当前位置: 仪器信息网 > 行业主题 > >

强子对撞机

仪器信息网强子对撞机专题为您整合强子对撞机相关的最新文章,在强子对撞机专题,您不仅可以免费浏览强子对撞机的资讯, 同时您还可以浏览强子对撞机的相关资料、解决方案,参与社区强子对撞机话题讨论。

强子对撞机相关的资讯

  • 欧洲大型强子对撞机刷新质子流对撞能级纪录
    据美联社报道,世界最大的粒子加速器——欧洲大型强子对撞机(LHC)3月19日刷新了由它保持的一项世界纪录,对撞机内的两束质子流被分别加速至3.5万亿电子伏特的能级,是原纪录的三倍。   欧洲核子研究中心称,两束质子流分别以3.5万亿电子伏特的能级在大型强子对撞机所在的环形隧道中运行。大型强子对撞机于2003年开始兴建,投入达100亿美元,位于法国和瑞士边境地下100米深、长17英里(约合27公里)的环形隧道中。   预计,在未来几天科研人员将使两束质子流对撞,展开一系列试验来研究原子内部微小粒子的奥秘,以揭开物质的形成之谜。   去年11月30日,大型强子对撞机(LHC)内的两束质子流被加速至1.18万亿电子伏特的能级,比之前该记录的保持者——美国费米国家实验室加速器——创造的能量多出20%,成为世界上“最强大的机器”。美国费米国家实验室加速器2001年曾创下0.98万亿电子伏特的纪录。   大型强子对撞机以创纪录的能级运行,将有助于揭开粒子物理的一些未解之谜,比如暗物质和暗能量是否存在。科学家还希望在微观上查明宇宙大爆炸之后瞬间内所发生的一切。科学界普遍认为,宇宙诞生于大约140亿年前的大爆炸。   自从去年大型强子对撞机重启以来,欧洲核子研究中心报告称已经取得了一系列成就。大型强子对撞机最初开始启动后,遭遇了一系列故障,科研人员不得不花费14个月时间对其进行维修和改进。去年冬天,欧洲核子研究中心用2个半月时间对大型强子对撞机停机进行改进,以做好准备迎接更高能级的对撞试验。   欧洲核子研究中心加速器负责人史蒂夫迈尔斯说:“将质子流加速到3.5万亿电子伏特能级表明大型强子对撞机的整体设计是可靠的,也表明我们自其2008年9月关闭以来所做的改进是有效的。”   不过,大型强子对撞机自上月底重新启动后显现两处“缺陷”,科研人员决定让这一世界最大的粒子加速器2011年底停机,为期将近1年,以实施“修复”。   欧洲大型强子对撞机是世界最大的粒子加速器,用于研究宇宙起源和各种基本粒子特性。大型强子对撞机在接近绝对零度的温度下(温度低于外太空)运行,以便让大约2000个超导磁体最有效地引导质子。欧洲核子研究中心(CERN)是世界上最大的粒子物理研究中心,现有20个成员国,同时获得了日本、印度、俄罗斯和美国等众多国家的支持。
  • 大型强子对撞机“开撞” 刷新最高能级纪录
    大型强子对撞机30日启动总能量达7万亿电子伏特的质子流对撞,成功刷新质子流对撞最高能级纪录,首次达到设计目的。   成功对撞   对撞试验于当地时间30日6时(北京时间30日12时)开始。按照计划,两束能量均为3.5万亿电子伏特的质子流将在超导磁铁吸引下“迎头相撞”。   法新社报道,由于质子流中部分质子流失,首次试验失败。   欧洲核子研究中心负责人罗尔夫霍耶尔说:“我们不应忘记这是一台新机器……我们要为暂时性的小问题做好准备,我相信我们会克服这些小问题。”   核子研究中心束流部门负责人保罗科利尔说,“当你有这样一台复杂机器时就会出现这种问题……我们会重新注入(质子)。”   数小时后,两束质子流在第三次尝试时成功对撞。核子研究中心控制室内响起掌声。   大型强子对撞机2008年9月10日正式启动,一度因氦泄漏停机,历时14个月、花费4000万美元后得以修复。   去年年底,对撞机重启后实现总能量高达2.36万亿电子伏特的质子流对撞,创下质子流对撞能级纪录。   对撞不易   两束质子流19日开始在大型强子对撞机内流通,为30日对撞做准备。尽管每束质子流带有上万亿个质子,但质子极为微小,在两束质子流交汇过程中发生对撞的质子数量很少。   欧洲核子研究中心加速器及技术负责人史蒂夫迈尔斯说,令质子发生对撞堪称一项挑战,“这就像从大西洋两岸(向对岸)扔出一些针,令这些针在半路上迎头相撞”。   路透社认为,虽然两束质子流成功迎面交汇,质子第一次发生对撞也可能需数小时,甚至数日。   大型强子对撞机自问世以来受到学术界热切关注,但也遭受不少疑虑。一些人甚至担心,对撞试验会生成黑洞以致地球毁灭。   欧洲核子研究中心科学家否认对撞试验会对人类构成威胁。他们说,对撞产生的任何“洞”都将在顷刻间消失,不会产生任何危害。   能量之源   大型强子对撞机建于瑞士和法国交界地区地下100米深处、总长大约27公里的环形隧道内,大约7000名科研人员参与对撞机建设。   对撞机旨在借助总能量达7万亿电子伏特的质子流对撞模拟宇宙大爆炸后最初状态,以便对宇宙起源和各种基本粒子特性展开深入研究,包括“寻找”希格斯波色子以及研究暗物质与暗能量。   按照粒子物理学标准模型预言,希格斯波色子是物理学家从理论上推断出的一种基本粒子,是物质的能量之源。研究人员希望借助对撞试验发现希格斯波色子的“真面目”,证实这种粒子的存在。   欧洲核子研究中心科学家德斯皮奥那哈齐弗蒂亚杜说,希格斯波色子将为探寻生命起源提供线索。   按照核子研究中心负责人霍耶尔的说法,对撞试验成功后,电脑将整理出大量试验数据,可能需花费数月才能得出科学结论。   霍耶尔说,研究人员希望在今年年底前对暗物质“有所发现”。
  • 大型强子对撞机实现每秒万次对撞
    1000亿质子数量刷新世界纪录   据英国广播公司(BBC)6月29日(北京时间)报道,位于法国与瑞士交界处的世界最高能级粒子加速器——大型强子对撞机(LHC),近日完成了每秒1万次的粒子对撞实验,刷新了单位时间内对撞质子数的世界纪录,而每一束多达1000亿个质子的数量,同时创造了对撞质子数的新世界纪录。   在过去数月内,欧洲核子物理研究中心(CERN)研究团队极为缓慢地逐步提高着LHC内质子束的能量与强度,终于在近日使两束质子束完成了每秒1万次的粒子对撞实验。这是LHC首次达到了设计时所预期的工作强度——即运行于环形隧道中的粒子数量达到物理学家所计划的数量,因为每秒1万次的粒子对撞实验意味着,每一束要多达1000亿个质子,其同时创造了对撞质子数量的新世界纪录。   CERN的顶级理论物理学家之一约翰埃利斯博士表示,质子拥有夸克粒子及其他更小粒子,性质相当复杂,也因此质子的碰撞“才有看头”,而实现的对撞次数越多,就越接近超对称性、暗物质以及物理界翘首以盼的“上帝粒子”——希格斯玻色子,以此达到一个物理学新领域。   刚活动完“筋骨”的LHC似乎正要大展抱负。近一年来,世界第二强大的对撞机、美国费米国家实验室中的万亿电子伏特加速器在LHC的休整期间内屡立奇功、风头正劲,但LHC项目运行组负责人迈克拉蒙特却没把它放在眼里,“再过两年我们会让费米国家实验室失业。”   虽然忍气吞声已久,但LHC的团队人员这次小心行事,只因这个庞大的仪器实在颇“脆弱”,稍有意外或操作不慎它就会宣布罢工。自2008年9月正式启动以来,LHC已频频“抱恙”,其“病因”包括液氦泄漏、磁铁损坏、冷却重启,更有甚者,一只路过的飞鸟掉下的面包屑正好落到机器裸露在室外的部分,导致加速器部分过热而自动关闭了些时日。   对于这个经常需要休养生息的矜贵家伙,伟大的科学家们亦只能看它脸色,毕竟它将呈上一场前所未见的科学盛宴。人们已耗了太久来等它开席,而今向预期目标的一步步冲击让希望重现:LHC,将揭开一个前所未见的科学世界的帷幕。
  • 欧洲大型强子对撞机实现迷你"宇宙大爆炸"
    迷你“宇宙大爆炸”通过令铅离子高速撞击产生,撞击产生的温度是太阳核心温度的100万倍。 图为迷你“宇宙大爆炸”的电脑效果图。   大型强子对撞机内部   据英国媒体9日报道,科学家借助欧洲大型强子对撞机(LHC)成功完成了创造迷你版“宇宙大爆炸”的实验,产生了一个温度为太阳核心温度100万倍的火球。参与这个项目的英国科学家热烈庆祝了这个具有里程碑意义的实验。   太阳核心温度的100万倍   大型强子对撞机创造了一个迷你版本的“宇宙大爆炸”,而宇宙正是诞生于大约140亿年前的大爆炸。报道称,实验的成功将开启粒子物理学研究的新世纪。   据报道,迷你版“宇宙大爆炸”是通过令铅离子高速撞击产生的,撞击产生的温度是太阳核心温度的100万倍,重现了大爆炸后宇宙的瞬间状况。   ALICE离子对撞实验项目英国小组成员、伯明翰大学物理学家戴维埃文斯博士说:“我们对这一成就激动万分。对撞实验产生了迷你版本的宇宙大爆炸,而且实验中取得了有史以来的最高温度和密度。这个过程发生在一个安全、可控的环境内,生成了炽热和稠密的亚原子火球,温度超过10万亿摄氏度,即太阳核心温度的100万倍。在这一温度下,连构成原子核的质子和中子也被融化了,产生了称为‘夸克与胶子等离子体’的炽热而稠密的夸克与胶子汤。”   将帮助了解“强作用力”   强大的磁体令铅离子以接近于光速的速度在地下数百英里的隧道内高速运转。铅离子以相反两个方面飞行,最后聚焦变成一个狭长的光束,被迫在ALICE探测器内撞击。科学家希望通过夸克与胶子等离子体对强作用力有更多的了解。强作用力是自然界存在的四种基本作用力之一。   埃文斯说:“强作用力不仅使原子核牢牢地绑定在一起,而且还对它们98%的质量负责。我现在期待着研究大爆炸发生后瞬间构成宇宙的一小部分物质。”ALICE探测器是大型强子对撞机的组成部分。   名词解释   大型强子对撞机   大型强子对撞机是世界上最大、能量最高的粒子加速器,旨在探究宇宙起源,它建在法国与瑞士边境地下一条16.7 英里(约合27公里)长的环形隧道内,由欧洲核子研究中心负责管理。   大型强子对撞机共有4台探测器构成,它们分别安装在环形隧道的4个地下巨洞内,分布在大型强子对撞机周围。其中,ALICE探测器高16米、宽26米、重约1万吨。   来自全球30个国家、100个科研机构的大约1000位物理学家和工程师参与了ALICE实验。英国方面有8位物理学家和工程师以及7名来自伯明翰大学的博士生参与了这个项目。在铅原子核撞击期间,ALICE探测器以每秒1.2千兆字节的速度下载数据,生成相当于300万张CD存储的信息。   本地链接   20多名中国科学家参与   大型强子对撞机从上世纪90年代初开始设计,来自80多个国家和地区的约7000名科学家和工程师参与建设,建造费用高达37.6亿欧元。   中国在相关实验中投资数千万元人民币并参与物理分析,20余名中国科学家参与了“大型强子对撞机”项目。在科技部、自然科学基金委、中国科学院的共同资助下,中科院高能物理研究所、北京大学、中国科技大学等单位的研究人员成为LHC项目的一部分。据悉,LHC探测器的部分结构是在我国制造完成的。对撞机的前期研制结束后,我国科学家也得以分享对撞期间的研究数据。   2008年9月10日,欧洲大型强子对撞机正式启动,9月19日在隧道第三段至第四段尝试进行5万亿电子伏特质子束流运行时,因出现氦泄漏,对撞机被迫停止运作。2009年11月20日,大型强子对撞机重新启动。
  • 大型强子对撞机首次对原子进行加速
    p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心日前宣布,该机构人员用大型强子对撞机(LHC)加速了电离的铅原子,这是该设备首次用于加速原子。 /p p style=" text-align: justify " & nbsp & nbsp 大型强子对撞机是世界最大的粒子加速器,日常工作是加速质子即氢原子核,有时用于加速不带电子的其他原子核,此前从未处理过带有电子的原子核。 /p p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心发布的新闻公报说,这项试验是为了检验“伽马射线工厂”设想的可行性,将来有可能用大型强子对撞机产生高强度伽马射线,用于物理学前沿研究。 /p p style=" text-align: justify " & nbsp & nbsp 铅原子正常情况下有82个电子,研究人员将电子剥离到只剩一个,使铅原子变成带正电荷的离子。在7月下旬开展的试验中,大型强子对撞机使6束这样的铅离子稳定运行了两个小时,随后研究人员有意弃置了离子束。 /p p style=" text-align: justify " & nbsp & nbsp 伽马射线是一种波长极短的高能电磁波。根据设想,用大型强子对撞机把原子加速到接近光速,再用激光将其中的电子激发到较高能态,电子回落到低能态时就会释放出伽马射线。 /p p style=" text-align: justify " & nbsp & nbsp 当前已经有用电子束产生伽马射线的手段,不过大型强子对撞机产生的伽马射线强度会更高,可用于新型粒子物理学实验,有可能帮助探索暗物质。 /p p br/ /p
  • 中国科学家参与欧洲大型强子对撞机实验
    欧洲核子研究中心(CERN)跨越日内瓦市郊瑞士、法国边界的大型强子对撞机(LHC)两个质子束流3月30日对撞成功,与欧洲的控制室远程连接的中国科学院高能物理研究所对媒体说,中国科学家参与了LHC上的4个大型探测器和物理实验,为本次数万亿电子伏特、迄今最高能量质子束流的成功对撞作出贡献。   中科院高能所粒子天体物理中心研究员陈国明介绍说,中国科学家参与到LHC隧道里安放的4个探测器CMS(紧凑缪子线圈)、ATLAS(超环面仪器)、LHCb(底夸克探测器)和ALICE(大型离子对撞机)当中,其中,中科院高能所牵头对CMS和ATLAS探测器作出重要贡献。CMS和ATLAS两个实验的物理目标是寻找希格斯(Higgs)粒子、额外维度和宇宙中神秘的暗物质。希格斯粒子是一种理论上预言的能解释其他粒子质量起源的新粒子。   40多个国家和地区约3000名科学家参与了CMS和ATLAS实验。中国内地有4家科研单位参与CMS实验:中科院高能所和北京大学组成的CMS中国组成功建造1/3的端部缪子探测器阴极条室和阻性板室,并参与拟定CMS技术设计报告 中科院上海硅酸盐研究所向CMS提供了核心探测材料——用于电磁量能器的5000余根自主研制的钨酸铅闪烁晶体 中国科技大学参与电磁量能器的研制 CMS中国合作组在中科院高能所建立CMS实验远程控制中心,与在CERN和美国费米实验室一起轮班承担CMS实验的一部分实时控制工作。   由中科院高能所、山东大学、中国科技大学和南京大学组成的ATLAS中国组,则对ATLAS实验的缪子探测器和电磁量能器的设计和建造做出重要贡献。   陈国明称,目前,CMS和ATLAS实验的中国科学家正积极参与探测器日常运行值班和非常复杂的模拟数据分析,为用即将获取的实验数据发现包括希格斯在内的新粒子和新物理现象做准备。中科院高能所的计算中心还建立LHC数据分析网格平台,加入全球LHC实验数据分析网格,为中国物理学家和世界各国的物理学家服务。   LHC是当前世界上最大的大型强子对撞机,建在周长为27公里的环形隧道里,隧道埋在地下50到175米处。LHC的设计目标是对撞两个反向回旋的质子束流,质子束流的总能量最高达14万亿电子伏特。专家认为,LHC对撞成功标志着LHC物理研究的开始,意味着一个粒子物理新时代的到来。
  • 欧洲强子对撞机首次对撞未发现迷你黑洞
