当前位置: 仪器信息网 > 行业主题 > >

切换卡装置

仪器信息网切换卡装置专题为您整合切换卡装置相关的最新文章,在切换卡装置专题,您不仅可以免费浏览切换卡装置的资讯, 同时您还可以浏览切换卡装置的相关资料、解决方案,参与社区切换卡装置话题讨论。

切换卡装置相关的论坛

  • 【求助】柱切换装置

    一直看到文献中某些物质的检测用到柱切换装置(是液相的一部分,相当于两根色谱柱串联,液相后接质谱),但是身边倒没见到有用这个装置的。文献中用到这个方法的话,一般情况下样品量都比较低,不仅能降低基质效应,还能保证较好的回收率。不知道有没有版友用过这种装置的?是不是在普通液相的基础上再加上某种模块就可以了?

  • 讨论几家仪器原子化器切换之优缺点。

    本人用过几家的仪器,原子化器的切换各有特点。1.日立Z-5000,Z-2000由于光路上是串联的,原子化器不存在硬件切换问题。优点是由于硬件不需要切换,只用软件选择火焰或石墨炉方法,不存在切换装置的故障问题。缺点是光路较长,不得不在光路中增加聚焦透镜,所以存在明显的能量损失。且仪器占用空间较大。2.岛津AA-6300C,需要手动切换燃烧头和石墨炉原子化器,优点就是价格便宜,性价比不错。缺点是手动切换麻烦,且切换后需要原子化器原点调节。对于操作者来说相对较麻烦。3.岛津AA-7000,由自动切换装置实现两个原子化器的自动切换。优点是通过软件控制自动切换装置马达实现两个原子化器的切换,且切换后无需进行原子化器原点的调节。缺点是切换装置的马达力矩设计不是很强劲,有时会出现切换不到位报错的情况。4.热电ICE-3500,光路是对称设计,左面为火焰燃烧头,右侧是石墨炉原子化器,通过软件选择火焰或石墨炉,不需要硬件的切换。优点是充分利用了仪器内部空间,由于无需切换装置减少了硬件故障,这是我见过最小的火焰石墨炉一体机。缺点是切换时选择镜声音较大。 以上是我所用过仪器切换装置的小小总结,希望各位版友说说自己仪器的特点。祝大家仪器使用顺利,春节快乐!

  • 气相色谱的样品引入装置:吹扫捕集装置-6

    [font=微软雅黑, sans-serif]4[/font][font=微软雅黑, sans-serif] 捕集阱[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]捕集阱是吹扫捕集装置的核心部件之一,捕集阱中装填有吸附剂,低温或者室温时可以从样品中定量的吸附目标化合物,在高温解吸附时候可以使目标化合物从吸附剂上解吸。捕集阱在吹扫捕集装置中的位置如下所示(AtomxXYZ与Eclipse 4760):[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/b1/dd4b186d5a800f80db938b1b141252d0.png[/img][/align][font=微软雅黑, sans-serif]由于捕集阱需要快速升温和加热,一般会外缠加热套,或者利用捕集阱的金属外壁直接作为加热材质进行加热,同时具有铂电阻进行测温。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]以下为Tekmar公司的捕集阱类型及老化条件,可以进行参考:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/fb/24efb939f7ff5d6db3545ffd34fe7760.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]5 [/font][font=微软雅黑, sans-serif]流路切换装置(六通阀和电磁阀等)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集装置阀工作过程,一般包括待机、样品填充、吹扫、干吹、解吸、烘烤和冲洗烘烤等过程,在以上过程中需要涉及到吹扫气流动方向的改变、部件的切换等,一般均通过六通阀(或者八通阀)和电磁阀之间的配合切换来实现。,涉及到流路切换和工作流程的内容将会在下一节进行说明,下图为吹扫捕集装置常见的六通阀和电磁阀装置(TELEDYNE TEKMAR Atomx XYZ):[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/47/d3/e47d3c7fa9215f9db876fc3f8e165c41.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]6 [/font][font=微软雅黑, sans-serif]惰性管路[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]另外,为了避免样品在传输过程中被管线吸附,吹扫捕集装置均要求管路使用惰性管线。例如吹扫捕集和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口之间的传输线使用外套不锈钢管的无涂层脱活熔融石英毛细管,仪器内部管线使用内表面具有熔融硅涂层的不锈钢管路等。[/font][font=微软雅黑, sans-serif] [/font][align=center][font=微软雅黑, sans-serif]小 结[/font][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集装置除了上述吹扫管(样品瓶)、样品加入装置、水汽管理部件(除湿装置)、捕集阱、流路切换装置(六通阀和电磁阀等),惰性管路,再加上流量控制装置(如机械阀或者质量流量计)等,即可在程序与电路控制下开始常规分析[/font]

  • 气相色谱的样品引入装置:吹扫捕集装置-8

    [font=微软雅黑, sans-serif]3.1 [/font][font=微软雅黑, sans-serif]待机过程(Standby)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在待机状态,仪器等待温度和流量参数就绪,系统通过小流量的吹扫气体保持管路正压,气体流路如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/5d/53/95d53b1db6fee345fda55056ddcae672.png[/img][/align][font=微软雅黑, sans-serif]吹扫气流由气源流经质量流量计→三通阀2(BAKE-上)→三通阀3(PURGE-下)→四通连接件→六通阀(②③→除水装置→捕集阱→⑥①)→三通阀1(VENT-下)→排空。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]其中,样品吹扫管的两个出口(浅蓝色线)分别连接于三通阀3(PURGE-上)、三通阀4(DRAIN公共端-上-堵头),处于不导通状态;四通连接件的气流无法进入样品吹扫管。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.2 [/font][font=微软雅黑, sans-serif]吹扫过程(Purge)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]加入液体样品后,吹扫气体以一定的流量和时间通过样品吹扫管底部的玻璃砂芯鼓泡,将待分析组分带入捕集阱吸附和浓缩,吹扫气体则通过捕集阱后由出口排出。气体流路如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/dc/1d/ddc1d3db78b4edbc1e9cb20b371d71a8.png[/img][/align][font=微软雅黑, sans-serif]吹扫气流由气源流经质量流量计→三通阀2(BAKE-上)→三通阀3(PURGE-[color=red]上[/color])→样品吹扫管→四通连接件→六通阀(②③→除水装置→捕集阱→⑥①)→三通阀1(VENT-下)→排空。[color=red]该步骤通过三通阀3,即PURGE阀的切换,实现了吹扫气流由不通过样品吹扫管→通过样品吹扫管(及其内的样品)。[/color]此时,一般设置除水装置温度[size=12px](MCS Ready Temp)[/size]稍微高于捕集阱温度[size=12px](PurgeReady Temp)[/size],以避免样品和水汽的冷凝。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]其中,样品吹扫管的一个出口(浅蓝色线)连接于三通阀4(DRAIN公共端-上-堵头),处于不导通状态;四通连接件的一路(浅蓝色线)连接于三通阀3(PURGE-下),处于不导通状态。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.3 [/font][font=微软雅黑, sans-serif]干吹过程(Dry Purge)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当吹扫捕集方法使用疏水性捕集阱时,捕集阱填料对水不亲和,可以使用干吹模式除去吹扫过程中被吸附于捕集阱中的水分。采用干吹模式时,水汽管理部件(除湿装置)在系统中一般不用于除湿。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=red]干吹模式的气体流路与待机状态相同[/color][/font][font=微软雅黑, sans-serif],此种情况下,捕集阱中已经吸附了待测组分和大量的水;干吹时,吹扫气流不再通过样品吹扫管[size=12px](将样品吹扫管旁路,不再带出水汽)[/size],由于捕集阱填料疏水,捕集阱中的水分被吹扫气流带出排空,待测组分仍然留在捕集阱中。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/5d/53/95d53b1db6fee345fda55056ddcae672.png[/img][/align][font=微软雅黑, sans-serif]需要说明的是,①在进行干吹时,捕集阱中已经吸附了待测组分和大量的水,干吹时间和流量不宜过大,否则可能会导致待测组分穿透捕集阱,导致其分析结果响应值降低;②进行干吹时,捕集阱温度可以适当提高,有利于水分的去除,但会造成待测组分的损失。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.4 [/font][font=微软雅黑, sans-serif]脱附/解吸过程(Desorb)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]解吸过程常常伴随有预解吸模式;首先,吹扫和富集(以及干吹)完成之后进入预解吸过程,即——电磁阀切换,使捕集阱两端通路封闭,其中不再有吹扫气流通过,此时捕集阱升温至预解吸温度,捕集阱在两端通路封闭情况下,待测组分高温解吸;预解吸模式结束后进入解吸过程,捕集阱快速升温至解吸温度,六通阀切换,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]载气将解吸后的待测组分带入色谱柱进行分离分析;[/font][font=微软雅黑, sans-serif][color=#000000]同时,捕集阱中吸附的大量水也在该过程中通过除水装置去除[size=12px](以本文所示流路图为例,在该过程中除水;不同厂家略有不同,具体原理请参考下期文章第41.5篇)[/size]。[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.4.1 [/font][font=微软雅黑, sans-serif]预解吸过程(Desorb)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]预解吸过程中,质量流量计关闭,无吹扫气流通过;三通阀1(VENT)切换,由三通阀1(VENT-下)→三通阀1(VENT-上),禁止排空;捕集阱升温至预解吸温度;气体流路如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/77/71/8777199e252337a1c9f6886594a40c5f.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.4.2 [/font][font=微软雅黑, sans-serif]解吸过程(Desorb)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]解吸过程中捕集阱快速升温至解吸温度,六通阀切换,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]载气将解吸后的待测组分带入色谱柱进行分离分析(下图-右,六通阀进样),[color=red]同时,捕集阱中吸附的大量水也在该过程中通过除水装置去除[/color];在解吸过程中,除了六通阀切换为进样状态外,电磁阀也进行切换,将液体样品开始排出样品吹扫管(下图-左,液体样品排出)。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/2c/12/22c12590ca86438829791aa268a75464.png[/img][/align][font=微软雅黑, sans-serif]液体样品排出样品吹扫管时,吹扫气流由气源流经质量流量计→三通阀2(BAKE-上)→三通阀3(PURGE-上)→样品吹扫管→排液管线→三通阀4(DRAIN-下)→废液桶。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在解吸过程(Desorb)中,液体样品排出样品吹扫管之后,会进入吹洗过程(DRAIN)。该过区别于吹扫过程,属于解吸过程(发生于解吸过程中间,此时六通阀仍然处于进样过程)。具体流路图如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ee/44/2ee4451fe0b1d06531f755b0410cf3f3.png[/img][/align][font=微软雅黑, sans-serif]吹洗过程(DRAIN)中,吹扫气流由气源流经质量流量计→三通阀2(BAKE-[color=red]下[/color])→六通阀(①②)→四通连接件→样品吹扫管→排液管线→三通阀4(DRAIN-下)→废液桶。该过程主要作用是使用大流量吹扫气流流经吹扫过程(PURGE)的管线,起到清洁作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.5 [/font][font=微软雅黑, sans-serif]烘烤过程(BAKE)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]烘烤过程,六通阀从进样状态恢复到原始状态,各部件设置为较高的温度,其主要作用是利用加热和气流反吹来清洁捕集阱、除水装置、传输管线等,避免样品残留和和交叉污染。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/77/c02778ad9e60b708a6d50ea6bb76458a.png[/img][/align][font=微软雅黑, sans-serif]吹扫气流由气源流经质量流量计→三通阀2(BAKE-下)→六通阀(①⑥→捕集阱→除水装置→③②)→四通连接件→样品吹扫管→排液管线→三通阀4(DRAIN-下)→废液桶。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]烘烤过程中,气流流经捕集阱、除水装置的方向,与吹扫过程相反。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]4 [/font][font=微软雅黑, sans-serif]小结[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集装置的主要工作流程包括仪器待机、吹扫和捕集,解吸附,管路清洗和烘烤四个过程,另外还有其他一些流程包含在以上四个流程之中或者之间,整体是为了更好的服务于样品的浓缩和解吸附;此外,目前吹扫捕集装置不仅可以用于水质中挥发性有机物的测定,也可以用于土壤和沉积物中挥发性有机物的测定,如标准《HJ 1020-2019 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法》;当用于土壤和沉积物时,则需要仪器有更加复杂的流路和功能。[/font]

