当前位置: 仪器信息网 > 行业主题 > >

气味性测试

仪器信息网气味性测试专题为您整合气味性测试相关的最新文章,在气味性测试专题,您不仅可以免费浏览气味性测试的资讯, 同时您还可以浏览气味性测试的相关资料、解决方案,参与社区气味性测试话题讨论。

气味性测试相关的论坛

  • 【原创大赛】SGS探索零部件VOC/气味测试新方法—三立方舱法

    [align=center]SGS探索零部件VOC/气味测试新方法—三立方舱法[/align][align=center]陈慧超,罗夏桐,顾昕[/align][align=left]进入21世纪以来,随着科学技术的日益发展,人们生活水平的不断提高,人们的出行越来越多的依赖汽车,我国的汽车保有量持续增长,汽车逐步成为我们生活的“第二空间”。 此外,车内空间相对于户外和室内较为狭小而封闭,车内零部件和材料所散发的VOC(挥发性有机化合物)能够对人体造成诸如病变、癌变、胎儿畸形等不同种类和程度上的危害,因此车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量就如同家居室内的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量一样得到人们的广泛关注,成为汽车综合评判的重要条件。[/align][align=left]对于整车的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,国家以及国际上都有相应的标准。我国国家环保部和国家质量监督检测检疫总局发表了HJ/T400和GB/T 27630,为整车VOC的测试和管控提供了依据;国际上,ISO即国际标准化组织发布的ISO 12219-1也对整车空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的测试即采集做出了标准化规定。[/align][align=left]相较于整车层面上有着诸如国标一类广泛适用的标准,零部件的VOC检测则是使用各大主机厂为了最终满足整车标准而制定的企业标准,主要有袋式法和一立方舱法。袋式法主要根据企标,依据不同零部件大小选择不同规格的PVF袋(一般为10-2000L),将零部件放入袋子中,充入一定量的气体进行加热后采样测试;一立方舱则是使用体积约为1 m[sup]3[/sup]的舱体,对零部件进行加热散发后采样分析;传统的袋式法和一立方舱在单纯的以零部件VOC分析为目的的测试方面,已经可以完全满足要求。然而在实际中,主机厂在研究零部件对于整车VOC和气味的贡献度以及开展整车气味VOC溯源项目时,需要将零部件测试结果和整车进行匹配,这就需要综合考虑零部件散发条件是否与整车一致,包括零部件的散发空间大小、温度、时间等是否与整车测试一致,零部件的摆放位置是否完全模拟其在整车中的实际情况,零部件测试用量是否为整车份等。显然,袋式法和一立方舱法均无法满足上述要求,因此开发新的零部件测试方法具有重要意义。[/align][align=left][b][b]三立方舱简介[/b][/b][/align][align=left][b][/b]针对上述要求,SGS做了大量研究,首先考虑的是用白车身代替传统的袋子和一立方舱,从而满足零部件散发空间体积向整车靠拢的要求。然而白车身存在一个致命的问题:内饰件拆除后,点焊、胶黏剂等暴露,自身VOC散发不能满足要求。因此,用白车身作为零部件测试的载体显然是不可行的。因此,三立方舱的设计研发提上了日程。图1是三立方舱的展示图,其主要特点为:(1).内部空间参考B级车内体积,约3.4 m[sup]3[/sup],基本可以代表所有A类常规乘用车;(2). 舱体材料为镜面不锈钢,对VOC吸附作用较弱,VOC空白值较低;(3). 舱体两侧模拟整车设有四个舱门,每个舱门均设置有5个采样口,可进行VOC采样和气味嗅辨;(4).可以精确控制温度和湿度,并且可以对舱内温湿度进行实时监控;(5).舱内设置换气装置,可进行内外气体交换;(6). 可满足VOC和气味背景要求;(7).紧邻SGS整车舱,可依托整车舱,实现整车测试到零部件拆解测试的无缝衔接。 [/align][align=center][table][tr][td=1,1,39] [/td][td=1,1,274] [/td][td=1,1,4] [/td][td=1,1,274] [/td][/tr][tr][td] [/td][td][img=,274,205]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710361798_469_2883703_3.png[/img][/td][td] [/td][td][img=,274,205]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710366160_8660_2883703_3.png[/img][/td][/tr][/table][/align][align=left] 图1:三立方舱[b]三立方舱的优势[/b]3.1. 内部空间与整车接近我们知道,一立方舱的舱内体积约为1 m[sup]3[/sup],袋子的体积一般也不会超过2 m[sup]3[/sup],这就导致零部件是在完全不同于整车空间的密闭环境下散发的,得到的结果也不能完全代表零部件的真实散发水平,更不能与整车散发结果匹配。其次,针对袋式法,主机厂对袋子的规格有各自的规定,使得每一个零部件相互之间的散发空间也不相同。第三,某些较大的零部件总成,比如顶棚总成,长度较长,无法直接放置进入一立方舱体和袋子中,之前的解决方式是在征得主机厂方面的同意之后,对样品零件总成进行必要的折叠以足够放进舱内。然而在此情况下,样品暴露面的形状等发生了变化,导致样品的散发与其在整车测试时散发存在差异。第四,门板、座椅等零部件,为非单一零部件,不能全部置于袋子和一立方舱中测试。而对于三立方舱,首先内部空间较大,因此车内的绝大部分零部件总成可以在不经过任何处理的情况下放置入三立方舱中,进行加热散发,测试的参考价值也得到相应的提高;另外,所有零部件的散发空间与其在整车测试时的散发空间接近,得到的结果能够更好的与整车匹配。[/align][align=left]3.2. 零部件散发条件向整车靠拢对于车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的测试和限制要求,无论是国际上还是国内都是针对整车方面的标准,各大主机厂的标准也都是为了最终满足整车标准而制定的。我国国家环保部和国家质量监督检测检疫总局发表的HJ/T400《车内挥发性有机物和醛酮类物质采样测试方法》对于整车VOC的采样做出了标准化要求,车辆需要在进入整车采样舱中后,在25℃、50%相对湿度的环境条件下,开门静置6小时,再关门静置16小时,进行车内气体采样。对于德国大众的PV 3938标准,整车的采样需要在封闭条件下使用辐照灯照射车辆的表面使其升温至65℃进行采样。对于国际标准ISO 12219-1,其包含了三个阶段的采样,第一个阶段是常温静态阶段,第二个阶段是使用红外顶灯模拟阳光直射的高温静态阶段,第三个阶段则是高温条件下,开启车内空调使车内温度控制在23℃,然后再进行车内空气采样。[/align][align=left]从上述介绍中可以得出,整车VOC测试不仅需要对车辆所处环境的温度湿度进行控制,还需要对诸如开关门(换气)、红外灯照射、开启空调等工况进行针对不同标准不同阶段的调整。袋式法的测试仅能控制所在测试舱中的温度与湿度,对于上述所提到的开关门、红外灯照射等工况无能为力;一立方舱虽然可以进行气流交换,但是仍然无法满足红外照射、辐照等工况,导致零部件测试结果不能完全反应其在整车环境中的挥发情况,也无法与整车数据进行匹配。三立方舱则解决了上述问题。首先,由于舱体两侧模拟整车设有四个舱门,可完全模拟整车采样时的准备阶段的工作;其次,可以使用相同功率的辐照灯,从舱的外部对舱内进行辐照,模拟PV 3938的辐照流程;第三,可在舱内顶端搭建红外灯工装,模拟ISO 12219-1中红外加热过程。因此,相较于袋式法和一立方舱,三立方舱与整车标准中的散发条件更为接近。[/align][align=left]3.3.零部件的摆放位置可完全模拟整车袋式法和一立方舱在零部件测试时,基本是将零部件放置于袋子和一立方舱的中间位置,挥发出的有机物大多分布在样品的附近空间,即便是在采样之前实验员对样袋进行拍打试图将袋内气体混匀的情况下,也还是一定程度上存在气体分布不均的情况。其次,不同分子量的物质存在密度上的差异,也会影响其在袋子中的分布。此外,在空气动力学方面,由于零部件的摆放位置和实际整车中的不同,零部件本身对于气体的位阻也不相同。由于三立方舱内部体积与整车接近,因此,待测零部件都可以完全按照其在整车内的实际位置进行布置,采样管的进气口可模拟整车采样,布置在“前排头枕的中心点”处,与整车测试保持一致。[/align][align=left]3.4. 利于研究零部件对整车VOC和气味的贡献度目前,零部件的气味评价,国标和各主机厂企标都未对其进行统一的规定,无论是袋式法还是一立方舱,基本上采用的是VOC采样和气味评价相结合的方式直接进行气味嗅辩。此类方法如果只是对零部件进行VOC测试和气味评价是可行的,若要研究零部件对整车VOC和气味的贡献度,则不具备参考性。原因在于:第一,不同零部件使用的袋子的体积不同(如方向盘和座椅);第二,部分零部件的测试量不是整车用量(如门板、座椅)。由于三立方舱在零部件测试时均采用整车份,且散发条件一致,因此可规避上述不利因素,得到的VOC和气味评价能够用于研究零部件对整车VOC和气味的贡献度。[/align][align=left]3.5. 依托整车舱,实现整车测试到零部件拆解测试的无缝衔接此前,主机厂在进行整车气味提升,筛查零部件时,一般先对整车进行VOC和气味测试,再将整车拆解成零部件或者在生产线上直接抽取零部件送到SGS进行测试。尽管零部件可以用铝箔进行包装,但是运输途中的污染和零部件之间的交叉污染仍然无可避免。此外,考虑到运输时间,整个项目的周期也相应延长。目前,三立方舱建立在嘉定,紧邻SGS整车舱,主机厂可将车辆运往SGS整车舱进行VOC和气味测试,整车测试后可直接拆解成零部件进行三立方舱VOC和气味测试,既能够保证测试数据的准确性,也大大节约了时间成本,提高了效率。[/align][align=left][b]三立方舱的应用范围[/b] 由于整车气味问题难以解决,主机厂在整车气味溯源方面 有着很高的关注度。此前的溯源思路是先找到整车高危散发物质,零部件按照袋式法进行测试分析,再将数据与整车匹配。在实际操作中,由于散发条件的不一致性,部分数据与整车数据匹配性较差。由于三立方舱能够在散发体积、散发条件、零部件位置、零部件用量上完全模拟整车,因此在整车高危零部件的快速筛查和整车气味/VOC溯源项目上具有较好的应用前景。依托整车舱和三立方舱联动优势,首先通过整车舱进行整车VOC、气味和全谱散发测试,得到影响整车气味的高危散发物质;其次,利用三立方舱直接对拆解后的零部件进行VOC、气味和全谱散发测试;由于零部件来源于同一辆整车,散发条件也完全模拟整车测试,使得零部件的散发数据能够更好地与整车数据匹配,从而筛选出高危零部件。[/align][align=left][b]结论[/b]本文对于三立方舱在VOC测试以及气味评价上的应用进行简要的介绍,对比行业内广泛采用的零部件测试方法,对三立方舱的优势进行了分析,主要结论如下:[/align][list=1][*][align=left]三立方舱可以精确控制温湿度,并可同时进行VOC采样和气味嗅辨;[/align][*][align=left]三立方舱内部体积与整车接近;[/align][*][align=left]零部件在三立方舱内可完全模拟其在整车中的放置情况;[/align][*][align=left]零部件测试用量为整车份,可研究不同零部件对整车VOC和气味的贡献值;[/align][*][align=left]零部件的测试数据能够更好的与整车数据匹配;[/align][*][align=left]依托整车舱,实现整车测试和零部件测试的直接无缝衔接。[/align][/list]

