当前位置: 仪器信息网 > 行业主题 > >

声发射检测

仪器信息网声发射检测专题为您整合声发射检测相关的最新文章,在声发射检测专题,您不仅可以免费浏览声发射检测的资讯, 同时您还可以浏览声发射检测的相关资料、解决方案,参与社区声发射检测话题讨论。

声发射检测相关的论坛

  • 关于声发射检测

    有谁熟悉压力容器的声发射检测(AE)吗?我没看见过这种仪器,但我们的产品需要做声发射检测,有谁能提供相关信息?谢谢!

  • 泄漏探测和声发射检测原理

    (1) 概述在发电厂、化学工厂和石油化工厂中,为防止重大事故的发生,要求对渗漏的发生进行早期检测。声发射检测技术对渗漏声的检测灵敏度很高,所以用声发射法检测各种各样的渗漏发生。例如,在蒙塞托化学工厂里,将进行了防水处理的前置放大器60kHz和共振型AE探头4个或8个一组,配置在工厂内的重要部位、在控制室中对渗漏情况进行实时监测。(2) 压力容器漏泄产生声发射的机理及其特点压力容器的漏泄过程可分为三个阶段:应力集中及裂口阶段;裂口扩展及渗漏阶段;高速流体喷射阶段(即漏泄阶段)。1)裂口阶段由于疲劳或腐蚀等原因,使压力容器或管壁在应力集中到一定程度时产生微小的裂纹或裂口。在开裂过程中要以弹性波的形式释放出应变能,即声发射。第一阶段的声发射信号是由金属裂纹产生的,信号为突发型信号,而且持续时间比较短,能量比较强。2)渗漏阶段裂纹形成后,在裂口处应力继续集中.当应力达到足够大时,使裂纹进一步扩展,释放出弹性波,并且压力容器或管内带压流体从裂口处渗漏,在壁内激发出应力波。前者是突发型信号,后者为连续型信号。渗漏激发的应力波并不是严格定义上的声发射(可称之为广义声发射),因为管壁只是波导,本身并不释放能量。这两种信号叠加在一起,使我们接收到的信号呈现出幅度起伏比较大的特征。这个阶段的信号能量也较小,但这个阶段持续的时间比较长。3)泄漏阶段当裂口较大时,带压流体流从裂口中喷射出来,形成高速射流激发应力波,此应力波在管壁内传播。实验结果表明,泄漏所激发的应力波的频谱具有很陡的尖峰,此尖峰的位置与泄漏量有关。泄漏率和信号幅度有如下关系:式中:y—泄漏率,升/小时x—声发射信号幅度,dBa,b——系数由射流所产生的声发射信号为连续型的,若水中含有气体,那么气体的间断喷出可造成很强的突发型声发射信号。泄漏的声发射信号具有如下特点:① 泄漏所激发的应力波的频谱具有很陡的尖峰,利用频谱分析法可以很容易把声发射信号从噪声中分离出来。 ② 泄漏产生的声发射信号比较强,且其幅度大小与泄漏速率成正比,与信号的均方根值成正比。 ③ 当泄漏速率很小时,几乎与压力无关时,依然满足泄漏速率与信号的均方根值成正比。因此,可以根据所接收到的声发射信号的频谱和均方根值判断是否发生漏泄或漏泄程度的大小,④ 由于管壁较薄,声发射波在壁的两个界面上发生多次反射,每次反射都要发生模式变换(或者由横波变为纵波,或者由纵波变为横波),这样传播的波称为循轨波。由于多次反射声发射波的叠加,使得声发射波在其中心频率附近得到增强,可以沿管壁长距离传播。(3) 应用实例——高压加热器泄漏的监测某厂200MW机组的高压加热器、蒸汽冷却器和疏水冷却器安装了泄漏监测装置。一天,测点3和4(疏水冷却器进水口和出水口处)的声发射数值开始增加,并且波动较大。该处声发射信号数值增大到30dB时,监测系统开始报警(设置的报实警限为20dB),这说明疏水冷却器已经发生泄漏。后经有关人员解体检查发现疏水冷却器内水管有裂纹,经检修堵管后系统指示值恢复正常。系统自动记录的趋势变化曲线。声发射技术在电厂设备状态监测和故障诊断中所起的作用是非常大的。特别是在高压加热器等压力容器的泄漏监测、转子及管道等的裂纹监测和汽轮机组、风机、水泵等旋转机械的动静摩擦检测上的应用,可以收到很好的效果。当把声发射技术与温度检测、振动监测等相结合后,可以全面反映设备的运行状态,为实现状态维修提供了有力的手段,其应用前景是非常广阔的。