  • 气相色谱的样品引入装置:热解吸_热脱附装置(九)

    [font=微软雅黑, sans-serif][size=16px][color=#212529]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,进样时候常见的样品形态为液体或者气体。实际样品(如蔬菜)经过溶剂提取、过滤、萃取、浓缩和定容等前处理步骤之后变为溶液中的组份成为[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]液体样品[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529];水质中的易挥发组份(经处理后)、大气和工厂废气、天然气等化工气体等则作为气体样品。[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]样品形态和性质的不同[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]会使得其引入进样口的方式不同,[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]催生出多种多样的样品引入装置[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]。[/color][/size][/font][font=微软雅黑, sans-serif]在使用热解吸_热脱附装置进行样品分析时,根据挥发性和半挥发性组份从采样管中解吸之后是否再进行冷聚焦浓缩,将热脱附装置分为一次热解吸装置和二次热解吸装置。本文将进行介绍二次热解吸装置的仪器结构、流路与工作过程。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]概述:二次热解吸的一般过程[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]使用二次热解吸/热脱附(Thermal Desorption,TD) 技术/装置分析样品,在完成样品采集之后,分析过程主要包括一次解吸/脱附,富集,二次解吸/脱附,进样和老化等步骤。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/95/96/995966fcfbdd7c6854387f1c44171dca.png[/img][/align][font=微软雅黑, sans-serif]完成样品采集之后,将采样管按照要求正确安装在热解吸仪器上;通过一次解吸使采样管在高温下将吸附的样品释放出来;采样管中吸附的样品释放出来之后被带入[color=red]低温冷阱[/color](与采样管中吸附剂相同,处于低温,体积更小且可以迅速升温)进行[color=red]二次浓缩和富集[/color],然后快速升温释放并被载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进行分析;[/font][font=微软雅黑, sans-serif]分析完成后,一般需要对采样管进行老化以降低残留。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]二次热解吸的仪器流路[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]二次热解吸仪器[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]二次热解吸_热脱附装置流路较一次热解吸_热脱附装置稍微复杂,在工作时涉及到进样流量和吹扫流量的切换,[color=red]多数使用六通阀作为核心流路切换部件[/color](也有不使用六通阀的厂家)。下图为某国外热解吸外观图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/12/99/0129939665b863a4f1233b42b596b051.png[/img][/align][font=微软雅黑, sans-serif]该装置具有样品盘,可以放置多个采样管并自动依次进行分析。目前国内厂家也有二次热解吸_热脱附装置,具有单通道(只能进行一个采样管的分析)和多通道(带样品盘)的不同类型。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/6a/66/c6a66c5271a06602dbe1228a8c6ab9ea.jpeg[/img][/align][font=微软雅黑, sans-serif]2.2[/font][font=微软雅黑, sans-serif] 二次热解吸仪器流路[/font][font=微软雅黑, sans-serif]二次热解吸_热脱附装置的基本原理类似,但是流路设计多种多样;典型的二次热解吸装置的流路可以参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/03/97/b0397afc6cc9096c3a1473bf178243d4.png[/img][/align][font=微软雅黑, sans-serif]仪器内部装置实物可以参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/23/09/323096a9f1f625dbc6da7e2ae5e17225.png[/img][/align][font=微软雅黑, sans-serif]仪器内部的关键部件为:六通阀用以切换流路;冷阱/聚焦管可以将采样管中解吸之后的样品再进行冷聚焦浓缩;除此之外,有控制流路切换的开关电磁阀、调节分流流量的机械阀(或者电子流量控制装置),以及测量内部压力的PM(数字压力计)以及测量分流流量、出口流量的FM(数字流量计);当然,这些装置并非必须,是可选项。[/font][font=微软雅黑, sans-serif][size=14px](说明:流量计仅仅用以测量流量,流量控制器则可以调节、控制并测量流量;本例中热解吸装置内部一律使用机械阀调节流量,使用数字流量计测量流量。)[/size][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在仪器外部,仪器背面配有两个单独的气体入口,其中载气(Carrier Gas)用于将解吸出来的样品带入色谱柱,由[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]提供;氮气进口(DriveGas、Auxiliary Gas In等,统称为[color=red]辅助气[/color])用于吹扫、一次解吸和老化等过程(一般使用与载[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]同的气体),可以使用机械阀或者电子流量控制装置调节,本例中使用DPC(数字压力控制器)。[/font][font=微软雅黑, sans-serif][size=14px]有关热解吸装置外部管路气路连接的内容可以参考本公众号往期文章:[url=https://ibook.antpedia.com/x/335525.html][color=#7030a0]第34篇 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的样品引入装置:热解吸_热脱附装置(三)[/color][/url]。[/size][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.3 [/font][font=微软雅黑, sans-serif]仪器的工作模式和过程[/font][font=微软雅黑, sans-serif]对于二次热解吸装置而言,其工作状态主要包括:等待和就绪、加压和检漏、干吹、一次解吸(采样管解吸_脱附)、冷阱/聚焦管富集、二次解吸(冷阱/聚焦管解吸_脱附)、进样、老化等多个步骤。由于各厂家设计思路不同,对于实际的仪器,可能相邻的两个工作状态和步骤会进行合并,但是整体顺序不变。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.1 [/font][font=微软雅黑, sans-serif]等待和就绪阶段[/font][font=微软雅黑, sans-serif]等待和就绪阶段[/font][font=微软雅黑, sans-serif]指将采样管安装在热解吸装置上(并非置于热解吸_热脱附装置的加热模块中,而是安装在仪器上,如放置于样品盘中),并等待仪器温度、流量就绪的过程;所有仪器设定条件达到时,仪器就绪。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/dc/1b/9dc1b62574c54644035058dde2d047c4.png[/img][/align][font=微软雅黑, sans-serif]仪器处于就绪状态时,[color=red]采样管[/color]处于样品盘中;由数字压力控制器(DPC)控制的[color=red]辅助气[/color](Auxiliary Gas)关闭,采样管中没有辅助气(一般和载气使用同种气体)通过,采样管处于封闭状态;用以样品分流的[color=red]SV3阀[/color]可以根据设置打开或者关闭;排空口的[color=red]SV2阀[/color]处于开启状态;[color=red]载气[/color]则不通过六通阀-冷阱/聚焦管而是通过SV1阀和传输线进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的进样口,此种方法可以避免冷阱/聚焦管可能的污染对仪器造成的影响。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]另外,需要单独说明的说,此时冷阱/聚焦管可以根据分析方法设置为低温制冷状态,如设置为-30℃。[/font]

