当前位置: 仪器信息网 > 行业主题 > >

微生物调控

仪器信息网微生物调控专题为您整合微生物调控相关的最新文章,在微生物调控专题,您不仅可以免费浏览微生物调控的资讯, 同时您还可以浏览微生物调控的相关资料、解决方案,参与社区微生物调控话题讨论。

微生物调控相关的资讯

  • PNAS:何群等人发现生物钟基因转录调控新机制
    跟动物一样,植物也有称之为昼夜节律的 24 小时“生物钟”。这一生物计时器赋予了植物即便在没有光线的情况下,与生俱来测量时间的能力。例如,它们不仅仅是对日出产生反应,它们还知道日出就要到来,并做出相应的调整。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成。在脉孢节律振荡器(Neurospora circadian oscillator)中,WHITE COLLAR 复合物负责节奏频率(frq)转录,而且被认为是唯一的 frq 转录激活因子。现在,来自中国农业大学生物学院 何群 研究组揭示出了一种之前未知的生物钟基因转录的调控新机制,这将对于了解 WC 非依赖性 frq 转录至关重要。这一研究成果公布在《美国国家科学院院刊》(PNAS)杂志上。在这项最新研究中,科学家发现,当转录共阻遏因子 rco-1 被删除的时候, WC 非依赖方式中 frq 能进行组成型转录。并且对于 rco-1 突变型来说,高水平组成型 WC 非依赖性 frq 转录还会导致 WC 复合物活性受损,失去昼夜节律功能。同时,这一结果还表明, rco-1 能与组蛋白修饰因子SET-2,染色质重塑因子CHD-1共同作用,调控 frq 正常染色质结构,这一位点确保了节律 frq 转录。
  • 广州生物院等在染色质高级结构调控细胞命运机制研究中获进展 成果发表于Cell Reports
    真核生物基因组DNA缠绕在组蛋白八聚体上形成染色质,并在染色质架构蛋白的作用下逐级折叠形成远距离的染色质相互作用(或染色质环)、拓扑相关结构域和染色质区室等染色质高级结构。远距离染色质互作可以调控基因表达,在细胞命运决定过程中具有关键作用。CCCTC结合因子(简称CTCF)最早被认为是绝缘子结合蛋白,随后发现CTCF在转录激活/抑制、基因印记、X染色体失活等方面均发挥重要的调控作用。近年来,CTCF被认为是染色质架构蛋白,与Cohesin复合物等在调控远距离染色质相互作用和维持染色质“成环”等方面起到重要作用。然而,CTCF是否在同一生物学过程中发挥其多重功能至今尚不清楚。4月5日,中国科学院广州生物医药与健康研究院研究员姚红杰课题组联合美国加州大学圣地亚哥分校教授付向东课题组,在Cell Reports上,发表了题为CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming的研究论文。该研究运用体细胞重编程到诱导多能干细胞为模型,结合多维组学技术,并联合生物信息分析,揭示了CTCF介导的染色质绝缘和染色质结构变化协同调控干细胞多能性获得的新机制。研究发现,CTCF在体细胞重编程过程中表达逐渐升高,并发挥促进体细胞重编程为诱导多能干细胞的作用。在这一过程中,CTCF具有同时抑制体细胞相关基因表达和促进多能性基因网络激活的双重功能。机制分析发现,CTCF通过发挥染色质绝缘功能抑制体细胞相关基因的表达,同时,CTCF具有维持多能性基因染色质开放的作用,CTCF还结合在部分多能性基因启动子区,促进这些多能性基因增强子(Enhancer)和启动子(Promoter)之间的相互作用(EP互作)。此外,该研究还揭示了CTCF与染色质重塑因子SMARCA5形成蛋白复合物,有助于维持多能性基因的染色质开放和多能性转录因子的结合,促进多能性基因网络的激活。研究表明,在体细胞重编程为诱导多能干细胞过程中,CTCF发挥了介导染色质绝缘和染色质重塑的协同调控作用。该研究进一步完善了CTCF的生物学功能,并为后续研究细胞命运决定的调控机理提供了新思路。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金联合基金项目和中科院战略性先导科技专项等的支持。  论文链接 本研究的模式图
  • 【专刊论文推荐】上海交通大学吕海涛研究员:基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢
    p style=" text-align: justify line-height: 1.75em "    strong 仪器信息网讯 /strong 本期推荐的是发表在《Journal of Analysis and Testing》2020年第3期的 strong 上海交通大学系统生物医学研究院吕海涛研究员课题组 /strong 原创论文 strong “基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢” /strong 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6a08beaa-f9b4-45f6-9d6c-a71acc5cbd57.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center line-height: 1.75em "   基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢 /p p style=" text-align: center line-height: 1.75em "   郭睿,吕海涛* /p p style=" text-align: justify line-height: 1.75em "   近日,国内第一本国际性的英文分析化学期刊Journal of Analysis and Testing (JOAT) 特邀请中国科学院大连化学物理研究所许国旺研究员作为客座编辑,主持“Metabolomics: state of art in methoddevelopment and applications”专题。上海交大系统生物医学研究院吕海涛课题组受邀发表基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢的最新研究成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/80edb75a-ab8d-4946-845d-843615694741.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify line-height: 1.75em "   生物膜是由多种微生物在外界压力环境下产生,表面被胞外聚合物(EPS)包裹的微生物群落,EPS的存在使细胞对杀虫剂,抗生素以及其他入侵力的抵抗力都明显高于其悬浮细胞。生物膜的形成对各个领域都产生了影响,包括临床感染,环境污染,农业生产,食品工程和工业污染等。然而,生物膜的形成机制尚未完全阐明,并且目前我们还缺乏解决这些问题以及破坏生物膜形成的有效手段。在本研究中,我们试图探寻金属锰离子通过调节生物膜形成过程的关键功能代谢产物进而认知其调控生物形成的代谢模式与特征表型,以为后续生物膜形成机制研究奠定靶向调控物质基础。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/388cbcf4-2dfb-43a5-9b92-a42f7ac258e2.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify line-height: 1.75em "   本研究初步发现,金属锰离子能够调控大肠杆菌生物模的形成,与作用剂量具有一定的依存关系,且对其微观内质结构具有明显的修饰作用,进而影响稳态生物膜的形成与解离。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/d74c56a0-1141-4ad9-9e1d-dbbc853c3ce4.jpg" title=" 4.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/43fa82ea-6ee5-4c86-8297-1e88465fb16b.jpg" title=" 5.jpg" / /p p style=" text-align: justify line-height: 1.75em "   进一步,经过精准靶向代谢组学分析,我们初步确证锰离子具有调控生物膜形成过程中特征分子代谢的潜力,而这些代谢直接关联生物膜的形成。由此,我们认为,锰离子或许能够成为抑制和调控生物膜形成的一种生物基质选择,而其靶向调控的功能代谢物,也具备调控生物膜形成的分子特征。未来可考虑从锰离子靶向调控功能代谢物角度,设计全新策略,清除生物膜的形成,彻底解决上述不同生命科学领域与生物膜相关的有害挑战。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/f1b30c68-5ce7-44a0-9bf3-b24f437699f4.jpg" title=" 6.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/89426807-d3b6-47a6-988c-5dd2a5467724.jpg" title=" 8.jpg" / /p p style=" text-align: justify line-height: 1.75em "   课题组正在基于上述代谢表型结果,聚焦具体有价值功能代谢物,结合生物合成调控修饰策略,开展相关机理研究,核心目标是从金属调控代谢维度阐明生物膜形成与解离的分子机理,为生物膜相关挑战性科学与转化应用问题的解决提供共性策略和方法参考。 /p p style=" text-align: justify line-height: 1.75em "   课题研究得到国家重点研发计划、国家自然科学基金和上海交通大学高层次人才启动基金等支持。 /p p style=" text-align: right line-height: 1.75em "   (感谢吕海涛研究员团队提供论文主要内容翻译) /p p style=" text-align: justify line-height: 1.75em "   下载本文: Guo, R., Lu, H. Targeted Metabolomics Revealed the Regulatory Role of Manganese on Small-Molecule Metabolism of Biofilm Formation in Escherichia coli. J. Anal. Test. (2020). a href=" https://doi.org/10.1007/s41664-020-00139-8" _src=" https://doi.org/10.1007/s41664-020-00139-8" https://doi.org/10.1007/s41664-020-00139-8 /a /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/73e7f637-5326-4057-aefe-d245e15b3247.pdf" title=" 10.1007@s41664-020-00139-8.pdf" 10.1007@s41664-020-00139-8.pdf /a /p p style=" text-align: center line-height: 1.75em "   上海交通大学吕海涛研究员简介 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ac915f0a-4375-4c52-9eaa-b84c216234d0.jpg" title=" 微信图片_20200727115812.jpg" alt=" 微信图片_20200727115812.jpg" / /p p style=" text-align: justify line-height: 1.75em "   吕海涛博士,,上海交通大学研究员(教授)/课题组长/博士生导师,国家重点研究发计划课题负责人,权威的QUT Vice Chancellor’ s Research Fellowship校长特聘教授席国际人才基金获得者,交通大学绿色通道引进高层次人才和功能代谢组学科学实验室主任。 /p p style=" text-align: justify line-height: 1.75em "   2009年于黑龙江中医药大学获得生药学博士学位,师从王喜军教授。2009-2013年先后在美国爱因斯坦医学院,华盛顿大学医学院和麻省理工学院完成博士后训练,研究方向为代谢组学、化学生物学和RNA Modifications, 合作导师为Irwin J. Kurland 教授, Jeffrey P. Henderson 教授和Peter C. Dedon 教授。2012年9月-2015年12月,任重庆大学创新药物研究中心(药学院)“百人计划”研究员,博士生导师,主任(院长)助理,功能组学与创新中药研究实验室负责人。2015年12月,加盟上海交通大学系统生物医学研究院,任课题组长,研究员,博士生导师,领衔功能代谢组科学实验室建设与发展。 /p p style=" text-align: justify line-height: 1.75em "   先后在Mass SpectrometryReviews, Journal of Proteome Research, Molecular Cellar Proteomics,Pharmacological Research, 和Liver International 等权威杂志发表SCI检索论文46篇,被Nature Chemical Biology, Chemical Reviews和Mass Spectrometry Reviews 等著名杂志引用1000余次,并发表会议论文30余篇,国内外学术会议和科研机构特邀学术报告40余次,担任分会主席主持会议5次。目前担任自2013年7月起,兼任澳大利亚昆士兰科技大学校长特聘教授/博士生导师。中国生物物理学会代谢组学分会副秘书长,世中联网络药理学专委会常务理事,中国药理学会网络药理学专委会理事,中国药理学学会分析药理学专委会创会理事,美国科学促进会(AAAS)荣誉会员和国际代谢组学学会会员。同时担任著名SCI检索杂志Phytomedicine (JCR 1区,IF 4.2)副主编,Frontiers inMicrobiology(IF 4.1)副主编,以及Pharmacological Research (IF 5.57)顾问主编,Scientific Reports (IF 4.1)和Proteomics-Clinical Applications (IF 3.5)编委,以及SCI检索杂志Acta PharmaceuticaSinica B (IF 5.7)和Chinese Journal of Natural Medicines (IF 1.9)青年编委。并受邀为Mass SpectrometryReviews, NPJ Systems Biology and Applications, Journal of Proteome Research,Biomacromolecules 等20余本SCI检索杂志审稿,国家自然科学基金委和澳大利亚NHMRC基金评审专家。 /p p style=" text-align: justify line-height: 1.75em "   近五年,吕海涛博士先后主持国家重点研发计划课题1项,国家自然科学基金面上项目2项,中央高校基本科研业务费重大项2项,重庆自然科学基金面上项目1项,QUT Vice Chancellor’s Research Fellowships 1项(校长特聘教授席国际人才基金项目), 上海交通大学特别研究员计划项目1项(绿色通道引进高层次人才项目),重庆大学百人计划项目1项(引进海外高层次人才项目)。获教育部科技成果一等奖1项,获批合作发明专利1项。 /p p style=" text-align: justify line-height: 1.75em "   联系 Email: haitao.lu@sjtu.edu.cn /p p br/ /p
  • 1335万!哈尔滨医科大学伍连德生物医学创新研究院基因表达调控平台三期仪器采购项目
    一、项目基本情况项目编号:[230001]LTGC-[GK]20240006项目名称:伍连德生物医学创新研究院基因表达调控平台三期仪器采购采购方式:公开招标预算金额:13,355,000.00元采购需求:合同包1(伍连德生物医学创新研究院基因表达调控平台三期仪器采购包1):合同包预算金额:2,700,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表超敏多因子电化学免疫分析仪1(套)详见采购文件1,180,000.00-1-2其他仪器仪表超声波DNA打断仪1(套)详见采购文件300,000.00-1-3其他仪器仪表水浴超声1(套)详见采购文件220,000.00-1-4其他仪器仪表核转染系统1(套)详见采购文件450,000.00-1-5其他仪器仪表低氧工作站1(套)详见采购文件550,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日合同包2(伍连德生物医学创新研究院基因表达调控平台三期仪器采购包2):合同包预算金额:4,485,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他仪器仪表单细胞分离仪1(套)详见采购文件1,485,000.00-2-2其他仪器仪表落地微纳米颗粒冷冻分离设备2(套)详见采购文件700,000.00-2-3其他仪器仪表生物安全柜18(套)详见采购文件1,350,000.00-2-4其他仪器仪表蛋白液相分析系统1(套)详见采购文件950,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日合同包3(伍连德生物医学创新研究院基因表达调控平台三期仪器采购包3):合同包预算金额:2,620,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他仪器仪表流式细胞分析仪1(套)详见采购文件2,620,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日合同包4(伍连德生物医学创新研究院基因表达调控平台三期仪器采购包4):合同包预算金额:3,550,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他仪器仪表分选型流式细胞仪1(套)详见采购文件3,550,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日二、获取招标文件时间: 2024年09月05日 至 2024年09月12日 ,每天上午 08:30:00 至 12:00:00 ,下午 12:00:00 至 16:30:00 (北京时间,法定节假日除外)地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:哈尔滨医科大学地址:黑龙江省哈尔滨市南岗区保健路157号联系方式:0451-866232802.采购代理机构信息名称:黑龙江省蓝图工程项目管理有限公司地址:黑龙江省哈尔滨市道里区群力第四大道1479号B3栋C单元23层1号联系方式:178005488423.项目联系方式项目联系人:黑龙江省蓝图工程项目管理有限公司电话:17800548842
  • 干细胞分化调控研究获进展
    近日来自美国乔治亚大学的一项新研究首次绘制出了一幅蓝图,揭示了干细胞是如何连接到一起对不断受到的外部信号分子做出响应的。这一研究发现使多年来自世界各地实验室相互矛盾的实验结果趋于一致,并使科学家们获得了精确调控干细胞发育或分化为特异细胞类型的能力。 文章的主要作者是乔治亚研究协会著名分子生物学学者、乔治亚大学富兰克林艺术与科学学院教授Stephen Dalton 。Dalton 表示:&ldquo 我们可以利用该研究中的信息作为指南书来调控干细胞的行为,这样就能够将这些干细胞以更有效和更加可控的方式分化为治疗细胞类型。&rdquo 举个过去的例子,某些信号分子单独作用就可激起一连串调控细胞命运的事件。从另一方面,Dalton的研究揭示了几种分子之间复杂的相互作用调控了一种重要的&ldquo 开关&rdquo ,决定了干细胞是维持自我更新状态或是分化为某种特殊的细胞类型,例如心脏、大脑或胰腺细胞等。 美国国家卫生研究院国立普通医学科学研究所干细胞生物学基金监管人Marion Zatz说:&ldquo 干细胞研究中面临的最大挑战之一就是如何调控干细胞转变为一种特异的细胞类型,这项工作涉及到了这一点。在这篇文章中,Dalton博士将几道谜题拼合到了一起,为了解多重信号通路如何协同作用操纵干细胞分化为特异的细胞类型提供了一个模型。这一研究不仅加深了对于胚胎发育的基础了解,还将推动再生医学中干细胞的应用。&rdquo 过去在干细胞分化研究中,科学家们对于一种称为Wnt的信号分子的作用持各种相反的观点。有一半发表的研究结果认为Wnt的作用是关闭分子开关,使干细胞维持在未分化状态。而另外一半的研究则提出了相反的结论。 那么相同的Wnt分子是否有可能导致双重结果?事实证明,答案确实是如此。Dalton发现少量的Wnt信号可使按细胞维持在多能状态,而大量的Wnt信号则起相反作用,促进细胞分化。 然而Wnt并非单独发挥功能。其他一些分子,诸如胰岛素样生长因子(IGF),成纤维生长因子(FGF2)和Activin A都能在其中发挥作用。这些信号分子相互放大彼此,使得在一种情况下放大2倍的信号,在另一种情况下被放大到10倍,从而使得情况变得更为的复杂。同时,信号进入的时机也会产生影响。 Dalton 说:&ldquo 让我们感到惊讶事情之一是所有这些信号均相互沟通。你不可能在调控IGF信号通路时不影响FGF2信号通路,你也不可能在调控FGF2信号通路不影响Wnt。它就像纸牌搭的房子,所有的一切完全是相互关联的。&rdquo Dalton和他的研究小组通过五年的艰辛努力,构建了一些关于这些信号分子如何发挥功能的假说,并对它们进行了验证。在面临着意料之外的结果时,他们不断重建假说,重复验证。持续这一过程直至解决了整个系统。 他们的研究发现使科学家们更深入地了解了干细胞分化第一步,Dalton相信相同的方法还可用于理解随胚胎内细胞分裂形成越来越特化的细胞类型,后续的发育步骤。
  • Nature | 陈婷组揭示成纤维细胞调控自身免疫疾病发生的机制
