当前位置: 仪器信息网 > 行业主题 > >

神经干细胞

仪器信息网神经干细胞专题为您整合神经干细胞相关的最新文章,在神经干细胞专题,您不仅可以免费浏览神经干细胞的资讯, 同时您还可以浏览神经干细胞的相关资料、解决方案,参与社区神经干细胞话题讨论。

神经干细胞相关的资讯

  • 遗传发育所揭示成体神经干细胞促进其子代新生神经元发育的调控机制
    p   1978年,Schofield首次提出干细胞的微环境定义,并发现局部微环境对造血干细胞干性的维持是必要的。从此,越来越多的研究定义了各种组织的干细胞微环境。然而,干细胞本身是否能作为微环境因素进而影响其子代细胞的发育尚未完全被揭示。在成体神经发生微环境中,成体神经干/前体细胞能够终生产生功能性神经元,参与学习记忆等。成体神经发生过程中,新生神经元能够释放反馈抑制信号来调控神经干细胞的增殖分化以及命运决定。然而,神经干细胞是否能够调控新生神经元的发育尚不清楚。 /p p   中国科学院遗传与发育生物学研究所郭伟翔研究组,通过细胞清除,反转录病毒介导的单细胞标记以及信号通路调节等实验手段,发现神经干细胞可以持续提供Pleiotrophin (PTN) 配体促进其子代新生神经元发育。若没有此前馈作用,新生神经元树突会发育异常。进一步研究发现,PTN主要通过作用新生神经元上的ALK受体,从而激活AKT信号通路来促进海马新生神经元的发育。 /p p   随着年龄的衰老,神经干细胞的数量逐渐减少,并且新生神经元也随之呈现出发育的异常。更为重要的是,该研究发现PTN的表达水平以及其介导的AKT信号通路的活性都随着年龄的增加而下降。然而,通过外援供给PTN或者激活AKT信号能够改善衰老所导致的新生神经元发育的缺陷。这一结果提示在成体神经发生微环境中,缺乏神经干细胞源性PTN因子可能是导致认知能力随着衰老的增长而衰退的原因之一。 /p p   该成果于11月27日在线发表于神经科学期刊Neuron上。郭伟翔组博士研究生汤常永为该论文第一作者,郭伟翔为通讯作者。该研究得到遗传发育所研究员吴青峰在生物信息学分析以及实验设计上的帮助,军事医学科学院崔亚雄在脑组织切片染色上给予了很大帮助。该研究得到中科院先导、国家自然科学基金委和中组部青年千人计划的资助。 /p p 原文链接: /p p a title=" https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" href=" https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" target=" _blank" https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub /a /p p style=" text-align: center " img title=" W020181127437669067284.jpg" alt=" W020181127437669067284.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/3fff90be-98cf-4b57-8cc3-b274f31e0e42.jpg" / /p p style=" text-align: center "   神经干细胞分泌PTN促进其子代新生神经元发育 /p p & nbsp /p
  • 神奇的“万-能细胞”——干细胞
    人体内有各种各样各司其职的细胞,白细胞、淋巴细胞保护我们免受细菌及病毒的侵害,红细胞携带氧气,血小板可以凝血… … 除了这些,人体内还有一种细胞功能更复杂,那就是有“万-能细胞”之称的干细胞。要知道,人体内的细胞都是有寿命的,例如红细胞一般有120天左右的寿命,120天后全新的红细胞就会代替那些老去的红细胞。那么,新的红细胞从何而来?其实,新的红细胞就是由干细胞中的造血干细胞分化而来。这就不得不提干细胞的五个特征:一是自我更新,指细胞分裂增殖的过程,产生的子代细胞仍维持亲代细胞的原始特性,比如,肝移植供者切除3/4的肝脏,可以在两周内完全恢复成原样。二是克隆源性,即单个细胞具有创造更多相同细胞的能力,一个细胞能复制成两个完全一样的细胞。三是高度分化潜能,即能向不同的组织分化。例如我们临床上已经成熟应用的白血病治疗方法——造血干细胞移植,其实就是利用了造血干细胞的分化功能,相当于更换了正常的干细胞。四是可塑性,指干细胞具有分化为其他类型组织细胞的能力。例如骨髓造血干细胞可以在适合的环境下分化为和脑组织的神经同类型的神经细胞。五是生物学特征,干细胞要想维持自我更新和分化的特性,需要特定的干细胞微环境,在不同的微环境中,干细胞可以发挥不同的能力。干细胞还是个大家族,根据不同的标准,可有多种分类。例如,根据来源不同,干细胞可分为胚胎干细胞和成体干细胞两大类。胚胎干细胞主要来自囊胚的内细胞团,是一种高度未分化细胞;成体干细胞是对胎儿、儿童和成人组织中存在的多潜能干细胞的统称。相比于胚胎干细胞,成体干细胞来源较广,相对容易获取,并且源于患者自身的成体干细胞在应用时不存在组织相容性的问题,可避免移植排异反应和使用免疫抑制剂。按照发育潜能,干细胞又可分为全能干细胞、多能干细胞、单能干细胞三大类。全能干细胞是指能够发育成具有各种组织器官的完整个体潜能的细胞,如受精卵;多能干细胞虽然能分化出多种细胞组织,但并不能发育成完整的个体,如胚胎干细胞;单能干细胞是指只能向单一方向分化、产生一种或几种密切相关类型的细胞,如造血干细胞、神经干细胞、心脏干细胞等。当前,干细胞研究已经成为医学领域和生物医学领域的热点之一。经过多年的研究积累,我国在干细胞研究领域也已取得了诸多成就,如利用干细胞开展脊髓损伤修复已初见成效。相信不久的将来,随着干细胞理论的日臻完善和干细胞技术的不断发展,“万能细胞”将为人类健康做出更多贡献。
  • Molecular Devices 高内涵成像分析技术在干细胞研究中的应用
    前言 随着人类对生物学领域深入探索和科技创新的不断发展,目前越来越多的研究院所和生物制药公司将细胞水平的功能性研究、模型建立及药物筛选做为一个重要的研究/研发手段。而高内涵成像分析系统就为这种细胞水平的研究提供了集高分辨率、自动化、智能化及海量信息为一体的新的检测平台。干细胞(stem cells)是一类具有自我更新、高度增殖和多向分化潜能的细胞群体干细胞。正是干细胞的这种特性,为细胞生物学的研究提供了更有力的永生化的稳定细胞株。干细胞水平的研究比在普通的细胞株提供了更接近临床相关性的生理学信息;并且比原代细胞相比更容易获得,且具有更好的实验重复性。 干细胞的研究与其他细胞水平的研究有一些相似之处,但其关键的不同点在于在干细胞的研究过程中干细胞的分化。干细胞水平的实验比传统的单线性/单参数的实验具有更多的检测目标,包括其分化能力、分化过程、分化类型及不同类型的量化分析统计等。高内涵成像分析系统以其自身的高分辨率、多参数及智能化分析的特性,恰如其分的满足了干细胞研究的以上需求,而高内涵成像系统的自动化和高通量的特点又以海量的有效数据加速了该研究的过程。 利用高内涵成像分析系统可完成干细胞研究的自动化图像获取及多参数分析,目前常用的全能性干细胞分化研究主要有三类:造血细胞、神经细胞和诱导型多能干细胞(induced pluripotent stem cell, iPS)来源的心肌细胞(图1)。图1:全能干细胞分化层次图应用实例1. 神经祖细胞向神经球分化研究冷藏保存的神经祖细胞(StemCell Technologies, mouse Cells)培养在6孔板内,在培养基中加入不同的生长因子,培养6天后通过ImageXpress Micro对每孔内神经球进行无标记相差成像,并对的神经球的面积进行自动化定量分析。结果如下(图2): 图2:神经球无标记检测及分析(ImageXpress Micro 20X 相差物镜)2. 神经干细胞向神经元及胶质细胞分化研究神经干细胞在加有EGF(表皮生长因子)和bFGF(成纤维细胞生长因子)的培养基中培养1-2天,然后在分化培养基中培养12-14天。加入EPO(促红细胞生成素)后,检测为神经球向神经元及胶质细胞的分化情况。ImageXpress Micro进行自动化图像获取,运用细胞分类(Cell Scoring)模块进行神经元/胶质细胞阳性率分析,运用神经生长(Neurite Outgrowth)模块进行神经元突触长度及数量分析。结果如下(图3):图3:神经干细胞分化检测及分析。图(上)表示加入(左)及不加(右)神经细胞的分化图片;图(下)表示不同条件下神经元细胞的阳性率(左)及神经元突出的长度(右)。(ImageXpress Micro 20X物镜)3. 造血祖细胞向骨髓细胞及血细胞分化研究人源CD34+造血祖细胞培养在96孔板中,加入多种不同的造血细胞因子组合(SCF+Flk3+TPO/SCF+IL-3+GM-SCF)后,通过检测CD45和CD15两种标记物在细胞内的表达量,统计分析不同造血细胞因子组合对造血祖细胞的自我更新能力及骨髓细胞分化能力的变化。结果如下(图4):图4:检测细胞内CD45和CD15的阳性率,评价造血祖细胞在不同条件下的自我更新能力及定向分化能力4. 诱导型多能干细胞(induced pluripotent stem cell, iPS)向心肌细胞分化研究iPS细胞(Celprogen)在专用培养基中培养3-7天,同时检测7种不同标志物的表达量,以判断心肌细胞分化及成熟的状态。下图(图5)中显示Oct4(干细胞标记物)和a-Actinin(心肌细胞标志物)在细胞内的表达情况:图5:iPS细胞分化情况(ImageXpress Micro 20X 物镜)5. iPS细胞来源的心肌细胞跳动实验临床前安全性评价是药物研发过程中非常重要的环节,早期的心脏毒理学研究将会大大降低在进入临床研究阶段后因药物毒性带来的投入风险。iPS细胞来源的心肌细胞跳动实验为药物心脏毒性评价提供了一个高效的体外细胞水平的检测方法。心脏跳动可通过传统电生理的方法来检测,用高内涵成像分析系统来进行检测及分析是一个全新的挑战。Molecular Devices公司最近一代的高内涵成像分析系统ImageXpress Micro XL以其最新一代的检测器sCMOS(采样频率可达100pfs)和自定义模块分析功能,完全可出色完成心肌细胞跳动实验的快速检测及分析要求。iPS细胞来源的心肌细胞单层培养在96或384孔板中,心肌细胞会自发跳动同步收缩。加入Calcein-AM染料孵育10min后,撤掉培养基,再加入不同浓度的化合物,置于ImageXpress Micro XL活细胞培养装置中,检测心肌细胞跳动频率的变化。结果如下(图6):图6:iPS细胞来源的心肌细胞跳动实验(ImageXpress Micro XL 20X 物镜)总结 干细胞研究作为一种复杂的细胞水平检测模型,需对干细胞的生长、增殖、分化能力、分化类型及状态等多种参数进行检测及定量分析,为疾病治疗研究及药物研发提供了更有效的研究手段。Molecular Devices公司的ImageXpress高内涵系统提供了集高分辨率、自动化、智能化及海量信息为一体高内涵成像分析系统完全解决方案,可满足以上研究需求(图7)。图7:Molecular Devices公司针对干细胞研究的高内涵成像系统完全解决方案
  • 第二届中国干细胞学会年会日程安排
    大会主要内容及日程安排 日期:11月10日(星期四) 地点:北京国际会议中心 时间 演讲人 机构 地点 08:00- 17:00 参会代表报到 3 楼大堂 15:00- 18:00 张贴墙报 墙报展示区 大会主题报告 主席:李凌松 14:00-14:15 李凌松致欢迎词 裴刚会议祝词 徐国彤学会工作总结与展望 14:20-14:45 Hans Keirstead 美国加州大学 14:45-15:10 李凌衡 美国斯托瓦斯研究所 15:10-15:35 徐国良 中国科学院上海生化与细胞研究所 15:35-16:00 程临钊 美国Johns Hopkins医学院 16:00-16:25 丁胜 美国UCSF 16:25-16:30 大会休息 大会报告:胚胎干细胞-iPS细胞特性 主席:周琪 裴端卿 16:30-16:50 周琪 中国科学院动物所 16:50-17:10 裴端卿 广州生物医药与健康研究院 17:10-17:30 高绍荣 北京生命科学研究所 17:30-17:50 邓宏魁 北京大学生命科学院 17:50-18:10 金颖 中国科学院上海健康科学研究所 18:10-18:30 肖磊 浙江大学动物科技学院 19:00 大会全体报告人晚宴:万龙州海鲜酒楼幸福厅(北四环东路中国五矿大厦一楼 电话64989898) 日期:11月11日(星期五) 地点:北京国际会议中心 时间 演讲人 机构 地点 大会报告:干细胞与生殖医学 主席:乔杰 姚元庆 9:00-9:20 宋尔卫 中山大学附属第二医院 9:20-9:40 乔杰 北京大学生殖医学中心 9:40-10:00 冯立新 上海交通大学医学院医学研究院 10:00-10:20 姚元庆 解放军301医院妇产科 10:20-10:30 大会休息 10:30-10:50 卞修武 第二军医大学病理学研究所 10:50-11:10 刘厚奇 第二军医大学 11:10-11:30 洪登礼 上海交通大学医学院 11:30-11:50 刘林 南开大学生命科学院 11:50-12:10 黄建 浙江大学医学院 大会报告:成体干细胞及分子调控 主席:程涛 时玉舫 13:30-13:50 汤其群 复旦大学医学院 13:50-14:10 时玉舫 中国科学院上海健康所 14:10-14:30 程涛 中国医学科学院血液病研究所 14:30-14:50 项鹏 中山大学干细胞与组织工程中心 14:50-15:10 赵春华 中国医学科学院基础医学研究所 15:10-15:20 大会休息 大会报告:干细胞分化与疾病 主席:徐国彤 安松柱 15:20-15:40 徐国彤 同济大学医学院 15:40-16:00 刘祖国 厦门大学医学院 16:00-16:20 洪天配 北京大学第三医院内分泌科 16:20-16:40 马跃 中国科学院生物物理所 16:40-17:00 王媛 上海华东师范大学 17:00-17:20 安松柱 广州源生医药公司 17:20-17:40 机动安排 会后全体参会人员自助餐宴会,时间待通知 日期:11月12日(星期六) 地点:北京国际会议中心 时间 演讲人 机构 地点 大会报告:干细胞组织工程与疾病模型 主席:裴雪涛 曾凡一 9:00-9:20 戴建武 中国科学院遗传发育所 9:20-9:40 裴雪涛 军事医学科学院 9:40-10:00 曾凡一 上海交通大学医学院 10:00-10:20 季维智 中国科学院昆明研究所 10:20-10:30 大会休息 大会报告:干细胞与表观遗传调控 主席:朱大海 陈德桂 10:30-10:50 孙毅 同济大学生命科学与技术学院 10:50-11:10 朱大海 中国协和医科大学 11:10-11:30 陈德桂 中科院上海生化与细胞生物学研究所 11:30-11:50 林戈 中南大学湘雅医学院生殖与干细胞研究所 11:50-12:10 康九红 同济大学生命科学与技术学院 大会报告:干细胞组织工程与骨、软骨疾病 主席:敖英芳 卫小春 13:30-13:50 敖英方 北京大学第三医院 13:50-14:10 卫小春 山西医科大学第二附属医院 14:10-14:30 欧阳宏伟 浙江大学医学院 14:30-14:50 张智勇 第四军医大学 14:50-15:10 大会休息 大会报告:神经干细胞与神经疾病 主席:李华顺 王金环 15:10-15:20 朱剑虹 复旦大学华山医院神经外科 15:20-15:40 景乃禾 中国科学院上海生化细胞研究所 15:40-16:00 王任直 协和医院神经外科 16:00-16:20 徐荣祥 北京军区总医院神经外科 16:20-16:40 章小青 同济大学医学院 16:40-17:00 李华顺 四川大学发育干细胞研究所 17:00-17:20 机动安排
  • 2011干细胞技术临床转化应用讲座与培训