    北京时间12月21日消息,据美国《连线》杂志报道,欧洲大型强子对撞机(LHC)首次对撞实验不断带给人惊喜。上周,紧凑型μ子螺旋型磁谱仪(简称CMS)任务团队宣布,他们向《物理快报》杂志提交了一篇论文,描述了对某些形式的弦理论的实验过程。   据任务团队介绍,如果这种形式的弦理论是正确的,大型强子对撞机应该可以生成迷你黑洞,不过这些黑洞会瞬间消失,而不是像某些人担心的那样吞噬地球。然而,对CMS探测器获取数据的分析结果表明,黑洞能量衰减的信号显然并不存在。   何为弦理论?   弦理论试图揭开一个物理学谜团,即物理学的两大理论量子力学和相对论为何基本上不相容。弦理论假设四维空间之外还存在额外维度,从而将这两种理论结合起来。弦论的一个基本观点就是,自然界的基本单元不是电子、光子、中微子和夸克之类的粒子。这些看起来像粒子的东西实际上都是很小很小的弦的闭合圈(称为闭弦),闭弦的不同振动和运动就产生出各种不同的基本粒子。   我们肉眼是看不到这些闭弦的,因为它们被紧紧包在正常能量难以接近的微小半径内。在一种弦理论中——CMS探测器任务团队称之为ADD模式,因为是阿卡尼哈米德、季莫普洛斯、德瓦利等三位科学家提出的——这种统一性具有重力的结果。通常情况下,重力相比其他力非常微弱,原因就在于,只有在能量是大型强子对撞机的几个数量级的情况下,它才能与剩余力达到统一。   但在ADD模式中,重力只是看上去微弱,因为其中一部分被困在剩余维度中,这使得能量降至大型强子对撞机的范围以内。如果一切按照ADD模式预测的过程发展,以高于这种界限的能量相撞的粒子应该处于小于额外温度占据空间的距离内。一旦发生这种情况,它们会感受到全部的重力,立即合并变成迷你黑洞。实际上,由于太小,这个黑洞几乎经由霍金辐射瞬间衰减。   未发现迷你黑洞能量衰减信号   这种衰减过程同粒子喷射物一样清晰可见。物理学家曾表示人们应该不会错过这个过程。但是,我们通常会将别的东西误以为是黑洞。由量子色动力学(quantum chromodynamics)主导的相互作用也会产生某种频率的喷射物,所以,黑洞事件必须在这种背景下显得“鹤立鸡群”。这正是最新分析寻找的结果。CMS探测器任务团队模拟了弦理论和量子理论的喷射物的状况,以便将其排除在外,从而挽救喷射物事件——这确实涉及到TSA扫描仪评估人员运用的相同建模软件。   接着,他们利用大型强子对撞机能谱范围内的能量分析通过量子色动力学产生的背景喷射物水平,这些能量过低,不能产生黑洞。随后,他们又将分析扩展至黑洞应该能出现的能量范围,了解是否有信号在这种背景下十分明显。结果,他们并没有获得这方面的发现。CMS探测器任务团队总结说:“我们可以将3.5至4.5电子伏特最低质量下生成黑洞的可能性排除,以在95%的置信水平下评估多维普朗克尺度。”   这一结果还对弦理论以外领域的研究意义重大。迷你黑洞不是科学家预测能量衰减为喷射物的唯一假定物质,所以,缺乏高于背景的信号也对物理学本身带来一些严重的限制。另一个有利之处是,所涉及的能量完全脱离大型强子对撞机的能力范围。这样,即便历史更悠久的对撞机击败大型强子对撞机,生成希格斯粒子,我们显然也能从大型强子对撞机的实验中获取了一些有用的物理学成就。   与一些报道的截然相反的是,这项研究实验并不意味着弦理论将走向灭亡,其实只是突出了在这些能量下预测黑洞的模式。将某些模式排除在外是把可能性缩小的关键一步,大多数理论概念都有许多可能的模型,弦理论也不例外。实际上,仅存在ADD模式是完全可能的,因为物理学家正在寻找或能够在大型强子对撞机中实验的物质。
  • 大型强子对撞机发现新奇异五夸克粒子
    科学家们在欧洲核子研究中心的大型强子对撞机(LHC)上发现了一种新粒子,其被称为“奇异的五夸克”。研究团队表示,发现这样的奇异粒子有助他们理解夸克是如何结合形成复合粒子的。相关论文刊发于17日出版的《物理评论快报》杂志。  科学家们认为,夸克是不能再分割的基本粒子,目前已知的夸克包括上夸克、下夸克、粲夸克、奇异夸克、底夸克和顶夸克6种。夸克通常“三五成群”形成强子,比如重子(由3个夸克组成的质子和中子等)和介子。但更多夸克也能“成群结队”形成“四夸克态”和“五夸克态”。  此前,物理学家也发现了几种“四夸克态”。2022年7月,LHC上底夸克探测器(LHCb)实验合作组宣称,发现了一种“五夸克态”。  在最新研究中,科学家们通过以极高的能量让两束质子发生对撞,从而发现了这一新粒子,最新发现的五夸克粒子包含一个奇异夸克。  团队成员之一、意大利米兰大学伊莉莎贝塔斯帕达罗诺雷拉指出,质子和中子等常见的强子通常由两到三个夸克组成,他们最新发现的“五夸克态”非常奇特。  诺雷拉表示,科学家们发现了越来越多“四夸克态”和“五夸克态”,这些研究就像是粒子领域的“文艺复兴”,科学家们收集的证据越来越多,也越能研究更复杂的衰变,研究这些奇异的夸克态很重要,因为它们有助于揭示夸克在粒子内部的结合情况。
  • 山大为大型强子对撞机实验研制400台探测器
    3月30日,世界最大的大型强子对撞机(LHC)实验成功,成功刷新质子流对撞最高能级记录,首次达到设计目的。记者今天获悉,山东大学在ATLAS(超环面仪器)探测器的建造项目中承担了400台探测器的研制生产任务。实验中所使用的探测器就是在山东大学研发并制造的。   山东大学物理学院教授、博士生导师何瑁带领的科研团队从1998年开始参加LHC的ATLAS实验。该团队用了四年的时间为ATLAS研制400台探测器,能够覆盖800平方米的测量面积,是ATLAS实验的第一级触发探测器。为开发研制探测器,科研团队曾派遣相关人员赴以色列学习,并在山东大学南新校区专门建造了物理研究所。探测器的研发、制作总共投入资金近300万元。每台探测器都有6层楼之高,根据规定其测粒子的误差要在1毫米之内,达到几亿分之一秒的精确度。经过以色列及欧洲多国的严格检测,400台检测器全部合格,质量完全达到设计要求,得到国外同行的高度赞扬。
  • 大型强子对撞机团队确定“穿越万里”反原子核
    轻反原子核由反质子和反中子组成。根据《自然物理》杂志发表的一篇论文,大型强子对撞机(LHC)团队研究认为,轻反原子核或能在银河系中穿越很长的距离。这项研究结果表明,这些反原子核或能用于寻找暗物质。反原子以及反原子构成的反分子等,统称为反物质,反物质与我们周围世界中的常规“正”物质相遇,则发生湮灭,释放大量能量。也正因如此,地球上没有反原子核的天然来源,但它们会在银河系的其他地方产生。有观点提出,反原子核可能是源于太阳系外的高能宇宙辐射与星际介质(星系中恒星之间空间)中的原子相互作用的结果。另一种观点认为,反原子核是尚未发现的暗物质粒子湮灭所形成的。为探索反原子核与物质的相互作用,欧洲核子研究中心的LHC所属ALICE合作组,日前分析了氦-3(氦的一种稳定同位素)原子核的反粒子。研究人员利用LHC的粒子对撞产生反氦-3原子核,再让这些反原子核与ALICE探测器中的物质相互作用,让它们消失。通过研究,团队科学家们确定了反氦-3原子核的消失概率,以及这种概率在这些反原子核穿越银河系过程中所产生的影响。
  • 大型强子对撞机CMS合作组发现新的四夸克粒子家族
    记者10日从南京师范大学获悉,在9日举行的第41届国际高能物理大会上,欧洲核子研究中心大型强子对撞机(LHC)的紧凑介子线圈(CMS)合作组报告,他们发现了一个可能由4个粲夸克组成的奇特粒子家族。  “清华—南师”CMS组负责人、南京师范大学教授易凯代表CMS合作组介绍,这些粒子内部可能由4个同一种重味夸克组成,物理图像相对简单而利于理解。“这是中国实验团队首次在LHC上主导观测到可能的全粲四夸克粒子,也是中国首次在CMS实验上主导新粒子的发现。”易凯说。  夸克是一种基本粒子,目前已知有上夸克、下夸克、奇夸克、粲夸克、顶夸克、底夸克6种类型。“粒子一般由2—3个夸克组成,例如介子由一个夸克和一个反夸克组成,而重子由3个夸克或3个反夸克组成,它们被称为传统强子;但还有一类粒子可能由4个、5个夸克或者夸克胶子混合组成,因为比较罕见,所以也被称为奇特强子。”易凯表示。  理论学家在数十年前已预测到传统的强子和奇特强子态的存在,然而直到最近20年,科学家才在实验上观察到较为明确的四夸克态或五夸克态奇特强子。  “但此前还没有发现过全部由重味夸克组成的奇特强子家族,即粲夸克或底夸克组成的奇特粒子。”易凯说。  基于2016—2018年CMS采集的所有“质子—质子”对撞数据进行分析,CMS合作组随后在两个粲夸克偶素的不变质量谱中观测到了一个新的粒子家族。“其中的每一个粒子可能由4个同味重夸克组成,该家族中的3个共振峰依据质量被暂时命名为X(6600)、X(6900)和X(7300)。X(6600)和X(7300)粒子均是在世界上首次被观测到。”易凯说。  “这是首次在实验上观测到可能由纯重味夸克组成的奇特粒子家族。”易凯强调,“虽然近20年来,科学家们发现了几十个奇特强子,但这些奇特强子究竟是怎么形成的,还是未解之谜。而此次研究发现的奇特粒子家族,夸克的组成方式相对简单,我们就可以基于这种相对简单的组合方式,继而理解这些粒子的形成模式。”  易凯表示,CMS探测器收集的数据量大,也有很好的质量分辨率,预计将会在这个方向作出更多的贡献。  CMS合作组由50多个国家、约240个单位的4000多名成员组成,其中,中国组成员来自中国科学院高能物理研究所、北京大学、中国科学技术大学、北京航空航天大学、清华大学、南京师范大学等多个单位。近年来,中国CMS组在希格斯粒子性质测量和多玻色子研究等方面成绩突出。
  • 粒子对撞机内首次探测到中微子
    据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。中微子无处不在,非常神奇,被称为宇宙的“隐形人”,是宇宙中数量最丰富的粒子。1956年,科学家首次探测到反应堆发出的中微子,确认了其存在。中微子在恒星燃烧过程中也发挥着关键作用。FASER联合发言人、欧洲核子研究中心(CERN)粒子物理学家杰米博伊德解释道,中微子对建立粒子物理学标准模型非常重要,但科学家们此前从未探测到对撞机产生的中微子。FASER位于CERN内,旨在探测CERN著名的大型强子对撞机(LHC)产生的粒子。研究人员指出,他们从一个全新的来源,也就是粒子对撞机那里发现了中微子。目前物理学家研究的大多数中微子都是低能中微子,但FASER探测到的中微子是迄今实验室制造出的最高能量的中微子,与深空粒子在地球大气层中引发剧烈粒子簇射时发现的中微子相似。博伊德称,新发现的高能中微子能向人们揭示宇宙深空的奥秘,这是用其他方法无法获得的,LHC中发现的这些高能中微子对于理解粒子天体物理学中真正令人兴奋的观测结果至关重要。除探测中微子外,FASER的另一个主要目标是识别出构成暗物质的粒子。物理学家认为,暗物质构成了宇宙中的大部分物质,但从未被直接观测到。FASER尚未发现暗物质的“蛛丝马迹”,不过,随着LHC将在几个月后开始新一轮粒子对撞,科学家们期待看到一些令人兴奋的信号。
  • 中国科学巨大跨越——超大型对撞机建成将改变粒子物理学
    p   中国国家主席习近平访美是全世界认识中国科研贡献的绝佳时机,这将进一步促进中美在科研领域,尤其是粒子物理学研究的深入合作。 /p p   2012年,欧洲大型强子对撞机上发现了希格斯粒子,开启了高能物理研究的新纪元。它验证了40多年前粒子物理标准模型中关于希格斯玻色子的预言,希格斯玻色子是标准模型的关键。然而,这一发现依然留下许多悬而未决的问题。其中包括希格斯玻色子的质量和亚原子间相互作用力的统一,以及量子引力的相关问题,科学家们只有解决这些问题才能真正了解宇宙起源。 /p p   大型强子对撞机(LHC)由欧洲核子研究中心(CERN)建造并运行,它将对探索这些科学未解之谜提供一些重要的线索。但是,要想解决一些更深层次的问题仍需依赖更强大的科学装置。下一个科学发现会在哪里发生?美国、欧洲和日本是传统的粒子物理研究中心,那里的科学家们在此从事着激动人心的研究项目并提出新的研究计划。不过,如今,一位新人加入了竞技,它就是——中国。 /p p   1976年,邓小平推行改革开放,从此,中国步入了经济快速发展的轨道中。对此,大家并不陌生。但很多人也许并不知道,邓小平还极大地推动并支持中国粒子物理事业的发展,促使北京正负电子对撞机在1983年获批,并于1988年竣工投入运行。 /p p   在过去的将近三十年里,粒子物理研究在中国有条不紊地发展着。而在近几年,中国的粒子物理研究大踏步前进。2012年3月,大亚湾中微子实验首次测量到中微子振荡几率,引起了全球科学界的强烈反响和广泛关注。大亚湾中微子核反应堆实验地址位于中国南部,是中美合作的科研项目。 /p p   如今,在大亚湾实验项目的首席科学家王贻芳领导下,提出了雄心勃勃的中国下一步粒子物理研究的长远规划。规划中,包含了被称之为“超大型对撞机”的建设。这个加速器将于本世纪二十年代进行极高能量的正负电子对撞,从而能远比CERN的大型强子对撞机更细致地揭示希格斯粒子的性质。在本世纪三十年代,其目标是再次实现高能质子对撞,其能量远远高于LHC的最高能量,用以挑战人们现有的认知和探索未知。 /p p   中国会建设该项目吗?我们无从知晓。在不久的将来会有初步的重要决定。 /p p   这项为期三十年的项目预算为几十亿美元,但与此同时,收益也是巨大的。中国将可能因此项目一跃成为世界重要前沿基础学科的领头羊。更为实际的好处是,通过建造如此庞大的对撞机,中国将在尖端科技中取得长足进步和发展,从超导磁体到高速电子学读出的探测器,从而吸引世界顶尖级科学家和技术人员来到中国。 /p p   对美国来说,参与这一项目也是极为有益的。目前,美国高能物理项目的研究重心集中在探索难以捉摸的中微子的性质,并没有建造大型对撞机的计划。但是,许多美国的高能物理领域的实验物理学家们目前正在CERN工作。大量的美国加速器物理方面的优秀人才能够参与这一项目并从中受益。 /p p   中国超大型对撞机的建设吸引着美国和世界其他国家的科学家们通力合作,这又带来了另一个好处——增进理解,建立信任。中美之间寻找合作和协作之路至关重要,国际大型装置无疑是这类合作的绝佳之选。 /p p   CERN成立于1954年,吸引着全世界的科学家们到此工作。二战后,CERN在促进欧洲社会和谐发展方面发挥着重要作用。美国与前苏联的物理学家在科研领域的交流与联络缓和了两个超级大国之间的紧张关系。随着中国的崛起,中美在超大型对撞机上的科研合作也会发挥类似的作用,从而避免引起商业或者军事的摩擦。 /p p   我们希望看到中国能进一步推动该项目,同时,为了科学和全人类的共同利益,我们呼吁美国参与这一项目并做出贡献。 /p p   编者注 戴维· 格罗斯是美国加利福尼亚大学圣巴巴拉分校物理学教授、2004年诺贝尔物理学奖获得者。爱德华· 威滕是普林斯顿高等研究院教授、美国国家科学奖章获得者。本文译者为中国科学院高能物理研究所江亚欧。 /p
  • 北京正负电子对撞机重大改造工程完成
