.5: 多重检量限(Multical)功能:根据不同的元素含量范围选择不同的谱线,使仪器能够同时测定高低含量的元素,使仪器的动态线性范围得到扩展。3.6:提供多种光谱分析方法:如标准比较法、内标法、干扰元素校正系数法(IEC)、标准加入曲线法等,丰富了用户多种分析研究的手段。 ■3.7:软件系统需内置计数器,能够在系统需要维护时为用户提供指导,可以在方便的时间安排维护,而不必中断工作进程,最重要的是,它能够帮助您最大程度延长仪器正常运行时间。3.8:数据存取:所有结果、方法和顺序可以在同一工作页面一起保存和读取;谱图、结果和标准曲线同时显示;实时图形显示光谱信号、结果和曲线谱图;快速运行过往数据的编辑。3.9:数据输出:提供多种报告打印和数据输出格式。 3.10: 需有详尽的中文在线帮助功能和操作、维护录像。 3.11:远程诊断功能:远程诊断—Web连接使远端的技术服务部门和应用支持部门能够对仪器实现完全远程控制和维修诊断。3.12:符合电子签名管理的21 CFR Part 11管理法规。 3.13:需实现快速全谱扫描,对样品中所有元素进行定性和半定量分析,并且可以设定阈值,实现样品的快速筛选,并且可以跟样品定量分析在同一个工作列表中,实现每一个样品的全元素监测。▲3.14: 需有强大的开发工具,能够针对不同的基体样品,快速的实现全元素扫描,实时反馈,根据不同基体样品和不同元素波长的各种干扰判断,自动选择最佳元素波长,可以把选定的波长直接导入定量工作表开始定量分析,还可以针对不同基体和不同的标准创建模板,让结果更精确。3.15:需有内标监测图,可以更直观准确的监控做样过程,快速的做出响应。3.16:软件需支持集成的高级采集阀,该高级采集阀系统可以极大的提升样品通量,降低氩气消耗,延长进样系统(炬管,雾化器,雾化室,蠕动泵管)使用寿命,降低后期维护消耗。3.17:需有强大的诊断软件,支持简便的仪器诊断和仪器错误提示。清晰的“仪表盘”式仪器状态显示,以及自检功能,使可能维修费用大大降低,并使仪器正常运行时间最大化。4、仪器性能指标:■4.1: 长期稳定运行:8小时,RSD≤1%(不加内标,不采用基线飘移修正);4.2: 短期稳定运行:RSD≤0.5%;▲4.3:冷启动时间:从待机状态到等离子体点燃时间小于35分钟;▲4.4: 做样速度:60个元素或波长,每个元素或波长积分时间10秒,测试时间小于60秒,内标和待测元素必须同时积分;4.5: 测定谱线的线性动态范围:≥106(以Mn257.610nm 来测定,相关系数≥0.9996);4.6: Pb220.353nm 2ug/L,4ug/L,6ug/L,8ug/L,10ug/L 拟合曲线,线性相关系数999以上;5、工作条件:5.1环境温度: 10℃-30 ℃;5.2环境湿度:20%-80% (不冷凝);5.3 电源:仪器整体功率不大于2.9kVA, 电源: 220VAC+/-10% ,50 或60Hz+/-1Hz;5.4 通风系统:最小流量要求:2.5m3/min。6、仪器配置要求:1.仪器主机一台2.循环冷却水机一台3.气源一套4.输入输出设备一套5.仪器耗材包一套750000 合同履行期限: 按招标文件要求 本合同包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,不适用于(本项目),节能产品,适用于(合同包1),按照财库[2019]19号文所附品目清单执行。环境标志产品,适用于(合同包1),按照财库[2019]18号文所附品目清单执行。信息安全产品,适用于(合同包1)。小型、微型企业符合财政部、工信部文件(财库〔2020〕46号),适用于(合同包1)。监狱企业,适用于(合同包1)。促进残疾人就业 ,适用于(合同包1)。信用记录,适用于(合同包1),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-03-04 08:15至2022-03-19 23:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-03-25 09:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省南平市建阳市武夷新区建安大街318号赤岸统建房A区4号楼1104室晖源公司开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 无八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南平市产品质量检验所 地 址:南平市文体路203号 联系方式:0599-8830407 2.