    常见的自身免疫性皮肤疾病具有区域性发病的特征。例如,超过80%的白癜风病人发病部位呈双侧对称分布,这种类型被称为非节段型白癜风(图1)【1,2】。在白癜风中,自体活化的CD8+ T细胞攻击黑色素细胞,导致皮肤出现白斑。全世界有0.5%到2%的人患有此病,但目前还没有获FDA批准的治疗方案。既往的研究表明, IFN-γ信号对CD8+ T细胞导致的皮肤脱色至关重要【3-6】;然而,介导IFN-γ功能的细胞类型尚不清楚。另外,针对白癜风区域性发病的假说包括微生物群分布的区域差异、黑色素细胞抗原的表达差异、以及神经末梢释放的神经肽的差异等【7-10】。阐明自身免疫病的发病特征的调节机制可以帮助开发有效的治疗方案。图1 白癜风病人呈现双侧对称发病的特征2021年12月16日,北京生命科学研究所/清华大学生物医学交叉研究院的陈婷研究员团队在Nature杂志上发表了题为 Anatomically distinct fibroblast subsets determine skin autoimmune patterns的研究论文,通过单细胞转录组测序、小鼠模型和一系列遗传学实验方法,揭示了皮肤成纤维细胞在白癜风疾病中的重要作用:成纤维细胞是唯一必需的能招募和激活自体活性CD8+ T细胞的皮肤细胞;不同部位成纤维细胞对IFN-γ的响应能力决定其招募CD8+ T细胞的能力,并决定白癜风的发病位置偏好。为了从细胞层面研究白癜风对称性分布的特征,作者首先对白癜风病人皮肤样本进行免疫荧光染色,发现CD8+ T大量聚集在皮损与非皮损区域交界处。根据这种CD8+ T细胞的分布模式,可以推测白癜风疾病发生过程中存在一种募集机制,在皮损交界处协调招募CD8+T细胞,使CD8+T细胞一直处在病变皮肤前沿,驱动脱色区域逐步扩大。通过单细胞转录组测序,作者发现白癜风病人皮肤中杀伤性CD8+ T细胞的比例比正常人高,且表达更高水平的IFNG。GO分析表明,病人黑色素细胞、成纤维细胞的特异性基因在IFN-γ信号通路上富集。对IFN-γ下游pSTAT1信号的免疫荧光染色发现,白癜风病人皮肤中超过80%的pSTAT1+细胞是成纤维细胞,以上结果说明成纤维细胞是白癜风病人中最主要的响应IFN-γ信号的细胞类型。为了进一步研究白癜风进展的调节机制,作者建立了一种白癜风小鼠模型。经过皮肤接种B16F10细胞和腹腔注射anti-CD4抗体,C57小鼠出现和白癜风病人类似的表征,包括表皮脱色、CD8+ T细胞聚集浸润和黑色素细胞丢失。研究发现,IFN-γ信号受体敲除的转基因小鼠 (Ifngr1 KO) 在经过相同的处理后,CD8+ T细胞的浸润较WT小鼠显著减少,表皮也未出现黑色素细胞缺失。这一结果说明,响应IFN-γ信号的细胞对于白癜风的发生和进展至关重要。那么,到底哪种细胞类型才是起到决定性作用的呢?其又是如何发挥功能的?陈婷团队接下来用多种实验手段证明,在白癜风疾病中,成纤维细胞通过CXCL9和CXCL10调控CD8+ T细胞的招募(图2)。首先,作者利用Cre-loxP系统分别在6种细胞类型中进行特异性地敲除Ifngr1。结果发现,成纤维细胞特异性敲除IFNGR1后,有效阻止白癜风发生。小鼠表皮浸润的CD8+ T细胞数目明显减少,且不影响黑色素细胞数目,也没有造成表皮脱色的现象;而其他条件性敲除小鼠均出现了白癜风表型。随后,作者通过成纤维细胞移植实验发现,在一个完全没有IFN-γ响应的皮肤局部环境中,只给予外来的能响应IFN-γ的成纤维细胞就足以介导局部CD8+ T细胞的招募和聚集。第三,Transwell实验发现成纤维细胞通过分泌因子招募激活的CD8+ T细胞。而与正常的成纤维细胞相比,趋化因子CXCL9,CXCL10 在白癜风病人和白癜风模型小鼠成纤维细胞中均有较高的上调。于是,研究人员在WT小鼠中利用慢病毒在真皮成纤维细胞中敲低Cxcl9或Cxcl10基因,发现敲低了趋化因子的成纤维细胞失去了对CD8+ T细胞的招募的能力。图2 成纤维细胞通过CXCL9/10调控杀伤性CD8+ T细胞的招募成纤维细胞存在部位异质性【11】,小鼠不同部位的成纤维细胞通过Hoxc基因调节Wnt信号通路调控了毛囊的再生【12】。但不同部位的成纤维细胞在调控免疫反应方面尚未有人研究。研究人员通过对2265例非节段型白癜风病人的分析发现,白癜风在不同部位的发病频率存在很大差异,其中手背、胸部发病率最高,而手掌和上肢发病率最低。同时,不同部位的成纤维细胞在IFN-γ处理后的表达谱变化也不尽相同,手背、胸部和背部的CXCL9、CXCL10上调倍数更高。进一步的相关性分析也说明发病率高的部位的成纤维细胞响应IFN-γ的程度也更高。此外,研究人员在白癜风小鼠模型中也发现了这一相关性。白癜风模型诱导后,小鼠背部和腹部毛囊中的黑色素细胞完全丢失,但爪背、掌心部位的黑色素细胞并未受到影响。且小鼠背部和腹部成纤维细胞在IFN-γ处理以后的Cxcl9、Cxcl10表达水平要比爪背、掌心高。于是,作者将来自WT小鼠背部和爪背的成纤维细胞移植到Ifngr1 KO小鼠上,结果发现,来自WT小鼠背部的成纤维细胞对CD8+ T细胞的招募能力更强。这些实验说明,不同部位成纤维细胞对IFN-γ的响应能力决定其招募CD8+ T细胞的能力,并决定白癜风的发病位置偏好(图3)。图3 成纤维细胞通过CXCL9/10调控杀伤性CD8+ T的招募综上所述,该研究首次发现成纤维细胞对皮肤自身免疫病的发生至关重要;同时对自身免疫疾病发生的调控存在区域差异性,不同部位的成纤维细胞因响应IFN-γ的程度不同,而导致了对T细胞招募能力的不同。成纤维细胞不仅仅存在于皮肤中,几乎所有的器官都有成纤维细胞的存在,该研究亦为其他器官自身免疫病的发生机制有所借鉴。北京生命科学研究所/清华大学生物医学交叉研究院陈婷研究员和北京医院常建民教授为该论文的共同通讯作者。北京生命科学研究所的徐子健和陈道明为共同第一作者。该论文的其他作者还包括首都师范大学的胡煜成副研究员,北京生命科学研究所的姜开菊、黄焕伟、杜营雪、吴文波、隋建华研究员,北京大学第三医院的王文慧医生、张龙医生,西京医院的李舒丽医生、李春英教授,中国医学科学院皮肤病研究所杨勇教授。原文链接:https://www.nature.com/articles/s41586-021-04221-8
  • 新型光场调控方案,实现大范围散斑眩光消除
    光学散射是指光在传播过程中与散射体相互作用,导致光线的方向和强度发生改变的现象。在复杂的光学系统中,光学散射可能会导致信息混叠和掩盖,从而阻碍光学信息的有效提取。为了解决这个问题,人们会使用各种技术手段来降低散射,提高信息提取的准确性和效率。在复杂的光学系统中,光学散射带来的信息冗杂主要表现于以下两个方面:(1)携带信息的光、在传播过程中与散射体相互作用导致的真实信息扰乱与混叠;(2)没有携带信息的光、依然以散斑炫光等方式进入光学成像系统,从强度上掩盖了携带信息的光信号。这两种情况都会阻碍光学信息的有效提取。近年来,人们已经通过光场调控技术对入射光场进行相位预补偿,实现了目标区域的光学干涉相消(即散斑眩光消除)。然而,由于当前的优化算法过于冗杂低效且准确度不够,实验中获得的散斑眩光消除效率远低于理论预期。此外,缺乏合适的物理模型及理论指导限制了可消除散斑眩光范围的面积。因此,在有限的调控模式下,如何高效地实现大规模散斑眩光消除是目前亟待解决的问题。为解决上述问题,中山大学电子与信息工程学院、广东省光电信息处理芯片与系统重点实验室的李朝晖、沈乐成研究团队提出了一种新型光场调控方案实现大范围散斑眩光消除。该方案可在400个调控模式下对于400个光学散斑(接近于实验中所用相机的全部有效成像范围)进行消除,总计算耗时不超过1秒。相关研究成果发表于Photonics Research 2022年第12期。研究团队以Gerchberg-Saxton(GS)算法为原型,搭建了经由双阶段GS算法迭代的大规模散斑眩光消除方案,称之为TAGS(Two-stage matrix-assisted glare suppression)。该方案可在直接强度测量条件下完成散斑传输特性的精准解析,进而实现大范围的散斑眩光消除。此外,该方案还巧妙地借助目标区域外随机生成的辅助传输矩阵来提高收敛准确性,使得该方案在实际应用中能够获得更高的鲁棒性。图(a)为双阶段GS消除方案示意图,图(b)为消除前的散斑图,图(c)为大范围散斑眩光消除后的图像。图(a)TAGS方案的原理示意图,其中粉色迭代圆环代表经由第一阶段GS算法迭代的传输矩阵测量,蓝色迭代圆环代表第二阶段GS算法迭代获得可用于眩光消除的调制波前;(b)、(c)大范围散斑眩光消除实验结果该文通讯作者之一沈乐成博士表示: “TAGS的优异特性使得我们可以大幅降低测量难度与计算复杂度,使得有限调控模式下的大规模散斑眩光消除成为可能。后续我们将基于该工作,进一步探索更加高效的基于传输特性解析的散斑眩光消除方法,开展多光谱的散斑眩光消除及成像应用。”
  • 代谢调控或成重大疾病诊疗突破口
    p   当前,糖尿病、肥胖、心血管疾病、脂肪肝等重大疾病严重影响了我国国民健康。对生命科学和医学科学研究者而言,深入研究这些重大疾病致病因素,将为疾病诊治提供重要的科学依据。 /p p   在近日召开的香山科学会议第605次学术讨论会上,生命科学领域的研究者和多名临床医生共商应对重大疾病的突破口。他们认为,阐明代谢调控的规律,揭示代谢紊乱的成因及其致病机理既是当前生命科学与医学研究的热点,也是关系国计民生的重大需求。 /p p    strong 代谢调控揭本质 /strong /p p   代谢,是生物体内化学反应的总称,是生命的基本特征之一。代谢调控则是细胞和机体的核心事件,它决定了细胞的生长、分化、功能维持、免疫反应、神经元的激活与记忆的储存、组织和器官发育等一系列关键性过程。 /p p   据此次会议执行主席、中科院院士、清华大学生命科学院教授李蓬介绍,代谢稳态调控也决定了各种具体代谢通路在不同细胞、组织、器官及不同发育阶段的选择性开启与关闭,及其在具体的生理及病理条件下如何受营养和激素等外界环境的影响。“揭示代谢紊乱的成因及其致病机理,既是当前热门的科学问题,也关系着我国重大疾病的预防和治疗。”李蓬表示。 /p p   当前,中国科学家聚焦糖脂代谢、膜脂代谢调控,营养物及代谢物感应及信号通路,内分泌因子与代谢调控等问题。“糖脂代谢调控平衡是生命体正常运行的基本前提,在重大代谢性疾病发生过程中,糖脂紊乱相伴相生、叠加协同。”会议执行主席、中国工程院院士宁光分析道。会议执行主席、中科院上海生化与细胞所研究员李伯良则指出,细胞膜是细胞内外环境的分隔屏障和交流窗口,其封闭性结构及其内外层脂质的不对称性分布和微结构形成是细胞功能发挥与调控的最关键基础。 /p p    strong 长达四十年的思考 /strong /p p   “40年前,我在上学时,肝病和糖尿病由不同的老师讲。”提起代谢,会议执行主席、中国工程院院士王红阳在报告中分享了一个40年来尚未完美解决的问题。讲授肝病和糖尿病分类时,王红阳的两位老师分别介绍了肝源性糖尿病和糖尿病性肝病。 /p p   作为学生的王红阳感到十分困惑:“到底是肝病引起了糖尿病,还是糖尿病引起了肝病?”直到她当了老师,这个问题依然没有答案。 /p p   最近,肝病与糖尿病之间的关系有了新视角。“基于流行病学调查,我们发现,糖尿病是肝病的诱因之一。”王红阳在会议报告中表示。代谢异常则被视为根本原因。“胰岛素抵抗、糖尿病、过度肥胖与脂肪性肝病、肝纤维化、肝硬变和肝癌的发生是密切相关的。”她强调。 /p p   肝病是我国发病率较高的疾病之一,被称为“国病”。据统计,全球50%以上的肝癌发生在中国。对此,临床医生期待,医学科学家尽快以代谢机制为视角,开展相关基础研究,这将帮助人们从本质上认识以肝病为代表的重大疾病。 /p p    strong 关键科学问题待解 /strong /p p   随着生命科学领域新技术、新方法的发展,代谢可塑性、代谢记忆、细胞应激、代谢性炎症、细胞间相互作用、器官间对话、肠道菌群、肿瘤的代谢致病性等问题也逐渐成为代谢领域的热点前沿。 /p p   与会科学家表示,尽管代谢领域研究已经取得突破,但诸多关键科学问题仍然亟待解决。“代谢途径的限速步骤及关键酶已基本清楚,但这些酶及代谢网络的调控机理,外界营养、环境、应激及代谢中间产物对代谢网络调控等还不清楚。”李蓬表示,“还有一些关键分子机制和致病机理有待阐明。” /p p   在糖脂代谢中,糖代谢紊乱与脂代谢紊乱的源头尚不清晰。“在单一或联合治疗过程中,二者间的同步或继发变化亦不得而知。”宁光认为,“深入探索糖脂代谢的分子基础、基本规律、病理生理过程,是当前我国医学领域亟待解决的重大科学问题。” /p p   与会科学家还期待,未来代谢研究能实现从分子水平向网络化的互作集成、从认识分子作用机制向设计构建新生物体系、从基础研究向应用科学等方面纵深质变,提高应对重大疾病的能力。 /p p /p
  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 功能与寿命可调控农膜研究取得进展