  • 气相色谱的样品引入装置:吹扫捕集装置-7

    [font=微软雅黑, sans-serif]1[/font][font=微软雅黑, sans-serif] 吹扫捕集装置的一般过程[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集技术(Purgeand Trap ,P&T)的原理是将待测样品[size=12px](液体或固体)[/size]置入一可密闭的容器[size=12px](样品瓶或者吹扫管)[/size]中,使用惰性气体以一定的温度、流量通入液体样品中(或固体表面)一定时间,将需要分析的组分吹扫出来,并使之通过装有吸附材料的吸附管[size=12px](捕集阱)[/size]中进行富集[size=12px](捕集)[/size];吹扫和捕集过程完成之后,快速加热吸附管[size=12px](捕集阱)[/size]使被吸附的组分脱附,并用载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中进行分析。吹扫捕集装置是用以实现吹扫捕集进样的装置。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/44/9b/9449b5015b3e1a75c3149c020b39105e.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]吹扫捕集装置的典型仪器流路[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]未配置自动进样装置、用以分析水质中挥发性有机物的吹扫捕集装置常见流路图如下(本流路图仅供参考,不同厂家之间略有不同): [/font][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a9/a8/7a9a872e4449172bc331bab910a4df91.png[/img][font=微软雅黑, sans-serif]仪器装置主要包括吹扫气源、载气[size=12px](与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口连接)[/size]、吹扫管、样品加入装置、水汽管理部件[size=12px](除湿装置)[/size]、捕集阱、流路切换装置[size=12px](六通阀和电磁阀等)[/size],以及惰性管路和连接件等。[/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]吹扫捕集装置的工作流程[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在仪器实现的实践中,在进行液体样品分析时候,其主要工作流程包括:仪器待机、吹扫和捕集,解吸附,管路清洗和烘烤四个过程。以下为TELEDYNE TEKMAR Atomx XYZ吹扫捕集软件界面呈现出的standby、purge、desorb和bake四个过程参数设置。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/9b/d589bc3d9860d51eea875d06085b834c.png[/img][/align]

  • 柴油机真空泵切换过程中真空突降原因及处理方

    一、柴油机真空泵真空突降原因分析: 1、真空泵入口气动门和逆止门卡涩 2、操作不当,未确认入口气动门已关回,就停真空泵。二、柴油机真空泵真空突降主要现象: 1、排汽装置真空快速下降,真空低发报警 2、真空泵气水分离器液位下降。三、柴油机真空泵真空突降处理措施: 1、#1真空泵停止后,发现真空下降,立即启动#3真空泵。 2、立即令就地人员开气水分离器补水电磁阀旁手动门向汽水分离器补水至高水位。 3、若真空仍下降,无回头趋势,令就地人员立即关#1真空泵入口气动门及气动门前手动门,并启#3真空泵。 4、真空下降过快时,应手动降低负荷至400MW以下,防止机组触发RB,若RB动作,按RB正常处理。 5、若处理不及时,真空过低,导致汽轮机跳闸,按紧急停机处理。四、柴油机真空泵真空突降预防措施: 1、重大操作执行监护制度 2、切换时按正确的切换方法进行,并做好各种可能的设想 3、停运真空泵时可先关闭入口门,确认关闭后再停泵

  • 气相色谱的样品引入装置:吹扫捕集装置-5

    [font=微软雅黑, sans-serif]吹扫捕集技术(Purgeand Trap ,P&T)的原理是将待测样品[size=12px](液体或固体)[/size]置入一可密闭的容器[size=12px](样品瓶或者吹扫管)[/size]中,使用惰性气体以一定的温度、流量通入液体样品中(或固体表面)一定时间,将需要分析的组分吹扫出来,并使之通过装有吸附材料的吸附管[size=12px](捕集阱)[/size]中进行富集[size=12px](捕集)[/size];吹扫和捕集过程完成之后,快速加热吸附管[size=12px](捕集阱)[/size]使被吸附的组分脱附,并用载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中进行分析。市面上常见型号(TELEDYNE TEKMAR Atomx XYZ)图示如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/31/5e/1315eaa8a6af69f113afe3088f1558f9.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]常见的吹扫捕集装置流路图如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/54/3a/0543a77cd5f94e60537b30ea2eccbcf6.png[/img][/align][font=微软雅黑, sans-serif]在仪器装置实现上,除了必备的吹扫气源,以及与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的连接之外,还需要多种部件,包括但不限于:吹扫管(样品瓶)、样品加入装置、水汽管理部件(除湿装置)、捕集阱、流路切换装置(六通阀和电磁阀等),以及惰性管路。本文将对吹扫捕集装置的主要仪器部件和相关功能进行介绍,涉及到流路切换和工作流程的内容将会在下一节进行说明。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]吹扫管/样品瓶及相关部件[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集装置一般均配置有U型吹扫管,常见的体积为5mL(标配)、10mL或者25mL[size=12px](相关标准,如EPA规定的分析时的样品量为5 mL -25mL)[/size],吹扫管一般均带有玻璃砂芯;惰性吹扫气体通过玻璃砂芯后产生大量气泡,便于液体样品的鼓泡和吹扫。吹扫管可以配置加热装置,以便于设定合适的样品吹扫温度,在液体样品吹扫过程中将样品加热,常见的加热范围为(35-100)℃;用以固定吹扫管的基座也可以进行加热,避免吹扫过程中样品冷凝。下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/27/f3/927f3e3c06f2f0b014af82a6bf3df42a.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]样品加入装置[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]如果吹扫捕集配置有自动进样器,将会配置标准的40mL样品瓶和相关设备(后续文章介绍);如果没有配置自动进样器,将会配置进样头用以手动液体引入,下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/78/b7a788cc1a22d424967daa7963d9af5f.png[/img][/align][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]水汽管理部件(除湿装置)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]吹扫捕集装置在对样品进行吹扫的过程中,由于是在液体中鼓泡,会与样品一起带出大量的水汽,并被吸附在用以浓缩样品的捕集阱中;当加热捕集阱脱附样品时,水汽会被一同带出,会对使用毛细管色谱柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析造成影响,包括目标化合物保留时间改变、PID检测器猝灭、质谱仪响应异常等问题。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]因此,吹扫捕集装置的核心技术之一是样品中水汽的去除,常见的去除水汽的方法包括改进捕集阱中吸附剂性质、专用吸附剂除水、物理结构除水和冷阱除水等。下图为常见的除水方法实例:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a5/4b/3a54b992014493f0bf768d1e5eb1ea11.png[/img][/align]

  • 气相色谱的样品引入装置:热解吸_热脱附装置(四)