    5月13日凌晨,北京正负电子对撞机重大改造工程(BEPCII)的对撞亮度在1.89GeV能量下达到3.01×1032cm-2s-1,胜利达到亮度的验收指标。此前,BEPCII工程的直线加速器、探测器和同步辐射专用光运行均已达到设计指标。至此,历时5年、耗资6.4亿元的北京正负电子对撞机重大改造工程圆满完成。 中科院高能物理研究所所长、北京正负电子对撞机重大改造工程经理陈和生介绍,5月19日,中科院组织有关专家对BEPCII的储存环性能进行了工艺测试,中国科学技术大学何多慧院士担任专家组组长。现场测试结果表明BEPCII主要性能“亮度”达到了3.2×1032cm-2s-1,超过了验收指标。BEPCII的性能已比改造前提高30多倍,是这个能量区域里美国康奈尔大学的加速器CESR曾创下的世界纪录的5倍。 陈和生介绍,BEPC是在邓小平同志亲切关怀下建设的国家大科学工程,建成后迅速成为在30亿到50亿电子伏特能量区域居世界领先地位的对撞机,获得了大批重要的物理成果,成为国际高能物理界的热点之一。国际高能物理的发展要求BEPC进一步大幅提高加速器和探测器的性能,实现更加精确的测量,去回答高能物理实验领域许多重大的问题,探索新的物理现象。 从1999年开始,北京正负电子对撞机未来发展的预先研究已经开始。改造工程最初计划采用单环方案,使用麻花轨道实现多束团对撞,亮度提高一个数量级左右。但由于受到BEPC丰硕科研成果的吸引,2001年美国康奈尔大学把一台原先在高能量下运行的对撞机转到BEPC的能区工作(称为CESRc),主要设计指标对撞亮度与BEPC改进升级的目标相同。但是他们采用短平快的方法,声称能在2~3年内达到设计目标。实际上,他们的短平快方法并不成功,CESRc只达到了设计性能的1/5到1/8。 “然而在当时,如果BEPCII不改变方案,大幅度提高效能,我们将失去国际竞争力。”陈和生介绍,面对严峻的竞争,为了继续保持在国际高能物理研究上的优势,中国科学家接受挑战,迎难而上,提出了新的改造方案。 采用最先进的双环交叉对撞技术改造对撞机,设计对撞亮度比原来的对撞机高30~100倍,远高于康奈尔大学对撞机,使BEPCII将在世界同类型装置中继续保持领先地位,成为国际上最先进的双环对撞机之一。这个方案的验收指标是将性能提高30倍,难度极大。 这个方案得到了科学界的支持和国家的批准,并在2004年初开工建设,称为北京正负电子对撞机重大改造工程。研究人员在参考国际先进的双环方案的基础上,根据“一机两用”的设计原则,巧妙地利用外环提供同步辐射光,并将硬X光的强度提高了一个数量级,满足广大同步辐射用户的需求。 BEPCII工程于2004年1月动工,计划工期5年,改造的主要目标是提高对撞机的性能,使粲物理数据增加两个数量级。 “我们边建设边提供同步辐射光,创国际先例。”陈和生说,尽管工程建设和调束的时间十分紧张,高能所仍坚持以国家需求为己任,考虑到上海同步辐射光源尚未建成,为了保证国内广大同步辐射用户研究工作的需要,主动将工程建设分为三个阶段:直线加速器改造、储存环改造和探测器改造,并克服重重困难,在每个阶段都插入同步辐射运行,最大限度地减少工程对同步辐射用户造成的影响,创造了在大型加速器的建设过程中提供同步辐射专用光服务的国际先例。 今年4月下旬,开始本轮调束前,BEPCII/北京谱仪III进行物理数据采集,仅用不到一个月的时间,就获得了1亿 ψ(2S)衰变事例,是目前世界上最大的在ψ (2S)共振峰上采集的数据样本,数据质量非常好。而改造前获取1400万事例要用三个多月的时间。 “BEPCII挑战加速器建设和调试的难度极限。”陈和生透露,国际上成功的双环电子对撞机的周长一般在2公里以上,而北京正负电子对撞机(BEPC)储存环的周长短,只有240米。隧道原来是给单环设计的,空间狭小,现在要在隧道内给正负电子束流各做一个储存环,设备拥挤到了极点。国外成功的双环对撞机是在80米距离内实现电子对撞再分开,BEPCII的对撞区非常短,必须在28米内实现。 其次,多项先进技术为首次应用。为了继续保持在τ—粲物理能区的先进性,工程采用大量国际上的顶尖技术,而许多技术、设备是国内从未有过的,而高能物理对撞机的加工精度往往比航天、航空领域的要求还要高。比如,对撞机必须使用多种先进的超导设备,大多为国内从未有过的,并为此建立大型氦低温系统。其他首次应用的技术还有加速器建造中的横向反馈系统、超导高频系统、超导磁铁、全环轨道慢反馈、束团流强检测控制,探测器建造中的高分辨率晶体量能器、小单元氦基气体漂移室、大型螺线管超导磁体、阻性板室(RPC)等。 据悉,BEPCII对撞亮度达到验收指标的消息传出,世界各大实验室的加速器专家,如欧洲核子研究中心(CERN)的副所长Steve Myers、大型正负电子对撞机LEP和大型强子对撞机LHC的调束运行负责人CERN的Paul Collier博士、美国布鲁克海文实验室(BNL)的著名加速器专家翁武忠博士、美国斯坦福直线加速器中心(SLAC)的赵午教授等纷纷在第一时间发来邮件表示祝贺。
  • 环形正负电子对撞机《技术设计报告》基本完成
    国际高能物理学界高度关注的环形正负电子对撞机(CEPC)又有新进展。“我们已经基本完成了CEPC的《技术设计报告》,今年将进行国际评审。”全国人大代表、中科院高能物理研究所所长王贻芳院士日前在接受科技日报记者采访时透露。CEPC是2012年中国科学家提出的关于未来高能对撞机的设想方案。科学家们希望用它研究希格斯粒子、宇宙早期演化、反物质丢失等一些未解的关键科学问题和新的物理规律,并寻找暗物质及其他新粒子。2018年,CEPC的《概念设计报告》正式发布。按照概念设计,CEPC将是一个建在地下50—100米处的周长100公里的“大环”。“在CEPC预研项目支持下,我们攻克了超导高频腔、增强器极弱磁铁、真空镀膜、数字束流测量与控制设备等多项关键技术难关,并研制出相关样机。而且超导高频腔达到了国际最好水平。”王贻芳说,超导高频腔可以通过极高的能量效率给带电粒子加速,相当于现代粒子加速器的“发动机”。王贻芳介绍:“我们研制的超导高频腔的样机,技术指标绝对是国际领先的,为我国建设国际领先的高重频自由电子激光装置和未来高能正负电子对撞机提供了技术和设备保证。”
  • 超级对撞机概念设计报告出炉 国家立项信号尚不明确
    p style=" text-indent: 2em text-align: justify " 11月14日下午,大型环形正负电子对撞机(CEPC)研究工作组正式发布了CEPC的《概念设计报告》。 /p p style=" text-indent: 2em text-align: justify " 2012年,中国高能物理学家提出 CEPC 计划。由于身材庞大,CEPC被很多人称为“超级对撞机”。同时,因为耗资巨大,它也曾多次掀起物理学界争议。 /p p style=" text-indent: 2em text-align: justify " 项目的支持者认为,超级对撞机将使中国成为世界物理学研究中心,并促进工业技术发展;反对者认为这台对撞机将成为耗资巨大的无底洞,性价比不高。 /p p style=" text-indent: 2em text-align: justify " “最早出现争议的时候,我们的争议还没有一个明确的对象,现在《概念设计报告》出来了,这为将来的讨论提供了基础,我们希望未来关于CEPC的决策可以立足科学问题。”CEPC机构委员会主席高原宁说。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/71e26c8c-f35a-437a-8510-b8a08c50e435.jpg" title=" 20181114205244645.jpg" alt=" 20181114205244645.jpg" / /p p style=" text-indent: 2em text-align: center " 环形正负电子对撞机概念图(中科院高能物理所供图) /p p style=" text-indent: 2em text-align: left " 在争议中推进的“希格斯工厂” /p p style=" text-indent: 2em text-align: justify " 2012年7月4日,在欧洲核子研究中心(CERN)的加速器大型强子对撞机(LHC)上工作的超环面仪器(ATLAS)和紧凑缪子线圈(CMS)两个实验同时观测到了希格斯粒子。 /p p style=" text-indent: 2em text-align: justify " 希格斯粒子又被称为“上帝粒子”,因为它将质量赋予了已知的所有基本粒子。然而,依据现有的粒子物理标准模型,人类还无法计算或预言希格斯粒子自己的质量。 /p p style=" text-indent: 2em text-align: justify " 在观测到希格斯粒子之前,人们一直以为需要将两个粒子的能量提升到很高很高才能对撞出希格斯粒子,但是,2012年的那两个实验让人们意识到,观测到希格斯粒子所需要的能量比预期要小,只有约1250亿电子伏特(125GeV)。 /p p style=" text-indent: 2em text-align: justify " 于是,下一代正负电子对撞机发展的新思路诞生了——可以建造能量较低、实验环境更为干净、性价比更高的正负电子对撞机,大量产生希格斯粒子,形成“希格斯工厂”,进而对希格斯粒子进行系统研究,并发现新的物理现象和物理规律。 /p p style=" text-indent: 2em text-align: justify " 当全世界为观测到希格斯粒子欢呼时,2012年,中国高能物理学家提出了CEPC计划,并启动了该项目的预研,团队用两年多时间发布了《初步概念设计报告》。 /p p style=" text-indent: 2em text-align: justify " 然而,就在《初步概念设计报告》发布后不久,CEPC引发了物理学界的广泛争议。诺奖得主杨振宁的《中国今天不宜建造超大对撞机》将争议引向高潮。 /p p style=" text-indent: 2em text-align: justify " 杨振宁认为造巨型对撞机是“进无底洞”;建造花费巨大,将会影响其他基础科学的发展;高能物理要发展不一定要靠造巨型对撞机,也有不费钱且符合世界经济发展趋势的途径等。 /p p style=" text-indent: 2em text-align: justify " 之后,CEPC团队用了三年时间,正式完成了《概念设计报告》。 /p p style=" text-indent: 2em text-align: justify " “《初步概念设计报告》之所以是‘初步’,就是因为有一些设计没有达到预期指标,但是《概念设计报告》意味着CEPC已经可以在理论层面达到预期指标了。”CEPC机构委员会副主席、中国科学院高能物理研究所研究员高杰告诉记者。 /p p style=" text-indent: 2em text-align: justify " 他表示,接下来,CEPC项目团队将以《概念设计报告》为基础,完成关键技术预研,计划于2018年至2022年间建成一系列关键部件原型机,验证技术和大规模工业加工的可行性。 /p p style=" text-indent: 2em text-align: justify " “这项工作的严肃性在全世界引起了越来越多的关注,并为下一步的《技术设计报告》和工程设计以及未来建设计划时间表的可行性奠定了良好基础。”台湾大学教授、亚洲高能物理委员会主席侯唯恕说。 /p p style=" text-indent: 2em text-align: justify " 一个耗资300多亿的“大圈” /p p style=" text-indent: 2em text-align: justify " 按照概念设计,CEPC将是一个埋在地下100多米处的、周长100公里的“大圈”,至少会有两台探测器同时进行科学实验。 /p p style=" text-indent: 2em text-align: justify " 中国科学院高能物理研究所研究员阮曼奇介绍,CEPC以秦皇岛地质结构为参考,进行了概念设计研究,预期于“十四五”开始建设,并于2030年前竣工,预估大约将耗资300多亿人民币。 /p p style=" text-indent: 2em text-align: justify " 这个“大圈”由两大部分组成,一部分是加速器,另一部分是探测器。 /p p style=" text-indent: 2em text-align: justify " 阮曼奇介绍,加速器主要负责产生正负电子并加速,最终精确聚焦对撞、制造极端环境,产生具有科学研究价值物理事件。加速器的主要组成部分是一个小型直线加速器,和一个与对撞储存环同样长度的增强器,把正负电子的能量提高到研究所需的值。能量达到研究所需后,粒子就会送入两个储存环进行对撞。 /p p style=" text-indent: 2em text-align: justify " 探测器则相当于具有可以高速、高精度拍照的立体显微镜,由多种不同的子探测器组成,用来记录带电和不带电的各种微观粒子,同时,这个“照相显微镜”也会采用最新的软件技术,与最新的大数据、机器学习等发展紧密相关。 /p p style=" text-indent: 2em text-align: justify " 在设计CEPC大致模样的同时,研究团队还规划了前10年的实验内容。 /p p style=" text-indent: 2em text-align: justify " 最初的7年内,CEPC将在质心能量2400亿电子伏特(240GeV)处运行,以研究希格斯粒子。随后2年,CEPC将在910亿电子伏特(91GeV)处运行,以研究 Z 玻色子和重味物理。另外一年时间,CEPC计划在1600亿电子伏特(160GeV)附近研究 W 玻色子物理。 /p p style=" text-indent: 2em text-align: justify " 而在这10年后,CEPC 未来可能发展方向之一是升级为一个超级质子-质子对撞机(SppC),质心能量将达到100万亿电子伏特(100TeV),以便在大范围内直接寻找新的物理现象和物理规律。 /p p style=" text-indent: 2em text-align: justify " 阮曼奇介绍,在为期十年的实验计划中, CEPC将生产超过100万个希格斯粒子,此外还将生产一亿个W玻色子和近1万亿个Z玻色子。 /p p style=" text-indent: 2em text-align: justify " “CEPC计划与国际稍早的国际线性对撞机(ILC)、紧凑型线性对撞机(CLIC),以及同时期的未来环形对撞机(FCC)项目处于竞争地位。”阮曼奇说。 /p p style=" text-indent: 2em text-align: justify " 等待国家支持 /p p style=" text-indent: 2em text-align: justify " 在《概念设计报告》的扉页,可以看到很多国内外科学家的签名。 /p p style=" text-indent: 2em text-align: justify " “签名者一部分是参与报告研究和撰写的人,还有一部分是支持并有意愿参与CEPC研制工作的人。”高原宁说。 /p p style=" text-indent: 2em text-align: justify " 在高原宁看来,CEPC的首要物理目标是深入研究希格斯粒子的性质,从而探索高能物理面临的重要问题,国际科学界参与CEPC研制的兴趣越来越浓厚,也正是因为这样的科学目标具有重要意义。 /p p style=" text-indent: 2em text-align: justify " “国际高能物理界非常希望参加 CEPC 的研发和将来的科学实验,这将会大大促进人类对物质最基本组成单元的进一步理解。”国际未来加速器委员会和亚洲未来加速器委员会主席、墨尔本大学教授Geoffrey Taylor说。 /p p style=" text-indent: 2em text-align: justify " 高原宁告诉记者,目前国家在立项方面还没有给出明确的信号,科学家们期待着以政府间合作的形式推动CEPC的预研和建设。 /p p style=" text-indent: 2em text-align: justify " CEPC 指导委员会主席、中国科学院高能物理研究所所长、中国科学院院士王贻芳表示,对于中国的高能物理来讲,这是一个绝佳的历史机遇,一方面,该方案可以进一步理解希格斯粒子的性质、宇宙早期演化、反物质丢失、寻找暗物质、真空稳定性等一系列未解的关键科学问题和寻找新的物理规律。另一方面,中国有通过努力建成自己的希格斯工厂和国际领先的“创新合作平台”,成为该领域全世界的领跑者。 /p