采购代理机构信息(如有) 名 称:福建晖源工程咨询有限公司 地  址:南平市延平区八一路73号延水大厦6楼 联系方式:0599-8314701 3.项目联系方式 项目联系人:小刘 电   话:0599-8314701 网址:zfcg.czt.fujian.gov.cn 开户名:福建晖源工程咨询有限公司 福建晖源工程咨询有限公司 2022-03-04
  • 新技术:NHQ无标记高内涵成像技术,为细胞分析解锁全新物理参数
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题(点击查看),本期,特别邀请到深圳倍捷锐医学科技公司联合创始人兼CEO孙瑞谈一谈倍捷锐高内涵成像分析系统发展历程、创新技术以及对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。孙瑞:高内涵成像(High Content Imaging, HCI)技术起源于上世纪90年代初期,基于高通量筛选(High Throughput Screening, HTS)技术衍生而来。HCI技术融合了细胞生物学、光子学、实验室自动化和图像分析等不同学科的技术,能够大规模地采集和分析来自不同生物样本类型的显微图像。简而言之,高内涵成像是指自动化获取和分析生物样本显微图像的过程,其三大核心技术分别是光学显微技术、自动化和分析算法。1997年,美国Cellomics公司开发了首个完全集成的高内涵成像平台Array Scan,通过一站式的解决方案,实现了自动化采集以及图像处理、分析、归档和可视化等功能。随着技术发展,2000年左右出现了更为复杂的高内涵成像仪器,比如配备尼普科夫盘激光共聚焦、激光扫描细胞计数仪等。2000年代末期,灵活的台式高内涵成像仪器开始普及。2010年代,高内涵成像仪器性能得到显著提高,开始应用于高通量生物分析。近年来,随着AI算法和大数据等新技术不断发展,高内涵成像图像分析软件变得更加先进,不仅能够处理更大规模的数据集,还能从多个维度捕捉和解析信息。例如,深度学习已被用于自动量化单个细胞中的结构和动态变化。这些方法不仅提高了分析速度和准确性,还能够揭示以前难以察觉的细胞特征和模式。目前,高内涵成像技术已经能够实现3D成像。高内涵成像硬件及配套软件的发展现有的高内涵成像系统主要分为宽场荧光显微镜型、共聚焦荧光显微镜型以及激光扫描型等,大多数基于荧光标记成像的方法,通过标记细胞不同成分来获取细胞图像并进行分析,但荧光标记存在光漂白、光毒性、速度慢以及标记过程对细胞造成活性影响等问题。无标记成像技术的出现突破了这些限制,通过利用细胞自身的光学特性,如折射率的变化或散射光的特性,实现了无需任何标记的细胞成像,能够更加真实、自然地观察细胞状态。然而传统无标记技术如相差成像、微分干涉成像等存在信息量不足的缺陷,虽已有结合AI的案例实现丰富的细胞分析功能,但仍然无法满足无标记高内涵分析的需求。定量相位成像技术(Quantitative Phase Imaging, QPI)是一种无标记的显微成像技术,基于干涉仪与全息投影的光路设计,能够定量提供纳米级精度的表面形态信息,且无需扫描,更加节约时间与算力。因此,QPI技术适用于快速大规模的细胞分析。在QPI技术前沿应用探索中,已经成功实现对细胞形态、物质分布、机械特性、折光率分布、三维偏振张量等多个参数的定量成像,进而能够精细区分细胞类别。借助QPI技术带来的全新物理参数,不仅解决了传统无标记成像信息量不足的问题,同时扩展了高内涵成像的应用范围,也为生命科学研究与产业发展带来了新的希望和可能性。高内涵成像技术演化历程仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?孙瑞:深圳倍捷锐医学科技公司(以下简称:倍捷锐)的核心科技是基于QPI成像方法实现的无标记高内涵成像技术(NHQ)。