    [font=微软雅黑, sans-serif]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,进样时候常见的样品形态为液体或者气体。实际样品(如蔬菜)经过溶剂提取、过滤、萃取、浓缩和定容等前处理步骤之后变为溶液中的组份成为液体样品;水质中的易挥发组份(经处理后)、大气和工厂废气、天然气等化工气体等则作为气体样品。样品形态和性质的不同会使得其引入进样口的方式不同,催生出多种多样的样品引入装置。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]常见的样品引入装置包括微量进样器和气密型进样针、多通阀、顶空进样器、吹扫捕集装置、热解吸装置、固相微萃取等。[/font][font=微软雅黑, sans-serif]本节主要介绍热解吸_热脱附装置的相关内容,包括多篇文章;其中:[/font][font=微软雅黑, sans-serif][color=red]热解吸_热脱附装置(三)介绍热解吸_热脱附装置与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的气路与触发连接[/color][/font][font=微软雅黑, sans-serif]。[/font][font=微软雅黑, sans-serif]在使用热解吸_热脱附装置进行样品分析时,根据挥发性和半挥发性组分从采样管中解吸之后是否再进行冷聚焦浓缩,将热脱附装置分为一次热解吸装置和二次热解吸装置。无论是一次热解吸装置或者是二次热解吸装置,其与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器联机方式类似,本文将进行介绍。[/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]热解吸装置与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的流路连接[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]热解吸装置与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进行连接使用,其根本原理是将热解吸装置串入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url][color=red]进样口的载气流路[/color]之中。因此,常规的操作是将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口载气管路截断,然后与热解吸装置预留的两个接口(传输线接口和气源接口)连接。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1.1 [/font][font=微软雅黑, sans-serif]裁切进样口载气管路(第一步)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]无论是使用填充柱进样口亦或者是毛细柱进样口,常规操作是将进样口载气管路截断;截断管路之后,将热解吸装置串入载气流路。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/37/5d/0375dc39d65a2a9b5abe98b080902305.jpeg[/img][/align][font=微软雅黑, sans-serif]对于毛细柱进样口,载气、分流和隔垫吹扫的相对位置为隔垫吹扫在最上方,载气在中间,分流管路在最下方,截管时候应当注意确认,各色谱仪器厂家进样口结构类似,均可照此操作;截管时,使用截管器在距离进样垫(3-5)cm处裁断载气管路;截管时应当避免管线弯曲,切口应当平滑整齐。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1.2 [/font][font=微软雅黑, sans-serif]连接进样口与热解吸装置传输线(第二步)[/font][font=微软雅黑, sans-serif]连接进样口与热解吸装置传输线有多种方法,主要有传输线-进样口直接相连、传输线-进样口插针相连、传输线-毛细柱直接相连等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1.2.1 [/font][font=微软雅黑, sans-serif]方法一:传输线-进样口直接相连[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]裁切管路之后,需要将热解吸装置的传输线与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进样口连接;一般厂家均会提供用于连接管线的两通接头和螺帽、金属压环等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c4/91/0c49142d2f4132df57a7ab69014d73e6.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/aa/6e/8aa6e00dfa4488beb441df134d0c6b36.png[/img][/align][font=微软雅黑, sans-serif]1.2.2 [/font][font=微软雅黑, sans-serif]方法二:传输线-进样口插针相连[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]由于传输线与进样口载气管路连接部分有一部分未加热保温,可能会造成样品冷凝等现象,一些厂家会提供专门的工具用以[color=red]将传输线直接插入进样口进行连接[/color]。此时,需要将截断的进样口载气管路用堵头堵死。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/1e/f8/e1ef8dffc156882379e642e15a5c4a2a.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/26/1b/1261be923a01e0e40aa11cbfebef4fe8.png[/img][/align][font=微软雅黑, sans-serif]对于以上两种连接方式,使用第一种连接方式,可以将进样口独立出来,不影响手动进样;第二种方式则避免了管路未保温可能造成样品冷凝等问题。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1.2.3 [/font][font=微软雅黑, sans-serif]方法三:传输线-毛细柱直接相连[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]上述1.2.1和1.2.2两种连接方式中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析使用的毛细管色谱柱均安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的进样口上。样品由热解吸装置的传输线带入进样口之后,进行分流或者不分流之后,进入色谱柱中进行分离和分析。以上连接方式下,气体样品进入进样口之后,由于进样口体积较大可能造成色谱峰宽扩展等。有介于此,[color=red]一些情况下[/color],还可以将热解吸装置传输线伸入柱温箱直接与毛细柱连接,这样可以避免进样口的死体积,提高分析的灵敏度。使用传输线-毛细柱直接相连一般有两种方式。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=red]第一种方式[/color][/font][font=微软雅黑, sans-serif]是,色谱柱的载气、进样口的分流均由热解吸装置自带的EPC/机械阀 控制[/font][font=微软雅黑, sans-serif](注意:如果采用此种方式,不需要进行1.1 裁切进样口载气管路 步骤)[/font][font=微软雅黑, sans-serif];色谱分析用的毛细柱与热解吸装置传输线中伸出的管路直接相连。其中,传输线中的管路可能是熔融石英空毛细管柱、惰性化不锈钢管路或者将色谱分析用的毛细管柱通过热解吸装置传输线直接接入热解吸装置内部的六通阀等;具体连接可参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b1/b8/3b1b8b6c0a6458977edc30afa2be009e.png[/img][/align][font=微软雅黑, sans-serif][color=red]第二种方式[/color][/font][font=微软雅黑, sans-serif]是,色谱柱的载气、进样口的分流均由与热解吸装置相连的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]自身控制,色谱分析用的毛细柱与热解吸装置传输线中伸出的管路直接相连(同上)。唯一需要稍加改进的情况是:(1)由于毛细柱从进样口上拆下,需要使用无孔进样口压环(一般为Vespel材质)将进样口下端堵死;(2)将1.1 裁切进样口载气管路 步骤中截开的载气管路使用三通连接。这种连接方式,可以正常设置仪器进样口的分流、隔垫吹扫等参数。具体连接可见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/72/0a/c720a762a7bd02daf4ac7ccbb0fa6667.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/83/9ae832d252865e49071f1b3328e5fae3.png[/img][/align][font=微软雅黑, sans-serif]使用热解吸装置与毛细柱直接连接,如果采用第一种方式,缺点是进样口被闲置,不能再用以直接进样,不过可以另作他用;优点是没有截断仪器本身管路,可以保证仪器本身完整;同时,可以通过一些小设备,使用仪器外部事件来控制,做到流路切换(如六通阀或者压力切换装置(如Dean switch)等)——切换到直接进样或者切换到热解吸进样。当然,也可以直接闲置,如果需要做其他项目,需要拆下色谱柱安装到进样口上即可。——以上的前提是,热解吸装置自带 EPC/机械阀 控制。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]对于常规的进样口与热解吸装置传输线连接方式而言(本文1.2.1、1.2.2),由于进样时候[color=red]样品从载气路进入进样口[/color],然后一分为三,即隔垫吹扫+分流+色谱柱,进样口隔垫吹扫在正常设计思路中是用载气来吹扫进样垫挥发的杂质气体,现在则是带出去了一部分样品。如果进样口分流较大,隔垫吹扫带出的样品量可以忽略;如果分流较小,比如柱流量1ml/min,分流5 ml/min,隔垫吹扫3 ml/min,隔垫吹扫带出的样品将会影响到灵敏度。此外,隔垫吹扫管路可能被样品污染。因此,如果使用1.2.1、1.2.2方式,最好将隔垫吹扫关闭;如果采用第二种方式则无需关闭隔垫吹扫;如果热解吸仪器上带有分流调节,亦可以进行调节。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1.3 [/font][font=微软雅黑, sans-serif]连接[color=red]载气&辅助气[/color]与热解吸装置(第三步)[/font][font=微软雅黑, sans-serif] [/font]

  • 气相色谱的样品引入装置:热解吸_热脱附装置(七)

    [font=微软雅黑, sans-serif][size=16px][color=#212529]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,进样时候常见的样品形态为液体或者气体。实际样品(如蔬菜)经过溶剂提取、过滤、萃取、浓缩和定容等前处理步骤之后变为溶液中的组份成为[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]液体样品[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529];水质中的易挥发组份(经处理后)、大气和工厂废气、天然气等化工气体等则作为气体样品。[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]样品形态和性质的不同[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]会使得其引入进样口的方式不同,[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]催生出多种多样的样品引入装置。在使用热解吸_热脱附装置进行样品分析时,根据挥发性和半挥发性组份从采样管中解吸之后是否再进行冷聚焦浓缩,将热脱附装置分为一次热解吸装置和二次热解吸装置。本文将进行介绍一次热解吸装置的仪器结构、流路与工作过程。 1 概述:一次热解吸的一般过程 使用一次热解吸/热脱附(Thermal Desorption,TD) 技术/装置分析样品,在完成样品采集之后,分析过程主要包括解吸/脱附,进样和老化等步骤。[/color][/size][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/80/58/c80580b65daf100fe24a657b61afde40.png[/img][/align][font=微软雅黑, sans-serif]完成样品采集之后,将采样管按照要求正确安装在热解吸仪器上;一次解吸过程指的是采样管在高温下将吸附的样品释放出来,一定时间之后,在载气的作用下带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进行分析。分析完成后,一般需要对采样管进行老化以降低和消除残留。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2[/font][font=微软雅黑, sans-serif]一次热解吸的仪器流路[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]一次热解吸仪器[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一次热解吸_热脱附装置流路简单,在工作时涉及到进样流量和吹扫流量的切换,[color=red]多数使用六通阀作为核心流路切换部件[/color](也有不使用六通阀的厂家)。下图为某国产热解吸外观图。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b5/df/cb5df2fba192f73149be102f6e099cdb.png[/img][/align][font=微软雅黑, sans-serif]其中需要识别的关键仪器部件包括以下几个部分:[/font][font=微软雅黑, sans-serif](1)采样管和采样管加热盒——用以采样管进行热脱附 [/font][font=微软雅黑, sans-serif](2)吹扫流量控制部件——压力表、浮子流量计和调节阀 [/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/54/aa/154aabc5ca33b57ab1b554dcd0a5dd0e.png[/img][/align][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]一次热解吸仪器流路[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]简单的一次热解吸装置的流路可以参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/b5/4cfb50bcbb62460efe279690b583bc05.png[/img][/align][font=微软雅黑, sans-serif]2.3 [/font][font=微软雅黑, sans-serif]仪器的工作模式[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]对于简单的一次热解吸装置而言,其工作状态主要包括:准备、解吸_脱附、进样、老化四个步骤。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.1 [/font][font=微软雅黑, sans-serif]准备阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]准备阶段指将采样管安装在热解吸装置上,并等待仪器温度、流量就绪的过程。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a3/15/da3152f970ebaa6eff6a794abe1e6aab.png[/img][/align][font=微软雅黑, sans-serif]此时采样管处于常温,不进行加热;采样管两侧的[color=red]开关电磁阀处于关闭状态[/color],采样管流路没有[color=red]辅助气[/color](一般和载气使用同种气体)通过,相当于采样管处于封闭状态;[color=red]载气[/color]则通过六通阀-传输线进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的进样口。[/font]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • 数控针阀在便携式真空计校准装置中的应用