  • 中国声发射技术进展

    中国声发射技术进展[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=33794]中国声发射技术进展[/url]

  • 【资料】-原子发射检测器(AED)原理及检测条件选择

    [b]原子发射检测器原理及检测条件选择[/b]原子发射检测器(AED)是近年飞速发展起来的多元素检测器。它是利用等离子体作激发光源,使进入检测器的被测组分原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱。根据这些线光谱的波长和强度即可进行定性和定量分析。所以,AED属光度学检测法。由于它是原子(或原子离子)而不是分子激发后发射光,故有原子发射检测器之称。AED具有许多独特的性能和应用。如:①AED可以以选择性和通用性两种方式工作:若用杂原子通道,AED可作为选择性检测器,且其选择性较其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如ECD、FPD、ELCD等)更高,若用碳、氢通道,AED即为通用性检测器,且灵敏度高于FID;②AED对元素周期表中除氦以外的任何一种元素均可检测,属多元素检测器,可用于测定未知化合物的经验式和分子式;对未知物鉴定,AED是MSD、FTIR(,的有力补充手段;③由于AED选择性强,可降低对复杂混合物高分辨分离的要求,对未完全分离峰亦可分别检测;④由于AED的相对响应因子几乎是恒定的,不用标样亦可准确定量。近年,AED的应用领域仍在不断扩大,它是一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。AED工作原理和仪器结构一、仪器结构[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-微波诱导等离子体原子发射光谱联用系统的主要组成部分为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、原子发射光谱仪(也称原子发射检测器)、色谱仪和光谱仪之间的接口(包括传输线、溶剂放空系统、谐振腔、等离子体放电管及微波发生器等)以及数据收集和数据处理系统等四大部分,本文着重介绍HP5921 A [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED仪器系统中的接口和光谱仪。1.接口(1)传输线及其加热系统 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED结构示意图见图3-4-1。接口部分由三个加热区构成:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]区加热单元、传输线及谐振腔单元。传输线结构与以往的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MIP相同,不同之处是内层不锈钢管内径增大到1.17mm,谐振腔单元(如图3-4-2所示)用70W加热筒为放电管入口侧提供热量,传输线的末段塞进3$块的埋头孔,并伸入谐振腔的毛细管连接件的后面。接口的设计使得石英毛细管柱由色谱炉中伸出并通过接口直接塞入放电管中,石英毛细管出口端通常置于离等离子体末端8~15mm处,使用填充柱时,以石英毛细管传输线连接柱出口到谐振腔单元。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611111550_32062_1613333_3.gif[/img]

  • 【求助】等离子发射检测器

    最近看到一种色谱检测器为等离子发射检测器,主要的厂家为servomex,对于整个检测器的原理,结构和一些实际应用不知道有没有资料,我理解的是类似与AED或者ICP之类的,各位大侠如果有相关资料,希望能给出相关链接,如果不方便公开,请发到我的邮箱xqianghuang@163.com,谢谢。

  • ED等离子发射检测器

    请教一下,哪位了解PED等离子发射检测器原理的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]?

  • 场发射扫描电镜,对外检测,收费标准?

    场发射扫描电镜,对外检测,收费标准?

    大家对外检测的场发射扫描电镜的收费标准是多少?貌似版里大部分都是按照样品个数收费的?为什么不按时间收费呢?是不是按照时间收费,对客户和对检测实验室都相对更加公平?欢迎大家讨论。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/03/201803271543504219_8385_1604229_3.jpg!w690x517.jpg[/img]

  • 通过荧光发射波长的红移可以计算检测限吗?

    通过荧光发射波长的红移可以计算检测限吗?