  • 咨询:固体样品中刺激性气味测试(用顶空可以吗?)

    请教各位大侠,我有固体食品添加剂样品(单甘酯),存在很强刺激性气味。我看了下药典,说是要配置成溶液再顶空。我想直接把样品装到顶空瓶中,收集挥发性气味,这样做可以吗?有没有相关的测试固体样品中刺激性气味的方法?谢谢!

  • 【求助】布料气味性试验

    请问:有没有谁知道布料气味性试验的啊,要用到注射器,请问哪有卖的哦?而且还要是不同容量的,能够抽取气体的。我的邮箱wang_can_can1@126.com.有哪位知道又愿意赐教的,请发送我邮箱,万分感谢!

  • 辛辣型、气味型果蔬前处理检测

    求教大侠们,辛辣型、气味型果蔬前处理的技巧。例如洋葱、生姜、韭菜、迷迭香、薄荷叶、百草香、平时每次都是用微波 中火,微波个40~60秒,结果还有很多干扰。你们检测有这种情况吗?求解

  • 芦笋尿的气味从哪儿来?

    芦笋尿的气味从哪儿来?

    芦笋是很多人餐桌上清新又健康的美味,然而它留给人的印象却并不总是如此美好。在尽情享用芦笋之后过上几个小时,你可能就会在洗手间里闻到自己的尿液飘出一股难以形容的奇怪气味。别担心,这不是你的问题,一切都是芦笋捣的鬼。事实上,人们发现这种现象已经有相当长的时间了,有关芦笋尿“醉人”气味的记录至少可以追溯到18世纪初,这个生活中的小尴尬也引发了不少研究者的兴趣。那么,怪味儿的芦笋尿中到底有什么玄机呢?芦笋尿的怪味从哪儿来?从发现芦笋尿的怪味以来,不少研究者都对其中的化学成分进行了分析。目前一般认为,芦笋尿的气味来自其中的一系列含硫化合物。1987年时,华林(Waring)等人用气相色谱对芦笋尿上飘出的挥发部分进行了成分分析。结果,它们在芦笋尿中找到了以下特征成分:甲基硫醇、二甲基二硫、二甲基硫醚、二甲亚砜以及二甲基砜。他们报告说,甲基硫醚与二甲基硫醚的混合物与芦笋尿闻起来气味接近。在2001年,莱特纳(Leitner)等人也利用类似的方法进行了气相色谱分析,结果找到了一共12种的含硫化合物,这其中也包括甲基硫醇和二甲基硫醚。http://ng1.17img.cn/bbsfiles/images/2015/06/201506091105_549302_1916297_3.jpg那么,这些成分是怎么来的呢?芦笋本身并没有发出什么怪味,这些小分子物质要想在烹调中幸存也不太容易,因此它们应该是以其他有机物的形式存在于芦笋当中,经过人体代谢之后才得以现身。科学家们认为,芦笋酸(Asparagusic Acid)和它的衍生物们比较可能是这些怪味物质的前身。芦笋酸是芦笋中具有特征性的含硫化合物,它的分子中有二硫戊环的结构。华林等人曾让两个排出过芦笋尿的志愿者吃下了芦笋酸,在此之后,他们的尿液再次出现了芦笋尿的气味。由此看来,芦笋酸应该就是怪味的元凶了。芦笋尿的气味,不是人人都了解有意思的是,吃完芦笋之后,并不是所有人都会在厕所里察觉到自己排泄物的微妙气味。自从芦笋尿现象被发现以来,人们就意识到在这其中存在广泛的个体差异,有人吃上几根芦笋之后就感觉排泄物怪味明显,而有的人却对此浑然不觉。造成差异的原因是什么呢?没有体会到芦笋尿的人们是鼻子不够灵敏,还是没有排泄出足够多的“风味物质”?目前看来,这两种因素都在其中发挥着作用。对这种个体差异进行的科学研究可以追溯到1956年,一组研究者在那时测试了人们吃芦笋之后尿液中甲基硫醇的含量,他们在论文中声称所测试的115人中有46人属于“排泄者”。在那之后,也有一些研究陆续发现了人们在排泄气味物质和闻到这些气味方面的差异。气相色谱研究发现,对于不产生芦笋尿的个体,他们在吃芦笋之后的尿液中也缺乏与芦笋尿气味相关的含硫化合物成分。另外一些研究者则收集了带有怪味的芦笋尿样本,他们不断稀释这些样本,并记录每个受试者可以察觉到气味的最低浓度,从中发现了人们对这些含硫化合物气味的敏感度差异。目前还不能确定的是,这些差异究竟是清楚地分为不同阵营,还是存在连续的变化谱。在1983年的一项研究中,人们对芦笋尿的鉴别能力似乎集中在了一高一低的两个峰值上,然而在另外几个同类研究中,这样的分化却并不明显。不过可以肯定,对芦笋尿怪味深有体会的和浑然不觉的都大有人在。基因的作用在生活中,每天要睡多少小时、爱不爱吃香菜之类的个体差异背后都有遗传因素的影响,芦笋尿是否也是如此呢?在这方面,我们现在所知道的信息还非常有限,不过看起来基因确实也在这里发挥了一些作用。曾有研究对一些家长和他们的子女进行了研究,分别用化学和人工闻嗅的方法鉴定了他们在吃芦笋之后是否会排出带有特殊气味的尿液。这些研究认为,吃芦笋后是否排泄芦笋尿的性状符合单基因遗传的规律,不过它们年代比较久远,研究方法也有不足,还需要进一步检验才能下定论。在近几年,也有研究者关注起了单核苷酸多态性(SNP)与芦笋尿的关系。他们发现,对芦笋尿气味的辨识能力与一个位点上的SNP有关。不过时至今日,与芦笋尿有关的谜团还没有完全得到解决。

  • 广州线下 气味评价员培训

    广州线下 气味评价员培训

    一、培训时间:2023年11月14日(周二) 二、培训地点:广电计量检测集团股份有限公司(广州市天河区黄埔大道西平云路163号) 三、培训内容:气味评价理论知识培训:气味评价基础知识;(基本原理、常用设备、应用对象)相关知识;(常见的气味测试标准)专业知识。(气味评价方法的等级、强度、评定标准和数据处理等相关知识)。气味评价方法的操作培训:标准嗅液嗅觉能力测试;气味强度的嗅辨;实际样品的气味评价考核。 四、证书颁发:考核通过,由广电计量培训事业部颁发相应的“气味评价员技能培训合格证书”。[img]https://simg.instrument.com.cn/bbs/images/brow/em23.gif[/img][img]https://simg.instrument.com.cn/bbs/images/brow/em23.gif[/img][img=,638,844]https://ng1.17img.cn/bbsfiles/images/2023/11/202311011859333521_1857_5665336_3.png!w638x844.jpg[/img]

  • 【讨论】食品中是否有气味测试?

    俄罗斯禁止一批来自中国的不合格荞麦米入境 俄罗斯兽医及植物卫生监督局官方网站5月18日报:俄罗斯克拉斯诺达尔和阿弟盖共和国的农业监督局禁止一批175吨来自中国的荞麦米入境,原因是该批荞麦米含有不应有的气味和口味,不符合证书中的评语要求,俄罗斯农业监督部门禁止该批货物入境。

  • 【原创大赛】我们来说一说汽车检测中气味评定的二三事

    【原创大赛】我们来说一说汽车检测中气味评定的二三事

    家里新买了小汽车是不是有一股淡淡的气味了?有没有觉得那股味道还不错~每台汽车出厂前就有过各色检测的哦,如果有某项不合格,是不会放出来给客户用的哦~~今天我们主要聊一聊汽车行业气味检测的那些事。气味评定在很多行业中都有被涉及,本文主要讨论下汽车检测行业中的气味评定的前世今生~目前汽车零部件材料的气味评定主要是集中于汽车内饰件中,而汽车内饰件及材料主要为皮革、塑料、纤维等,在这其中,汽车内部座椅、顶棚、仪表板由于面积大、含有皮革且位置特殊等,成为气味的最主要来源。在此,主要讨论下第三方实验室中汽车零部件及材料的气味评定流程:一、气味检测标准目前汽车零部件检测中气味评定还没有相应的国家标准,主要都是由各家主机厂在把握航行中的方向,基本上每家主机厂都出台了关于汽车内饰件或材料的气味测试标准。比如通用标准GMW3205,其中分干态和湿态;大众标准PV3900;德国汽车工业协会VDA270;大众vw50180等等,主要获得途径可以是网上下载、跟主机厂查询等二、要有配套的气味实验场所气味实验场所可不是随随便便一块空地就可以的哦,必须要保证不被其它实验所影响哦,旁边最好是不要有燃烧试验或有机试验等其它会散发气味的试验。气味实验室里最好是做好6个以上隔断,隔断的目的一是为了样品之间不串味,二是评定人员之间不相互干扰。如何数量为6个呢?因为目前通用汽车标准里面对评定人员数目是6个人哦,其它标准也差不多也是要求≥3个评定人员。三、气味测试人员能力气味是一项靠感官来主管评定的试验,人嗅觉感官和舒适度直接影响到最后的检测结果。现在多数主机厂对气味试验都安排了各自的人员能力考核。气味评定人员定期要进行体检,针对鼻炎等各项影响嗅觉评定的疾病进行筛查,身体合格后的测试人员才能参加专门的气味评定培训。气味培训主要针对的是特定气味评定和气味等级。特定气味评定是指,用标准品或质控品配制调和成某特定气味,然后由待测人员去闻,辨别出气味的种类,比如按配方调配咖啡香,由待测人员准确辨别。有关气味等级评定,本文以通用标准GMW 3205为例,此标准中对气味的等级一共分了10类,其中又细分了皮革类和非皮革类,具体如下:表一http://ng1.17img.cn/bbsfiles/images/2016/08/201608311156_607618_2368716_3.png气味级别就需要气味评定人员的主观评定,为了确保结果的准确性,尽可能缩小个体间的差异了,这就需要频繁的质控手段来确保这一点。每个获得主机厂认可的实验室每个季度要与主机厂的“金鼻子”进行比对,确保实验室气味水平与主机厂的要求一致。这其中的“金鼻子”类似于常规试验的“标准品”,区别在于“金鼻子”其实也是一个个测试人员哦,只不过他们中间有非常严格的认定考核流程的,在本文就不多涉及。目前还没有专门的能力验证等项目,外部质控主要是由每个主机厂发起的,由他们定时定点举办各色比对,确保检测水平的一致性。就GMW 3205检测标准而言,综合6个人的评定结果后取其均值~其它的检测标准在气味级别、测定人员数量。限值等稍有差异,主要还是得根据主机厂的要求来执行。四、气味试验所需的设备气味试验所需要的设备非常简单,主要是环境箱子,用于样品的前处理,最好是确保气味试验有一个专门的箱子,以免串味哦~气味试验还需要一个专门的容器,如下图:http://ng1.17img.cn/bbsfiles/images/2016/08/201608311158_607619_2368716_3.png满足以上几个要素就可以开工做了,是不是非常简单了?大家都了解了吗?