    数控针阀在便携式真空计校准装置中的应用

    [color=#ff0000]摘要:针对便携式真空计校准装置以实现真空计的现场校准,基于静态比对法校准技术,本文提出了一种采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合双通道高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]真空计作为一种真空度传感器在众多领域应用普遍,并需要进行定期校准。而真空计校准装置是包含了真空标准器、真空泵、真空阀门及连接管路在内的一整套测量系统,一般体积较大,不便移动,多在实验室内固定使用。现有的真空计校准方式大多是将现场使用的真空计拆下送检。为满足现场校准的需求,需要解决以下几方面的问题:(1)减小相关部件的尺寸,使真空计校准装置便于携带。(2)采用数控和电动阀门,提高气体流量调节的精密度。(3)改进真空度控制方式,提高真空度控制精度和稳定性。为实现真空计 现场校准和校准装置的便携性,基于静态比对法校准技术,本文将提出采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题,真空度的波动可控制在±1%以内。[size=18px][color=#ff0000]二、便携式真空计校准装置技术方案[/color][/size]便携式真空计校准装置的整个结构如图1所示,这里示出的是0.1~760Torr真空度范围内的校准装置典型结构示意图。方案具体内容如下:[align=center][img=真空计校准,600,596]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261606551375_610_3384_3.png!w690x686.jpg[/img][/align][align=center]图1 便携式真空计校准装置结构示意图[/align](1)采用静态比对法,将被校准真空计与参考标准真空计比对。参考标准真空计采用两个电容薄膜真空计以覆盖整个真空度校准范围,参考标准真空计也同时作为真空度控制传感器。(2)真空度控制器采用二通道高精度真空度控制器,控制器的A/D为24位,D/A为16为,可对应电容薄膜真空计的高精度信号输出和满足真空度控制精度要求。控制器的两个通道分别对应于两个真空计的输入信号、两路数字针阀的进气和抽气流量的精密调节。在真空度控制过程中两路传感器信号可根据需要自动切换,以实现全量程范围内的可编程自动控制。控制器带PID自整定功能和标准的MODBUS通讯协议。(3)采用两个数字针阀分别调节进气和抽气流量,控制器采用双向模式分别对两个针阀进行调节。在粗真空范围内主调节进气针阀,在高真空范围内主调节进气针阀,全量程范围内的真空度恒定控制时,真空度波动率可控制在±1%以内。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气相色谱的样品引入装置:热解吸_热脱附装置(十)

    [font=微软雅黑, sans-serif]2.3.2 [/font][font=微软雅黑, sans-serif]加压和检漏阶段[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在对采样管进行解吸之前,需要对连接了采样管的系统进行泄漏测试,避免因为采样管安装连接不正常或系统泄漏造成解吸时样品损失等问题,从而造成不出峰等后果。泄漏测试的基本原理是向密闭管路中加压,然后测定一定时间内管路的压力降,如果压力下降超过一定数值则认为系统漏气,需要进行检查。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f9/f8/7f9f87712ab04907b84ba117b2302ffb.png[/img][/align][font=微软雅黑, sans-serif]在该阶段,采样管接入仪器系统中,用以样品分流的[color=red]SV3阀[/color]和排空口的[color=red]SV2阀[/color]处于关闭;辅助气打开,[color=red]数字压力控制器(DPC)[/color]将气体管路压力调节至设定点后关闭。仪器系统对[color=black][back=#d9d9d9]数字压力控制器(DPC)-采样管-SV2阀/SV3阀[/back][/color]之间的管路压力监控一段时间(如20s),如果压力下降超过一定数值(如0.6psi/0.04kPa)则认为系统漏气,采样管将会被退回样品盘;如果检漏通过,则进行下一阶段。[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.3.3[/font][font=微软雅黑, sans-serif] 干吹阶段/采样管老化阶段[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]仪器在进行加压和检漏之后,可以进行干吹模式——即对采样管设置合适的温度(如30℃–100℃),持续通入一定流量的载气。干吹模式进行过程中,[color=red]管路中残留的空气、未被吸附的样品[/color]以及[color=red]采样过程中可能由于环境湿度大而被吸附于采样管中的水汽[/color]会被吹出,从而在解吸之前使采样管处于一种相对清洁的状态。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]与上一阶段的区别是,干吹阶段[color=red]排空口的排气阀SV2[/color]和[color=red]控制辅助气的数字压力控制器(DPC)[/color]开启,辅助气持续流过采样管一定时间并从排空口流出。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]采样管老化模式[/font][font=微软雅黑, sans-serif]:在此步骤中,如果对采样管设置较高的温度(采样管的老化温度)且使用的采样管为未吸附样品的采样管,可以通过此方式对采样管进行老化。一方面,上一次的解吸_脱附过程结束后,一些组份可能仍然残留在采样管中;另一方面,在长时间或者多次运行样品后,采样管效能可能会下降,因此通过使用辅助气连续不断的吹扫被加热的吹扫管,用较长时间的高温烘烤来清除采样管和仪器内的水汽和残留的污染物,可以使之恢复到较好的状态,确保不会影响后续分析[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.4[/font][font=微软雅黑, sans-serif] 一次解吸(采样管解吸_脱附)及冷阱/聚焦管富集[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]该过程即是样品在高温下从采样管上解吸附,并通过辅助气带入冷阱/聚焦管,从而被进一步吸附和浓缩的过程[/font][font=微软雅黑, sans-serif](一些厂家的设计中,一次解吸过程和富集过程是分开的,先解吸之后再进行富集)[/font][font=微软雅黑, sans-serif]。此时仪器的流路为:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/0b/cc/d0bcc4cecd7d0bdba0a327e799c23e89.png[/img][/align][font=微软雅黑, sans-serif]相比较上一阶段,首先仪器内部的六通阀转动,气路连接方式发生了改变,此时的仪器一次解吸流路为(上图红色粗线):辅助气→数字压力控制器(DPC)→被加热的采样管→六通阀(6-1)→冷阱/聚焦管→六通阀(4-5)→排空口排气阀SV2。通过该流路,采样管内的样品解吸附,通过辅助气带入冷阱/聚焦管被再次吸附。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]另外,需要单独说明的是,可以根据实际需求设置样品分流的SV3阀开启或者关闭,从而避免样品浓度过大对后续分析造成的影响;此时,冷阱/聚焦管已经在[color=black][back=#d9d9d9]2.3.1的等待和就绪阶段[/back][/color]稳定在分析方法设置的低温制冷状态温度或者其他温度,如设置为-30℃。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]冷阱/聚焦管模式[/font][font=微软雅黑, sans-serif]:如果仪器在该种状态下使用的是空的洁净的采样管,同时保持采样管不加热和冷阱/聚焦管设置较高的温度(冷阱/聚焦管的老化温度),可以通过此方式对冷阱/聚焦管进行老化。通过老化,使用辅助气连续不断的吹扫冷阱/聚焦管,用较长时间的高温烘烤来清除残留的污染物,可以使之恢复到较好的状态,确保不会影响后续分析[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.5 [/font][font=微软雅黑, sans-serif]二次解吸(冷阱/聚焦管解吸_脱附)与进样[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]该过程即是样品在高温下从冷阱/聚焦管上解吸附,并通过载气引入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进样口的过程[/font][font=微软雅黑, sans-serif](一些厂家的设计中,二次解吸过程和进样过程是分开的,先进行二次解吸之后再进样)[/font][font=微软雅黑, sans-serif]。此时仪器的流路为:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/14/eb/c14eb9a193fb5e7d1c6fe08ca5f5145e.png[/img][/align][font=微软雅黑, sans-serif]相比较上一阶段,首先仪器内部的六通阀转动(复位),同时气路切换阀SV1也进行了切换,气路连接方式发生了改变,冷阱/聚焦管被串入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气流路。此时的仪器二次解吸流路和进样流路为(上图红色粗线):[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气→气路切换阀SV1→六通阀(4-3)→冷阱/聚焦管→六通阀(1-2)→连接热解吸装置与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的传输线→[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口。通过该流路,冷阱/聚焦管内的样品解吸附,通过[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口。需要特殊说明的是,以上操作(二次解吸附和进样)可以同时进行的原因是冷阱/聚焦管可以快速升温到解吸温度(如350℃)。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在上述六通阀转动(复位)后[/font][font=微软雅黑, sans-serif],辅助气会关闭,已经解吸的采样管会被退回样品盘,同时采样管加热装置开始降温。在二次解吸和进样完成后,冷阱/聚焦管降温到初始设置温度,载气切换阀SV1复位,此时,仪器回复到初始的就绪阶段,等待下一次分析。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/59/ff0591c6c2885b2f3d83751c545af528.png[/img][/align][font=微软雅黑, sans-serif]2.3.6 [/font][font=微软雅黑, sans-serif]采样管的老化与冷阱/聚焦管的老化[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]详细内容可以参考2.3.3项中的采样管老化模式和2.3.4项中的冷阱/聚焦管模式。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]与解吸和进样阶段相比,采样管的老化阶段与冷阱/聚焦管的老化阶段应持续更长时间,采用更大流量并且将采样冷阱/聚焦管加热到相当高的温度(不超过两者内部吸附剂可以使用的最高温度)。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]二次热解吸的更多内容[/font][font=微软雅黑, sans-serif]3.1 [/font][font=微软雅黑, sans-serif]二次热解吸的冷阱/聚焦管[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]根据挥发性和半挥发性组分从采样管中解吸之后是否再进行冷聚焦浓缩,将热脱附装置分为一次热解吸装置和二次热解吸装置。对于二次热解吸装置,完成样品采集之后,将采样管按照要求正确安装在热解吸仪器上;通过一次解吸使采样管在高温下将吸附的样品释放出来;采样管中吸附的样品释放出来之后被带入[color=red]低温冷阱[/color]进行[color=red]二次浓缩和富集[/color]。一般而言,冷阱/聚焦管内装填的吸附剂与采样管中吸附剂相同,体积更小且可以迅速升温。一些厂家可以提供不同的材料和功能的冷阱,见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d2/85/fd2855b14fe0b8059a1fdf85d7418a09.png[/img][/align][font=微软雅黑, sans-serif]3.2 [/font][font=微软雅黑, sans-serif]二次热解吸的功能扩展[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]二次热解吸主要的步骤包括等待和就绪、加压和检漏、干吹、一次解吸(采样管解吸_脱附)、冷阱/聚焦管富集、二次解吸(冷阱/聚焦管解吸_脱附)、进样、老化等。以上步骤主要针对于采样管采样,一些厂家可以为热解吸装置添加在线空气采样附件,实现热解吸功能的扩展。在线空气采样可使热解吸_热脱附仪直接监测环境大气、气体采样装置(例如采样罐、采样袋等)中的挥发性有机物。具体的操作方式是使用精密控制的采样泵泵从环境大气、采样袋和采样罐中直接抽取样品,不使用采样管,将样品直接在冷阱/聚焦管上进行吸附和浓缩。完成上述步骤之后,直接对冷阱/聚焦管进行解吸并进样。具体的仪器的外观视图和仪器流路见下图(仪器外观和流路无关,仅用以示意):[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/04/9d30434ab253d7e16b5f4bba7fe0c383.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f3/d8/df3d86a3a8d4b65945802f3e32e9faef.png[/img][/align][font=微软雅黑, sans-serif]具有在线采样功能的热解吸装置在环境监测中使用广泛,其优点是可以连续不间断监测有害化学气体和挥发性有机物等。有介于此,一些厂家还推出了具有双冷阱热解吸_热脱附装置,双冷阱可以交替工作,从而实现在线空气样品的 100% 数据采集。下图是Markesinternational(玛珂思国际)的TT24-7xr。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a1/75/fa175ab9cec3e196aa79b7dc5d4ec0e6.png[/img][/align][font=微软雅黑, sans-serif]以上是本文的全部内容。二次热解吸_热脱附装置由于对样品进行了再一次的浓缩,因此来讲检出限低,可以测量微量和痕量浓度范围的样品;目前仪器的自动化程度也较高,在多个领域等到了广泛的应用[/font]