    本人最近在做荧光识别方向的研究,材料在吸附阴离子后荧光颜色发生了变化,通过测粉末的荧光测得了发射波长的随吸附离子量的变化的荧光数据,但是苦于找不到如何通过荧光波长红移计算检测限的方法,所以请教高手,如何才能通过吸附不同浓度阴离子导致的荧光发射波长的变化计算检测限?注:材料是测试的粉末荧光,不能通过溶解后进行测试。材料在吸附离子后荧光无明显增强或淬灭现象,因此无法通过荧光强度变化计算检测限。[img=吸附后荧光变化,276,300]https://ng1.17img.cn/bbsfiles/images/2020/06/202006241318276690_7515_3318794_3.png!w276x300.jpg[/img][img=在不同浓度吸附下发生波长的变化,570,420]https://ng1.17img.cn/bbsfiles/images/2020/06/202006241320449434_2866_3318794_3.png!w570x420.jpg[/img]

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 原子发射法测钾,钠等

    弱弱的请问下,原子吸收分光光度计中方法选择可以选择发射法来检测钾,钠,钙,镁等离子的,请问使用原子发射来分析时,各元素的空心阴极灯是不须使用的吧,这里的原子发射原理与ICP部分的原子发射是一样的吗?而ICP-MS则是将溶液中的各种离子在8000K的温度下同时被激发成带一个正电荷的离子,原子发射法则是以什么形式被测定的,其与原子吸收法测钾等不是正好相反吗?

  • 火焰发射与火焰吸收法测钠、钾

    关于火焰做钠钾,GB5009.91-2017中第一法(吸收)和第二法(发射)有个比较明显的差异,就是在第二法发射法中,并不需要加入电离抑制剂(氯化铯),这是说发射法中,钠钾的电离对检测结果不会有影响吗?

  • 电感耦合等离子体发射光谱仪的检测器——光电转换器件

    [url=http://www.huaketiancheng.com/][b][font=宋体]ICP光谱仪[/font][/b][/url][font=宋体]的光电转换器件是光电光谱仪接收系统的核心部分,也是[b]光谱仪检测分析[/b]的准要部件。主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子[/font][font=&]-[/font][font=宋体]空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。[/font][font=宋体]光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域([/font][font=&]160-800nm[/font][font=宋体])很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。[/font][font=宋体]目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b][font=宋体] 光电倍增管[/font][/b][font=&] [/font][font=宋体]外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如[/font][font=&]100V[/font][font=宋体])。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达[/font][font=&]10[sup]8[/sup][/font][font=宋体],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。[/font][font=&][size=14px] [/size][/font][font=宋体][size=14px]光电倍增管的窗口可分为侧窗式和端窗式两种[/size][/font][b][font=宋体] [/font][/b][font=宋体] 光电倍增管的基本特性[/font][font=&]1)[size=9px] [/size][/font][font=宋体]灵敏度和工作光谱区[/font][font=&] [/font][font=宋体]光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即[/font][font=&]1/2mv[sup]2[/sup]=h[/font][font=Symbol]n[/font][font=&]-[/font][font=宋体]ф,([/font][font=&] h[/font][font=Symbol]n[/font][font=宋体]为光子能量,ф为电子的表面功函数,[/font][font=&]1/2mv[sup]2[/sup][/font][font=宋体]为电子动能[/font][font=&])[/font][font=宋体]。当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体][/font][font=宋体]ф时,不会有[/font][font=宋体]表面光电发射,而当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体]=[/font][font=宋体]ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/[/font][font=Symbol]n[/font][font=宋体]称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。[/font][font=宋体]光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为[/font][font=宋体]μ[/font][font=宋体]A/lm[/font][font=宋体]。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见[/font][font=宋体]右[/font][font=宋体]图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。[/font][font=宋体]2)[font=&] [/font][/font][font=宋体]暗电流与线性响应范围[/font][size=14px][font=宋体]光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见右图)。线性响应范围的大小与光阴极的材料有关。[/font][/size][font=宋体]暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。[/font][font=宋体]当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或[/font][font=宋体]打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,[/font][font=宋体]另外高压时在强电场作用下也可产生场致发射电子引起[/font][font=宋体]噪声,[/font][font=宋体]另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。[/font][font=宋体]3)[font=&] [/font][/font][font=宋体]噪声和信噪比[/font][size=14px][font=宋体]在入射光强度不变的情况下,暗电流和信号电流两者的统计起伏叫做噪声。这是由光子和电子的量子性质而带来的统计起伏以及负载电阻在光电流经过时其电子的热骚动引起的。输出光电流强度与噪声电流强度之比值,称为信噪比。显然,降低噪声,提高信噪比,将能检测到更微弱的入射光强度,从而大大有利于降低相应元素的检出限。[/font][/size][font=宋体]4)[font=&] [/font][/font][font=宋体]工作电压和工作温度[/font][font=宋体]光电倍增管的工作电压对光电流的强度有很大的影响,尤其是光阴极与第一打拿极间的电压差对增益(放大倍数)、噪声的影响更大。因此,要求电压的波动不得超过0.05%,应采用高性能的稳压电源供电,但工作电压不许超过最大值(一般为-900v-1000v),否则会引起自发放电而损坏管子,工作环境要求恒温和低温,以减小噪声。[/font][font=宋体]5)[font=&] [/font][/font][font=宋体]疲劳和老化[/font][font=宋体]在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。[/font][font=宋体] 光电测量原理[/font][font=宋体]光电检测的原理一般是通过光电接受元件将待测谱线的光强转换为光电流,而光电流由积分电容累积,其电压与入射光的光强成正比,测量积分电容器上的电压,便获得相应的谱线强度的信息。不同的仪器其检测装置具有不同的类型,但其测量原理是一样的。其光电检测系统主要有以下四个部分组成:[/font][font=&]1.[/font][font=宋体]光电转换装置,[/font][font=&]2.[/font][font=宋体]积分放大电路及其开关逻辑检测,[/font][font=&]3.A/D[/font][font=宋体]转换电路,[/font][font=&]4.[/font][font=宋体]计算机系统。[/font][/font]