NHQ技术最早成型于2018年,在香港中文大学生物医学工程系周仁杰教授LAMB实验室完成概念验证。2019年,倍捷锐成立于香港科学园,获得了香港科技署的种子轮支持,同时完成了第一代原理机核心光学组件的开发。翌年,公司成功交付了首台产品于中科院沈阳自动化所(沈自所),并在同年荣获了《麻省理工科技评论》中国生命科学创业大赛“年度新锐” 、“2020粤港澳大湾区最具创新力公司50”等多项大奖。2020年至2022年期间,倍捷锐先后加入Merck创新训练营、NVIDIA Inception Program计划进行应用场景拓展和新功能开发,并与蔡司达成合作,成功开发出蔡司模组NHQ-Zeiss。此外,倍捷锐于2022年成功加入了深圳脑科学技术产业创新中心,并在2023年获得了脑科学企业认定以及千万级天使轮融资。倍捷锐始终致力于为生命科学工作者提供更高效便捷的科研工具,历经5年打磨,最终在2024年7月发布重磅产品——NHQLiveTM无标记高内涵活细胞成像分析仪。倍捷锐NHQLiveTM无标记高内涵活细胞成像分析仪仪器信息网:目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)孙瑞:目前倍捷锐主推的产品是NHQLiveTM无标记高内涵活细胞成像分析仪,其核心竞争力在于成像、自动化和智能化分析三大方面。在成像方面,NHQLiveTM无标记高内涵活细胞成像分析仪具有6个成像通道,多种成像模态。首先是倍捷锐所专注的定量相位显微技术(QPI技术),就像前面所述,它是一种无标记、快速、无损、高分辨率的新兴显微成像技术,能够定量表示细胞产生的形貌和动态变化,可在不对样品进行任何预处理的情况下,测量微观物体透射光(或反射光)的相位延迟,生成反映物体形态学和动力学的图片,再通过分析相位分布图获取细胞的干重、力学特性、密度分布等全新信息。如果把基因组测序比喻为“指纹识别”系统,那么 QPI 技术则是“人脸识别”系统。另外,NHQLiveTM无标记高内涵活细胞成像分析仪还兼备新一代明场技术与四通道荧光成像方案,不仅提升了成像的清晰度,还能捕捉到更为丰富的细胞细节,再搭配多通道影像融合的功能,进一步提升了观察分析的深度与精度,达到了更高维度。从左到右依次为:明场,QPI,四个荧光通道,荧光融合图像在自动化方面,用户可以一键控制仪器电动门开关,通过自动定位聚焦提升操作效率与成像质量,一键启动自动图像拼接,将高速孔板扫描的微观数据汇成一幅超大视野总览图。对于有活细胞长时间多形态成像需求的用户,设备还能结合微流控、孵育器等装置实现流式成像及自动控制延时成像,减少人工操作,极大提高分析效率。 人关节软骨细胞(40×),LFAITM软件大视场图像拼接在软件系统方面,综合运用人工智能和大数据分析等技术,倍捷锐开发出独特的LFAITM智能分析系统。不仅可以进行细胞分类、精准计数、活性分析、行为分析等复杂任务,还结合QPI技术推出了细胞力学分析、干重分析等创新功能。LFAITM 软件细胞分类工作原理仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?孙瑞:NHQLiveTM无标记高内涵活细胞成像分析仪凭借其多样化的成像模式、自动化操作以及智能AI分析展现出广阔的应用前景,目前主要应用领域包括药物作用机理分析、组织病理研究、细菌活性检测、细胞周期观察分析、血液分析、植物学研究、神经细胞动作电位分析、生殖细胞活性分析等。具体而言,可用于单细胞计数与分析、细胞分类、形态分析、药物-细胞影响分析、细胞追踪、行为分析、力学分析等实验环节。现阶段,倍捷锐团队已与香港中文大学、麻省理工学院、斯坦福大学、康乃狄格大学、厦门大学、沈阳自动化所、清华大学、上海药物所、默克、蔡司等单位建立友好合作关系。仪器信息网:请点评荧光成像系统、透射光成像系统和共聚焦成像系统等不同成像方式的优劣势?孙瑞:荧光成像系统通过使用特定波长的光照射样品,使样品中的荧光分子被激发而发射出荧光,随后被检测器捕捉并转化为图像。其优势包括:高度特异性,针对特定的分子或结构实现高特异性成像;灵敏度突出,即使样品中的目标分子含量较低也能通过荧光信号检测出来;多色成像,能够同时使用多种荧光染料实现多通道成像,便于同一时间观察多种细胞组分。