当前位置: 仪器信息网 > 行业主题 > >

神经科学家

仪器信息网神经科学家专题为您整合神经科学家相关的最新文章,在神经科学家专题,您不仅可以免费浏览神经科学家的资讯, 同时您还可以浏览神经科学家的相关资料、解决方案,参与社区神经科学家话题讨论。

神经科学家相关的资讯

  • TILL活体细胞成像系统亮相中国神经科学学会第九届学术会议
    中国神经科学学会第九届全国学术会议暨第五次会员代表大会于2011年7月29日&mdash 8月1日在河南郑州召开。中国神经科学学会全国学术会议是我国神经科学研究领域的盛会,出席本次会议的代表将包括来自美洲、欧洲、亚洲等世界各地的神经科学家及神经病学、精神病学、神经外科等学科的临床医生,会议规模超过1000人。北京五洲东方科技发展有限公司独家代理的TILL活体细胞成像系统在成功亮相于中国细胞生物学学会第十二次全体会员代表大会暨学术大会后再次在国内科研领域亮相。 会议流程 大会现场   德国TILL Photonics GmbH公司的活细胞实时成像激光共聚焦显微成像系统意味着不止一个荧光显微镜,而是应用最快速,精准的科学控制平台,以模块化的设计和微秒级实时控制TILL成像系统的ICU.独家开发的应用软件能完美控制荧光成像和光源切换的系统。这个复杂的方法需要一系列的周边仪器:高敏感度相机,快速切换的光源,甚至需要一些激光光源和其他设备。系统的灵活性允许每个组件的升级,只需要根据实验要求配备额外的模块。 展台
  • 临床前神经科学
    &bull 采访布鲁克BioSpin的生物安全负责人MRI技术在临床前神经科学研究中的重要性神经科学研究如何帮助我们进一步了解脑机能我们可以使用核磁共振成像(MRI)提供大脑的二维或三维图像,用于研究其解剖构造、功能或分子机制……或这三者的结合。MRI的好处在于,研究人员可以选择把重点放在解剖兼功能层面或是分子层面。体内神经影像学能给我们提供关于大脑功能和代谢的哪些信息?使用一种称为扩散MRI的技术,我们能够以非侵入性和非破坏性的方式,追踪整个大脑的轴突方向,并创建大脑的连接图。在功能性方面,我们有多种选择。功能MRI(fMRI)使我们能够在大脑思考时观察它。这项技术属于临床标准,在过去十多年里,我们已经能够将其应用于包括大鼠和小鼠在内的动物。fMRI不需要造影剂。我们只需监测由于氧合血红蛋白和脱氧血红蛋白转换而产生的细微信号变化,即可清楚地检测大脑活动。此外,我们还能监测脑血流的变化,这是一个重要的标志。在中风研究中,我们可以看到受影响的大脑区域,其精确度可能比大多数其他非破坏性方法更高。活体波谱可以研究体内的代谢物。借此,我们可以获得大脑区域的化学“指纹”。这些区域的大小通常为几毫米立方,定域活体波谱使我们能够识别和量化其中的数十种代谢物,包括与大脑能量通路有关的主要神经递质和分子。并非所有生物学家都了解MRI技术,为什么?MRI通常不属于生物学课程范畴。医学博士会接受关于MRI的基本培训,如果最终成为放射科医生,还会接受进一步的相关训练。但对于生物学家而言,他们与MRI的接触始于将其用于解决生物学问题。我以前兼修生物学和化学课程,而关于NMR和MRI的所有基础知识,我是在化学课程中学到的。如果我只学习生物学,我将对MRI的巨大潜力一无所知。每个生物学家都会学习如何使用光学显微镜,但除非所在大学配备有临床前MRI扫描仪,他们很难对MRI技术有所了解。布鲁克的MRI应用专家已经将他们的知识融入到预先优化的协议中,即使用户对MRI不甚了解,也能快速解答生物学相关问题。请概述MRI和PET/MRI在基础神经科学研究中的应用和重要性。PET缺乏解剖学信息。一般来说,使用PET,您可以追踪示踪剂在体内的任何位置,而您最终看到的只是功能化示踪剂所在的区域。如果您单独使用PET,则无法确定这些活动区域在体内的位置,因为没有解剖学相关参照。而使用PET/MRI组合,通过在灰度高分辨率MRI图像上的彩色PET图像,您可以高精度地看到示踪剂的确切位置。PET和MRI结合的重要性和美妙之处在于,您可以同时执行这两种操作,并从MRI中获得出色的软组织对比。与其他方法相比,这些成像技术有什么优势?除了非破坏性之外,还有一个事实是,我们可以使用更少的动物获得更多的信息。您可以实现更大的统计相关性,因为您可以使用扫描仪在数周或数月内反复研究同一只动物。在每个研究时点后,动物不会被处置。相反,我们扫描整个队列,从所有动物那里获取全部信息。每只动物都作为自己的对照。这减少了许多临床前研究固有的生物散射问题。我认为这是一个经常被忽视的巨大优势。临床前研究的发现能完全转化为临床应用吗?临床前脑成像能做到临床上不可能做到的事情吗?是的,可以转化。对动物使用PET和MRI成像与在医院对患者使用临床仪器进行的操作相同。当然,临床前成像也有好处,比如在进入临床前测试新的疾病治疗方法。您还可以使用基因剔除模型来研究疾病进展的机制。请介绍用于临床前神经科学研究的布鲁克仪器吧:早在40多年前,我们就推出了一系列临床前MRI扫描仪,在市场上处于领先地位。布鲁克的临床前MRI扫描仪品牌称为BioSpecs,有各种不同的版本。您可以从一系列磁场中进行选择。磁场越强,通常成像效果越好。您还需要确定孔径,也就是磁体内部的小通道, 动物在检查时就躺在里面。小孔径扫描仪只能容纳一只小鼠,而其他较大孔径扫描仪可以容纳大鼠甚至更大的动物。我们的PET扫描仪也设有供大鼠和小鼠使用的小通道。我们还提供PET和MRI的组合。在其中一款PET/MR设计中,PET通道设在MRI通道的前面,所以这两台机器是相邻的。动物安置在一种类似单轨的轨道上,首先进入PET通道进行快速扫描。然后将其向前移动约20英寸,在 MRI扫描仪中定位,执行MRI扫描。在另一款PET/MR设计中,小型PET环直接安装在MRI通道中,使动物能够直接进入MRI扫描仪的中心,这也是PET扫描仪的中心,可以实现同时扫描。这种仪器已用于研究哪些临床前疾病模型?是否能够帮助确定任何潜在的治疗方法?嗯,应用非常广泛,从阿尔茨海默氏症和帕金森氏症模型到记忆、衰老和认知衰退模型等等。这种仪器也用于中风研究。通过在啮齿类动物中人为地诱发中风,我们可以对受影响的大脑区域进行量化,这可能比任何其他不涉及解剖大脑的方法都更有效。许多制药公司在药物研发中使用布鲁克扫描仪。
  • nature子刊:三光子高分辨显微镜助力研究神经科学重要问题
    p   正如医生们使用超声波检查,CT和MRI扫描身体,天文学家利用太空望远镜,自适应光学器件和不同波长的光线进一步观察宇宙,神经科学家们也在寻求新的方法来观察大脑内部的结构。 strong 最近出现的三光子显微镜让他们比以往更深入地了解脑细胞。 /strong 现在,基于对该技术的实质性改进,麻省理工学院的科学家们已经开展了第一项研究:通过每个视觉皮层,特别是下面神秘的“亚平面”结构,观察活跃小鼠大脑的神经活动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c9fa18d7-98e2-4073-be2a-d7d4a6eb1847.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图片来源:Murat Yildirim et. al. /span /p p   该研究发表在Nature Communications杂志上,研究小组表明,当老鼠受到视觉刺激时,他们可以测量所有六层视皮层和亚平面中神经元之间的活动模式,提供小鼠如何处理视觉信号的信息。此外,通过一系列仔细的实验,研究人员能够证明他们发出的光线,以及回收的光线,既没有损坏,也没有改变他们测量的细胞的特性。 /p p   总之,本文描述了一种 strong 新型三光子显微镜,该显微镜经过优化,能够提供快速,短,低功率的光脉冲,能够在不引起任何功能性干扰或物理损伤的情况下到达深部目标,然后检测由细胞发出的荧光。高效率地生成具有清晰分辨率和快速帧速率的图像 /strong 。 /p p   “我们有动力展示我们可以用三光子显微镜技术处理清醒状态下的动物,这样我们就可以提出神经科学的重要问题,”Yildirim说。 “你可以认为你拥有世界上最好的显微镜,但在你问这些问题之前,你不知道你会得到什么结果。” /p
  • 中国科学家胡海岚获颁“世界杰出女科学家奖”
    新华社巴黎6月23日电(记者陈晨)2022年度“世界杰出女科学家奖”颁奖典礼23日在巴黎联合国教科文组织总部举行。中国浙江大学神经科学中心执行主任胡海岚与另外4名女科学家获颁本年度这一奖项。2022年6月23日,在位于法国巴黎的联合国教科文总部,胡海岚(中)获颁“世界杰出女科学家奖”。(新华社记者高静摄)教科文组织在此前发布的评奖信息中说,胡海岚“因在神经科学方面的重大发现而获奖。她的工作促进了新一代抗抑郁药物的研发”。胡海岚21日在中国常驻联合国教科文组织代表团举行的招待会上说,“世界杰出女科学家奖”体现了教科文组织的宗旨,希望能有更多的年轻女性通过该奖项了解科学、热爱科学,成为女科学家中的一员。胡海岚致力于研究社会行为和情绪的神经编码和调控机制,特别是在抑郁症的基础及转化研究中取得了创造性、系统性的成果:她和她的团队发现了社会竞争中“胜利者效应”的脑机制;从分子、细胞和系统等多层面对抑郁症这一重大疾病的成因提出了新的阐释,为研发更好、更安全的抗抑郁药物提供了新思路。另外4位获颁2022年度“世界杰出女科学家奖”的科学家分别是古巴传染病学家玛利亚古斯曼、匈牙利裔美籍生物化学家卡塔琳考里科、卢旺达公共卫生专家阿涅丝比纳瓜霍和西班牙胚胎学家安赫拉涅托。此外,教科文组织还邀请了2020年度和2021年度共10位该奖项获奖者到场并为她们颁奖。受新冠疫情影响,这两个年度未举办线下颁奖仪式。联合国教科文组织总干事奥德蕾阿祖莱在颁奖仪式上致辞说,世界需要科学,科学需要女性。科学必须从教育和职业生涯的关键时刻开始,更多、更好地向女性开放。“世界杰出女科学家奖”由联合国教科文组织和法国欧莱雅集团在1998年联合设立,每年授予从全球各大洲遴选出的5名为科学进步作出卓越贡献的女科学家,旨在表彰她们的杰出成就,并为她们的科研事业提供支持。
  • 华粤行即将参加2012第三届国际神经科技大会
    2012第三届国际神经科技大会将与第五届世界癌症大会、第二届分子与细胞生物学大会于5月18日至20日,在北京国际会议中心同期举行。本次大会主题为&ldquo 打开神经系统的黑匣子&rdquo ,探讨交流的内容涉及神经科学的突破性研究、神经元沟通的新机制、感觉和运动系统、神经科学与医学等十大分会的近百余个议题。届时,将邀请全球神经研究领域最顶级最著名的专家、各国科学院院士、500强企业高管等做报告。并邀请来自世界上30多个国家和地区的神经领域科学家、研究员、课题组长等出席大会。 此次,华粤行将派遣专业技术队伍参加大会,并邀请日本NEPA GENE公司创始人早川先生及海外营业部经理宫村敦先生来华参会,我们将在我们的展位(展位号为17号)为您展示我们为细胞/动物研究提供的完整解决方案。同时在19日16:40分301会议室,宫村敦先生将作为演讲嘉宾发表题为&ldquo Transfection into neurons in diverse ways using an advanced electroporation system&rdquo 的演讲,内容丰富、技术含量高,精彩不容错过! 经过近30年的发展革新,电转染已成为基因的功能研究领域中不可或缺的技术手段。NEPA GENE公司专业研发、生产细胞电转染仪及电融合仪等,其生产电转染仪在研究领域中久负盛名,已被数百篇文献引用,其中不乏高水平杂志的文章,如Nature、Cell、PNAS、Genes &Dvelopment等。 2011年,NEPA GENE推出新一代全能型高效基因转染系统NEPA21,该系统采用专利设计的三步法电转染程序,在对细胞膜进行穿孔的同时,利用&ldquo 电泳效应&rdquo 将外源基因高效的导入到细胞当中。并且配合独有的反向导入(Reverse Transfer)及电压衰减(Voltage Decay)设计,可在提高转染效率的同时,大大提高细胞存活率。 欢迎各位届时莅临指导!
  • 科学家“攻关”,首先忙的是“公关”
    朱清时委员:这是中国科研最致命的事,也是钱学森说的中国没有拔尖人才的一个重要原因   丁伟岳委员:没有人愿意安安静静地做学问,一天到晚去钻营,你还想世界一流?不入流了!   听起来有些难以置信,一名科学家如果想申请“攻关”某项国家级课题,   首先要做的很可能是拎着礼物,踏上进京的道路,先去“公关”。   过去,人们常将地方官员到中央部委争取项目和资金称为“跑部钱进”。如今,这个办法同样适用于学术界。用中国科学院院士、南开大学教授、全国政协委员张伟平的话来说,这是一种习以为常的科技界潜规则。“只要搞好关系就行了,我们许多的官员就吃这一套。”张伟平说。   看不惯送礼、公关之风的“神舟”飞船总设计师、全国政协委员戚发轫院士,则对中国青年报记者说:“我希望你们能够做一个社会调查,在一线的科研人员,能够真正用在科研攻关上的时间是多少?”   不会走后门,就屡遭闷棍   自2007年回国执教以后,著名的神经科学家饶毅教授一共申请了3个科研项目,其中两个半以失败告终。其中一个评审组的间接反馈是:谁让饶毅不联系我们、不尊重我们?   这种“尊重”,与饶毅理解的“尊重”有本质区别。在他看来,不联系才是尊重。如果评审者和被评审者事先联系、事后一道吃饭,明显不符合国际惯例。   这位“海归”科学家只能在个人博客上总结:回国后的经历表明,不走后门正常申请经费,会屡遭闷棍。而搞拉帮结派有后台的,尽管科学记录并不很好,却也不难得到支持。   全国政协委员丁伟岳院士是一位著名数学家,时常受邀参与一些科研项目的评审。有时,在他还不知道自己入选评审组的时候,就已有申请者托人带话给他,希望得到照顾。   “他们‘跑部钱进’嘛,整天在部里头跑,探听到了评审组的名单。”丁伟岳说,“你只要不公布这个名单,这些事情可以杜绝。为什么教育部、自然科学基金委和科技部,连这点秘密都保不住呢?”   另一位不愿透露姓名的全国政协委员亦有类似的经历:“我也不知道被评审者怎么就能在评审前,找到评委的联系方式,并飞到我这里特地来拉感情,送东西。”   最让这位委员不能接受的是,这些不速之客常常送来一个厚厚的信封,里面塞满了钱。   这位评委后来被训练得很“警觉”。只要人家递上纸袋,他也不顾礼貌与否,立刻打开纸袋查看,如果发现有钱,当场返还。   全国政协委员、清华大学化学工程系教授邢新会说,有人这么做了,其他人就会感受到压力 当大家都这么做时,谁要是独善其身,申请项目的危险就会加大。   每到过年过节,是公关活动的旺季。邢新会说,很多人打着拜年的名义去“走访”一些国家重要科研计划比如“973计划”的评审专家,一些单位的领导不惜亲自挂帅。   “一个学校能够申请到重大项目的话,对学校的地位的提升有很重要的作用。为了政绩他会帮你去跑,拉关系,施加影响。”丁伟岳院士解释。   科学家成了“老板” 官员成了首席科学家   中国科学院院士、中国科技大学原校长朱清时委员很怀念自己年轻的时候,没有名气,没有钱,有的就是踏踏实实地做学问。   今天,让他感觉不舒服的是,最近这二三十年,这个价值观颠倒了。现在搞科研的人,钱已经变成目的。研究问题的内涵是什么已无关紧要。   “科研经费不再是为科研服务的东西,而是变成目标本身。”朱清时委员说。他说,在过去的一二十年,中国加强了对学术界的量化考核,而其中很重要的一点就是经费指标。钱越多表示成果越大,衡量成就大小“不是看你做出什么,而是看你拿了多少钱”。   很多单位也把科研经费多少当作评价标准。朱清时委员说,哪个单位接受评估,总是要强调自己有多么雄厚的科研经费。在个人职称评审中,科研经费多少也成为一个衡量标准。   为了获得经费,人们不得不花很多精力在评审过程和人际关系上运作。   朱清时委员惋惜地说,他认识的一些优秀的中青年学者,回国后都变成了“老板”。他们的主要工作是开会、申请经费、应付评审,反而没有时间做最应该做的科研。   “他们没有时间没有斗志,搅到与钱有关的各种事情中。可悲就在这里,他们忘了自己是做什么的。”朱清时委员说,“搞科研就应该牢牢记住,把研究做得最好,把内涵做到最佳,需要多少钱就是多少钱。钱太多了有时会起负面作用。”   另一方面,由于官员门路多,“公关”能力强,因此很容易取得重要项目,甚至成为“牵头”的“首席科学家”。   丁伟岳告诉记者,有一年的国家杰出青年科学基金评审就引起了争议,“很多人都对结果不能理解”,觉得难以服众。在这一年,“杰青基金”的获得者中不少是大学校长。   戚发轫院士注意到,如今很多科技奖励的获奖人都是官员。“我们当年,年轻人得奖,领导普遍都不参加,现在,领导都排在前面了。”   向“钱”看,你还想世界一流?   中科院上海生命科学研究院神经科学研究所所长蒲慕明的一个做法,让很多同行称道。在他领导的研究所,不鼓励经费过多。有人要申请经费,先向他报告,由他来判断,只有确实需要,才会提出申请。   “他代表国内优秀的科技工作者的意识。做研究不是为了钱,是为了深度和能力。”朱清时委员说。   中国科学院院士、清华大学生物系教授王志新委员告诉记者,国际学术界是有规范的,当一个题目申请到足够的科研经费后,再以此去申请第二笔经费,往往会被拒绝。而申请和评审过程中,无论是评委还是申请人,都有严格的规避原则。   在今年的全国政协会议上,邢新会委员专门反映了人情项目的问题:“近年来,在大大小小的科研项目评审中,动辄找人,更有甚者科研单位领导牵头集体找人、重关系轻水平、‘政治挂帅’的不健康风气有不断上升的趋势,这严重影响着科研项目评审的公平性,抑制了科研创新及科研人员的积极性。”   “这是中国科研最致命的一件事情。也是钱学森先生说的中国没有拔尖人才的一个重要原因。”朱清时委员说。   在接受记者采访时,丁伟岳院士痛心地说:“我们国家的经济越来越好,钱越来越多,各种基金项目越来越多,大家向‘钱’看的情绪也越来越高。我觉得这是整个社会的风气问题。这对于科学研究的发展绝对不利,以后没有人愿意安安静静地做学问,一天到晚想去钻营,你还想世界一流?不入流了!”