  • 气味溯源分析

    原创: 气味分子的定性分析很有挑战性,特别是在某些特殊行业,比如汽车内饰,室内装修异味等等。找到和鉴定出气味分子是一方面,如何从复杂的原材料追根溯源,找出并解决异味问题,是当前工业界的一个难题。

  • 有关汽车气味评级的问题

    有关汽车气味评级的问题

    1.主机厂气味评价普遍使用气味瓶或气味袋,但是图中使用的仪器设备与主机厂的方法相比,差异是什么?有可比性么?[img=,621,390]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121106474082_2663_3871731_3.png!w621x390.jpg[/img]2.哪位大神有北汽的气味评价方法,可以分享一下吗?

  • 【我们不一YOUNG】气味阈值测定

    [align=center]【我们不一YOUNG】气味阈值测定[/align]气味阈值----样品准备配制浓度比估计气味阈值高50倍的储备溶液? 逐步稀释储备溶液(1+2)在感官测杯,对照空白参比进行三角测试-100mL 带盖玻璃杯化合物气味阈值计算单个评价人员阈值,计算公式:[img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407121042143905_7970_1615838_3.png[/img]其中Wi为单个评价人员的气味阈值;Cs为最后一次确认样品中该气味化合物浓度,即最后一次能够闻到该化合物的气味的浓度;Cs+1为第一次无法确认该化合物的浓度,即首次无法闻到该化合物的浓度。评价小组阈值,计算公式:[img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407121042142968_2845_1615838_3.png[/img]其中Sw为评价小组阈值;Wi为单个评价人员的气味阈值;n为评价小组人数;i为评价人员编号

  • 【原创大赛】GC-O技术在车内空气气味改善方面的应用

    【原创大赛】GC-O技术在车内空气气味改善方面的应用

    [align=left][b][color=#333333]文/谈[/color][color=#333333]惠洁(华测检测 [/color][color=#333333]汽车产品线[/color][color=#333333])[/color][/b][/align][b]1 前言[/b] 随着当今社会的飞速发展,大众消费水平正在大幅提高,汽车越来越多地走进普通家庭。近几年,常有车内有害物质致病的消息见诸报端,使车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量逐渐成为消费者关注的重点之一。因此,对车内的有害气味进行评判与控制,是汽车内饰零部件设计开发过程中必不可少的项目之一。车内气味主要由车内零部件和内饰材料中所含有害物质释放,包括塑料、胶粘剂、阻尼材料(固化后)、皮革、橡胶、发泡剂、毛毡等。这些材料在生产以及加工中添加的有机溶剂、添加剂、助剂等挥发性成分是气味散发的主要来源。 众所周知,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]已广泛应用于挥发性、半挥发性样品的分析中,可以非常有效地将气味总体的各组分分离开来,但其无法确定各个气味组分对总体的贡献大小,也就无法确定影响气味的关键成份。另一方面,感官嗅闻法可以非常灵敏地感受特定样品的总体气味,却不能区分构成气味总体的各组分。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-Olfactometry)为一种感官检测技术,将[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的分离功能和人鼻的嗅辨能力结合在一起,可对色谱柱流出物的气味同时进行定性和定量评价,使研究者能对特定气味成份的持续时间、气味强度、气味类型进行确定,在食品、烟草、环境治理等领域有着广阔的应用前景。 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O原理是在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的末端安装分流阀,色谱柱流出物(分流比一般为1:1),一部分进入MS检测器,另一部分进入嗅辩仪。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样后,嗅辩人员坐在嗅辩仪的出口记录闻到的气体流出物的气味特征,同时,样品可被[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的检测器检测,并记录下[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]谱图。若将一个模拟输出端与已有的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]数据系统连接,由手控制单元的指针轮来记录辨别出的气味强度,可得到保留时间与气味强度关系的色谱图。2 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O在汽车行业的应用 目前,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O检测方法主要包括三类:稀释法(Dilution Method)、时间强度法(Time-intensity Method)和检测频率法(Detection Frequency Method)。汽车行业普遍采用时间强度法来分析研究车内气味溯源的问题,行业内也将[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O检测称为Sniffer测试。[align=center][img=,690,457]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012248282019_5029_3051334_3.jpg!w690x457.jpg[/img] [/align][align=center]图1 上海汽车VOC实验室[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O检测设备[/align][align=center][img=,690,456]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012248376099_9981_3051334_3.jpg!w690x456.jpg[/img] [/align][align=center]图2 Olfactometry气味嗅辩仪[/align]目前,车内气味溯源主要分为零部件和整车两部分。车内零部件气味溯源的主要思路是通过对零部件总成的分析,确定气味来源的高风险物质;再将零部件进行拆分,通过分析拆分后的材料确定材料中的气味高风险物质并与总成进行对比,同时确定哪种或哪几种材料对总成零部件气味贡献最大,从而锁定气味的主要来源,再从生产工艺等方面进行改进。测试的采样方法与汽车VOC袋式法相同:根据测试零件的大小,选择大小合适的Tedler采样袋(一般袋子大小有10L、50L、100L、200L、500L、1000L和2000L),将样品放入采样袋内,密封后,抽真空后充入一定体积的高纯氮气,放入设定好温度和湿度的恒温恒湿舱内加热一定时间后,用Tenax管和DNHP管采集一定体积的袋内气体进行上机分析。具体的采样参数可根据各主机厂的企业标准来确定,也可参考国际标准ISO 12219-2。整车的气味测试主要参考HJ/T 400-2007,分析方法同零部件相同,由于整车内包含大量不同种类的内饰零部件,气味来源较多,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O分析结果能得到更多的气味风险物质,对整车车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量评价有一定参考价值。[align=center][img=,442,251]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012248473018_4058_3051334_3.jpg!w442x251.jpg[/img] [/align][align=center]图3 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS-TIC色谱图[/align][align=center] [/align][align=center][img=,400,300]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012248559469_5714_3051334_3.jpg!w400x300.jpg[/img] [/align][align=center]图4气味嗅辨强度图[/align][b]3 总结[/b] 车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量关系着千万消费者的身心健康,各大主机厂和零部件供应商都致力于改善车内气味。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O技术能从复杂的混合物中筛选出气味高风险物质,对其进行定量和定性分析,因此是目前车内气味溯源的重要手段。虽然,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-O技术目前仍然存在一定的不足,分析结果往往受色谱条件、样品制备方法、嗅辩员等因素的影响,但相信经过一定的优化,可以提高其准确性和重复性,使其在气味分析领域具有更广阔的应用前景。