然而,荧光成像系统也存在一定局限性,如细胞活性差、光漂白、光毒性、成像速度慢等问题。透射光成像系统基于透射光原理,光线穿过样品后被显微镜的物镜收集并成像,适用于观察透明或半透明的样品。其优点主要是样本无需进行化学标记,避免了标记过程带来的影响,且操作也相对简单。但相比于荧光成像,透射光成像的对比度较低,难以区分细微的细胞结构,而且因其采用可见光波段,其分辨率也会受限于光的衍射极限。共聚焦成像系统采用激光扫描和针孔过滤技术,能够提供基于荧光成像的超分辨率成像,显著提高横向和轴向分辨率,同时还能捕捉细胞的三维结构信息。除了荧光成像所面临的问题之外,其设备成本相对较高,逐点扫描的方式也导致了成像速度相对较慢。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?孙瑞: 首先,无标记成像技术的兴起将减少对荧光标记的依赖,降低对细胞的潜在影响。例如,基于定量相位显微技术的无标记高内涵活细胞分析仪,能够实现对细胞的实时、无标记监测;其次,随着3D细胞培养技术的应用日益广泛,高内涵成像系统需能够支持三维成像,以更准确地模拟并反映细胞在体内的真实生长环境;人工智能和机器学习等前沿技术不断成熟融合,将被更深入地整合到高内涵细胞成像分析系统中,大幅提升数据分析的效率与精确度。自动化的特征识别和分类将变得日益普遍,从而降低对人工操作的依赖;高通量筛选与高内涵成像更加协同,进一步推动药物发现及疾病模型的研究进程;最后,为了提高科研人员的工作效率,成像分析系统的用户界面将设计得更加直观易用,减少学习成本。此外,标准化的工作流程和数据格式将促进不同实验室间的数据共享与结果对比。得益于技术不断创新突破,高内涵细胞成像分析系统的应用场景正不断扩大。目前,它在药物发现与筛选、类器官研究、干细胞研究、免疫学以及神经科学等关键领域展现出巨大的潜力和前景。例如,类器官作为一种新兴的细胞培养模型,能够更真实地反映人体组织的结构和功能,高内涵成像分析系统可以监测类器官发育过程中细胞的变化,为疾病建模和药物测试提供支持。干细胞在再生医学和疾病模型建立中扮演着重要角色,高内涵成像系统可以帮助研究人员更好地了解干细胞的分化过程和功能特性。总之,高内涵细胞成像分析系统的未来发展趋势将更加注重技术创新和应用扩展,特别是在药物发现、类器官研究、干细胞研究、免疫学和神经科学等领域的研究应用。随着技术的进步,这些系统将会更加高效、智能,并且更容易被科研人员所接受和使用。孙瑞 倍捷锐联合创始人兼CEO孙瑞,倍捷锐联合创始人、CEO,厦门大学生科院大湾区院友会副秘书长。毕业于波士顿大学生物医学工程专业, 拥有多年科技型技术转化的经验。从2015年起,分别创始并主导了波士顿大学生物医学工程系脑血管造影术实时监控跟踪技术、哈佛大学与美国东北大学联合主导的肝脏体外器官芯片筛药技术的产业化。在2016年主导创建了服务于年轻华人科学家的产业化协会‘波士顿破蛋计划协会’。19年起作为联合创始人全职加入倍捷锐,推动无标记高内涵成像技术产业化,并构建倍捷锐与默克、蔡司、英伟达、以及国内多所高校的深度合作。关于倍捷锐倍捷锐(BayJayRay)由来自香港中文大学的团队联合MIT、波士顿大学等高校成员共同创立。公司致力于开发创新性先进光学成像技术,以无标记显微技术——定量相位成像技术作为核心,拓展其在生物医学的产业方向的应用,并矢志于借助中国制造优势赋能生物医学产业,推动国产制造新高度。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 云唐全新升级|新型果蔬肉类检测仪(综合款)详细参数