  • 香港科技大学成立“分子神经科学”国家重点实验室
    经国家科技部批准,香港科技大学6月22日正式成立“分子神经科学”国家重点实验室,致力推动分子神经科学研究,探索老年痴呆症等神经退化性疾病的治疗。这是香港科大成立的首个国家重点实验室。   香港科大22日为该实验室举行揭幕仪式。特区政府创新科技署署长王荣珍在仪式上说,创新科技是香港六大优势产业之一,期望香港科大继续将世界级的科研技术应用在日常生活中,促进香港的经济和社会发展。   香港科大校长陈繁昌说,香港要增强区内竞争力,科技是一个重要渠道。香港科大会配合国家制定的长远科技发展战略,并发挥在这方面的优势。   香港科大1999年即成立分子神经科学中心,以进行相关领域的研究。目前学校跨学科神经科学团队已超过20人,研究项目2001年被大学教育资助委员会确定为卓越学科研究领域。   香港科大成立“分子神经科学国家重点实验室”后,将致力探索大脑运作机制,通过了解神经细胞的发展、功能及柔软性,帮助了解不同神经病学的机理,以及协助开发有关药物。   据介绍,香港科大希望通过建设国家重点实验室,将“分子神经科学研究”发展成为国际级科研枢纽,提升分子神经科学的基础研究,并促进内地和香港的生物技术科研合作。分子神经科学国家重点实验室将与中国科学院神经科学研究所的神经科学国家重点实验室建立伙伴关系,共同开发神经科学的前瞻性研究。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(三)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,分四期介绍。本期为第三部分内容。5.3. 突触后室突触受体位于突触后室,负责传递来自突触前末端的信号。它包含支架蛋白--负责锚定突触后受体的专门用于信号整合的信号分子。在神经元树突中,从主要树突轴起源并突起的小体积树突棘提供分区功能,并根据突触活动和发育阶段显示大小和形状的动态变化。树突棘是突触长时程增强(LTP)的结构相关物,因此与学习和记忆有关。要想准确观察树突棘的小尺寸、不同形状和动力学,一般要求采用超过衍射极限的分辨率并有可能进行活体成像的光学显微镜方法。第一个将活细胞SMLM应用于原代神经元的研究之一是使用碳菁染料(如Dil)可视化脊髓和丝状足。对于突触后膜结构的可视化,已经发现了一个新的膜标记试剂系列,该系列可实现神经元追踪和树突棘的可视化。最近,通过快速SIM和增强共聚焦显微成像研究了树突棘上微小突起(称为小刺)的动力学。通过将SIM成像与计算方法相结合,进一步评估了树突棘的几何结构,证实凹面对于棘结构稳定的重要性。在树突棘中,F-肌动蛋白高度定位富集在突触后密度区(PSD)和树突棘膜上。肌动蛋白的分子速度升高已让其扩散到除棘尖外整个棘的亚区。为了分析脊髓中肌动蛋白的动力学,我们设计了一种低亲和力的光转换肌动蛋白探针,并利用像差校正光学系统对活体脑切片动力学进行了表征。通过STED显微镜观察对phalloidin-ATTO647N标记的原代神经元,可以在树突棘颈和丝状棘中观察到F-肌动蛋白的周期性片段。同年,STORM成像也显示树突棘颈和丝状棘中存在以肌动蛋白为基础的周期性膜骨架。在树突棘中,分支的F-肌动蛋白在PSD附近聚集,而延伸仅限于指状突起的尖端,并为棘突提供了基础。通过基于监督学习的模式识别进行图像分割,可以对树突肌动蛋白组成异质性做自动分析。用SMLM也对树突F-肌动蛋白进行了同样的分析,并使用树突铂复原电镜进行了验证。使用STED显微镜在活体小鼠脑切片海马CA1神经元上进行延时拍照并结合FRAP及电生理学检查,证明在神经递质释放诱导的长时程增强(LTP)时树突棘颈部具有可塑性(宽度增加并长度减少)。使用正置STED显微镜实现了活体小鼠树突棘动力学的首次超高分辨率成像。在这里Thy1 EYFP小鼠体感皮层中的树突棘在其头部和颈部表现出形态可塑性。另外使用双光子STED成像对活体小鼠的海马树突棘动力学进行了研究,树突棘密度与早期报告相比高出2倍,并能测算几天内的树突棘蛋白周转率(图10)。图10 体内长时程双光子STED成像--海马CA1锥体神经元树突棘蛋白周转。左上图:使用长工作距离物镜的实验方法和CA1锥体神经元的双光子整体图像。右上图:传统的双光子成像与双光子STED成像的比较,显示了总体上更高的棘突密度和更详细的形态,特别是在轴和棘突中。空的箭头标志着常规双光子成像不能显示的棘突,而填充的箭头表示双光子STED报告的棘突数量更多、形态更复杂。底部图像:在海马CA1区基底树突的一个选定区域内,连续几天(第0天、第2天和第4天)成像的树突棘周转。树突棘被连续编号。AB=接近树突的轴突(缩回的棘突用红色标记;新的棘突用绿色标记)。转载自原文参考文献 273。此外,sptPALM揭示了富集在突触棘的突触后激酶CaMKII的空间和动力学亚群,该激酶介导钙依赖性可塑性机制。这些动力学似乎由棘肌动蛋白调节,因为Latrunculin A导致棘内CaMKII扩散显著改变。在PSD内的棘头,一个密集的蛋白质复合物含有不同的突触后支架蛋白,如PSD-95、homer1和shank3,它们排列在大小为∼80纳米的亚突触域中。根据不同的突触类型,PSD-95被动态组织为单个单元或多个纳米簇的形式。STED显微镜揭示了突触后支架蛋白负责将离子受体锚定到突触后膜上,SMLM观察到的活体原代神经元也是一样。在这里,活细胞单分子成像结合定量分析揭示了含有GluA2的AMPA-Rs(优先聚集在突触下的PSD-95簇中)的稳态调节。而PSD-95的uPAINT成像和AMPA-Rs的spt PALM报告在70 nm大小的PSD-95纳米域内平均聚集了20个AMPA-Rs,进一步证实了上面提到的这个发现。AMPA-Rs形成纳米颗粒,并能在几分钟内动态改变其大小和形状。与突触可塑性匹配的是:动态变化是通过突触内和突触外隔室之间的AMPA-Rs在时间维度交换,通过横向扩散来实现的。这些过程通过以微球标记抗体为靶点的内源性受体的单分子追踪实验得到证实。受体运动的类型被认为是布朗扩散,与突触后元件发生短暂的、低亲和力的相互作用。单分子追踪实验中使用Atto 647N修饰的抗体揭示了谷氨酸诱导的脱敏AMPA-Rs的侧向扩散增加导致的短期可塑性。AMPA-Rs的侧向扩散也与突触的短时程增强和长时程增强(分别为STP和LTP)有关。例如,已经证明,为了从突触抑制中恢复,脱敏受体通过侧向扩散被功能受体替换。此外,追踪实验表明,在CaMKII激活诱导LTP后,AMPA-Rs扩散到突触部位。这一过程由钙浓度升高触发,它导致CaMKII介导的stargazin(它与PSD-95一起能够调节AMPA-R的迁移率)磷酸化。进一步的研究报道,AMPA-Rs的交联导致膜上受体制动,它阻止了成功的LTP诱导。这一机制也可能导致由AMPA的致病性抗体介导的自身免疫性CNS疾病的病理生理学。与NMDA-R和mGluR5代谢受体的GluN1亚单位相比,AMPA-Rs的纳米级结构以不同的簇大小为特征。令人惊讶的是,突触前mGluR5受体表现出更均匀的分布,没有聚集行为。通过一种新的基于敲入的基因组编辑方法观察到,代表NMDA-R总库的内源性GluN1亚单位受体被证明聚集在一个由单个受体包围的主要单簇中。在关注NMDA-R细分的NR2A和NR2B亚型时,SMLM表明,在突触发育过程中,这些亚型被分割成纳米结构域,并根据其突触比率进行重塑。关于谷氨酸受体的活动性,单分子追踪实验揭示,神经元活动优先影响AMPA-R的活动性,而NMDA-R的活动是由蛋白激酶C活动触发的,而不是由钾升高触发的。此外,dSTORM成像表明,不同的NR2亚单位定位于不同的纳米结构域,这些纳米结构域在神经元发育过程中表现出灵活性。根据NR2A和NR2B的纳米结构,LTP的表达可以双向调节。kainate受体的单分子追踪实验也表明,突触捕获紧随着突触活性增加后发生。这里,突触激活导致的kainate受体与突触β-连环蛋白/N-钙粘蛋白复合物结合,形成短期可塑性。作为抑制性突触的对应物,gephyrin是将GABAA(GABA-a R)或甘氨酸受体(GlyR)并入突触后膜所必需的关键锚定分子。通过对突触中gephyrin分子的PALM/dSTORM成像发现:抑制性PSD(iPSD)体积为0.01至0.1μm3,并且每个iPSD中有200−250个gephyrin分子。单分子成像进一步揭示了gephyrin分子与受体结合位点的化学计量比约为1:1.96。类似于兴奋性突触,抑制性PSD(IPSD)根据突触活动动态调节其大小。通过NMDA-R激活形成的抑制性突触LTP加剧突触gephyrin积累,从而以CaMKII依赖的方式增加GABA-AR聚集,从而诱导GABA能突触后电流的增强。相反,抑制gephyrin向突触区的募集导致GABA-AR迁移率降低,并阻止iLTP的诱导。iLTP诱导后,gephyrin片段化为纳米结构域。gephyrin的重组降低了抑制性突触后电流的振幅变异性,证明了GABA-AR准确定位对于iLTP的真正表达非常重要。有趣的是,单粒子追踪显示,脱敏的GABA-AR甚至可以通过侧向扩散在并列的GABA能突触之间交换,为控制GABA能电流提供了另一种机制。此外,为了阐明多巴胺能突触的超微结构布局,dSTORM成像将多巴胺转运体映射到胆固醇依赖性纳米结构域,从而为更好地理解多巴胺能神经传递的病理生理过程奠定基础。5.4.亚突触结构域中的跨突触排列早期电生理学实验中已经发现,突触强度取决于突触前融合位点和突触后受体组织之间的空间关系,突触释放由释放位点的数量,突触小泡的释放概率,以及受体提供的突触后基本反应来决定。首先观测到的亚结构域的跨突触组织是突触粘附分子SynCAM 1位于边缘,EphB2位于PSD的中央。SynCam1在PSD中形成突触下云,可被长期抑郁症模式重塑。SMLM观察链霉亲和素的新单体变体(设计用于减少突触区域的交联和空间位阻),表明跨突触伙伴神经肽原1和神经纤维素1ß在突触处扩散受阻,形成相反的簇。这项研究还表明,另一种粘附分子LRRTM2的流动性不如神经肽1,并形成更密集、更稳定的簇。最近揭示了兴奋性突触上活性区的细胞基质和突触后受体支架的跨突触排列,它与提供高保真突触传递的靶向神经递质释放有关。在这里,释放位点定位是通过一种基于融合到突触囊泡蛋白Vglut1的pHluorin标记和RIM1/2纳米簇的超分辨检测的新方法实现的。多色3D定位显微镜显示RIM1/2和突触后PSD-95形成相反的纳米簇。LTP诱导导致PSD-95密度断裂增加,同时增强了纳米柱的排列,而LTD导致突触后柱的紊乱。突触前和突触后关键分子的这种纳米级排列主要由于neuroligin 1。此外,在应用STED显微镜的实时成像实验中,已经报道了树突棘体积增加和排列的纳米模块数量之间的紧密相关性。还报道了抑制性突触的亚突触结构域的纳米级排列。在这里,STED和SIM阐明了gephyrin和GABA-AR突触前亚区域的紧密联系。此外,突触后GABA-A 受体云显示与突触前边缘结构域结合(图11)。在小鼠神经肌肉连接处,带连接褶开口的突触后乙酰胆碱受体和突触前活动区的排列已通过应用SIM成像可视化。图11. 抑制性突触上的突触亚结构域。突触前的RIM元素与突触后的gephyrin支架分子以及抑制性突触的GABA-A R的突触下结构域的排列。PSD的体积和突触下域的数量随着活动相关的突触大小的变化而变化。转载自原文参考文献302。5.5. 三联突触星形胶质细胞是神经传递的基本调节者,神经元突触周围突触前星形细胞突起(PAPs)的吞噬产生了三联突触这一术语。PAPs能够通过传递调节分子来改变和控制突触的传递。通过dSTORM重建星形细胞突起,可以通过标记胶质酸性纤维蛋白(GFAP)和谷氨酰胺合成酶和S100b的成像来实现星形细胞的纳米级可视化。最近的一份报告应用ExM来观察脑片中突触周围的星形胶质细胞谷氨酸转运体显示,在与这些棘附近的GLT-1水平较高有关的较大的神经元树突棘中,谷氨酸的摄取效率降低(图12)。图12. 海马大脑切片中CA 1锥体神经元周围的星形细胞突起。锥体神经元的树突在Thy1-YFP小鼠系标记(绿色);星形胶质细胞则是在海马脑片上的GLT-1免疫染色显示(红色)。蓝色信号代表树突区和星形细胞突起的共同定位。更高的放大率插图见右图。左下:大棘和小棘的分类。底部中间和右侧:GLT-1和神经元YFP的共定位像素的量化。请注意右图树突棘体积归一化后的变化;红点表示平均数和SEM,p = 0.0220 (绝对GLT-1覆盖率),p = 0.00223(相对GLT-1覆盖率)。转载自原文参考文献307。EM和STORM发现,PAPs也配备了局部翻译位点,以避免星形细胞体细胞中合成的蛋白质的长距离运输路线。最近在器官型切片中进行的3D STED显微镜研究揭示了星形细胞钙信号的结构前提。在星形细胞内检测到了海绵状结构,它包含了接近突触部位的节点和轴。钙离子瞬变的共聚焦成像与星形细胞结构的STED显微镜相结合,显示自发的钙离子瞬变紧密地映射到这些结点。因此,这些结点被认为是类似于树突棘的空间分隔作用。胶质传导物质的外渗需要提供胶质囊泡。通过将电容测量与葡聚糖摄取后星形胶质细胞内的囊泡的SIM图像相关联,发现了外吞和内吞之间的Dynamin依赖性膜中间物。通过STED显微镜和SIM分析单个胶质小泡的特征,在星形胶质细胞中有两个小泡群,其大小和融合能力不同。Phluorin实验结合SIM确定星形胶质细胞囊泡上Syb2分子的拷贝数为25∼。此外,应用STED和TIRF显微镜对培养的星形胶质细胞中的VAMP3阳性囊泡进行了单囊水平的分析。测量结果显示VAMP3覆盖的囊泡大小约为80纳米,并提供证据表明这些囊泡参与了钙依赖性的囊泡循环。SIM成像还可以发现,突触蛋白中一种已知的参与神经元外排的v-SNARE蛋白,也普遍存在并组织在单个星形胶质细胞的囊泡上,以实现高效的外排。星形胶质细胞还通过回收proBDNF到BDNF参与促进兴奋性LTP。这里,SIM成像显示,proBDNF在体细胞区域位于囊泡大小的集群中,而沿星形胶质细胞末梢的点状模式占主导地位,以扩大BDNF对记忆的作用。为了最大限度地减少激发光的散射,通过应用被动CLARITY进行组织透明化和多光子显微镜,改善了组织深处的星形细胞成像。通过使用SiR-actin和SiR-tublulin探针的STED显微镜和原子力显微镜(AFM)的相关方法来测量膜的拓扑结构和硬度,将星形细胞的细胞骨架和膜的生物物理特性联系起来。(未完待续)本文由超高显微技术应用工程师郭连峰、黄梓彤编译(受篇幅限制,未将参考文献列出)相关阅读:超高分辨率显微技术在神经科学中的应用(一)超高分辨率显微技术在神经科学中的应用(二)
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(二)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期接着上期的第一部分超高分辨率显微技术在神经科学中的应用(一) ,为第二部分内容。4.荧光标记与样品制备4.1. 荧光标记神经元和脑片的超分辨率成像是用适当的荧光团标记感兴趣的生物分子,理想情况下是以定量和化学计量的方式。虽然SIM和其他超分辨方法的成像质量取决于信号背景(S/B)比,但SIM对荧光团没有特殊要求。另一方面,STED显微镜可达到的分辨率在很大程度上取决于所用荧光团的光稳定性。RESOLFT显微镜使用可逆光开关FPs,具有两个稳定状态,因此可以使用较低的激光照射强度。所有SMLM方法的定位精度取决于每个事件检测到的光子数。dSTORM需要光开关有机荧光团,包括菁、罗丹明和恶嗪染;而PALM则需要使用光开关、光转换和光激活FPs。与此相反,DNA-PAINT理论上适用于所有荧光团,因为开/关速率由对接链和成像链序列和缓冲条件决定,而其中 Cy3B和ATTO 643效果最好。、为了获得一张好的超分辨率图像,除了成像方法以外,样品制备也非常关键。使用荧光探针进行高效和特异的标记,并且使标记误差(荧光团和目标之间的距离)达到最小。为了通过荧光成像进行结构解析,标记密度(即荧光探针之间的距离)必须显著高于所需的分辨率。另一方面,特别是对于接近几乎分子分辨率的超分辨率成像方法,标记误差必须尽可能小,以达到高精度成像。对于活细胞标记而言,在合适的表达载体中融合感兴趣的蛋白质的基因编码FPs无疑成为首选。然而,FPs的亮度较低,与有机染料相比,其图像分辨率较低。理想的标记方法是使用荧光染料标记基因编码的蛋白质、肽标签或单一氨基酸。在模式生物如果蝇或秀丽隐杆线虫的应用得益于基因编码工具,通过转座子、操纵二分体Gal4/UAS表达系统或Crispr/Cas9方法引入或去除突触蛋白和荧光蛋白。由于瞬时转染的细胞表现出不同的蛋白质表达水平,蛋白质的分布和功能不一定反映野生型的情况。图5 通过单体链霉亲和素结合AP标记的突触蛋白成像结果显示Nlg1和LRRTM2的差异分布(dSTORM成像)。上排:Homer 1c GFP作为突触后室的参考。第二排:Nlg1和LRRTM2(dSTORM成像)。左下:频率分布直方图,用于显示相对于Homer 1位置中心的信号分散情况。右下:列出比较两种蛋白质的突触结构域数量的直方图。然而,通过构建优化表达,稳定表达的细胞或CRISPR基因敲入等方法可以产生从内源性到强过表达的蛋白质表达水平。根据不同的转染策略,可以采用不同的方法转染神经元。传统的磷酸钙共沉淀法和脂质体法在大多数实验室都可实施,但这两种技术的转染效率很低。而病毒转染的效率比较高,允许注射到大脑区域,但需要实验者具备病毒生产方面的专业知识,并需要考虑生物安全问题。此外,还必须考虑病毒类型、插入片段大小、毒性和差异表达等因素。要达到高转染效率,可以使用高压脉冲将核酸直接输送到细胞核,进行核转染。然而其缺点是,当这种方法应用于小鼠原代神经元时,会导致细胞存活率较低,并且实验设备昂贵,还需要根据神经元密度和物种对脉冲参数进行多次测试。另外,也可以使用细胞附着式高电阻管,在完整神经元网络(如器官型切片)中进行单细胞电穿孔。利用这种方式,结合CRISPR基因敲入获得了接近内源性的蛋白质表达水平。基于CRISPR基因敲入,在神经元发育的不同时间点通过脂质感染、核感染或病毒转染在神经元中实现。如前所述,FPs光稳定性和荧光光子输出较低,这降低了图像质量。另外,连接大小为2−5nm的FP后,蛋白质功能可能会受到影响。因此,首先必须清楚感兴趣的蛋白质在野生型的功能表现。而有机染料比FPs小得多,有更高的光子产率和光稳定性,但需要与其它能与感兴趣分子结合的分子进行连接耦合。对于固定细胞,使用一抗和二抗进行免疫染色仍然是标记内源性蛋白质的首选方法。缺点是由两个大小17.5 nm左右的IG抗体间接免疫标记有可能导致标记误差。使用直接法免疫荧光或Fab片段可以减少标记误差。另外针对GFP或转基因短肽标签的更小(1.5×2.5 nm)的骆驼“纳米抗体”已应用于dSTORM成像。此外,耦合了链霉亲和素的荧光染料可用于神经元和器官型组织中靶蛋白的特异性标记。使用这种标记方法,研究了神经氨酸酶-1ß、神经肽原-1和富含亮氨酸的重复跨膜蛋白2的动力学和纳米级结构,并揭示了跨突触粘附结构的形成(图5)。另外可以使用生物正交肽或自标记蛋白质标签,例如FlAsH tags, SNAP-tags, and Halo-tags。这些标签蛋白与目标蛋白共表达,并以共价和特异性结合其各自的荧光标记试剂或配体。对于肌动蛋白和微管的标记,可以使用小肽药物,如双环七肽-鬼笔环肽和紫杉烷类药物,如紫杉醇。膜和细胞器的标记可以通过荧光脂质和细胞器的追踪试剂来实现。此外,小肽或配体可以直接用荧光团标记,并特异性结合生物分子,例如,显示抑制性突触后位点的超结合肽。要达到最小的标记误差,可以通过单个非天然氨基酸的特定位点标记实现。通过基因编码导入设计的非天然氨基酸,并用四嗪染料进行生物正交点击化学标记。显然,神经元和组织切片必须根据要成像的结构进行透膜和固定。与所使用的标记方法无关,特别注意所用的试剂必须能保留自然细胞环境中生物分子的超微结构。通过化学试剂固定交联蛋白质,可能会影响结合亲和力,也可能削弱分子间的相互作用。在大多数情况下,多聚甲醛(PFA)和戊二醛已成功用于神经科学的超分辨率成像。此外,还引入了乙二醛等新型固定剂。膜分子应始终使用4%的PFA和0.2%戊二醛固定,以尽量减少残余流动性并避免伪影,例如抗体结合诱导的簇形成。4.2. 神经元的多色遗传标记荧光蛋白彻底改变了神经元的活细胞成像方式,因为荧光蛋白可以与感兴趣的蛋白质融合,并且在假定不影响野生型功能的前提下,用于双色和三色成像。神经系统具有非常高密度的轴突和树突相互作用结构,需要使用更多不同颜色的标记来区分不同的神经元连接。2007年,随着一种名为Brainbow的转基因方案的开发,这一问题得到了解决,该策略能够对神经元进行多色标记。结合单细胞分辨率成像技术,Brainbow技术可以用来创建大脑图谱,详细描述神经元如何形成回路,其连接体以及它们投射到何处。Brainbow利用了三原色,即可见光谱的所有颜色都可以由三种原色的不同混合物生成,即红色、绿色、蓝色(RGB)或转化为荧光蛋白,例如RFP、YFP和CFP。为了实现这一想法,应用了Cre/lox重组系统,该系统可以通过DNA切除、反转或染色体重组启动基因表达,使三个荧光蛋白基因中的一个在转基因中随机表达。转基因盒的多个拷贝的引入导致三个不同拷贝数的基因在每个细胞中组合表达,从而产生几十种颜色,使相邻神经元分化并观察其相互作用。