  • 机械泵气味很大

    各位使用过机械泵的大神们,小弟求助个事,我这边有台waters的液质,不过当时配了个安捷伦的机械泵(瓦里安,型号是HS 602),保修期一年没什么事,但是过了保修期2个月吧,突然有股很大的气味,当时看到机械泵里的油,泛白,我想是时候换油了,结果房间里的气味确实是油的气味(难闻),我心想换了就会好的,但气味还是有,我想可能是上一次的油没完全倒干净(毕竟泵很重),过段时间会好,结果过段时间还是有气味,甚至于5到6周后,油又一次有点泛白了,这次打电话个工程师,工程师说是换泵油的同时将油滤也一并换了,我照做了,可还是有气味,后来索性叫工程师上门了,他检查了一下认为是油滤上的密封圈不好了,换了一下,也没找到明显的漏油的地方。结果还是有气味(我泵都没启动)。现在工程师的建议是换一个泵,但我就觉得挺郁闷的,毕竟这泵是没有振气开关的,也就是不用人为去维护的,怎么就这么快就坏了呢?请问各位大神有没有什么见解啊?

  • 【原创大赛】整车“气味溯源”:袋式法直接进样系统在GC-O技术中的应用

    【原创大赛】整车“气味溯源”:袋式法直接进样系统在GC-O技术中的应用

    [align=center]整车“气味溯源”:袋式法直接进样系统在GC-O技术中的应用[/align][align=center][b]SGS [/b]Patrick Wang Bryant Zhang[/align]1. 整车“气味溯源”背景近年来,随着经济的发展与人民生活的不断提高,汽车成为了大众出行不可或缺的工具,我国汽车保有量飞速增长,至2018年底已突破2亿辆,预计2019年将超过美国成为世界上汽车保有量最多的国家。汽车在人们的生活中应用的越来越多,随之而来的车内空气异味与环境健康安全等问题也成为中国消费者最为关注的问题之一。为能从源头上找到车内异味产生的原因,协助行业推进整车内饰用材正向开发,由SGS推出的整车“气味溯源”思路已得到广泛应用。在车内污染物分析手段上,常规的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法(GC-MS)只能对有机污染物组分进行定性定量分析,但是对于单个有机挥发物(VOC)的气味属性一直无法验证。由此在“气味溯源”项目发展历程2.0中,SGS率先将GC-O联用设备引入车内有机挥发污染物的化学分析当中,将[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱与人工气味嗅辨相结合并成功建立了VOC物质与其气味性关系的桥梁。SGS在该方法中将[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱末端安装分流口,经过分离后的样品气体一部分分流到MS检测器进行物质的定性定量分析,另一部分进入Sniffer的同时气味评价员可通过Sniffer嗅辨仪对被分离的物质进行气味评价,定性出的物质与其气味嗅辨结果可通过流出时间相互对应匹配。该方法的引用正式将样品中VOC的实际气味属性纳入溯源的考量范围,也是气味溯源项目的一大突破性进展,对于产品VOC及其气味整改有着巨大帮助 [sup][/sup]。2. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析空气样品的前进样系统介绍VOCs分析方法中的前进样系统VOCs的分析大多采样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法(GC-MS),对于GC前进样方式应用最多的是热脱附(TDS)进样。起初,溯源项目中GC-O也是采用同样的方法,利用TENAX管等采样管对样品散发的有机挥发性物质进行捕集,通过TDS对采样管中的有机挥发物质进行热脱附并富集至冷阱中,最后通过载气将目标物质送入GC进行分离。该方法比较成熟而且是汽车行业标准中收录的散发类测试比较成熟的前端进样方式[sup][/sup]。然而,受到吸附管吸附填料的限制,物理吸附存在选择性及物质损失,如样本污染物浓度较高还会导致采样过载及填料穿透。此外,当客观环境的湿度较高时,样本含水量过大也会对柱子造成伤害、数据结果失真等客观问题。鉴于物理吸附类管式法采样的局限,为使有机挥发物气体能够尽可能无损失的进入到后端sniffer嗅辨口,现将on-line袋子法直接进样方式引进至GC-O测试系统。该方法是将样品挥发出来的气体通过采样泵抽入PVF袋中并直接通入GC-O设备进行进样。本方法采用的前进样系统为MARKES生产的Air Server-xr带除水功能的袋子法直接进样装置。图1为Air Server-xr 与热脱附(TDS)装置的结构比较示意图 [sup][/sup]。[img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][align=center][img=,568,302]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011827462894_6250_2883703_3.png!w568x302.jpg[/img][/align][align=center][b]图1、[/b]Air Server-xr与热脱附(TDS)进样装置结构比较示意图[/align]袋子法进样系统中设置有除水装置与不同的填料型冷阱,样气先通过除水装置进行脱水,之后于冷阱中进行富集,富集结束后从进样相反的方向通入载气,将富集的物质吹入GC进行分离。袋式法直接进样的方法相比吸附管方式少了一次采样管的吸附与脱附过程,可以减少物质损失,适合复杂有机挥发物质的分析,有利于气味物质的排查和锁定。[align=center][img=,597,370]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011828080864_1017_2883703_3.png!w597x370.jpg[/img][/align][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][align=center][b]图2、[/b]Air Server-xr外观图示[/align]3.袋子法和管式法进样系统比较为了探究Air Server袋子法直接进样系统在GC-O/GC-MS测试方法中的实际应用情况,SGS通过标液对比实验、材料样品对比实验和整车对比实验在袋式法进样和传统TDS进样方法中进行了多维度地比较。[align=center][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,540,208]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011828226084_1618_2883703_3.png!w540x208.jpg[/img][/align][align=center]图3、Air Server-GC/O[/align]3.1 标液对比实验2-丁酮、二氯甲烷、二甲基二硫、二丙烯基二硫以及乙酸丁酯标液被选取为试验物质,分别使用袋式法和Tenax管加标TDS进样,试验结果表明(见表1)以上5种物质均在使用袋式法直接进样中被检出,但在使用TDS进样时二甲基二硫、二丙烯基二硫未被检出。[align=center] [/align][align=center][b]表1、[/b]标液测试袋式法进样和TDS进样的对比[/align][align=center][img=,557,200]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011828378407_7557_2883703_3.png!w557x200.jpg[/img][/align]3.2材料样品对比实验选用一种橡胶密封条为测试对象,将样品放入10L PVF袋中在65℃下散发2h,分别使用袋子法直接进样和Tenax管采样(采样要求参考HJ/T 400-2007要求)TDS方法进样,从两者的对比全谱中可以发现,在保留时间10-40分钟(见图4)的出峰位置和强度基本是一致的。