  • 探访“粒子物理王国”欧洲核子研究中心(图)
    来宾在瑞士日内瓦参观欧洲核子研究中心多媒体中心。欧洲核子研究中心位于瑞士日内瓦附近,跨瑞士和法国边境,是全球重要的粒子研究机构,重点模拟研究宇宙大爆炸之后的最初状态。   新华网日内瓦2月21日电(记者刘洋 杨京德)从瑞士日内瓦驱车进入法国,沿途宁静的田园风光令人沉醉。这是一片位于阿尔卑斯山与汝拉山雪峰间的平原,镶嵌着一座座牧场、葡萄园、古朴村镇,而就在平原地表之下100多米深处,无数粒子或许正围绕着一个周长27公里的巨大环形设备,以接近光速运行,并剧烈碰撞。   这不是科幻小说的虚构,而是欧洲核子研究中心最重要的设备——大型强子对撞机运转的情景。经过近两个月的技术维护后,按计划,对撞机21日再次开始运行。记者有幸在此之前,由研究中心的中方研究员、粒子物理学家任忠良博士带领,进入研究中心并探访这神秘的地下“粒子物理王国”。   科研“地球村”   欧洲核子研究中心建于1954年,是二战后欧洲合作的产物,但今天的研究中心早已不再局限于欧洲,而更像一个“地球村”,会聚了来自世界上80多个国家和地区、580余所大学与科研机构的近8000名科研人员,其中包括来自中国科学院高能物理研究所和山东大学等中国科研院所的近百名师生。   漫步在研究中心园区里,可以看到宽阔的草坪上和露天咖啡座上,不同肤色、不同装束的学者三五成群地坐在一起,操各种口音的英语或法语讨论问题。   除进行前沿物理试验外,研究中心还承担了为世界各国大学培养物理学人才的任务,许多物理学家的硕士或博士论文都在这里完成。   研究中心洋溢着尊重科学的气氛,就连园区的各条道路都以在科学领域有重大贡献的人士名字命名。从第一个设想物质是由原子组成的古希腊哲学家德谟克利特,到发现镭和钋等放射性元素的居里夫人,他们对人类认知的贡献,以这样的方式被铭记。   地下“粒子物理王国”   大型强子对撞机位于日内瓦附近、瑞士和法国交界地区地下的环形隧道内。为探测质子撞击试验产生的结果,研究中心在大型强子对撞机上安装了4个探测器同时进行试验,其中最大的就是位于瑞士一侧的超环面仪器。   经过两道严格安检后,记者跟随任忠良博士深入地下100多米的超环面仪器试验现场。站在坑道内高耸的钢结构探测器旁,如同站在希腊神话里的擎天巨神脚下,深感一己之渺小。   这个圆柱形庞然大物高25米,长45米,重7000吨,相当于埃菲尔铁塔或100架波音747客机的重量。任忠良博士说,超环面仪器就像一架高精度巨型数字照相机。对撞机发射的粒子束经过这个探测器时发生碰撞,产生的粒子沿着碰撞半径方向向外发散,这些肉眼难以察觉的物理现象都会在这一高性能探测器上留下影像。超环面仪器抓取碰撞影像的速度可达每秒4000万次,从而在粒子级别上记录任何细微的变化。   为处理由此产生的海量数据,3000台计算机会同时运转,从大量无效碰撞数据中选取符合研究需要的少数粒子高能对头碰撞记录并加以分析。即便如此,筛选出的有用数据量仍大得惊人。这一探测器运行一年产生的数据如用DVD光盘刻录,所有光盘铺排起来将长达7公里。   人造宇宙大爆炸   为从微观世界揭开宇宙起源的奥秘,研究宇宙产生初期的环境,物理学家设计了通过粒子对撞,模拟宇宙大爆炸的试验,大型强子对撞机就是进行这一模拟过程的“利器”。   可想而知,实现高能粒子对撞并非易事。据任忠良博士介绍,大型强子对撞机使用了超低温、超导等超越人类现有工业水平的尖端技术。   为产生偏转粒子所需要的强磁场,对撞机采用液态氦将管道温度降至零下271摄氏度的超低温,用低温超导技术产生零电阻以保障磁场强度。此外,为维持低温,减少管道内外热量交换,还使用了真空技术,对撞机周长27公里的环形管道内的真空空间相当于巴黎圣母院的大小。   低温还带来金属等材料热胀冷缩的问题,这就要求在管道连接处使用可滑动的接点,但可滑动连接点同时也带来另一个问题:上万个连接点中,任何一个点如因接触不良出现微小电阻,强大的电流通过时就会瞬时释放大量热能,毁掉超导状态。热量还会气化冷却管道用的液态氦,导致大爆炸。   2008年,对撞机调试过程中就发生了一次类似事故,使整个试验的进度延后一年。研究中心花了整整一年,投入超过5000万瑞士法郎(约合5300万美元)才将设备修复。   寻找“上帝粒子”   大型强子对撞机目前的主要工作就是寻找希格斯玻色子。它是由英国人彼得希格斯等物理学家在上世纪60年代提出的一种基本粒子,被认为是物质的质量之源,因此被称为“上帝粒子”。   这种粒子就像神话中的独角兽一样难觅影踪。在粒子物理学的标准模型中,总共预言了62种基本粒子,其中的61种都已被验证,唯独希格斯玻色子始终游离在物理学家的视野之外。找到这种粒子,就找到建筑粒子物理学经典理论大厦的最后一块基石,如证明它不存在,整座大厦就要被推倒重建。   此前,许多顶级物理研究机构曾试图通过对撞试验寻找希格斯玻色子,但都没有成功。如今,有了世界上能量级别最高的大型强子对撞机,欧洲核子研究中心的科学家对捕获这头“独角兽”充满信心。   研究中心主任、德国粒子物理学家罗尔夫霍伊尔说,对撞机在过去一年表现非常出色,因此大家普遍对试验充满信心。霍伊尔风趣地化用莎士比亚的名言说,希格斯玻色子存在还是不存在,这是一个问题,而这个问题的答案很可能在未来两年内揭晓。
  • 日本模拟陨石撞击合成出生命物质
    最近,日本物质材料研究机构与日本东北大学的联合研究小组通过实验模拟确认,陨石高速坠入海洋时引发的化学反应,可以很容易地合成地球生命不可缺少的氨基酸等有机物质。这是世界上首次成功地根据目前掌握的原始地球大气构成合成生命物质。该成果发表在12月7日出版的《自然地球科学》杂志网络版上。   氨基酸是含有氨基和羧基的一类有机化合物的通称,是构成地球生物体蛋白质并与生命活动有关的最基本物质,揭开生命物质氨基酸的起源之谜一直以来是科学家梦寐以求的目标。   关于氨基酸的起源,美国化学家米勒曾于1953年在装有氨、甲烷和氢气的实验瓶内通过放电实验,首次合成了氨基酸。但是构成原始大气的主要成分,并不是当时认为的氨气、甲烷,而是以二氧化碳、氮气和水蒸气为主成分。用这些成分实验并不能产生米勒那样的化学反应。因此生命物质来源再次成为一个谜。   联合研究小组在实验中,在充满氮气的金属筒中封入水、碳和铁。用以每秒1公里高速飞行的塑料块撞击使金属筒内部大气压瞬间急剧升高,再现了陨石撞击海面的场景。实验结果发现,撞击产生了甘氨酸(氨基酸的一种)、羟酸和胺等构成生物体的基本分子。
  • CEPC 650 MHz高性能超导腔研究取得重大进展
    超导腔是加速器的“发动机”,在建和未来的大型加速器装置如对撞机、同步辐射光源、自由电子激光、中子源等无一例外地采用超导腔来加速电子、质子、重离子等各种带电粒子,因而,高品质因数(Q)和高加速梯度(Eacc)的超导腔成为了全世界加速器领域的研究热点,也是环形正负电子对撞机(CEPC)预研的加速器关键技术之一。在中科院高能所射频超导与低温研究中心的部署下,负责CEPC 650MHz超导腔研制任务的沙鹏等人经过多年的不懈努力,CEPC 650 MHz高性能超导腔在国内首次成功实现了大尺寸(频率小于1GHz)超导腔的中温退火、电化学抛光等多项关键技术,从2021年底至今,已在多只650 MHz single-cell超导腔样机上获得成功,取得了优异的垂直测试结果(@ 2.0 K):经过高加速梯度工艺处理后,3只650 MHz single-cell超导腔的加速梯度均超过了30 MV/m,最高达到了37.5 MV/m;而经过高Q值工艺处理后,在22 MV/m的加速梯度下,3只超导腔的Q值均超过了8×10^10,比CEPC的垂测指标(4×10^10)高出了一倍以上。以上测试结果创造了国内大尺寸超导腔品质因数和加速梯度的最高记录,在国际上也与美国费米实验室的650 MHz single-cell超导腔并驾齐驱,达到了国际领先水平。本项研究得到了先进光源研发与测试平台(PAPS)、国家重点研发计划、国家自然科学基金委、王贻芳科学家工作室和高能所创新项目的资助和支持。650 MHz single-cell超导腔垂直测试结果650 MHz single-cell超导腔的中温退火650 MHz single-cell超导腔的电化学抛光
  • 比LHC更先进: Project X 粒子加速器概述
    美国费米国家加速器实验室过去在单粒子能量和粒子流强度这两个加速对撞机最主要参数上世界领先,但LHC和J-PARC的分别在这两个参数上都超越了费米实验室.依靠美国粒子物理十年计划,费米实验室启动Project X项目,此项目运用了最先进的加速器技术,将制造粒子流强度第一的加速器,并且依靠Project X的技术,费米实验室将在未来国际直线加速器项目上占主要地位,国际直线加速器在单粒子能量上超越了LHC.   费米实验室(Fermilab)的未来规划:   许多年来,费米实验室拥有世界上最高能量的粒子对撞机和最高强度的中微子束.(注:前者指单粒子拥有的能量,后者指粒子的流量.)然而如今CERN的LHC(大型强子对撞机)在能量上已经超越了费米实验室,日本的J-PARC正着手建设的长基线中微子项目也将优于费米实验室.在这样的国际环境下,美国基本粒子物理学会(US elementary particle physics community)启动了一项针对未来10年的规划:目标能量领先(energy frontier),强度领先(intensity frontier),宇宙暗物质暗能量探测领先(cosmic frontier).费米实验室是这项计划中加速器的唯一选址,费米实验室的未来规划将完全配合美国的这项10年计划.费米实验室的重点是建造高强度的质子源,这也是这项长期计划的关键.   费米实验室加速器的改进:   Project X是费米实验室兆瓦级质子加速器(multi-MW proton accelerator)的项目名称.它基于采用超导射频技术的氢离子线性加速器,Project X是费米实验室整个加速器项目能量和强度保持领先地位的关键.Project X为中微子物理和非标准模型物理的研究提供了最好的条件,也为非传统粒子物理领域打开了一扇窗,比如冷中子物理,加速器驱动次临界清洁核能系统(accelerator-driven subcritical systems, ADS).Project X采用与国际直线对撞机相近的技术,这可以使费米实验室成为这台未来加速器的主要承担者或是主要的技术贡献者.兆瓦级加速器的制造也为未来的μ子加速器提供了技术预备.   Project X 的预期目标与基本架构:   1)基于质子源的长基线中微子束,此质子源可以提供60~120Gev能量区间强度不小于2兆瓦的粒子束.   2)由高强度质子支持的精确μ子和K介子实验.   3)为未来的中微子工厂和μ子对撞机所需的μ子源打下基础.   为达到上述的目标,物理学家们设计了两套方案,一是建造8Gev的脉冲型直线加速器(pulsed linac),第二种方案是先建造约3Gev的连续波直线加速器(continuous wave linac),接着再建造8Gev的快循环同步加速器(rapid cycling synchrotron)或者超导脉冲直线加速器(superconducting pulsed linac).这两套方案中对粒子的加速和积累都用到了费米实验室已有的循环器和注入环.   这两套方案都能为远在1000公里外的探测器提供极高能量的中微子束,但第二套方案更精确,使用的技术是全世界最领先的.   Project X 初步预备投入:   在满足下面几个条件下,两个方案整个项目的初步预备投入(pre-CD-0)约为15亿美元:   1)前期规划和设计在2010年12月完成,建设期为2013年到2017年   
 2)美国能源部(DOE)的帮助可加快建设.   3)40%的风险预备金.   其他应用:   Project X发展的技术同样对下列项目有帮助:   1)加速器驱动能源系统   2)原子物理需要的稀有同位素的制备   3)中子源   4)X射线自由电子激光器   5)能量回收直线加速器   6)材料研究需要的μ子设备   美国参与机构: Argonne National Laboratory - 阿贡国家实验室   Brookhaven National Laboratory - 布克海文国家实验室   Cornell University - 康乃尔大学   Fermilab(Fermi National Accelerator Laboratory) - 费米国家加速器实验室   Lawrence Berkeley National Laboratory - 劳伦斯伯克力国家实验室   MichiganState University - 密歇根州立大学   Oak Ridge National Laboratory - 橡树岭国家实验室   Thomas Jefferson National Accelerator Facility - 托马斯杰斐逊国家加速器实验室   SLAC National Accelerator Laboratory - 斯坦福线性加速中心国家加速器实验室   Americas Regional Team of the ILC - 参与国际线性加速器设计的国内小组   印度的参与:   印度对Project X制造中涉及的技术很感兴趣,渴望获得加速器驱动系统方面的知识和技术.多家印度科研机构已经直接参与到了费米实验室超导射频设备的研发中.初期的讨论确定印度将以制造实物的方式参与Project X的研究,开发和建造中.印度将提供线性加速器50%的组件,并参与线性加速器所有的设计工作和运行任务.印度寄希望于参与Project X项目后能拥有在印度本土制造兆瓦级质子源的能力.