Brainbow技术非常适合绘制不同神经元类型之间的连接模式,追踪轴突,并识别大脑中远距离的神经元连接。此外,已经证明Brainbow表达可以成功地用于研究周围神经损伤后的轴突再生,并检测大脑发育过程中的重要阶段。为了进一步改进Brainbow在包括突触蛋白在内的大脑和连接图谱中的应用,SRM的应用是显而易见的。最近通过结合Brainbow、顺序免疫染色和ExM同时研究同一脑切片上的形态、分子标记和连接,成功地证明了这一点(图6)。将这项技术应用到全脑研究一直是一个挑战,直到最近才成功应用。图6 结合Brainbow和ExM的多轮免疫染色和ExM(miriEx)成像。(A) 实验方案:在Parvalbumin cre/+ 小鼠的脑切片中,Parvalbumin蛋白阳性中间神经元通过Brainbow进行观察,并在下一轮应用4倍ExM成像。使用EYFP信号对Homer1和Gephyrin进行免疫染色来观察突触。(B) Brainbow 信号的免疫染色。(C) 分别通过突触后标记homer1和Gephyrin的免疫染色来区分抑制性和兴奋性突触。插图(D)−(F)和(G)−(I) 显示图像的更多细节图。(J)和(K)神经元的形态重建(使用ImageJ软件插件nTracer),包括其各自传入的特征。虚线框表示(B)和(C)中所示的区域。重建的神经元按顺序编号。标尺(膨胀前的):10μm(B/C)、2.5μm(I)、20μm(J/K)。4.3. 神经科学中的光电联合显微镜电子显微镜(EM)和电子断层扫描具有光学显微镜无法达到的空间分辨率,可以获得细胞和细胞器的超微结构信息。然而,EM和电子断层扫描不能标记特定的分子,因此难以识别未知的细胞结构或具有相似形态特征的结构。用胶体金标记结合抗体可以实现蛋白质的纳米级定位,但抗原的标记效率低下,这意味着胶体金颗粒的数量仅占抗原总数量的1%到20%。而另一方面,荧光显微镜虽然分辨率较低,但可以进行大视场成像和对活细胞中蛋白质进行定位。对固定样本细胞中的各种分子进行高效和特异的分子标记后,结合超分辨率荧光显微镜方法,达到的空间分辨率可以远低于衍射极限。因此,光电联合显微镜(CLEM)作为一种通用的方法,在电子显微镜提供的细胞超微结构背景下,通过超分辨率成像来可视化蛋白质的定位和相互作用。然而,将超分辨率成像与EM结合起来更为困难,因为乍一看,这主要是由于两种方法的样品制备流程不同且不兼容。例如,EM中保存超微结构所需的固定和染色会引入很强的自发荧光。而且荧光蛋白还会在固定和聚合物包埋所需的脱水和氧化条件下淬灭。此外,这两幅图像必须在纳米精度下精确叠加,首先需要使用在荧光成像和EM中都表现出极好的对比度的固定对准标记物,如裸金微球。 另外,样品脱水引起的结构变形会严重破坏两幅图像的正确叠加。所以必须在超微结构和荧光保存之间找到折衷方案。例如,已经证明,对于某些周期性分子结构,如核孔复合体,无需使用对准标记,dSTORM和EM扫描图像可以以20 nm的精度叠加。光电联合显微镜的流程是先对轴突和树突进行荧光实时成像后,再使用透射电镜观察。例如,表达GFP的脑组织在荧光成像后进行化学固定,再使用电子密度标记进行免疫标记,例如EM金。或者采用更成熟的方法,如过氧化物酶或胶体金标记。最后,可以通过光转化在荧光团处局部生成二氨基联苯胺(DAB)聚合物。为了克服标记问题并确保超微结构的保存,已经开发了用于EM (NATIVE)的纳米体辅助组织免疫染色。NATIVE能够高效标记蛋白质,无需苛刻的渗透步骤、特殊树脂、锇替代物或透明化试剂。随着方法的改进和技术的发展,光电联合显微镜已被证明是研究不同种类突触和定位突触蛋白的理想选择。5.超分辨显微镜观察神经元隔室/突触以及神经元−胶质细胞相互作用下面我们将展示通过超高技术获得的有关细胞骨架组成和动力学、突触前室和突触后室对神经传递准确性至关重要的分子组装,以及形成神经元功能的星形细胞结构的调节和构建的最新数据。5.1. 细胞骨架神经元的极化性质以及树突和轴突的长度都需要结构和功能性支架来支持它们的稳定性、适应可塑性和物质运输,这些特性对神经元的存活和信号传递是必不可少的。因此,神经细胞骨架的结构在过去几十年中引起了神经科学家的注意,并在其它文献中进行了详细的回顾。20世纪70年代的电镜研究表明,神经细胞骨架由三种主要类型的神经纤维组成:大小约为20−30 nm的微管,直径为10 nm的神经纤维和5−10 nm大小的肌动蛋白丝。微管是由异二聚体在GTP依赖性组装过程中结合α和β微管蛋白单体组装而成的圆柱体,称为原丝,再由13个这样的原丝形成一个微管单元。轴突的微管成束状组织,并根据其相对于神经元胞体的位置显示不同的方向。它们的极化通过快速增长的正端和缓慢增长的负端体现。STED显微镜揭示了快速生长极依赖钙锚定在肌动蛋白皮质上。使用dSTORM对发育中的神经元进行活细胞成像证明了神经元极性和轴突具有方向一致的、平行的由TRIM46驱动的微管束,而树突微管的特征是混合极性。用Motor-PAINT方法进行纳米跟踪发现稳定和乙酰化的微管显示负端向外的方向,而动态和酪氨酸酶化的微管则显示相反的方向(图7)。例如轴突起始节中微管密集地聚集在束簇中,由于密集的重叠定位,使用SMLM方法具有挑战性。这个问题可以通过两种实验方法来解决:第一,设计更小的标记探针,如微管蛋白纳米抗体,这不需对神经元微管更详细的观察。第二,一种降低群聚密度的超分辨率方法,如ExM,可用于胞体和树突中微管亚群的可视化。神经纤维是在轴突中形成的广泛平行网络的异质聚合物,它为轴突提供稳定性并调节轴突直径和传导速度,其组成包括低、中、高分子量神经纤维、中间蛋白和外周蛋白的三联体。它们的自组装首先形成平行的异二聚体,然后半交错地结合成反平行的四聚体。最后,八个四聚体横向聚集成单位长度的神经纤维,进一步拉长并径向压缩至最终的神经纤维外观。用电镜观察到在神经纤维之间的交界面,形成3−5 nm大小的交叉桥,但对其功能及其与神经纤维的分子相互作用仍不清楚。在这里,ExM与SMLM的结合或DNA-PAINT的应用可能有助于研究密集神经纤维中的这种相互作用。神经纤维动力学已经通过光转换和光活化SRM实验进行了研究,显示了端到端蛋白合成中的退火和切断过程。肌动蛋白最初被认为与一组更集中的短肌动蛋白丝结合在一起,在轴浆中形成斑点状的膜下层。在原代神经元和脑切片中使用phalloidin Alexa Fluor 647进行STORM成像,揭示了轴突肌动蛋白的新的组成原理。这些实验揭示了轴突中存在圆周式肌动蛋白环,每190 nm固定重复间隔绕一圈,并进一步表征了轴突中具有类似尺寸的ßII血影蛋白和钠通道的周期性条带,而树突状腔室内显示出更细长的肌动蛋白组织。此外,通过STORM成像发现,并通过STED显微镜的研究得到证实,这种肌动蛋白组织模式的普遍性也存在于树突中。进一步的报告发现,尽管树突中也存在基于肌动蛋白血影蛋白的周期性膜骨架,树突中这种结构的形成倾向和发育速度低于轴突。此外,本文还显示了肌动蛋白和血影蛋白在胞体和部分树突中的二维多边形晶格结构,类似于红细胞中的膜骨架结构。此外,使用SiR-actin,可通过STED显微镜在活的原代神经元中观察到这种周期性结构。最后,最近的CLEM方法结合铂金复原电镜(PREM)和STORM研究了无顶轴突中的肌动蛋白组织,并提供了轴突编织状肌动蛋白结构与周期性肌动蛋白超微结构相关的证据(图8)。图8。原代神经元无顶轴突(unroofed axons)的CLEM成像(结合铂复型电子显微镜和STORM的光电联合成像)。用铂复型电镜(PREM)(灰色)显示的轴突辫状条带(箭头)被叠加到大鼠原代神经元的超分辨肌动蛋白环(伪彩)上,比例尺=2, 1, 0.2μm(从左到右)。中间:轴突辫状条带间距测量后显示出与周期肌动蛋白间距相似的尺寸。右图:在铂复型电镜(PREM)中记录的神经纤维厚度,未分裂(交织在一起)和分裂(分裂开)的轴突肌动蛋白辫状条带为蓝色,树突中的单个肌动蛋白神经纤维为紫色,微管为灰色参考。采用平均值和标准误显示数据。Copyright 2019 Springer Nature.ßII 血影蛋白基因敲除导致周期性肌动蛋白环结构破坏,同时细胞器的双向轴突运输受损。SMLM结果显示,与轴突相比,轴突起始节中的分子组织其特征是轴突起始节(AIS)蛋白ankyrin-G和ßIV-血影蛋白,这种基于肌动蛋白-血影蛋白的细胞骨架与远端轴突相似。此外,在AIS中存在ßIV-血影蛋白和Ankyrin G,而在远端轴突中存在ßi--血影蛋白和Ankyrin B。SMLM显示与肌动蛋白环相连的纵向头对头ßIV血影蛋白和Ankyrin的二价取向有助于建立紧凑的AIS超微结构,该超微结构甚至对针对肌动蛋白和微管的药物治疗具有抵抗力。进一步显示Ankyrin-G会聚集到亚结构域,增强神经元活性,而成为精神疾病的主要风险基因。随后的SMLM研究还阐明了αII血影蛋白与ßIV血影蛋白共同在AIS提供强健的周期性细胞骨架组织以及防止AIS装配不完全和神经变性的重要性。一份相关报告显示,αII 血影蛋白丰度随有髓鞘轴突直径的增加而增加,表明大直径轴突更容易发生神经退行性病变。在免疫标记II血影蛋白后,将其连接到一种可膨胀的聚合物,并在水中膨胀后,通过ExM研究ßII spectrin沿轴突的周期性模式。这一新方法证实了如前所述的细胞骨架内部的组织原理。不幸的是,在ExM过程中,phalloidin探针在膨胀过程中被冲掉。有两种策略解决这一问题:一方面,携带甲基丙烯酸基团的phalloidin三功能抗体被设计用于与凝胶的有效标记;另一方面,最近的一份报告使用荧光团结合抗体,类似于常规免疫染色,将荧光团靶向phalloidin探针与凝胶连接。在中枢神经系统的几种神经细胞类型和动物物种中,肌动蛋白和附属蛋白的强大超微结构组织也得到了证实。外周神经系统(PNS)中,STED显微镜也显示在梳理的神经纤维样本上有重复的细胞骨架成分。最后,SMLM揭示了肌动蛋白-血影蛋白骨架的一个重要生物学功能:它可以作为一个信号平台,通过组织跨膜信号蛋白,包括G蛋白偶联受体(GPCR)、细胞粘附分子(CAM)和受体酪氨酸激酶(RTK),在神经元中进行信号转导从而实现GPCR-和CAM介导的RTK信号。5.2. 突触前室为了确保有效的神经化学传递,突触前膨大参与突触囊泡循环、神经递质填充以及与突触前膜在活性区(特殊蛋白质密集分布的纳米隔室)的融合,以最终释放神经递质。在这里,我们关注SRM如何扩展我们对突触前功能的理解。早期只能使用EM对化学固定神经元里的小直径突触小泡进行研究,但随着SRM的出现,应用快速STED显微镜,通过免疫标记位于突触前室突触小泡上的钙传感器突触标记蛋白1(SYT1)来观察突触小泡的活动。STED显微镜进一步显示,突触小泡融合后Syt1分子似乎驻留在突触膜上,也支持胞吐后突触小泡蛋白的清除过程。此外,在突触小泡融合过程中,当暴露于细胞外空间时,靶向Synaptobevin 2 pHluorin的荧光团结合纳米体后,亚衍射追踪显示了突触小泡的异质性迁移。一种类似的方法使用vGlut1 pHluorin在原代神经元中的表达来观察单个神经元突触小泡,定位精度为27 nm,并揭示了突触小泡的多个不同释放位点。作为一项方法学的进步,为了对主动循环的小泡成像,设计了一种名为mCLING的亲脂膜探针,该探针可对突触膜进行染色,通过内吞作用和固定,可以进行免疫标记,且和SRM相结合。突触小泡的胞吐过程需要一组属于突触前细胞基质的突触前蛋白质的高度可靠的相互作用,使突触小泡接近和暂时驻留在所谓活动区的膜上,并最终释放突触小泡。黑腹果蝇易于遗传,有助于精确定位果蝇幼虫神经肌肉接头(NMJ)活动区的第一个重要蛋白质。Bruchpilot(Brp)是一种必不可少的活性区成分,是一种大的、卷曲的螺旋蛋白,对于钙通道聚集和突触囊泡定位到突触释放位点至关重要。除了通过Brp研究钙通道聚集外,STED显微镜还证明了该蛋白细长的组织结构,并揭示了与Brp相互作用的蛋白(如syd-1α、liprin和rim结合蛋白(RBP))的定位。定量dSTORM方法研究了果蝇活动区Brp丝的数量,并显示了Brp的结构组织与其功能之间的强相关性。接下来的研究通过dSTORM评估Syt1敲除后的活动区(CAZ)电生理学和细胞基质参数。这项研究表明,在果蝇NMJs 1b型突触膨胀中,Syt1基因的敲除导致更高的Brp计数和簇内Brp图谱的改变。在哺乳动物突触中,突触前支架蛋白bassoon 和 piccolo参与突触囊泡释放的调节。据报道,bassoon蛋白通过与RBP的相互作用来控制CaV2.1型钙通道的定位。此外bassoon蛋白能加速囊泡释放,因为其丢失导致小脑苔藓纤维到颗粒细胞突触中的突触囊泡数量显著减少和突触抑制。STED显微镜显示bassoon 和 piccolo蛋白是一个夹心三明治结构,两侧为piccolo蛋白,bassoon蛋白居中。STORM成像通过距离测量显示bassoon蛋白相对于突触前和突触后室中其他相关突触蛋白质的方向。囊泡胞吐过程由一组可溶性ethylmaleimide敏感因子附着受体(SNARE)蛋白质进一步协调。位于突触膜上的囊泡SNAREs (v-SNAREs) 蛋白和 t-SNARES蛋白的复杂形成导致突触囊泡成功融合。在质膜上的突触体相关蛋白25(SNAP-25)和突触融合蛋白聚集首先通过STED显微镜进行研究。这项研究表明,大约75个突触融合蛋白分子被堆积成50- 60 nm大小的纳米团簇。在之后的研究中,SMLM以更高的精度对SNAP-25和突触融合蛋白的分布进行成像。在这里,描述了Syntaxin簇内的分子密度梯度。dSTORM成像显示,未聚集的分子紧密地定位于聚集区域。最近的一项研究显示了一种以syntaxin或SNAP-25为靶点的像。研究表明,集中在突触前部位的60%的通道是可变的。此外,通过应用BAPTA钙缓冲降低了钙通道的扩散。结果表明,突触小泡和钙通道之间的纳米域偶联保证了神经传递的精确度,并可根据需要通过突触前钙通道的扩散进行精细调节。 在融合和递质释放后,内吞机制诱导循环产生新的囊泡,从而重建可释放的囊泡池并为持续的神经传递提供基础。囊泡循环的主要机制由网格蛋白介导的内吞作用组成。使用光遗传学和”闪光冷冻”电镜的研究也报道了比超快的内吞快200倍的过程。如双色iso-STED显微镜所示,通过摄取针对囊泡内膜结合位点的Syt 1抗体,将内吞位点定位到活性区外周。此外,在神经内分泌细胞中,STED显微镜也揭示了囊泡只能部分与突触前膜融合释放递质,形成一个“Ω”形状的结构,而没有完全融入膜中,因此有利于“接触后即脱离”(kiss and run)的模式。与网格蛋白介导的内吞作用相比,它会产生更快囊泡再循环率的递质释放模型。依赖于活性的大量内吞作用进一步增加了可能涉及的机制的复杂性,有人提出,根据突触类型和活动,多种内吞模式可能并行运作。本文由超高显微技术应用工程师郭连峰、黄梓彤编译
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • 用光子助力神经科学发展, 滨松携新品亮相第十三届神经科学学术会议
    2019年10月10-13日为期三天的中国神经科学学会第十三届全国学会会议在苏州圆满结束,此次会议有47个专题研讨会、288个口头报告、参会人员多达3731人,创造了学会年会历史的新高点。滨松中国作为光电行业领先的供应商,多年来连续受邀参加中国神经科学学会学术会议。在此次大会上,滨松展出了最新推出的sCMOS相机产品ORCA-Fusion和ORCA-Lightning,双色分光器W-View GEMINI-2C,高速病理切片扫描设备并对滨松的电生理成像方案进行了详细的讲解,因其可以对钙离子成像与电生理信号进行同步记录的特征,引起了广大神经科学客户的兴趣。完美的定量相机(Quantitative Camera)一直是滨松孜孜不倦追求的方向,而信噪比的不断提升则是其中的核心——在保证高量子效率的同时,ORCA-Fusion在噪声控制上精耕细作,将读出噪声降低至0.7e rms/0.6e median这样的水平,使得QE/读出噪声比值提升至1.33。不同于许多同类产品降低帧速以保障信噪比的做法,滨松不仅做到了行业巅峰的信噪比,在速度上也绝不妥协,ORCA-Fusion的像素读出频率高达470MHz,在2304x2048(470万像素)这样的分辨率下能够做到100帧/秒,选择合适大小的ROI甚至能将帧速提升至41000帧/秒。ORCA-Lightning是滨松最新推出的一款同时兼顾了大版面、高像素和高采集速度的sCMOS相机。在继承sCMOS相机一贯的高信噪比的基础上,ORCA-Lightning着重提升了版面大小、突出了高速采集的能力——与经典的旗舰级sCMOS相机Flash 4.0相比,ORCA-Lightning具有2.8倍的像素数目和3.4倍的像素读出速率,这使得ORCA-Lightning能够做到每秒采集121张1200万像素(4608x2592)的图片。如此大版面+高速采集的特征,使得ORCA-Lightning非常适合于光片成像(lightsheet microscopy)等对采集速度、像素数目和信噪比同时具有极高要求的应用之中。除此之外,滨松还展出了双色分光器W-View GEMINI-2C,可以实现双通道乃至更多成像通道,并将色差精准调节至1个像素以内。以及病理切片扫描设备,可以高速自动化的将玻璃切片转化成为高分辨率的数字化图像,通过电脑和任意显示终端显示,也可以进行更进一步的数据量化和数据分析,辅助科研实验。随着医疗科学的进步,神经科学越来越受到认同和重视。滨松也将秉承最初的意志,继续服务于中国的神经科技发展。在充满无限可能的光子大道上,与中国更多的研究者、科技从业者并肩同行,为创造更美好、和谐的未来而共同努力,研发出更多优秀的光学产品。
  • 科学家将人类大脑分为180个不同区域 下一步的计划又是什么?
    科学家将人类大脑分为180个不同区域 下一步的计划又是什么?在一项来自神经科学研究的爆炸性新闻中,最近来自美国的一组研究人员对人类的大脑外层结构—大脑皮层进行了绘制,研究者将人类大脑皮层分为180个不同区域;人类连接组计划(human connectome project)是美国政府发起的一项绘制人类大脑结构和功能性连接的重大计划,利用人类连接组计划的相关数据,科学家们对210名健康年轻人的大脑进行分析,相关研究结果将是人类大脑的现代图集,其中97个区域是此前研究者并未描述过的。人类的大脑皮层是一种折叠的大脑外层结构,其给予大脑一种典型“皱纹”样的结构表现,大脑被分为左右两个半球;我们都知道大脑皮层的特殊区域行使着不同的功能,位于中脑竖向凹槽中的主要体觉皮质区(primary somatosensory cortex)结构主要负责机体的触觉感受。我们关于大脑精细结构的大部分理解都源于对啮齿类动物的研究,大鼠、小鼠和灵长类动物的大脑结构和人类大脑结构大部分相似,但又存在着明显的差异;并不像啮齿类动物那样,人类大脑中有着较大面积的前额皮质结构,该区域主要负责高度的“行政职能”,比如决策制定等;我们可以通过语言进行交流,同样我们大脑中还有着特殊的加工处理区域,这些区域可以帮助说话并且理解说话的意思。功能性磁共振成像(fmri)技术可以通过检测血流改变来测定机体大脑的活性,而诸如此类技术的改善或可帮助我们以一种空前详细的方式来对活体大脑进行实时成像。古老神经科学研究的目标对大脑图谱进行绘制是几个世纪以来科学家们的夙愿,追溯到19世纪颅相学学科领域时,研究者认为个体的人格特质位于大脑的特殊部分中。一些研究支持者在相应的大脑区域测定了大脑的头骨结构,从而来确定个体如何表现得有责任心、有仁慈心及好战的?一个多世纪以前,德国的解剖学家korbinian brodmann根据大脑每个区域中细胞的结构和组成将大脑分为多个特殊的区域,到目前为止,这些区域都是被人们广泛接受的大脑特殊区域,即所谓的布劳德曼区(大脑皮层细胞结构分区)。这项最新研究中,研究者利用不同mri成像技术进行结合对结构和功能不同的大脑区域进行绘图,这些区域看起来像物理结构,比如大脑皮质的厚度等,同时在进行特定任务期间被激活的大脑区域以及其活性表现都通其它区域的活性相协调一致。某些大脑区域主要和单一功能的发挥有关,比如视觉加工和运动区域等,但很多区域却并不是这样的;实际上科学家们还发现了当大脑处于休眠状态时被激活的大脑区域网络。一个详细的大脑图谱—那又如何?这项对大脑图谱的最新绘制将是神经科学研究的一个重大标志,最新的大脑绘制图谱信息将为科学家们提供更多细节性的信息来帮其解析大脑控制行为的机制,以及大脑特殊区域的障碍为何会诱发大脑疾病的发生。啮齿类动物的大脑图谱来源于近交系的动物,这些动物在大脑解剖学上改变较少,而在人类大脑中单一改变非常常见;目前人类的左脑和右脑半球在解剖学结构上存在较大差异,从而就会使得不同年龄和性别个体大脑结构的差异。比如近来对1400名个体的研究结果就发现,和记忆相关的大脑区域—左侧海马体结构,通常男性要大于女性。由于存在一定差异,科学家们历来难以比较不同大脑成像研究产生的结果,同时他们也很难确定大脑成像扫描可以表现出相同大脑区域的活性;但如今对大脑区域的精确区分就可以使得科学家们进行更好地比较和研究了。大脑图谱的绘制对于神经外科研究领域有着较大的实用价值,当前外科医生会利用一种立体定位系统(3d)来确定并且对大脑特殊区域进行操作,但这或许并不是理想的,因为不同个体的大脑结构并不相同,科学家们利用新的算法往往可以绘制出新的大脑图集,而这或许会被用于个体化的图谱绘制来帮助更加特殊精确地指导外科手术的进行。未来的分类未来研究者很有可能对大脑进行重新区分,将其分为超过180个区域的结构,随着成像技术的改善,我们未来就可能在大脑组成和活性上发现更具特性的不同亚结构。但是研究者仍然认为,某些新绘制出的大脑区域或许要更加晚于亚结构区域的发现,以主要体觉皮质区(primary somatosensory cortex)为例,大脑皮层是由躯体特定区域的亚结构区域组成,这些大脑区域同机体不同部分的感觉感受器点对点相对应。目前不同的研究小组正在开始对不同大脑区域的基因组架构进行绘制,相关的研究发现或将帮助未来科学家们绘制出更加精细完整的人类大脑结构。