[align=center][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,690,463]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011829000345_9628_2883703_3.jpg!w690x463.jpg[/img][/align][align=center][b]图4、[/b]TDS和袋式法进样在0-40min的谱图(——TD;[color=#0070c0]——[/color][color=#0070c0]Air Server[/color])[/align]保留时间0-10分钟内(见图5)两种进样方式得到的谱峰峰型和强度有很大的差异。整体上袋式法进样无论是峰的个数还是峰的强度都优于TDS的结果,可以初步得到的结论是袋式法进样在小分子段具有较为明显的检测优势。[align=center][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011829110706_5584_2883703_3.jpg!w690x464.jpg[/img][img]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align][align=center][b]图5、[/b]TDS和袋式法进样在0-10min的谱图(——TDS;[color=#0070c0]——[/color][color=#0070c0]Air Server[/color])[/align]3.3 整车测试对比实验按照HJ/T 400-2007标准即常温(表2.1和表2.2)条件和PV3938标准即高温(表3.1和表3.2)条件,利用袋式法与TDS进样对其分析及sniffer嗅辨结果进行比较。由国家标准HJ/T 400-2007测试结果中可以看出,袋式法直接进样方法检出的物质多于TDS方法进样得到的物质,对于小分子物质,尤其醛酮类物质有更高的检出能力。如表2.1与表2.2所示,乙醛,丙烯腈,正丁醛等气味性物质在袋式法进样结果中可以检出,而通过TDS方法进样则无法得到。此外,通过袋式法进样方式得到的物质气味强度也更高,有利于我们锁定气味物质。 [align=center][b]表2.1、[/b]国标测试袋式法进样Sniffer结果[/align][table=388][tr][td][b]Retention[/b][/td][td][b]Substance[/b][/td][td][b]ug/m[sup]3[/sup][/b][/td][td=2,1][b]Sniffer Results[/b][/td][/tr][tr][td]4.66[/td][td]乙醛[/td][td]33 [/td][td]3 [/td][td]水果味,甜味[/td][/tr][tr][td]5.53[/td][td]丙酮[/td][td]62 [/td][td]2 [/td][td]水果味,甜味[/td][/tr][tr][td]5.87[/td][td]丙烯腈[/td][td]6 [/td][td]2 [/td][td]水果味,甜味[/td][/tr][tr][td]6.02[/td][td]二氯甲烷[/td][td]107 [/td][td]3 [/td][td]试剂甜味[/td][/tr][tr][td]6.95[/td][td]正丁醛[/td][td]10 [/td][td]1 [/td][td]淡淡的辛辣味[/td][/tr][tr][td]7.04[/td][td]2-丁酮[/td][td]74 [/td][td]3 [/td][td]酸臭味[/td][/tr][tr][td]8.71[/td][td]正丁醇[/td][td]48 [/td][td]3 [/td][td]醇臭味[/td][/tr][tr][td]9.12[/td][td]丙二醇甲醚[/td][td]17 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][tr][td]12.71[/td][td]甲苯[/td][td]67 [/td][td]2 [/td][td]芳香味[/td][/tr][tr][td]14.08[/td][td]己醛 正己醛[/td][td]43 [/td][td]3 [/td][td]草腥味[/td][/tr][tr][td]14.78[/td][td]乙酸丁酯[/td][td]47 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][tr][td]17.70[/td][td]对二甲苯间二甲苯[/td][td]55 [/td][td]1 [/td][td]轻微的芳香味[/td][/tr][tr][td]25.11[/td][td]2-乙基己醇[/td][td]38 [/td][td]1 [/td][td]淡淡的醇香[/td][/tr][tr][td]26.79[/td][td]苯乙酮[/td][td]8 [/td][td]1 [/td][td]淡淡的花香[/td][/tr][tr][td]31.26[/td][td]萘[/td][td]1 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][/table][align=center] [/align][align=center][b]表2.2、[/b]国标测试TDS进样Sniffer结果[/align][table=387][tr][td][b]Retention[/b][/td][td][b]Substance[/b][/td][td][b]ug/m[sup]3[/sup][/b][/td][td=2,1][b]Sniffer Results[/b][/td][/tr][tr][td]5.51[/td][td]丙酮[/td][td]14 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][tr][td]6.02[/td][td]二氯甲烷[/td][td]17 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][tr][td]7.01[/td][td]2-丁酮[/td][td]15 [/td][td]1 [/td][td]轻微的辛辣味[/td][/tr][tr][td]8.65[/td][td]正丁醇[/td][td]13 [/td][td]2 [/td][td]醇臭味[/td][/tr][tr][td]9.04[/td][td]丙二醇甲醚[/td][td]23 [/td][td]1 [/td][td]轻微的甜味[/td][/tr][tr][td]12.70[/td][td]甲苯[/td][td]86 [/td][td]2 [/td][td]芳香味,甜味[/td][/tr][tr][td]14.07[/td][td]己醛 正己醛[/td][td]53 [/td][td]3 [/td][td]强烈的青草气味[/td][/tr][tr][td]14.75[/td][td]乙酸丁酯[/td][td]46 [/td][td]1 [/td][td]轻微的甜味[/td][/tr][tr][td]17.70[/td][td]对二甲苯间二甲苯[/td][td]70 [/td][td]1 [/td][td]轻微的芳香味[/td][/tr][tr][td]25.11[/td][td]2-乙基己醇[/td][td]27 [/td][td]1 [/td][td]淡淡的醇香[/td][/tr][tr][td]31.51[/td][td]癸醛[/td][td]6 [/td][td]1 [/td][td]轻微的花香味[/td][/tr][/table]由PV3938标准可以看出,无论袋式法进样或是TDS进样,检出气味物质总体数量都多于HJ/T 400方法,这是由于PV3938方法为高温条件测试,物质散发更加剧烈。此外,袋式法进样与TDS进样结果对比情况与常温下的测试结果对比一致,即袋式法直接进样方法检出的物质多于TDS方法进样得到的物质,小分子物质检出情况更好。