    p style=" text-align: justify " & nbsp & nbsp 近日,国家重点研发计划项目“功能与寿命可调控的农用覆盖材料低成本制造技术与产业化”执行年度工作进展汇报会在长春召开。该项目取得多项重要进展,我国农膜研发与应用正在朝多功能、长寿命、可调控、低成本、能降解、专用型方向发展。 /p p style=" text-align: justify " & nbsp & nbsp 我国农膜生产和使用量均为世界第一,在发展设施农业、提高资源利用率、实现周年优质高效生产等方面发挥着越来越重要的作用。作物生长需要的兼具多功能、长寿命、专用型大棚膜较少,可生物降解地膜生产成本偏高,产品功能与作物需求不匹配、难调控等突出问题,制约着相关应用。围绕这些问题,由山东农业大学牵头,中国科学院长春应用化学研究所、浙江大学、北京华盾雪花塑料集团有限公司和华中科技大学等16家单位共同开展了“功能与寿命可调控的农用覆盖材料低成本制造技术与产业化”研究,团队科研人员开展产学研用协同创新,取得了良好成效。 /p p style=" text-align: justify " & nbsp & nbsp 长春应化所科研人员通过定制棚膜专用料,突破了长寿命、高接枝、双光效、强化涂覆协同增效以及低成本制造等关键技术,新产品系统调控了棚膜的流滴、消雾、防尘、调光等功能,技改6000吨/年节能高效棚膜生产线,产品部分关键指标超过国外同类产品。科研人员探明甜椒、番茄、茄子等作物栽培光质需求,开发的茄果类蔬菜专用棚膜改善作物品质,提高产量10-30%。成果已推广至国内5家企业,新产品在10个省、市示范应用8万多亩。 /p p br/ /p
  • 中国科大揭示光感知调控血糖代谢的神经机制
    对栖息于这颗蓝色星球上的生命而言,光是一切生命产生的源动力,也是生命体最重要的感知觉输入之一。同时生命体根据外界环境条件控制体内营养物质的代谢平衡是生存的必须,而代谢紊乱会产生严重疾病,哺乳动物已经进化出了精确和复杂的调控网络用于持续动态调控血糖代谢。大量公共卫生调查显示夜间过多光源暴露显著增加肥胖和糖尿病等代谢疾病风险,那么光作为最重要的外部环境因素,其是否直接调控血糖代谢?其中涉及哪类感光的细胞、何种神经环路以及外周靶器官,这些方面的问题一直没有得到解答。   1月20日,中国科学技术大学生命科学与医学部教授薛天研究团队在《细胞》(Cell)上,在线发表了题为Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis的研究成果。该工作发现了光直接通过激活视网膜上特殊的感光细胞,经视神经至下丘脑和延髓的系列神经核团传递信号,最终通过交感神经作用于外周的棕色脂肪组织,直接压抑了机体的血糖代谢能力。值得指出的是,这项工作不但在小鼠动物模型上系统回答了光调节血糖代谢的生物学机理,在人体试验上也发现了同样的现象,显示光调节血糖代谢可能广泛存在于哺乳动物界。   研究人员首先对小鼠和人执行葡萄糖耐受性检测(GTT),发现数个小时的光暴露显著降低了人和鼠的血糖耐受性。哺乳动物光感受主要依赖于视网膜上的各类感光细胞。除了经典的视锥(Cones)视杆(Rods)细胞介导图像视觉感知之外,光也能直接激活视网膜上的第三类感光细胞视网膜自感光神经节细胞(ipRGC),它依靠自身表达的视黑素(Melanopsin)对波长靠近480nm的短波长蓝光敏感。ipRGC支配诸多下游脑区进而调控如瞳孔对光反射、昼夜节律、睡眠和情绪认知功能。光降低血糖耐受性通过何种感光细胞介导?通过基因工程手段,研究人员逐一使视网膜各类感光细胞丧失感光能力,发现光诱发血糖不耐受由ipRGC感光独立介导(图1)。   接着研究人员进一步探究视网膜至脑内的哪些核团参与光调节糖代谢。下丘脑是调控机体代谢的重要区域,其中与ipRGC有较密集连接的是下丘脑视交叉上核SCN和视上核SON核团。已知数周异常光照模式能够通过影响节律中枢SCN,造成生物钟节律失调,进而间接影响到血糖代谢功能。研究人员分别损毁或利用化学遗传手段操控ipRGC投射的SCN和SON核团,发现了光急性降低血糖耐受性这一过程独立于生物钟节律系统,而由ipRGC-SON的神经环路直接介导(图1)。   结合大量神经环路示踪和操控手段,研究人员进一步发现ipRGC→SONOXT(视上核内催产素(Oxytocin)能神经元)→SONAVP(SON内抗利尿激素(Vasopressin)能神经元)→PVN(下丘脑室旁核)→NTSVgat(孤束核的GABA能抑制性神经元)→RPa(中缝苍白核)这样一条脑内六级长程神经环路介导光降低血糖耐受性(图1)。   光影响血糖代谢必然通过外周血糖代谢的器官来执行,考虑到在环路水平上光降低血糖耐受通过中缝苍白核RPa,该核团是调节棕色脂肪组织(BAT)活性的交感前运动神经的主要部位。因此研究人员将研究锁定在棕色脂肪组织,而棕色脂肪组织的重要作用之一是代谢葡萄糖或脂肪,直接产热以维持体温稳态。研究人员发现光能显著压抑棕色脂肪组织的温度,进一步通过阻断交感神经对棕色脂肪组织的投射、以及利用热中性环境温度压抑棕色脂肪组织活性的手段,确定了光降低血糖耐受性是通过压抑脂肪组织消耗血糖的产热所导致(图1)。   夜行性的小鼠和昼行性的人类在诸多光调控的生理过程中表现既有相反也有相同的效应。光是否同样降低人的血糖耐受?研究人员分别使用ipRGC敏感的蓝光与ipRGC不敏感的红光,测试人在不同波长光线照射下的血糖耐受性。结果显示在蓝光照射下人的血糖耐受性显著下降。进一步研究人员将被试者处于热中性温度环境中(热中性温度下棕色脂肪组织活性被压抑)进行了血糖耐受性测试,结果显示光不再压抑血糖耐受。上述实验提示光降低人的血糖耐受性可能也是由ipRGC感知光线且通过影响棕色脂肪组织的活性所介导(图2)。   对这项工作的几点启示:   Nothing in biology makes sense except in the light of evolution,光压抑血糖代谢这一神经生理功能可能用于动物快速响应不同太阳辐照条件,以维持体温稳态。在户外环境中太阳光可以为动物提供大量的热辐射,这可以满足部分的体温维持需求,而在动物进入洞穴或树荫等诸多太阳光辐照显著降低的环境中时,机体就需要迅速响应这种辐照减少带来的热量输入损失。光通过这条“眼-脑-棕色脂肪”通路快速减低脂肪对葡萄糖的利用以降低产热,在光辐照减少的时候,棕色脂肪不再被光压抑,快速代谢血糖来维持体温稳态。   冷暖光也许并非单纯心理作用,可能存在生理基础。日常生活中短波光环境(蓝)让人感觉到凉爽,而长波光环境(红)让人觉得温暖,因此它们才被赋予了冷暖光的定义。冷暖色一直被定义为心理上的冷热感受。这项研究发现对短波长光敏感的ipRGC在蓝光下压抑脂肪组织产热,而在红光下脂肪组织处于活跃状态。因此我们在进入蓝光环境下产生的那种“冷”的感觉,有可能是由于脂肪产热被压抑而产生的真实感受。 这条光调控脂肪组织活性的环路可能是心理上冷暖光的生理结构基础。   工业化时代的代谢疾病—人造光源增加机体代谢负担。该项工作在人体的研究结果显示,昼夜节律会造成夜间人体的糖代谢能力相较白天更低,而光压抑血糖代谢是直接叠加在节律造成的夜间血糖代谢能力下降之上的(图2)。因此在夜间同时有光暴露的条件下,人体血糖代谢能力最差。工业化社会中,人类长时间的在夜间暴露于人造光源之下,加上现代人夜间饮食习惯给机体带来双重代谢负担进而可能诱发代谢疾病。大量公卫卫生学证据已经证实了这一点,最近瑞金医院宁光院士团队涉及近10万人的研究显示,夜间长期暴露于人造光下会增加血糖紊乱及糖尿病的患病风险。   这项光调节血糖代谢的机制研究,提示现代人健康生活应关注光线环境的健康,针对夜间光污染造成的罹患代谢疾病风险提高,应考虑生活环境中夜间人造光线的波长、强度和暴露时长。这项工作发现的感光细胞、神经环路和外周靶器官可为将来干预此过程提供潜在靶点。   研究工作得到国家自然科学基金、科技部、科学探索奖、中科院稳定支持基础研究领域青年团队项目、中国科大等的支持。合肥学院科研人员参与研究。图1.在小鼠上,光激活ipRGC-SONOXT-SONAVP-PVN-NTSVgat,压抑RPa和支配脂肪的交感神经,进而压抑棕色脂肪产热降低血糖耐受性。图2.在人上,光可能通过同样的神经环路机制压抑棕色脂肪产热降低血糖耐受性。相较于白天,夜晚人的血糖耐受性更低。
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 机械力调控B淋巴细胞免疫活化研究获新进展
    p   2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase)的研究论文,报道了机械力感知能力调控B淋巴细胞免疫活化的精细分子机制。清华大学生命学院巴基斯坦籍博士生萨明娜(Samina Shaheen),北京大学、清华大学和北京生命科学研究所联合培养博士研究生项目博士生万政鹏和生命科学学院本科生李宗昱是本文的共同第一作者,刘万里研究员为本文的通讯作者。 br/ /p p   本研究需要大力整合分子免疫学、细胞生物学、生物化学、新型材料科学、高精度活细胞成像和生物物理学等不同学科的交叉优势,涉及基因修饰小鼠脾脏B细胞和自身免疫疾病病人外周血B细胞等实验材料的广泛使用,在研究过程中得到了国内外同行的大力支持。 /p p   B淋巴细胞作为抗体免疫应答过程中的重要参与者,维系着人类的健康,B淋巴细胞的免疫活化进程在其质膜表面的B细胞受体(BCR)识别外来病原体抗原后启动。该课题组之前的工作揭示B淋巴细胞具有灵敏的机械力感知功能,利用B细胞受体(BCR)来精确地识别抗原的理化性状。该论文结合不同刚性抗原呈递基质系统和基于全内反射、共聚焦荧光显微镜的高速高分辨率成像系统,对机械力感知调控B淋巴细胞免疫活化的分子机制进行系统而全面的研究。该论文发现B淋巴细胞感受机械力调控其活化依赖于B细胞受体(BCR)下游信号分子。由佛波酯(PMA)诱导的蛋白激酶Cβ(PKCβ)激活可以绕过B细胞通常需要的酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)信号分子来区分底物刚度。然而,这一过程依赖于由蛋白激酶Cβ(PKCβ)介导的黏着斑激酶(FAK)激活,进而表现出黏着斑激酶(FAK)介导的B细胞扩散和粘附反应的增强。黏着斑激酶(FAK)失活或缺陷将导致B细胞丧失鉴别基底刚性的能力,而粘附分子可以大大增强B细胞的这种能力。最后,该研究利用类风湿性关节炎患者的样品进行研究,发现与健康人相比,类风湿性关节炎患者的B细胞对基底刚度表现出不同的活化反应。这些发现更系统的提供了B细胞如何通过蛋白激酶Cβ(PKCβ)介导黏着斑激酶(FAK)激活的方式区分底物刚度并作出不同活化反应的分子解释。这些研究成果为B淋巴细胞的免疫识别、免疫活化和免疫调节研究提供了新的研究思路,帮助人们进一步理解自身免疫疾病,从而对探索相关疾病的致病机理、以及药物疫苗研发等重要工作提供新的理论依据。 /p p   刘万里研究员课题组一直致力于使用新型的高速高分辨率的活细胞单分子荧光成像技术结合传统的分子免疫学、生物化学和生物物理学研究手段,对B淋巴细胞的免疫活化及相关疾病的分子机制进行研究。继2013年在《免疫学杂志》(Journal of Immunology),2015年在《欧洲免疫学杂志》(European Journal of Immunology)和《eLife》上发表B淋巴细胞的免疫活化受到机械力调控的相关论文后,这一新成果是他对该领域的又一贡献。该研究由国家自然科学基金委、科技部和青年千人计划提供经费支持。萨明娜(Samina Shaheen)受到中国政府奖学金项目的支持。(来源:清华大学生命科学学院) /p p   论文链接: a href=" https://elifesciences.org/articles/23060" _src=" https://elifesciences.org/articles/23060" https://elifesciences.org/articles/23060 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/e71fa001-dac6-4706-bca7-5f946b9f1f18.jpg" title=" 1.jpg" / /p p   蛋白激酶Cβ(PKCβ)和黏着斑激酶(FAK)协同调控B淋巴细胞的免疫活化对呈递抗原基质硬度的敏感性 /p p br/ /p
  • 我国科学家团队在大脑神经调控与读取技术方面取得新进展