  • 多国科学家质疑韩春雨论文 《自然》要求其提供原始数据
    核心提示:2016年5月2日,河北科技大学副教授韩春雨在国际知名学术期刊《自然-生物技术》上发表文章,并提出一种新的基因编辑手段——NgAgo。8月2日,《自然-生物技术》发表声明,要求韩春雨公开相关实验数据。资料图 近日,“一鸣惊人”的韩春雨又陷入了“舆论风暴”。 2016年5月2日,这位河北科技大学副教授在国际知名学术期刊《自然-生物技术》上发表文章,并提出一种新的基因编辑手段——NgAgo。 论文发表后,韩春雨受到一些科学家及媒体热捧,但此后不久,该事件又陷入持续性争论,多国科学家表示其基因组编辑结果无法重复,也有科学家称其可以重复。在多方呼吁下,8月2日,《自然-生物技术》发表声明,要求韩春雨公开相关实验数据。 多国科学家质疑,韩春雨实验结果不可重复? 韩春雨的论文发表至今已有3个多月,韩春雨的基因编辑技术NgAgo也被人认为是对现有的CRISPR技术提出了挑战,有媒体报道时称,这是一个“具有颠覆性的第四代基因编辑技术”,被誉为“诺奖级”成果。 就在媒体争相报道这位年轻科学家时,国外一些科学家已经开始利用韩春雨论文描述的实验方法进行实验。然而这些实验所得数据有的可以证明,韩春雨的实验是可重复的,有些学者则声称其实验结果不可重复。 在这些质疑声中,最受人关注的是澳大利亚国立大学研究者盖坦布尔焦(Gaetan Burgio)的研究结果。他此前声称有间接证据显示,可以重复韩春雨的实验结果,并认为其“非常高效”,最终结果要等待基因测序的直接结果。然而,7月 29日,盖坦布尔焦发长文《我对于NgAgo的实验经历》质疑NgAgo的可行性。 盖坦布尔焦在文章中指出,“像很多人一样,多次尝试后,我仍旧没有发现任何证据证明NgAgo能进行基因组编辑”。他认为,“NgAgo可能没有、或者只在严格限定的条件下才有内切酶活性,从而使得它几乎不可能被重复 即使它真有活性,也限制了它的广泛应用”。 7月29日,作为国际转基因技术协会前主席的西班牙科学家路易蒙特利欧(Lluis Montoliu)也在网络上发言表示,“在盖坦布尔焦及很多相似的失败案例后,《自然-生物技术》应当要求作者公布原始数据及具体实验条件”。记者试 图邮件联系路易蒙特利欧,截至记者发稿暂未收到回应。 对于近日的各种质疑和争议,今天记者联系到韩春雨,他回复称,“不回应就是最好的回应”。 一波三折,众多科学家呼吁公开原始数据 事实上,关注并尝试重复韩春雨实验的科研人员不只在海外。 7月21日,中国科学院上海神经科学研究所研究员、博士生导师仇子龙在其微博中发表文章表示,“我们自己实验室还在重复,优化各种条件,比如筛 选等等”。仇子龙在文中表示,“目前这些实验结果距离NBT文章中的结果相差甚远。目前急需韩春雨老师提供可重复NBT发表文章的NgAgo,或者优化的 Ngago2.0, smart版本等等进行实验”。 文章一出,仇子龙被众多网友当做是认定实验可重复的“挺韩派”,不少微信文章也据此声称仇子龙可以重复该实验。对此,中国科学院上海神经科学研究所相关人员告诉中国青年报记者,目前网上信息有未经本人核实的不符合事实的部分,因此现阶段暂不作回应。 无论是支持还是质疑,关注此事的众多科学家表示应公开原始数据。盖坦布尔焦也在长文中指出,《自然-生物技术》应该要求韩春雨向公众公开他所有的原始数据和实验条件,这是学术期刊的义务。 8月2日,《自然-生物技术》就韩春雨事件发表声明称,“《自然-生物技术》对于人们提出的任何关于论文的疑虑都会认真对待,并加以慎重考虑。 已有若干研究者联系本刊,表示无法重复这项研究。本刊将按照既定流程来调查此事”。同时,声明指出,“作为在自然科研旗下期刊发表论文的条件之一,作者须 将材料、数据、代码和相关的实验流程及时向读者提供,不可加以不当限制”。 发布声明当天,盖坦布尔焦在接受中国青年报中青在线记者及其他媒体联合采访时表示,他并不认识韩春雨,两人也从未有过任何形式的交流。“更 重要的是,我对中国科学界没有任何反对意见。我也并不反对NgAgo系统,而且CRISPR技术和NgAgo之间的战役和我没有关系。”盖坦布尔焦在采访中表示,“说实话,对于来自《自然-生物技术》的调查,我的感受很复杂(甚至有些难过)。关于这篇文章我的立场是十分清晰 的,并且已经把我的立场写了下来。我们需要去弄明白为什么我们这个领域没有人可以成功重复这个实验。想要更好地理解这个新技术的运作方式,唯一的办法就是 公开原始数据”。 科学不取决于雄辩,而在于事实 在韩春雨的研究成果掀起热议的同时,不少科学家和相关学者认为,这样的开放争论正是推动科技进步的重要方式,而有关科学的争论最终要回归到科学事实。 盖坦布尔焦在其长文中表示,“这是我第一次参与开放科学的体验,并且感到和同伴们的讨论富有启发性。我认为与其追逐发表高影响因子的文章并且 神神秘秘,我们应该开放和分享我们的结果,以帮助每个人都避免在不可重复和没有意义的实验上浪费时间。在我看来,科学应该以这种方式进行”。 由知名学者饶毅、鲁白、谢宇创办的微信公众号“知识分子”在5月8日发表了介绍韩春雨的文章。8月1日,该公号推送了一篇饶毅在2012年发表于博客的旧文。文章指出,实验科学不取决于雄辩,而在于事实。 该文说道,“科学有讨论和争议是正常现象,为进步所必需。在科学讨论中,严厉批评是一个原则,并不否认与人为善,因为科学批评的目的是为了进步。当出现不同意见时,讨论是一方面,而对于实验科学来说,最终起决定因素的是进一步的实验”。 记者致电多位生物科学领域的科学家,他们均表示,目前对于韩春雨事件不便评论,但强调“要用科学说话”。
  • 科学家创办自媒体 饶毅鲁白谢宇领衔《赛先生》
    7月21日一早,国内许多科学家的微信朋友圈被一个天蓝色的图标&ldquo 刷屏&rdquo 了,一个名为&ldquo 赛先生&rdquo 的微信公众账号(微信号:iscientists)刚一上线,就成为科学界热议的对象&mdash &mdash 与大多数媒体人创办和纸媒转型的自媒体不同,《赛先生》出身象牙塔,由三位国内外顶尖科学家饶毅、鲁白和谢宇做主编,旨在&ldquo 与科学同行&rdquo 。   饶毅&mdash &mdash 国内最具公众影响力的科学家之一。他在美国以实际行动推动提高亚裔科学家在主流学术圈的地位,在中国向政府建言为生命科学研究提供稳定的财政支持。学术之外,他更是在个人博客、大众媒体、与最顶尖的科学期刊《自然》上撰文批评中国的科研体制与文化。   鲁白&mdash &mdash 世界上最有影响力的神经科学家之一。他和其它学者一起,开辟了神经发育与突触可控性研究的新领域。2009年他辞去美国国立卫生研究院(NIH)神经发育研究室主任后回国,是国内的顶尖研究机构&mdash &mdash 上海中科院神经科学研究所的主要发起人之一。   谢宇&mdash &mdash 科学社会学领域公认的领军人物。他是美国国家科学院、艺术科学院双院士。作为美国国家科学院院士中占极少数的社会科学家之一,他也是社会科学部唯一的亚裔院士和社会政治部最年轻的院士。   三位来自不同领域的顶尖科学家聚在一起,成就了一个有趣的产品&mdash &mdash 他们共同发起并主编一个名叫《赛先生》的微信公号。7月21日,第一期的推送文章,是三位主编亲笔撰写的发刊词。   科学进入中国几百年来,不过是在最近十几年才告别&ldquo 口号强,行动弱&rdquo 的阶段,然而,旧的科研体制与文化依然束缚着科学精神的产生和发展,在撰写《赛先生》发刊词时,饶毅一针见血地指出。   《赛先生》有自己的独特定位&mdash &mdash 网罗最具影响力的华人科学家,&ldquo 与科学同行&rdquo 。主编们希望,《赛先生》不仅是科学家们建言国家和社会的平台,也是一份最具可读性的科学读物,未来还希望成为一个强大的数据库和社交平台。它将利用微信公号强大的传播力和其作为社交、互动平台的强大功能,打造新的科学传播形态。   三位科学家走到一起并非偶然,2000年之后,谢宇、饶毅、鲁白陆续开始在国内学术界活动或正式回国工作。然而,他们在国内的学术活动并非一帆风顺,与官僚体系、不适应的文化&ldquo 碰撞&rdquo 的同时,他们亦在寻找志同道合者。网络让他们收获了知音&mdash &mdash 饶毅、鲁白在科学网撰写的博客引起了许多科研工作者的共鸣和支持,谢宇在微博等社交平台和媒体上的发言亦让他收获了大批粉丝。   &ldquo 在这些年里,最让我庆幸的是结识了许多志同道合的人,尤其是那些与我一样从海外回到中国工作的科学家朋友,&rdquo 谢宇在发刊词中表示,&ldquo 相似的经历和共同的感受让我们彼此欣赏、相互支持。&rdquo   因此,《赛先生》的宗旨之一是网罗华人世界最有影响力的科学家,成为科学共同体的发声平台,并以文会友,做华人学术圈的一张相互联络的网。如谢宇所说:&ldquo 日复一日,我们忙碌于各自的工作,难得一见。但当我们不约而同翻看《赛先生》时,好像彼此打了个照面。&rdquo   中国目前的手机用户已经超过10亿部,微信用户超过5亿,各类微信媒体公众号已经突破100万份,在新媒体汹涌的潮流中,《赛先生》也希望通过试水微信公号,探索移动互联网传播的新形态。   与如今许多科学类的微信公号以编译和转发为主的内容形态不同,《赛先生》将以高质量的原创内容为主,而三位大科学家将主写或主编其中的大部分内容,包括科技动态、科普知识、科学人物、科技公司以及科学文化与制度等。这些内容将由科学家撰稿、访谈、演讲实录、科学人物报道、热点现象讨论等多种多样的形式呈现。《赛先生》亦会定期邀请知名科学家推荐书籍。
  • 科学家到底有多忙?谁动了科学家的时间?
    p style=" TEXT-ALIGN: center" img title=" 20177132114314050.jpg" src=" http://img1.17img.cn/17img/images/201707/noimg/8678124c-25b8-473c-bc30-4f66383b3abb.jpg" / /p p   在这个竞争日益激烈、节奏不断加快的时代,很多人的生活都被工作占去了大量的时间,科学家当然也不例外。 /p p   一些科学家希望改变这种现状。今年5月31日,《自然》杂志发表了一篇探讨科学家工作时间的文章《科学家职场习惯:全职已经足够了》。文章列举了几位青年女科学家对职场工作时间的看法,她们主张合理用时,认为“工作到晚上六点都没必要”。 /p p   但实际上,在许多领域,漫长的工作时间仍然是科学研究人员的常态。2016年《自然》杂志曾进行过一项关于全球青年科研人员的民意调查,结果有38%的人反馈他们一周工作的时间超过60小时,其中9%的人称每周工作超过80小时。同时也有研究表明,科学家的工作时间存在着明显的地域差异。 /p p   世界各地的科学家们如何看待自己的工作时间?他们的工作时间是否确实存在差异?如果存在,那么产生差异的原因又可能是什么?带着这些问题,《中国科学报》记者采访了在美国、澳大利亚和中国工作的几位科学家。 /p p strong   忙碌的状态:讨厌还是享受? /strong /p p   “美国密歇根大学的生态学家梅根· 达菲有一件事要坦白:一般下午5点一到,她就已经准备好下班回家了。晚上,她更希望陪着丈夫和三个孩子,而不是与显微镜和水样待在一起。”《科学家职场习惯:全职已经足够了》一文中写道。 /p p   文中介绍,早在2014年,达菲就发表过一篇博文《在学术界取得成功并不需要每周工作80个小时》,坦白自己每周一般工作40~50小时,“只是个全职科学家”。 /p p   这篇博文在相关领域的科学家群体里引起了不小的反响。有一位女科学家告诉达菲,这篇博文改变了她的生活。“之前,她一直有负罪感。一个人应该长时间工作的想法十分普遍。如果每周工作时间不到60~80小时,你做的就是不够的。这让人们感到焦虑。”达菲说。 /p p   今年早些时候,达菲获得了美国湖沼和海洋学会的Yentsch Schindler青年科学家奖。“这些科学家会充分利用自己的工作时间,避免不必要的时间消耗。通过平衡优先事项、坚持自我,他们获得了更多实验室外的生活时间。”文章说。 /p p   实际上,在全球范围内,“全职科学家”都并非科研人员的常态。《自然》杂志曾在2016年做过一项全球青年科学家调查,结果显示有38%的受访者报告每周工作时间超过60小时,其中9%的人表示工作时间超过80小时。2013年一项针对欧洲研究者学术工作习惯的调查显示,德国资深学术工作者报告的每周平均工作时间为52小时,高于所有其他被调查的国家。2014年一项针对英国大学和学院工会(UCU)教师职业压力的调查显示,41%的全职大学教师表示自己的每周工作时间在50小时以上。 /p p   “我现在每周工作差不多60个小时。”美国纽约大学的脑神经科学家温蒂· 铃木告诉记者,这已经比几年前自己的工作时间少多了。此前,温蒂· 铃木信奉“只有投入100%的时间来做科研,工作才能做得优秀”的观点,直到她发现自己得到的除了亮眼的工作成绩外,还有10公斤的赘肉和贫乏的社交生活。 /p p   此后,温蒂· 铃木对工作时间做出了调整。“我为自己在闲暇时间安排了丰富的活动,包括不同形式的运动。我还重新安排了我的工作生活,丢掉了一些杂事,花费更多时间来探索我喜欢的科学问题,所以它现在似乎也不太像是‘工作’了。”温蒂· 铃木说。 /p p   也有科学家享受这种忙碌的工作状态。悉尼科技大学教授金大勇管理着一个拥有几十人的实验室。“我的工资单上写着每周按照35个小时来付我薪酬。但实际上,在现在如此激烈的竞争环境下,如果我真的每天早九晚五做科研,绝对是无法生存的。”金大勇说,“更重要的是,如果你仅仅把科研当作一份‘工作’,是无法作出真正优秀的成果的。做科研需要兴趣和激情,更何况现在是纳税人在资助你完成自己感兴趣的科学探索,从这个角度看,就更无所谓工作时长多少了。” /p p strong   科学家能打卡工作吗? /strong /p p   事实上,讨论科研人员的每周工作时间可能是个伪命题,因为他们的工作时间常常无法准确计算。 /p p   “科学这种创造性的工作,是无法打卡计时的。”中科院物理研究所研究员曹则贤对记者说,“很多卓越的科学家,比如法国科学家庞加莱,他们的大脑一直在不断创造着科学成果。庞加莱说,随时能睡着的人才是天才,强调挤时间来工作。对于这样的科学家来说,一周多少工作时间都不够。” /p p   当然,较之过去,如今整个科学研究的方式正在发生变化,专业细分程度逐渐增强,科研从小科学走向了大科学,向着组织化、复杂化的方向发展。 /p p   “在这些庞大的科研综合体里,可能有些科研人员承担的不是创造性的工作。但对于那些有创造性的科学家来说,他的工作不可能限定在工作时间里。他虽然下班了,但头脑仍在工作。对于那些天才更是如此,因为他们工作的每一刻都是有成效、有产出的。科学工作的特殊性就在于动脑。” /p p   对此,金大勇也有同感。“科研是一种特殊的工作,是不能用时间来计量的。”金大勇说,自己有时早上5点多就会起床,处理邮件,虽然坐在家里,但这时已经开始工作了。到了学校跟学生聊天询问进展、跟团队成员一起吃早饭时讨论科研话题,还有出差、写申请、参与会议等等,其实都是在工作。甚至在假期,脑子里仍想着科研问题。 /p p   调查数据印证了科研工作的这种灵活性。美国波士顿大学的生态学家理查德· 普里马克曾对生物学家在正常工作时间之外完成了多少工作进行过实证研究。在2013年发表于《生物保护》期刊的一项研究中,普里马克与合作者分析了2004年~2012年期间该期刊收到投稿的时间。结果显示,超过1/4的论文投稿时间都是周末,或者工作日的晚7点~早7点之间 周末投稿率每年增长5%~6%。 /p p   “很显然,对于科研工作来说,只花费常规的工作时间是无法脱颖而出的。但我同时也觉得,拼命工作、完全没有业余时间,也不一定就能成为非常有创造力、多产的成功科学家。”温蒂· 铃木说,“我们知道,真正的创造力需要思考的空间。如果你每天只是忙于申请基金、编辑论文、管理学生等工作,何来这种创造性的空间呢?相反,你需要空间,甚至假期,去思考你的学术领域、产生创新性思维。对我自己而言,相比于刚开始工作的时候,我现在更有创造力,也更大胆,原因之一就是我给自己留出了思考的时间,创造了能涌现新想法的环境。” /p p strong   来自地域的差异 /strong /p p   理查德· 普里马克对科学家投稿时间的研究同样发现了明显的地域差异。相较于比利时和挪威的研究者,中国和印度研究者在周末投稿的可能性要高出5倍。在日本,30%的论文原稿都是在工作日的下班时间后投出的。北美科学家在下班时间提交论文的比例处于平均水平。 /p p   “地域差别确实存在,比如在澳大利亚做科研相对更悠闲一点,因为人少,竞争也相对小一些。另外,由于澳大利亚对科研工作的考核机制不是很量化,当然申请升职时也要写材料,你的工作会被评估,但不是计算发多少论文、加多少分这么绝对。所以整体来说,澳大利亚的科学家工作状态相对更从容一些,探索性更强一些。”金大勇说,“但有一点,我所看到的优秀科学家,无一例外全都是很享受科研工作的,他们对科研有激情,他们的头脑在一刻不停地思考,这一点是没有国界的。” /p p   曹则贤曾在德国学习和工作多年。他的德国导师带着41个博士生,但并未看到他异常紧张地工作。“当你不从容的时候,一定是因为你不会。”曹则贤说,“科学研究从来不是通过赶工、勉强得来的。” /p p   在曹则贤看来,科学家工作状态的不同缘于各国科学文化背景的差异。“我国科学研究受美国、日本影响较深,更为功利化,而以法、德、英为代表的欧洲科学研究更注重思想创造的过程。”曹则贤分析说,对于欧洲国家来说,科学是在本土一点一滴产生的,他们知道科学的重要性,也知道科学创造要经历怎样的过程。所以,一旦对科学家的身份进行了确认,对其工作就不会再多加干涉。 /p p   “而我们是把西方成熟的科学成果直接拿来,对于如何创造、如何试错、如何建立价值观判断对错等,则知之甚少,所以我们创造性不强,又太过于强调数量上的产出。”曹则贤说道,“科学创造,就像画画一样,你看到一幅成功的画,可没看到的是那些之前不成功的。那些不成功的,恰恰才是创造的过程,才是最有价值的。科学研究就像淘金一样,是从一筐一筐的沙子里面找金子。如果把科学研究都当作工程来做,要求目标清楚、细节详细、结果能预知,那还是科学吗?” /p p strong   谁动了科学家的时间? /strong /p p   对于科学家来说,时间是珍贵的,时间利用更需要高效。 /p p   两个多月前,金大勇赴美国斯坦福大学访问,在与物理学家朱棣文的交谈中,对方的一段话让他印象深刻。“他说如果他的学生今天做完实验没有及时整理,他就觉得这不是一种好的工作状态,因为这表明他对实验结果没有渴求。” /p p   在金大勇的实验室中,有些新来的学生在等实验结果时,会玩手机或上网。“我觉得这是极大地浪费时间。你的脑子要跟着实验走,思考实验不成功怎么办、可能会有哪些原因导致实验不成功、实验结果会有几种可能、下一步要采取什么方法等等。你要一直在动脑,要用巧力。”金大勇说。 /p p   对于金大勇来说,管理整个实验室的经费、人员等各个方面,事情多而杂。如何提高效率,他的方法就是“专注”。“我会想我这周、这个月、这一年需要什么,然后砍掉其他不必要的事情,只专注于做这些最重要的事。” /p p   温蒂· 铃木在提到时间管理的方法时也说,首先要明确哪些事情是需要优先去做的,然后给这些事情分配足够的时间。“这听起来简单,但如果你的优先事项与部门的优先事项相冲突,那执行起来就会很难。作为一名科研人员,要学会对有些事情说不。” /p p   对于国内的科学家来说,对有些事情说不貌似更难。 /p p   “我们对教授、研究员的评审是宽进严出的,因此我们设计了很多制度来对科研人员进行考核,而这大大增加了科学家的时间成本。有些科学家就像热锅里的炒豆一样,一刻不得消停。所以,我们的科学家每天非常忙,但有很多时间其实是无效的。”曹则贤无奈地说,“比如种种考核,比如财务报账工作。在西方,大学、研究所是没有财务部门的,由第三方机构来管理,你要是敢贪污,警察直接来找你。” /p p   曹则贤办公室的书架上贴着一张A4纸,上面打印着四个大字“大块时间”。“科学本就是思想性的工作,需要大块的时间静下心来思考。有些杂事仅占用一个小时,但却打乱了你整个工作的节奏。”曹则贤说,“我们需要对科学精神、科学研究的工作方式、科学回馈社会的时间和方式等问题有清楚认识,从而在科学家的遴选、资助方式等方面,建立更加成熟和高效的制度。” /p
  • 全球最有影响力的10位生命科学家都有谁?