    2010年6月3日-6月5日 (技术培训6月6日-6月10日) 上海   会议简介   干细胞技术已成为自然科学中最为引人注目的领域,其理论的日臻完善和技术的迅猛发展必将在疾病治疗、动物育种和生物医药等领域产生划时代的成果,将是对传统医疗手段和医疗观念的一场重大革命。干细胞在医学应用上有着光辉的前景,国内外政府,企业及相关单位也将相关产业的发展提高到了战略的高度。   2010年10月,11月美国FDA分别批准杰龙生物,先进生物运用干细胞开展临床试验,可以预见干细胞在未来的几年里将是充满机遇与竞争的。   我国干细胞研究目前处于空前的好时期。党和国家领导人多次批复关注干细胞发展,并且将干细胞列为重大研究计划的专项。我国干细胞基础研究的成果及研究量均已受到世界瞩目,近年来我国干细胞研究进展迅速,已成为干细胞研究大国,并在许多领域几乎与世界同步,有的甚至走在了世界的前列。通过加快干细胞治疗技术临床转化及应用对提升我国生物医药领域持续创新能力,提高人民健康水平等具有重要的意义。   干细胞是基础研究与临床联系十分紧密的领域,尤其是癌症干细胞,骨髓间充质干细胞,以及各种组织干细胞(如神经干细胞,心脏干细胞,肝脏干细胞,胰腺干细胞等)发现,为人类解决肿瘤,自身免疫性疾病,退行性疾病,损伤与修复提供关键性的治疗手段。为此,特举办干细胞技术的临床转化应用,推动干细胞的基础研究与临床结合,帮助中国临床医生与科研工作者寻觅合作机会,推动干细胞在临床中的应用与发展。   “2011干细胞技术临床转化应用讲座”将继续秉承“高水平,实用性,有效性”的原则,加强交流,提高水平,为干细胞科研事业及临床应用领域的高科技人才培养提供最有效的支持和交流平台,技术讲座将邀请国内外干细胞领域的顶级科研和临床研究专家,分享干细胞技术进展,临床研究技术及临床标准探索,内容涉及干细胞培养/分化/重排/调控/临床研究实例等各项技术,议题包括:干细胞维持和分化 、干细胞重编程研究、发育与模式动物研究、干细胞移植和组织工程、胚胎与成体干细胞的应用、造血干细胞在疾病治疗中的应用、干细胞与药物研发等。   为满足广大学员进一步了解临床级人类胚胎干细胞建系标准和掌握扎实的胚胎干细胞培养基本技术,同期还在同济大学医学院开展“胚胎干细胞技术培训班”。   为此,我们诚挚的邀请您参加本次讲座及培训!   2011干细胞技术临床转化应用讲座组委会   会议时间:2011年6月3日~6月5日 地点:同济大学逸夫楼 会议规模:400人   培训时间:2011年6月6日-6月10日 地点:同济大学医学院   主办单位   华东干细胞库   中国细胞生物学会干细胞学分会   中科院干细胞库   北方干细胞库   南方干细胞库   演讲嘉宾   徐国彤 同济大学医学院   金 颖 中国科学院干细胞生物学重点实验室   孙 毅 同济大学医学院   周琪 中科院动物研究所   肖 磊 浙江大学   康九红 同济大学生命科学与技术学院   曹谊林 组织工程国家工程研究中心   钱其军 第二军医大学东方肝胆外科医院   曾凡一 上海交通大学医学院   赵春华 中国医学科学院基础医学研究所   邓宏魁 北京大学生命科学院   卫立新 第二军医大学   沈晓骅 清华大学医学院   联系方式:   组委会秘书长:   路建伟博士   E-mail:jwlu33@gmail.com   Tel: 86(21)65984257   报名咨询:   张依寒 Yihan.zhang   E-mail:Yihan.zhang@bioon.com   Tel: 86(21)54481353  Mt: 13681810839
  • 冉冉升起的明日之星——干细胞来源细胞外囊泡篇
    细胞外囊泡(extracellular vesicles, EVs)/外泌体(exosomes)是几乎所有细胞在其生命活动中分泌的一种具有生物膜结构的纳米尺度的小囊泡。作为细胞间通讯的一种途径,广泛参与并调控着生命机体的多种生理和病理过程(图1)。外泌体独特的物理和生化性质,赋予了这些小囊泡诸多特性,如低免疫原性、良好的生物相容性以及高效的生物屏障穿透能力,使它们在疾病治疗领域备受关注。图1. 外泌体生物发生和分泌示意图来自美国化学协会的学者检索并分析了CAS数据库中EVs在治疗和诊断领域中应用研究的发表情况,统计结果显示干细胞来源EVs(stem cells derived EV, SC-EVs)的相关研究位列第2,其中间充质干细胞来源的EVs(mesenchymal stem cells derived EVs, MSC-EVs)研究热度最高,发表文章数量高达4000篇。图2. 不同细胞来源外泌体在疾病诊断与治疗领域研究的论文情况本期文章,小编对MSC-EVs在疾病治疗、食品以及医美等领域的应用进行了简单综述,并进一步梳理了目前基于MSC-EVs的临床进展。MSC-EVs的疾病治疗研究及其产业化MSC是一种来源于成体组织和器官的多能干细胞,MSC-EVs具备免疫调节特性,且可以促进血管生成,给予细胞保护和抑制细胞凋亡等功能,因此,MSC-EVs在疾病治疗中具有极大的潜力。研究表明,来自MSC-EVs的miRNAs,特别是miR-320C,能够促进骨关节炎软骨细胞增殖。在一项心肌缺血再灌注I/R损伤研究中,携带miR-182-5p的MSC-EVs显示出改善心功能和减少心肌梗死的心脏保护作用,并伴有减少体内炎症反应。另外,MSC-EVs携带的miR-27b可诱导促炎细胞因子的下降,用于治疗脓毒症。当然,MSC-EVs本身可通过表达杀菌肽及抗菌肽如LL-37、人β-防御素2、肝素和脂钙蛋白-2和/或通过免疫调节来治疗传染病。除了直接以天然MSC-EVs作为治疗或者辅助治疗剂外,具有特定组织器官靶向功能的功能化的MSC-EVs也成为新一代研究和探索的重点,以便在治疗疾病时获得更有针对性的特异性。如图3所示,CAS数据库检索2017-2021年外泌体在不同研究领域的论文情况,表明EVs在治疗和诊断领域中应用研究的文章发表呈逐年递增情况,其中,EVs的靶向递送研究稳居C位,数量高达6000+篇。图3. 外泌体在不同研究领域的论文情况及趋势此外,来自美国化学协会的学者收集并总结了部分投身于开发EVs靶向性功能的公司在靶向不同疾病类型的布局,其中癌症、神经系统疾病、肺部疾病和伤口愈合是最受关注的疾病类型(如图4所示)。图4. 有潜力的外泌体治疗公司和靶向的疾病类型来自华南理工大学的研究者们通过疏水插入法将纤维蛋白靶向肽CREKA修饰到MSC-EVs表面,显著提高了MSC-EVs在骨缺损部位的富集和停驻,调节炎症反应和促进细胞成骨分化以实现骨骼组织的修复。该研究表明靶向修饰在骨组织修复中具有很大的应用价值,为提高MSC-EVs的治疗效率提供了一种新的策略。位于美国加州的Aetholon Medical公司另辟蹊径,开发了一款名为Hemopurifier的研究性医疗设备。Hemopurifier将细胞膜分离技术和亲和层析(affinity chromatography)技术结合在一起,可特异性地从血液循环系统中捕捉表面具有特定聚糖修饰的纳米颗粒,而病毒以及肿瘤来源的EVs往往正是通过这些聚糖修饰逃逸免疫系统。Hemopurifier在黏附和捕获表面修饰聚糖的EVs和病毒颗粒的同时,将血细胞再次送回到患者体内。该技术获得美国FDA授予的突破性设备(Breakthrough Device)认定。Aethlon公司已经通过实验证明Hemopurifier能够捕捉多种类型肿瘤分泌的EVs,其中包括乳腺癌、卵巢癌和转移性黑色素瘤。迄今为止,Aetholon Medical已使用该技术用于多种癌种、埃博拉、丙型肝炎、HIV和COVID-19等疾病的治疗。基于MSC-EVs的临床治疗试验EVs的研究已经从实验室开始进入临床阶段。Clinical trials网站数据显示,截至文章发表时共有59个注册在案的基于EVs的治疗项目处于临床试验阶段,其中超过60%的项目为MSC-EVs。如表1所示,排名靠前的研究项目包括肺部疾病(11项临床试验)、SARS-CoV-2感染(9项临床试验)、癌症、心脏病和神经系统疾病(均有4项临床试验)。其中,FDA已授权Direct Biologics公司的骨髓MSC-EVs治疗产品ExoFlo再生医学先进疗法,用于治疗COVID-19急性呼吸窘迫综合征(ARDS)(NCT04657458)。它还在对溃疡性结肠炎(NCT05176366)、克罗恩病和肠易激病(NCT05130983) 、实体器官移植排(NCT05215288)和轻/中度COVID-19(NCT05125562) 进行临床试验。Aruna Biomedical公司正在研究神经干细胞来源的外泌体(neuralstem cells derived extracellular vesicles, NC-EVs),用于治疗卒中以及其他神经系统和神经退行性疾病,候选基因AB126具有穿过血脑屏障的能力和中枢神经系统特异性。临床前数据表明,NC-EVs在改善测试小鼠血栓栓塞性中风模型中的细胞、组织和功能结果方面比MSC-EVs更有效。表1. 外泌体治疗性临床试验(部分)其他应用:食品和化妆品(医美)此外,EVs在食品、医美等领域的应用也被不断发掘和报道。CAS资源库的检索显示,在过去3年中,与EVs在化妆品和食品中的应用相关的文献数量亦呈现急剧增加趋势(图5)。图5. CAS数据库中与化妆品(A)和食品(B)中外泌体应用相关的文献发表趋势MSC-EVs已被证明在皮肤美容中发挥重要作用,如促进伤口愈合、缓解皮肤老化和防止疤痕形成等方面。源自诱导多能干细胞的EVs能够调节MMP-1/3的表达并增强衰老皮肤成纤维细胞中I型胶原蛋白的表达。而来自脂肪干细胞的EVs能够通过PI3K / Akt信号传导途径促进伤口愈合,并增加成纤维细胞中I型和III型胶原蛋白的数量。多酚、维生素、多不饱和脂肪酸等生物活性化合物是常见的提高营养价值的食品补充剂。然而,它们的生物利用度差、水溶性较差和代谢改变可能会降低它们的效果。借由EVs作为载体,可实现其有效递送。展望干细胞EVs在疾病治疗的赛道俨然已成一匹黑马,但是EVs如何与靶细胞通信,以及如何实现组织器官选择性的潜在机制尚不清楚,而这些机制的研究是开发针对外泌体通讯的有效治疗方法和开发工程外泌体衍生的治疗载体的先决条件。此外,该领域尚无统一的分析表征标准、纯化方法、表征技术及数据分析等的差异都会导致难以获得稳定且批间一致性良好的EVs。这些均是横亘在EVs研究以及产业化道路上的问题。在此过程中,EVs的基础研究以及新分析技术的迭代,有望为干细胞EVs疗法带来新的见解和策略,并可能激发下一代递送系统的设计与开发。截至目前,纳米流式检测技术已经进入由中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定的两项全国团体标准中,以及由上海市生物医药行业协会依据协会制定的《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023)团体标准中,NanoFCM将紧跟行业发展,在外泌体大规模生产、纯化工艺和表征质控等过程提供完整的解决方案。参考文献Rumiana Tenchov, Qiongqiong Angela Zhou*,et al.Exosomes – Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics[J].ACS Nano 2022, 16, 17802&minus 17846Y W,et al. Requirements for human mesenchymal stem cell‐derived small extracellular vesicles[J].Interdisciplinary Medicine, 2023 1:e20220015.中国研究型医院学会.T/CRHA001-2021人间充质干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)中国研究型医院学会.T/CRHA002-2021人多能干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)上海市生物医药行业协会.T/SBIAORG001-2023间充质干细胞外泌体质量控制标准[S].上海,上海市生物医药行业协会(sbia.org.cn)部分数据来自于ClinicalTrials网站(ClinicalTrials.gov)
  • 昆明动物所揭示多能干细胞维持基因组稳态新机制
    多能干细胞是个体发育的基础,也是再生医学的重要种子细胞之一。由于发育地位特殊,多能干细胞基因组具高度稳态(如小鼠胚胎干细胞的基因组变异率仅为胚胎成纤维细胞的1/100)。尽管多能干细胞较分化细胞具更强的基因组稳态维持能力,大量扩增培养、持续的DNA复制及特殊的细胞周期往往导致基因组变异,破坏其分化潜能,并产生致瘤风险,成为多能干细胞走向临床应用的首要障碍。研究多能干细胞维持基因组稳态的特殊机制,有助于解决应用中大量扩增培养产生的基因组变异难题,并能为体内胚胎发育失败或缺陷研究提供新思路。  中国科学院昆明动物研究所研究员郑萍课题组长期研究多能干细胞基因组稳态特征和独特调控机制。在前期工作中,鉴定了多能干细胞基因组稳态特异关键调控蛋白因子Filia和Floped,并阐述了其作用机制及体内重要生理功能(Cell Stem Cell 2015,16(6):684-698;Cell Research 2018,28(1):69-89;PLoS Biology 2019,17(10):e3000468;Science Advances 2020,6:eaba0682)。  长链非编码RNA(long noncoding RNA, lncRNA)能通过相变,和蛋白因子形成condensates,有效增强蛋白因子浓度,从而显著提高工作效率。研究人员推测,多能干细胞很可能存在一些特异表达的lncRNAs,在其高效调控基因组稳态中起重要作用。为此,该研究对小鼠胚胎干细胞进行不同种类的DNA损伤处理,结合RNA-seq分析,筛选到了10多个表达响应损伤处理的干细胞特异lncRNA。针对其中1个尚未注释、表达变化最为显著且具物种保守性的lncRNA(命名为Discn,DNA damage-induced stem cell specific noncoding RNA)进行了深入的功能和机制分析。发现Discn对维持多能干细胞基因组稳定性至关重要,并揭示了其作用机制。Discn定位于核仁,和核仁蛋白NCL结合,阻止NCL在DNA损伤情况下迁移到核质和RPA形成蛋白复合体,从而增强自由RPA含量。自由存在的RPA是DNA代谢(复制、修复和重组)的关键调控因子。因此,Discn-NCL-RPA轴能高效调控DNA复制和修复。Discn也广泛表达于神经干细胞、精原干细胞等成体干细胞中,提示其有重要生理功能。研究人员还构建了Discn基因敲除小鼠,发现Discn基因敲除可导致新生致死及神经发育异常,这些表型主要是由体内DNA损伤产生的严重炎症反应引起。该研究揭示了多能干细胞中lncRNA介导的基因组稳态调控新机制,研究结果以A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability为题,于近日发表在Nature Communications上。  该研究获得国家自然科学基金、国家重点研发计划的资助。   论文链接
  • 赛默飞世尔赞助并参加上海干细胞研讨会
    中国上海,2009 年5月18日——全球科学服务领域的领导者赛默飞世尔科技(纽约证交所代码:TMO)日前赞助并参加了上海同济大学举行的“2009年干细胞和再生医学专题研讨会”(下简称“上海干细胞研讨会”),向来自全球各地的干细胞学者展示了最新的干细胞研究方法和技术,包括RNA干扰、蛋白质表达、细胞成像和新的细胞培养表面等。   赛默飞世尔科技生命科学研发副总裁Craig Smith博士就力细胞研究的一些关键技术作了介绍,包括最新的用与神经干细胞基因功能研究的siRNA产品、蛋白质组学技术和高内涵筛选分析技术在干细胞分化中的应用,以及细胞扩增和分化涉及到的基因和蛋白质的鉴定技术。来自赛默飞世尔科技耗材应用的专家Cindy Neeley 博士则分享了革命性的细胞培养表面如何进行用于干细胞研究和组织工程研究的无酶传代培养。   “支持这次的学者研讨会只是赛默飞世尔 ‘Stem Cell Excellence’计划的一部分,这个计划旨在帮助干细胞领域实现更多的突破。近年来中国的干细胞研究项目屡获突破,将来还有很大的潜力。今后我们还会在研发创新上投入更多,及时为中国的干细胞研究工作提供更新的方法、技术和其他支持。”Craig Smith博士表示。   上海干细胞研讨会由中国细胞生物学会干细胞分会、同济大学、中科院、上海交通大学、复旦大学、上海第二军医大学以及国际干细胞研究学会联合主办,旨在推动我国干细胞的研究工作,为我国干细胞研究科学家与国际同行提供良好的交流平台,促进干细胞研究的国际合作,提升我国干细胞研究在国际上的地位和影响力。   研讨会结束后,赛默飞世尔科技还邀请与会代表参观公司位于浦东金桥开发区的Demo实验室,现场为大家展示了诸多干细胞产品和先进的技术。 图1:赛默飞世尔科技Craig Smith博士介绍Thermo Scientific干细胞解决方案 图2:与会代表参观赛默飞世尔科技公司Demo实验室 图3:赛默飞世尔科技公司实验室技术人员为参观者做现场讲解 关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com或www.thermo.com.cn  欲了解更多赛默飞世尔的Stem Cell Excellence计划以及相关干细胞产品,请访问www.thermo.com/stemcell
  • 2011第四届再生医学和干细胞大会日程安排