  • 学习《讲话》,提升NGI撞击器校验与检测业务能力
    2024年6月24日,习近平总书记在在全国科技大会、国家科学技术奖励大会、两院院士大会上发表重要讲话。北京元森凯德生物技术有限公司(YSKD)号召全员学习《习近平总书记在全国科技大会、国家科学技术奖励大会、两院院士大会上的讲话》,全体员工深感责任重大,使命光荣。这篇讲话不仅是对我国科技事业发展的全面总结,更是对未来科技工作的明确指引。全体员工仔细阅读了全文,深受启发,对我国的科技发展和创新之路有了更深刻的理解。讲话开篇就指出,这次大会是在以中国式现代化全面推进强国建设、民族复兴伟业的关键时期召开的一次科技盛会。这让全体员工深刻感受到,科技不仅是国家发展的强大动力,更是实现中华民族伟大复兴的关键因素。习近平总书记的讲话,无疑为我们指明了前进的方向,也为我们每一位在民营企业的科技工作者赋予了重大的历史使命。回顾过去,我国科技事业取得了历史性成就、发生历史性变革。从基础前沿研究的新突破,到战略高技术领域的新跨越,再到创新驱动引领高质量发展的新成效,每一项成就都凝聚着无数科技工作者的智慧和汗水。这些成就不仅提升了我国的国际地位,也为人民的生活带来了实实在在的改变。作为在民营企业的科技工作者,全体员工深感自豪和骄傲。同时,讲话也深刻分析了当前科技发展的新形势、新任务和新要求。随着新一轮科技ge'ming和产业变革的深入发展,科学研究和技术创新正以前所未有的速度向前推进。人工智能、量子技术、生物技术等前沿技术的不断涌现,正在深刻改变着人类的生产方式和生活方式。与此同时,国际竞争也日益激烈,高技术领域成为国际竞争的前沿和主战场。这要求我们北京元森凯德生物技术有限公司全体员工必须进一步增强紧迫感,加大科技创新力度,抢占科技竞争和未来发展的制高点。习近平总书记在讲话中提出了“八个坚持”的重要经验,这些经验不仅是对过去科技工作的总结,更是对未来科技工作的指导。坚持党的全面领导,加强党中央对科技工作的集中统一领导,这是确保科技事业始终沿着正确方向前进的根本保证。北京元森凯德生物技术有限公司(YSKD)积极提升在NGI新一代药用撞击器和ACI 安德森撞击器的年度校验与检测业务能力,确保校验与检测技术路线的先进性和可靠性,以满足客户需求和行业标准。《中国药典》2020年版将吸入制剂划分为气雾剂、吸入粉雾剂、吸入喷雾剂、吸入液体制剂和可转变蒸汽的制剂。应用领域广泛,主要用于呼吸系统疾病的治疗,如哮喘、慢性阻塞性肺病等,同时也在非呼吸系统疾病领域有所应用。预计到2025年,中国呼吸系统疾病吸入制剂市场规模将达到239亿人民币,年复合增长率为5.2%。全球市场上,阿斯利康、葛兰素史克、勃林格殷格翰等跨国企业占据主要市场份额。中国市场长期以来也以跨国企业为主,但近年来国产化率有所提升,国内企业如健康元等开始取得突破。行业正经历转型期,研发趋势包括建立生物等效性的替代方法、向全球低升温值(LGWP)的给药方式过渡等。美国食品药品监督管理局(FDA)也发布了新的特定产品指南(PSG),允许采用节省时间和成本的替代BE方法。国内方面,首个过评的吸入粉雾剂——沙美特罗替卡松吸入粉雾剂的出现,标志着国内吸入制剂市场的一个里程碑。仿制药开发的监管问题是行业面临的一个挑战,但FDA等机构也在积极寻求解决方案。随着呼吸系统疾病发病率的上升以及人们对健康问题的日益关注,吸入制剂市场具有巨大的发展空间和机遇。吸入制剂药物研发市场正处于持续增长和转型期,市场规模不断扩大,产品类型和应用领域不断拓展,市场竞争也日益激烈。同时,行业也面临着一些挑战和机遇,需要不断创新和进步以应对市场变化。NGI新一代撞击器和ACI安德森撞击器作为重要的药物吸入剂研究设备,需要进行检测校验以确保其准确性、可靠性和稳定性。检测校验可以验证撞击器的设计和制造的准确性,评估其性能和稳定性,发现和排除潜在问题,并提高实验的可比性和可重复性。通过检测校验,可以确保实验结果的准确性和可靠性,为药物吸入剂研究提供可靠的实验数据。 附:北京元森凯德生物技术有限公司(BEIJING YSKD BIO-TECHNOLOGY CO.,LTD),简称元森凯德(YSKD),2013年成立于北京中关村科技园,是一家专业从事生命科学类实验仪器研制、生产与销售的科技创新型企业。服务毒理学、药理学、免疫学、生物安全、大气污染物、化学物质毒性鉴定、临床前药物开发与安全性评价、呼吸系统、环境与健康等领域。YSKD可开展NGI新一代撞击器和ACI安德森撞击器校验检测项目:密封性,L型连接管尺寸,预分离器尺寸,喷嘴与密封部件间距,每级喷嘴孔数量,每级喷嘴直径,收集杯粗糙度,收集杯深度值
  • 科学家在重离子碰撞实验中首次观测到超核集体运动
    近期,中国科学院近代物理研究所等机构的科研人员参与RHIC-STAR国际合作实验研究,首次在重离子碰撞实验中观测到超核的集体运动。该成果为研究致密核物质环境中的超核-核子相互作用开启了一个新的方向,相关成果于5月24日发表在《物理评论快报》(Physical Review Letters)杂志上。 超子是包含有奇异夸克(s)的重子,核子(质子和中子的统称)中只包含有上夸克(u)和下夸克(d)。超子和核子可以形成束缚态,人们称之为“超核”。理论预言宇宙中的致密天体——中子星的内部存在超子。然而,超子的出现将软化核物质状态方程,这给理论上构建大质量的中子星带来了挑战,被称为中子星研究中的 “超子谜题”。 实验上测量致密核介质中的超子-核子相互作用强度,是解决“超子谜题”的关键步骤,同时对于理解强相互作用的理论——量子色动力学具有重要意义。超核集体运动实验测量数据可用于提取致密核介质中的超子-核子相互作用,有可能解决“超子谜题”。 据研究人员介绍,高能重离子碰撞是在实验室产生和研究致密核物质性质的独特工具。重离子碰撞过程中,粒子由于致密核物质内部压强梯度会产生集体运动(集体流),如直接流、椭圆流等。在实验中,科学家们已经观测到介子、重子、轻核的集体流。由于实验上产生的超核非常稀有,此前超核集体流测量研究尚属空白。 研究人员基于美国布鲁克海文国家实验室的相对论重离子对撞机(RHIC)装置上的STAR实验3GeV金-金碰撞数据,重建得到约8400个超氚(由一个Λ超子、一个质子和一个中子构成)和约5200个超氢-4(由一个Λ超子、一个质子和两个中子构成)。这是目前实验上观测到的最大统计量的超氚和超氢-4数据样本。 研究团队首次在实验上观测到了这些超核具有显著的直接流。同时,他们还提取了超核和轻核直接流在中心快度区域的斜率。经过比较发现,轻核与超核的直接流斜率都存在一个相似的质量标度律,这意味着超核和轻核在重离子碰撞中的产生都可以用“并和过程”来解释。 这项工作为研究有限压力下的超子-核子相互作用开辟了一个新方向,对于建立核核碰撞和决定致密星体内部结构的状态方程之间的联系具有重要意义。 中子星是大质量恒星生命尽头塌缩形成的致密天体。近代物理所供图。
  • 标准集团---纽扣撞击强度(力)测试仪/纽扣性能测试仪器
    纽扣撞击强度测试仪︳纽扣撞击强力测试仪︳标准集团品质供应︳咨询电话:13671843966纽扣撞击强度测试仪,又称纽扣撞击强力测试仪,是通过检测塑钮、胶钮的抗撞击阻力从而检测所有类型纽扣(直径10mm或以上)在服装制造或日常使用过程中对强拉或撞击的承载能力的仪器。标准集团(香港)有限公司自主研发的Gellwoen G289 纽扣撞击强度测试仪是严格符合ASTM D5171标准的纽扣测试仪器。测试时,将质量为0.84kg(29.5oz)重物从67mm(2.625英寸)或其他规定高度(至多200mm(8英寸))落下,以纽扣的破裂程度作为考核。该仪器包括一个轴承套,其内配合一个标准质量的冲击头,用于从指定高度下落以冲击纽扣试样。纽扣依据其莱尼尺寸放置于底座金属平台的中心位置,并用定位夹具夹持,冲击强度由重物的质量和下落的高度来评估。详情请访问:http://www.lalianniukou.com/product/2015/98.html 标准集团(香港)有限公司是一家提供材料测试仪器设备的综合供应商,成立于2003年,公司总部在中国香港,在上海设有分公司,在长沙、武汉、济南、沈阳、成都、杭州等地设有办事处及售后维修中心。上海泛标纺织品检测技术有限公司为标准集团上海分公司,全面负责中国大陆地区的销售和售后服务。一直以来,公司始终坚持引进国际最先进的产品,依赖专业高效的服务团队,整合技术和资源优势,为客户解决科研生产中遇到问题提供支持,从而带动国内科研及相关行业水平的提高。通过个性化的售前产品咨询,高效率的售后安装、维护和维修,专业级的技术支持及应用支持,标准集团正赢得越来越多制造商和客户的双重信赖。24小时服务热线:021-64208466、13671843966或登录:http://www.standard-groups.com/
  • 中国首个大科学装置诞生记
    作者:倪思洁 来源:中国科学报1988年,北京正负电子对撞机建成,张文裕和工程经理谢家麟(右二)、副经理陈森玉(右一)、总工艺师徐绍旺(左一)在储存环隧道里交流。安装完成的北京谱仪。北京正负电子对撞机工程安装完成的储存环。北京正负电子对撞机建设期间,科研人员在北京谱仪上安装主漂移室信号丝。北京正负电子对撞机中控室。“八七工程”停滞后,高能物理学家们一起研究方案调整问题。2006年11月18日凌晨5点多,北京正负电子对撞机经过重大改造后,成功实现电子束在储存环中的积累,科研人员在控制室记录了这一时刻。本版图片由受访者供图“我相信这件事不会错!”1984年10月7日,北京西郊,在中国科学院高能物理研究所(以下简称高能所)举行的北京正负电子对撞机奠基仪式上,邓小平同志如是说。这天,邓小平同志在对撞机的奠基石上培上了第一锹土。时任高能所所长张文裕拉着他的手,激动地说:“我多年的心愿今天终于实现了!”40年后的今天,回想起这场奠基仪式,高能所研究员张闯的眼眶有些湿润:“那一天,很多人等了一辈子。”从20世纪50年代起,中国科学家一直苦于我国没有自己的高能物理加速器,科研工作长期依赖国外数据。他们始终有一个梦想——用自己的加速器做世界最前沿的研究。风云动荡中,这个梦想被七次点燃,又七次熄灭。奠基,代表着他们的梦终于成真。仅用4年时间,中国科学家就以令国际同行惊讶的速度,建成我国首个大科学装置——北京正负电子对撞机。而此后的40年,持续产出的科学成果、日渐壮大的人才队伍、站稳脚跟的中国高能物理,都用事实印证了邓小平同志的话,这件事没有错。1 七“上”七“下”1975年3月,乍暖还寒,春日的气息还不算浓郁。正在辽宁省北票矿务局工作的张闯趁着到北京出差开会的空隙,来到中关村,看望自己的大学老师、清华大学教授张礼。张闯曾在清华大学工程物理系攻读粒子加速器专业,毕业后被分配至煤矿工作,但他与老师一直保持着密切的联系。敲开门,进屋坐下,二人还没寒暄两句,张礼就兴奋地告诉张闯一个消息:“周总理有批示,高能物理要上!”张礼的声音不大,却让张闯为之一震。它像一枚钥匙,打开了张闯心中一扇久闭的大门。事情要从3年前说起。1972年8月18日,张文裕、朱洪元、谢家麟等18位科学家给周总理写了封信。信中,他们诉苦:“高能物理实验几乎是一片空白,高能物理理论研究则全是依靠国外的实验数据。”高能物理研究是认识物质微观结构及其运动规律最前沿的学科,而高能加速器和相应的探测装置是这项前沿研究的重要工具。早在新中国成立后不久,1950年10月,中国科学院的物理学家们就提出要建设粒子加速器,开展核物理实验研究。1953年,世界第一台高能加速器在美国问世,赵忠尧、张文裕、王淦昌等老一辈中国物理学家开始努力推动建造中国的高能加速器。然而,政治风云的变幻与国民经济的兴衰,让这一梦想多次“上马”,又多次“下马”。信中,他们呼吁:“尽快确定发展高能物理的方针政策,同时组织上给以保证,尽快成立高能物理研究所,并划归基础理论研究的主管部门领导。”1972年9月11日,周恩来总理批示:“这件事不能再延迟了。科学院必须把基础科学和理论研究抓起来,同时又要把理论研究与科学实验结合起来。”1973年2月1日,在党和国家领导人的关心下,中国科学院成立了高能所。在张闯心中,那曾是可望而不可即的“殿堂”。两年后,1975年3月,高能所组织科学家经过深入研究,向国务院上报《关于高能加速器预制研究和建造问题的报告》,明确提出要在10年内,建造一台能量为400亿电子伏特的质子同步加速器。在医院病床上,周总理审阅并批准了该报告。此后,高能加速器预制研究工程有了自己的代号——“七五三工程”。“学校已把加速器专业毕业的同学推荐给了高能所,你也在名单里。”张礼告诉张闯。为了满足“七五三工程”需要,高能所开始召集散落在全国各地的相关专业人员。那天,张闯从老师家里走出来时,出差的疲惫一扫而光。此时,路边的树杈还有些光秃,但张闯的心里已经开出了小花,那是他和老师们盼了许久的梦。1976年秋天,科学家满怀信心,重新论证“七五三工程”方案,提出了更宏伟的“八七工程”计划,并得到国家批准。“八七工程”分三步走:第一步,耗资3亿元,建成300亿电子伏特的慢脉冲质子环形加速器;第二步,耗资7亿元,到1987年底建成400亿电子伏特的质子环形加速器;第三步,到20世纪末,建成世界一流的高能加速器。然而,没过多久,我国国民经济调整,紧缩基建,高能质子加速器因属于“国家非急需”而在“下马”之列——这已是该项目的第七次“下马”。得知消息后,张文裕等老一辈科学家和张闯等年轻一辈都心急如焚。1980年5月,张文裕、赵忠尧、朱洪元等39位高能物理学家联名上书,恳求“八七工程”不要“下马”。邓小平同志批示:“此事影响太大,不宜‘下马’。”这一批示给中国科学家们留下了机会。尽管工程陷入停滞,但希望仍在。所有人都开始重新思考更符合国情的加速器方案,奔向第八次希望。2 第八次希望1981年,受“八七工程”停滞问题影响,中美高能物理联合会议未能如期举行。得知消息后,华裔物理学家袁家骝、吴健雄夫妇和李政道都心急如焚,他们向国家领导人建议,立即派专家赴美洽谈。1981年3月,中国科学院派高能所的朱洪元、谢家麟前往美国洽谈。他们与李政道、袁家骝、吴健雄以及美国斯坦福直线加速器中心主任潘诺夫斯基等美国高能物理学家开会,讨论中国高能物理的前景。最终,大家一致认为在中国建造2×22亿电子伏特正负电子对撞机是最好的方案。新的方案,造价只需“八七工程”的三分之一,不仅物理窗口内容丰富,还可以在做高能物理研究的同时,做同步辐射应用研究,实现“一机两用”。然而,当朱洪元、谢家麟把这一方案带回国内,一场激烈的争论开始了。研制对撞机,技术难度和风险很大。正负电子对撞机要让两束极细、高速运行、稀薄的电子束团撞到一起,既要“对得准”,又要“撞得充分”。大家有各种各样的担心:“中国能不能做得了?”“即便研制出来,性能指标是否达标?”“进度如果拖下来,物理窗口关闭了怎么办?”有人还打了个比方:“以当时中国的薄弱基础,要想建成正负电子对撞机,就好比站在铁路站台上,想跳上一列飞驰而来的特快列车。如果跳上了就飞驰向前,如果没有抓住,就粉身碎骨。”1981年9月,中国科学院数理学部主持召开“丰台会议”,专门讨论了3天。与此同时,高能所内部也组织了多次研讨会。每个人都在为国家高能物理的未来谋一条最切合实际的出路。方案一直讨论到1981年底。其间,中国科学院又派当时院内主管部门负责人邓照明和谢家麟、朱洪元一起再赴美国。在李政道等的坚持下,邓照明与中国科学院领导通了电话,经过近一个小时的协商,院领导肯定了正负电子对撞机的方案。1981年12月5日,中国科学院上报了《关于建造北京正负电子对撞机预制研究的报告》。看过报告后,邓小平同志批示:“这项工程已进行到这个程度,不宜中断,他们所提方针,比较切实可行。我赞成加以批准,不再犹豫。”1983年4月,我国正式批准北京正负电子对撞机项目,计划于1988年底建成。此后担任北京正负电子对撞机工程领导小组组长的谷羽曾感慨:“这一批示给中国的高能物理事业注入了生机和活力,把中国的高能加速器从危机中解放出来。”