  • Varian 710-Es全谱直读等离子发射光谱仪检测金属离子

    最近做用710-Es全谱直读等离子发射光谱仪检测电解质和电解液中的金属离子杂质含量,在检测过程中,遇到的主要问题是,钙,镁和钠的标准曲线总是校正不了,这个问题全是因为标液没有配好吗?容易污染?是否还有其他问题,或者我应该怎么去避免这些问题。还有就是我现在刚开始接触ICP,还不是很熟悉,在做ICP时,有什么要注意的,我现在有个课题,是关于方法的改进,可以提高金属离子的准确度,我应该从哪几方面着手,我应该查阅什么资料???

  • 【原创】请问可以用原子发射法测硫元素吗

    请问:可以用原子发射法来检测肥料中的硫元素吗,我有看到过可以用ICP方法来分析肥料中的硫和钾元素的,ICP不就是利用元素的发射原理吗,可以我看到PE AA800 所推荐分析的元素中没有硫元素啊,这样我岂不是就不可以用其来检测硫元素的,请问各位高手们,谁有用过原子发射法来检测硫元素的啊,分享下啊

  • 场发射性能测试

    问一下上海市哪里有检测场发射性能的地方,高校或机构?我要检测电泳沉积碳纳米管薄膜的场发射性能,包括电压-电流曲线、阀值电压、发光点密度等等。检测仪器大致是一个真空二极管结构。

  • 荧光光谱仪发射谱的测量原理?

    发射谱,通常称为荧光谱。在特定激发波长情况下,一段发射波长和该波长荧光强度对应曲线。如果是扫描光谱仪,激发波长选择后,发射侧光栅扫描,发射单色仪的波长对应检测器强度的曲线;如果是CCD检测器,就是对应像素的波长和强度的关系。光栅可能也需要扫描来侧高分辨率的宽范围的图谱。测量时为了提高信噪比,可以在激发侧加带通滤光片来最大限度抑制杂散光,在发射侧添加高通滤光片(低通,上转换时候)来消除二次散射光。通常设定激发波长后,发射范围设定不要包括激发波长,当然,PLQY特殊测试要求除外。要考虑检测器的响应线性区间。

  • 原子发射光谱仪的构成

    [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]是测定每种化学元素的气态原子或离子受激后所发射的特征光谱的波长及强度来确定物质中元素组成和含量。  原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。  原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。原子发射光谱仪有火花原子发射光谱仪,光电原子发射光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空原子发射光谱仪等多种品种。原子发射光谱仪广泛应用于铸造、钢铁、金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检、质检等部门。