    脑科学的核心目标是解析神经电活动如何控制大脑的功能以及脑疾病的神经机制。要实现这些目标,需要精准调控与读取特定神经环路的电活动信息。近日,我国科研团队在高精度神经调控与读取技术取得新进展,相关内容以题为“Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology”发表在《Nature Communications》杂志。  该团队构建了一种多功能柔性神经电极技术,同步实现了大脑中基因载体的精准递送、长期光遗传学调控和神经电生理记录。基于弹性毛细自组装原理,研究人员将高通量柔性神经电极和光导元件在含有光遗传基因载体的聚合物液体中进行自组装,得到了体积只有纳升级别的多功能柔性神经电极。研究发现,这种多功能柔性神经电极能够实现基因载体在电极-神经界面的高效递送和表达。基于此,研究人员利用多功能柔性神经电极将光遗传蛋白精准表达在电极-神经界面100微米范围内,从而确保了光遗传调控神经元集群和电生理记录神经元集群在空间上高度一致。进一步利用柔性神经电极良好的生物相容性,实现了对大脑神经元电活动长达三个月以上的稳定读取与调控。  多功能柔性神经电极技术能够同步实现大脑中基因载体的精准递送、光遗传调控和长期神经电生理记录,在神经环路的精准解析和脑机接口等方面具有重要的应用前景。   论文链接:https://www.nature.com/articles/s41467-021-26168-0  注:此研究成果摘自《Nature Communications》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 国家自然科学基金原创探索计划项目“复杂体系多维表征技术与调控方法”(2022)项目指南
    为贯彻落实党中央、国务院关于加强基础研究的重要战略部署,进一步强化原始创新,推动学科交叉,积极应对科学研究范式变革,国家自然科学基金委员会(以下简称自然科学基金委)基础科学板块内化学科学部和数理科学部拟资助“复杂体系多维表征技术与调控方法”原创探索计划项目(以下简称原创项目)。  现代表征技术的不断发展和应用,逐步加深了人们对分子结构和特性、化学反应过程与机制的理解。现有技术已将单一维度、单一特性的表征推向了化学极限水平,对研究连续介质的强键相互作用及其光电响应特性提供了强有力的手段。当前,迫切需要发展具备精准测量多维度、多物理特性、多位点协同的表征技术,解析工况条件下界面微结构和动力学演化规律,揭示分子内(间)弱键体系多位点、多类型、多层次量子关联与协同效应,实现电子自旋和核自旋效应对物理化学过程的精准调控,为解决能源、环境、生物、信息等领域的重大科学和应用难题提供有效的工具。本项目旨在通过发展基于新原理,具备高空间、时间、能量分辨的多维复合表征技术,建立多维度集成、智能化的研究方法,为复杂体系的精确解析提供新方法和新技术,推动物质科学的变革性创新发展。  一、科学目标  本项目聚焦复杂非连续介质的多维表征与调控技术,通过发展多维表界面实验方法以及非连续介质(相)的微观理论方法,实现对气液界面、固液界面、固固界面等体系微尺度结构和动力学过程的高分辨探测与微观解析。建立和发展时空超高分辨多维及联用精准测量和表征新技术,建立新型弱键作用模型和调控机制,建立多维度集成、智能化的调控新策略和新模式。通过新结构分子(含分子聚集体)的构建,实现电子自旋态的精准、高效、相干操控,揭示电子自旋以及核自旋在化学反应中的作用和规律。  二、核心科学问题  非连续介质、弱键协同相互作用、电子与核自旋调控的微观原理;复杂体系动力学演化过程的多维高分辨复合测量技术;新型弱键与自旋体系构建。  三、资助方向  1. 界面微尺度研究方法  发展精确描述非连续介质(相)的微观理论和计算方法,发展具有三维空间高分辨能力的表固界面探测技术,发展固液、固固界面体系的原位表面探测技术,实现对隐藏界面的有效探测与动力学表征及表面科学研究从真空体系到工况体系的跨越。  2. 弱键相互作用的高分辨研究方法  发展高精度、高分辨、高灵敏度弱键作用力的精密测量方法,实现多尺度下多技术联用、智能化、原位、动态的多维磁共振及光谱测量,研究弱键相互作用量子关联以及协同演化的物理化学基本规律,揭示活细胞中关键生物分子特异性识别、构象及转化的机制,建立多路径、多步骤、多级次弱键相互作用协同演化过程的高效调控策略和实验方法,拓展化学或生命体系的新功能。  3. 自旋调控  发展单分子电子自旋态的精密测量和相干操控新方法,发展化学结构精准调控的室温铁磁半导体,揭示电子自旋以及核自旋调控化学反应的微观机制。  四、资助期限和资助强度  本原创项目资助期限为3年,申请书中研究期限应填写“2023年1月1日—2025年12月31日”。项目平均资助强度为300万元/项,资助经费总强度约为1800万元。  五、申请要求  (一)申请资格  具有承担基础研究项目(课题)或其他基础研究经历的科学技术人员均可提出申请。  (二)限项申请规定  1. 申请人同年只能申请1项原创项目(含预申请)。  2. 原创项目从预申请开始直到自然科学基金委作出资助与否决定之前,不计入申请和承担总数范围;获资助后计入申请和承担总数范围。  3. 应符合《2022年度国家自然科学基金项目指南》中对申请数量的限制。  六、申请程序  (一)预申请  1.预申请提交时间为2022年5月9日-5月13日16时,以信息系统提交时间为准,逾期不予受理。  2.请申请人登录国家自然科学基金网络信息系统(以下简称信息系统)https://isisn.nsfc.gov.cn撰写预申请。无信息系统账号的申请人请向依托单位基金管理联系人申请开户。在信息系统“申请与受理”菜单下,点击“原创项目预申请”,进入预申请填写页面,选择“指南引导类”,附注说明选择“复杂体系多维表征技术与调控方法”,申请代码1选择化学科学部或数理科学部相应的申请代码,申请代码2根据项目研究所涉及的领域自行选择相应学科申请代码。以上选择不准确或未选择的项目申请不予资助。  3.预申请主要阐述所提学术思想的原创性、科学性和潜在影响力,字数控制在2000字以内。另外,申请人还须在“与指南所列研究方向的吻合性”中注明申请针对的本指南所列资助方向的名称。申请人按照信息系统中的有关提示填写预申请相关内容后直接提交至自然科学基金委。  4.自然科学基金委受理预申请并组织审查。审查结果和正式申请提交截止时间将以电子邮件形式反馈至申请人。  (二)正式申请  1. 预申请审查通过的申请人,应按照“专项项目-原创探索计划项目正式申请书撰写提纲”要求填写正式申请书。正式申请的核心研究内容应与预申请一致,并要求在正式申请书正文的第一句明确写明申请项目所对应的本指南所列资助方向。  2. 原创项目一般由1个单位承担,确有必要进行合作研究的,合作研究单位不得超过2个。  3. 申请人应当按照《国家自然科学基金资助项目资金管理办法》等相关规定和《国家自然科学基金项目资金预算表编制说明》的具体要求,按照“目标相关性、政策相符性、经济合理性”的基本原则,认真编制《国家自然科学基金项目预算表》。  4. 本原创项目采用无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目申请接收截止时间前通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定时间内按要求一并提交。  七、注意事项  (一)资助项目信息公布  自然科学基金委将在官方网站公布资助原创项目基本信息。  (二)项目实施保障  原创项目负责人应将主要精力投入原创项目的研究中;依托单位应加强对原创项目实施的监督、管理和服务,减轻项目负责人不必要的负担,为项目研究提供必要的制度和条件保障。  (三)其他  原创项目申请与资助不设复审环节。  自然科学基金委将把相关项目负责人项目执行情况和评审专家的评审情况计入信誉档案。  (四)咨询方式  1. 填报过程中遇到的技术问题,可联系自然科学基金委信息中心协助解决,联系电话:010-62317474。  2. 其他问题可咨询  化学科学部综合与战略规划处:黄艳,电话:010-62329320  数理科学部综合与战略规划处:张攀峰,电话:010-62326910
  • 量子调控计划重大项目获准立项 张卫平为首席科学家
    日前,华东师范大学物理系系主任、精密光谱科学与技术国家重点实验室长江学者张卫平教授领衔的研究团队继2006年获得国家重大科学研究计划——量子调控计划首批项目后,今年联合山西大学、吉林大学、清华大学、复旦大学、中国科学院武汉物理与数学研究所等单位再度申请量子调控计划的重大项目“冷原子分子系综的量子调控和量子信息技术”。经科技部组织专家组的严格审核,再次获准立项。张卫平教授也再次成为该计划项目的首席科学家。两次项目的研究总经费累计达4000多万元。   新项目旨在前期研究的基础上,瞄准国家重大战略需求,围绕冷原子、分子体系的量子调控这一核心,开拓原子、分子量子态物质的制备、新奇量子态的可控构造、光子-物质量子界面的量子保真转换与操控、基于原子分子量子态调控的量子信息处理与高精密测量的原理与技术等方面的关键科学问题的研究与探索,力争在科学创新与关键核心量子技术的发展方面取得新的突破。   该项目从2011年初正式启动。
  • 苏州大学李盛亮教授团队合作:近红外光远程调控钙通道与肿瘤治疗
    钙离子是一种重要的细胞信号,在生物发育生长以及生理响应等多个过程中扮演举足轻重的角色。钙信号一直是生物学以及医学科学家的重点研究对象,而且钙信号与多种人类重大疾病的发生与发展密切相关。在过去的几十年时间,科学家们一直试图调控钙信号从而达到对生物过程的有效控制,以及实现对疾病的精准治疗。近十年以来涌现了主要包括光遗传学在内的新兴技术应用于在体与离体钙信号调节,并取得了一系列重要的研究成果。但是,该类方法仍在创伤以及安全性等方面存在一定程度的缺陷和问题,影响了该技术的进一步使用。因此,如何远程无创、安全有限的深层组织内钙信号调控仍是当前的重大挑战。苏州大学药学院李盛亮教授与河北工业大学邢成芬教授合作在Nano Letters上发表了题为“Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy In Vivo”的研究论文,发展了一种近红外响应性多功能性纳米载体系统应用于细胞钙离子通道的调控以及钙级联介导的肿瘤细胞死亡,实现了高效、安全地活体肿瘤模型的肿瘤清除治疗效果。苏州大学药学院李盛亮教授与河北工业大学邢成芬教授是论文的通讯作者。近年来,苏州大学李盛亮团队通过调控近红外光学治疗药物的分子结构与构效关系,发展了一系列具有高效光治疗活性与发光性能的药物体系与载体系统,从而实现了高性能的近红外肿瘤诊疗联合作用(Adv. Mater. 2022, 34, 2201263 Adv. Mater. 2021, 33, 2102799 Adv. Mater. 2020, 32, 2001146 Angew. Chem. Int. Ed. 2021, 133, 11864 ACS Nano 2020, 14, 13681 ACS Nano 2020, 14, 9917 ACS Nano 2019, 13, 12901 Adv. Sci. 2021, 8, 2003972 Mater. Horiz. 2021, 8, 571 Chem. Sci. 2020, 11, 888)。在上述工作基础上,该团队近期与河北工业大学邢成芬教授合作,构建了基于近红外光敏剂的多功能纳米载体,实现了钙离子通道的调控以及钙级联介导的肿瘤细胞死亡。该研究首先建立了一种负载TRPM2质粒的多功能纳米载体,该载体系统在红外光照射下一方面可以通过二硒键的响应性断裂释放TRPM2质粒从而增强TRPM2在肿瘤细胞中的表达,另一方面近红外光产生活性氧物种可激活活性氧敏感的钙通道蛋白TRPM2开启,引发钙内流以及钙信号相关的信号通路级联反应,包括线粒体损失以及抑制早期自噬等。电生理实验进一步证实了近红外光远程、反复式的钙信号调控性能。静脉注射后,近红外二区发光成像证实该载体系统可在肿瘤部位有效蓄积。与此同时,该低剂量近红外光照射启动的钙离子信号以及级联反应可实现高效的抗肿瘤治疗活性,且具备良好的生物安全性。图1. 近红外响应性多功能性纳米载体系统的设计原理及工作机制该研究的意义在于,利用近红外光敏剂的多功能纳米载体系统功能化策略,实现了同时递送基因与钙信号调控功能,发展了一种新型的近红外激活活性氧敏感的钙通道调控策略,为离子通道调控与抗肿瘤治疗提供了新的思路。