3 跳上“特快列车”1984年10月7日上午10点,北京西郊玉泉路的高能所里,彩旗飘扬。邓小平、杨尚昆、万里、方毅等党和国家领导人以及专程从美国赶来的科学家们聚在这里。大家盼望已久的北京正负电子对撞机终于破土动工。接下来,科学家们要用4年甚至更短的时间,从站台“跳”上国际高能物理这列飞驰的“特快列车”。北京正负电子对撞机由注入器、输运线、储存环、北京谱仪、同步辐射装置等部分组成,工程涉及的专用设备多达上万台,技术复杂、精度要求极高,中国此前从未做过。工程一开始就遇到了关键问题:是全面引进,还是自主研制?作为工程领导小组组长,谷羽带领小组成员认真分析了中国的科技和工业状况,最终决定,除计算机和少数当时中国无力研制的设备以及用量很少、不值得花人力和物力研制的设备、元件、材料外,主要依靠自己的力量设计和研制。为了提供一个极端的粒子对撞环境,北京正负电子对撞机各类设备的技术指标均向极限逼近,其中涉及的高功率微波、高性能磁铁、高稳定电源、超高真空等技术,设计指标几乎都超出当时的技术能力。例如,对撞机要给电子加速,就需要有稳定的微波电磁场,而一种名叫“S波段高功率速调管”的部件就是微波磁场电子系统的“心脏”。当时,国内技术水平最高的S波段高功率速调管,脉冲输出功率能达到15至20兆瓦,但这根本无法满足对撞机工程的需要。于是,高能所科研人员和工厂联手,吸收消化国外上世纪80年代初期全部生产工艺,改造原先的生产线,不仅将速调管的微波功率提升到34兆瓦,还将国产调制器的功率从50兆瓦提升到100至200兆瓦,工作寿命从1000小时提高到10000小时。这一突破不仅满足了对撞机对微波功率源高功率、高稳定度、长寿命的技术要求,也使合肥同步辐射光源、北京自由电子激光、上海自由电子激光等我国“八五”期间的几大加速器工程,都逐步用上了国产的微波功率源和特种波导元件。类似的技术突破在对撞机研制过程中还有很多。为了建成对撞机,我国在真空技术、电磁铁、大功率高稳定度电源等方面都达到更高的技术水平。此外,高能所还于1987年建成我国第一条国际计算机通信线路,成为我国建设“国际信息高速公路”的先驱。1988年10月的一天,时任高能所所长叶铭汉找到负责北京谱仪建造、安装、调试任务的郑志鹏。“近日要开始中美高能会谈了,美方专家正在北京,如果此时能实现正负电子对撞,那将是一个很适当的时间。”叶铭汉说。郑志鹏立刻找到负责亮度检测器的同事们,商量如何区分信号和噪声。经过几个昼夜的连续调试,他们慢慢摸清了装置的“脾气”。1988年10月6日凌晨,当北京正负电子对撞机处于对撞模式时,亮度监测器上显示出正负电子的散射信号,而且计数随时间不断增长;将对撞机从对撞模式调成单束模式后,信号消失。反复多次,终于,大家确认,“对撞了”。大厅里,所有人都高兴得跳了起来,一夜的疲惫烟消云散。得知消息的叶铭汉天刚亮就来到运行室和谱仪大厅,确认正负电子实现对撞的事实。好消息很快传遍整个高能所,又通过媒体传遍全国。1988年10月24日,刚刚过去的一场秋雨使北京舒爽宜人,邓小平同志再次来到高能所。这一天,北京正负电子对撞机宣布建造成功!“过去也好,今天也好,将来也好,中国必须发展自己的高科技,在世界高科技领域占有一席之地。”邓小平同志在建成典礼上说。4年时间,中国科学家真的“跳”上了国际高能物理这列疾驰的列车。“对撞机的成功是中国科技发展的重要里程碑。”诺贝尔物理学奖获得者里克特如是评价。从此,中国大科学计划的时代正式开启。4 “两军相逢勇者胜”1990年,经过一年多的调试,北京正负电子对撞机正式运行。它很快成为中国高能物理基础研究的“宝地”。凭借它产出的数据,中国科学家取得了一批在国际高能物理界有影响的重要研究成果:实现迄今对τ轻子质量的最精确测量;实现20亿至50亿电子伏特能区正负电子对撞强子反应截面(R值)的精确测量;发现“质子-反质子”质量阈值处新共振态;发现新粒子X(1835)……世纪之交,国际高能物理竞争越发激烈,而北京正负电子对撞机已经运行了10年。中国科学家们有了一个新想法:升级!时任高能所所长陈和生一直密切关注国际高能物理前沿的发展。2000年,他主持制定的“中国高能物理和先进加速器发展目标”得到国家科技领导小组原则同意,其中包括对北京正负电子对撞机的重大改造。得知这一消息,美国康奈尔大学的康奈尔正负电子对撞机团队感受到了威胁。他们宣称,将采用“短平快”的方法改造康奈尔正负电子对撞机,预计比改造后的北京正负电子对撞机早两年达到同样的性能指标。这无异于一次“宣战”。“两军相逢勇者胜!”陈和生告诉身边的科研人员。他和国际上的专家反复讨论后发现,康奈尔大学的方案不一定能实现,而中国的设计方案只要努力就一定能做成。大家决定迎难而上,对北京正负电子对撞机改造(BEPCII)方案作出重大调整,采用国际先进的双环方案,计划将北京正负电子对撞机的性能提高100倍,以便在国际竞争中获得主动权。2004年1月,BEPCII正式动工,建设内容包括注入器改造、建造双储存环对撞机、新建北京谱仪III和通用设施改造等。一场激烈的国际竞赛由此展开。除高能所外,中国科学技术大学、中国科学院理化技术研究所、中国科学院合肥物质科学研究院、中国科学院上海硅酸盐研究所、中国科学院上海应用物理研究所等和相关院外科研机构、企业都参与其中,形成建制化的攻关力量。他们用5年时间,将北京正负电子对撞机的亮度和综合性能提高到国际领先水平,工程自主研制设备超过85%。升级后的北京正负电子对撞机实现了微米级高流强束团精确对撞,峰值亮度约为改造前的100倍,加上探测器性能和运行效率的提升,日积分亮度较改造前提高100倍以上。到2009年BEPCII工程完成时,康奈尔大学的对撞机只达到其设计指标的四分之一,不得不停止运行。在那台对撞机上做实验的许多高能物理学家加入了北京谱仪III合作组。“这是中国高能物理实验研究的又一次重大飞跃,为中国在粲物理研究和τ轻子高能研究方面继续在国际上居于领先地位打下了坚实的基础。”李政道如是评价。更高的性能带来更丰硕的科研成果。2013年3月,北京谱仪III合作组宣布发现新的共振结构Zc(3900),这极可能是科学家长期寻找的“四夸克物质”,入选美国《物理》杂志公布的2013年物理学领域十一项重要成果,并位列榜首。自2008年开始运行到2015年6月底,他们还观测到新粒子X(1870)、X(2120)、X(2370)等。在科研过程中,年轻的高能物理研究人员也成长起来,一批批优秀的博士、博士后源源不断地输送到全国各大科研机构、高校,成为中国高能物理发展的新鲜血液。高能所现任所长王贻芳感慨地说:“今天看来,建造北京正负电子对撞机是当时作的最好选择。它让中国高能物理在国际高能物理领域占有一席之地,培养了一支具有国际水平的队伍,也推动了国内其他大科学装置的建设。”时至今日,北京正负电子对撞机的改造仍在进行。“我们正在对加速器部分做改造,把它的亮度再提高3倍,之后,北京正负电子对撞机预计可以运行到2030年左右。”王贻芳说。在很多过来人眼中,北京正负电子对撞机的建设是几代科技工作者接续奋斗的结果,是全国许多单位大力协同取得的成就,也得益于改革开放后的国际合作。在王贻芳看来,北京正负电子对撞机留下的“启示”,包括“高能物理发展要综合考虑前沿科学目标、国家实力与需求、学科自身发展目标来选择装置建造方案”,“要敢于接受国际上的挑战和竞争”,“国内的实验基地始终是巩固和发展国际地位的坚实基础”,“装置建设方案要尽可能兼顾其他学科的需求”,“要坚持自主创新与国际合作相结合”……回顾过去,中国高能物理的起步艰辛而曲折,但科学家们从未失去希望与激情。曾经的挫折与荣光,成就了中国高能物理学家的胆识与气质。他们也为后来者积累了一个极其宝贵的经验——在困顿中坚守,在希望中奋进。(实习生阚宇轩对此文亦有贡献)
  • 王贻芳院士:我国重大科技基础设施的现状和未来发展
    一、重大科技基础设施的内涵及分类国家重大科技基础设施,有时也称大科学装置,是指为提升探索未知世界、发现自然规律、实现科技变革的能力,由国家统筹布局,依托高水平创新主体建设,面向社会开放共享的大型复杂科学研究装置或系统,是为高水平研究活动提供长期运行服务、具有较大国际影响力的国家公共设施。按照不同的用途,重大科技基础设施一般分为以下三类:第一类是专用设施,这是为特定学科领域的重大科学技术目标而建设的研究装置,如北京正负电子对撞机、超导托卡马克核聚变实验装置、高海拔宇宙线观测站、“中国天眼”、武汉国家生物安全实验室等。专用设施有明确具体的科学目标,追求国际基础科学研究的最前沿,依托设施开展的研究内容、科学用户群体也比较特定、集中。第二类是公共实验平台,这类设施主要为多学科领域的基础研究、应用研究提供支撑性平台,例如上海光源、中国散裂中子源、强磁场实验装置等。这类装置为多个领域的不特定大量用户提供实验平台和测试手段,为相关基础科学研究及其应用提供关键支撑,追求满足用户需求,服务全面完整。第三类是公益基础设施,主要为经济建设、国家安全和社会发展提供基础数据和信息服务,属于非营利性、社会公益性设施,如中国遥感卫星地面站、长短波授时系统、 西南野生生物种质资源库等,追求满足国家和公众需求。重大科技基础设施是国家基础设施的重要组成部分,但它不同于一般的基本建设项目,具有鲜明的科学和工程双重属性,其设计、研制及相关技术和工艺具有综合性、复杂性、先进性,有时具有唯一性,知识创新和科学成果产出丰硕,技术溢出、人才集聚效益非常显著,因此往往成为国家创新高地的核心要素。同时,它也不同于一般的科研仪器中心或者平台,是需要自行设计研制专用的设备,体量大、投资大、能力强、技术复杂先进、生命周期长,具有明确的科学目标,体现了国家意志,反映了国家需求,是“国之重器”、“科技利器”,需要国家统筹规划、统一布局、统一建设、统筹运行与开放。重大科技基础设施也代表着国家的形象,是国家科技实力、经济实力乃至软实力的重要标志。1969年,美国费米实验室申请建造质子主环加速器,实验室主任罗伯特威尔逊在国会被询问建设该加速器对国防的作用。他回答说,“做这件事,不仅对基础研究有极其重要的意义,而且可以使这个国家更值得被保卫”。二、国际重大科技基础设施的发展态势国际上,重大科技基础设施建设起源于二战时期的美国,至今已有八十多年的历史。长期以来,欧美日等主要发达国家和新兴经济体都高度重视重大科技基础设施的建设与发展,将其视作本国科技的核心竞争力,持续加大投资力度,加强设施建设和战略布局,保持、培育和发展领先优势。美国在高能物理、核物理、天文、能源、纳米科技、生态环境、信息科技等领域布局了一批性能领先的大型设施,主要由能源部、国家科学基金会等部门进行资助和管理,据统计目前有60个左右,如先进光子源及其升级(APS,1996年运行,2022年完成升级)、激光引力波天文台及其多次升级(LIGO,2002年运行,2015年完成升级)、先进地震学设施(SAGE,2014年运行)、韦伯太空望远镜(JWST,2021年发射)、大型综合巡天望远镜(LSST,计划2022年运行)、深地中微子实验(DUNE,计划2026年建成)等,取得了发现引力波等一系列重大科学成果和相关核心技术的突破,在美国科技创新、国家安全和经济社会可持续发展等方面发挥了重要作用,巩固了其世界头号科技强国的地位。欧洲以英国、法国、德国等为代表,在能源、生命、资源环境、材料、空间、天文、粒子物理与核物理、工程技术等领域也布局建设了数量众多的研究设施。据不完全统计,英国约有40多个,德国约有60多个,法国有将近60个。除此之外,为了整合资源,提高整体竞争力,欧盟国家还联合建设了一批国际领先的大型研究设施,如欧洲同步辐射装置(ESRF,1994年运行,2015年完成升级,新升级今年完成)、大型强子对撞机(LHC,2008年运行,正在升级)、甚大巡天望远镜(VST,2011年运行)、欧洲自由电子激光(EXFEL,2017年运行)、欧洲散裂中子源(ESS,计划2025年运行)等,取得了发现希格斯粒子等一系列重大科学成果,发明了WWW网页技术,催生了互联网经济。这些设施不仅保持了欧洲在相关领域的科技领先优势,而且促进了全球经济社会发展,促进了欧洲国家之间的和平与合作,提高了技术市场的占有率,为欧洲在全球供应链、产业链中占据高位赢得了主动。三、我国重大科技基础设施建设发展历程我国重大科技基础设施建设起步于上世纪60年代,六十多年来,走过了从无到有、从小到大、从跟踪模仿到自主创新的艰难历程。目前,设施技术水平和性能不断提升,学科领域和地域布局不断优化,从一个侧面反映出我国科学技术事业发展的巨大进步和成就。下面从四个发展时期进行介绍。(一)上世纪五、六十年代的萌芽期新中国成立后,我国于1956年12月颁布了第一个科技发展规划——《1956—1967年科学技术发展远景规划纲要》。在这一规划指导下,围绕“两弹一星”的研制,国家布局建设了一些研究设施,如点火中子源、实验性重水反应堆、材料试验堆、粒子加速器等。这些虽然还不能算作“大科学装置”,但是重大科技基础设施的萌芽。上世纪六十年代,我国科学界开始酝酿基础研究设施,在国家计委等部门的支持下,部署并启动了高能加速器、短波授时、2.16米天文望远镜等装置的预先研究工作。在此基础上六十年代建设的长短波授时台,可以说是我国第一个大科学装置。(二)上世纪七、八十年代的成长期改革开放后,以经济建设为中心使国家对科学技术的需求急剧增加。邓小平同志在全国科学大会上提出“科学技术是生产力”的战略思想,我国进入了“科学的春天”。1979年1月,小平同志访美与卡特总统在华盛顿签订了《中美政府间科学技术合作协定》,并据此签订了高能物理等领域的34项合作议定书或备忘录。1983年12月,小平同志亲自批准建设北京正负电子对撞机,中央书记处决定将其列入国家重点工程。1984年10月7日,该项目在中科院高能物理研究所破土动工,小平同志亲临现场为工程奠基。1988年10月24日,小平同志又亲自出席了对撞机建成典礼。两次出席一个项目的奠基与建成,足见小平同志对国家重大科技基础设施的高度重视和亲切关怀。也正是在这次建成典礼上,他发表了影响深远的重要讲话:“过去也好,今天也好,将来也好,中国必须发展自己的高科技,在世界高科技领域占有一席之地。”北京正负电子对撞机的建成是我国重大科技基础设施建设的重要里程碑。这一时期,在国家计委的支持下,中国遥感卫星地面站、串列加速器、合肥同步辐射装置、东方红2号海洋综合调查船等设施相继建成,设施建设开始向多学科领域扩展。(三)上世纪九十年代以后的发展期九十年代以后,我国经济建设快速发展,国家提出科教兴国发展战略。在国家计委支持下,郭守敬望远镜、超导托卡马克核聚变实验装置、中国地壳运动观测网络等新一批设施项目启动建设。“十一五”之后,国家把重大科技基础设施建设作为提升创新能力的重要举措,形成了按五年规划推进建设的制度。“十一五”期间,散裂中子源开工建设,2018年通过国家验收,投入运行使用。这是世界第四台散裂中子源,填补了国内脉冲中子源的空白。更为大家熟知的“中国天眼”,也在“十一五”开工建设。通过多项自主创新,中科院国家天文台建成了目前世界最大单口径(500米)、也是最灵敏的射电天文望远镜。在这一阶段,在国家发展改革委支持下,强磁场实验装置、结冰风洞等设施也相继开工建设,设施建设和开放共享水平大幅提升,科研产出能力不断提高。上海光源的高水平建成,标志着我国进入国际一流水平的同步辐射光源俱乐部。(四)十八大以来的快速发展期党的十八大以来,以习近平同志为核心的党中央深入研判国内外发展形势,全面分析国际科技创新竞争态势,从把创新作为引领发展的第一动力到把高水平科技自立自强作为国家发展的战略支撑,从建设创新型国家到建设世界科技强国,从“三个面向”到“四个面向”,习近平总书记对科技创新提出一系列新思想、新观点、新论断和新要求,亲自谋划、部署和推动一系列重大战略举措,我国科技创新事业取得许多新的历史性成就。习近平总书记非常关心国家重大科技基础设施建设。