    RMSC 日程时间表 日 期 时 间 会 议 内 容 11月10日 08:30-17:00 会议注册 11月11日 08:30 集体照 08:30-12:00 开幕式和主题论坛 12:00-13:00 午餐 13:30-17:00 分会报告101:亚洲和欧洲策略和项目F101: Strategies and Projects of Asia and EU 分会报告210:分子胚胎学和胚胎干细胞S210: Molecular Embryology and Embryonic Stem Cells 分会报告211:干细胞基因组学,基因组重编程,表观遗传学和系统生物学S211: Stem Cell Genomics, Genomic Reprogramming, Epigenetics & Systems Biology and Adult Stem Cell Cycle Regulation 分会报告212:干细胞谱系,定向分化和调控网络S212: Stem Cell Lineage, Derivation, Differentiation and Regulatory Networks 分会报告213:循环肿瘤细胞和癌症干细胞S213: Circulating Tumor Cell (CTC) and Cancer Stem Cell 分会报告310:人类胚胎干细胞和多能成体祖细胞及骨骼肌干细胞S310: Human Embryonic Stem Cells (hESC), Multipotent Aldult Progenitor Cells and Skeletal Muscle Stem Cells 分会报告311:脐带干细胞和神经干细胞S311: Umbilical Cord Stem Cells and Neural Stem Cell 分会报告430:小血管生物工程和心脏组织修复S430: BioEngineering Small Vessels and Cardiac Tissue Repair 18:30-20:30 欢迎晚宴 11月12日 08:30-12:00 分会报告102:北美及其他国家策略和项目F102: Strategies and Projects of North America and Other Countries 分会报告220:肝细胞生物学,肝细胞免疫学,和微环境S220: Stem Cell Biology, Stem Cell Immunology and Microenvironment 分会报告221:诱导多能干细胞和人多能细胞技术S221: Induced Pluripotent Stem Cells (iPS) and hPS Cells Technologies 分会报告222:干细胞生物标记物,表面抗原标记, 谱系标记和脱细胞技术S222: Biomarkers, Surface Antigen Markers, Lineage Marking and Decellularization of Stem Cell 分会报告312:骨髓间充质干细胞、造血和造血干细胞S312: Hematopoietic, Blood-forming and Mesenchymal Stem Cell (MSC) 分会报告313:原始生殖细胞和脂肪来源干细胞S313: Primordial Germ Cells and Adipose-Derived Stem Cells 分会报告4-1:干细胞再生和生物治疗原位修复S4-1: Stem Cells for Regeneration and Biotherapeutics for In Situ Repair 分会报告421:心血管组织再生和血管再生S421: Cardiovascular Regeneration and Neovascularization 12:00-13:00 午餐 13:30-17:00 分会报告223:干细胞研究的新的分子工具S223: Novel Molecular Tools for Stem Cell Research 分会报告230:细胞机制,细胞应答和控制S230: Cellular Machinery, Cell Responses and Controlling 分会报告231:器官形成中的血管生成及自组装模式生物前沿进展和组织工程模块S231: New Frontiers in Angiogenesis‎ and New Self-Assembly Model Organisms for Organogenesis and Robust Tissue Engineering Building Blocks 分会报告420:癌症、血液系统疾病、糖尿病和神经退行性疾病、中风和中枢神经系统修复的干细胞治疗和再生治S420: Stem Cells and Regenerative Therapy for Cancer, Blood Diseases, Diabetes and Neural Degenerative Diseases, Stroke and CNS Repairing 分会报告422:泌尿系统疾病,骨骼和骨骼肌修复以及骨科疾病干细胞治疗和再生治疗S422: Stem Cells and Regenerative Therapy for Urological System Diseases,Bone & and Musculoskeletal Repair and Orthopedic Diseases 分会报告423:干细胞免疫疗法治疗自身免疫疾病S423: Immunotherapy of Autoimmune Diseases by Stem Cells 分会报告5:组织工程和干细胞的生物加工Forum 5: Bioprocessing of Tissues Engineered and Stem Cells 分会报告6:青年科学家论坛Forum 6: Young Scientist Research 11月13日 08:30-12:00 分会报告240:组织工程中的先进的细胞培养技术 S240: Advanced Cell Culture Technology for Tissue Engineering 分会报告241:定向的三维组织生长和功能技术,组织工程中的微阵列和生物芯片S241: Directed 3D Tissue Growth & Function Technology,Microarray and Biochips in Tissue Engineering 分会报告320:生物材料或生物相容性材料与细胞反应材料S320: Biomaterials or Biocompatible Materials and Cell Responsive Biomaterials 分会报告321:在组织工程中的生物活性材料,纳米材料和纳米医学S321: Bioactive Materials, Nano-materials and Nanomedicine in Tissue Engineering 分会报告322:材料化学和生物力学-杂化,复合生物材料支架S322: Material Chemistry and Biomechanics-Hybrid,Composite, and Complex Biomaterials for Scaffolds 分会报告431:眼科和听觉组织,呼吸系统和消化系统组织,肝,肾,脾脏和膀胱组织修复S431: Repair of Ophthalmological & Hearing Tissues, Respiratory & Alimentary Tracks, Liver, Kidney, Spleen, and Bladder Tissue Repai 分会报告432:软骨组织,指骨和小关节,牙齿组织和骨移植中的组织治疗S432: Tissue Therapy for Cartilage Tissue, Phalanges and Small Joints, Dental Tissue and Bone Grafting 分会报告433:创伤皮肤,皮肤溃烂和烧伤的修复S433: Wounded Skin, Skin Ulcers and Burn Injuries Repair 12:00-13:00 午餐
  • 关注干细胞|南华生物联合申报科研项目成功获国家自然科学基金资助
    近日,国家自然科学基金委员会发布2022年国家自然科学基金项目申请集中评审结果,南华生物医药股份有限公司(股票代码:000504)全资子公司--湖南博爱康民干细胞组织工程有限责任公司与首都医科大学附属北京安贞医院、湖南医药学院第一附属医院联合申报的科研项目:“羊膜间充质干细胞联合水凝胶支架材料移植干预脊髓损伤动物实验研究”成功获批国家自然科学基金面上项目资助。基础研究是技术问题的总机关 指出:“当前,新一轮科技革命和产业变革突飞猛进,科学研究方式正在发生深刻变革,学科交叉融合不断发展。基础研究是整个科学体系的源头,是所有技术问题的总机关。加强基础研究是科技自立自强的必然要求,是我们从未知到已知、从不确定性到确定性的必然选择”。 国家自然科学基金坚持支持基础研究,以基础研究支撑应用研究。支持方向主要分为“基础科学、技术科学、生命与医学、交叉融合”4个板块,鼓励科技创新、突出原创。 国家自然科学基金项目对于科研的重要性不言而喻,高校和科研院所尤其看重,因此竞争也越来越激烈。2022年国家自然科学基金共接收项目申请294396项,平均资助率16.73%左右,获批项目的专业度和含金量均名列前茅。需求牵引--干细胞修复脊髓损伤具有良好应用前景 脊髓损伤是一种引起损伤平面以下丧失自主运动功能和感觉神经损伤性疾病,具有高致残率和死亡率。全球脊髓损伤病例每年新增 12~65/10万人,我国脊髓损伤的发生率为 25~60 /百万人,其中男性比例远高于女性(2.4~5.6:1),损伤起因主要包括交通事故(主要)、暴力行为、运动、坠落及其他原因。 目前传统的治疗方法难以再生及修复受损的神经功能,因此,亟需开发创新疗法和治疗策略,以期提高患者生存质量或治愈率,减轻患者及家庭负担,提高全民健康水平。 近年来的研究结果显示,干细胞尤其是间充质干细胞在脊髓损伤治疗中具有良好的治疗潜力,其主要通过分化成神经细胞、刺激内源性神经干细胞活化、抑制炎症调节病理微环境来修复神经功能。因为受损的脊髓再生能力有限,干细胞的再生和免疫调节等特性,或可从根源上修复受损神经组织,对于脊髓损伤后脊髓功能的恢复至关重要,这是药物和物理疗法无法实现的,这可能是干细胞再生医学在脊髓损伤中展示出独特优势。突破瓶颈--院企联合,坚攻基础,面向临床 基于干细胞对于脊髓损伤修复的重要意义,南华生物联合首都医科大学附属北京安贞医院、湖南医药学院第一附属医院开展羊膜间充质干细胞联合水凝胶支架材料移植干预脊髓损伤动物实验基础研究。以期探索出一种较好的羊膜间充质干细胞移植方案,为后期开展临床研究提供实验数据,为脊髓损伤患者带来新的希望。 首都医科大学附属北京安贞医院是集医疗、教学、科研、预防、国际交流于一体,在全国心血管领域处于领军地位的三级甲等综合性医院,同时也是北京市心肺血管疾病研究所,为北京市心血管病研究重点实验室的依托单位,该实验室为北京市科委建立的高科技实验室,是首批国家心血管疾病临床医学研究中心,具有心肺血管国家重点实验室。北京安贞医院具备屏障级动物实验室,配备高效液相色谱仪、双光子倒置激光共聚焦显微镜、活体动物体内可见光成像系统、激光定量成像细胞仪等精品实验仪器。首都医科大学附属北京安贞医院负责本研究项目的专家为骨科主任医师胡三保博士,胡博士先后在北京大学、首都医科大学攻读进修,在骨科脊柱脊髓损伤手术及药物治疗方面经验丰富,在国内外核心期刊发表过多篇脊柱脊髓相关研究论文,参与了首都卫生发展科研专项重点公关项目、首都卫生发展科研专项等重点项目,是中华医学会北京分会创伤外科专业委员会委员、中华医学会北京分会骨科专业委员会创伤学组委员、北京医师协会全科医师专家委员会委员。 湖南医药学院第一附属医院是高校直属附属医院,省属三甲综合医院,医院目前拥有 4 个省级科研平台,其中依托湖南省脊柱脊髓损伤与修复临床医疗技术示范基地这个平台,2022年已成功获批国家自然科学基金面上项目1个、湖南省自然科学基金项目1个、湖南省临床创新引导项目1个,该平台主任为我省知名骨科专家唐接福主任医师、研究生导师,深耕临床、科研一线三十年,系湖南省“湘西特聘专家”、湖南省高层次卫生人才“225”工程培养对象、“怀化市优秀科技工作者”。 南华生物作为目前国内唯一一家国资控股的干细胞、免疫细胞及组织工程产业主板上市公司,同时也是国家干细胞转化资源库湖南临床研究中心,以“精益求精,德达天下”为己任,坚持“四精三好”的战略要求,通过公司团队的精干化、设备的精品化、质量管理的精细化、安全的精准化,实现好细胞制品南华造、好生物药品南华造、好医疗技术南华造,力争通过在大健康全产业链的布局,打造全球顶尖的生物科技公司。 本次科研合作项目的开展,三方将充分利用各自平台和队伍的优势互补,从严治学、聚焦前沿,勇于探索和创新,争取解决关键科学难题,获得科研成果突破,进一步推动成果转化,面向临床,惠泽大众
  • 就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(下)
    David Schaffer是加州大学伯克利分校(University of California, Berkeley)的化学和生物分子工程、生物工程和神经科学教授,在那里他还担任伯克利干细胞中心(Berkeley Stem Cell Center)主任和QB3-Berkeley主任。David实验室致力于了解生物学和探索干细胞的治疗潜力,尝试用组织工程学控制干细胞的能力并用于疾病治疗。他们致力于发现新的信号通路,并解释和实现这些信号的生物网络的计算和实验分析,最终将这些信号整合到生物材料微环境中以实现最优的干细胞控制。多能干细胞的可扩展和分化可以极大地受益于许多生物学应用,包括细胞替代治疗、疾病建模、体外器官形成和药物筛选。David实验室是PerkinElmer高内涵的老用户,自2018年开始,陆续基于PerkinElmer的高内涵系统发表了5篇文章,包括一篇Cell Report,一篇Science Advances。在6月份的推送《就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(上)》中,我们已经分享了David实验室建立的2D神经分化体系,此次,我们来分享3D神经干细胞研究体系。《High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates》于2020年8月发表于Science Advanced杂志,该工作系统性的构建了3D神经分化研究方法,建立高通量3D培养平台,用于系统地筛选1200种不同剂量、持续时间、动力学和信号组合的培养条件,寻找能从人多能干细胞(hPSCs)分化出少突胶质细胞祖细胞和中脑多巴胺能神经元的条件并确定关键因子。该研究揭示了以前未被发现的, Wnt、维甲酸和sonic hedgehog信号对细胞分化的复杂作用,这可能揭示了人类中枢神经系统发育中新的关键机制。该研究的发现有助于一些神经类疾病的细胞替代疗法(cell replacement therapies (CRTs))的优化。首先,少突胶质前体细胞OPC的体外分化过程见上图,在3D培养条件下,要经过复杂的诱导过程,PSC细胞才能够分化成为OPC细胞,而这一过程如何规范化如何可控,正是神经系统类基本细胞替代疗法最关心的问题,作者就针对这一过程展开了筛选。上图为作者筛选体系示意图,该体系将细胞悬浮在3D水凝胶中的微柱芯片压印到含有隔离介质条件的互补微孔芯片上,然后芯片被悬空培养在800nl培养介质的微孔中,经过一段时间的培养,该微流控板直接用PerkinElmer高内涵系统进行成像和分析。这样,在培养基中加入不同成分,就能够筛选不同剂量和时间的组合。作者共筛选了1200个组合培养条件,共计4800个独立样本,同时消耗的试剂体积不到相应96孔板格式的0.2%。这是一个非常高效的筛选体系。接下来,作者进行了各个关键因素多维度的筛选,筛选的表型为各个分化时期OPC的不同标记物,如Olig2、Tuj1、Nkx2.2等,这些标记物的成像和定量都是通过PerkinElmer高内涵系统完成的。这些多维度筛选的关键因素包括:接种细胞密度对早期分化过程的影响RA,SHH和 Wnt三个信号通路的组合效应3种信号通路抑制剂和拮抗剂的组合效应,IWP-2(Wnt通路抑制剂)、GANTT61(SHH通路拮抗剂)、DAPT(Notch通路拮抗剂)RA和SAG处理不同时间的影响之后,作者拟合了广义线性模型,将Olig2、Nxk2.2和Tuj1的表达和共表达与本研究涉及的12个培养参数中的单个输入参数以及它们之间的132个成对相互作用关联起来。并发现,RA是对Olig2和Nkx2.2表达影响最大的参数之一,特别是第0天和第1天和第4天和第10天剂量控制至关重要。此外,该分析确定了两种培养参数(第0-2天高剂量的RA+第4-10天高剂量的SAG,GANT剂量的增加+CHIR持续时间的延长)以协同方式相互作用以促进OPC分化的情况。最后,作者还用该模型筛选了hPSC细胞分化成tyrosine hydroxylase+mDA神经细胞的过程,也找到了该过程的重要调控因素,描述了该过程的可控性操作方法。这部分内容由于篇幅不再展开,感兴趣的同学请阅读原文。综上本文建立了一个很好的3D神经细胞分化研究体系,该体系基于高内涵成像与分析系统,能够在作者设计的微芯片上,同时分析神经细胞分化过程中诸多因子的作用。作者也借助该体系,详细的分析了两种神经细胞分化过程中关键因子是如何作用的,这些发现对于神经系统疾病的细胞替代疗法的过程设计尤其重要。在本文中,PerkinElmer高内涵系统包揽了所有的成像和分析工作,在作者自行设计的微芯片上灵活自如,对各种芯片和孔板有极强的包容性,实在是不可缺少的筛选小助手啊!参考文献Riya Muckom , XiaopingBao, et al, High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. Sci Adv. 2020 Aug 7 6(32): eaaz1457.