[align=center][b]表3.1、[/b]高温测试袋式法进样Sniffer结果[/align][table=388][tr][td][b]Retention[/b][/td][td][b]Substance[/b][/td][td][b]ug/m[sup]3[/sup][/b][/td][td=2,1][b]Sniffer Results[/b][/td][/tr][tr][td]4.66[/td][td]乙醛[/td][td]29 [/td][td]3 [/td][td]水果味,甜味[/td][/tr][tr][td]5.21[/td][td]乙醇[/td][td]156 [/td][td]1 [/td][td]淡淡的酒味[/td][/tr][tr][td]5.53[/td][td]丙酮[/td][td]153 [/td][td]3 [/td][td]甜味[/td][/tr][tr][td]6.03[/td][td]二氯甲烷[/td][td]124 [/td][td]3 [/td][td]芳香,试剂味[/td][/tr][tr][td]6.95[/td][td]正丁醛[/td][td]17 [/td][td]1 [/td][td]淡淡的辛辣[/td][/tr][tr][td]7.04[/td][td]2-丁酮[/td][td]112 [/td][td]3 [/td][td]酸臭[/td][/tr][tr][td]8.70[/td][td]正丁醇[/td][td]85 [/td][td]3 [/td][td]醇臭味[/td][/tr][tr][td]9.10[/td][td]丙二醇甲醚[/td][td]52 [/td][td]1 [/td][td]淡淡的香味[/td][/tr][tr][td]12.72[/td][td]甲苯[/td][td]171 [/td][td]3 [/td][td]芳香味,甜味[/td][/tr][tr][td]14.09[/td][td]己醛 正己醛[/td][td]171 [/td][td]4 [/td][td]草腥味[/td][/tr][tr][td]14.78[/td][td]乙酸丁酯[/td][td]130 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][tr][td]17.30[/td][td]乙苯[/td][td]47 [/td][td]2 [/td][td]芳香味[/td][/tr][tr][td]17.71[/td][td]对二甲苯间二甲苯[/td][td]185 [/td][td]2 [/td][td]芳香味[/td][/tr][tr][td]18.84[/td][td]苯乙烯[/td][td]25 [/td][td]1 [/td][td]汽油味、油漆味[/td][/tr][tr][td]18.97[/td][td]1,2-二甲苯[/td][td]87 [/td][td]2 [/td][td]芳香味[/td][/tr][tr][td]19.21[/td][td]庚醛[/td][td]35 [/td][td]1 [/td][td]脂肪味[/td][/tr][tr][td]25.14[/td][td]2-乙基己醇[/td][td]197 [/td][td]3 [/td][td]淡淡的醇香[/td][/tr][tr][td]26.81[/td][td]苯乙酮[/td][td]17 [/td][td]1 [/td][td]淡淡的花香[/td][/tr][tr][td]31.26[/td][td]十二碳烷[/td][td]80 [/td][td]1 [/td][td]淡淡的甜味[/td][/tr][/table][align=center][b] [/b][/align][align=center][b]表3.2、[/b]高温测试TDS进样Sniffer结果[/align][table=387][tr][td][b]Retention[/b][/td][td][b]Substance[/b][/td][td][b]ug/m[sup]3[/sup][/b][/td][td=2,1][b]Sniffer Results[/b][/td][/tr][tr][td]5.51[/td][td]丙酮[/td][td]62 [/td][td]2 [/td][td]水果味,甜味[/td][/tr][tr][td]6.03[/td][td]二氯甲烷[/td][td]12 [/td][td]1 [/td][td]轻微的试剂味[/td][/tr][tr][td]7.02[/td][td]2-丁酮[/td][td]34 [/td][td]2 [/td][td]酸臭,辛辣[/td][/tr][tr][td]8.67[/td][td]正丁醇[/td][td]40 [/td][td]3 [/td][td]醇臭味[/td][/tr][tr][td]9.06[/td][td]丙二醇甲醚[/td][td]58 [/td][td]1 [/td][td]淡淡的香味[/td][/tr][tr][td]12.73[/td][td]甲苯[/td][td]210 [/td][td]3 [/td][td]芳香味,甜味[/td][/tr][tr][td]14.09[/td][td]己醛 正己醛[/td][td]187 [/td][td]4 [/td][td]强烈的青草气味[/td][/tr][tr][td]14.78[/td][td]乙酸丁酯[/td][td]146 [/td][td]1 [/td][td]淡淡的甜味,果香[/td][/tr][tr][td]17.31[/td][td]乙苯[/td][td]57 [/td][td]2 [/td][td]芳香味,甜味[/td][/tr][tr][td]17.73[/td][td]对二甲苯间二甲苯[/td][td]204 [/td][td]2 [/td][td]芳香味,甜味[/td][/tr][tr][td]18.85[/td][td]苯乙烯[/td][td]34 [/td][td]1 [/td][td]轻微的汽油味[/td][/tr][tr][td]18.98[/td][td]1,2-二甲苯[/td][td]106 [/td][td]2 [/td][td]芳香味,甜味[/td][/tr][tr][td]19.22[/td][td]庚醛[/td][td]43 [/td][td]2 [/td][td]甜腻的脂肪味[/td][/tr][tr][td]25.14[/td][td]2-乙基己醇[/td][td]179 [/td][td]1 [/td][td]轻微的醇香[/td][/tr][tr][td]26.82[/td][td]苯乙酮[/td][td]7 [/td][td]1 [/td][td]淡淡的花香[/td][/tr][tr][td]31.52[/td][td]癸醛[/td][td]13 [/td][td]1 [/td][td]淡淡的花香[/td][/tr][/table][b] [/b]综合整车测试结果来看,不同工况的结果均表明对于袋式法进样的Sniffer嗅辨结果,气味物质总体多于TDS进样,部分物质气味强度也较高;另外,两种进样方式结果的差异主要是保留时间在前10min的小分子物质,如乙醛,乙醇,丙酮,二氯甲烷等,验证了之前得出的袋式法进样方式对小分子物质具备检测优势的结论。[b] 4. 结论[/b]袋式法进样系统与TDS进样系统相比较具有明确的优势,提高了检测结果的准确性,对小分子物质具备检测优势,有利于气味物质的识别,能够很好的与sniffer嗅辨相结合,提高了后端对VOC检测和气味嗅辨的准确性。袋式法进样+GC-O的方法在整车气味溯源项目、空调异味检测等项目上将会有非常广阔的运用前景。[b]Reference[/b]1、气味溯源:车内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量问题的有效解决方法,刘亚文刘华菁单锋(SGS通标标准技术服务有限公司)汽车与配件 2018 No.22、Markes Air Server-xr Brochure