2013年,他作为总书记视察科教单位,第一站就选择了我们高能物理研究所的北京正负电子对撞机。也就是在这次视察时,他对中科院提出了“四个率先”的目标要求。2016年9月,总书记为“天眼”落成启用发来贺信,要求高水平管理和运行好这一重大科学基础设施,早出成果、多出成果、出好成果、出大成果。这不仅是对“天眼”提出的要求,也是对所有重大科技基础设施提出的要求。2021年2月,总书记还在贵阳亲切会见项目负责人和科研骨干,视频连线装置现场,亲切慰问科研人员,听取建设历程、技术创新、科研成果、国际合作等情况介绍,指出“天眼”是国之重器,实现了我国在前沿科学领域的重大原创突破。这一阶段,我国对重大科技基础设施进行了前瞻部署和系统布局,投入力度持续加大。在国家发展改革委的规划组织和投资支持下,“十二五”期间,我国启动建设了高海拔宇宙线观测站、高效低碳燃气轮机试验装置等15项重大科技基础设施;“十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。这两个五年计划,累计项目数接近此前建设总数。根据国家发展改革委的规划,“十四五”期间,拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。我国重大科技基础设施建设迎来了实现历史性跨越的快速发展期。目前,我国在建和运行的重大科技基础设施项目总量达57个,部分设施综合水平迈入全球“第一方阵”。中科院是我国重大科技基础设施建设的最早发起者,也是设施建设和运行的主要力量,一代又一代科学家和工程技术人员,为此付出了长期艰苦的努力,做出了许多重大卓越的贡献。目前,共承担建设和运行重大科技基础设施30余项,超过全国的一半。中科院与国内科教界广泛合作,开展规划和建设,已建成运行的设施更面向国内外开放,吸引广大科研人员充分利用设施开展科学研究。在包括重大科技基础设施在内的大型科研设施和仪器设备开放共享方面,在财政部、科技部组织的评估中,中科院长期在全国科教单位中排名第一。当然,高校和其他有关科研单位也承担了很多重大科技基础设施建设任务,同样做出了重要贡献。四、我国重大科技基础设施建设运行成效几十年来,在国家有关部门的统一部署下,我国重大科技基础设施布局逐步完善、运行更加高效、产出更加丰硕,对促进我国科学技术事业发展起到了巨大的支撑作用,为解决国家发展中遇到的关键瓶颈问题做出了突出贡献,其技术溢出也显著促进了经济社会发展,并依托设施逐步形成了一批在国际上有重要影响的国家科技创新中心和人才高地。主要成效可以概括为以下几个方面:(一)原创性引领性科技成果的策源地重大科技基础设施为开展基础研究和应用研究提供了重要平台,推动我国粒子物理、凝聚态物理、天文、空间科学、生命科学等领域部分前沿方向的科研水平迅速进入国际先进行列。2011年以来,依托重大科技基础设施产生的成果就有22项入选国家科技“三大奖”,其中9项国家自然科学奖、3项国家技术发明奖、10项国家科学技术进步奖。总计29项成果入选年度“中国十大科技进展新闻”或“中国科学十大进展”,占上榜成果的13.2%。一些成果更是在国际上产生了重大影响力。例如,大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率。该结果是对自然界最基本物理参数的测量,对未来中微子物理的发展方向起着决定性作用。高海拔宇宙线观测站在银河系内发现大量超高能宇宙加速器,并记录到最高1.4拍电子伏伽马光子,这是人类观测到的最高能量光子,突破了人类对银河系粒子加速的传统认知,开启了“超高能伽马天文”的时代,为破解“宇宙线起源和加速”这一世纪之谜奠定了基础。快速射电暴起源是当今天体物理领域最前沿的科学问题之一,我国科学家利用“慧眼”卫星精准定位了快速射电暴对应的x射线天体,利用“中国天眼”第一次捕捉到了快速射电暴多样化的偏振信息,揭示了快速射电暴的来源和辐射机制之谜。超导托卡马克核聚变实验装置实现了可重复的1.2亿度101秒等离子体运行,再次创造托卡马克实验装置运行新的世界纪录,标志着我国在稳态高参数磁约束聚变研究领域引领国际前沿。(二)解决国家重大战略科技问题的主平台重大科技基础设施在解决重点领域和战略产品“卡脖子”问题等方面发挥了重要作用,推动解决了一批关键核心技术、引领带动了相关产业发展。众所周知,航空发动机核心部件——叶片的服役寿命,一直是制约我国航空领域发展的“卡脖子”问题,过去一直缺乏合适的检测手段,因中子不带电、穿透性强,可以在叶片等大型部件的内部结构和应力探测方面发挥独特优势。通过中国散裂中子源,科研人员首次获得了多种型号发动机的高温合金叶片、单晶叶片、3D打印叶片在不同工艺、不同服役状况下的内部应力数据,填补了国内深层高精度应力测试与评价的空白,支撑解决国产叶片的材料设计、制备和加工工艺。2020年初,新冠肺炎疫情暴发之初,武汉国家生物安全实验室,也就是我们通常说的武汉P4实验室,在世界上首次检测出新冠病毒全基因组序列,首次分离出病毒毒株,为全球科学家开展药物、疫苗、诊断研究提供了重要基础。同时,该实验室在新冠病毒病原鉴定、快速检测、抗病毒药物筛选、疫苗研制等重要工作中也做了很多非常重要的工作,为抗击新冠肺炎做出了不可替代的贡献。(三)推动战略性高技术发展的新引擎重大科技基础设施技术溢出效应大幅提升,催生一批新技术、新产品,成为促进战略性新兴产业的科技创新驱动力,为国民经济和社会发展提供了科技支撑。比如,我国第二代中微子实验——江门中微子实验的核心部件叫做光电倍增管,之前几乎全部由日本公司垄断,对中国科学家来说自主生产这一核心器件,在十几年前还只是一个大胆的设想。2008年,中科院高能所提出全新设计方案,2011年联合北方夜视等国内企业组成产学研合作组,成功研制出20英寸微通道板型光电倍增管,综合性能达到国际先进水平,打破了国际垄断。2020年,15000只国产20英寸光电倍增管生产完成,将使用在江门中微子实验中。仅这一项,就比采购国外设备节省数亿元。该产品也成为“高海拔宇宙线观测站”的核心部件,让观测设备更加“耳聪目明”。再比如,癌症是当今社会对人类生命健康威胁最大的疾病之一。中科院近代物理所依托兰州重离子研究装置,于2021年实现我国首台医用重离子加速器——碳离子治疗系统的成功应用,使人类向攻克癌症又迈进了一步。这标志着我国成为全球第四个拥有自主研发重离子治疗系统和临床应用能力的国家,实现我国在大型医疗设备研制方面的历史性突破。(四)打造国家创新高地的强内核近年来,有关部门将重大科技基础设施作为国家创新高地建设的核心内容,加快推动北京、上海、粤港澳大湾区科技创新中心建设。特别是依托设施集群,建设上海张江、安徽合肥、北京怀柔和粤港澳综合性国家科学中心。这一战略举措不仅加快了重大科技基础设施的建设,也显著提升了这些国家创新高地的科技实力和创新能力。据不完全统计,“十二五”和“十三五”期间规划布局的24个装置中有15个项目整体或部分在综合性国家科学中心集聚,涉及总投资300多亿元。同时,重大科技基础设施有很强的外部辐射效应,不仅能显著提升所在区域的科技实力和创新能力,而且有利于提升所在区域的人才环境和形象,吸引大批高端人才和企业,持续支撑和促进地方经济社会发展。比如,散裂中子源落户广东东莞,显著改善了当地的人才环境,促进了高端产业落户,对东莞及大湾区的产业转型升级和经济发展起到了积极作用。正因为如此,许多地方党委政府都非常重视争取设施落户,对设施建设和运行给予大力支持。借此机会,我们也向有关地方的领导表示衷心感谢!(五)引才聚才和推动高水平创新合作的新高地重大科技基础设施在建设和运行过程中,集聚和培养了一大批懂科学、懂技术、懂工程、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以落户东莞的中国散裂中子源为例,中科院高能物理所在当地集聚和培养了一支400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。散裂中子源的高度开放共享,也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关。据统计,2018年以来,散裂中子源注册用户超过2600人(包括国外用户40余人),共完成600余项课题,有力推动了我国中子散射应用和关键技术的重大发展。五、我国重大科技基础设施建设的差距和不足在充分肯定成绩的同时,我们也清醒地认识到,由于我国的设施建设起步相对较晚,技术储备和人才队伍尚有不足,科技水平和产出效率还需提高,管理体制机制有待优化,对更高水平原始创新和核心技术产出的支撑作用亟待提升,整体水平与建设科技强国和高水平自立自强的目标要求还有较大差距。(一)世界领先、甚至独创独有的设施还不多当前,国际科技竞争空前激烈,世界科技强国经过长期积累,已经拥有相当规模、有重要影响力的重大科技基础设施。我国的重大科技基础设施建设在起步相对较晚、财力相对有限、水平相对不高的情况下,大多以跟踪模仿和追赶西方发达国家为主。近年来,我国陆续建设了“天眼”、全超导托卡马克聚变反应堆、高海拔宇宙线观测站、高能同步辐射光源、江门中微子实验等一批处于国际领先水平的设施。但总的来说,具备原创科学思想和科学设计、世界领先甚至独创独有的重大科技基础设施数量还很少;关键技术的源头主要来源于国外,性能指标还常常有差距。面对科学前沿研究不断向超微观、超宏观、超复杂方向发展的趋势,我们尤其需要加强战略研究,瞄准世界一流,高水平、高起点、有重点地选择建造一批国际领先的重大科技基础设施,以点带面,逐步实现从“占有一席之地”、到重点突破、再到引领创新的战略目标。(二)依托设施的建制化研究有待加强建设高水平、引领型的重大科技基础设施固然重要,但是运行好、使用好这些设施,发挥最大效益也很重要。我国重大科技基础设施不断推进开放共享,吸引了大批高水平用户开展科研工作,但我们也发现在公共实验平台类的设施上,科研用户自发申请使用设施,围绕国家紧迫的战略需求、开展定向性科学问题牵引的建制化研究不多,从而制约了依托设施开展高水平科学研究、产出重大原创成果、解决关键核心技术问题的能力。(三)依托设施的国际合作程度不够重大科技基础设施是国际合作的重要平台。我国重大科技基础设施在国际合作上还存在不足。一方面,我国主持的本土项目国际合作比重较低,且大部分停留在一般性的交流合作上,缺少实质性的外方经费投入和人员、技术贡献,导致我国专用研究设施国际领先性、国际影响和重大成果产出不足。另一方面,我国也较少实质性地、有显示度地参加别国的项目,国际影响不足,不易达到国际领先水平,也影响我们吸引国外投入参与本土项目。当前,美西方少数国家对我国的科技遏制和封锁持续升级,加上新冠肺炎疫情的影响,国际科技合作面临严峻挑战。重大科技基础设施在突破封锁、吸引合作,特别是开展科学家之间的科研合作、互通有无、进行深度科技交流合作上,具有独特优势,可以发挥更大的作用。六、我国经济社会发展和科技自立自强的新形势、新要求“十四五”是开启全面建设社会主义现代化国家新征程的第一个五年。作为国家创新体系的重要组成部分,我国重大科技基础设施建设发展面临着新的形势和要求。从新科技革命的历史机遇来看。现阶段我国建设科技强国的进程正好与知识经济演进中正在产生并日渐加速的新一轮科技革命相伴。科学研究的发展不断向广度拓展、向深度进军,多学科交叉融合汇聚日益频繁,重大创新突破需要依赖科学仪器来拓展人类的感知能力,必须依靠精度更高、功能更强的仪器设备,直至大科学装置。这就对装置的能力和水平提出了更高要求。从深刻复杂多变的国际形势来看。设施建设集科学技术、工业制造、材料加工、人才队伍优势于一体,代表了一个国家的综合科技实力。因此,各国都将设施的发展作为提升国家核心竞争力的重要举措,加强部署并大力实施。国家发展的激烈竞争也使设施的竞争日益激烈,在重大科技基础设施领域既要合作,也有竞争,各种困难交织,对我国设施的建设和未来发展提出了新的挑战。从我国加快建设科技强国战略目标来看。以习近平同志为核心的党中央高度重视科技事业,确立了加快建设科技强国、实现高水平科技自立自强的战略目标。这就要求我国重大科技基础设施发展要加速,只有加速才能实现从跟跑、并跑向领跑的转变,才能为原始创新和关键技术攻关提供更强力的支撑。新时代赋予新使命,内外因素叠加,对我国的设施建设提出了更高、更急迫的要求——要尽快建成布局完备、技术领先、运行高效、创新有力、综合效应显著的国家重大科技基础设施体系,设施建设水平、运行服务能力和重大成果产出要实现国际引领,以全面支撑原始创新能力提升、战略高技术研发、产业创新发展、区域创新高地建设,实现跻身创新型国家前列和世界科技强国的目标。七、几点思考和建议(三)加强高水平国际合作,发起国际大科学计划重大科技基础设施一直是国际科技合作的重点领域,世界上很多设施本身就是国际大科学计划和大科学工程的产物。我国的设施建设也是如此,一些关键技术从国外引进或国内外合作研发,不少关键器件从国外进口,一些本土项目获得国际参与与贡献。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。江门中微子实验获得国际实物贡献约3000万欧元,占比15%左右,共有境外16个国家和地区约300多位科学家参加。我们要坚定开放合作,围绕重大科技基础设施的建设和运行,努力拓展合作范围、方式和渠道。要在项目遴选、评估、建设上有更多的国际参与和贡献,同时积极参加国际项目,广交朋友,培养人才,扩大影响,争取国际支持。希望有更多的重大科技基础设施开展高水平国际科技合作,也希望国家围绕建设高水平重大科技基础设施,选取有重大影响的“硬科技”项目,尽快发起实施若干国际大科学计划和大科学工程。重大科技基础设施肩负着支撑科技强国建设的重要使命。我们相信,在党中央、国务院领导下,在国家有关部门的组织和支持下,我国将形成布局完备、技术领先、运行高效、创新有力、成果产出显著的国家重大科技基础设施体系,为建设世界科技强国、高水平实现科技自立自强做出更大的贡献。
  • 依托大科学装置 抢占未来科技竞争制高点