  • Millipore隆重推出首个用于干细胞分析研究的产业化流式试剂盒
    Millipore隆重推出FlowCellect&trade &mdash 首个用于干细胞分析研究的产业化流式试剂盒 BILLERICA, Mass. &mdash October 15, 2008 &mdash Millipore 公司 (NYSE:MIL) 一直致力于为生物科学和生物制药提供技术,工具和服务。 作为生命科学领先者,Millipore于2008年10月15日正式宣布一项产业化创举:六个全新的流式检测试剂盒问世。 该系列试剂盒将会使干细胞研究比以往更快,更简单以及更精确。利用这些能够检测三个参数的FlowCellect(商品名)试剂盒,科学家将会更容易地评估胚胎干细胞和神经干细胞在不同分化阶段的表型。 Jason Whalley, Millipore 细胞生物学高级产品经理认为该系列试剂盒的精准和使用的方便为科学家的研究带来了巨大的便利:&ldquo 该系列的流式试剂盒减少了专家花费在检测上的宝贵时间。 专家们现在能够在实验过程中快速和准确地获得实验数据。&rdquo 干细胞为细胞治疗和生物研究提供了巨大的潜能。然而,为了保证实验的成功,必须首先鉴定干细胞。 &ldquo Millipore的新型干细胞试剂盒通过分析干细胞表型和监测干细胞分化为下游多种细胞系的过程来鉴定干细胞,&rdquo Whalley 解释到。&ldquo 该系列试剂盒为Guava EasyCyte&trade Plus system(Guava微毛细管式细胞分析/计数仪) 量身定做。&rdquo 今年3月, Millipore 和 Guava Technologies公司,共同宣布一项长期合作关系, 为科学家在细胞 生物学研究,包括干细胞研究方面提供整合的流式方案。该系列的干细胞试剂盒由Millipore在加州的Temecula研发部门研制成功。 Millipore目前在推进干细胞研究方面投入大量资源。包括公司内部资深的科学家团队在内,Millipore在全球一直资助干细胞研究和培训项目。 Millipore已经从一个在过滤产品和服务方面有着卓越表现的公司转变为生命科学全球领先供应商。 作为生命科学用户重要的合作伙伴,Millipore 提供实验工具和服务。整合后的Millipore为实验流程提供更多先进技术和强大的应用支持,并且提供稳定可靠的实验结果。 Millipore生命科学的专家理解生命科学研究的无穷奥妙,因此能够协助用户在细胞生物学、干细胞、 蛋白质研究和细胞信号转导领域共同应对挑战。 关于Millipore(密理博) 密理博作为全球领先的生命科学公司,为生物科学研究和生物制药研发提供前沿的技术、工具和服务。作为策略性合作伙伴,我们携手客户共同面对人类健康问题的挑战。从科研、开发到生产,我们的科学专家和创新的解决方案帮助客户处理最复杂的问题以加速实验进程。 密理博公司是标准普尔指数500成分股之一,全球雇员人数超过6100人,遍布全球47个办事处。了解更多信息,请浏览密理博全球官方网站www.millipore.com,或拨打亚洲区技术服务热线:400-889-1988。 ADVANCING LIFE SCIENCE TOGETHERTM Research. Development. Production.
  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • 华粤行2013细胞学新技术巡回交流会-天坛站
    2013年4月25日,华粤行(我司)细胞生物学新技术巡回交流会在北京天坛医院成功举办。 随着多种生物基因组测序工作的完成,现代生命科学研究已进入功能基因组研究时代,即利用细胞或动物作为研究模型和手段,研究测序得到的庞大的基因数据的功能和相互作用。而体外细胞研究如何更接近体内的生理、病理状态,如何高效的获得基因功能研究的细胞、动物模型,也是备受科研工作者关心的问题。本次交流会围绕该议题,深入交流探讨了低氧细胞/动物模型建立和转基因细胞/动物模型获取的新技术及应用进展。 Biospherix低氧细胞培养装置 会上,我司细胞学产品应用专员梁雪向与会老师介绍了Biospherix为低氧研究提供的全套解决方案,并交流了在干细胞、肿瘤、药物研发、疾病机理等领域低氧模型的建立及相关文献研究进展。 NEPA21高效基因转染系统 当介绍到NEPA21高效基因转染系统及其研究进展时,交流会进入高潮。NEPA21针对各种难转染细胞(胚胎干细胞、神经干细胞、神经元、免疫细胞、原代心肌细胞等)的高效电转效果,及在斑马鱼、胚胎活体、组织器官等方面的应用案例,引发了与会师生的高度关注和热烈讨论。我司应用专员与师生会深入探讨了大家在转染实验中遇到的难题,并交流了影响细胞转染效果的因素、改进措施及注意事项。本次交流会受到与会师生的一致欢迎和好评,感谢大家对华粤行细胞团队的关注与支持! NEPA21高效基因转染系统 当介绍到NEPA21高效基因转染系统及其研究进展时,交流会进入高潮。NEPA21针对各种难转染细胞(胚胎干细胞、神经干细胞、神经元、免疫细胞、原代心肌细胞等)的高效电转效果,及在斑马鱼、胚胎活体、组织器官等方面的应用案例,引发了与会师生的高度关注和热烈讨论。我司应用专员与师生会深入探讨了大家在转染实验中遇到的难题,并交流了影响细胞转染效果的因素、改进措施及注意事项。本次交流会受到与会师生的一致欢迎和好评,感谢大家对华粤行细胞团队的关注与支持!
  • 亚低温对细胞的影响
    亚低温对细胞的影响亚低温对细胞的影响,无论是动物实验研究,还是临床实践,绝大多数研究都表明28℃~35℃的亚低温具有积极的作用。(一般哺乳类与禽类细胞在体外培养的适宜温度是37~38℃)探讨亚低温对缺氧缺糖星形胶质细胞活力的影响方法:原代培养大鼠大脑皮层星形胶质细胞,设亚低温组(34℃)和常温组(37℃),同时于缺氧缺糖条件下培养,在相应时间点观察细胞形态,并用台盼兰排染法检测细胞存活率,四甲基偶氮唑盐(MTT)比色法检测细胞活力。结果,亚低温组各项指标均优于常温组(P〈0.01)。结论:亚低温对缺氧/缺糖星形胶质细胞具有保护作用。(参考文献)更有其它研究表示,亚低温可保护脑组织,减轻脑外伤后神经功能障碍,改善预后,已普遍应用于临床;亚低温培养可有效保持肝细胞形态和维持肝细胞功能,有望为临床生物人工肝治疗提供一种较好的肝细胞保存和运输方法;亚低温可以通过抑制细胞凋亡,抑制凋亡相关基因的表达等机制发挥对缺氧缺血性脑损伤的保护作用。如今亚低温的研究和应用已经十分广泛和深入,目前研究得比较多的是在脑复苏和脑损伤、心脏手术方面的应用。这些研究进一步加深了人们对于低温保护作用的理解,并为其在临床上的应用带来新的思路。右图为胰岛细胞培养阶段。胰岛细胞分离制备流程:胰腺切取、器官修剪、胰腺灌注、器官消化、组织收集、组织纯化、胰岛收集、细胞培养、胰岛移植WIGGENS能提供采用帕尔贴制冷套件的全尺寸低温型二氧化碳培养箱,从40L-120L-180L-260L-650-850L多种类型可供选择,温度范围20℃~60℃,为您的神经干细胞、肿瘤细胞等提供均匀稳定的亚低温环境,方便多种细胞培养研究!
  • 干细胞研究的新型利器
    2008年4月15日,LOGAN,美国犹他州——服务科学,世界领先的赛默飞世尔科技宣布,已经开发出用于分化三种重要的干细胞系的细胞培养试剂盒。该试剂盒将Thermo Scientific AdvanceSTEM 神经分化试剂盒与从细胞工程技术(Cellular Engineering Technologies, CET)获得的人源骨髓间质干细胞(Human Bone Marrow Mesenchymal),脂肪衍生的间质干细胞(Adipose-derived Mesenchymal Stem Cells)以及多能脐带血无限制成体干细胞(Multipotent Cord Blood Unrestricted Somatic Stem Cells)结合在一起,一个可高效研究神经元分化的有效工具也由此诞生。 AdvanceSTEM神经分化试剂盒是专门用于支持这些干细胞分化成神经细胞的,分化后的神经细胞被用于研究多种包括帕金森病在内的神经退行性疾病。该试剂盒包括包含有特异生长因子的细胞生长培养基以及细胞生长添加剂,该生长因子能够促使干细胞分化。在加入到需要分化的干细胞之前仅需要将培养基及添加剂混合即可。 Thermo Fisher Scientific生物处理产品研究市场经理Alain Fairbank如是说:“由于具有分化的潜能, MCBUSSCs显示了可以用于研究帕金森病及其它神经退行性疾病的可能,Thermo Fisher Scientific已经测试过这些干细胞,因此可以提阿高研究者的工作效率。每一个系统都用流式细胞仪进行了分析并且确保纯度95%,通过使用此分化试剂盒,我们相信科学家能够更快更简单的分化出神经细胞。” 通过与CET达成的协议,Thermo Fisher Scientific已经在全世界经销并运输干细胞系并且作为一个补充的产品也提供分化试剂盒。该新产品使Thermo Scientific HyClone AdvanceSTEM的范围从细胞营养产品扩展到干细胞研究的领域。 AdvanceSTEM分化试剂盒以及CET细胞是Thermo Scientific Stem Cell Excellence业务的一部分,该业务是一种首尾相连的工作流程,将重要的仪器,设备,消耗品,试剂以及培养基,服务和软件按照干细胞实验室的需求进行整合。更多信息可以从 http://www.thermo.com/stemcell获得。 关于赛默飞世尔科技公司(Thermo Fisher Scientific,原“热电”公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:http://www.thermofisher.com/
  • 科普干细胞填充技术,揭秘干细胞抗衰原理
    你可能经常能够在耳边听到别说干细胞,干细胞是一个什么样的概率,是个什么东西你真的了解吗?今天小编就带你来深入了解我们常说的:干细胞!什么是干细胞?干细胞是一类具有无限的或者永生的自我更新能力的细胞、能够产生至少一种类型的、高度分化的子代细胞,干细胞(stem cell,SC)的“干",译自英文“stem”,意为“茎干”,“干”和"起源”。干细胞群的功能即为控制和维持细胞的再生。 一般来说,在干细胞和其终末分化的子代细胞之间存在着被称为“定向祖细胞”的中间祖细胞群,它们具有有限的扩增能力和限制性分化潜能。这些细胞群的功能是增加干细胞每次分裂后产生的分化细胞的数量。干细胞是具有多向分化潜能、自我更新能力的细胞,是处于细胞系起源顶端的最原始细胞,在体内能够分化产生某种特定组织类型的细胞。干细胞与衰老的关系构成人体的200余种细胞中,大部分为终末分化细胞,高度分化使其失去了再分裂的能力,最终会衰老、死亡;但同时机体也保留了一部分未分化的原始细胞,即干细胞。这些细胞在特定条件下或者产生新的干细胞,或者按一定的程序分化形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡,当衰退的进程大于再生长的能力时表现为衰老;如果细胞再生能力更强,那么组织衰老的进程将被延缓甚至阻断。 干细胞的功能、特点使得其在创伤修复、神经再生和抗衰老等临床医学领域具有广阔应用前景。已有研究证明,干细胞在心血管疾病、代谢病、帕金森氏综合征、肝硬化、白血病等多种疾病的治疗中疗效显著;而干细胞抗衰老更是《Science》杂志评选出的1999年度10大科学进展之一,由此引发的“再生医学”革命不容小觑。可想而知,干细胞抗衰老效应的发挥取决于是否能够动员足够数量的理想的干细胞。 干细胞美容应用延缓衰老、永葆青春,自古以来就是人类不懈追求的目标,美容行业所说的抗衰老是以形体形象为主,祛皱、提拉等项目都属于抗衰项目,延缓肌肤衰老!尚恩控股集团联合国内外医美领域专家,对干细胞美容应用展开深入研究,干细胞美容抗衰老是目前临床上的主要应用,主要通过对自体干细胞进行体外培养、扩增、纯化,再移植到人体指定部位,激活皮肤干细胞的再生和修复,降低细胞老化速率,增强肌肤内部支撑结构,从而达到除皱、祛疤、减肥、丰胸等效果,医佳颜活性因子抗衰便是运用了干细胞再生特性,对面部凹陷进行再生填充,修饰面部脸型,起到紧致提拉祛皱的美容抗衰功能。
  • 美国干细胞治疗市场之现状
    2021年11月4日,加州大学尔湾分校的Leigh Turner在Cell Stem Cell上发表了文章The American stem cell sell in 2021: U.S. businesses selling unlicensed and unproven stem cell interventions,描述了2021年美国商业化的干细胞市场现状。文中提到2021年3月,美国有1480家企业运营2754家诊所在出售所谓的针对各种疾病的干细胞治疗产品,这一数据是5年前的4倍多。这些干细胞治疗产品并未经过FDA批准,同时缺乏支持安全性和有效性的相关证据。值得多说一句的是,近些年,Leigh Turner在包括Nature等杂志上发表过多篇对于干细胞临床化的评论性文章。引言目前,近1500家美国企业有做广告表示他们可以进行针对各种疾病乃至受伤的干细胞治疗,尽管这些产品没有经过FDA授权,以及没有令人信服的临床证据。在20年前,就已经有企业在出售未授权或未批准的干细胞治疗产品。之后,这一市场急剧扩大,美国政府也出台了与干细胞治疗相关的详细法规以规范这一市场,包括FDA如何解释和应用这些法规的指导性文件,和企业进入这一市场的监管机制文件。通过对干细胞治疗网上广告的调查,发现美国公司销售此类产品比世界其他任何国家都要多,甚至一度成为“干细胞旅游”的目的国。为了调查美国干细胞治疗现状,作者应用了Google对2016至2021年之间的数据进行了搜索和分析,这些数据包括企业或者诊所的位置、干细胞产品的类型、产品定位、价格、企业分类等等。企业或诊所的地理分布截至2021年3月31日,美国有1480家企业经营的2754家诊所在出售直接面向消费者的干细胞治疗产品。这些诊所主要分布于3个州,加州(347家)、佛罗里达州(333家)、德克萨斯州(310家),这三家占据了三分之一(990/2754)以上。第4为亚利桑那州,和新泽西州差不多。虽然前3的州人口数量也多,但是似乎并不完全和人口数量挂钩,比如亚利桑那州的人口数量在全美排第十四。图:每个州里出售干细胞治疗产品的诊所数量干细胞产品类型这些企业刊登的广告中,自体干细胞相关产品最多。671家企业(45.33%)销售的是自体骨髓来源的干细胞产品,437家(29.52%)是自体脂肪来源的干细胞产品,42家(2.83%)是自体外周血来源的干细胞产品,7家是自体骨髓和脂肪来源的干细胞产品。异体干细胞产品也有很多。350家(23.64%)销售脐带血或组织来源的干细胞产品,260家(17.56%)销售羊膜干细胞产品,47家(3.17%)销售胎盘干细胞产品。另外还有25家销售没有指定来源的干细胞产品。在1480家企业中,有595家(40.2%)在销售间充质干细胞产品。大多数企业都在推广他们所声称的特定类型的干细胞产品,然而有220家(14.86%)尽管有相关广告,但是并没有明确声明他们的干细胞来源或者类型。