  • 中山大学研究团队在光场调控克服活体动态散射方面取得重要进展
    中山大学电子与信息工程学院、光电材料与技术国家重点实验室的李朝晖、沈乐成团队提出了一种可在强散射动态活体内实现光学聚焦的波前整形技术。该技术结合时间反演超声编码原理,能够在相机单次曝光的条件下实现散射光场的重新聚焦,平均单模式调控时间可降低至29 ns。该团队利用该系统成功演示了穿透约5.1 mm厚度的活体成年斑马鱼的动态聚焦过程。该工作以“High-speed single-exposure time-reversed ultrasonically-encoded (TRUE) optical focusing inside dynamic scattering media”为题发表在了Science Advances。在生物光子学中,光在散射组织内的聚焦能力对于光学成像、光学控制以及光学治疗等领域具有至关重要的意义。然而,生物组织中折射率的不均匀性会造成光的散射,导致光在生物软组织内的聚焦深度被限制在了约1毫米左右。为了解决这一难题,波前整形技术通过空间光调制器等器件对入射光场进行相位预补偿,结合超声引导星在生物组织内提供的对比度机制,能够克服散射效应实现组织内的光学聚焦。然而,生物活体存在的呼吸、血流、心跳等动态生理过程限制了波前整形系统的有效调控时间窗口。因此,缩短整形系统中的平均单模式调控时间,对于面向生物活体应用的波前整形技术极为迫切。针对上述难题,该研究团队设计了一种可对抗动态活体散射的高速波前整形系统,如图1所示。该系统利用聚焦的超声波作为引导星,同时通过在空间光调制器上预加载四进制相位编码掩模,使得相机只需要单次曝光便可以通过高效的算法完成相位的准确提取。此外,该系统利用GPU对数据进行并行处理,使得对于具有百万像素的相位重构时间缩短至1.3 ms。通过上述技术,所研发的高速波形整形系统能够在8.1 ms内完成5.2×105个有效空间模式的完整调控,平均单模式调控时间约为29ns,较之前最快的系统提升了3倍多。图1 (A) 可对抗动态活体散射的高速波前整形系统示意图;(B) 待测散射光场散斑图; (C) 四进制相位编码掩模; (D) 重建后的相位图。 通过该系统,研究人员成功演示了穿透约5.1 mm厚的活体成年斑马鱼的动态聚焦过程(图2)。该工作展示了高速单次曝光的动态散射介质内部光聚焦系统在生物活体内部聚焦时的优越性能,为波前整形技术在活体生物组织的生物医学应用迈出了重要一步。 图2(A)系统在约5.1 mm厚的活体成年斑马鱼的聚焦演示实验;(B)相机拍摄到的内部焦点。
  • 科学仪器助力中国科大揭示核仁腔的组成和调控机制
    1898年,国外科研人员在用显微镜观察软体动物生发泡的时候,在核仁里发现了一个新的结构,他们将其命名为核仁腔。随后100多年里,研究者对它的认识仍十分有限。近日,中国科大光寿红/冯雪竹团队在《细胞报导 Cell Reports》杂志上发表文章,该研究以模式生物秀丽隐杆线虫为模型,首次揭示了核仁腔中含有大量的核质蛋白以及核糖体RNA中间体参与核仁腔的调控。  核仁是由rDNA、RNA和蛋白质交织在一起的复杂多层凝聚体,从内到外依次分布着纤维中心(FC)、致密纤维成分(DFC)、致密纤维成分外围(PDFC)和颗粒成分(GC)四个亚区室。除此之外,各种动植物细胞的核仁中还广泛存在一个与上述四个区室迥然不同的保守亚区室——核仁腔。  通过微分干涉相差显微镜和荧光显微镜,课题组在野生型秀丽隐杆线虫的细胞核仁中观察到核仁腔的存在,并发现核仁腔具有组织特异性和发育时期特异性的特点。随后,通过对一系列荧光蛋白标记的细胞核和核仁定位蛋白质的观察,发现核仁腔的组分有别于已知的核仁亚区,其并不包含定位于核仁的核糖体RNA转录和加工因子,而是储存了大量的核质定位蛋白。  最后,通过大规模的反向遗传学筛选,发现了第一类,而非第二类,核糖体大亚基加工和组装蛋白的异常会诱导核仁腔的形成,而核糖体小亚基加工和组装的异常则不会导致核仁腔的生成。进一步的实验证明,核仁腔的形成伴随着27SA2rRNA的显著富集。而喂食线虫RNA转录抑制剂放线菌素D可以有效地抑制27SA2rRNA的富集,同时抑制核仁腔的形成。该研究还解析了27SA2rRNA调控核仁腔形成的遗传学通路,发现两个保守的RNA结合蛋白FIB-1和NUCL-1在27SA2rRNA的下游,参与核仁腔的形成。
  • 基于微尺度3D打印制备的仿生功能表面在力场调控下实现黏附自清洁
    是什么让蜘蛛侠能够飞檐走壁?又是什么让年逾50的阿汤哥只身一人攀爬世界第一高楼——哈利法塔?尽管这些是科幻电影中的片段,但现实生活中早已有活生生的例子:壁虎。该生物不仅在洁净基底上具有超强黏附力,同时在沾满灰尘的表面依旧能够自由爬行,表明其黏附系统具有“自清洁”功能。有研究指出,壁虎之所以具有如此优异的功能是因为其脚趾具有成千上万的铲状绒毛。图1.壁虎脚掌黏附系统的结构近日,受壁虎行为启发,北京理工大学先进结构技术研究院的陈少华教授课题组提出了一种仿生微柱功能表面通过力场调控实现自清洁功能的研究。该自清洁功能表面是结合微尺度3D打印技术(nanoArch P140,摩方精密)制备得到,其在颗粒筛选、运输等领域具有重要的应用前景。研究成果以“Self-Cleaning Performance of the Micropillar-Arrayed Surface and Its Micro-Scale Mechanical Mechanism” 为题发表在国际知名期刊《Langmuir》上。该研究工作由北京理工大学先进结构技术研究院博士生安华贞完成。图2. 微柱阵列表面的实验制备工艺如图(a)所示,首先通过微尺度3D打印技术(nanoArch P140,摩方精密)打印出光敏树脂微孔阵列模具,然后倒模获得PDMS微柱阵列表面;(b)微孔模具的激光共聚焦俯视图;(c)微柱阵列表面的激光共聚焦三维结构图,其中,微柱直径、高以及两微柱中心距分别为180μm、550μm、280μm,该微柱的大小与3D打印的微孔模具相同;(d)微柱阵列表面的侧视图。图3.微柱功能表面在Load-Pull接触过程下的自清洁性能通过微尺度3D打印技术结合模板复制工艺制备出微柱阵列表面,在施加Load-pull的加载条件下研究了接触压力、颗粒尺寸等因素对微柱阵列表面自清洁行为的影响,并分析了其中的微观力学机制。研究结果发现,微柱阵列表面实现自清洁的主要微观力学机制为:在接触压力的作用下,颗粒与微柱的接触状态由黏附状态改变为易清洁的沉积状态。此研究不仅有助于深入理解微柱阵列表面的自清洁机理,而且为自清洁功能化表面的设计及微颗粒的可控粘附与输运等提供技术支持。图4.微柱阵列表面对不同尺寸颗粒的自清洁性能及微观机理官网:https://www.bmftec.cn/links/10
  • 基于微尺度3D打印制备的仿生功能表面在力场调控下实现黏附自清洁
    是什么让蜘蛛侠能够飞檐走壁?又是什么让年逾50的阿汤哥只身一人攀爬世界第一高楼——哈利法塔?尽管这些是科幻电影中的片段,但现实生活中早已有活生生的例子:壁虎。该生物不仅在洁净基底上具有超强黏附力,同时在沾满灰尘的表面依旧能够自由爬行,表明其黏附系统具有“自清洁”功能。有研究指出,壁虎之所以具有如此优异的功能是因为其脚趾具有成千上万的铲状绒毛。图1.壁虎脚掌黏附系统的结构近日,受壁虎行为启发,北京理工大学先进结构技术研究院的陈少华教授课题组提出了一种仿生微柱功能表面通过力场调控实现自清洁功能的研究。该自清洁功能表面是结合微尺度3D打印技术(nanoArch P140,摩方精密)制备得到,其在颗粒筛选、运输等领域具有重要的应用前景。研究成果以“Self-Cleaning Performance of the Micropillar-Arrayed Surface and Its Micro-Scale Mechanical Mechanism” 为题发表在国际知名期刊《Langmuir》上。该研究工作由北京理工大学先进结构技术研究院博士生安华贞完成。原文链接:https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01398图2. 微柱阵列表面的实验制备工艺如图(a)所示,首先通过微尺度3D打印技术(nanoArch P140,摩方精密)打印出光敏树脂微孔阵列模具,然后倒模获得PDMS微柱阵列表面;(b)微孔模具的激光共聚焦俯视图;(c)微柱阵列表面的激光共聚焦三维结构图,其中,微柱直径、高以及两微柱中心距分别为180μm、550μm、280μm,该微柱的大小与3D打印的微孔模具相同;(d)微柱阵列表面的侧视图。图3.微柱功能表面在Load-Pull接触过程下的自清洁性能通过微尺度3D打印技术结合模板复制工艺制备出微柱阵列表面,在施加Load-pull的加载条件下研究了接触压力、颗粒尺寸等因素对微柱阵列表面自清洁行为的影响,并分析了其中的微观力学机制。研究结果发现,微柱阵列表面实现自清洁的主要微观力学机制为:在接触压力的作用下,颗粒与微柱的接触状态由黏附状态改变为易清洁的沉积状态。此研究不仅有助于深入理解微柱阵列表面的自清洁机理,而且为自清洁功能化表面的设计及微颗粒的可控粘附与输运等提供技术支持。图4.微柱阵列表面对不同尺寸颗粒的自清洁性能及微观机理
  • 爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步
    在现代食品工业的广阔舞台上,罐装奶粉凭借其大容量设计、卓越的阻隔性能以及出色的保存能力,在婴幼儿配方奶粉及成人奶粉市场中占据了举足轻重的地位,赢得了全球消费者的信赖与喜爱。然而,在这份便捷与安心的背后,一个细微却至关重要的环节——残氧量的控制,往往被忽视,却对奶粉的品质与安全产生了深远影响。爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步残氧量的本质与潜在威胁残氧量,即包装内残余的氧气含量,是评估奶粉保存环境优劣的关键指标。氧气作为化学反应的活跃因子,特别是在奶粉这种富含脂肪、维生素和蛋白质的食品中,其存在如同催化剂一般,加速了氧化反应的进程。过高的残氧量不仅会导致奶粉色泽变暗、风味走样,还会引起营养成分的显著流失,更甚者,可能促进微生物的繁殖,使得奶粉面临变质、受潮的风险,从而威胁到消费者的健康。爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步延长保质期的核心策略为了维护奶粉的高品质并有效延长其保质期,严格控制包装内的残氧量成为了一项至关重要的措施。通过采用先进的真空充氮包装技术、气调包装系统等现代包装解决方案,可以显著降低甚至消除包装内的氧气,为奶粉创造一个理想的低氧或无氧保存环境。这种环境能够有效抑制氧化反应,保护奶粉中的营养成分与风味,确保产品在货架期内保持最佳状态,减少因变质导致的浪费。残氧量检测的必要性为确保罐装奶粉包装中的残氧量得到有效控制,实施定期或不定期的残氧量检测显得尤为必要。这不仅是对生产流程的严格监控,更是对消费者健康安全的庄严承诺。现代科技的进步,如高精度氧气分析仪的应用,使得残氧量的检测变得高效、精准且易于操作。通过这一手段,企业能够及时发现并纠正包装过程中存在的问题,不断优化生产工艺与包装条件,确保每一罐奶粉都能达到良好的保存效果。爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步 在婴幼儿罐装奶粉的残氧顶空检测领域内,进口残氧仪品牌丹麦Dansensor推出的旗舰产品——台式顶空分析仪CheckMate 4 O2 (Zr)残氧仪,凭借其稳定的稳定性赢得了业界的广泛赞誉。这款分析仪,又称包装残氧仪或残氧分析仪,专为准确测量食品(特别是婴幼儿奶粉)、药品、气调包装及电子产品等各类密封包装(如袋、瓶、罐)内部氧气、二氧化碳等关键气体含量而精心打造。爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步丹麦Dansensor台式顶空分析仪CheckMate 4残氧仪在保障包装完整性、评估气体环境方面发挥着不可替代的作用。