    中科院是我国承担大科学装置建设、运行和管理的“国家队”——截至“十一五”,我国已建、在建和立项待建的大科学装置中,由中科院建设、运行和管理的约占80%。在科研生涯始自大科学装置、现在又是中科院分管此项工作副院长的詹文龙院士看来,“大科学装置集中体现了国家科学基础设施的水平和技术制造能力,是一个国家综合科技实力的象征”。   所谓大科学装置,通俗地理解,是人类感知觉能力的延伸,是对诸如距离更远、信号更弱、时间更短、能量更高、温度更低、压力更强、规模更大等观测能力极限的突破,是现代前沿科学研究必不可少的条件。现实中,它是同步辐射光源,是强磁场,是大型粒子对撞机,是有望帮助人类找到终极科学问题答案的机器,通过它,人类或许能够知道:我们来自何处,我们由何物构成,以及生命和宇宙的意义何在。总之,它本身就是科学的“加速器”。   2009年,中科院决定与国家自然科学基金委员会共同设立“大科学装置科学研究联合基金” (简称联合基金),自掏腰包,3年共投入6000万元,在全国范围而不仅仅是中科院系统,支持基于大科学装置的研究。如今,第一期联合基金执行已近尾声,双方第二期的合作协议也于7月12日续签,联合基金由原来的4000万元/年增加至6000万元/年,执行期为2012—2014年。近日,科技日报记者就相关问题专访了詹文龙。   中科院为何把这笔经费用途的决定权交出去   联合基金由中科院和基金委各出一半,所有项目按照科学基金“依靠专家、发扬民主、择优支持、公正合理”的原则进行评审,也就是说,中科院相当于把每年几千万元经费的决定权交给了基金评审的专家。在自身已是大科学装置的主要运行、管理方的情况下,中科院这么做是出于什么考虑?   詹文龙介绍说,为了充分发挥大科学装置作为国家科技基础设施的建设效益,中科院长期以来都在积极探索和实践大科学装置开放共享的运行模式和管理机制,包括设立开放经费、发挥装置科技委员会与用户委员会作用等。“不过限于支持体量、受众范围等诸多因素,大科学装置的开放共享虽在不断改善,但总体上仍有潜力可挖。”   他表示,设立联合基金,可以利用基金委面向全国的申请受理平台,依靠其项目评审体系和专家资源,以基金项目的形式,引导全国的科研人员将自己的研究工作与我国的大科学装置密切结合,在充分发挥大科学装置强大科研支撑能力的同时,一方面提升科学家的研究水平和创新能力,培养一批依托大科学装置开展工作的研究队伍,另一方面不断更新和补充大科学装置实验终端的测试能力,持续增强其多学科研究支撑能力。   第一期联合基金共3年(2009—2011年度),经过全面论证,双方选择了北京正负电子对撞机、上海同步辐射光源、兰州重离子研究装置和合肥同步辐射光源4个装置,面向全国受理项目申请。詹文龙介绍,选择这4个装置的原因是,它们都属于具备多学科研究支撑能力的平台型装置。第二期联合基金协议中,稳态强磁场实验装置也被纳入其中,成为第5个依托装置。   促进大科学装置开放共享新模式初见成效   “联合基金这两年的执行情况基本实现了我们设立时的初衷。”詹文龙说。   据介绍,2009年和2010年两年中,联合基金共收到项目申请533项,资助133个项目。这些项目的学科主要分布在10个学科方向。其中,材料学交叉、化学交叉、凝聚态物理和生命科学交叉是份额最大的4个研究方向,四者总数接近三分之二。   詹文龙还介绍说,这两年,中科院之外有38个单位(含中国科技大学)获得了3780万元的支持,另外,大科学装置的用户中,出现了四分之一的新面孔。   他总结认为,大装置联合基金的明显效果主要体现在4个方面:一是在稳定原有队伍的同时,促进了新队伍的培养,增强了人员合作 二是激发了研究新思路,加强了多学科交叉,促进了重大成果的产生,部分项目已有研究论文发表或接收 三是进一步提升了大科学装置的开放共享度及其与全国研究单位的合作 四是增强了大科学装置的科研支撑和服务能力。联合基金项目覆盖了广泛的学科领域,提出了大量新的科学问题,为解决这些问题,从装置性能到各实验线站都得到了进一步发展。“以前我们有些实验方法是借鉴国外的,现在,科学家提出的新的科学问题是国际上所没有的,只能自己创新了。”詹文龙说。   建设大型多学科综合研究基地 抢占未来科技竞争制高点   “虽然项目进展都不错,但也有些遗憾,比如联合基金没有收到一份来自企业的申请,获得资助的研究单位中,只有两家是中科院和大学以外的。”詹文龙说,第二期联合基金应当吸引地方科研单位、企业等更多用户依托大科学装置开展研究工作。   他介绍,国家越来越重视发挥大科学装置在国家科技和社会经济发展中的战略作用。从“十五”后期开始,国家发改委由以往“提一个议一个”的审批模式改变为中长期规划指导下的成批次建设的模式。据悉,“十一五”期间,发改委批准了12个建设项目,“预计‘十二五’期间批准的建设项目将不少于‘十一五’。除了物理学科外,可能还会包括能源等学科的装置”。   具体到中科院在这方面的计划,詹文龙指出,目前,我国已有和在建的大科学装置主要集中在北京、上海、兰州、合肥、广东5个地方,另外还有分布在全国各地的天文台。5个地方的大科学装置要在提高水平和效益上做文章,并逐步形成集聚效应。谈到此,詹文龙提出了一个概念——大型多学科综合科研基地。   他指出,西方发达国家的科学技术水平和强大的国际竞争能力,相当大程度上是通过一批高水平的大型科研基地体现的。这些基地科研力量集中,科研任务集中,国家投资集中,科学技术成果累累 学科多样,学科交叉,发展新型、边缘科学和突破重大新技术的能力强。而这些基地往往是在大科学装置的基础上发展起来的,逐渐拥有了大科学装置群,作为支撑其强大科技竞争力的基本条件。   建设大型科研基地,抢占未来科技竞争制高点,是提升国家科技创新能力、发展高科技的要求。根据大科学装置目前的布局,中科院决定,把第一个依托大科学装置建设的大型科研基地选在北京。   在他的描述中,记者了解到,这将是一个拥有同步辐射光源、综合极端条件实验设施、超级计算设施等多个装置的科学中心,论文不再是在这些装置上产出的唯一“产品”,纳米、生物等多个产业的集聚会让成果迅速转化,这里将是吸引国际高水平人才的“梧桐树”,不同学科的研究人员会在这里比邻而居……   詹文龙说,这不仅仅是一幅愿景图。按照计划,“十二五”期间将重点进行装置的建设,争取在2020年前使这些“速度更快、温度更低、压力更大、电磁场更强”的高水平装置全部投用,而其运行模式也将是全新的。   前不久的一则新闻算是詹文龙这番话的一个注脚:中科院怀柔园区北京综合研究中心规划用地约2200亩,将重点规划建设国家“十二五”规划中部分大科学装置项目。初步估算,项目总投资达到60亿元,计划于“十二五”至“十三五”规划期间分步建设。
  • 《自然》中国科学之星5人来自中科院 颜宁、陈吉宁等入选
    《自然》杂志6月20日介绍了10位中国科学家。他们由该刊记者和编辑选出,在神经科学、中微子、空间科学以及结构生物学等领域有重要影响,对提升中国在全球科学领域的地位起到了重要作用。  其中有5人来自中科院系统。他们包括,中科院遗传发育所高彩霞(最先将CRISPR-Cas9基因编辑技术用于小麦和大米等农作物上);中科院国家空间中心吴季(其基础空间科学任务将科学发现放在了中国空间计划的核心位置上);中科院高能物理所所长王贻芳(希望建造50~100公里环形粒子对撞机接替欧洲核子研究中心27公里长的大型强子对撞机);中科院古脊椎动物与古人类研究所付巧妹(改写了亚洲第一个解剖学意义上的现代人历史);中国科学技术大学教授陆朝阳(被评为推进中国掌握量子信息技术的一颗新星)。  其他入选科学之星的科学家包括清华大学颜宁(观察到了蛋白质在原子层面是如何工作的) 香港科技大学叶玉如(在基础神经生物学上的研究和对大脑健康的转化研究提升了中国生物技术) 中国环保部部长陈吉宁(提升了政府确保地方政府和企业遵循污染和工业发展规范的力度) 上海海洋大学深渊科学技术研究中心主任崔维成(正在领导一支队伍向地球最深处进军) 国家海洋局极地考察办公室秦为稼(帮助揭开南极冰盖的历史)。  《自然》编辑理查德莫纳斯特斯基说:“这10位科学家凸显了中国创新的广度以及对于创新的承诺,中国将继续其强劲的推动力,从而成为科学的领导者。”
  • 国家科技奖引领中国产业跃级 重大成果重塑世界产业格局
    据新华社报道,中共中央、国务院9日上午在北京隆重举行国家科学技术奖励大会。党和国家领导人习近平、李克强、刘云山、张高丽出席大会并为获奖代表颁奖。李克强代表党中央、国务院在大会上讲话。张高丽主持大会。  中国科学院物理研究所赵忠贤和中国中医科学院屠呦呦获得2016年度国家最高科学技术奖。2016年度国家科学技术奖项目,充分证明中国人在基础研究领域的成果,以及中医药的勃勃生机。  一年一度的国家科技奖励大会,成为彰显中国创新创造以及产业投资前景的重要舞台。“无论是有关微观粒子世界,还是中医药生物世界的这些研究成果,对于中国相关产业的促进和滋养‘润物无声’,必将在未来引领中国产业投资的‘跃级’。”一些专家在接受记者采访时说。  基础研究引领中国产业“跃级”  除引人瞩目的两个最高奖之外,2016年中国科技成果可圈可点。  其中,2016年国家自然科学一等奖为大亚湾反应堆中微子实验发现的中微子振荡新模式,这是继2013年铁基高温超导和2015年多光子纠缠相继获得国家自然科学奖一等奖之后,又一项物理学领域的重大成果问鼎该奖。  “大亚湾实验极大地提升了我国在探测器设计和建造方面的国际声誉,将我国的中微子研究带入国际前沿。”大亚湾中微子实验首席科学家、中国科学院高能物理研究所所长王贻芳说。  记者了解到,大亚湾反应堆中微子实验发现的中微子振荡新模式,是中国科学家主导的原创性科学成果,也是中国本土首次测得的粒子物理学基本参数,在国际高能物理界产生重要影响。这项2012年取得的重大成果自诞生以来就广受关注,不仅入选美国《科学》杂志公布的2012年度十大科学突破,还获得了2016年度基础物理学突破奖。  材料显示,基于大亚湾中微子实验的巨大成功,一批中国高能物理学家提出建设新一代强子对撞机计划。据介绍,强子对撞机项目将带动超导磁铁技术发展,保守估计将形成数百亿美元的产业,撬动几百亿美元的核磁共振成像产业及超导电缆输电、超导风力发电等产业。  另外,中科院高能物理研究所等单位实施的北京正负电子对撞机重大改造工程获得国家科技进步一等奖,涉及低温超导、高频微波、超高真空、精密机械、磁铁与地源、粒子探测器、海量数据获取等高新技术。该项目的建设有力地推动了我国在相关高科技领域的发展。  “该项目的建设,还带动了国内相关工业的提升。如参与项目建设的成飞公司方面表示,在三个重大领域实现了跨越。”中科院高能物理研究所陈和生院士告诉记者,此项目在医学领域应用中,使我国成功揭示了As203(砒霜)治疗某种白血病的分子机理,近日刚获得国际医学大奖。  自主核心技术重塑世界产业格局  打开2016年国家科学技术奖的名册可以发现,以中医药、移动4G、北斗导航为代表的一批重大科技成果,扭转了我国核心技术和知识产权受制于人的被动局面,重塑了世界产业格局,是我国创新驱动发展的成功范例。  其中,“第四代移动通信系统(TD-LTE)关键技术与应用”即第四代移动通信技术(简称4G)获得国家科技进步奖特等奖,首次实现了我国主导的移动技术标准走向世界。“北斗二号卫星工程”也获得国家科技进步奖特等奖,使我国从根本上摆脱了对国外卫星导航系统的依赖,掌握了时空基准控制权、卫星导航产业发展主动权、国际规则制定话语权。  另外,除屠呦呦获得最高奖外,由陈香美等人完成的IgA肾病中西医结合证治规律与诊疗关键技术的创研及应用获得国家科技进步一等奖,对诊治慢性肾病另辟蹊径,彰显出中医药的勃勃生机。  在上一年度国家科技奖名册中,中医药也是亮点纷呈。其中,由中国医学科学院药物研究所、中国中药公司等单位共同完成的“人工麝香研制及其产业化”获国家科技进步一等奖。其重大意义不仅在于从根本上解决了天然麝香长期供应不足的问题,也是科学的组织管理、实验研究和成果转化的有机结合、中药源头创新的范例。  长江证券分析师赵浩然认为,2016年底我国发布了首部中医药法(该法将于2017年7月1日正式实施),明确提出鼓励中医药发展,引发社会广泛关注,利好整个产业。  国家卫生计生委副主任、国家中医药管理局局长王国强表示,2017年还将抓好《中医药发展战略规划纲要(2016—2030年)》的实施,并实施创新驱动,着力提升中医药科技创新能力。“这意味着中医药产业的发展将获得更多支持。”业内人士说。
  • CEPC 650 MHz超导腔加速梯度再创新高
    6月22日和7月12日,中科院高能所加速器中心沙鹏等人在先进光源技术研发与测试平台(PAPS)分别对环形正负电子对撞机(CEPC)的两只650 MHz single-cell超导腔(1#腔和2#腔)进行了低温下的垂直测试(@ 2.0 K):两只超导腔的最大加速梯度分别达到了41.0MV/m和41.6MV/m;在40MV/m的加速梯度下,两只超导腔的品质因数(Q)分别达到了1.7E10和2.5E10;此外,在测试过程中,1#腔全程没有出现场致发射现象,2#腔则在37MV/m以上的高加速梯度下发生了轻微的场致发射。测试结果表明,这两只超导腔的后处理和测试过程非常成功。 由于体积和表面积大、频率较低,国内大尺寸(频率小于1GHz)超导腔的加速梯度一直没有超过40MV/m,而国际上超过40MV/m的大尺寸超导腔也是屈指可数。因此,在高能所射频超导与低温研究中心的部署下,加速器中心高频组开展了CEPC高性能650 MHz single-cell超导腔的研发,希望可以达到CEPC的远期目标(3E10@40MV/m)。两只650 MHz single-cell超导腔的加速梯度均超过了40MV/m,这为下一步继续提高超导腔的Q值奠定了基础。 本项研究得到了先进光源研发与测试平台、国家重点研发计划、国家自然科学基金委、 王贻芳科学家工作室和高能所创新项目的资助和支持。 650 MHz single-cell超导腔垂直测试结果(1#腔,20220622;2#腔,20220712)
  • 中国科学院高能物理研究所所长、中国科学院院士王贻芳:我国下一代加速器已攻克多项关键技术
    “作为中国下一代加速器,环形正负电子对撞机(CEPC)的设计与预研进展顺利,计划2022年完成技术设计报告。”6月28日,在“高能同步辐射光源高端学术论坛”上,中国科学院高能物理研究所所长、中国科学院院士王贻芳表示,在CEPC预研项目的支持下,研究人员攻克了超导高频腔、速调管、等离子体加速注入器、探测器等方面的多项关键核心技术。  超导高频腔是现代粒子加速器的“心脏”,可以通过极高的能量效率给带电粒子加速。“未来10年,国内对超导高频腔的需求在1000只以上。但是,我国超导高频腔长期依赖进口,国内只有少量的样腔。”王贻芳说。  王贻芳介绍,在CEPC预研项目的支持下,1.3吉赫兹(GHz)超导高频腔已经达到了国际最好水平,未来不仅可以用在CEPC上,还可以用在上海自由电子激光装置、日本国际直线对撞机(ILC)上,此外,650兆赫兹(MHz)双腔体(2-cell)的超导腔也达到预期指标。  速调管可以给超导高频腔供应微波能量,是现代加速器的核心关键部件,在广播电视发射、雷达、工业方面也有广泛应用。我国自50年代开始研制加速器使用的大型速调管,但如今仍然依赖进口。  王贻芳介绍,目前国内速调管的微波能量只能达到80千瓦,寿命在1万小时,只能实现50%的效率,而国际水平能达到1000千瓦、10万小时寿命和60%的效率,“我们的目标是能量达到1000千瓦、10万小时寿命,并达到80%的效率”。  “目前,速调管的第一支样管已经研制成功,指标达到了设计要求,可用于散裂中子源等国内大科学装置,第二支样管也已经开始加工,以满足CEPC高效率的要求。”王贻芳说。  CEPC在预研中还提出了以传统方案保底,将等离子体加速技术用于加速器的方案。“国际上等离子体加速研究还在实验室阶段,没有真正用于加速器。目前我们的模拟研究已经证明方案可行,束流质量能够满足要求,一些验证试验还将在清华、上海和斯坦福直线加速器中心(SLAC)完成。”王贻芳说。  此外,CEPC在探测器预研方面也取得了一些进展。“比方说硅像素探测器方面,CEPC的目标是达到3到5微米的分辨率,目前我们研制的硅像素探测器主要指标已经达到或超过国外产品。”王贻芳说。  一直以来,粒子物理学家都是通过加速器让粒子对撞产生出新物理现象,来检验或挑战粒子物理的基本模型。然而,随着粒子物理研究的深入,他们对加速器的能力提出了更高的要求。“现在全世界的高能物理学家都在研究下一代的大型加速器。”王贻芳说。  从上世纪90年代起,日本科学家就开始研究国际直线对撞机(ILC),目前正在组织预研实验组(Pre-lab),计划在10年之内开始建设。  欧洲核子中心(CERN)从2013年开始讨论未来加速器计划(FCC),2019年发布了从环形正负电子对撞机升级到强子对撞机的计划,预计2028年开始建设正负电子对撞机,并在2038年运行,造价约为100亿欧元。2020年6月,CERN在“欧洲粒子物理发展计划”中提出粒子物理发展的首要目标是建设正负电子希格斯工厂。  “美国也在讨论一个全新的未来加速器发展计划,很有可能会在缪子对撞机上有一些新的想法。”王贻芳说。  2012年9月,我国高能物理学家提出了下一代加速器方案——环形正负电子对撞机—超级质子对撞机(CEPC-SPPC)。2018年11月,CEPC研究工作组发布了“概念设计报告”,并转入技术设计阶段。  “我们的目标不再是在世界粒子物理领域占有‘一席之地’,而是要站在‘舞台中央’。”王贻芳说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制