在市场中,也有一些“与众不同的”企业,比如有三家公司销售异种干细胞产品,三家公司销售胚胎干细胞产品,一家公司销售“非常小的胚胎样”干细胞产品。与2016年不同的是,2021年没有销售诱导多能干细胞产品(编者注:诱导多能干细胞就这么没有牌面)。另外,还有一种新型的产品受到了人们关注。有99家(6.68%)销售干细胞来源的外泌体产品。这一现象似乎表现出干细胞“周边”也受到了人们的青睐。图:干细胞产品类型可以看到,这些干细胞产品中骨髓或脂肪来源的自体干细胞最多,但也有干细胞“周边”产品。需要说一句的是,这些产品都需要FDA的批准。产品定位这些干细胞产品主要定位于可以缓解疼痛。在1480家企业中,有1262家(85.27%)表示他们的产品可以用来治疗疼痛综合征。第二常见的是应用于骨科疾病和外伤,有689家(46.55%)企业表示他们的产品可以针对此类疾病。有339家(22.90%)表示他们的产品可以针对运动损伤。顺着往下,134家(9.05%)表示可以治疗神经系统疾病,122家(8.24%)可以治疗免疫相关疾病,95家(6.41%)针对肺部和呼吸系统疾病,94家(6.35%)针对勃起障碍和其他性别相关疾病。88家(5.94%)可以治疗皮肤疾病和伤口,86家(5.81%)声称可以与治疗心血管疾病,54家(3.64%)针对糖尿病,39家(2.43%)针对泌尿系统疾病,36家(2.43%)针对脊髓损伤或瘫痪,29家(1.95%)针对视力损伤,23家(1.55%)针对自闭症和脑瘫,还有37家(2.5%)声称可以治疗成人阿尔茨海默症。除了疾病,有123家(8.31%)针对美容,109家(7.36%)针对脱发,89家(6.01%)针对衰老。图:干细胞产品的定位费用大多数公司没有在其网站上公布其干细胞产品的费用。在1480家企业中,只有56家(3.78%)列出了其产品价格。最低的是1200美元,最高的是28,000美元,平均为5118美元,价格中值为4000美元。对于大多数患者来说,这些干细胞治疗是自付。企业类型在这些销售干细胞治疗的企业中,有335家(22.63%)以干细胞诊所或者干细胞/再生医学机构的形式存在。大多是企业并没有标榜自己为干细胞诊所或者企业,而是使用了其它一些术语,比如缓解疼痛中心(204家,13.78%)、整形外科护理(181家,12.22%)、整合医学(106家,7.16%)、足部医疗(88家,5.94%)、脊椎治疗中心(77家,5.20%)、骨科或运动医学(67家,4.52%)、脊柱治疗(58家,3.91%)、康复(51家,3.44%)、整容手术(50家,3.37%)。也有一些以水疗中心、抗衰老研究所、自然疗法诊所、针灸诊所、激光诊所或牙科诊所的形式存在,只有极少数的挂靠在科研单位。图:企业类型
  • 眼科疾病的曙光:实验室培育出了视神经细胞
    约翰霍普金斯大学的研究者开发出了一种方法,能将人体干细胞转变为视网膜神经细胞,这是一种位于视网膜内能将视觉信号传递给大脑的神经细胞。这类细胞的死亡或者紊乱能引起视力丧失,譬如青光眼和多发性硬化症(MS)。“我们的研究不仅让人们更深入的了解了视神经的生物学功能,也为开发防治视力疾病的药物提供了细胞模型,”研究者Donald Zack博士表示,他是约翰霍普金斯大学医学院的眼科教授。“并且,这也有利于开发细胞移植方法来来恢复青光眼或者MS患者的视力。”整个实验的详细过程发表于《科技报告》杂志上,通过修饰一系列的人体胚胎干细胞使其具有荧光特性,以区别视网膜神经细胞,然后使用此类细胞来区分生成的细胞。研究者们使用一种叫做CRISPR-Cas9的基因组编辑技术,向干细胞DNA中插入了荧光蛋白基因。这种红色的荧光蛋白只有在另一个基因BRN3B (POU4F2)表达的情况下才会表达。BRN3B通过成熟的视网膜神经细胞表达,所以一旦干细胞变成了视网膜神经细胞,它就会在显微镜下显红色。接下来,他们运用荧光激活细胞筛选法来分离纯化新生成的视网膜神经细胞。Zack表示,新生成的细胞表现出了与自然生成的视网膜神经细胞一样的生物学和物理特性。研究者也发现,在实验的第一天添加一种叫做毛喉素的化学物质,有助于提高视网膜神经细胞的生成效率。研究者提醒到,毛喉素广泛用于减肥和肌肉塑形,也常作为中药治疗各种紊乱,但是对于防治视力损失和其它一些紊乱并不一定安全有效。“在培养的第30天,显微镜下能看到明显的成簇的荧光细胞,”首席研究者Valentin Sluch博士表示,他以前是霍普金斯大学生物化学、细胞分子生物系的学生,现在任职于诺华公司。Sluch在加入诺华之前就完成了该研究。“第一次成功的时候我很高兴,”Sluch说道。“我几乎跳了起来,然后跑去告诉我一个同事。就好像马上就能分离出细胞进行研究一样,这在以前是不可能的。”“我们知道,这仅仅是个开始,”Zack补充道。在随后的研究中,他的实验室旨在找出其它与视神经细胞生存和功能相关的基因。“我们希望这些细胞能为治疗青光眼和其它类型的视神经疾病提供新的方法。”为了能够利用这些细胞治疗MS,Zack正与Peter Calabresi合作,他是霍普金斯大学多发性硬化症研究中心的主管、神经病学教授。
  • 中国细胞生物学会干细胞分会2011年年会在京举行
    仪器信息网讯 2011年11月10 -12日, 由中国细胞生物学学会干细胞分会主办,北京大学干细胞研究中心承办的中国细胞生物学会干细胞分会2011年年会在北京国际会议中心隆重举行。本届年会非常强调干细胞的临床应用,专门设立了临床疾病的干细胞治疗分会,特别邀请了神经内外科,生殖医学和肿瘤等临床专家到会交流。本届年会包括主题报告和九场大会报告,来自科研院所、医疗机构、高等院校等700余名国内外业内人士参加了本次大会报告。仪器信息网作为合作媒体参加了年会开幕式及主题报告。   大会现场   开幕式由北京大学干细胞中心李凌松主任主持,李凌松主任说:“经过10年的努力,中国干细胞研究的实力显著增强,研究水平已经接近国际前沿,某些研究成果已经得到世界同行的认可。中国的干细胞研究已经由‘国外引进跟踪’”向‘原创性发现’跨越发展,特别是干细胞的临床转化研究,已经发展到一个新的阶段。”   北京大学干细胞中心李凌松主任   随后,干细胞生物学分会徐国彤会长对学会工作进行了总结与展望。徐国彤会长提到:学会过去在组织重要课题的探讨、开展国内外学术交流、普及干细胞科学知识等方面作了大量工作并取得了阶段性成果,未来学会还将在促进我国干细胞研究领域专家的交流与合作,大力推进干细胞基础研究与临床应用的转化方面取得更多成绩。   干细胞生物学分会徐国彤会长   来自美国加州大学的Hans Keirstead先生、中国科学院上海生化与细胞研究所徐国良先生、美国Johns Hopkins医学院程临钊先生、美国UCSF丁胜先生分别作了年会主题报告,就干细胞的临床应用、DNA甲基化在基因表达调控中的作用及其分子机理、干细胞命运调控等方面向与会者作了分享与探讨。    报告人:美国加州大学的Hans Keirstead先生   报告题目:Human Embryonic Stem Cell Derivates for Clinical Application   报告人:美国Johns Hopkins医学院程临钊先生   报告题目:Human Cell Engineering:Cellular Reprogramming and Genome Editing   报告人:中国科学院上海生化与细胞研究所徐国良先生   报告题目:DNA Oxidation towards Totipotency in Mammalian Development   报告人:美国UCSF丁胜先生   报告题目:A Chemical Approach to Controlling Cell Fate   据悉,大会开幕式及主题报告结束后,九场大会报告将陆续举行,内容涉及干细胞研究的各个重点领域。近年来,干细胞研究已经成为生命科学和生物医学界最活跃和最具影响的领域,本次盛会为促进我国干细胞研究领域专家的交流与合作起到了重要作用。   现场观众积极提问
  • 导致珍贵的干细胞死亡的元凶是谁?
    养过细胞的人都知道优质血清的重要标准之一是内毒的含量。血清由于其复杂的成分是不可代替的,但它也难以控制外界因素的影响内毒素过高会是实验室珍贵的细胞凋零。例如:干细胞体外培养实验,由于干细胞的原始性,它们对内毒素非常敏感,所以,当血清内毒素偏高时,细胞很容易死亡,需要在试用前提早参看该批次《检测报告》,以决定是否入围进行试用。又例如:基因敲除相关的细胞实验,培养的细胞要尽可能保持其原始状态,任何引导细胞衰老或凋亡的试剂,都会让后续的实验结果“失之毫厘,谬以千里”。所以,选择极低内毒素的血清,至关重要。同样,例如:原代培养,杂交瘤融合,细胞转染,难养细胞在体外的增殖(肝细胞,神经细胞,内皮细胞等)....这些细胞的培养都需要内毒素更低的血清,如果内毒素过高,对细胞造成的损害,会大大影响后续实验结果。还有一些细胞,实验室比较常用,经常复苏,培养,冻存,如此,血清会经常作用于细胞;还有的细胞需要培养的时间较长,血清会长时间作用于细胞;还有细胞典藏等项目,都需要使用更低内毒素的血清,以避免内毒素长久对细胞的毒性影响。因此,我们在挑选优质血清的时候内毒素是我们应该优先考量的条件之一。
  • 山中伸弥:毕生目标是将干细胞技术带到病床边
    “我毕生的目标便是将这种干细胞技术带到病床边,带到病患前,带到诊所中……”50岁的日本科学家山中伸弥得知自己获得2012年度诺贝尔生理学或医学奖后,在电话里向采访他的记者这样说道。   因为“发现成熟细胞能够通过再编程而具有多能性”,山中伸弥与79岁的英国科学家约翰戈登爵士分享了这一生物及医学领域的最高奖项。   对于二人获奖,英国伦敦大学学院的神经科学家John Hardy就表示:“我相信从事发育生物学以及疾病机理研究的每一位研究人员都会为诺贝尔奖的这一杰出而明智的选择叫好。无数实验室的工作都构建在他们开创性的研究基础之上。”   其实,专能细胞功能的不可逆性曾一度被当成是教条,而戈登向它发出了挑战,并最终证明成熟细胞的细胞核并未丧失发育成为功能完全的生物体的能力。而他在1962年的经典青蛙实验中所使用的体细胞核移植技术通常被称为克隆技术,并由其他科学家在后来成功培育出多利羊。   而另一方面,山中伸弥的发现则表明,完整的哺乳动物成熟细胞能够被恢复为像胚胎一样的细胞。这些诱导多能干细胞(iPSCs)类似于胚胎干细胞,能够发育成为身体的各种组织。他最初在小鼠细胞,随后又在人体细胞中完成了这一壮举。而iPS细胞也为再生医学和药物试验带来了希望。   对于自己的获奖,山中伸弥表示:“我感到非常高兴,同时也体会到巨大的责任。iPS技术还很新,我们实际上并不能将这些发现应用于新的疗法或药物的开发中。我觉得我们必须继续研究,以便及早为社会作出贡献。”   而戈登则在一份声明中强调了两位科学家的工作如何将基础研究推向医学应用。“我非常感谢得到了这样的认同,并且很荣幸与山中伸弥一同获奖,正是他的工作为整个领域带来了现实的期望……我特别高兴地看到纯粹的基础研究已经被证明确实对人类健康福祉具有重要意义。”   就在颁奖当天,早在2009年便与山中伸弥分享了拉斯克基础医学研究奖的戈登对电话那端的记者说道,“我个人认为,我们最终将搞清细胞究竟如何工作的全部信息……”
  • Life Tech积极参与中国细胞生物学会干细胞分会2011年年会
    Life Tech积极参与中国细胞生物学会干细胞分会2011年年会 暨第四届再生医学和干细胞大会 近年来,干细胞研究已经成为生命科学和生物医学界最活跃和最具影响的领域,尤其是以干细胞为核心的再生医学越来越受到科学家及临床工作者的关注。为了促进我国干细胞研究领域专家的交流与合作,大力推进干细胞基础研究与临床应用的转化,中国细胞生物学会干细胞分会2011年年会暨第四届再生医学和干细胞大会于2011年11月10日-12日于北京国际会议中心举行。Life Technologies公司白银赞助本次大会。 大会为强调干细胞的临床应用,专门设立临床疾病的干细胞治疗分会,特别邀请心血管内外科,神经内外科,消化内外科,血液与免疫,生殖医学,肿瘤,内分泌以及创伤康复等临床专家到会交流,来自30多个国家和地区的800多名参会者在首都分享了在生医学和干细胞领域最新的科研进展和市场趋势资讯。   Life Technologies公司来自美国的专家Mohan Vemuri博士在大会开幕式后为在场近300名专家介绍了Life公司Gibco细胞治疗系统(CTS):免疫治疗和干细胞治疗的高级工具,讲解结束后在场的专家老师们提出诸多问题,对我们的专题表现出了极大的兴趣,而Mohan Vemuri博士也耐心的逐一解答。   在大会报告同时,大会企业展览于北京国际会议中心三楼展出,Life公司借此机会向参观老师展示了&ldquo Neon电转染系统&rdquo 以及&ldquo Countess&trade 自动细胞计数仪&rdquo , 与堪称全场最具特色的life展台相结合,吸引了无数参观老师的眼球。 Life公司美国专家Mohan Vemuri博士为大家做演讲 参会老师竞相提出问题,Mohan Vemuri博士耐心解答 Life公司的&ldquo Neon电转染系统&rdquo 产品 Life公司&ldquo Countess&trade 自动细胞计数仪&rdquo 产品 Life公司独具特色的展位 参会老师向Life公司技术人员资讯 参会老师正在仔细阅读了解Life公司产品资料 大会于12日圆满结束,本次大会为业内专家及企业提供了一次难得的交流机会并极大地推动我国再生医学和干细胞研究的发展!  Life Technologies Corporation (http://www.lifetechnologies.com/home.html) (Nasdaq: LIFE) 是一家致力于改善人类生存环境的全球性生物技术公司。该公司的仪器、耗材和服务可协助研究人员加快推进科学和医学的发展,从而让人们的生活变得更加美好。该公司的客户遍及生物学各个领域,包括筛选与转化研究、分子药物、干细胞治疗、食品安全和动物保健以及21世纪的法医鉴定等。该公司生产供分子诊断和仅供研究使用的产品。Life Technologies的业界领先品牌,包括创新型Applied Biosystems和Ion Torrent品牌仪器以及Invitrogen、Gibco、Ambion、Molecular Probes和Taqman等被全球各地的生命科学实验室所广泛使用。该公司2010年的销售额为36亿美元,在全球160多个国家和地区拥有员工约11,000人,公司持有将近3900项知识产权专利及专有许可证,堪称生命科学界最大规模的知识产权资产。如蒙垂询,请访问:http://www.lifetechnologies.com 大中华地区是公司战略发展的重点之一,目前我们的大中华地区在北京、上海、广州、香港和台湾设有办事处,生产设施及分销中心,雇员人数近800人。
  • 广州健康院电镜平台:看清细胞里的“小宇宙”