  • 气味试验~~方法确认如何操刀~~

    如题:背景:本实验室需要申请一个与气味检测相关的测试,用3-6个人按照一定顺序去闻经过处理的样品,然后评级,1-10级现在我想申请这个方法(此检测方法为知名企业的企业标准)的CNAS资质,那么问题来了,我的方法确认如何做?难点:这种方法确认不像化学方面的检测,可以从精密度、准确度等等着手,此方法过程实在有点简单.........对此方法影响最大的其实应该是人的鼻子,那这个我该如何来方法确认呢?请各位大神支招~~~~

  • 纺织品气味检测实验室的建设

    气味,是生命体对气态物质的一种感知,是气态物质与生命体的嗅觉细胞分泌物的化学反应后产生的一种信号,经嗅神经传递给嗅神经中枢嗅球后,生命体的一种感受。气味对生命体有正反两种作用,一是维系健康,一是破坏健康,通常说的纺织品异味就是一类破坏健康的气味。气味是物质最重要的特征之一,最能代表物质的本质,因此,很早就作为判定产品质量的一个重要指标,尤其在粮食和食品领域应用特别广泛。异味被认为是由于刺激鼻孔内的味觉器官引起的不愉快感觉。纺织品的异味对人体健康有着很大的危害,其主要来源于两个方面:一是纺织品上残留化学整理剂和助剂生成;二是纺织品在生产、加工、运输、储存、销售过程中容易被微生物污染,从环境中吸附来的异味物质。自实施强制性国家标准《国家纺织产品基本安全技术规范》(GB1840-2003),异味成为衡量纺织品质量的重要技术指标之一后,异味成为消费者关注和检测机构重要的检测项目。目前,异味检测存在重复性和复现性差,较多的异味检测人员对于气味种类分辨不够清楚,实验室建设不够规范或其就没有专门的实验室。本文从探讨实验室建设的角度,来提高气味检测的准确性。