    云唐全新升级|新型果蔬肉类检测仪(综合款)详细参数  山东云唐智能科技有限公司生产的果蔬肉类检测仪,采用手提箱式一体化设计,可快速检测几十种项目,包含各种蔬菜水果中有机磷和氨基甲酸酯类农药残留,病害肉诊断:肉中组胺、挥发性盐基氮 各种肉食品中瘦肉精激素类残留、抗生素、兽药残留等现场的定性定量检测。  该果蔬肉类检测仪为集成化食品安全快速检测分析设备,目前已于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业及检验检疫部门等单位广泛使用。 果蔬肉类检测仪(综合款)产品链接https://www.instrument.com.cn/netshow/SH104655/C467598.htm 果蔬肉类检测仪(综合款)创新点和产品特性:  项目 项目分类 果蔬中 农药残留 病害肉诊断 组胺、挥发性盐基氮 瘦肉精激素(兽药) 盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚等 抗生素残留(兽药) 四环素类、硝基呋喃类、磺胺类、β-兴奋剂类、沙星类、磺胺类、喹诺酮类,甲砜霉素,氟苯尼考,金刚烷胺、替米考星、庆大霉素、林可霉素、链霉素、恩诺沙星、环丙沙星、头孢啦啶、青霉素、阿莫西林等水产品安全类 孔雀石绿、氯霉素、呋喃妥因、呋喃西林、呋喃它酮、呋喃唑酮等 蛋类药物残留类 氯霉素,四环素,磺胺类,喹诺酮类,呋喃西林,呋喃它酮,呋喃妥因,呋喃唑酮,氟苯尼考,阿莫西林、头孢氨苄、红霉素、链霉素等 真菌毒素残留 食用油、粮食及饲料中黄曲霉毒素B1、黄曲霉毒素总量,奶中黄曲霉毒素M1、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A、T2毒素、伏马毒素等 动物疫病类 禽流感、新城疫、牛羊口蹄疫、牛羊结核病、牛羊包虫、牛羊布病、小反刍兽、猪蓝耳病毒、猪瘟病毒、猪伪狂犬病毒、猪细小、猪圆环、犬细小病毒、犬瘟热病毒、犬狂犬病毒等  1、仪器采用手提箱一体化设计,将分光光度模块、胶体金检测模块、新型农残检测模块、数字化管理模块、无线通讯模块高度集成于一体,同时预留升级检测方法,可远程进行升级系统。  2、仪器检测模块标准化、智能化,检测项目可随意自由组合。检测箱体内置多个标准检测单元,检测模块可以调整配置。  3、显示屏幕:仪器采用10.1英寸竖向液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、检测通道:≥12通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效。(1-12通道间误差0.1%,专利号:ZL202022821055.2)  5、仪器光源:高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测。  6、设备可一键校准,自动保存校准数据,自动对比校验,得到精准光源,采用Android SP存储数据,光源数据永不丢失,方便每一次使用。  7、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  8、存储方式:支持U盘存储,标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  9、智能化操作系统:  9.1、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择1-12个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9.2、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  9.3、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  9.4、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  9.5、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,大大提高检测效率。  9.6、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  9.7.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  9.7.2、A4纸版本报告打印功能(可选配):设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式链接外置打印机可进行打印。  10、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配6ah大容量充电锂电池,电量可实时显示,方便户外流动测试。  