    p   日前,人工智能搜索引擎Semantic Scholar(意为语义学者)评选出了全球最有影响力的生物医学领域学者Top10排名,这些科学家来自各大高校、部门机构和药企,涵盖了遗传学、神经科学、免疫学、药代动力学等多个学科领域,以下为具体排名: /p p   1. Eric Lander /p p   麻省理工学院(遗传学) /p p style=" TEXT-ALIGN: center" img title=" 01.jpg" style=" HEIGHT: 281px WIDTH: 450px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/70983cc8-3518-4942-a774-73553e0c4b08.jpg" width=" 450" height=" 281" / /p p   Eric Lander ,数学家和遗传学家,1978年毕业于普林斯顿大学,1981年以罗德学者的身份获得牛津大学数学博士学位,40岁当选美国科学院院士,1990年创办了怀海德研究所的基因组中心,是基因组测序的先驱,在人类基因组测序方面做出了巨大贡献,是美国科学界最有影响的人之一。 /p p   2. Karl Friston /p p   伦敦大学学院(神经科学) /p p style=" TEXT-ALIGN: center" img title=" 02.jpg" style=" HEIGHT: 306px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/50d99a80-f6ce-45a5-aff5-3b742b61fb16.jpg" width=" 300" height=" 306" / /p p   Karl Friston,英国伦敦大学学院维康基金会神经造影中心教授、维康基金会首席研究员,他通过统计参数映象和基于体素的形态学分析对脑成像数据分析做出了重要贡献,曾获得2017年度科睿唯安“引文桂冠奖”。 /p p   3. Raymond Dolan /p p   伦敦大学学院(神经科学) /p p style=" TEXT-ALIGN: center" img title=" 03.jpg" style=" HEIGHT: 326px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/b07516c7-9a9c-434d-a55f-9bf0a50fa52b.jpg" width=" 300" height=" 326" / /p p   Raymond Dolan同样来自英国伦敦大学学院维康基金会神经造影中心,他对阐明情绪的神经机制,以及情绪对认知和决策的影响做出了重要的研究贡献。 /p p   4. Shizuo Akira(审良静男) /p p   大阪大学(免疫学 /p p style=" TEXT-ALIGN: center" img title=" 04.jpg" style=" HEIGHT: 288px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/deaf738a-3fdc-4e8a-bb57-9c3c38800bbc.jpg" width=" 300" height=" 288" / /p p   审良静男,日本医学家、医学博士、大阪大学教授,免疫学权威,他在Toll受体研究方面做出了突出贡献,发现TLR能识别一群不相关的源于微生物的分子,并曾获得2004年的Robert Koch Prize,2006年的William B. Coley Award,2010年的Keio Medical Science Prize。 /p p   5.David Botstein /p p   Calico公司 (生物学) /p p    /p p style=" TEXT-ALIGN: center" img title=" 05.jpg" style=" HEIGHT: 395px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/15fee609-6393-4368-8d16-cd3184e14d5e.jpg" width=" 300" height=" 395" / /p p   David Botstein,普林斯顿大学Lewis-Sigler Institute of Integrative Genomics主任,1978年,David Botstein开创核酸限制性片段长度多态性分析技术,用于标志不同个体间的基因差别,为后来的人类基因组计划奠定了基础。在斯坦福大学,通过与另一位科学家的合作,他使得大规模的生物芯片研究在技术领域几乎家喻户晓。目前,他自己的实验室以酵母为研究对象,在绘制目前最完备的物种生物信息数据库中发挥了核心作用,David Botstein曾获得美国最高生物医学奖第十届阿尔巴尼医学中心奖。 /p p   6.Dennis Smith /p p   辉瑞公司 (药代动力学) /p p style=" TEXT-ALIGN: center" img title=" 06.jpg" style=" HEIGHT: 323px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/57587abc-2e70-49b0-a6c4-8442f1b119e6.jpg" width=" 300" height=" 323" / /p p   Dennis Smith,辉瑞全球研发中心药代动力学研究室前负责人,药物代谢方面的专家,致力于研发更安全更有效的药物。他参与研发了 8 种美国 FDA 批准的全新化学实体药物(NCEs),并发表了超过 100 篇的论文。 /p p   7. Eugene Koonin /p p   美国国家生物技术信息中心(生物信息学) /p p style=" TEXT-ALIGN: center" img title=" 07.jpg" style=" HEIGHT: 330px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/8aa9da7e-2aae-4eab-8130-6a7dc6bf36c5.jpg" width=" 300" height=" 330" / /p p   Eugene Koonin,美国国立卫生研究院下属国立医学图书馆 (NLM) 国家生物技术信息中心 (NCBI) 的资深研究员,美国科学院院士。主要研究方向为基因组序列比对分析以及全基因组范围的基因功能解析,他还对生命进化过程中的数学建模分析有巨大贡献,是基因组进化研究领域的领头羊,国际生物信息学界的大牛。 /p p   8. Walter Willett /p p   哈佛大学公共卫生学院(流行病学) /p p style=" TEXT-ALIGN: center" img title=" 08.jpg" style=" HEIGHT: 429px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/9dab5a15-34c0-4bd0-b7cf-d0a3fa561979.jpg" width=" 300" height=" 429" / /p p   Walter Willett,医学博士、国际著名营养学家,美国哈佛大学公共卫生学院营养系主任,美国科学院医学院院士,Walter Willett对膳食、营养与慢性疾病关系的研究成果引人瞩目,已发表科研论文1000余篇,主要集中在生活方式对心脏疾病、癌症的风险因素,此外还撰写了由牛津大学出版社出版的营养流行病教科书,面向普通大众。他撰写的哈佛大学健康饮食指南曾经是最为畅销的书籍之一,被世界公认为临床医学界最为知名的五名专家之一。 /p p   9.Rudolf Jaenisch /p p   麻省理工学院(遗传学) /p p style=" TEXT-ALIGN: center" img title=" 09.jpg" style=" HEIGHT: 435px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/958d11f2-0656-43be-888f-319ad56dadf3.jpg" width=" 300" height=" 435" / /p p   Jaenisch,分子生物学家和遗传学家,干细胞研究领域的权威人物,也是怀特黑德研究所的创始人之一,曾经担任过国际干细胞学会的主席,其在一系列的领域做出了有影响的工作,包括基因敲除小鼠、表观遗传学研究、核移植、iPS等,解决了这些领域几乎所有的重要问题。 /p p   10.Bert Vogelstein /p p   约翰霍普金斯大学医学院(肿瘤学) /p p style=" TEXT-ALIGN: center" img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201711/noimg/341197f0-bed4-4ea9-b146-5be7f39d9c87.jpg" / /p p   Bert Vogelstein,癌症基因组学领域的先驱,基于对大肠癌的研究,他于1988年提出一个人类癌症模型,假设连续积累的癌基因和抑癌基因的突变可以导致癌症,p53是首个印证这一假说的基因,1991年他与人合作发现了另一抑癌基因APC,为癌症领域的研究做出了不可磨灭的贡献。 /p p   不过,这份排名因为没有女科学家上榜而招致了质疑,有的研究人员甚至怀疑这样的结果反映出 Semantic Scholar 的算法有性别偏差,不过也有人认为这反映出的是长久以来生物医学乃至科学出版界对女性的差异对待。 /p p   对此,负责监督 Semantic Scholar项目的AI2高级产品经理Marie Hagman在一份声明中表示:“我认为,这份‘高影响力引用分析’中前十名作者没有女性,恰恰反映出了人们诟病已久的科学出版行业内的‘发表偏倚’,这一问题也是现今全球对话关于性别议题的重点内容。” /p p   Semantic Scholar创建于2015年,是一家非营利组织,由微软联合创始人保罗· 艾伦于创立,其旨在解决信息超载问题,最初集中于计算机科学,去年扩大到神经科学,可以分析数百万篇生物医学论文,总共搜索的学术论文接近4000万篇,每月的平均使用量已经达到百万次。去年,该程序还增添了新功能,能根据“有影响力的引文”来衡量研究人员和组织的影响力。 /p p   报道称,科学文献大概每9年翻一番,但大多数有用信息被遗忘在PDF的某处,以生物医学为例,这些被遗忘的信息很可能有助改善或拯救人类的生命。尽管已经有了许多学术搜索引擎,但其只能为特定领域的专家服务,而探索不同领域之间联系却经验不足,Semantic Scholar正是为跨界学者提供新发现和新联系的智能化搜索手段。 /p p   不过,Semantic Scholar也有其局限性,无法捕获需要付费的论文,对此,开发团队也正在和出版商们协商,讨论他们能在何种程度上达成对付费论文的访问。 /p
  • 科学家用婴儿尿布材料突破光学显微镜分辨极限
    Edward Boyden   我们都知道,显微镜能够放大活细胞和组织,但是你想过用它观察更微小的细节么?这听起来特别像一个看过多次《爱丽丝梦游仙境》的科学家的幻想。但是,生物学家们以这个概念为基础发明来一种新的技术,利用普通的显微镜对整个大脑进行成像,展示出了精致的分子细节。   这项技术叫做expansion microscopy,使用一种通常在婴儿尿布中可以找到的材料使生物组织膨胀。剑桥麻省理工学院(MIT)的神经学工程师(neuroengineer)Edward Boyden在上个月举行的一场会议中与他MIT的同事Fei Chen 和 Paul Tillberg报告了该技术。   Expansion microscopy:超分辨率显微镜的转折   Expansion microscopy是超分辨率显微镜的一个转折。2014年,美国科学家埃里克&bull 白兹格(Eric Betzig),德国科学家斯特凡&bull W&bull 赫尔(Stefan W. Hell),美国科学家威廉姆&bull 艾斯科&bull 莫尔纳尔(William E. Moerner)因超分辨率荧光显微技术获得了诺贝尔化学奖。这两种技术都在试图绕过物理定律带来的限制。   1873年,德国物理学家Ernst Abbe推断,传统的光学显微镜不能区分距离小于200纳米的物体,这大约是可见光最短波长的一半。距离小于这个衍射极限的话,物体会变得模糊。光学显微镜的最大分辨率只能达到横向200纳米,纵向600纳米。   超高分辨显微镜通过使用荧光分子绑定蛋白,更好的定位分子的发光来源,从而克服了Abbe指出的限制。利用这种技术,科学家可以区别出距离近达20纳米的物体。不过这项技术需要昂贵的、专业的设备,但可以解决一些厚结构的研究难题,比如大脑或肿瘤。   神经科学家们一直想收集大脑更多的分子细节,比如神经突触中蛋白的位置、两个神经传递信息处的连接、甚至环绕大脑的一组神经元。   在NIH的会议中,Boyden说:&ldquo 我们一直想做的就是找出让物体变得更大的方法。&rdquo 为了实现这个目标,他的团队用了一种叫做acrylate的化合物,该物质含有两种特性:第一,它可以形成密集的网状结构将蛋白质固定住 第二,它在水存在的情况下会膨胀。   加点水,让一切变得神奇   首先,组织需要经过一组化学混合物处理,使它变得透明 然后,用荧光分子绑定特定蛋白 最后将acrylate注入组织中。就像婴儿尿布一样,加水会使acrylate聚合物膨胀。经过拉伸,荧光标记的分子之间的距离越来越远。之前因为太近无法区别的蛋白在光学显微镜中有了新的焦点。在Boyden的展示中,该技术可以解决膨胀前分子距离近达60纳米的难题。   最重要的一点是,膨胀的过程很大程度上维持了蛋白之间的相对方向和连接,保持其它细胞结构的完整。该技术使蛋白相对位置的失真程度为1-4%。Expansion microscopy与其它超高分辨技术相比表现了良好的性能。   在一项试验中,研究人员用Expansion microscopy测定膨胀的小鼠大脑神经突触两端的蛋白质之间的距离,结果与用超高分辨技术测量的数据几乎相同。   此外,Expansion microscopy在复杂组织的三维成像上表现的更好。在会议中,Boyden展示了一个半毫米厚度的小鼠大脑海马区的图像,揭示了邻近神经元之间的连接。放大图像还能看到突触结构的细节,叫做boutons,是释放神经递质的地方。Boyden的团队用Expansion microscopy还研究了果蝇和斑马鱼的大脑,目前正在用研究人类的大脑。   技术总是在不断的超越   加州理工学院的神经学家Viviana Gradinaru说,Boyden的这项技术是科学家如何通过改变生物组织绕过固有限制的好例子。2013年,Gradinaru与斯坦福大学的Karl Deisseroth领导的团队报告了一种去除脂肪,从而让小鼠完整大脑透明化的方法。这种方法让厚的组织在光学显微镜下得以成像。去年,Gradinaru的团队将这项技术运用到了其它器官和整只老鼠中。   悉尼大学显微镜专家Guy Cox说:&ldquo Expansion microscopy确实非常巧妙,但是它的实际用途有多大还不清楚。如果它要用在很关键的地方,我推测它会与超高分辨技术结合起来。它的着重点应该是分子研究,而不是整个细胞。&rdquo
  • 华裔女科学家李灵军获Pittcon2011个人奖
    美国威斯康星大学麦迪逊分校药物科学和化学副教授李灵军女士获得2011年匹兹堡会议成就奖。该奖项是授予完成博士后研究工作后,10年内取得优异成绩的科学家。李灵军副教授由于以质谱技术为手段,在神经肽和功能多肽组学研究方面做出了很大的贡献而获得该奖。   李灵军副教授的研究内容是以新型质谱技术为基础,结合其他微分离技术研究神经科学挑战性问题,包括神经退行性疾病的生物标志物发现等,其重点在构建一个多层面的,集成的以质谱技术为基础的研究平台,包括高分辨率原位肽图、高灵敏度微分离串联质谱测序技术、同位素标记策略和工具、新的生物信息,这一平台使得大规模的新型神经肽的发现和功能分析成为可能。 利用这个集成平台,李灵军和她的研究小组发现了200多种甲壳类动物的神经肽,而这些神经肽的基因组序列尚不可得到。   李灵军副教授本科就读于北京工业大学环境分析化学专业, 2000年获得了美国伊利诺大学分析化学/生物分子化学博士学位。
  • ASMS 2014大奖揭晓 两名华人科学家获奖
    仪器信息网讯 一年一度的全球质谱盛会&mdash &mdash 美国质谱年会(ASMS 2014)将于2014年6月15-19日在美国马里兰州巴尔的摩市召开。在会议召开前夕,ASMS网站上公布了2014年度ASMS各项奖项的获得者名单,其中Richard M. Caprioli博士因在MALDI质谱成像应用方面的贡献获得了杰出贡献奖,而今年又有两位华人科学家分获了Biemann Medal奖和研究奖,获得Biemann Medal奖的李灵军博士曾在2011年获得Pittcon会议成就奖。   杰出贡献奖(Distinguished Contribution)   该奖项用于奖励在质谱基础和应用研究领域做出独一无二的成果,并且在质谱领域有重要影响的科学家。获奖者并不限制于ASMS会员,获奖者将获得10,000美元奖励和奖牌。   2014年杰出贡献获得者是美国范德堡大学质谱研究中心主任Richard M. Caprioli教授。Richard M. Caprioli教授因在MALDI质谱成像发展,及该项技术在生物和医药领域应用于组织分子成像方面的杰出贡献而获此奖。   Richard M. Caprioli教授的研究工作创建了组织分子成像的新范例,新范例建立在基质辅助激光解吸电离(MALDI)质谱成像发展的基础上。这是目前质谱仪的一个新兴的应用,由此分子测定可直接在组织中进行,可以从这些样品中得到很多重要信息。   这项工作对于蛋白质、脂质、代谢物和药用化合物的研究有显著贡献。自Richard M. Caprioli教授1997年在分析化学杂志公开发表开创新研究(Anal. Chem. 69(23), 4751-4760)显示质谱成像技术用于组织分析的能力以来,他率先在样品制备、仪器及信息学方法方面取得进展,并且将先进的技术传播到全球数百个实验室。   他研究工作的影响是显而易见的,众多的商业平台开始利用该项技术。截至目前为止,Richard M. Caprioli教授已经发表了约2,500篇MALDI质谱成像相关论文。   Biemann Medal奖   该奖项授予那些长期在质谱基础和应用领域做出突出贡献的个人,提名者应该在被提名前的15年之内获得博士学位。该奖项是为纪念Klaus Biemann教授而以他的名字命名的,Klaus Biemann教授在麻省理工学院工作的40年间培训了大量的学生和博士后,他与学生、博士后联合组织和其朋友共同捐赠设立了Biemann奖。获奖者不限于ASMS会员,获奖者会得到5,000美元奖励。   美国威斯康星大学麦迪逊分校药物科学和化学李灵军教授因在质谱用于神经多肽和功能性多肽领域研究的贡献而获得2014年Biemann Medal奖。   李灵军教授的研究重点是发展和改进与显微分离技术相配合的质谱平台,以应对神经科学研究的挑战性问题,包括发现神经肽功能和神经退行性疾病的生物标志物。   李灵军教授和她的团队已经创建了多个基于质谱的集成平台,包括高分辨率原位肽成像、组织成像、体内微透析,新的同位素和同量异位素标记策略,以及改进的生物信息学工具,使大规模的发现和功能性分析新的神经肽成为可能。最近,李灵军课题组还创新性利用离子迁移质谱解决与多肽组学研究有关的几个技术挑战。   使用这些集成平台和多元化方法,李灵军课题组在甲壳类生物模型有机体中发现了300多个新神经肽,这些有机体的基因序列目前还不能获得。这些发现显著扩展了我们对这些重要模型有机体中神经肽的认识。   研究奖(Research Awards)   研究奖由Robert Finnigan于1985年设立,旨在鼓励年轻年科学家推动质谱科学的研究。奖金是由赛默飞世尔科技公司和沃特世公司提供,每位获奖者将获得35000美元的奖金。   2014年赛默飞世尔科技资助的获奖者是美国密歇根大学的Kerri A. Pratt(下图左),沃特世公司资助的获奖者是美国俄克拉荷马大学的Zhibo Yang(下图右)。   Ron Hites 奖   Ron Hites奖是颁发给在JASMS期刊上发表的高质量的原创性论文,奖项强调论文的创新性、技术质量、是否会促进未来的研究和应用、文章的编排质量等。JASMS期刊由印第安纳大学Ronald A. Hites教授于1988年创立,该奖项是为了纪念他而命名的,奖金是2000美元。   2014年Ron Hites奖获得者是 Evan R. Williams、 Harry J. Sterling、 Alexander F. Kintzer、Geoffrey K. Feld、 Catherine A. Cassou、Bryan A. Krantz;获奖论文:Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations,发表于JASMS 2012年第23卷。(编译:杨娟)
  • 事关阿尔兹海默症!饶毅实名举报我国三位科学家学术造假
    p   继近期中国免疫学界相关科研工作者被曝出多达60多篇学术科研论文出现造假嫌疑之后,今天,微信圈流传我国著名科学家、首都医科大学校长饶毅教授实名举报的截图信息。 /p p   饶毅校长向基金委实名举报武汉大学李红良、上海生命科学研究院生化细胞所裴钢院士、上海药物所耿美玉研究员(国产阿尔兹海默症药物GV971的研究者)造假。 /p p   以下是截图: /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/6704c151-c33c-4b45-9b03-f1e2d6d57063.jpg" title=" 1.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/d770bbe6-9aba-4bae-9404-1f1bcf43db89.jpg" title=" 2.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/41ef008b-f724-40dd-93a9-108279035946.jpg" title=" 3.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fb0ef760-1c17-4b9f-beab-943824c161df.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p   饶毅,男,1962年出生。曾任北京大学生命科学院院长,现任首都医科大学校长,北京生命科学研究所资深研究员、学术副所长,未来论坛咨询委员会委员,《知识分子》主编 。 /p p   饶毅于1983年江西医学院本科毕业后考入上海第一医学院研究生。1991年获加州大学旧金山分校神经科学哲学博士。1991年进入哈佛大学生物化学和分子生物学系做博士后,研究脊椎动物神经诱导的分子机理。1994年在圣路易斯华盛顿大学解剖和神经生物学系任教并领导独立的实验室。2004年起任(美国)西北大学医学院神经科教授、(美国)西北大学神经科学研究所副所长。2007年饶毅决定回国 ,受聘出任北京大学讲席教授、生命科学学院院长 ,2013年9月卸任 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/f51737bd-75ce-4318-9818-2011f95c82e8.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   李红良,男,1974年9月出生,理学博士。武汉大学博士生导师、二级教授,国家杰出青年科学基金获得者、教育部长江学者特聘教授、科技部中青年科技创新领军人才 、国家“万人计划”领军人才。 /p p   现任武汉大学基础医学院院长、武汉大学模式动物研究所所长、武汉大学人民医院心血管内科教授、博士生导师,武汉大学心血管病研究所副所长,武汉大学动物中心主任、武汉大学A3实验室主任、中南医院医学科学研究中心主任、武汉大学模式动物协同创新中心主任。 br/ 2018年开始,饶毅教授作为主编的《知识分子》先后发布近十篇文章,质疑李红良多篇研究论文造假,其中包括 Nature Medicine 等顶级论文,以及硕士论文。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/1ebadb7c-916e-4715-b43e-e1e7c1376e4d.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p   裴钢,1953年出生于辽宁省沈阳市,细胞生物学家,中国科学院院士、发展中国家科学院院士,国产最高水平学术期刊 Cell Research 杂志主编,曾任中科院上海生科院院长、同济大学校长。 /p p   裴钢于1978年进入沈阳药科大学学习,先后获得学士、硕士学位;1991年获得美国北卡罗莱纳州立大学博士学位;1992年至1995年在美国杜克大学进行博士后研究;1995年3月回国,并担任中国科学院/德国马普学会青年科学家小组组长;1996年获国家杰出青年科学基金;1999年当选为中国科学院院士;2000年至2007年担任中国科学院上海生命科学研究院院长;2007年8月—2016年9月,担任同济大学校长。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/b5e4ff44-6212-488a-9d56-79c58e45c740.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p   耿美玉,女,1963年出生,山东青岛人,药理学专家,中国科学院上海药物研究所学术所长、研究员、课题组长。 主要从事抗阿尔茨海默病和抗肿瘤分子靶向药物研发和生物标志物研究,是首款抗艾兹海默症药物G971的研发者。 /p p 1986年耿美玉获得山东大学医学院医学系医学学士学位;1989年获得山东大学医学院医学系药理学硕士学位;1997年获得日本东京大学药学部药学博士学位;1989年至2006年任职于中国海洋大学;2006年任中国科学院上海药物研究所研究员;2011年至2019年任中国科学院上海药物研究所副所长;2013年至2019年任中国科学院上海药物研究所党委书记;2019年任中国科学院上海药物研究所学术所长。 /p p br/ /p
  • 多国科学家共同把脉:科研评估要给年轻人好土壤
    李晓轩(中科院科技政策与管理科学研究所研究员、中国科学院管理创新与评估研究中心主任):在现有的评价体系下,中国最大的&ldquo 特点&rdquo 就是科研人员特别忙碌。   库尔特· 维特里希(上海科技大学iHuman研究所特聘教授、诺贝尔化学奖获得者):中国现有的科研评估体系,对已有的结果强调太多,这使很多已有过一些成就的科研人员垄断了研究的大资金,而且科学家们也会一味地追求大项目、大资金,从而忽略了科学研究本身的意义--并非只有大项目大基金才能带来大结果   戴维· 斯维尼(英国高等教育拨款委员会研究、创新与技能处主任):简单地量化考核,或者过于狭隘地将科研成果定义为对现在经济价值的影响,这使科学家们不再为了好奇或者是追求卓越的科学而研究   赵东元(中科院院士、复旦大学教授):科研的评估是很复杂的体系,因为科学是真理,很难用数据衡量。我认为最需要改变的,是科研评估必须关注未来,关注年轻人,给他们更好的成长土壤   汪小京(上海纽约大学副校长、纽约大学神经科学教授):将高影响力的论文发表作为科研评估标准,在过去曾经给中国的科学发展带来很大推动作用,但在中国科研整体有了比较大的发展时,高影响力的论文标准已经不再适合   科研评价,不应只着眼于&ldquo 眼前的成功&rdquo ,更应注重发现&ldquo 有潜力的年轻人&rdquo 。而在中国,打造一个科学合理的科研评价体系更显迫切--对刹住中国科学界的歪风,提高创新效率,成就中国未来的国际竞争力至关重要。在上海市科协最近主办的&ldquo 2014科研评估体系国际学术研讨会&rdquo 上,来自世界各地的科学家们共同为中国科研评估体系和投入体系把脉。   科研价值观&ldquo 偏离&rdquo   一个好的科研评估体系不仅有利于科技的发展、科学家的成长,还有利于教育的发展,乃至全人类的发展。反之,则会影响科学研究的价值观。而中国的科研评价体系还不能称之为&ldquo 好&rdquo 。   目前,中国的科研评估往往与论文发表情况、项目的成果产出和科研人员的收入直接挂钩。这易导致科研人员偏离原本的研究目标。而且,科研人员很难从一个项目上获得足够的经费来完成一个课题,所以他们需要多头申请项目,来&ldquo 养活&rdquo 课题。   中国科学院管理创新与评估研究中心主任李晓轩说:&ldquo 这造成了科研人员太过忙碌。&rdquo --忙着发论文、找项目,甚至托关系。   太看重&ldquo 大人物&rdquo 、&ldquo 大项目&rdquo ,是上海科技大学iHuman研究所特聘教授、诺贝尔化学奖获得者库尔特· 维特里希为中国科研体系指出的弊病。&ldquo 这使已有过一些成就的科研人员垄断了大量研究资金,而且科学家们也会一味地追求大项目、大资金,忽略了科学研究本身的意义。&rdquo 他用自身经历说明,并非只有大项目、大基金才能带来大结果--他获得诺奖的成果,就是在一个非常小的实验室里做的一个非常小的项目。   发现&ldquo 有潜力的年轻人&rdquo   &ldquo 科研的评估是很复杂的体系,因为科学是真理,很难用数据衡量。我认为最需要改变的,是科研评估必须关注未来,关注年轻人,给他们更好的成长土壤。&rdquo 中科院院士、复旦大学赵东元教授在研讨会上的话引起了共鸣。   &ldquo 我们现在享有的科研成果和社会发展,来源于过去对科研的投入,而我们当下的投资,也会在未来得到收获。&rdquo 李晓轩说。近年来,国家自然科学基金委已经设立了青年基金、优秀青年基金、杰出青年基金等,为初出茅庐的年轻科学家提供更多机会,但这还远远不够。   上海纽约大学副校长汪小京称,将高影响力的论文发表作为科研评估标准,在过去曾经给中国的科学发展带来很大推动作用,但在中国科研整体有了比较大的发展时,这一标准已经不再完全适用。他认为,应该为有发展前景的项目,以及有科研潜力的年轻人提供更多的支持,&ldquo 要选择那些原创性的人,但如何建立科学的标准去发现他们,还需深入探讨&rdquo 。   求解&ldquo 世界性难题&rdquo   虽然,与成果、论文挂钩,导致了科研评估的功利化倾向,但离开这些&ldquo 功利的指标&rdquo ,又如何衡量一个科研成果的水平高低、评价一个科学家是否优秀?   英国高等教育拨款委员会研究、创新与技能处主任戴维· 斯维尼说,科研评估给科研机构和科研人员带来的压力等弊端并非中国特有,而且这种压力可能会造成部分科研人员行为不端,但管理者必须努力去堵住这些漏洞。   英国的科研评估和投资体系被认为是目前世界上相对科学的,这一体系使英国获得了大量的诺贝尔奖,在论文的引用频次上达到世界第6名。但英国仍于今年对他们的科研评估和投入体系进行了改进,因为&ldquo 简单地量化考核,或者过于狭隘地将科研成果定义为对现在经济价值的影响,这使科学家们不再为了好奇或者是追求卓越的科学而研究&rdquo 。戴维· 斯维尼在接受记者采访时说,如何建立一个好的体系,英国与中国一样,也在探索。
  • 瑞沃德邀您共赴“中国神经科学学会第十二届全国学术会议”
    2017年10月13-15日,“中国神经科学学会第十二届全国学术会议”将在天津召开。本次大会将对近年来我国乃至世界神经科学的最新发展及其科研成果进行研讨交流,并由国内外著名专家做大会报告。届时,全国各大医院神经科学专家及全国高校、科研院所等单位的神经科学专家、学者将参加本次大会,预计参会规模2500人左右。会议信息会议名称:中国神经科学学会第十二届全国学术会议会议时间:2017年10月13—15日会议地点:天津社会山会议中心瑞沃德展位号:12年度盛会,期待您的莅临深圳市瑞沃德生命科技有限公司作为国际领先的医学实验和宠物临床解决方案供应商,将携带在全球市场倍受欢迎的脑立体定位仪、动物麻醉机、动物呼吸机、激光散斑血流成像仪、第三代体温维持仪等自主研发的高精密度设备参加本次大会,和全国的神经科学专家、学者面对面交流,进一步理解专家、学者对科研设备的最新需求,以更好地服务于中国神经科学的科研事业。10月13日,瑞沃德期待和您共赴盛会!