无论是在繁忙的生产现场、严格的仓储环境,还是在精密的实验室条件下,它都能迅速且精准地分析包装内的气体成分及其浓度,为生产企业提供宝贵的数据支持,助力优化生产工艺,延长产品货架期,确保产品质量。面对激烈的市场竞争,丹麦Dansensor研发台式第四代新款台式顶空分析仪CheckMate 4残氧仪凭借其紧凑小巧的设计、卓越的精度与可靠性,以及直观易用的用户界面脱颖而出,占据了显著的市场份额。其多语言触摸屏设计极大地简化了操作流程,使得即便是新手也能快速上手,大大缩短了培训时间。同时,个人用户登录功能确保了测试数据的安全性与可追溯性,提升了整体管理效率。在数据存储与传输方面,台式顶空分析仪CheckMate 4残氧仪同样展现出了其先进性。它能够智能保存并管理产品测试设置,保障数据的完整性和可比性。通过灵活的测试设置切换或高效的条形码扫描功能,用户能够轻松实现自动化数据采集与即时传输,显著提升工作效率,并有效避免人为错误带来的风险。台式顶空分析仪CheckMate 4在采样系统上也进行了精心优化,采用高效采样泵与防堵塞设计,确保仪器长期稳定运行。其核心氧化锆传感器更是以极低的样本需求(仅需2ml)实现高精度残氧检测,大大降低了检测成本,提升了检测效率。作为台式顶空分析仪CheckMate系列残氧仪的全面升级之作,台式顶空分析仪CheckMate 4残氧仪不仅继承了前代产品的全部优点,更在多个关键领域实现了显著提升。其高效、准确、便捷的特点,在婴幼儿奶粉罐残氧顶空检测中发挥着至关重要的作用,为宝宝的健康成长提供了坚实保障,同时也引领并推动了整个行业的技术进步与健康发展。爱,就要给得刚刚好!丹麦CheckMate 4残氧仪,调控罐装奶粉残氧量,为宝宝健康护航每一步、更多请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口残氧仪品牌MOCON膜康、丹麦Dansensor授权代理、顶空分析仪CheckMate 4、进口残氧仪、药品顶空分析仪、奶粉残氧仪售后服务保证。英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、手持式露点仪SDHmini、便携式露点仪SADP代表处在线露点仪SUPER-DEW3、肖氏SHAW露点仪售后服务保障。英国Alphasense传感器、英国Alphasense阿尔法传感器、氧传感器O2-A2、一氧化碳传感器CO-B4、氯化氢传感器HCL-A1、、二氧化硫传感器SO2-B4、一氧化氮传感器NO-B4、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司获取进口传感器详细资料。
  • 北京大学朱健研究组揭示表观遗传调控新机制
    2016年6月20日,国际学术期刊《Cell》子刊《Developmental Cell》以封面文章形式在线发表了北京大学生命科学学院朱健研究组题为 ”Stuxnet facilitates the degradation of Polycomb protein during development” 的研究论文。研究鉴定出了表观遗传领域全新的调控因子Stuxnet (Stx),并初步阐释了Stx通过调控 Polycomb-group(PcG)多梳蛋白复合体的稳定性而调节表观遗传活性的作用机制。生命科学学院博士后杜娟、朱健研究组原副研究员张俊争为论文的共同第一作者,朱健研究员为论文的通讯作者。表观遗传学是近年来生命科学研究的热点。在DNA序列未发生改变的情况下,基因功能产生可逆且可遗传的改变是表观遗传的基本机制。多梳蛋白复合体是表观遗传过程中主要的调控因子,通过在转录水平特异性抑制下游靶基因的表达而发挥其功能。多梳蛋白复合体下游靶基因包括很多重要的转录因子及信号转导分子,例如同源异型框基因(Homeobox genes)及Notch信号通路组分等,在干细胞维系、基因组印记、胚胎发育等过程中均有重要功能。Pc蛋白是多梳蛋白复合体的重要组分,其功能从果蝇到哺乳动物高度保守。目前研究大多集中于探究其分子作用机制和鉴定其下游靶基因,但是Pc蛋白自身的活性以及多梳蛋白复合体的稳态如何被调控尚不清楚。朱健研究组通过遗传筛选在果蝇中发现并鉴定了一个功能未知的全新基因stuxnet(stx)。他们的研究表明,stx功能缺失的果蝇表现出与Pc活性上调类似的发育紊乱表型。更为有趣的是,stx基因的过表达可以引起Pc蛋白水平的降低,从而阻遏PcG下游靶基因的表达,最终导致果蝇器官的同源异型转化,例如触角向腿和眼的转化。进一步的遗传互作实验证明stx位于Pc的上游,并且能够抑制Pc蛋白的生物学活性。在分子机制研究中,他们鉴定出了Stx蛋白两个重要的功能结构域,即N端的类泛素结构域(UBL)及相邻的Pc结合区域(PcB)。生物化学和遗传学实验表明,Stx调控Pc活性的分子机制从果蝇到哺乳动物高度保守。Stx通过UBL结构域与蛋白酶体结合,从而促使Pc蛋白的降解,这一过程依赖于PcB结构域介导的蛋白相互作用,但是并不依赖于Pc的泛素化修饰。日内瓦大学Fran?ois Karch教授撰写题为“Stuxnet Recruits the Proteasome to Take Down Polycomb”的Preview文章介绍本项研究。图:Stx通过调控Polycomb-group(PcG)多梳蛋白复合体的稳定性而调节表观遗传活性作用机制
  • 认监委对质量管理体系认证机构进行调控
    各认证机构:   近年来从事质量管理体系认证的认证机构数量增加较快,我国的质量管理体系认证机构和认证证书数量均已位居全球首位。就质量管理体系认证而言存在着机构设立地分布严重不合理的情况,百分之八十的质量管理体系认证机构集中在北京和上海,而北京、上海两地获质量管理体系认证的企业只占全国获证企业总数的百分之十三。此外,其余百分之二十的质量管理体系认证机构也主要在东部地区。由于存在质量管理体系认证机构区域过度集中,在一定程度上也造成了无序的市场竞争,对质量管理体系认证工作质量和认证有效性产生了不良影响。为促进认证机构资源配置的更加科学、合理,以适应国家区域发展总体战略的要求,提升认证工作质量和认证有效性,对质量管理体系认证从业机构采取适当区域调控,是当前情况下的一种措施。为此通知如下:   一、除满足特殊行业的认证需求外,原则上暂停受理在北京和上海新设立质量管理体系认证机构的申请 暂停受理北京和上海的认证机构从事质量管理体系认证的扩项申请。同时,对于在东部地区新设立质量管理体系认证机构采取审慎原则,进一步严格审批管理,以保证从业机构的能力和质量。   二、申请特殊行业质量管理体系认证业务需要对行业的特殊性、市场需求和机构能力进行充分分析,提交相关文件予以支撑和说明,经过国家认监委组织相关专家论证和征求行业主管部门意见后,按照审批程序和要求办理。   三、按照国家实施区域发展总体战略和国家援疆、援藏工作相关要求,提倡区域化发展,鼓励认证机构拓展西部等相关地区质量管理体系认证业务,服务地区经济。支持认证机构在新疆和西藏设立分支机构、扩大新疆和西藏的认证服务。   二○一一年七月十二日
  • 遗传发育所建立基因组编辑高效调控内源基因蛋白质翻译新方法
    p style=" text-align: justify " & nbsp & nbsp 基因组编辑是在基因组水平对基因进行精确、定向修饰的一种高效生物技术方法。简单、高效的CRISPR/Cas9编辑体系的出现给生命科学带来了新的技术革命。CRISPR/Cas9通常在基因组靶向位点造成DNA碱基的添加或删除,导致基因功能的缺失。近日,中国科学院遗传与发育生物学研究所高彩霞研究组建立了一个通过CRISPR/Cas9高效调控内源mRNA翻译的方法。该方法可通过提高蛋白质翻译效率,增加目标基因的编码蛋白水平。 /p p style=" text-align: justify " & nbsp & nbsp 蛋白编码基因的表达产物一般受到转录、转录后RNA加工、蛋白质翻译及翻译后加工、蛋白降解等多个水平的调控。真核细胞的mRNA由5’非翻译区(5’Untranslated Region,5’UTR)、编码蛋白的开放阅读框区(Open Reading Fragment)及3’端非翻译区(3’Untranslated Region,3’UTR)构成。研究发现,5’UTR存在一些具有翻译能力的开放阅读框,称为上游开放阅读框(Upstream Open Reading Fragment,uORF)。与之对应,5’UTR之后的开放阅读框被称为主开放阅读框(Primary Open Reading Fragment,pORF)。uORF通常能够抑制下游的pORF的翻译。生物信息学分析表明,uORF在动植物中广泛存在,人、小鼠、拟南芥、水稻、玉米中超过30%的mRNA含有预测的uORF,但还缺乏高效、精细的方法对uORF进行功能研究与遗传操作。 /p p style=" text-align: justify " & nbsp & nbsp 高彩霞研究组利用CRISPR/Cas9对uORF进行编辑,发现能够显著提高目标基因的翻译效率。通过CRISPR/Cas9编辑拟南芥和生菜中的4个基因的uORF翻译起始区及周边序列,获得了多个相应基因的uorf突变体。这些uorf突变体目标基因的pORF的mRNA翻译水平都有不同程度的提高。其中,通过突变维生素C合成途径中关键基因GGP(GDP-L-galactose phosphorylase)上游的uORF,可使生菜叶片中维生素C含量提高约150%。利用CRISPR/Cas9编辑uORF翻译起始区会出现两种结果:(1)完全破坏uORF的翻译起始能力导致uORF功能缺失;(2)改变uORF的翻译起始密码子(例如ATG突变为翻译起始能力较弱的GTG)及其周边序列,使uORF对pORF的抑制效率发生微调。该研究展示了通过基因组编辑uORF操纵mRNA翻译,调控蛋白质水平在植物分子生物学研究及遗传育种中的应用前景。此外,该方法可能随着新型基因组编辑工具不断出现及方法的进一步优化,而变得覆盖率更广且更易操作。由于uORF在动植物基因中普遍存在,该方法也具有广阔的应用前景。 /p p style=" text-align: justify " & nbsp & nbsp 相关成果于8月6日发表在《自然-生物技术》上。高彩霞研究组副研究员张华伟,博士研究生司小敏、姬祥为论文共同第一作者。该研究得到了科技部、国家自然科学基金委基础科学中心、中科院的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/db01d975-1e1c-43d2-8ca4-feabbe73f981.jpg" title=" W020180807251428902441.jpg" / /p p style=" text-align: center " CRISPR编辑uORF调控蛋白质翻译水平 /p
  • 我国科学家利用自由电子束实现低维材料的谷电子自旋极化调控
    随着摩尔定律接近极限,传统的晶体管器件已进入发展瓶颈期,探索新一代信息材料已成为当前信息领域的研究热点。低维量子材料具有谷电子自旋的独特性质,有望成为新一代信息材料在未来6G信息技术和产业中发挥重要作用。然而,如何实现低维量子材料的谷电子自旋极化调控是推动该材料实际应用面临的重大研究挑战之一。近期,在国家重点研发计划“纳米科技”重点专项的支持下,我国科学家设计了结构对称的纳米天线与六方氮化硼/二硒化钨/六方氮化硼的金属/介质复合纳米结构,利用超高分辨电子束精准激发金属结构的圆偏振偶极电磁模式,通过近场相互作用在纳米尺度实现了对低维材料谷极化的调控。同时,研究人员发现电子束激发位点的移动(空间分辨率小于5纳米),能够在50纳米内实现谷极化的“开”和“关”,以及100纳米内的谷极化态反转。该研究提出的新型低维量子材料谷极化电子束操控方案,可指导谷电子器件纳米尺度集成,在逻辑运算、光电存储及未来量子信息研究方面具有重要意义。