    “作为一种高端科学仪器,电子显微镜在细胞学研究中发挥着至关重要的作用,助力科学家们深入探索细胞这一‘小宇宙’的功能与奥秘。”中国科学院广州生物医药与健康研究院(以下简称广州健康院)分析测试中心电子显微成像技术平台(以下简称电镜平台)负责人、高级工程师李合英对《中国科学报》表示。针对广州健康院特色研究领域,电镜平台在动物组织、细胞、病毒和蛋白等大颗粒样品的处理上进行了上百次技术优化,重点支撑了细胞谱系及发育、感染与免疫、蛋白解析等方向的多项重大科研项目顺利开展。记者了解到,依托该平台开展生物样本超微结构分析,发表了国际知名刊物论文100余篇。助力细胞超微结构功能探索为了寻找预防和治疗脑梗死的药物,广州健康院研究员潘光锦团队通过研究脑缺血动物模型,确认研究药物的疗效及作用机制。在此过程中,需要对神经元的亚细胞器以及神经突触等超微结构深入到纳米级进行观察。常规的光学显微镜分辨率无法达到分辨突触前后膜的尺度,需要利用电镜技术进行确认。李合英十年如一日,系统地研究和掌握了各类生理病理性组织器官的电镜制备特点,练就了高超的电镜样品制备技术和高水平结构解析能力。她聚焦线粒体和自噬体超微结构,对神经干细胞移植后的发育情况进行观测,帮助研究团队揭开脑缺血谜题,并揭示了脑缺血神经元损伤修复的生理机制。为了追踪肠道炎症的发病机制,揭示磷酸肌醇-3-激酶3(pik3c3)突变对肠道发育的影响,李合英利用电镜超微结构成像技术,对野生型和突变品系肠道的不同发育阶段进行超微结构研究,确定了引起突变体肠道炎症表型的罪魁祸首,成功攻克了常规病理不能解决的难题。最终与研究团队一起建立了新的肠道炎症模型,为寻找临床新靶点奠定了理论基础。据了解,电镜平台自成立以来,在细胞谱系超微结构解析、病毒感染免疫机制探索、蛋白质结构解析、药物研发生物验证等研究方向开展项目研究和超微结构观察,先后揭示了神经细胞、心肌细胞、肝细胞、肾脏细胞等多种细胞类型的不同超微结构特征,为细胞超微结构的功能研究提供了重要证据,为相关疾病机理的探索提供了重要支撑。广州健康院聚焦生物医学与生命健康领域,其研究对象包括细胞、类器官、小鼠、兔子以及大动物模型猪和猴子等。“研究这些模式动物时,对其生理或病理结构的直观呈现十分重要,需要借助电子显微镜进行观测,来完成实验理论的验证,并最终指导医学应用。”李合英说。支撑多项重大科研项目开展作为“十四五”期间广东获批建设的5个大科学设施之一——人类细胞谱系大科学研究设施,有望成为探索人类生命的“导航员”。广州健康院副院长(主持工作)孙飞表示,基于已取得的干细胞及相关细胞图谱研究成果,广州健康院积极推动建设了人类细胞谱系大科学研究设施。他充分肯定电镜平台在设施预研和建设过程中的重要支撑作用,为多种谱系细胞的超微结构和形态功能鉴定提供了标准化工艺制备流程。在感染与免疫领域研究中,对病原体结构以及病原感染机制进行研究十分重要。由于病原体多为纳米级的病毒颗粒,无法在光镜下进行结构解析,必须借助电镜进行形态学鉴定和分类。呼吸疾病全国重点实验室教授陈凌表示“电镜观察对于病原体的确认必不可少”。另外,病原体对细胞的感染机制研究也需要清楚整个感染过程和包装机制,只能借助超微切片来观察细胞内部病毒与亚细胞器的相互作用。2020年新冠肺炎疫情爆发时,广州健康院联合广州海关、呼吸疾病重点实验室等单位迅速组织开展攻关研究。通过透射电镜的观察和鉴定,首次从广州患者的粪便和尿液中鉴定出具有活性的新冠病毒,为新冠肺炎的防控策略制定提供了理论依据。与此同时,李合英帮助科研人员确定病毒形态类型和来源追溯,对防疫工作的开展提供了有力支撑。细胞外囊泡是一种很有应用前景的临床液体活检工具。中国科学院院士、广州国家实验室常务副主任徐涛团队对肿瘤细胞来源的细胞外囊泡进行检测有望可以帮助诊断早期癌症,提高早期筛查的准确性。在细胞外囊泡的提取与表征研究中,李合英对样品进行制备和观察,最终确定了体外制备样品的纯度、粒径以及分散度,为临床活检应用提供了细胞外囊泡的全面评估基础。“近10年来,电镜平台支撑国家重点专项、中国科学院先导专项、省市重点研发专项等各类项目超过100项。”李合英表示,电镜平台通过大量的技术条件优化,建立了一套完善的生物样品透射电镜标准检测流程,并在此基础上进行特异性蛋白标记技术的探索,解决了生物样品纳米级超微结构检测和特异性蛋白标记的问题。助力生物医药产业高质量发展自主研发的1类新药奥雷巴替尼片(耐立克)已正式获得国家药品监督管理局的上市批准,打破了中国携T315I突变耐药患者的治疗瓶颈,解决无药可医的困境;抗结核新药TB47已经完成临床I期研究,与氯法齐明疗法结合形成“新药+老药”的组合,形成加速治愈耐药结核病的“中国疗法”,提升我国在国际结核病防控领域的影响力;自主设计研发的肿瘤相关抗原重定向开关型CAR-T细胞,为提高CAR-T的持续性以及新型CAR-T的研发提供了新思路,对实体瘤的治疗有希望取得进展……“这些新药的自主研发过程中,从病原微生物鉴定到细胞培养,再到动物模型验证都离不开电子显微成像的技术支撑,获得了关键的纳米超微结构鉴定数据。”李合英表示,特别是药物的研发与筛选体系(类器官),脂质体疫苗递送系统鉴定,新型干细胞制剂制备,疫苗的生产等方面都离不开电镜超微结构的鉴定支撑。广州健康院生物医学数据与超算中心主任、分析测试中心主任陈朝明表示,电镜平台作为一个关键的技术支撑体系,是科学实验稳定运行的基本保障,是科研创新原始突破的重要验证,对科技协同创新的质量和效率具有重要影响作用。生物医药产业是广州市重点发展的战略性新兴产业之一。陈朝明表示,电镜平台以开放共享推动企业创新,赋能粤港澳大湾区生物医药产业创新发展,累计为华南区域40余家企事业单位做出了高质量的技术支撑服务,覆盖生物体基本结构和功能解析、药物鉴定、病原体鉴定、药物研发等领域。记者了解到,该平台还支撑广州健康院先后获得国家自然科学奖二等奖2项,广东省自然科学奖7项,为提升国家战略科技力量的整体效能作出了应有贡献。
  • 干细胞治疗行业乱象:多数项目未经审批
    不仅医疗机构,连一些美容机构也打着“干细胞”的旗号进行宣传和治疗。   宣称能治疗几十种疾病,实际仍处临床试验阶段   当前,大量的医疗机构打着“干细胞治疗”的招牌,宣称可以治疗各种疑难杂症。干细胞治疗真有这么灵吗?有没有风险?干细胞治疗行业的乱象应如何规范?记者进行了深入调查。   近日,有读者反映,有五花八门的医疗机构都宣称,用“干细胞疗法”可以治疗多种疾病,包括肿瘤、肾病、小儿脑瘫、糖尿病、股骨头坏死等非常严重的疾病。   众多医疗机构宣称,“干细胞疗法”可治几十种疾病   5月4日,记者登录了一家名为“山东省红十字会介入医院”的网站。该网站宣称他们是国内唯一一家干细胞移植专科医院,可治多种疾病。   记者以治疗小儿自闭症的名义,电话咨询了该医院的刘医生。刘医生说,神经系统干细胞移植是目前最有效、先进的治疗方法,可以保证安全,但并不能保证治好。   她介绍说,对于自闭症的干细胞移植共有五种,按一个疗程4次计算大约3—5万元不等,通常需要1—2个疗程 使用的细胞可以从自身取,也可以由医院提供。   记者以“干细胞”为关键词在网络上检索,发现有大量的网站和医疗机构以“干细胞治疗”的名义宣称治疗各种疾病。记者粗略统计,他们宣称能够治疗的疾病达到几十种。网站上还提供了大量的实际治疗案例,以佐证其治疗效果。   干细胞治疗实际情况到底如何?记者来到北京一家医院的细胞渗透修复中心进行实地探访。在现场,记者看见几名脑瘫患儿正在等待接受检查。一名从河南带孩子来看病的女士说,她听说这里可以用干细胞治病,但效果如何不是很清楚。   记者以老年痴呆症患者家属的身份进行咨询,一位冷大夫告诉记者,用注射干细胞的方法治疗,虽然不能完全恢复到发病前的状态,但是可以实现一定程度的恢复,尤其可控制病情发展。但他并未告知该技术是否处于试验阶段。   记者又以治疗“股骨头坏死”的名义,来到北京市大兴区的同安骨科医院进行调查了解。一位姓孙的医生说,治疗时需要注射两次干细胞,费用不会超过两万元。至于已经在该院通过注射干细胞的方法治疗过股骨头坏死的患者有多少,最后取得了什么样的效果,孙医生表示没有统计过。   对于干细胞的来源,孙医生表示,可能来自人类胚胎细胞,也可能是羊的胚胎细胞,但自己并不清楚具体来源,会由医院向有关机构购买。   除用造血干细胞治疗血液病外,实际上其它治疗仍处临床试验阶段   干细胞究竟是什么细胞,真的能治疗那么多疾病吗?   据专家介绍,干细胞是一类具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各个组织器官的“祖宗细胞”,医学界称为“万用细胞” 干细胞治疗技术,是将已通过临床前安全性研究的干细胞,以不同给药方式移植到病人体内,产生一定的治疗效果的技术。   中国医学科学院血液病医院淋巴瘤中心主任兼天津脐带血造血干细胞库主任邱录贵教授介绍说,干细胞主要可以分为胚胎干细胞(全能干细胞)和成体干细胞(组织干细胞)两大类。目前,造血干细胞是研究最深入、临床应用最广泛的干细胞,属于成体干细胞。   他说,造血干细胞移植是用于治疗血液系统肿瘤、造血功能衰竭等疾病最有效的方法甚至是唯一有效的方法,也是所有干细胞治疗中最成熟的技术。但是,就目前而言,除造血干细胞移植外,其它类型的干细胞治疗目前仍处于早期(Ⅰ—Ⅱ期)临床试验阶段,比如用干细胞治疗糖尿病、心肌梗塞、脑瘫、肝硬化等都仅限于严格设计的Ⅰ—Ⅱ期临床试验阶段,其确切的疗效和安全性有待验证,尚不能在临床上广泛应用。   对于干细胞治疗成本,中国医学科学院血液学研究所教授韩忠朝说,如果用脐带血提取的干细胞,每一针的成本大概在1000元左右,如果用已经制备成的干细胞注射液,则成本要提高好几倍。   他还说,很多医疗机构会向一些生物技术公司购买干细胞,也有的大医院会自己制备,但是这些机构都没有统一的技术标准,都是按自己的技术标准来进行制备。   干细胞治疗有滥用嫌疑,采取实验性疗法应让患者知情同意   据了解,今年1月,卫生部发出《关于开展干细胞临床研究和应用自查自纠工作的通知》,停止未经卫生部和国家食药局批准的干细胞临床研究和应用活动。而有关专家表示,目前卫生部并未批准过除造血干细胞治疗血液病以外的干细胞临床治疗。   而目前大量医疗机构宣称可以用干细胞治疗各种疾病,邱录贵对此认为,大多是利用这一时髦概念和干细胞广泛应用前景进行牟利的一种炒作。而且,很多医疗机构开展的细胞免疫治疗,也有滥用的趋势。   此外,还有很多美容机构也宣称,可为顾客提供干细胞美容服务。记者打电话咨询了一家北京的美容医疗机构,客服人员说,干细胞美容收费为39.2万元,将为顾客注射从德国黑山羊胚胎中提取的鲜活细胞来美容,“其实就是打羊胎素”。   对此,韩忠朝认为,“打羊胎素”美容根本不属于干细胞治疗,甚至“注射从德国黑山羊胚胎中提取的鲜活细胞”都是被欧盟禁止的,因为欧盟从未批准过将羊胎素应用于人体。   韩忠朝认为,虽然以干细胞疗法治疗一些疾病,从临床上来讲有一定的科学依据。但是,这一技术的有效性和安全性还需要临床实验的支撑。而且,并非所有类型的干细胞用于治疗时都比较安全,比如胚胎干细胞就可能会在体内形成肿瘤。   那么记者实地探访的同安骨科医院等是否具干细胞治疗资格?北京大兴区(微博)卫生局一位工作人员表示,同安骨科医院是正规注册的医院,但是区县卫生局没有审批干细胞治疗资质的资格,建议去公立的三甲以上医院治疗,不要随便在这种小医院治疗。   北京市公共卫生咨询电话12320的一位工作人员也表示,根据卫生部的规定,干细胞治疗属于“第三类医疗技术”,认为其“涉及重大伦理问题,安全性、有效性尚需经规范的临床试验研究进一步验证”,要求此技术若用于临床治疗须经卫生部审批。   但也有专家认为,虽然卫生部没有批准,但不代表医院完全不能采用干细胞疗法。   根据《执业医师法》,当医生认为现有的医疗技术很难有效治疗时,可以采用有科学依据的新技术,进行实验性临床医疗。但专家同时强调,这种实验性临床医疗的临床方案要通过医院的伦理委员会审查批准,并且在患者知情同意的情况下进行。   新技术发展呼唤监管和保护,专家建议规范细胞来源和质量   “从国内外的情况来看,干细胞技术作为一种先进技术正在快速发展,研究应用前景相当可观,患者需求也很旺盛。”韩忠朝说,但目前国内出现的大量干细胞治病宣传,显然有悖于技术发展实际,应加强规范。   他还认为,对于新技术发展最好的保护和促进,就是统一和规范管理。为此,他建议,干细胞技术的相关临床实验,应由卫生部门或药监部门牵头组织,并在该领域颁布统一的技术标准,实施严格的资质审核。   邱录贵也认为,监管部门责权不明是干细胞治疗失控的原因之一。目前美国干细胞治疗临床应用由食品药品监督管理局(FDA)管理,而我国则没有相关的规定。   另外,规范干细胞治疗的一个重要环节是干细胞的来源和制备标准。韩忠朝建议,国家应成立一个细胞产品审批中心,对全国的细胞产品进行统一审批,确保细胞产品的安全与质量。   专家还提醒说,要认识到干细胞技术仍处于试验和临床研究阶段,要接受干细胞治疗,应先向有公信力的权威医疗科研机构咨询。
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 2022细胞产业大会-2022 第八届(上海)细胞与肿瘤精准医疗高峰论坛
    2022细胞产业大会2022 第八届(上海)细胞与肿瘤精准医疗高峰论坛大会介绍:近年来,现代生命科学与生物技术取得了一系列重要进展和重大突破,尤其是以干细胞、免疫细胞为核心的细胞治疗技术更是迅猛发展,在多种难治性疾病的临床研究上获得了许多成绩,在未来展现出了巨大的应用前景.细胞治疗受到前所未有的重视,国家和地方层面也密集出台相关政策,支持干细胞、免疫细胞研究的发展。2009年单细胞测序技术强势问世,发展至今,单细胞测序技术已经在肿瘤、临床诊断、免疫学、微生物学、神经科学等领域占有重要的应用地位,是目前研究和应用的焦点。研究范围也不再只是基因组、转录组学,而扩展到了表观基因组、空间转录组学、代谢组、免疫组、蛋白组谱系。这些“多组学”技术允许研究人员更仔细地观察细胞之间的异质性,更清楚地识别特定细胞及其功能。细胞与基因治疗改变了人类治疗遗传疾病和疑难杂症的方式,并正在撬动整个制药生态圈。在各种适应症需求的推动下,细胞与基因治疗快速发展,多种细胞免疫疗法、干细胞疗法、基于腺相关病毒及慢病毒载体的基因疗法相继问世,为复发难治性肿瘤及严重的基因遗传缺陷类疾病提供了重要的治疗选择。随着CAR-T免疫细胞疗法在国际以及国内获批上市,细胞和基因疗法进入了全新的赛道,整个行业进入了技术突破和产业化的快速演进。细胞产业大会已成功举办七届,经过不断探索、发展、积累与沉淀,已成长为国内细胞行业的一大盛会。随着社会的进步,科技的蓬勃发展,人类对生命质量和预期寿命也有了更高的期望。拥有一个健康、幸福、快乐的生命周期是每一个人的梦想。细胞治疗是近几年兴起的疾病治疗新技术,二十一世纪将是细胞治疗发挥重要作用的新时代。2022细胞产业大会 2022第八届(上海)细胞与肿瘤精准医疗高峰论坛将于4月在上海举办,本次峰会紧密围绕政策规范、监管、工艺与产业化进展、干细胞临床前研究与临床应用转化、干细胞存储与治疗、肿瘤免疫治疗、细胞与基因治疗、通用型CAR-T细胞治疗、单细胞多组学、单细胞测序、细胞外囊泡分离及检测、3D细胞培养与类器官、基因治疗及溶瘤病毒、实体瘤治疗及药物开发、临床研究与治疗进展等话题,特邀来自国家药品审评监管机构、科研院所、医疗机构、创新药企、生物治疗、生物技术和服务企业、产业链上下游企业、产业园区、投资机构、行业协会等多位权威专家与产业先锋进行分享交流及产品展示。