  • 滨松中国将参展中国神经科学学会第12届全国学术会议
    中国神经科学学会于1995年成立,目前个人会员人数8000多名,分别来自中国科学院、中国医学科学院、军事医学科学院、中国中医研究院、全国综合性大学、医学院校、医院的精神科、神经内科、神经外科、眼科、耳鼻喉科、骨科、麻醉科、内分泌科及小儿科等临床学科,以及神经药物的生产和研究单位。本次大会将对近年来我国乃至世界神经科学的最新发展及其科研成果进行研讨交流。会议将邀请国内外注明专家做大会报告,届时全国各大医院神经科学专家以及相关科室负责人,全国大专院校、科研院所等单位的神经科学专家学者也将参加本次大会。本次大会定于10月12日-15日在天津.社会山会议中心召开。滨松中国将携生物科研成像用相机、数字切片扫描系统产品出席参加本次会议,届时欢迎到场参观(01-60)。
  • 博奥生物程京院士等14位科学家获中国生命科学“诺贝尔奖”
    11月26日上午,有我国生命科学“诺贝尔奖”之誉的2016年度第九届“谈家桢生命科学奖”颁奖典礼在武汉大学隆重举行,共14位科学家荣获该奖,颁奖典礼由奖励委员会主任、中科院院士饶子和主持。详细名单如下:  “谈家桢生命科学奖”是为纪念国际知名遗传学家、我国现代遗传学奠基人之一谈家桢先生而设立,是我国生命科学领域的最高奖项。  生命科学成就奖得主:中国工程院院士、中国科学院大学药学院院长、上海药物研究所学术委员会主任丁健(下图左) 中国工程院院士、生物芯片北京国家工程研究中心主任程京(下图右)。  丁健院士主要贡献在于领导建立了符合国际规范的抗肿瘤药物筛选和药效学评价体系,为我国抗肿瘤创新药物的自主研发提供了重要的技术支撑和能力保障,在分子靶向抗肿瘤药物的研究中取得了重要进展,是我国新药研究领域具有影响力的领军人物之一。  程京院士长期从事基础医学和临床医学相关生物技术研究,在生物芯片的研究中有重要建树和创新,他站在国际生物芯片研究前沿并结合国情,主持建立了国内急需的疾病预防、诊断和预后分子分型芯片技术体系,领导研制了基因、蛋白和细胞分析所需的多种生物芯片,实现了生物芯片所需全线配套仪器的国产化并实现了国产生物芯片类产品向欧美等发达国家的批量出口。  生命科学临床医学奖得主:中国工程院院士、浙江大学教授、博士生导师李兰娟(下图左) 复旦大学附属中山医院院长、上海市肝病研究所所长樊嘉(下图右)教授。  浙大医学院李兰娟院士从事传染病学医疗、教学和研究工作30余年,创建独特有效的人工肝支持系统治疗重型肝炎(ALSS)获重大突破。主持制定ALSS技术规范作为全国标准,积极推广至全国 获国家科技进步二等奖。建立我国第一个永生化人源性肝细胞系 创建四步灌流分离肝细胞新方法 构建新型混合型人工肝等。此外,她还担任传染病诊治国家重点实验室主任,近年来在H7N9亚型禽流感病毒方面也取得了多项重要成果,还领衔研制了针对H7N9禽流感病毒的疫苗。  樊嘉教授长期致力于提高肝癌临床治疗疗效与转移复发机制研究,在肝癌门静脉癌栓及肝癌肝移植术后转移复发的临床防治上有重大突破、在转移复发机制研究方面有重要创新,是我国肝癌领域中青年专家的领军人物。  生命科学产业化奖得主:江南大学食品学院院长、国家功能食品工程技术研究中心主任陈卫教授。  陈卫 博士,1966年5月出生,江南大学食品学院食品生物技术研究中心教授、博士生导师,长江学者特聘教授,江苏特聘教授。目前担任江南大学食品学院院长、国家功能食品工程技术研究中心主任。1988年和1995年在无锡轻工大学分别获食品科学学士和硕士学位,毕业后留校任教 1998-2003年在江南大学在职攻读博士学位,2007年和2014年分别在美国Wake Forest University 医学院和美国University of California,Davis大学做访问研究。2011年获国家杰出青年科学基金,2012年入选国家特殊人才支持计划(“万人计划”)首批科技创新领军人才 同时还先后荣获新世纪“百千万人才”工程国家级人选、国务院特殊津贴、全国“五一”劳动奖章、全国优秀科技工作者、全国先进工作者等 2012年入选教育部长江学者奖励计划创新团队(负责人)、科技部重点科技领域创新团队(负责人)。陈卫教授主要从事食品微生物学的教学和研究工作,近年来围绕乳酸菌的资源发掘与整理,益生菌生理代谢与功能机制的解析和优化,益生菌与环境及宿主的互作,益生菌对宿主的健康效应,肠道微生物与人体健康等开展了一系列的研究。主持完成国家“十一五”863计划、国家科技支撑计划、国家自然科学基金项目等10余项,成果先后获国家与省部级奖励10余项,其中“功能性益生乳酸菌高效筛选及应用关键技术”获2009年国家科技进步二等奖 发表科研论文300余篇,其中SCI论文110余篇 申请国家发明专利72项,其中国际专利8项,已获授权专利28项 出版著作及教材5本 “食品学科创新实践链式教育人才培养模式研究与实践” 2014年获国家教学成果一等奖。  生命科学创新奖获得主(9名):中科院生物物理研究所王艳丽研究员,北大生科院汤富酬教授,中科院上海生化细胞所许琛琦研究员,清华大学生科院杨茂君教授,中科院动物所陈大华研究员,中科大学生科院周荣斌教授,浙江大学医学院胡海岚教授,复旦大学蓝斐教授,北京大学生物动态光学成像中心魏文胜研究员(依次如下图所示)。  生命科学创新奖获奖者简介:  王艳丽,2004年博士毕业于中国科学技术大学,中国科学院生物物理研究所 “百人计划”研究员(2010-),主要从事于CRISPR/Cas系统的作用机理和小分子介导的基因沉默的结构生物学研究。近期成果包括成功解析了分辨率为3埃的E.coli Cascade复合物结构,揭示了由11个Cas蛋白以及一个61核苷酸的crRNA共同组成的分子量为405kDa的Cascade复合物的精确的组装方式,揭示了CRISPR作用的分子机理,同时也为进一步了解靶标的识别机制提供了新的见解(Zhao et al.,Nature,2014) 解析了Cas1-Cas2与多种类型DNA的复合物的晶体结构,发现了Cas1-Cas2识别外源入侵DNA分子机制,揭示了外源核酸片段的长度是如何确定的,同时也解释了该阶段中的核心蛋白Cas1和Cas2各自的功能,该成果为揭示原核生物这一新的抵御病毒及遗传物质的入侵的机制奠定了重要的理论基础(Wang et al.,Cell,2015) 解析了嗜热菌Argonaute(TtAgo)和5磷酸化引导DNA(gDNA)和一系列靶点DNA三元复合物的晶体结构,在结构生物学水平阐明了细菌的Agos蛋白指导导向DNA双链切割靶标DNA双链的机制,这一发现在分子生物学水平也证明了细菌通过Argonaute蛋白介导的DNA干扰机制来对抗转座子和可移动的遗传原件(Sheng et al.,PNAS,2014) 解析了AcrF3以及AcrF3-Cas3复合物的结构,阐述了AcrF3在对抗CRISPR/Cas系统发挥的作用,揭示了病毒与细菌在长期进化中形成的相互拮抗的作用机制(Wang et al.,Cell Research,2016)。曾获得第十三届“中国青年女科学家奖”等奖励和荣誉。  汤富酬,现为北京大学生命科学学院BIOPIC中心研究员。1994 - 1998 , 本科毕业于北京大学,1998 - 2003 在北大获得细胞生物学博士学位,2004 - 2010,英国剑桥大学Gurdon研究所,博士后, 2010年回国在北京大学组建实验室,2015 - 现在 ,北大-清华生命科学联合中心PI。主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用这一技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎DNA甲基化调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。现已发表论文40多篇,被同行引用3000多次。其中20多篇论文是以通讯(或者共同通讯)作者身份发表在Cell,Nature,Science,Cell Stem Cell,Cell Research,Genome Research,Genome Biology等期刊上。其中两项工作获评2014年度中国科学十大进展,2015年度中国科学十大进展,以及2015年度生命科学领域十大进展。  许琛琦,1977年12月生,中科院上海生命科学院生物化学与细胞生物学研究所研究员,所长助理。长期从事分子免疫学研究,揭示了脂质分子对免疫应答的调控机制,并且发展了基于脂代谢调控的肿瘤免疫治疗方法。发现细胞质膜中的酸性磷脂通过静电相互作用屏蔽关键受体的功能位点,从而维持T细胞的静息态 而钙离子可以直接与酸性磷脂结合并中和其负电荷,引起受体活化,从而调控T细胞的活化态。这种脂质分子的调控机制也适用于B细胞和肺癌细胞。近年来开创性地开展了脂质代谢与肿瘤免疫的交叉研究,发现了肿瘤免疫治疗的新靶点-胆固醇酯化酶ACAT1,并且证明了ACAT1抑制剂的抗肿瘤功能。以第一作者或通讯作者在Cell、Nature、Nature Review Immunology、J Exp Med和Nature Communication等国际知名杂志发表多篇学术论文。获得中科院百人计划(2010)、国家杰出青年基金(2014)、国家万人计划“青年拔尖人才”(2015)、全国优秀科技工作者、上海市优秀学术带头人、中科院青年科学家奖、上海市科学技术进步奖、上海青年科技英才、邹承鲁奖励基金杰出研究论文奖、明治生命科学杰出奖等人才项目和荣誉。  杨茂君,1975年出生于山东,2003年获中国协和医科大学博士学位(师从王琳芳院士,2001年10月进入清华大学饶子和院士实验室从事SARS蛋白酶晶体结构方面的研究),之后于美国西南医学中心从事博士后研究。清华大学首批tenure系列终身教授(2013-),清华-北大生命科学联合中心研究员(2011-)。2008年回国以来,杨茂君教授一直致力于综合运用结构生物学、生化与分子生物学等方法,研究与人类健康密切相关的重大疾病的发病机理及特异性抑制剂的筛选与设计,在细胞感应外界信号以及物质跨膜转运、蛋白质翻译后修饰调控等领域取得了一系列重大研究成果,以通讯作者身份在Nature(2012,2015,2016),Mol Cell(2010),Genes Dev (2014),PNAS(2012,2015)等国际知名期刊发表论文20余篇。曾获得霍英东基础研究奖励(2009)、教育部新世纪优秀人才支持计划(2010)、茅以升北京青年科技奖(2013)、药明康德生命化学研究奖(2013)、谈家桢生命科学创新奖(2016)和国家杰出青年基金(2016)等多项荣誉与奖励。人才培养方面,到目前为止实验室培养的所有博士研究生(5人)毕业时全部获得了清华大学或清华-北大生命联合中心优秀毕业生。其中第一个博士生冯越毕业后被直接特聘为北京化工大学副教授 三人次获得北京市优秀毕业生称号 两人获得清华大学优秀毕业生。  陈大华,博士,研究员,博士生导师 中国科学院动物研究所干细胞与生殖生物学国家重点实验室副主任,模式动物与干细胞生物学研究组组长。2005年中国科学院“百人计划”引进海外杰出人才,2008年国家基金委杰出青年获得者,科技部国家重大科学研究计划“原始生殖细胞发生和性腺发育的机制研究”首席科学家,现任干细胞与生殖生物学国家重点实验室副主任。1991年毕业于安徽农业大学,1999年毕业于中国科学院植物研究所获博士学位。1999年至2003年分别在美国肯塔基大学和德克萨斯大学西南医学中心从事博士后研究,2003年至2005年在西南医学中心分子生物系任Research Instructor。2005年回国后,实验室主要以果蝇和小鼠等模式动物为模型,开展干细胞不对称分裂的遗传和分子机制以及真核生物转录和翻译调控机制等方面的研究。目前主要研究干细胞与微环境信号相互作用的机制,TGF-beta/BMP和Hh等信号转导途径在生殖细胞发育过程中的作用,以及泛素介导的蛋白降解等途径在生殖干细胞命运调控中的作用。近年来实验室分别在Cell、 Developmental Cell、PLoS Biology、Nature Communications、Development、Human Molecular Genetics和PLoS Genetics等遗传和发育主流杂志上发表一系列文章。目前实验室承担科技部生殖发育重大计划、973、干细胞先导专项、国家基金委重点和杰青等项目。近年来最杰出的工作是在果蝇中鉴定到了DNA上m6A甲基化修饰的去甲基化酶,这一工作发表在2015年Cell。  周荣斌, 1980年5月生(生命科学领域目前唯一一名80后“杰青”),中国科学技术大学教授。主要从事炎症及炎症性疾病的发病机制和干预策略研究,近年来在NLRP3炎症小体的致病、活化和调控及靶向NLRP3炎症小体的疾病干预机制研究方面取得了多项研究成果:1)率先发现NLRP3炎症小体在2型糖尿病(T2D)中的致病作用并证明靶向NLRP3炎症小体干预T2D的可行性 2)揭示NLRP3炎症小体的关键内源性调控机制,发现神经递质多巴胺能通过其受体DRD1及下游信号通路抑制NLRP3炎症小体并改善神经炎症和外周炎症 3)揭示线粒体损伤是NLRP3炎症小体活化的关键因素,发现RNA病毒可通过RIP1-RIP3复合物诱发线粒体损伤及NLRP3炎症小体活化。以第一作者或通讯作者论文在Nature、Cell、Nat Immunol、Immunity、J Exp Med、PNAS等国际知名杂志发表多篇学术论文。 获得国家杰出青年基金、科技部中青年科技创新领军人才、中组部青年拔尖人才支持计划、中国青年科技人才奖、第十四届中国青年科技奖、第二届树兰医学青年奖、2015年度药明康德生命化学奖等人才项目和荣誉。  胡海岚,博士、教授、博士生导师、浙江大学求是特聘教授、浙江大学神经科学研究中心执行主任 2015年长江学者特聘教授获得者,第十二届中国青年女科学家奖获得者,国家杰出青年基金获得者,中科院百人计划获得者及赛诺菲优秀学者奖获得者等等 担任国际神经科学学会SFN程序委员会委员,中国神经科学学会理事,浙江省神经科学学会理事,中国动物学会动物行为学专业委员会特邀理事,中国国家自然科学基金评委,Neuron及Science杂志特邀审稿人。胡海岚教授于1996年获得北京大学学士学位 1996-1997年,于加州大学旧金山分校,担任研究助理 2002年,于加州大学伯克利分校获得神经生物学博士学位 2003-2008年,先后在美国弗吉尼亚大学、冷泉港实验室/加州大学圣地亚哥分校做博士后研究 2008-2015年,于中科院神经科学研究所任研究员 2015年至今,受聘于浙江大学求是高等研究院/医学院神经科学研究。胡海岚教授在情绪和社会行为的神经生物学基础这一脑科学前沿方向取得了一系列令人瞩目的成果:首次揭示内侧前额叶的神经活动在社会等级行为中的重要作用 阐明情绪因素如何影响学习和记忆的分子和细胞学机制 在抑郁症神经环路和病理机制的研究方向上也取得了关键的进展。  蓝斐,教授,博士生导师。1999年于上海复旦大学生物化学系获学士学位, 2002年获得复旦大学分子肿瘤学硕士学位,2008年获得美国哈佛大学细胞发育博士学位。博士期间在表观遗传甲基化可逆调控方向做出大量突出贡献,多篇论文发表在顶级期刊上,毕业时获得哈佛医学院院长提名嘉奖。博士毕业后,作为首位创始员工,受邀加入全球首批表观遗传制药公司(美)Constellation Pharmaceuticals,主要目标定位于将表观遗传学的科研成果转化成为有药用价值的产品,特别是在肿瘤和免疫疾病方面。在该公司,作为核心技术员工,参与大量公司组建工作并主导了多个药物研发项目,对表观遗传靶向性治疗的进展和前景有着极强的把握力。2012年11月辞去美国的职位,全职受聘于复旦大学,入选中组部第四批“青年千人计划”(2012年11月),并同月荣获上海高校特聘教授(“东方学者”2012)称号。回国后,蓝斐教授的主要科研方向将拓宽到新兴的非组蛋白表观遗传修饰的生物学意义及其调控机理,并揭示表观遗传异常在肿瘤及其它疾病发生过程中的作用,为抗肿瘤药物靶标的发现以及最终成药提供理论和实验依据。 蓝斐教授作为蛋白去甲基化领域的主要开辟者主导并参与发现了已知的21类去甲基化酶中的16类,包括第一个去甲基化酶LSD1,以及之后的4大类JMJC去甲基化酶家族的发现和功能研究。此外,他还首次发现了未甲基化赖氨酸的识别机理。这些开创性的工作不仅为表观遗传学甲基化标记的动态调控提供了大量的实验证据,并大大完善了甲基化生物学调控的理论体系。为了更好的理解疾病表观遗传学并获得转化医学的宝贵经验,蓝斐教授在博士毕业后接受了美国Constellation Pharmaceuticals的邀请,做为首位员工加盟并创建公司研发团队以及制定研发方向,在公司中多项临床前项目中做出重要贡献。现在该公司是业界公认的最具创新性的表观遗传公司。蓝斐教授发表SCI论文20余篇,作为第一和共同第一作者发表过3篇Nature和Cell文章,他的科研和创新成果还用于3项国际专利申请。  魏文胜,北京大学生命科学学院研究员(2007-),北京大学生物医学集成创新研究所(BIOPIC) 研究员(2014-),北大-清华生命科学联合中心(CLS)研究员(2015-),北京未来基因诊断高精尖创新中心(ICG)研究员(2016-)。长期致力于发展基因组编辑技术与高通量功能基因组学,以及在此基础上研究癌症、感染等重大疾病的分子机制。近期成果包括:首次发现艰难梭菌毒素受体 完成对TALE蛋白识别非修饰及修饰DNA碱基的完全解码 开发了基于CRISPR/Cas9系统的基因敲除文库及高通量功能性筛选平台 完成多种病毒侵染人源宿主重要靶位点的筛选和功能鉴定 建立了基因组大片段删除技术用于高通量筛选研究长片段非编码RNA(lncRNA)等。以第一作者或通讯作者在Cell、Nature、Nat Biotechnology、PNAS、Cell Research、Elife等国际知名杂志发表多篇学术论文。获得北京大学生命科学学院最受欢迎教师奖(2010)、北京大学东宝奖教金(2012)、The Roche Chinese Young Investigator Award(2014)、Bayer Investigator Award(2014)、北京大学郑昌学教学优秀奖(2015)、科学中国人年度人物(2016)、谈家桢生命科学创新奖(2016)等多个奖项和荣誉。  附:“谈家桢生命科学奖”简介  一、设立背景  为了促进我国生命科学、医学、药学及相关领域的科技进步和产业发展,促使生物技术产业的领军人物不断涌现,由国家科技部批准、联合基因集团出资设立、上海复星医药(集团)有限公司赞助,上海市生物医药行业协会承办的“谈家桢生命科学奖”正式启动。  设立单位联合基因集团1997年发源于复旦大学,由毛裕民教授、谢毅教授带领复旦大学生命科学学院的一批教师和博士、硕士研究生发起组建。由100万起步,迄今已经形成资产超过60亿、拥有30多家企业(两家为香港主板上市)的以基因技术为主的高科技产业集团。该奖是在生命科学领域由企业设立的第一个奖项,也是联合基因集团在树立生物技术领域的品牌后,回馈社会的一种方式。  赞助单位上海复星医药(集团)股份有限公司成立于1994年,1998年8月在上海证券交易所挂牌上市,是在中国医药行业处于领先地位的上市公司。复星医药专注现代生物医药健康产业,在研发创新、市场营销、并购整合、人才建设等方面形成竞争优势的大型专业医药健康产业集团。复星医药奉行可持续发展的原则,始终怀着感恩的心态,将履行社会责任纳入到企业发展的长期战略。  二、设奖宗旨  2008年,谈家桢先生迎来他的百年诞辰。谈先生是我国现代遗传学奠基人之一,是中国现代杰出的科学家和教育家。他将毕生献给了遗传学事业,为遗传学研究培养了大批优秀人才,建立了中国第一个遗传学专业,创建了第一个遗传学研究所,组建了第一个生命科学院。  该奖的设立旨在秉承谈先生对生命科学事业的奉献精神,促进生命科学研究成果产业化,激励我国生命科学工作者不断创新。  三、承办单位  谈家桢生命科学奖由上海市生物医药行业协会承办。上海市生物医药行业协会成立于2002年12月,是由上海市生物医药企业和相关大学、科研院所等单位自愿结成的社会团体。协会会员涵盖现代生物技术和医药领域从研发、生产到流通等整个产业链,现有会员单位205家,会员产业规模已超过2700亿,行业覆盖率达75%以上,具有较强的行业代表性。协会是中国社会组织首批最高荣誉获得者,2004年被中国民政部授予“全国先进民间组织” 其后被评为“中国社会组织评估等级五A”、“五星级社会组织党组织”和“工人先锋号”。  四、评选机构:  奖项评选机构由奖励委员会和评审专家委员会组成。奖励委员会由生物技术领域具有高尚道德情操、精深学术造诣、热心科技奖励事业的国内科技权威和著名学者组成。奖励委员会聘请的评审专家经过奖励委员会批准、颁发聘任书后,独立行使职能、负责评选工作。  五、奖励对象:  在中华人民共和国境内从事生命科学事业做出成就的科学家、教授,以及取得创新研究成果的青年学者 对生命科学科技成果产业化过程有突出贡献的人士。  六、奖项设置:  “谈家桢生命科学奖”下设“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”三个奖项,每年奖励费用为人民币110万元:其中奖励“谈家桢生命科学成就奖”2名,各奖励人民币25万元 “谈家桢生命科学产业化奖”2名,各奖励人民币10万元 “谈家桢生命科学创新奖”8名,各奖励人民币5万元。  七、评选程序  谈家桢生命科学奖每年评奖一次,参照国际惯例,遵循“公平、公开、公正”的原则,按提名推荐、资格认定、初评、终评、颁奖的程序进行。  经奖励委员会核准的国内外高校、研究院所和企业、国内相关学科领域的著名专家、学术权威、主管领导和学科带头人为推荐人。奖励委员会委员每人每年可提出两名被推荐人,其他推荐人每人每年可提出一名被推荐人,向奖励委员会推荐。也欢迎有突出成就的个人通过自荐方式参加评选。  推荐材料经谈家桢生命科学奖管理办公室进行形式审查认定后,由评审专家进行初评(函评),对各位申请人打分并对申请人给出评价,申请人函评分数高于该奖项所有申请人函评平均分(含)以上者,进入谈家桢生命科学奖评审专家委员会评审。  谈家桢生命科学奖评审专家委员会举行全体会议进行评审,逐一审核进入复评申请人材料并进行评议,以记名方式进行评分,去除一个最高分和一个最低分后,按平均得分高低顺序排位,“谈家桢生命科学成就奖”取得分前二位,“谈家桢生命科学产业化奖”取得分前二位(如果产业化奖空缺,将把名额递补给创新奖),“谈家桢生命科学创新奖”取得分前八位,分别产生“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人。 评审专家委员会评审后产生的“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人名单,经相关网站和媒体公示十五天无异议者,方可提交奖励委员会进行终评。  谈家桢生命科学奖奖励委员会召开终评会议,会议须有谈家桢生命科学奖奖励委员会半数以上委员参加方能举行。并逐一审核每位候选人材料并进行评议,以记名投票方式确定获奖者,提名的谈家桢生命科学奖候选人须获得在场的奖励委员会委员三分之二以上票数同意,方可批准为本年度“谈家桢生命科学成新奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”获得者。  八、评审原则  谈家桢生命科学奖的申报、评审和授奖,遵循“公开、公平、公正”的原则,不受任何组织或个人的非法干涉。