  • 【分享】纺织品气味检测实验室建设

    气味,是生命体对气态物质的一种感知,是气态物质与生命体的嗅觉细胞分泌物的化学反应后产生的一种信号,经嗅神经传递给嗅神经中枢嗅球后,生命体的一种感受。气味对生命体有正反两种作角,一是维系健康,一是破坏健康,通常说的纺织品异味就是一类破坏健康的气味。气味是物质最重要的特征之一,最能代表物质的本质,因此,很早就作为判定产品质量的一个重要指标,尤其在粮食和食品领域应用特别广泛。异味被认为是由于刺激鼻孔内的味觉器官引起的不愉快感觉。纺织品的异味对人体健康有着很大的危害,其主要来源于两个方面:一是纺织品上残留化学整理剂和助剂生成;二是纺织品在生产、加工、运输、储存、销售过程中容易被微生物污染,从环境中吸附来的异味物质。自实施强制性国家标准《国家纺织产品基本安全技术规范》(GB18401-2003),异味成为衡量纺织品质量的重要技术指标之一后,异味成为消费者关注和检测机构重要的检测项目。目前,异味检测存在重复性和复现性差,较多的异味检测人员对于气味种类分辨不够清楚,实验室建设不够规范或者就没有专门的实验室。本文从探讨实验室建设的角度,来提高气味检测的准确性。

  • 【原创】研究昆虫气味仪器昆虫四臂嗅觉仪

    四臂嗅觉仪特点:采用进口全透明加厚有机玻璃制作,密封性能好,可定做多个抽气孔,或定做多个昆虫通道,专为研究昆虫溴觉气味之用,原理:每种昆虫所喜欢各种气体味道不同,在各个通道端,连接上不同的气味源,昆虫会爬向喜欢的气味一端,从以知道各种昆虫的溴觉性能。尺寸:可定做各种规格。许多膜翅目寄生性昆虫首先通过嗅觉反应趋向于寄主栖息地,然后再寻找寄主,为了研究这个过程,就需要一种嗅觉测定仪。过去采用的Y型或T型嗅觉测定仪,因为它们不能形成边界分明而毗连的气味区域而让天敌自由进出,此外,在Y型或T型管的三臂相交处会导致气味的混合,因而存在干扰效应。在这种情况下,小型寄生昆虫难以进行趋化性试验,通常由于行为上的诱导(例如强烈的趋光性反应

  • 研究新进展:便携式气相色谱仪实时监测与评价车内气味强度

    [color=#000000]北京化工大学化学学院最新发布了一篇研究文章,该研究致力于[/color][color=#000000]开发一种便携式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][/color][color=#000000]色谱[/color][color=#000000]仪,结合机器学习实现现场的VOC采集和快速的气味评价[/color][color=#000000]。[/color][color=#000000]研究者通过使用卷积神经网络-长短期记忆(CNN-LSTM)建立了气味强度的预测模型;由于收集的数据量较小,使用生成对抗网络(GAN)对每个气味强度类别的VOC数据进行了生成,以增强模型的训练。 [/color][color=#000000] 在生成数据后,研究者再次使用CNN-LSTM建立了模型,并与人工神经网络(ANN)、支持向量机(SVM)和梯度提升决策树(XG-Boost)进行了比较。[/color][color=#000000]结果表明,使用GAN生成数据后的测试准确率优于原始数据。[/color][color=#000000]未来的工作将集中在进一步优化模型和扩大数据集上,以提高预测的准确性和稳定性。[/color][color=#000000]这项研究表明,通过使用深度学习和生成对抗网络,可以有效地预测车内的气味强度,从而改善车内的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量。此外,研究者还将探索将这种方法应用于其他环境条件下的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量预测,为未来的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测和改善提供了新的可能性。[/color][color=#000000]便携且模型结构较小的[/color][color=#000000]设备[/color][color=#000000]可以直接嵌入到车上,从而实现现场的VOC采集和快速的气味评价。[/color][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 家庭装修中对气味的三大误区

    导语: 装修让居室更为美观的同时,也带来了污染问题,气味往往比较重,然而没有气味也不一定意味着没有污染。 1、重视甲醛,不重视其它有害气体   国家颁布的《民用建筑室内环境污染控制规范》中,明文规定了几种必须检测的有毒、有害气体。它们是:苯、甲醛、氡、氨、TVOC,其中苯、氡都是已确定的可以致癌的气体。苯、氡对人体的危害和甲醛一样,近几年不断有苯中毒致人死亡的报道。所以装修后住宅必须对以上的有毒有害气体作全面检测。同等地重视各种有害气体,造成的室内污染。 2、凭气味来判断是否有污染   在有毒有害气体中,有的是有味的,如苯,芳香味;甲醛、氨剌鼻。但也有无色无味的,如氡。但各种化学物质混合在一起呈现的复杂气味是很难辨别的。因此凭气味来判断是什么污染是不准确的。也就是说有气味不一定有污染,而有污染的不一定能闻到气味。在装修后的房间里,如果你能闻到明显的甲醛或是苯的气味时污染程度已十分严重。足以对人体产生危害。闻不到时也不能说污染不存在,唯一能准确确定的方法是检测。 3、有害气体全来自于装修   这是一种不正确的看法,在国家严格限制的有毒、有害气体中,氡的来源有两种,一种是通过施工、装修过程中使用有放射性的水泥、矿渣、花岗岩等;另一种则是地下岩石本身就有辐射,通过土壤散发出来,世界上许多国家规定民用建筑施工前必须检测当地氡的含量,我国也有类似的规定。因此,这一项指标可以在买房前向开发商索取或者买房前请有资职的检测单位进行检测,以确保安全无误。

  • 气味活性值

    1.气味活性值的计算公式中,OAV=物质的浓度/阈值,若是固相微萃取提取的香气组分,根据TIC图只能得到组分的相对含量,此时怎样求气味活性值呢?2.固相微萃取提取粉末状固体物质香气组分时,可以加内标物质吗,若可以,以何种形式加?请各位大侠多多指教,谢谢!

  • 【讨论】牛奶滋气味

    最近在学习 闻牛奶的滋气味 怎么闻也闻不出来 人家觉得味道不好的牛奶 我偏偏闻到很香 哈哈 将鲜牛奶煮开 趁热闻牛奶的滋气味 有的牛奶有抹布味 、中药味、饲料味、甜味、酸味、碱味等等... 大家试着闻过牛奶的滋气味么? 牛奶的滋气味是保证做成成品滋气味的最基本 好的牛奶滋气味生产出来的奶粉滋气味也香醇 保证优质的奶源 是最为关键的!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制