  • 【原创大赛】影响制氢装置PSA产品氢气纯度因素研究

    影响制氢装置PSA产品氢气纯度因素研究 国内外蒸汽转化制氢装置的净化工艺主要可分为两种流程,即化学净化(常规净化法)和变压吸附净化法(PSA净化法)。两种流程在国内均已有成功的操作经验,两种净化方法的选择主要取决于原料和燃料价格及技术经济比较结果。由于造气单元采用价格较低而且产氢量高的焦化干气为原料,因此采用PSA净化法的氢气成本要比采用化学净化法的氢气成本低。而且采用PSA净化法制氢装置还具有流程简单,便于生产管理,产品氢纯度高(PSA净化法生产的工业氢纯度大于99.99%)等特点,有利于减少加氢装置的投资和消耗。因此,推荐采用PSA净化法。来自造气单元压力约2.1MPa(G)、温度40℃中变气进入界区后,自塔底进入吸附塔中正处于吸附工况的塔(始终同时有两台),在其中多种吸附剂的依次选择吸附下,一次性除去氢以外的几乎所有杂质,获得纯度大于99.9%的产品氢气,经压力调节系统稳压后送出装置。当吸附剂吸附饱和后,通过程控阀门切换至其它塔吸附,吸附饱和的塔则转入再生过程。在再生过程中,吸附塔首先经过连续四次均压降压过程尽量回收塔内死空间氢气,然后通过顺放步序将剩余的大部分氢气放入顺放气罐(用作以后冲洗步序的冲洗气源),再通过逆放和冲洗两个步序使被吸附杂质解吸出来。逆放解吸气进入解吸气缓冲罐,冲洗解吸气进入解吸气缓冲罐,然后经调节阀调节混合后稳定地送往造气单元的转化炉作为燃料气。因此产品氢的纯度就成了考量装置的重要标准,PSA影响产品氢纯度的因素就成了研究的重点对象。本文对PSA提纯氢气的工艺原理进行了简要概述,并对PSA影响产品氢纯度的因素进行了研究分析,对装置操作进行了合理化建议,以期对合理提高产品氢纯度提供可靠的理论依据。1基本原理1.1.1吸附 吸附按其性质的不同可分为四大类,即:化学吸着、活性吸附、毛细管凝缩、物理吸附。 化学吸附是指吸附剂与吸附质间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。其吸附过程一般进行的很慢,且解吸过程非常困难。 活性吸附是指吸附剂与吸附质间生成有表面络合物的吸附过程。其解吸过程一般也较困难。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。PSA制氢装置中的吸附主要为物理吸附。1.1.2吸附剂及吸附力 工业PSA制氢装置所用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、硅胶类、活性炭类和分子筛类。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。1.1.3装置所用吸附剂的特性1).AS吸附剂 在大型PSA氢提纯中的应用结果表明:AS[fo

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

  • 关于定压补水装置的智能化设计介绍

    关于定压补水装置的智能化设计介绍

    随着我国社会主义现代化建设事业的持续发展。给排水设备也在不断提高。从过去老式的水泵加屋顶水箱到现在变频供水(节能,去掉了易污染的屋顶水池)。近年来又新设计了一款供水设备—— 定压补水装置(变频)。它主要由水泵、气压罐、智能控制系统等组成。采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。http://ng1.17img.cn/bbsfiles/images/2013/11/201311011459_474884_2803766_3.jpg定压补水原理如下:自来水管网的水直接进入气压罐,设备通过旁通止回阀向用水管网直接供水;当自来水管网的压力不能满足用水要求时。系统通过压力传感器(或压力控制器,电接点压表)给出起泵信号起动水泵运行。水泵供水时。若自来水管网的水量大于水泵流量。系统保持正常供水;用水高峰期时。若自来水管网水量小于水泵流量时。气压罐内的水作为补充水源仍能正常供水。具体补水特征如下: 1、当设备处于自动控制时,全系统需增压。由P0水泵通过变频器变速运行至工频工作,水先进入补气罐,后通过止回阀流入气压罐,罐内压力增大,通过出水管道流入管网。2、当用水量继续增大,大于P1水泵工频工作时,远传压力表继续发出信号,接通P2水泵,P2水泵随用水量增大,同样由变频至工频工作,若此时流量和压力仍不能满足需要时,则可继续增加P3水泵工作,以满足全系统的需要。3、若此时压力已满足,则P2水泵由工频转变成变频工作,直至停泵为止。P1水泵同样如此。4、当用水量等于零时,系统压力保持不变的情况下,水泵停止工作,定压补水装置依靠罐内压力继续供水,维持系统压力,达到了节省电能作用。定压补水装置的特点:1、恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及水龙头共振现象。2、启动平滑,减少电机水泵的冲击,延长了电机及水泵的使用寿命,避免了传统供水中的水锤现象。3、采用变频恒压供水保护功能齐全,运行可靠,具有欠压、过压、过流、过热等保护功能。4、系统配置可实现全自动定时供水,彻底实现无人值守自动供水.控制系统具有故障报警和显示功能,并可进行工变频转换,应急供水。5、系统根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,当系统零流量时,机组进入休眠状态,水泵停止,流量增加后才进行工作,节电效果明显,比恒速水泵节电23%-55%。6、变频恒压供水设备不设楼顶水池,既减少建筑物的造价,又克服了水源二次污染,气压波动大,水泵启动频繁和建造水塔一次性投资大,施工周期长,费用高等缺点。7、整套设备只需一组控制柜和水泵机组,安装非常方便,占地面积少。8、本设备采用全自动控制,操作人员只需转换电控柜开关,就可以实现用户所需工况,操作简单。

  • AP5126 12-85V远近光切换内置MOS管 1.5A

    AP5126 是一款 PWM 工作模式,高效率、外围简单、内置功率管,适用于 12-80V 输入的高精度降压 LED 恒流驱动芯片。输出功率可达 15W,输出电流 1.5A。AP5126 可实现全亮/半亮功能切换,通过 MODE 切换:全亮/半亮/循环模式。AP5126 工作频率固定在 150KHZ 左右,同时内置抖频电路,可以降低对其他设备的 EMI 干扰。另外采用平均电流采样模式,可以提高宽输入电压情况下的电流精度。AP5126 带有输出短路保护功能,12V~80V 输入条件下,短时短路不会损坏电源器件。产品特点宽输入电压范围:12V~80V可设定电流范围:10mA~1500mA固定工作频率:150KHZ内置抖频电路,降低对其他设备的 EMI干扰平均电流模式采样,恒流精度更高0-100%占空比控制,无电流节点跳变输出短路保护功能模式:全亮/半亮ESOP8 封装应用领域电动车,摩托车灯照明汽车灯照明手电筒有兴趣的朋友可以联 系林生:18923843922微信同号 Q Q:3004803466可提供IC测试板和配套方案

  • 气相色谱的样品引入装置:多通阀_六通阀与十通阀(二)