组委会竭诚搭建优质对话合作平台,诚邀您四月上海相聚,共襄盛会!谁来赞助:干细胞存储、干细胞治疗、肿瘤免疫治疗、CAR-T/TCR-T细胞治疗、通用型CAR-T细胞免疫治疗、γδT细胞、细胞与基因治疗、实体瘤再生医学、循环肿瘤细胞临床应用、单细胞测序、单细胞技术、时空转录组学及多组学技术、流式细胞术、细胞外囊泡分离及检测、溶瘤病毒、腺相关病毒(AAV)、基因载体、慢病毒、腺病毒、细胞治疗产品注册与申报、细胞3D培养、类器官培养、生物3D打印机、3D细胞成像、mRNA疫苗/药物研发、创新药研发、PD-1/L1药物、早筛早诊、肿瘤的转移和复发监测、肿瘤的分子靶向治疗、外泌体临床研究与疾病治疗、靶向用药、NGS技术引领下的基因组科学与技术、数字PCR、质谱、PCR衍生技术、精准医疗产业化进程、分子诊断、基因治疗、核酸药物、基因测序、液体活检及肿瘤早筛、肿瘤全周期、肿瘤临床治疗、基因组学、生物标志物、转化医学、生物制品、无血清培养基、试剂、仪器、耗材、CRO、CMO、CDMO、生物信息大数据、AI辅助诊断、体外诊断、抗体、MALBAC技术、Crispr/Cas9和基因编辑技术、实验室管理与控制、临床应用与研究、肿瘤用药基因检测、政策监管、组学大数据、产业集群。谁将参与:全国各大医院的院长、医院管理者、肿瘤内科、肿瘤外科、生物治疗科、血液科、病理科、辅助生殖科、检验科等各科室主任医师、副主任医师、主治医生及从相关领域研究的专家、科研人员、医药企业等;科研院所、生物医药企业、技术服务代理商及投资机构、临床医生等;知名高校的教授、研究员、副研究员及生命科学专业、药学专业、医学专业、免疫学专业等;细胞及肿瘤抗体免疫治疗上游供应商、诊断试剂及设备服务商、技术与设备仪器提供商、IT大数据解决方案提供商等;基因治疗、基因编辑、基因测序、基因检测公司、生物技术公司研发人员等技术人员、研发总监等;精准医疗方面的机构、企业、细胞存储与治疗上、中、下游产业链的企业以及CRO、CMO等;CEO及药厂研发负责人:抗体免疫治疗药物研发、免疫细胞治疗及制品开发、溶瘤病毒、治疗性疫苗、小分子免疫治疗药物、细胞治疗与再生医学领域的专家、临床研究人员、从业医师、研究生以及细胞治疗与再生医学领域的医疗用品科研人员与厂商等;政府机构与代表、产业园区、招商局、投资孵化机构、咨询与培训机构、银行、律师、知识产权、证券公司等。拟邀嘉宾(具体依会议当天为准):讨论议题(最终议题以现场为准):干细胞临床研究与转化应用峰会干细胞临床前研究与临床应用转化干细胞治疗技术与临床研究干细胞与免疫细胞临床研究的制剂质量评价干细胞治疗质量控制管理的现状与未来干细胞与类器官研究干细胞外泌体的应用干细胞与再生医学间充质干细胞外囊泡治疗难治性疾病新型干细胞治疗新冠肺炎肿瘤免疫治疗产业转化领袖峰会细胞免疫治疗研发突破与商业化进程通用型CAR-T细胞免疫治疗细胞免疫治疗质量控制&产业化细胞治疗药物研发与商业化生产细胞治疗产品开发与工艺优化TIL细胞在实体瘤治疗中的技术挑战与发展趋势iPSC来源的CAR先天性免疫细胞及其在肿瘤免疫细胞治疗中的应用细胞外囊泡的多组学研究细胞外囊泡RNA组分解析及其应用外泌体技术的开发与临床转化单细胞多组学研究与临床应用峰会单细胞多组学研究与临床应用单细胞转录组技术致力于大脑发育及神经干细胞调控的研究单细胞多组学科学创新前沿及最新技术单细胞空间组学的开发与应用进展单细胞技术助力精准医学研究单细胞组学研究技术在肿瘤免疫与个性化治疗中的应用单细胞技术在肿瘤微环境及肿瘤细胞异质性探究中的应用单细胞测序结合多组学技术的应用细胞与基因治疗前沿技术应用峰会细胞及基因治疗的临床研究与产业转化细胞与基因治疗的国内外最新研究进展细胞与基因治疗CDMO基因治疗及溶瘤病毒产品的开发AAV基因治疗药物大规模生产工艺研究及成本控制基因治疗GMP病毒载体规模化生产基因工程化外泌体用于肿瘤靶向治疗的研究溶瘤病毒及RNA疗法3D细胞培养与类器官临床应用峰会3D细胞培养与类器官前沿进展3D类器官培养技术发展及其应用类器官基础研究与技术开发类器官临床医学研究与应用类器官药物筛选与生物制造类器官技术的科研应用和临床转化类器官在肿瘤精准医学研究中的应用类器官在伴随诊断和新药研发中的应用和进展微流控器官芯片在精准医疗及药物研发中的应用往届回顾:2021细胞产业大会 2021第六届(上海)细胞与肿瘤精准医疗高峰论坛伴随着为期两天的会议和三天的展览于4月25日在上海展览中心(上海市静安区延安中路1000号)拉下帷幕!本次大会集聚60+行业大咖到场分享精彩演讲,现场参观参会人数高达1800多人,共有100多家优质展商和60多家行业媒体列席,呈现出一场学术与产业紧密交融的盛宴。2021细胞产业大会 2021第七届(深圳)细胞与肿瘤精准医疗高峰论坛伴随着为期两天的会议和展览于10月27日在深圳会展中心落下帷幕!疫情特殊时期,本次大会采用了“线上(约12万人观看)+线下(600多人参加)”相结合的方式同步进行的,专家们以专业的视角分享行业动态,以战略的眼光探讨产业发展,共商细胞治疗、基因治疗及肿瘤精准诊疗的未来发展之路!合作媒体:活动预告:2022细胞产业大会2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛时间:2022年8月地点:深圳2022细胞产业大会2022第十届(武汉)细胞与肿瘤精准医疗高峰论坛时间:2022年11月地点:武汉赞助/参展/参会:论坛组委会上海顺展展览服务有限公司联系人:王 强 183 0175 7884微 信:18301757884邮 箱:wangqiang@shunzhanexpo.com
  • 走进干细胞于生物学国家重点实验室
    p style=" text-indent: 2em " 2020年3月初的一天,武汉战“疫”正紧。武汉市金银潭医院院长张定宇接待了一批特殊的客人,他们带来了一种治疗新冠肺炎的新型干细胞药物。 /p p style=" text-indent: 2em " 干细胞药物,即便对很多专业医学人士来说,也是个新鲜事物。“干细胞是什么?”“有用吗?用了会有什么后果?”“做可以,你们要承担所有责任!”这支来自干细胞与生殖生物学国家重点实验室的战“疫”科技攻关团队,一腔热血逆行武汉,却吃了不少闭门羹。 /p p style=" text-indent: 2em " 幸运的是,张定宇信任他们。 /p p style=" text-indent: 2em " strong 多年积淀 一朝亮剑 /strong /p p style=" text-indent: 2em " 3月5日,CAStem细胞注射液治疗新冠病毒致呼吸窘迫综合征(ARDS)临床试验在金银潭医院正式启动。 /p p style=" text-indent: 2em " CAStem是一款干细胞药物的名字,意为“中科院的干细胞”,是实验室自主研发的干细胞药物。干细胞与生殖生物学国家重点实验室副研究员、国家干细胞库执行主任郝捷请同事把这几个字母写在自己的防护服上,坚定地走进了医院的隔离区。 /p p style=" text-indent: 2em " 在这里,她看到凝聚了大家智慧和心血的细胞药物一滴一滴输入新冠肺炎患者体内。医护人员发现,这些接受了干细胞药物治疗的病人的呼吸功能、肺部病灶特别是肺纤维化症状均有改善。 /p p style=" text-indent: 2em " 在送接受过干细胞药物治疗的痊愈患者出院时,一位患者激动地对他们说:“你们研发的药物太好了,给了我第二次生命!” /p p style=" text-indent: 2em " 不仅在武汉,这支队伍还先后在北京、哈尔滨开展相关临床研究工作,三地共救治74名患者。 /p p style=" text-indent: 2em " CAStem——这个带有鲜明中科院烙印的产品,成为新冠肺炎疫情期间国家药品监督管理局批复的唯一一个具有自主产权的干细胞药物,更入选了国家救治新冠患者的“三药三方案”。 /p p style=" text-indent: 2em " 4月14日,科技部负责人在国务院联防联控机制召开的新闻发布会上郑重宣布:干细胞应用于新冠肺炎的临床治疗安全性良好! /p p style=" text-indent: 2em " 此次抗疫攻关中,干细胞与生殖生物学国家重点实验室亮出两件利器:CAStem干细胞注射液和新一代恒温CRISPR法核酸检测试剂盒(CASdetec)。后者革新了核酸检测的技术原理,有望摆脱对昂贵PCR仪器的依赖,让检测走进社区甚至家庭。 /p p style=" text-indent: 2em " 多年关注呼吸系统疾病、把干细胞药物推向临床一线、开发新一代核酸检测技术、致力于相关标准及知识产权政策发布和完善、全链条布局打通创新成果转化渠道& #8230 & #8230 干细胞与生殖生物学国家重点实验室积淀多年的工作,在疫情暴发的非常时期发挥了重要作用。 /p p style=" text-indent: 2em " “这次疫情的考验让我们知道,这是一支召之即来、来之能战、战之能胜的队伍,是一群有家国情怀的人的聚集体。”中科院院士、干细胞与生殖生物学国家重点实验室研究员周琪说。 /p p style=" text-indent: 2em " strong 时代变迁 奋斗不变 /strong /p p style=" text-indent: 2em " 干细胞与生殖生物学国家重点实验室的前身是“计划生育生殖生物学国家重点实验室”,于1991年成立。它是我国最早开展生殖生物学研究的基地,是美国洛氏基金会在全世界设立的“二十一世纪生殖与避孕研究网络”7个成员之一,也是世界卫生组织在全世界设立的6个“胚胎着床研究中心”之一,在世界和中国生殖研究领域占有一席之地。 /p p style=" text-indent: 2em " 进入新世纪,世界科技格局和研究范式发生全新变化,实验室前瞻性布局了生殖工程研究方向,把前沿生殖技术的创建及应用列为实验室的重要发展目标,并以此为核心,不断壮大干细胞研究团队,到2015年,实验室从事干细胞与再生医学领域研究的研究员达到9位。 /p p style=" text-indent: 2em " 干细胞等先进技术与传统生殖生物学的交叉融合,为实验室生殖学科的发展带来了新的机遇,在生殖生物学研究方向产出了多项具有里程碑意义的重大创新成果,如利用四倍体补偿技术证明iPS细胞的全能性、同性生殖、人工配子、表观遗传新机制、非人灵长类胚胎超长时间培养等,使传统学科焕发了新的生机。 /p p style=" text-indent: 2em " 到2015年,实验室已成长为我国干细胞和生殖生物学领域领先的研究实体。与此同时,“计划生育”已经不再是国家需求,这4个字已经不能代表实验室所承担的使命,通过申请、论证、现场评估,获科技部批准,实验室成功更名为“干细胞与生殖生物学国家重点实验室”,并在2016年国家重点实验室评估中,进入“优秀类”国家重点实验室序列。 /p p style=" text-indent: 2em " strong 基础研究 硕果累累 /strong /p p style=" text-indent: 2em " 干细胞与生殖生物学国家重点实验室主要从事生殖生物学、干细胞与再生医学和创新细胞技术研究,近年研究成果多次入选“年度中国生命科学十大进展”或“年度中国十大科技进展”,并入选 “改革开放40年40项标志性研究成果”。 /p p style=" text-indent: 2em " 在基础理论研究方面,干细胞与生殖生物学国家重点实验室面向世界科技前沿,深挖领域内最基本的科学问题,探索生殖、发育、遗传、衰老全生命周期的调控机制,不断突破领域内科学认知的边界,获得了诸多重大理论突破:首次将胚胎第一次细胞命运分化的选择推到了2—细胞胚胎时期,成果入选2019年度中国生命科学十大进展;首次实现灵长类胚胎长时程体外培养,开启哺乳动物繁衍新方式;发掘跨代遗传新机制,发现个体内代谢环境通过改变生殖细胞基因组甲基化或tsRNAs介导(RNA而非DNA),可将获得的代谢紊乱表型跨代传递给子代,成果入选2016年度中国十大科技进展;揭示了灵长类器官(血管、胰岛、卵巢等)退行的特异性机制,发展通过基因或干细胞治疗干预退行性疾病的有效策略。 /p p style=" text-indent: 2em " 在技术原始创新方面,干细胞与生殖生物学国家重点实验室面向国家人口健康领域的重大需求,取得了多项原始创新成果:构建了多种新型干细胞,包括小鼠孤雄单倍体干细胞(2012年度中国十大科技进展)、大鼠孤雄单倍体胚胎干细胞、异种杂合二倍体胚胎干细胞;开发了具有自主知识产权的基于Cas12b的基因编辑技术;建立同质性原始态人类胚胎干细胞,首次在体外模拟了人类X染色体的随机失活;实现了哺乳动物的无性生殖(入选了The Scientist杂志评选的“2018年度科技进步”);首次建立衰老研究的灵长类动物模型,例如LMNA基因突变的“儿童早衰症”灵长类动物模型,以及“长寿基因”SIRT6敲除的食蟹猴(2018年度中国生命科学十大进展);同时规模化制备了大动物的突变体,建立了多个能准确模拟人类疾病的大动物模型和可用于猪新品系培育的育种新材料,如创制了首例猪甲减模型、提高生产性状猪等。 /p p style=" text-indent: 2em " strong 转化研究 成果卓著 /strong /p p style=" text-indent: 2em " 干细胞与生殖生物学国家重点实验室强化基础和应用基础研究,布局转移转化研究,促进基础研究和应用研究的融通发展,以保持实验室的创新性、先进性和引领性。 /p p style=" text-indent: 2em " 实验室站在时代前沿,积极尝试自我审视和革新。在学科建设方面,始终以“四个面向”为出发点,布局有发展前景、有重大创新产出潜力的学科;在团队建设方面,搭建良性人才流动机制,聚集国内外一流人才;实验室大胆尝试体制和机制革新,如联合国内相关领域的国家重点实验室或优势力量成立联盟或创新实体,通过标准引领、知识产权保护支撑成果转化。 /p p style=" text-indent: 2em " 实验室从解决国家人口健康领域重大需求出发,锚定健康领域重大疾病的诊治,以治疗重大疾病切入口,找寻这些重大疾病治疗的方案和手段,围绕产业链部署创新链,围绕创新链部署产业链,从而实现从基础研究到产业应用全链条的研究模式。 /p p style=" text-indent: 2em " 实验室面向国家重大需求和国民经济主战场,围绕产业链布局,临床转化成果卓著。早在2007年实验室就前瞻性地布局建设北京干细胞资源库,于2019年获批成为国家干细胞资源库,是我国首家通过人类遗传资源(CNAS)许可的干细胞资源库,也是国际首个IOS20387认可机构。实验室借助国家干细胞资源库独特的干细胞资源,突破“干细胞药物”质控、制剂等核心技术,建立了临床级人胚干细胞及多种功能细胞分化平台,并自主创新开发近十种干细胞药物的全链条关键平台技术,研发包括多巴胺神经前体细胞、运动神经前体细胞、视网膜色素上皮细胞、M类细胞、肝细胞、心肌细胞等一系列干细胞。 /p p style=" text-indent: 2em " 实验室承担首批国家药品监督管理局和国家卫生健康委员会备案干细胞治疗帕金森病、老年黄斑变性等重大疾病临床研究项目,其中开展的干细胞治疗帕金 span style=" text-indent: 2em " 森病临床试验被Nature跟踪报道,认为“这标志着中国使用人胚胎干细胞进行临床试验的开始,也是世界上首次使用这些细胞治疗帕金森病的试验”。目前开展包括帕金森病、黄斑变性、卵巢早衰、半月板损伤等十余种疾病临床研究9项。 /span /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202010/uepic/ef6a5ace-393a-4dc2-b4bb-54f837870626.jpg" title=" 20201020424171511.jpg" alt=" 20201020424171511.jpg" width=" 482" height=" 265" style=" text-align: center max-width: 100% max-height: 100% width: 482px height: 265px " / /p p style=" text-align: center text-indent: 2em " ①武汉科技攻关团队圆满完成抗疫任务,获金银潭医院“荣誉职工”称号。 img src=" https://img1.17img.cn/17img/images/202010/uepic/b0ef0ab8-18f3-44c9-8619-b68c5980a372.jpg" title=" 2020102042585420.jpg" alt=" 2020102042585420.jpg" width=" 483" height=" 326" style=" max-width: 100% max-height: 100% width: 483px height: 326px " / /p p style=" text-align: center text-indent: 2em " ②郝捷身穿防护服在武汉市金银潭医院隔离区。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 446px height: 298px " src=" https://img1.17img.cn/17img/images/202010/uepic/b14f967a-93c4-4c59-810b-7e82dd1661f9.jpg" title=" 20201020424171360.jpg" alt=" 20201020424171360.jpg" width=" 446" height=" 298" / /p p style=" text-align: center text-indent: 2em " ③首次实现雄性同性生殖。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 442px height: 309px " src=" https://img1.17img.cn/17img/images/202010/uepic/b6083866-3223-45bc-a86d-a97403816979.jpg" title=" 20201020424171512.jpg" alt=" 20201020424171512.jpg" width=" 442" height=" 309" / /p p style=" text-align: center text-indent: 2em " ④实验室与瑞士辉凌公司达成战略合作协议。 /p p style=" text-align: center text-indent: 2em " span style=" font-size: 18px " strong 向国际化迈进 /strong /span /p p style=" text-indent: 2em " 2018年底,干细胞与生殖生物学国家重点实验室周琪课题组和李伟课题组合作,在《细胞》上发表了一项重要成果——哺乳动物的第一次细胞命运决定。 /p p style=" text-indent: 2em " 对绝大多数生物来说,生殖的起点就是精卵融合,最初的一颗受精卵,经过无数次细胞的分裂和分化,最终变成一个完整个体。在这个过程中,每个细胞的命运是如何决定的?这是生殖与发育生物学和细胞生物学的一个核心问题。 /p p style=" text-indent: 2em " 在此之前,科学家已经确证在4—细胞期时就已出现了能调控细胞命运选择的分子差异。那么在2—细胞期,也就是受精卵一分为二的时期,这两个细胞的命运是否已经注定不同? /p p style=" text-indent: 2em " 经过探索,他们发现一种内源逆转录病毒来源的基因——LincGET在两个细胞中的表达量存在差异,LincGET表达量高的那个细胞,更倾向于选择内细胞团的命运倾向,也就是更有可能发育为胎儿,而另一个细胞则更有可能发育为胎盘。 /p p style=" text-indent: 2em " 这项研究得到了瑞士辉凌医药公司的资助。“一项值得做的工作。”辉凌公司相关负责人对这项研究如此评价,“尽管我们是一家制药公司,但是我们与实验室的合作,并不是希望研究成果能直接创造财富,而是希望让自己始终保持创新能力。” /p p style=" text-indent: 2em " 瑞士辉凌医药公司于2017年与实验室达成战略合作协议,2018~2022年资助2000万美金,支持实验室开展生殖生物学领域的基础及转化研究,促进科研成果转化及临床应用。双方合作成立辉凌生殖医学研究所,设立“辉凌生殖健康基金”,面向全国科研院所、高校和医院征集项目,截至目前共资助46项生殖医学转化研究项目。此项合作探索了国有科研机构开展国际合作和产业化研究的新模式。 /p p style=" text-indent: 2em " 干细胞与生殖生物学国家重点实验室一直注重国际合作交流,在科研布局、项目组织、标准制定等方面向国际化迈进。 /p p style=" text-indent: 2em " 中国于2007年加入国际干细胞组织(ISCF),自2014年起周琪担任ISCF轮值国主席,他倡导国际大科学计划,与多家国际组织和知名科学家搭建起交流渠道,并联合英国、美国、法国、日本等多国推动多项干细胞国际标准提案,引领干细胞国际标准制定。实验室推进中日韩合作项目,建立中日韩三方的干细胞生物学与再生医学研究合作框架体系;2019年3月实验室与韩国干细胞学会、日本再生医疗学会签署中日韩三边合作备忘录,共同约定在国际范围内开展再生医学领域国际合作研究项目,加强国际学术交流;同时,实验室主持中韩科技部双边合作项目——针对东亚人群的临床级干细胞研发及应用。 /p p style=" text-indent: 2em " 实验室推动细胞学会干细胞分会与学术期刊出版商Wiley达成合作备忘录;实验室于2010年发起“国际生殖生物学前沿大会”,该大会每两年举办一次,历届会议都特别邀请国际生殖生物学领域顶尖科学家,交流领域最前沿成果,同时设有“青年科学家专场”报告,为领域后备人才提供提升机会。2021年实验室将承办“世界生殖大会”,这是我国第一次作为东道主主持由生殖生物学领域多国学术组织联合发起的专业届会。 /p p style=" text-indent: 2em " 多年来,干细胞与生殖生物学国家重点实验室始终以“四个面向”为出发点,以实现“四个率先”为发展目标,以脚踏实地的工作和丰硕的科研成果为我国建成世界科技强国提供有力支撑。(李晨阳) /p p style=" text-align: center text-indent: 2em " span style=" font-size: 20px " strong 干细胞与生殖生物学 /strong /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 20px " strong 国家重点实验室简介 /strong /span /p p style=" text-indent: 2em " 干细胞与生殖生物学国家重点实验室是我国干细胞与生殖健康基础研究领域唯一的国家重点实验室,于1991年开始组建,并于1993年底通过验收。 /p p style=" text-indent: 2em " 实验室的研究定位是面向我国人口安全和人民健康的重大需求,在干细胞与生殖生物学领域开展前瞻性和引领性研究,深入探索重大基础科学问题,研发新型研究工具和疾病治疗方法,服务国家创新驱动发展战略,提升国民健康水平和人口质量。主要研究方向包括再生医学研究、生殖健康研究和创新细胞技术研究。 /p p br/ /p
  • 世界首例胎盘干细胞移植成功
    日前,解放军307医院宣布,经过16个月的术后观察,由全军造血干细胞研究所所长、该院造血干细胞移植科主任陈虎教授领衔的团队,率先开展的世界首例胎盘造血干细胞联合脐带血造血干细胞移植治疗重型再生障碍性贫血获得成功。据主治医生扈江伟介绍,2013年12月30日,河北迁安一位9岁女童患再生障碍性贫血入院治疗。患者为重型再障,如果不采取移植治疗,将因反复出血、感染而导致死亡,结局和白血病患者一样。2014年3月14日,在征得患者父母同意后,307医院从女童新诞生的妹妹胎盘中提取造血干细胞联合脐带造血干细胞进行移植治疗,患儿康复出院。目前造血功能恢复正常,情况稳定。陈虎表示,脐带血干细胞具有免疫原性较弱、配型要求不高的优势,且移植抗宿主病发率较低,但缺点是是造血干细胞数量太少,不容易植活,难以满足移植要求。胎盘组织含有大量造血干细胞,通过分离胎盘中造血干细胞,从而弥补干细胞数量不足,两者联合移植在世界上尚属首次公开报道。陈虎还强调,胎盘造血干细胞移植的成功,为治疗白血病患者开辟了一条新的路径,但还需要积累更多的临床病例才能不断验证这种移植方式的科学性和稳定性xy-8326R Hi95缺氧诱导基因95抗体xy-8379R HIP2泛素蛋白连接酶E2抗体xy-7982R HOXC9同源盒蛋白HOXC9抗体xy-11630R HCN2 + HCN4环化核苷酸调控阳离子通道蛋白亚型2/4抗体xy-11851R HELT转录因子HELT蛋白抗体xy-11852R HES6转录因子HES6抗体xy-11853R HMX2同源盒蛋白H6亚型2抗体xy-11854R HS6ST1硫酸乙酰肝素6脑苷脂转硫酸酶1抗体xy-11646R Humanin神经保护肽HN抗体xy-4646R Capsid protein VP1大鼠细小病毒H-1株(H-1)抗体(N端)xy-2946R HAS1透明质酸合成酶1抗体xy-5898R HIF3 alpha缺氧诱导因子3α/HIF-3α抗体xy-5899R HIFPH4缺氧诱导因子脯氨酰4羟化酶抗体xy-5888R Hyaluronidase2透明质酸酶2/玻璃酸酶2抗体xy-5822R H Cadherin心脏钙粘蛋白抗体xy-6592R HSD17B617-β-羟脱氢酶6抗体xy-4813R H5N1-H5禽流感H5亚型全病毒抗体xy-2942R ORF K14(HHV8)人类疱疹病毒8 ORF14抗体xy-5889R Hyaluronidase3透明质酸酶2/玻璃酸酶2抗体xy-6538R HOXB2同源盒蛋白B2抗体xy-6539R HOXB8同源盒蛋白B8抗体xy-6540R HSPA6热休克蛋白70家族蛋白6抗体xy-9913R HGFA肝细胞生长因子激活蛋白抗体xy-6537R HDGF肝癌衍生生长因子抗体(高迁移率族蛋白1样蛋白2抗体)xy-5386R Phospho-Histone H3(Thr3)磷酸化组蛋白H3抗体xy-9026R HPRT次黄嘌呤磷酸核糖基转移酶1抗体xy-3776R Histone H3 (acetyl K9)乙酰化组蛋白H3抗体xy-3748R Acetyl and phospho-Histone H3 (Ac-K9/p-Ser10)乙酰化和磷酸化组蛋白H3抗体xy-3779R Histone H2A组蛋白H2A抗体xy-3781R Acetyl-Histone H2A(K5)乙酰化组蛋白H2A抗体xy-3782R Acetyl-Histone H2B(K5)乙酰化组蛋白H2B抗体xy-3783R Acetyl-Histone H2B(K20)乙酰化组蛋白H2B抗体xy-5360R Phospho-Histone H2A.X (Tyr143)磷酸化组蛋白H2AX抗体xy-5361R Phospho-HSP27 (Ser254)磷酸化热休克蛋白27抗体xy-5362R phospho-HSP70(Tyr41)磷酸化热休克蛋白70抗体xy-5363R phospho-HSF1(Ser303)磷酸化热休克因子1抗体xy-5364R phospho-HSF1(Ser307)磷酸化热休克因子1抗体xy-5365R phospho-HSP70 (Tyr525) 磷酸化热休克蛋白70抗体xy-6011R HACE1E3泛素蛋白连接酶HACE1抗体xy-3837R Hamartin结节性硬化症蛋白1抗体xy-3828R HNF4A肝细胞核因子4α抗体xy-4001R phospho-HNF4 (Ser313)磷酸化肝细胞核因子4α抗体xy-6014R HELLS淋巴特异性解旋酶抗体xy-6013R HRASLS2HRAS样抑制因子2抗体xy-6002R HSP40 homolog热休克蛋白家族40抗体xy-6121R RBMX糖蛋白P43抗体xy-2366R HSD3B7滋养层细胞抗原3β7抗体xy-3672R HSP22热休克蛋白-22抗体xy-3606R HRH4组织胺H4受体抗体xy-3618R HSD11B2羟基类固醇脱氢酶11β2抗体xy-3635R HRH3组织胺H3受体抗体
  • 新装置能操控分化阶段干细胞 或引发新一代基因疗法
    科技日报讯 美国西北大学开发出一种新型电穿孔微流控装置,能对分化中的干细胞进行电穿孔操作,在细胞生命的最重要阶段能够进行分子输送。这提供了研究神经元等原代细胞所必要的条件,为探索神经疾病致病机制打开了一扇门,可能会引发新一代的基因疗法。   电穿孔技术是分子生物学中强有力的技术手段。利用电脉冲在细胞膜上创建一个临时的纳米孔洞,研究人员就能将化学品、药物和DNA(脱氧核糖核酸)直接输送到单个细胞中。   但是,现有的电穿孔技术要用很高的电场强度来保持细胞悬浮在溶液中,打断了细胞通路,使敏感的原代细胞处在恶劣的环境中。因此,研究人员要在细胞持续分化和扩大过程中研究细胞的自然属性几乎没有可能。   据物理学家组织网近日报道,这个新型装置的英文缩写为LEPD,适用于在人工衬底而非自由浮动的培养基中生长的贴壁细胞,这类细胞的生长必需有可以贴附的支持物表面,细胞依靠自身分泌的活培养基中提供的贴附因子才能在该表面上生长和繁殖。   研究人员说:&ldquo 不破坏分化却能推送分子进入贴壁细胞的能力,是生物技术学研究者进一步了解相关基础知识的必要条件,尤其有利于进行最先进的干细胞研究。在生物学和医学研究领域,对细胞进行正确环境下的无损操作是非常关键的技术。&rdquo   相关成果发表在《英国皇家化学学会》杂志上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制