  • 常用中英对照无损检测词汇1000条

    该表节选自《中英文无损检测名词术语查询系统(NDTGP)》A.C magnetic saturation 交流磁饱和 Absorbed dose 吸收剂量 Absorbed dose rate 吸收剂量率 Acceptanc limits 验收范围 Acceptance level 验收水平 Acceptance standard 验收标准 Accumulation test 累积检测 Acoustic emission count(emission count) 声发射计数(发射计数) Acoustic emission transducer 声发射换能器(声发射传感器) Acoustic emission(AE) 声发射 Acoustic holography 声全息术 Acoustic impedance 声阻抗 Acoustic impedance matching 声阻抗匹配 Acoustic impedance method 声阻法 Acoustic wave 声波 Acoustical lens 声透镜 Acoustic—ultrasonic 声-超声(AU) Activation 活化 Activity 活度 Adequate shielding 安全屏蔽 Ampere turns 安匝数 Amplitude 幅度 Angle beam method 斜射法 Angle of incidence 入射角 Angle of reflection 反射角 Angle of spread 指向角 Angle of squint 偏向角 Angle probe 斜探头 Angstrom unit 埃(A) Area amplitude response curve 面积幅度曲线 Area of interest 评定区 Arliflcial disconlinuity 人工不连续性 Artifact 假缺陷 Artificial defect 人工缺陷 Artificial discontinuity 标准人工缺陷 A-scan A型扫描 A-scope A-scan A型显示 Attenuation coefficient 衰减系数 Attenuator 衰减器 Audible leak indicator 音响泄漏指示器 Automatic testing 自动检测 Autoradiography 自射线照片 Avaluation 评定 Barium concrete 钡混凝土 Barn 靶 Base fog 片基灰雾 Bath 槽液 Bayard- Alpert ionization gage B- A型电离计 Beam 声束 Beam ratio 光束比 Beam angle 束张角 Beam axis 声束轴线 Beam index 声束入射点 Beam path location 声程定位 Beam path path length 声程 Beam spread 声束扩散 Betatron 电子感应加速器 Bimetallic strip gage 双金属片计 Bipolar field 双极磁场 Black light filter 黑光滤波器 Black light ultraviolet radiation 黑光 Blackbody 黑体 Blackbody equivalent temperature 黑体等效温度 Bleakney mass spectrometer 波利克尼质谱仪 Bleedout 渗出 Bottom echo 底面回波 Bottom surface 底面 Boundary echo(first) 边界一次回波 Bremsstrahlung 轫致辐射 Broad-beam condition 宽射束 Brush application 刷涂 B-scan presenfation B型扫描显示 B-scope B-scan B型显示