    [font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]六通阀的驱动和切换控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在使用六通阀时候,切换六通阀的两个位置有多种方式,主要为手动切换,电动切换和气动切换。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.1 [/font][font=微软雅黑, sans-serif]手动切换[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]手动切换阀使用简便、价格低廉,在很多仪器上都有配置。使用时候只需要扳动阀的手柄即可完成进样或返回载样(取样状态)。同时,有一些手动切换阀上也配置有仪器启动和触发装置(如限位开关),在扳动阀手柄的过程中会自动触发[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]或者色谱工作站。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/01/ed/701eda8bfb1698aa8c3c156b26c157c1.png[/img][/align][font=微软雅黑, sans-serif]3.2 [/font][font=微软雅黑, sans-serif]电动切换[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电动切换[/font][font=微软雅黑, sans-serif]指的是使用电机将电机驱动轴与阀杆相连接,通过给电机驱动器信号使电机正向或逆向旋转,从而实现阀的切换和复位(取样状态和进样状态的切换)。跳过调整电机旋转的角度,可以实现对六通阀、十通阀等不同进样阀的驱动。目前多数[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]均有外部事件端口可以为电机驱动器提供信号,并可以在仪器面板或工作站软件上设置阀切换或者复位的时间。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ec/19/cec19fa325ec98378fd2642267ce699e.jpeg[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b5/17/6b517e5d446b01f8bbe742da32b92057.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]3.2 [/font][font=微软雅黑, sans-serif]气动切换[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]气动切换与电动切换类似,不过需要使用气缸与两位五通电磁阀结合,并将气缸驱动轴与阀杆相连接,通过两位五通阀的切换带动气缸切换状态来旋转阀杆,从而使阀正向或逆向旋转,实现阀的切换和复位(取样状态和进样状态的切换)。简单的工作过程包括以下几部分:[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.2.1 [/font][font=微软雅黑, sans-serif]气缸的原理示意[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当气缸1或者气缸2分别进气或者出气时候,带动气缸的驱动轴在垂直方向有一个运动距离,再通过传动结构变为水平平面方向的转动,从而带动阀体转动,实现阀的切换和复位(取样状态和进样状态的切换)。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/df/f0/fdff011e6774a6487f0c0672293f69f6.png[/img][/align][font=微软雅黑, sans-serif]3.2.2 [/font][font=微软雅黑, sans-serif]两位五通电磁阀带动气缸切换状态[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]二位五通电磁阀是用来控制流体的自动化基础元件,其通过通电/断电来切换内部活塞的位置,从而形成不同的气路,从而控制上图气缸1或者气缸2的进气与出气。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/cc/b2/6ccb29d169ec50091c1aa9ba49310e10.png[/img][/align][font=微软雅黑, sans-serif]使用两位五通电磁阀时候,气源接在两位五通阀的1位置,作为进气端;在初始状态下1、4连通,2、3排气或者1、2连通,4、5排气,从而带动气缸切换状态,进一步实现阀(多通阀/六通阀)的切换和复位。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/86/b6/e86b6e613f7eed2a4a8e0297a2ec93f6.png[/img][/align][font=微软雅黑, sans-serif]目前多数[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的外部事件端口可以为两位五通电磁阀提供驱动(供电),并可以在仪器面板或工作站软件上设置两位五通电磁阀切换状态(供电/断电)的时间——也即是阀(多通阀/六通阀)切换或者复位的时间。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b5/17/6b517e5d446b01f8bbe742da32b92057.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]4 [/font][font=微软雅黑, sans-serif]十通阀的结构和工作原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,十通阀的应用也非常的广泛。十通阀的结构和六通阀类似,区别是气路接口变为十个;驱动方式也与六通阀类似,可以实现手动切换,电动切换和气动切换。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在进样/样品引入功能上[/font][font=微软雅黑, sans-serif],十通阀可以实现三种模式的进样:一是双定量环交替进样;二是双定量环同时进样;其三是单定量环进样+辅助功能,辅助功能指的是色谱柱反吹、切换色谱柱顺序等功能。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](1)双定量环交替进样[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]双定量环交替进样指的是十通阀上安装有两个同样的定量环,在其中一个定量环1串入分析流路时,另外一个定量环2可以同时采集样品;当阀切换之后,定量环2及其中的样品直接串入分析流路。此种使用方法可以节省样品采集时间,同时降低和减少流路由于阀切换造成的波动。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/3d/ac/b3dac10ba8f94585cad217ce190b4d7f.png[/img][/align][font=微软雅黑, sans-serif](2)双定量环同时进样[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]双定量环同时进样指的是十通阀上安装有两个同样的定量环,十通阀切换后,装有样品的定量环1和定量环2被分别串入不同的分析流路中。目前市面上常见的非甲烷总烃仪器常用此种方法。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/aa/92aaa1ea832b092f1032d578b917d7de.png[/img][/align][font=微软雅黑, sans-serif](3)单定量环进样+辅助功能[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单定量环进样+辅助功能[/font][font=微软雅黑, sans-serif]指的是十通阀上只安装有一个定量环,十通阀切换后,除了定量环串入分析流路之外,还伴随有反吹、切换色谱柱顺序等某一项功能。下图展示了十通阀切换前后,定量环被串入分析流路之中,预柱中载气方向发生了改变,同时两支色谱柱也经历了并联和串联的改变。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/fa/c9/3fac9f4df0b168bc68ba7978aaf9d7c7.png[/img][/align][font=微软雅黑, sans-serif]5 [/font][font=微软雅黑, sans-serif]使用多通阀/六通阀&十通阀进样的小技巧[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]实际分析中,常使用玻璃针筒向定量环中注入样品。由于定量环出口直接与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]连,且推动针筒注入样品的力度可能不一致,容易造成定量环中注入的样品压力波动较大,从而使分析重复性较差;同时由于定量环内样品压力与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]系统内的压力不一致,阀切换时会因为压力波动引起基线较大的波动。为了避免以上情况的出现,使用玻璃注射器向定量环中注入样品时候,应当尽可能的保持缓慢匀速推动;有些厂家也会在定量环的出口处安装背压阀来控制定量环内气体的压力,以保证良好的重复性。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/05/ff/305ffcd2abe06ff34893065859b2e8ad.png[/img][/align][font=微软雅黑, sans-serif]另外还可以结合实际情况,如通过安装气体采样泵以固定流速抽取样品气的方式向定量环中注入样品,或者为阀体安装温度控制系统等方式来改善使用多通阀/六通阀&十通阀进样的效果。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]进样/样品引入[/font][font=微软雅黑, sans-serif]是多通阀/六通阀&十通阀的常用功能,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,六通阀和十通阀还具有多种多样的应用场景,其具体内容将会在后期的文章中详细介绍[/font]

  • 工作界面不切换

    设置温度为40度,放好样点击开始,升到40度的温度时,并没有马上切换工作界面,气路也没有显示,温度也不上升了,不知怎么回事了。手动打下气路的话,到了40度好久才切换界面,温度才上升,这是怎么一回事呢?我是初学者,请多多指教一下,谢谢了。

  • 六通阀切换的动力问题

    常州磐诺的六通阀气路怎么走的,阀的切换动力是什么?动力这个问题,困扰我很久了!所有的讲六通阀的只讲了六通阀切换的原理,没有讲为什么就这么切换了?动力是啥?是气体顶了什么东西,阀就切换了,还是怎么着的?求大神。。。们指点一二。。。三四五六七!

  • 液质切换正负离子扫描模式

    各位老师,想要请教一下,我用的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]是AB的4000 QTrap,想要了解下正负离子切换模式怎么建立质谱方法啊?

  • 穆柯GTE-03系列折弯机保护装置光源采用可见光自动对光技术

    穆柯GTE-03系列折弯机保护装置光源采用可见光自动对光技术

    折弯机激光保护装置在选用光幕时可选用一般安装和编程模式安装,一般安装是由光幕直接发送信号到折弯机控制系统,编程模式适用于大型全自动折弯机,输入信号更多,另外可以编辑每个信号的逻辑信息。可有效防止折弯机工作时压伤工作人员的手指,手臂,能够对工作人员进行有效的保护。折弯机激光保护装置光幕可以用于平板折弯,折盒,Z型折弯等多种形式的工件。将所有功能集中到操作面板上,更有利于使用者切换各种模式。内置电源稳定模块,反接保护模块过载保护模块,适用于各种折弯机。所用光源采用可见光,并采用了发光器自动对光技术、即使折弯机强烈的振动光都可以自动找正,对光更加便利。光幕采用自判断数据处理芯片,对光的灵敏度自动修正,并在持续使用过程中根据光的衰减度自动增量,产品设计10万小时。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/06/202306140949544453_861_5922841_3.jpg!w690x690.jpg[/img]折弯机保护装置调试及注意事项三点面板指示灯①E1、E2、E3为L1、L2、L3接收点指示灯,在正常通光时,L1、L2、L3三个接收点接收到光束,E1、E2、E3指示灯。遮挡任意一个接收点相对应的指示灯灭。②正常模式,通光状态、遮光状态,正常通光时遮光状态指示灯亮,L1、L2、L3三个接收点任意一个或全部被遮挡时遮光状态指示灯亮。、③屏蔽模式,当钥匙开关打到屏蔽模式时将折弯机保护装置屏蔽,发光器关闭。此时遮挡无效,折弯机正常工作。④工进模式,工进模式为折弯机保护装置转换信号S1,可由控制器提供或采用折弯机慢下信号。⑤折盒模式,钥匙开关打到折盒模式时折弯机保护装置自动屏蔽L1接收点,可用于盒状工件的折弯。【正常模式】在进行折板操作时,选用此模式,这时 E1、E2、E3 光束全部有效, 快下过程中,任何一束光被遮挡安全输出断开。【折盒模式】在进行折盒操作时,选用此模式,这时 L2、L3光束全部有效, L1被影响,不再起保护作用,快下过程中,L2、L3任何一束光被遮挡安全输出断开。【屏蔽模式】在进行折弯机更换模具或折异形件操作时,选用此模式,发光器激光熄灭,这时 L1、L2、L3 光束全部被影响,安全输出信号保持输出时激光保护装置不起保护作用,即使折弯机以安全速度合模,依然可能存在安全隐患,请慎用此项功能,在这种模式下,出现安全事故,本公司不承担任何法律责任。