11、胶体金检测模块:采用CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  11.1、探测技术:CMOS成像探测   11.2、检测通道:1个通道   11.3、检测方式:消线法和比色法   11.4、显示模式:阴性或阳性   11.5、曲线形式:轨道式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整,完成检测后自动退出检测卡。兼容市场上其他金标卡,使用耗材不受限制。  12、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • 天地一体化气溶胶多参数综合观测实验初战告捷
    6月11日—7月25日,中科院安徽光机所与遥感所共同在京津唐地区开展了天地一体化气溶胶多参数综合观测实验,本次实验成功地为多源气溶胶数据差异化分析、气溶胶微观特性与宏观特征关联技术研究提供了基础数据。   京津唐地区天地一体化气溶胶多参数综合观测实验是科技部全球变化研究重大科学研究计划的一部分,分为地基(6月11号—7月13号)和空基(7月6号—7 月25号)两部分,项目组使用了多种仪器、布置了多个站点进行多尺度气溶胶综合观测实验,用于了解大气气溶胶的时间、空间的分布规律。   地基实验,针对工业区、市区、农业区、乡村郊区、清洁海边五个典型环境地区,使用了太阳光度计、浊度计、黑碳仪、粒子计数器、微脉冲Mie散射激光雷达、颗粒物采样器等多种仪器分别在北京市区、天津市区、天津塘沽临港工业区、唐山曹妃甸工业区、乡村、唐山市区、海岛等地选择合适位置设置站点进行了定点连续观测,获得了多种气溶胶光学特性和理化特性数据。空基实验,结合地基实验布点,设置了几条飞行航线,将浊度计、黑碳仪、多波段偏振CCD相机和激光雷达等机载测量仪器搭载上航空飞机进行多次飞行实验,获取了气溶胶数浓度、粒度分布、光学厚度、消光系数、后向散射等气溶胶光学特性和理化特性数据。   京津唐开发区位于华北平原东北部,是全国17个重点开发区之一。该地区工业体系门类齐全,特别是石油、煤化、冶金、海洋化工、机械电子工业非常发达,加上以煤为主的能源结构,使得该地区大气气溶胶特性变化具有代表意义。   航空实验   部分地基实验仪器
  • 技术研讨:便携式常规五参数水质分析仪的应用重要性
    水质常规五参数有水温、PH、溶解氧、电导率和浊度。这些项目可通过探头直接给出各参数值,不需要复杂的操作过程,可以实时地显示。得利特针对常规五参数指标的性能要求及测量原理,进行技术开发,研发出可满足实验室及户外同时使用的水质检测仪。那么为什么要对水温、PH、溶解氧、电导率和浊度常规指标进行监测呢?首先,水温,如果地表水温变化太大会影响鱼虾贝类的进食速度,进而还会对他们的繁殖时间和效率造成影响,不仅如此,水温变化还会影响水生植物、微生物的正常生长;其次,PH,PH值是水质的重要指标,不仅直接影响鱼虾壳类水生物的生理活动,而且还通过改变水体环境中的其他理化及生物因子间接作用于鱼虾壳类,在水体中PH值可以十分直观的反映着水质的变化,比如藻类的活力、二氧化碳的存在状态等;第三,溶解氧,溶解氧的饱和含量和空气中的氧的分压、大气压力、水温有密切关系,水体受有机物、无机还原性物质污染时溶解氧降低。当大气中的氧来不及补充时,水中溶解氧逐渐降低,以至趋近于零,此厌氧菌繁殖,水质恶化,导致鱼虾死亡;第四,电导率,电导率是指水体中传到电流的能力,纯水的电导率很小,当水中无机酸、碱或盐等化学物质以及重金属、杂质增加时时,电导率会增大,因而电导率是反应水质质量的重要指标之一;最后,浊度,浊度是由于水中含有泥沙、黏土、有机物、无机物、浮游生物和微生物等悬浮物质所造成的,可是光散射或吸收,浊度的超标会引发多种疾病,严重影响人们的健康。因此在企事业日常排放以及环保监察过程中,通常会比较重视对水质常规五参数指标的检测。
  • JADE软件分析处理XRD数据---问题解答