  • 【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    仪器信息网论坛一直是我学习工作当中的一个好帮手,每次工作中遇到不懂的地方,在这里多多少少都能找到一些想要的信息,或者寻求帮助也总是能得到热心网友的回应,不胜感激。近期刚刚想了解一些有关光谱检测器的知识,在仪器信息网的论坛搜索了一下,发现有不少帖子,大家各抒己见,提供了许多宝贵的资料,于是将其中的一些信息稍作整理,同大家分享一下。光谱仪器的检测器有很多种,PMT、CPM(端窗式光电倍增管)、CCD、CID、PDA(光电二极管阵列)、InGaAs、SDD(硅漂移探测器)等,其中论坛讨论最多的主要是用于原子发射光谱仪的PMT、CCD、CID等,下文将从各个检测器的原理,优缺点以及相互间的比较做一介绍。一、基本原理及特点1.PMT(photomultiplier tube,光电倍增管)光电倍增管将微弱光信号转换成电信号的真空电子器件,可分成4个主要部分:光电阴极、电子光学输入系统、电子倍增系统、阳极。光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极(打拿极),引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。如此电子数不断倍增,阳极最后收集到的电子可增加 10E4~10E8倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。http://ng1.17img.cn/bbsfiles/images/2011/12/201112131831_337911_2086240_3.jpg光电倍增管具有灵敏度高,噪声低及响应速度快的特点,所以被广泛地应用在许多光学仪器中作为检测器。PMT的寿命是比较长的,电子管真空度越高寿命就越长。虽然光电倍增管有许多优点,但该器件自身也有缺陷;灵敏度因强光照射(这也就是为何仪器在通电的情况下样品室盖子不能打开的原因)或因照射时间过长而降低,停止照射后又部分地恢复;鉴于光电倍增管的这种特性致使它随着使用时间的累加,灵敏度会逐渐下降(一般从长波长开始下降,俗称“红外紫移”)且噪声输出却逐渐加大,直至被弃用。我们把这种现象称为“疲乏效应”;光阴极表面各点的灵敏度不是均匀的,而是根据入射光束的输出变动而定。光电倍增管的灵敏度和工作光谱区间主要取决与于光电倍增光阴极和打拿极的光电发射材料。光电倍增管的短波响应的极限主要取决于窗的材料,而长波响应极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯或铋-银-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。http://ng1.17img.cn/bbsfiles/images/2011/12/201112141746_338132_2086240_3.jpg 滨松研制的μPMT滨松是PMT的主要供应商,至于价格,不同型号的PMT价格相差很大,几百到几万之间的都有。2010年 滨松光电开发出了全球首款可采用MEMS技术制造的小型光电倍增管“μPMT”。由于利用MEMS技术加工硅基板后,只需用2张玻璃基板封装即可,部件点数很少,因此可实现与半导体产品相当的大批量生产。原来的PMT单价为1万日元以上,但此次的μPMT“如果以量产为前提,价格可为数千日元”。当然,新生事物具体效果如何还有待考证。2.CCD(Charged Coupled Device,电荷耦合器件)CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。它的突出特点是以电荷作为信号,实现电荷的存的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测。好的CCD具有极高的电荷转移效率,一般可达0.999995,所以电荷在多次转移过程中的损失可以忽略不计。CCD的量子效率大大优于PDA和CID,在400~700nm波段优于PMT。但是,不同厂商制造的CCD在几何尺寸、制造方法、材料上有所不同,结果它们的量子效率差别较大。CCD在低温工作时,暗电流非常低,暗电流是由热生电荷载流子引起的,冷却会使热生电荷的生成速率大为降低。但是CCD的冷却温度不能太低,因为光生电荷从各检测元迁移到放大器的输出节点的能力随温度的下降而降低。CCD的简单动态范围非常大,宽达10个数量级。但在一些光谱分析中,如AES(原子发射光谱)中,实际的动态范围达不到那么大的值。一种扩展CCD动态范围的方法是根据光的强弱改变每次测量的积分时间。强信号采用短的积分时间,弱信号采用长的积分时间。这种方法测量强信号旁的弱信号非常不利,存在Blooming(溢出)的问题,特别是对于AES。通过改进CCD制作工艺生产出来的性能优秀的CCD已在不同程度上解决了这个问题。 CCD检测器可分为商用CCD检测器,还有专业CCD检测器。普通商用CCD检测器坏点较多,通过软件的插值计算,可以修正坏点,这就是市面上所谓“700万像素的CCD可以达到1000万像素的效果”,这种CCD检测器的成本比光电倍增管便宜。专业CCD检测器像素点之间的间距远小于普通的CCD,而且它不仅要求坏的像素点极少甚至没有外,一般还必须处理饱和溢出问题,所以光谱仪上用的CCD要比一般普通商业型CCD贵很多,据了解在2万美元左右。3.CID(charge injection device,电荷注入器件)CID是通过电极电压的改变使在检测单元两个电极势阱中电荷发生转移而进行读出、注入检测过程的,当电荷的转移、注入N型硅的衬底便在外电路中引起信号电流,由于它不需要将阵列检测器的电荷全部顺序输出而是直接注入单元体内衬底形成电流来读出的,因此这种方式是一种非破坏性的读出过程,具有防溢出功能。CID检测器为了保证检测器在真空紫外区有较高的灵敏度需要在器件表面涂以增敏剂,因此在此光谱区域的量子效率对增敏剂的依赖性较强。二、不同检测器之间的比较1 光电倍增管和CCDPMT光电倍增管采用电子管技术,是点(或线)测量,可在常温下测量有较好的信噪比。CCD采用半导体技术,是面扫描(分区)测量,须要深冷处理以提高信噪比数元素(全谱)。光电倍增管在分光后一次只能检测一个波长的光信号,而CCD

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制