  • 气相色谱的样品引入装置:热解吸_热脱附装置(八)

    [font=微软雅黑, sans-serif]2.3.2 [/font][font=微软雅黑, sans-serif]解吸_脱附阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]仪器处于解吸_脱附阶段时,[color=red]采样管处于加热状态[/color];采样管两侧的[color=red]开关电磁阀处于关闭状态[/color],采样管流路没有[color=red]辅助气[/color](一般和载气使用同种气体)通过,相当于采样管处于封闭状态[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]此时,由于采样管处于封闭状态,受热解吸_脱附出的组份会充满采样管管内的腔体以及采样管之后的管路。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4d/cd/54dcd73fadbe8d9f03fb35bb3344b5b4.png[/img][/align][font=微软雅黑, sans-serif]对于常见的一次热解吸装置,对采样管进行加热的过程,是指[color=red]手动将采样管置于仪器采样管加热盒[/color]的过程。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/1f/23/61f238d78b41dd72d6c08c439be57200.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.3.3 [/font][font=微软雅黑, sans-serif]进样阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]仪器处于进样阶段时,六通阀切换流路,采样管内受热脱附出的样品组份被载气通过传输线带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口中,从而进入色谱柱进行分离和分析。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/af/ba/9afbae8480e191a885d05867f2ea3ea6.png[/img][/align][font=微软雅黑, sans-serif]需要特别注意的是,载气进入采样管的方向与平时采样抽取样品的方向相反;此时,切换流路后的开关电磁阀仍然处于关闭状态。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一般情况下,对于一次热解吸装置,将采样管中脱附的样品带入进样口的载气气流由进样口的机械阀或者EPC(电子流量控制装置)提供,为了迅速带走脱附出的样品组份需要较大的流量;但是进样口如果安装了毛细柱,毛细柱的柱流量一般较小(1-3 ml/min),两者流量的不匹配需要调节进样口分流流量,会降低检测的灵敏度,同时也可能造成进样过程过长,使样品峰拖尾。因此,一次热解吸装置多用于使用填充柱或者大口径毛细柱(0.53mm内径毛细柱)的分析。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.3 [/font][font=微软雅黑, sans-serif]老化阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]老化阶段又称之为清洗阶段,或者活化阶段。一方面,解吸_脱附过程结束后,一些组份可能仍然残留在采样管中;另一方面,在长时间或者多次运行样品后,采样管效能可能会下降。因此,需要采用较长时间的高温烘烤来清除采样管和仪器内的水汽和残留的污染物,使之恢复到较好的状态,确保不会影响后续分析。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一些仪器在采样管老化阶段,采用比解吸_脱附阶段更高的温度(不超过采样管内吸附剂的最高使用温度),另外一些仪器使用和解吸_脱附阶段相同的温度,不过保持在该温度下的时间增加。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/30/38/5303800a7493598c9950646e96cc2503.png[/img][/align][font=微软雅黑, sans-serif]仪器处于老化阶段时,六通阀切换流路,采样管两侧的[color=red]开关电磁阀处于开启状态[/color],采样管流路内有[color=red]辅助气[/color](一般和载气使用同种气体)通过,通过吹扫出口排空。辅助气的流量可以通过针型阀调节,并在浮子流量计上显示出来。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]与解吸和进样阶段相比,老化阶段应持续更长时间,采用更大流量(150到200 mL/min)并且采样管加热到相当高的温度(不超过解析管可以使用的最高温度)。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3[/font][font=微软雅黑, sans-serif] 一次热解吸的更多内容[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]简单的一次热解吸装置其工作状态主要包括准备、解吸_脱附、进样、老化四个步骤;对于一些自动化程度较高的一次热解吸装置,可能会包括更多的步骤,比如在解吸_脱附阶段之前具有检漏、干吹的功能;另外,一些热解吸装置还可以安装在线采样模块。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.1 [/font][font=微软雅黑, sans-serif]具有检漏、干吹功能的仪器[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]以下分析过程来自于安捷伦7667A小型热解析仪,其包括了更多的功能和过程,图片来源于《7667_UserManual》。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.1.1 [/font][font=微软雅黑, sans-serif]安捷伦7667A的工作流程[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]7667A[/font][font=微软雅黑, sans-serif]小型热解析仪(基本型(G4370A),不带采样泵,适用于离线采样)的工作流程可见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/bc/458bcff795eca291979e0a858e0db585.png[/img][/align][font=微软雅黑, sans-serif]3.1.2 [/font][font=微软雅黑, sans-serif]安捷伦7667A的工作步骤[/font][font=微软雅黑, sans-serif]3.1.2.1 [/font][font=微软雅黑, sans-serif]测漏阶段[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]用以检查系统密封性,避免系统漏气造成分析结果不准确。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/8f/08/18f08b09cd932d4cd719ab603ccfe390.png[/img][/align][font=微软雅黑, sans-serif]3.1.2.2 [/font][font=微软雅黑, sans-serif]干吹阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]干吹阶段在测漏结束之后开始执行。在此过程中载气将会被吹进管路中,[color=red]管路中残留的空气以及未被吸附的样品会被吹出[/color],从而在解吸之前使采样管处于一种相对清洁的状态。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/3b/b9/a3bb95793a023b49eadc1e7002801894.png[/img][/align][font=微软雅黑, sans-serif]3.1.2.3 [/font][font=微软雅黑, sans-serif]解吸阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]采样管处于封闭状态,采样管中的组份受热脱附,充满采样管管内的腔体以及采样管之后的管路[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/f4/258f483aa49b0d0600f915c9573c20cd.png[/img][/align][font=微软雅黑, sans-serif]3.1.2.4 [/font][font=微软雅黑, sans-serif]进样阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]采样管内受热脱附出的样品组份被载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口中,从而进入色谱柱进行分离和分析。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/e5/b8/7e5b8ec6c0dea0ac146f6efa0656af4c.png[/img][/align][font=微软雅黑, sans-serif]需要说明的是:解吸阶段可以和进样阶段合。此时,仪器在关闭解吸模式的情况下,采样管的温度阶升将与进样模式同时开始。采样管内的组份会在脱附的同时注射到色谱仪的进样口中。对于目标分析物沸点较高的样品,采用这种模式对减小残留有积极作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3.1.2.5 [/font][font=微软雅黑, sans-serif]清洗阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]解吸过程结束后,一些组份可能仍然残留在解析管中。为确保残留物不会影响后续分析,需要采用高温来清洗采样管。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/78/e7/578e798863a742889b5306cb1381ae9d.png[/img][/align][font=微软雅黑, sans-serif]3.1.2.6 [/font][font=微软雅黑, sans-serif]空闲阶段[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]仪器不进行分析时,处于空闲阶段。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c1/71/1c1719a916166a5638f1ee806c2d9d0e.png[/img][/align][font=微软雅黑, sans-serif]3.2 [/font][font=微软雅黑, sans-serif]具有在线功能的仪器[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]在简单的一次热解吸装置上进行细微的改进,即可进行在线采样。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/74/10/67410ea837b88ab332e3b19709eb9d16.png[/img][/align][font=微软雅黑, sans-serif]采样时,[color=red]设定好采样流量和采样时间[/color],电磁开关阀①和③处于开启状态,采样泵可将气体样品抽取到管路中,目标组份吸附于采样管上,即可完成在线样品采集。其他过程与前述第2节相同。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]以上是本文的全部内容。一次热解吸装置因为价格便宜、操作简单获得了非常广泛的使用,多用于使用填充柱或者大口径毛细柱(0.53mm内径毛细柱)的分析,细口径毛细柱也有使用;如果需要更高的灵敏度和更佳的峰形,一般会使用二次热解吸装置,下一节将会对此进行详细的介绍[/font]

  • 切换灯丝2后,离子丰度值变成原来的2倍,是什么原因?

    安捷伦7890-5975气质联用灯丝1烧坏后,切换到灯丝2,样品性质差不多,用同样方法运行后发现离子丰度值变成原来的2倍,基线也稍高。查看调谐文件发现EM电压比上一次增加94,其它没什么变化。另外,就是灯丝切换后,MS重启了一下,抽真空6小时候做样品。请问这有影响吗?大家遇到过这种情况没有,到底是什么原因呢?谢谢!

  • 【求助】切换成反吹状态时切换峰太大,什么原因?

    本人使用的是胜利SP-2K色谱仪器(本仪器是氢火焰离子鉴定器),刚用的时候还正常,前几天拆卸过一次十通转阀后出现了此现象,短周期仪器设置的流量:载气A40ml/分,载气B40ml/分,(载气为氢气)。助燃空气为400,现在观察仪器切换时载气流量有4ml左右的波动,感觉像是载气不平衡所致,希望高手帮咱分析一下原因,造成这种现象的主要原因。不胜感激。

  • 如何实现进样方式的切换

    我们的GCMS有两个进样口,一个是自动进样,一个是顶空,不想频繁换柱子接进样口,就向工程师提出改进方案,但是工程师表示要么进样口切换,要么柱子切换。目前有没有哪家的GCMS实现过这种操作呢,比如两个进样口下方接三通,通过软件控制什么的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制