  • 单项奖金1000万元!世界顶尖科学家协会奖 “生命科学或医学奖” 揭晓
    9月12日,2024世界顶尖科学家协会奖"生命科学或医学奖"在沪揭晓,约翰斯霍普金斯大学医学院分子生物学与遗传学、神经科学和眼科学讲席教授,霍华德休斯医学研究所研究员杰瑞米内森斯(Jeremy Nathans)获奖,奖金1000万元。获奖理由为"表彰他在发现人类颜色视觉的基因、调控和可塑性,以及阐明导致失明的疾病机制方面作出的贡献"。2024顶科协奖"生命科学或医学奖"遴选委员会主席、2013年诺贝尔生理学或医学奖得主兰迪谢克曼对杰瑞米内森斯的工作进行了解读。杰瑞米内森斯发现了颜色视觉的分子基础。1983年,作为斯坦福大学医学院的一名新进研究生,内森斯就独自先后克隆出牛和人类的视蛋白基因,该基因负责颜色视觉。这项工作揭示了首个感觉受体的序列。随后,在20世纪80年代的杰出工作中,内森斯阐明了色盲的分子基础。他发现,在染色体上串联排布的红绿感光色素基因会导致异常重组,从而引起基因缺失。在他自己的课题组里,内森斯证明了三色视觉的分子基础,他绘制了视蛋白的氨基酸序列图谱,这些序列使每种蛋白质吸收特定的光谱。随后,他的课题组又发现了一种精巧的调控机制,通过这种机制,位于特定视锥细胞的某个染色体区域只能激活绿色或红色基因中的一个。当内森斯开始研究遗传性视网膜变性患者时,人们对此一无所知,包括任何形式的视网膜疾病的分子基础。内森斯和撒迪厄斯德里亚课题组的独立研究发现,视紫红质基因突变是视网膜色素变性的首个已知病因。在与詹姆斯卢普斯基合作中,内森斯确定了斯塔加特病的致病基因。斯塔加特病是最常见的早发遗传性黄斑变性。在一项令人震惊的小鼠遗传和行为研究中,内森斯及合作者有力证明了,接受基因工程改造后的小鼠在通常只能识别两种三原色的基础上,能获得三色视觉的能力(该基因工程将长波长视蛋白基因导入了小鼠的染色体)。这一惊人发现凸显了视觉系统具有非凡的可塑性,佐证就是小鼠大脑适应了可以识别三原色的能力。内森斯具备广泛的好奇心,在视觉科学领域博闻广识,对其历史了若指掌。此外,他的思想深度以及研究方法的创新力,都使他跻身于世界上最优秀的神经科学家之列。
  • 三名科学家分享2021年诺贝尔物理学奖
    新华社斯德哥尔摩10月5日电(记者和苗 付一鸣)瑞典皇家科学院5日宣布,将2021年诺贝尔物理学奖授予三名科学家,其中,日裔美籍科学家真锅淑郎和德国科学家克劳斯哈塞尔曼因“建立地球气候的物理模型、量化其可变性并可靠地预测全球变暖”的相关研究获奖,意大利科学家乔治帕里西因“发现了从原子到行星尺度的物理系统中无序和波动的相互作用”而获奖。  瑞典皇家科学院常任秘书戈兰汉松当天在皇家科学院会议厅公布了获奖者名单及主要成就。他表示,获奖者们对“理解复杂物理系统做出了开创性贡献”。  瑞典皇家科学院在当天发表的新闻公报中说,三位获奖者因对“混沌和明显随机现象”的研究而获奖。地球气候对人类来说是一个至关重要的复杂系统,而复杂系统的特点是随机性和无序性,难以理解,但三位获奖者开发了描述和预测它们长期行为的新方法。  公报说,真锅淑郎在20世纪60年代领导了地球气候物理模型的开发,展示了大气中二氧化碳含量的增加如何导致地球表面温度升高。约10年后,哈塞尔曼创建了一个将天气和气候联系在一起的模型,从而回答了为什么在天气多变且混乱的情况下气候模型仍然可靠的问题。他的方法已被用来证明大气温度升高是由人类活动排放二氧化碳造成的。真锅淑郎和哈塞尔曼的研究成果为“了解地球气候及人类如何影响它”奠定基础。  帕里西因对“无序材料和随机过程理论”做出革命性贡献而获奖。据公报介绍,1980年左右,他在无序的复杂材料中发现了隐藏模式,这是对复杂系统理论最重要的贡献之一。这些成果使理解和描述许多不同的、显然完全随机的材料和现象成为可能,并被运用到物理学以外的许多领域,如数学、生物学、神经科学和机器学习等。  帕里西在发布会的电话连线采访中说,他听到消息后很高兴,完全出乎意料。他还强调了“立即行动”以应对全球变暖的重要性。  真锅淑郎1931年出生于日本爱媛县,是美国普林斯顿大学高级气象学家;哈塞尔曼1931年生于德国汉堡,是马克斯普朗克气象学研究所教授;帕里西1948年出生在意大利罗马,就职于罗马大学。  三名科学家将分享1000万瑞典克朗(约合115万美元)奖金,帕里西将获得其中一半奖金,真锅淑郎和哈塞尔曼将分享另一半奖金。
  • 致敬科研女神——盘点国内外三大女科学家奖历届获奖者
    女性科技工作者在促进我国科学技术的发展中呈现了举足轻重的作用,大量女科学家凭借着她们吃苦耐劳、勤奋进取、开拓创新的精神,以及细致严谨、踏实朴素的作风取得了具有国际影响力科技成果,代表中国走向了世界前沿。科研界也拥有专属于女性科学家的荣誉,本文将盘点历年来获得“世界杰出女科学家奖”、“中国青年女科学家奖”的杰出女性科学家和入选“未来女科学家计划”的优秀女性科技工作者。世界杰出女科学家奖奖项介绍:世界杰出女科学家奖(L' Oréal-UNESCO For Women in Science awards)设立于1998年,由联合国教科文组织和法国欧莱雅集团联合设立。每年评选出5位来自全球不同地区的杰出女科学家,表彰她们通过开创性工作,为解决重要科学问题所作的贡献,并为其科研事业提供支持。该奖最初只针对生命科学领域,奖金为每位获奖者2万美元。从2003年开始,评选领域扩展到其他科学领域,奖金也增加到每位获奖者10万美元。每年评选一次,每年授予各大洲(非洲及阿拉伯国家、亚洲及太平洋地区、欧洲、拉丁美洲、北美洲)共5位为科学进步做出卓越贡献的女性。该奖项有“女性诺贝尔科学奖”之称,侧重于对科学家整个学术生涯的评价,兼顾基础科学、应用科学和公共服务3方面的贡献。近年来,李方华、叶玉如、任咏华、谢毅、陈化兰、张弥曼、胡海岚7人先后获得该奖项,展现了中国女科学家的风采,有力提升了我国科学家的国际形象和影响力。世界杰出女科学家奖历届获奖者:1998-2021年世界杰出女科学家奖获奖者时间获奖者国籍研究领域2021年玛丽亚瓜达卢佩古兹曼提拉多(Maria Guadalupe Guzmán Tirado)拉美和加勒比海地区传染性疾病卡塔林卡里科(Katalin Karikó)北美洲生物化学胡海岚教授(Hailan Hu)中国神经科学阿格尼斯比纳格瓦霍教授(Agnès Binagwaho)非洲和阿拉伯地区公共卫生安吉拉涅托教授(Ángela Nieto)欧洲胚胎学2020年凯瑟琳尼吉拉(Catherine NGILA)非洲和阿拉伯国家化学野崎京子(Kyoko NOZAKI)亚太地区化学莎菲戈德瓦塞尔(Shafi GOLDWASSER)北美计算机科学弗朗索瓦丝孔布(Franoise COMBES)欧洲天体物理学艾丽西亚迪肯斯坦(Alicia DICKENSTEIN)拉丁美洲数学2019年娜贾特奥恩萨利巴黎巴嫩川合真纪日本卡伦哈尔伯格阿根廷英格丽德多贝希美国克莱尔瓦赞法国2018年珍妮特罗森特加拿大发育生物学艾米T奥斯汀(Amy T. Austin)阿根廷生态学和环境科学卡洛琳迪恩英国分子生物学张弥曼中国古生物学希瑟扎尔南非儿科学2017年Maria Teresa Ruiz智利鲍哲南美国Nicola Spaldin瑞士Michelle Simmons澳洲Niveen Khashab沙特阿拉伯2016年Andrea Gamarnik阿根廷分子病毒学陈化兰中国兽医疫苗Quarraisha Abdool Karim南非艾滋病预防詹妮弗杜德纳美国分子生物学Emmanuelle Charpentier德国分子生物学2015年Molly S. Shoichet加拿大激光化学Thaisa Storchi Bergmann巴西黑洞Dame Carol Robinson英国膜蛋白谢毅中国无机化学Rajaâ Cherkaoui El Moursli摩洛哥发现希格斯玻色子2014年Laurie Glimcher美国Cecilia Bouzat阿根廷Brigitte Kieffer法国Kayo Inaba日本Segenet Kelemu肯尼亚2013年Deborah S. Jin美国生物医学Marcia Barbosa巴西地震研究Pratibha Gai英国催化剂黑田玲子日本神经退行性疾病,如阿尔茨海默氏症Francisca Nneka Okeke尼日利亚高层大气、离子电流2012年邦尼巴斯勒美国细菌Susana López Charretón墨西哥阐明轮状病毒感染机制Frances Ashcroft英国新生儿糖尿病Ingrid Scheffer澳洲基因Jill Farrant南非植物克服干旱2011年Jillian Banfield澳洲细菌Silvia Torres-Peimbert墨西哥星云和宇宙起源Anne L' Huillier法国照相机任咏华中国(香港)发光材料和太阳能Faiza Al-Kharafi科威特水、石油等污染处理2010年伊莱恩富克斯美国皮肤和皮肤干细胞Alejandra Bravo墨西哥细菌Anne Dejean-Assémat法国白血病和肝癌Lourdes J. Cruz美国大脑Rashika El Ridi埃及血吸虫病疫苗2009年Eugenia Kumacheva加拿大癌症治疗Beatriz Barbuy巴西宇宙诞生和恒星Athene Donald英国材料物理学小林昭子日本分子导体Tebello Nyokong不明癌症治疗Marnie Blewitt澳洲基因2008年伊丽莎白布莱克本美国染色体与癌症和衰老的研究Ana Belén Elgoyhen阿根廷听觉阿达约纳特以色列蛋白质合成系统、抗生素V. Narry Kim韩国基因Lihadh Al-Gazali阿联酋遗传性疾病2007年Tatiana Birshtein俄罗斯分子学Margaret Brimble新西兰贝类毒素米尔德里德德雷斯尔豪斯美国固体材料学Ligia Gargallo智利聚合物溶液性能Ameenah Gurib-Fakim毛里求斯植物学和生物医学2006年帕梅拉比约克曼美国免疫系统Esther Orozco墨西哥变形虫研究Christine Van Broeckhoven比利时阿尔茨海默病防治Jenny Graves澳洲进化原理Habiba Bouhamed Chaabouni突尼斯遗传疾病防治2005年Myriam P. Sharachik美国金属和绝缘体的电传导Belita Koiller巴西无序物质Dominique Langevin法国洗涤剂、乳状液和泡沫米泽富美子日本非晶半导体和液态金属计算机模拟Zohra ben Lakhdar突尼斯红外光谱2004年Christine Petit法国耳聋叶玉如中国大脑神经元Philippa Marrack美国淋巴细胞Lúcia Mendonça Previato巴西植物病虫防治珍妮佛汤姆森南非转基因植物学2003年Johanna M.H. Levelt Sengers美国热力学Mariana Weissmann阿根廷凝聚体物理学Ayse Erzan土耳其凝聚体物理学李方华中国电子显微镜Karimat El-Sayed埃及物理学2002年雪莉蒂尔曼加拿大/美国染色体Ana María López Colomé墨西哥眼睛失明Mary Osborn德国细胞学Indira Nath印度麻风病防治Nagwa Meguid埃及精神病防治2001年琼伊莲阿吉特辛格施泰茨美国生命化学Mayana Zatz巴西分子生物学安妮麦克拉伦英国生殖生物学苏珊娜科丽澳洲分子遗传学Adeyinka Gladys Falusi尼日利亚分子遗传学2000年乔安妮秋莉美国分子生物学Eugenia Del Pino厄瓜多尔分子生物学玛格丽特萨拉斯西班牙分子生物学冈崎恒子日本分子生物学Valerie Mizrahi南非分子生物学1998年Gloria Montenegro智利植物学帕斯卡莱科萨尔王艳秀中南大学2邓雨君复旦大学3刘 灿北
  • 中国实验动物学会神经科学技术专业委员会成立大会在上海市顺利召开
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   2019年11月30日,中国实验动物学会神经科学技术专业委员会(以下简称专业委员会)成立大会在上海市召开。中国实验动物学会副理事长、上海实验动物学会理事长陈学进教授、中国实验动物学会赵宏旭秘书长、上海市东方医院副院长雷撼教授等领导,中国实验动物学会神经科学技术专业委员会委员候选人、以及来自全国各地的相关科技工作者共计 68 人出席了会议。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   成立大会上,首先由中国实验动物学会神经科学技术专业委员会发起人、上海东方医院魏佑震教授介绍了专业委员会组建的背景和筹备过程、人员组成等情况。赵宏旭秘书长随后宣布专业委员会正式成立,并宣读了第一届专业委员会23位委员名单。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   在挂靠单位接受授牌后,上海市东方医院雷撼副院长代表挂靠单位致辞,表示上海市东方医院有能力、有水平,也更有决心和义务支持、支撑神经科学技术专业委员会的工作,努力将该委员会办成具有特色的、与上海全球定位相匹配的国际化高水平专业委员会! /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   依照《中国实验动物学会专业委员会管理办法》,会议选举产生了第一届专业委员会丁玉强等7名常务委员、吴武田等4名副主任委员。上海东方医院东方转化医学研究技术中心主任魏佑震教授当选为主任委员。魏佑震教授发表就职感言,借喻神经系统网络构成特点说明成立本专委会的目的和意义,并描绘了近期的发展规划与工作计划,其中“构建动物实验电子记录系统”引起了与会专家教授的强烈共鸣,得到高度赞赏与认可。专业委员会聘任廖丽君副主任医师担任秘书长。成立大会由中国实验动物学会赵宏旭秘书长主持。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   会议同期举办了“2019第四届动物实验技术技能培训(神经专场)”。学员、教师、研究员、技术人员,以及神经科技专业企业技术研发工程师等近百人参加了本次培训班。吴武田教授做了“外周神经损伤与修复”的报告,陈明教授做了题为 “膜片钳技术在神经科学研究中的基础及应用”的报告,范国煌教授做了题为“趋化因子及其受体在阿尔兹海默病和多发性硬化症中的作用与机理研究”的报告,王耀博士做了题为“利用工具病毒载体进行动物神经环路示踪和功能解析”的报告,高召兵教授做了题为“靶向离子通道的抗癫痫新药研发及药物安全性评价”的报告,丁玉强教授做了题为“Pten调控动物抑郁样行为”的报告,吴小波教授做了题为“神经系统疾病突触可塑性机制研究的电生理技术”的报告,汤耀辉教授做了题为“动物脑卒中模型干细胞植入技术及生物效应研究”的报告。老师们的精彩讲解与演示,给学员带来了动物实验神经科学技术的饕餮大餐,学员纷纷表示干货良多,受益匪浅。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   本次培训班得到了纽珑实业(上海)有限公司等企业的大力支持。上海唯洋医疗器械有限公司和诶伯(上海)科技有限公司在培训班期间分别发布了各自的科研仪器设备,受到广泛关注。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/59ac238d-4c44-44f0-b339-3efefa1c131e.jpg" title=" 1赵宏旭秘书长主持成立大会.jpg" alt=" 1赵宏旭秘书长主持成立大会.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 赵宏旭秘书长主持成立大会 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/3af35108-92cf-4bdc-a4a2-eb0cc34605d9.jpg" title=" 2雷憾副院长致辞.jpg" alt=" 2雷憾副院长致辞.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 雷憾副院长致辞 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/6f45f16e-d03e-4c0c-8b01-10e0169850d4.jpg" title=" 3向挂靠单位授牌.jpg" alt=" 3向挂靠单位授牌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 向挂靠单位授牌 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 375px " src=" https://img1.17img.cn/17img/images/201912/uepic/41ae45a5-e790-4ebd-a487-b101688ecd45.jpg" title=" 4颁发聘书.jpg.png" alt=" 4颁发聘书.jpg.png" width=" 600" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 颁发聘书 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 393px " src=" https://img1.17img.cn/17img/images/201912/uepic/2a329c6b-c54c-4319-992b-34cb8f29c11a.jpg" title=" 合影.png" alt=" 合影.png" width=" 600" height=" 393" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 与会部分代表合影 /p
  • 2021年诺奖热门:光遗传学背后的科学家们
    光可被细菌、藻类等低等生命和人类等高等动物通过视紫红质系统而感知。20世纪70年代后,几种细菌和藻类通道视紫红质的发现为光控系统的诞生奠定了基础。光遗传学最初由米森伯克于2002年首次实现并于2005年由迪塞罗斯(也译作代塞尔罗斯)和博伊登进一步完善,其应用极大地增强了对大脑功能的理解。 光遗传学可使科学家借助光来精确开闭特异神经元从而达到操纵神经元活性和动物行为的目的。光遗传学技术已被证明是在细胞和系统层面研究健康和病理大脑活性的一个非常强大且有用的工具。文章系统介绍了光遗传学诞生的历史背景、重大事件、发展过程、应用领域及重要价值等。 光对生命具有举足轻重的地位,“万物生长靠太阳”。对大部分植物而言,它们借助光合作用合成营养物质并释放出氧气,而动物则依靠这些营养物质和氧来维持生存。此外,光还可以指导细菌和植物的向光性,控制植物生长和开花时间。 对于人类和其他动物而言,借助光来观察和感知这个 “光明” 世界。该过程由 “眼睛” 完成,称为视觉。大部分视觉健康的人都可通过眼睛清晰地观察到这个世界,看到周围的花花草草和五光十色的世界。那么,我们是如何观察到这些事物的呢?文艺复兴后,人们对光的本质进行探索,从而对光的成像机制有了新认识,自然对视觉形成机制也产生浓厚兴趣。 视紫红质 视觉研究可追溯到18世纪。荷兰科学家列文虎克(Antonie Philips van Leeuwenhoek)借助显微镜观察眼视网膜结构,鉴定出视网膜色素上皮细胞(retinal pigment epithelium,RPE)、视杆细胞和视锥细胞等,并推测这些细胞与视觉形成相关。1851年,德国解剖学和生理学家缪勒(Heinrich Müller,1820—1864)首次报道视网膜视杆细胞显红色这一现象 [1]。遗憾的是,缪勒错误地认为红色由血液造成。尽管如此,缪勒仍被看作视觉生理研究的先驱。缪勒在视觉生物学领域作出诸多贡献,如首次描述视网膜神经胶质细胞,这类细胞也因此获名“缪勒细胞”。 博尔(Franz Boll,1849—1879)是一位德国生理学家,对视觉形成具有浓厚兴趣。1876年11月,博尔也观察到红色视杆细胞,并认定红色源于其含有一类特殊物质,纠正了缪勒早期的错误。博尔还发现视杆细胞的红色受光影响,光照可导致红色褪去,而在暗处又重新恢复,进一步说明红色物质与视觉形成相关。遗憾的是,博尔的早逝(年仅30岁)使研究没有进一步开展。 1877年1月,博尔的同胞、另一位德国著名生理学家屈内(Wilhelm Friedrich Kühne,1837—1900)进一步纠正博尔的不足,认定视网膜感光物质应为紫红色,并创造 “视紫红质(rhodopsin)” 一词。屈内还取得另一项重大发现,即胆酸可使视杆细胞内的视紫红质释放到溶液里,并基于这一原理首次从牛视网膜完成视紫红质的纯化 [2],屈内也因此成为视觉生理领域的奠基人之一(图1)。虽然已确定视紫红质参与视觉形成,但具体分子机制仍不清晰,直到20世纪30年代才有突破。图1 视紫红质的发现 视黄醛循环 1931 年, 美国眼科专家尤德金(Arthur Yudkin,1892—1957)开始对视网膜成分进行分析,发现其含有一种维生素A样物质。其实,人们很早就知道维生素A缺乏可影响视觉形成,最常见的一种疾病叫夜盲症,但对维生素A如何参与视觉却知之甚少。 1932 年, 美国生理学家瓦尔德(George Wald, 1906—1997)来到德国瓦伯格(Otto Heinrich Warburg,1931年诺贝尔生理学或医学奖获得者)实验室开始全面研究视紫红质。瓦尔德首先借助光谱分析法证明青蛙、绵羊、牛等完整视网膜中存在维生素A,接着使用氯仿提纯视紫红质,化学显色反应表明所含物质与维生素A非常相似。 为进一步证实结论,瓦尔德加入瑞士著名科学家卡雷尔(Paul Karrer,1937年诺贝尔化学奖获得者)的实验室,而卡雷尔分离并确定了维生素A的结构。经过3个月研究,瓦尔德最终确定视紫红质中确实含有维生素A,从而表明视紫红质包含两部分:视蛋白(opsin)和维生素A [3]。随后,瓦尔德又加入德国海德堡迈耶霍夫(Otto Fritz Meyerhof,1922年诺贝尔生理学或医学奖获得者)实验室继续开展视觉形成研究。 一次偶然事件为研究带来重大契机!当时正逢假期,许多实验室人员都去度假,恰在此时运抵300只青蛙。实验室助理原本想丢弃,而瓦尔德则主动要求留下来用作实验材料。瓦尔德从青蛙视网膜提取到足够量的视紫红质,进一步分析后惊奇地发现所含的维生素A与卡雷尔所得维生素A尽管大部分性质相似,但仍有些许差异,因此将这种物质重新命名为视网膜色素(retinene)。瓦尔德还发现视网膜色素与维生素A之间可发生转变,并通过后来详细的结构分析确定了两者间的差异,因此视网膜色素更名为视黄醛,而维生素A则称为视黄醇 [4]。 20世纪50年代,瓦尔德和同事经过近20年探索,最终解析出视觉形成的 “视黄醛循环” 机制:静息状态下,视杆细胞内视蛋白与11-顺视黄醛结合形成视紫红质;光线照射可使11-顺视黄醛发生异构化转变为全反式视黄醛,从而与视蛋白分离,这个过程激活视蛋白,启动下游信号转导最终到达大脑视觉中心;全反式视黄醛可被运输到视网膜色素上皮细胞内经过几步化学反应重新生成11-顺视黄醛;11-顺视黄醛回到视杆细胞再次与视蛋白结合形成视紫红质,从而完成一次视觉感知过程(图2)。