  • 上海生科院揭示mTORC1信号通路调控机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   11月9日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所丁建平研究组的研究成果,以 em Structural Basis for Ragulator Functioning as a Scaffold in Membrane-anchoring of Rag GTPases and mTORC1 /em 为题,在线发表在 em Nature Communication /em 上,该工作揭示了Ragulator五元复合物的组装机制,以及Ragulator复合物调控mTORC1信号通路的分子机制。 /p p   真核细胞中mTORC1是高度保守的蛋白激酶复合物,通过感受和整合外界信息,如生长因子、能量状态和营养水平等,调控细胞生长发育和细胞自噬等重要生命过程。mTORC1信号通路的功能失调会引起多种疾病,包括肥胖症、II型糖尿病和肿瘤等。营养物质如氨基酸是mTORC1的重要激活因子。研究发现,氨基酸介导的mTORC1信号通路的激活在溶酶体上进行,由一系列蛋白质复合物参与这一复杂过程的调控,其中Ragulator五元复合物作为该信号通路的核心骨架,调控Rag小G蛋白和mTORC1在溶酶体上的定位,但Ragulator复合物如何组装并招募下游蛋白的作用机制尚不清晰。 /p p   丁建平研究组长期从事mTORC1信号通路调控的分子机制研究,先后测定了mTORC1信号通路中一些重要调控蛋白包括Rheb、TCTP、S6K和Ego3的结构,揭示了它们在mTORC1信号通路中发挥生物学功能的分子基础,完成了酵母TORC1信号通路中Ego1-Ego2-Ego3三元复合物的晶体结构测定和功能分析,以及mTORC1信号通路上游人源精氨酸感应蛋白CASTOR1-arginine复合物的结构测定和对底物的识别机制。在此基础上,丁建平研究组对mTORC1信号通路开展了进一步研究,测定了Ragulator五元复合物的晶体结构,发现Ragulator复合物中包含MP1-p14和HBXIP-C7orf59两个亚复合物,并由p18亚基介导两个亚复合物的结合、组装成五元复合物。通过结构分析和功能实验验证,发现Ragulator复合物作为骨架蛋白发挥功能,通过p18的N端结构域和MP1-p14复合物两个结合位点与Rag小G蛋白的Roadblock结构域结合,并在氨基酸等信号因子的激活下进一步招募mTORC1定位在溶酶体上。结构分析和体外活性测定否定了早期认为的Ragulator具有针对Rag小G蛋白的GEF活性,并预测存在尚未鉴定的GEF蛋白与Ragulator复合物结合,共同激活下游Rag小G蛋白。研究发现,mTORC1信号通路的抑制因子C17orf59,通过竞争性结合Rag小G蛋白在MP1-p14复合物上的结合位点,抑制Rag小G蛋白在溶酶体上的定位,从而抑制下游mTORC1活性。通过结构比较发现,人源Ragulator复合物和酵母Ego1-Ego2-Ego3复合物在结构上非常相似,表明这两个复合物在mTORC1/TORC1信号通路中发挥相似的功能。这些研究结果进一步阐释了氨基酸等营养物质对mTORC1信号通路的调控机制,并为mTORC1功能异常相关疾病研究和基于mTORC1信号通路的药物设计提供了重要信息。 /p p   研究工作得到国家自然科学基金委、中科院战略性先导科技专项和中科院青年创新促进会的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171113594281686350.jpg" src=" http://img1.17img.cn/17img/images/201711/uepic/ca506d38-ae6c-462f-ace6-b7724ff21963.jpg" uploadpic=" W020171113594281686350.jpg" / /p p   a.Ragulator复合物招募Rag小G蛋白和mTORC1复合物在溶酶体上定位的工作模型;b.人源Ragulator复合物和酵母Ego1-Ego2-Ego3复合物结构上非常相似,表明这两个复合物在mTORC1/TORC1信号通路中发挥相似的功能。 /p
  • 我国科学家揭示细胞程序性坏死及免疫稳态调控新机制
    近日,中国科学院上海营养与健康研究所研究员章海兵团队在Cell Death and Differentiation上在线发表题为Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia的研究成果。该研究揭示了细胞凋亡起始蛋白caspase-8的自我剪切抑制细胞程序性坏死并协同坏死关键蛋白RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生。   细胞程序性坏死(Necroptosis)是一种由激酶RIPK1/RIPK3的级联磷酸化调控的促炎细胞死亡形式。细胞程序性坏死通过MLKL蛋白聚合在膜上打孔裂解细胞膜,执行细胞死亡并释放损伤相关分子模式(DAMPs)触发炎症反应。已知细胞程序性坏死参与调控系统性炎症反应综合征(SIRS)、系统性红斑狼疮及自身免疫性的淋巴增生综合征(ALPS)等多种疾病。因此,对于细胞程序性坏死机制及其生物学意义的研究对于相关疾病的防治具有重要意义。  Caspase-8是天冬氨酸特异的半胱氨酸蛋白酶,最初被鉴定为细胞凋亡途径的起始蛋白。近几年的研究表明,caspase-8通过剪切RIPK1来抑制细胞程序性坏死。除此之外,caspase-8还参与细胞免疫稳态调控。临床上Caspase-8基因突变的病人会出现免疫缺陷疾病,并伴有免疫系统紊乱,表现为多器官的免疫细胞浸润并出现肉芽肿。研究发现Caspase-8通过其催化活性发挥功能,并且caspase-8的完全激活需要进行自我剪切。因此,探究caspase-8的自我剪切在调控免疫稳态中的作用机制,对于深入了解caspase-8的作用机制及相关临床疾病的治疗具有重要意义。  该研究中,研究人员首先发现在细胞程序性坏死刺激条件下,caspase-8的自我剪切出现诱导性增强,因此推断caspase-8的自我剪切可能参与程序性坏死的调控。通过构建caspase-8自我剪切突变小鼠(Casp8ΔE385/ΔE385)发现,该小鼠可以抵抗细胞凋亡诱导的急性肝损伤,但高度敏感于程序性坏死诱导的全身炎症反应综合征(SIRS),该结果在动物水平证明caspase-8自我剪切可以促进细胞凋亡并抑制程序性坏死。同时,研究人员进一步通过分离原代细胞实验证明caspase-8自我剪切负调控死亡复合体II的形成和稳定,从而抑制细胞程序性坏死的发生。此外,研究人员发现Casp8ΔE385/ΔE385小鼠患有轻微的脾脏肿大及CD8+T淋巴细胞减少性疾病(T cell lymphopenia)。在Casp8ΔE385/ΔE385小鼠中同时敲除坏死关键蛋白RIPK3/MLKL时,Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠出现更为严重的脾脏肿大及淋巴结肿大,其脾脏、淋巴结、外周血以及骨髓中的B细胞和T细胞及其各亚群均出现明显减少,鉴定为淋巴细胞减少的免疫缺陷性疾病(lymphopenia)。研究人员通过减少Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠中另一坏死调控蛋白RIPK1的表达剂量可以逆转上述表型,证明RIPK1在调控淋巴细胞减少疾病中的剂量调控效应。  该研究发现caspase-8通过自我剪切破坏死亡复合体II的稳定性,进而抑制细胞程序性坏死的发生。同时证明了caspase-8通过自我剪切协同坏死调控蛋白RIPK1/RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生,为免疫系统稳态调控的研究及淋巴细胞减少为特征的免疫缺陷性疾病的治疗提供新思路。  论文链接
  • 量子系统环境调控首次实现
    近日,中科院量子信息重点实验室李传锋研究组与芬兰、德国的研究组合作,在实验上首次实现了对开放量子系统的环境调控,观察到了开放系统的马尔科夫过程到非马尔科夫过程的突变现象。   该研究成果发表在12月3日的《自然—物理》上,并被该刊《新闻与观察》栏目专门报道。   具有马尔科夫特性的环境会破坏量子系统特有的相干性,这就是所谓的消相干效应,它是实现量子计算和其他量子信息功能的主要障碍。李传锋研究组制备出高纯度的纠缠光子对,将其中一个光子的偏振比特作为量子系统,把该光子的频率作为环境,通过石英片的双折射效应使量子系统与环境相互作用,实现了系统在环境中的演化。   他们创造性地在光路中加入特制的法布里—玻罗腔,通过改变法布里—玻罗腔的转动角度,利用另外一个光子作辅助探测,观察到了开放系统动力学演化的突变现象:转动到某个角度,环境的马尔科夫夫性突然消失,变成非马尔科夫环境,继续转动到另一个角度时,环境的非马尔科夫性又突然消失,变成马尔科夫环境,从而实现了对开放量子系统环境的调控。   该成果对噪声环境中量子纠缠态的调控、量子计算、量子存储等研究具有重要意义,并开创了非马尔科夫过程定量研究的先河,对开放系统的研究将产生重要影响。
  • 2017年度“蛋白质机器与生命过程调控”重点专项公示
    p   5月27日,国家科技管理信息系统公共服务平台公布了国家重点研发计划“蛋白质机器与生命过程调控”重点专项2017年度拟立项项目公示清单,总项目立项经费超过7亿元(其中有两个项目需要项目实施2年后评估然后再确立总经费)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/7e9b4428-3241-48f9-98cf-de7b39e500f6.jpg" style=" " title=" 1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/ccefce90-e826-4b1e-b338-7bdb09223ccb.jpg" style=" " title=" 2.jpg" / /p p /p p   最近一段时间,学术界同仁对各种“人才计划”也就是俗称的“帽子”比较上心,经过统计,上述35个项目的首席科学家中拥有国家级人才计划(包括:院士、国家“千人”、长江学者、杰青、“青年千人”)的占据了27位(77.1%),余下的8位中有两人入选中科院“百人计划”(中科院高能所董宇辉研究员和中科院大连化物所张丽华研究员),有两人入选地方“千人”(中科院上海生化细胞所陈洛南研究员和四川大学宋旭教授),有两人虽未获得上述“人才计划”,但是已经做过“973”首席(南开大学沈月全教授和重庆医科大学副校长谢鹏教授),有一位首席仅获得过武汉市的某人才计划(中科院武汉数理所的张许研究员),另位一位青千首席虽暂时没有拿到“青千”,但是下一次拿到应该问题不大(北京大学季雄研究员,他是“吴瑞奖”获得者,UCSD付向东教授在武汉大学指导的博士,Richard Young的博后)。 /p p   35个项目中,有8个青年项目,这八个首席科学家中除了北京大学的季雄之外,其余清一色为国家“青年千人”,值得一提的是中科院遗传发育所的田烨研究员还是2010“吴瑞奖”获得者,当年NIBS张宏研究员的博士。还有一个比较有意思的是,青年首席厦门大学黄烯教授是邓兴旺院士的博后,而邓兴旺院士也在本次35个项目中担任“光信号参与高等植物生长发育调控的蛋白质机器鉴定及作用机制研究”的首席科学家。特别值得一提的是,中科院生物物理所章新政研究员以“青年千人”的身份拿到的是大项目而非青年项目的首席科学家。 /p p   总的来说,通过简单的分析这些“帽子”可以粗略的得出一些信息,也就是说没有任何国字号的“帽子”而担任首席科学家也是有的,但是概率极其低。重大项目首席科学家比较常见的帽子是“院士”、“杰青”和“长江学者”,而国家“千人计划”这个帽子在上述重大项目的首席科学家中还比较少见,本次似乎只有中科院植物所的沈建仁研究员和北京大学邓兴旺院士(美国科学院院士、国家千人、长江学者)。 /p p   另外,8个青年项目几乎全部给了“青千”,看来本土培养的青年人才仍需努力啊! /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制