    日前ICDD举办了主题为“JADE软件分析处理XRD数据”网络研讨会,由JADE创始人周荣生博士主讲,主要介绍了XRD数据背景处理、物相检索、定量分析、Rietveld精修、粉末XRD数据解析结构等,受到了广大师生及相关科研工作者的欢迎,听众现场也提出了很多具有代表性的问题,主要问题解答如下:1. 做金属氧化物粉末的全谱拟合时,JADE软件中,图峰扩展选择的原则是什么?什么情况下选择单独的半高宽曲线?什么情况下选择拟合晶粒大小和应变?答:要看分析的需求,来选择相应的选项,如果关注晶粒大小和应变的话,那就选择“拟合晶粒大小和应变”。需要指出的是,在JADE中分析数据,如果选择“拟合晶粒大小和应变”,需要建立一个标准的仪器曲线,在建立的仪器曲线之上,再通过卷积的方式,准确计算出晶粒大小和应变,如果晶粒尺寸超过500A的话,应该就不是特别准确了。如果选择“拟合单独半高宽曲线”,通常需要有三个参数f0,f1和f2(半高宽=f0+f1*2θ+f2*2θ^2)才能拟合出低角度到高角度的半高宽曲线,通常半高宽曲线为开口向上的抛物线,正常衍射仪,低角度半高宽高一些,中间角度低,到高角度半高宽又上升了,优势在于参数少,对于同时精修多个物相,有衍射峰重叠导致峰宽太宽的时候,有些衍射峰强度消失在背景中等情况,“拟合单独半高宽曲线”的参数少,可以很好的拟合。2. DD法定量分析时,需要考虑RIR的值吗?答:不需要,DD法定量分析的时候,完全靠的是化学式来进行定量分析的。使用DD法来做定量分析的时候,为确保有较高的准确度,应注意以下几点:(1)收集XRD图的范围要尽可能的大,尽可能收集的更多衍射峰;(2)各个物相之间晶胞体积差异不要太大;(3)各个物相之间元素序数差异不要太大;比如对称性高的、晶胞体积小的物相在小于90°衍射峰个数比较少,对称性低的、晶胞体积大的物相在小于90°衍射峰个数比较多,不同物相总的衍射能力的百分比在一定的范围内比例不一样,则采用DD法做的定量分析准确度就会降低。此外还受到温度因子影响,原子序数差异导致原子对X射线的散射能力不同,重的原子和轻的原子在不同角度对X射线的衰减能力不一样,也会影响到DD法定量分析的准确度。 3. 多次WPF拟合时,结果差别比较大,是为什么?答:如果多次拟合,拟合后如果R值差别比较大或者物相相对含量差别比较大的话,可能原因:(1)物相选取的不对;(2)精修的时候,精修的参数太少或者太多,有些精修参数之间是相互关联的;JADE中有个比较有用的功能,共通 EPS&CC 中来显示精修的各个参数之间的关联度,对于有些关联很强烈的参数,有可能对整体精修的R值影响不大,但是对重量比的分析结果却影响很大,精修的过程主要是减小差异图的过程,如果在衍射峰重叠严重的地方,修改某些精修参数会对精修的差异图影响较小,倒是对其他的分析结果比如重量比可能会影响的比较大。4. PDF卡片号和CCDC号有什么关联?怎么通过PDF卡片号查找CCDC号,或者通过CCDC号查找PDF卡片号?答:PDF-4 Organic数据库中收录了CCDC的单晶结构数据,PDF卡片号以02开头的,结构数据的来源是CCDC数据库,但是PDF卡片号和CCDC号没有任何关联,目前PDF卡片库中可以通过化学式、化合物名称等方式PDF卡片,在PDF卡片中也有包含对应的CCDC的号码。5. 在全图拟合中(WPF)如何来选择峰型函数?答:JADE软件中,在WPF模块有三个峰型函数可以选。(1)仿Voigt函数,即PV函数,是高斯函数和洛伦兹函数的组合,可以精修混合因子,一般适用于大部分的峰型拟合,比如衍射峰顶不太尖锐,衍射峰左侧拖尾不太严重的情况下,选项仿Voigt函数;如果有些峰型,如中子衍射,为纯的高斯函数,则只能选择仿Voigt函数来模拟衍射峰;(2)皮尔逊VII函数,为增强洛伦兹函数,但是可以精修斜因子函数;(3)FCJ模型,主要适用于轴心发散导致的低角度衍射峰左侧有严重的拖尾现象,即衍射峰有严重的不对称。如果不清楚要选择那个函数的话,可以在WPF精修的过程中,选择不同的函数来观测R值,选择R值最小的函数即可。在峰型拟合中,选择峰型函数除了WPF中的三个函数外,第四个峰型函数为“分隔皮尔逊VII”,主要适用于峰型严重不对称的情况下,衍射峰分开模拟。提示:在精修之前,如果不知道选择哪个峰型函数时,一般可以放大某个衍射峰,在“拟合峰”的功能中,选择不同拟合函数分别进行峰拟合,来观测精修后R值的情况,选择R值最低的峰型函数。6. 