瓦尔德的发现很好地诠释了视黄醛参与视觉形成的机制,因此他分享了1967年诺贝尔生理学或医学奖。图2 瓦尔德与视黄醛循环 后续研究还揭示了视蛋白作用机制。视蛋白是一种G-蛋白偶联受体(G protein coupled receptor,GPCR)。光通过改变视黄醛结构而激活视蛋白后,可进一步使异三聚体G蛋白激活,从而使磷酸二脂酶活化,催化cGMP水解为5’-GMP而减少cGMP含量;细胞内受cGMP调控的离子通道关闭,导致细胞膜电位出现变化,最终传导至视觉中心而实现光的感知。 从这个过程可以看出,哺乳动物视紫红质的作用机制较为复杂,作为机体视觉感知过程尚可接受,如果将它们应用到其他系统则困难重重,因此有必要寻找更简单的感光系统 [5]。 细菌感光 最初认为只有高等动物才存在视觉系统,但这一观念在20世纪60年代发生改变。1967年,德裔美国生理学家斯托克尼乌斯(Walther Stoeckenius,1921—2013)成为加州大学旧金山分校的教授,重点研究生物膜(如红细胞膜和线粒体膜)结构 [5]。由于生物膜材料获取比较困难,具有电子显微镜背景的斯托克尼乌斯决定用生物化学方法研究盐生盐杆菌(Halobacterium halobium)细胞膜组成。随后两位新同事的到来壮大了实验室的力量。 厄斯特黑尔特(Dieter Oesterhelt,也译作奥斯特黑尔特)是一位训练有素的德国化学家,跟随吕南(Feodor Lynen,1964年诺贝尔生理学或医学奖获得者)获得博士学位,由于学术休假的缘故来到美国;布劳罗克(Allen Blaurock)是一位刚毕业的英国生物物理学家,原来在国王学院威尔金斯(Maurice Wilkin,1962年诺贝尔生理学或医学奖获得者)实验室从事X射线衍射研究 [6]。 厄斯特黑尔特和布劳罗克借助X射线衍射技术观测细菌细胞膜紫色组分时,意外观察到一种清晰的衍射图像,说明其含有一种高度有序的生物分子。厄斯特黑尔特还观察到紫色物质在添加有机溶剂后颜色变黄。此时,布劳罗克回忆起在国王学院研究青蛙视网膜过程中也观察到类似的颜色变化,这一提示促使厄斯特黑尔特大胆假设该物质可能也是视紫红质。为证实这一假说,首先需解答的问题是其含不含视黄醛。 从细菌中寻找视黄醛这一近乎疯狂的想法促使厄斯特黑尔特立即启动验证工作。借鉴青蛙视紫红质的研究方法,厄斯特黑尔特发现细菌的紫色物质具有类似的物理和化学性质,并且还含有视黄醛。基于这些特性,厄斯特黑尔特和斯托克尼乌斯于1971年确定这是一种新型视紫红质,根据来源将其命名为细菌视紫红质(bacteriorhodopsin,BR)(图3)[7]。图3 细菌视紫红质 斯托克尼乌斯经过进一步研究后发现,细菌视紫红质是一种光依赖的离子通道。更大的突破在1975年,英国剑桥大学分子生物学实验室的亨德森(Richard Henderson,2017年诺贝尔化学奖获得者)解析了细菌视紫红质的三维结构,从而对视紫红质的作用有了更深入的认识。 1972年,重组DNA技术的发明为生命科学带来一场革命,同时也积极推动了细菌视紫红质研究的发展。研究人员将细菌视紫红质转入宿主细胞,结果发现光照可引起氢离子外流,从而证明其为一种光控的氢离子通道。1977年,研究人员在细菌中又发现另一种视紫红质——卤视紫红质(halorhodopsin),后续证明其介导氯离子细胞内流 [8]。 一系列的研究表明,即使简单如细菌这样的单细胞生物也存在 “视觉系统”,标志着一个新领域——低等生物视紫红质的诞生,从而促使科学家去寻找其他视紫红质。 藻类趋光 班贝格(Ernst Bamberg)是一位德国生物物理学家,从20世纪70年代开始研究细菌视紫红质的生物学功能,并利用体外实验证实BR是一种光激活氢离子通道。随着基因工程技术的发展和完善,生命科学的研究模式发生根本性改变,膜蛋白研究不再需要繁琐困难的提取过程,只需将外源基因在特定宿主细胞表达即可。 90年代,已加入德国法兰克福马普研究所的班贝格与从美国回来不久的德国电生理学家纳格尔(Georg Nagel)决定合作,共同研究细菌视紫红质在完整细胞中的生物功能。1995年,他们合作将细菌视紫红质基因成功转入非洲爪蟾卵母细胞,进一步精确证实光激活质子泵的电压依赖性 [9]。2001年,他们进一步在非洲爪蟾卵母细胞中证实卤视紫红质是一种氯离子通道(图4)。班贝格与纳格尔的合作一方面建立了视紫红质功能研究平台,另一方面也初显光遗传学雏形,即将外源视紫红质在靶细胞表达。图4 藻类视紫红质 19世纪,绿藻(Chlamydomonas)等藻类就被发现具有向光性和受光调控的特性,但对这些现象背后的原因知之甚少。直到20世纪80年代,大量事实表明藻类也长 “眼睛”,即细胞膜存在感光物质,称为 “光受体”。 80年代初,德国生物物理学家赫格曼(Peter Hegemann)在博士就读期间就决定研究光受体。赫格曼和学生以莱茵衣藻(Chlamydomonas reinhardtii)为材料,借助电生理实验表明光的确可诱导藻类细胞产生电流 [10]。赫格曼决定采用生物化学方法将光受体蛋白纯化后研究其性质。遗憾的是,十余年辛苦努力最终以失败告终。根本原因在于光受体是一种膜蛋白,含量低、稳定性差且异质性高,这些都是蛋白质纯化的大忌。赫格曼不得不转换研究思路来解决这个难题。 2001年,绿藻基因组测序的完成为问题的解决带来转机。赫格曼通过全面搜索和比对绿藻基因组数据库,从中发现两个候选基因与细菌视紫红质具有较高同源性。 为加快研究进程,赫格曼决定寻求合作。他在获悉纳格尔的研究工作后,积极沟通并与其达成合作协议。赫格曼小组负责克隆两种绿藻视紫红质候选基因,并将其送给纳格尔开展功能研究;纳格尔则将基因转入人肾胚细胞HEK293并实现正确表达。功能研究表明,它们的活性均受光调控,并且介导阳离子如钠离子、钙离子等的摄入(图4),因此将其分别命名为通道视紫红质(channelrhodpsin,ChR)1和2 [11-12]。与ChR1相比,ChR2光激活时间更短,且离子通透性更强,因此更适合于研究。更为重要的是,赫格曼还推测这些通道视紫红质不仅可在普通细胞表达,而且也可在神经元中表达并影响电生理活性。这一论断直接催生了光遗传学。 至此,研究人员已经鉴定出三类光控视紫红质,分别是细菌视紫红质(介导氢离子输出)、通道视紫红质(介导阳离子输入)和卤视紫红质(介导氯离子输入)。它们在神经功能研究方面具有何种应用价值呢?这要从神经兴奋说起。 神经兴奋 大脑是神经系统的中枢,是机体最复杂和最神秘的器官。知觉、运动、兴奋、情感、语言、学习和记忆等过程基本都在大脑特异区域完成。大脑由上百亿神经元(亦称神经细胞)构成,这些神经元之间通过特定方式实现彼此间交流,以达到协调控制机体各种行为的目的。神经元活性受电信号影响。 正常情况下,神经元细胞膜内外两侧阴阳离子分布不均匀(这种现象称为极性):膜内钾离子浓度远高于膜外,膜外钠离子浓度又远高于膜内,最终形成一个外正内负的状态。未受刺激时(静息状态),规定膜外电位为0,则哺乳动物神经元膜内电位为负值,约-70mV,称为静息电位;外界刺激可导致离子通道打开,由于离子移动而引起膜两侧离子浓度发生变化,电位差也随之改变。如果-70mV向0方向改变,则称去极化(电位为0意味着内外无离子浓度差距,极化消失);相反,-70mV向更大负值变化则称超极化(意味着离子分布不均匀加剧)。 一般而言,去极化伴随神经元激活,而超极化则意味着神经元抑制,因此通过改变神经元细胞膜内外离子分布可实现精准控制神经元活性的目的。 1979年,美国索尔克研究所著名科学家、DNA双螺旋提出者之一克里克(Francis Crick,1962年诺贝尔生理学或医学奖获得者)在《科学美国人》发表一篇文章 [13],对脑科学未来的发展进行展望。古典神经生物学家通常采用电极刺激大脑特定区域神经元的方式来影响行为,克里克认为这种方法破坏性大且精确性不高,比如无法准确区分不同的神经元,这些因素导致所得结果准确性差。 为此,克里克提出应开发一种精确控制神经元活性的方法,允许研究根据需要只对特定神经元打开或关闭,同时不影响非相关神经元。具有分子生物学背景的克里克进一步指出可以对神经元细胞进行遗传改造,从而使它们可对外界信号(如光刺激)产生精准性应答。这一理念建立了光遗传学的思想雏形。 尽管光控细胞行为的理念已经提出,但真正实现则需要有可行的工具。2002年,这一想法终于首次变为现实。 神经光控 米森伯克(Gero Andreas Miesenböck)是一位奥地利神经科学家,跟随鲁斯曼(James Edward Rothman,2013年诺贝尔生理学或医学奖获得者)开展博士后研究。他主要借助荧光系统来检测神经元内囊泡运输,因而对光产生浓厚兴趣。 1999年,米森伯克建立自己的实验室,开始独立的科研生涯,目光锁定神经生物学。米森伯克对整个神经生物学领域一知半解,可以说有点 “门外汉” 的味道,但是恰恰这个因素反而使他在光遗传学方面首先完成突破,因为他不会受主流观点所羁绊。生命科学研究的基本策略在于首先控制某种因素(干预),然后依据结果确定因果关系,如敲除特定基因后动物出现某种表型异常(如个子变矮),据此可认为该基因参与了某个过程(如肢体发育)。 然而,由于神经系统自身的复杂性,长期以来神经生物学家主要依赖形态观察,而缺乏更多有效的干预手段。米森伯克想改变这一现状,他完全从一个生物学家的视点来看待这个问题,因此想为神经元安装一套感光系统(遗传学操作),然后借助光照(光学)来达到控制神经元的目的 [14]。为尽快实现这一目标,米森伯克邀请鲁斯曼的另一位学生、自己的师弟泽梅尔曼(Boris Valery Zemelman)加入团队,启动光控神经元活性的研究计划(图5)。
  • 未来诺奖或出自他们!19位杰出华人青年科学家获2019年美国斯隆研究奖
    p style=" text-indent: 2em text-align: justify " 日前,美国艾尔弗· 斯隆基金会 (The Alfred P.Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,共有126位杰出青年科学家获奖。值得关注的是,今年华人学者表现依然十分出色,共有19位华人学者获奖,其中大多数华人学者都曾在中国高校接受本科教育。 /p p style=" text-indent: 2em text-align: justify " 被誉为“诺奖风向标”的科技大奖 /p p style=" text-indent: 2em text-align: justify " 斯隆研究奖素有“诺奖风向标”的美誉,旨在奖励职业生涯早期的杰出青年学者。本届奖项获得者分属化学、计算和进化分子生物学、计算机科学、经济学、数学、神经科学、海洋科学和物理学等8个领域。 /p p style=" text-indent: 2em text-align: justify " 此次斯隆研究奖获奖的126名青年学者,代表目前最有前途的一批青年科学研究员。此次评审专家委员会根据他们独立研究的质量、创造力、潜力选出各研究领域的明日之星,希望通过斯隆基金会资助这些职业生涯早期的青年学者成为未来的学术领袖。 /p p style=" text-indent: 2em text-align: justify " 作为“诺奖风向标”,斯隆研究奖自1955年设立每年颁发一次。迄今为止,已有47位该奖项获奖人获得了“诺贝尔奖”,17位获奖人获得了“数学菲尔兹奖”,69位获奖人获得“美国国家科学奖章”,18位获得“约翰· 贝茨· 克拉克奖”。 /p p style=" text-indent: 2em text-align: left " 美国多所名校表现出色 /p p style=" text-indent: 2em text-align: left " 2019年斯隆研究奖结果揭晓后,美国各大顶级名校也第一时间在主页上发布了新闻,报道本校获奖教师和校友的详细情况。 /p p style=" text-indent: 2em text-align: justify " 今年普林斯顿大学教师表现出色,共有10人斩获2019年斯隆奖,涵盖了化学、计算和进化分子生物学、计算机科学、经济学、数学、神经科学、海洋科学和物理学等全部学科领域。 /p p /p p style=" text-indent: 2em text-align: justify " (普林斯顿大学官网) /p p style=" text-indent: 2em text-align: justify " 麻省理工学院共有4位教师斩获这一重量级奖项,分别是Nikhil Agarwal, Daniel Harlow, Andrew Lawrie, and Yufei Zhao,涵盖了经济学、数学等领域。 /p p /p p style=" text-indent: 2em text-align: justify " (麻省理工学院官网) /p p style=" text-indent: 2em text-align: justify " 19位华人青年科学家获奖 /p p style=" text-indent: 2em text-align: justify " 今年华人学者表现依然十分出色,共有19位华人学者获奖,占比达到15%。19名青年科学家中,大多数都曾在中国顶尖高校接受本科教育或硕士研究生教育,这项数据一定程度上表明中国顶尖高校的本科教育质量在国际上也具有较强的竞争力。 /p p style=" text-indent: 2em text-align: left " 19位华人青年科学家中来自北大的校友最多,共有9人,遥遥领先其他高校。特别是在化学领域,北大共有5名本科校友获奖。清华大学今年共有3名校友获奖。此外,华中科技大学、南京大学、中国海洋大学各有1名校友获奖。 /p p style=" text-indent: 2em text-align: justify " 19位华人青年科学家包含众多顶级大神,例如美国威斯康星大学麦迪逊分校助理王博潼,2002年获国际数学奥林匹克金牌(满分),2006年获北京大学学士,2012年获普渡大学博士。2016年与国际著名数学家 June Huh 教授证明了 Dowling 和 Wilson 在1975年提出的一个著名的组合学猜想,该进展次年发表在国际顶尖数学杂志 Acta Math 上。 /p p style=" text-indent: 2em text-align: justify " 现任杜克大学助理教授的鬲融,曾获第16届国际信息学奥赛金牌,2004年获保送清华大学,就读于堪称天才集中营的“清华姚班”。在清华大学就读期间,获得清华大学特等奖学金。清华毕业后,前往美国留学。 /p p style=" text-indent: 2em text-align: justify " 华人学者的名单统计如下: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201902/uepic/de60373a-2dd8-446d-9e08-d661f414acdb.jpg" style=" width: 633px height: 711px " title=" 屏幕快照 2019-02-26 上午6.13.55.png" width=" 633" height=" 711" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201902/uepic/8b3cf0b7-a441-44af-b8c9-b35ab78641a5.jpg" style=" width: 631px height: 643px " title=" 屏幕快照 2019-02-26 上午6.14.07.png" width=" 631" height=" 643" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201902/uepic/016000ab-877c-4187-820c-31db8203dc3c.jpg" style=" width: 619px height: 378px " title=" 屏幕快照 2019-02-26 上午6.14.18.png" width=" 619" height=" 378" / /p p style=" text-indent: 2em text-align: left " 部分青年科学家的个人简历如下: /p p style=" text-indent: 2em text-align: left " Xiaofeng Feng—中佛罗里达大学 /p p /p p style=" text-indent: 2em text-align: left " 现任中佛罗里达大学物理系助理教授。 /p p style=" text-indent: 2em text-align: justify " 2003-2007年本科就读于北京大学物理系,2007-2009年硕士就读于清华大学物理系,2009-2013年,加州大学伯克利分校攻读博士学位。2014-2016年,在斯坦佛大学从事博士后研究工作。2016年至今,在中佛罗里达大学任助理教授。 /p p style=" text-indent: 2em text-align: justify " 现在主要从事用于能量转换的纳米材料研究。 /p p style=" text-indent: 2em text-align: justify " Yongjie Hu—加州大学洛杉矶分校 /p p /p p style=" text-indent: 2em text-align: justify " Yongjie Hu是加州大学洛杉矶分校(UCLA)机械与航空航天工程助理教授。他获得哈佛大学博士学位,随后在麻省理工学院(MIT)从事博士后研究工作。他于2014年11月加入加州大学洛杉矶分校。胡先生获得2019年Alfred P. Sloan研究奖学金,2018年加州大学洛杉矶分校教师职业发展奖,2018年NSF职业奖,2017年AFOSR青年研究员奖和2016年PR PRF博士新研究员奖。 /p p style=" text-indent: 2em text-align: justify " Song Lin(林松)——康奈尔大学 /p p /p p style=" text-indent: 2em text-align: justify " 北京大学化学学士,2008;哈佛大学化学硕士,2010年;哈佛大学化学博士,2013年;加州大学伯克利分校化学系博士后研究员,2013-2016。目前主要从事有机化学,催化,有机材料方面的研究工作。 /p p style=" text-indent: 2em text-align: justify " Hailiang Wang(王海梁)—美国耶鲁大学 /p p /p p style=" text-indent: 2em text-align: justify " 王海梁是美国耶鲁大学化学系助理教授。他2007年获得北京大学化学系学士学位,2012年获得美国斯坦福大学化学博士学位。随后,在加州大学伯克利分校化学系从事博士后研究工作。2014年,加入耶鲁大学化学系。 /p p style=" text-indent: 2em text-align: justify " Yan Xia(夏岩)—斯坦福大学 /p p /p p style=" text-indent: 2em text-align: justify " Yan Xia(夏岩)2002年在北京大学获得本科学位,2005年在麦克马斯特大学获得硕士学位。他继续在加州理工学院接受教育并于2010年获得博士学位。在获得博士学位后,他在麻省理工学院的博士后培训之前在陶氏化学核心研发部门工作了1.5年。他于2013年夏天加入斯坦福大学的化学系,建立了他的研究小组,并继续对大分子合成和有机材料的长期兴趣。近年来,他获得了特曼奖学金(2014年),ARO青年研究员奖(2015年),3M非终身教职员奖(2016年),NSF职业奖(2016年), Thieme化学期刊奖(2017年)和Cottrell学者奖( 2017年)。 /p p style=" text-indent: 2em text-align: justify " 陈梦洁—芝加哥大学 /p p /p p style=" text-indent: 2em text-align: justify " 陈梦洁,2005年考入华中科技大学生命科学与技术学院,就读于生物技术系,2009年毕业并获得学士学位。本科就读期间,成绩十分优秀,曾2次获得国家奖学金。同时,对科研表现出浓厚的兴趣和经常泡实验室乐此不疲做实验的学习状态。2009年,陈梦洁获得国家基金委耶鲁世界奖学金项目继续深造;2014年获得耶鲁大学计算生物学和生物信息学博士学位。同年,她获得北卡罗来纳大学教堂山分校的教职。 /p p style=" text-indent: 2em text-align: justify " 据悉,陈梦洁于2016年加入芝加哥大学,现为芝加哥大学人类遗传学系助理教授、芝加哥大学医学部遗传医学科助理教授。至此,她已在Nature communications、Genome biology、Bioinformatics、Nucleic Acids Research等国际期刊发表33篇高水平论文。 /p p style=" text-indent: 2em text-align: justify " 鬲融—杜克大学 /p p /p p style=" text-indent: 2em text-align: justify " 现任杜克大学助理教授的鬲融,曾获第16届国际信息学奥赛金牌,2004年获保送清华大学,就读于堪称天才其中营的“清华姚班”,获得清华大学特等教学金。清华毕业后,前往美国留学。 /p p style=" text-indent: 2em text-align: justify " Botong Wang(王博潼)——威斯康星大学麦迪逊分校 /p p /p p style=" text-indent: 2em text-align: justify " 北京大学理学学士,2002-2006 ;普渡大学博士,2006-2012;2012-2015圣母大学客座助理教授;博士后,KU Leuven,2015年秋季;2016-2017威斯康星大学麦迪逊分校访问助理教授;2017年 - 威斯康星大学麦迪逊分校助理教授。 /p p style=" text-indent: 2em text-align: justify " 值得一提的是,Botong Wang(王博潼)曾是2002年国际奥数金奖得主。 /p p style=" text-indent: 2em text-align: justify " Meng Cheng—耶鲁大学 /p p /p p style=" text-indent: 2em text-align: justify " Meng Cheng现任耶鲁大学物理系助理教授。2004-2008年曾就读南京大学物理系。2008-2013年,在马里兰大学物理系攻读博士学位。2013年-2016年,在微软公司从事博士后研究工作。2017年7月,加入耶鲁大学,任物理系助理教授。 /p p br style=" text-indent: 2em text-align: left " / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制