在物相检索的过程中,对于PDF卡片库没有收录的物相,自建的CIF文件如何导入到PDF卡片数据库中?答:PDF卡片数据库不允许客户增加物相条目,但是在JADE软件中支持用户使用CIF文件来自建数据库,菜单栏中选择:数据库建立结构数据库,在“自制晶体结构数据中管理窗”中,新建CSD数据库,将CIF文件读取到JADE中并计算d-I 列表,用户即成功自建数据库。用户自建的数据库可用于物相检索,Rietveld精修等,在物相检索的过程中,用户自己的数据将自动出现在JADE界面右下角数据库选择列表中。7. 在晶胞参数精修过程中,如何判断结果是否准确?那些参数影响权重较大?答:通常在XRD精修过程中,晶胞参数一般精修的比较准确,主要观察精修的峰位即可。在JADE软件中,为精确精修晶胞参数,特意设定了无结构精修晶胞参数的功能,在WPF窗口中,右击物相,选择“无结构物相”精修。在选用“无结构物相”精修晶胞参数的过程中,(1)一定要注意零点漂移、样品位移对衍射峰位的影响因素;(2)准确精修衍射峰面积,只有峰面积精修的准确了,衍射峰的峰位才会准。选用“无结构物相”精修晶胞参数表明只对关注衍射峰的位置,不关注衍射峰的强度,好处在于可以精修单个衍射峰的面积,此时精修的晶胞参数会非常准确。影响权重的因素有,峰型函数、背景曲线、如何处理多相中重叠峰的问题等。 8. 如何在物相检索过程中,导入特定的PDF卡片数据?答:在做物相检索的过程中,JADE支持根据PDF卡片号、物相名称、矿物族等导入特定的PDF卡片数据,该功能在物相检索模块中“物相查找工具栏”中可以实现。9. XRD数据定量计算的时候,如何处理由于吸收造成的影响?或者说什么时候需要考虑吸收的问题?答:基本上粉末衍射的话,吸收问题不太存在。样品如果研磨的比较细的话,颗粒大小差距小的话,微观吸收的效果在粉末XRD中基本中不存在;如果粉末样品中,不同物相的粉末颗粒大小差距比较大的时候,超过几个微米的话,可能造成微观吸收,即颗粒大小不均匀的话,在JADE中有补正的方法,在WPF窗口中,wt%荧光的对话框中,选择“Brindley吸收校正”。(1)如果在研磨样品的过程中,有样品的粘结等现象,需要考虑吸收校正。(2)如果不同物相之间吸收系数(μ)差异达到5倍以上的话,需要考虑微观吸收。(3)如果样品研磨的尺寸小于1-2微米的话,基本上不用考虑微观吸收。(4)如果用的是无背景样品架上,撒了一层薄薄的粉末时,需要考虑吸收矫正。10. 如何判断精修结果已经达到最佳?答:(1)首先要观察导出的差异曲线,JADE中在差值曲线中可以显示标准偏差值(±3δ),下图中的虚线所示;如果差异曲线在标准偏差范围内,表明精修的结果还不错;(2)R/E 值,E为期望的最小的R值即Rexp,R为Rwp,一般R/E值小于2,精修的结果就比较不错了,如果R/E小于1.5为理想的状态。当然前提条件是选择合适的物相和结构数据,才能分析的结果比较靠谱。 11. 如何通过拟合估算晶粒结晶大小?答:(1)这个功能在峰型拟合中,选取某个或某几个衍射峰进行拟合,前提是做好一个标准的仪器曲线,挑选上合适的背景曲线、峰型函数等,这样估算的晶粒尺寸会比较准。(2)可以采用鼠标功能中的“Kα2”功能,通过滚动鼠标的滚轮,来拟合晶粒大小。如下图中位于25.3°的衍射峰所示,要求要有个标准的峰型函数。(3)JADE中还有个方法,可以将晶粒大小和应变引起的半高宽分开,在拟合峰的功能下,将XRD图中所有的衍射峰进行拟合后,查看晶粒大小和应变的分析结果。12. 在多个物相定量分析过程中,如何区分物相重叠位置的峰位?答:(1)JADE通过不同的颜色来区分不同物相对应的衍射峰位;(2)JADE中可以显示不同物相的衍射峰分峰拟合的结果,同样采用不同颜色进行区分;(3)JADE中可以单相显示某个物相的衍射峰拟合情况;13. 精修的话,XRD数据有什么要求?1)样品结晶良好,衍射峰较锐;2)样品没有显著的择优取向问题;3)角度信息准确;4)衍射峰计数较高(最强峰计数最好高于1万),数据统计性好;5)收集的角度范围尽可能大(对铜靶而言收集角度 2theta一般不低于120°),以使尽可能多的高分辨率衍射数据包含在精修过程中。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制