当前位置: 仪器信息网 > 行业主题 > >

铝合金建材

仪器信息网铝合金建材专题为您整合铝合金建材相关的最新文章,在铝合金建材专题,您不仅可以免费浏览铝合金建材的资讯, 同时您还可以浏览铝合金建材的相关资料、解决方案,参与社区铝合金建材话题讨论。

铝合金建材相关的资讯

  • 铝合金建筑型材国家标准将更全面、更规范
    据相关媒体2月8日报道,由广东兴发铝业有限公司主要起草的GB5237.1-2008《铝合金建筑型材第一部分:基材》、GB5237.2-2008《铝合金建筑型材第二部分:阳极氧化、着色型材》、GB5237.3-2008《铝合金建筑型材第三部分:电泳涂漆型材》、GB5237.4-2008《铝合金建筑型材第四部分:粉末喷涂型材》、GB5237.5-2008《铝合金建筑型材第五部分:氟碳漆喷涂型材》、GB5237.6-2008《铝合金建筑型材第六部分:隔热型材》国家标准于近日由国家质量监督检验检疫总局、国家标准委发布,这也标志着铝合金建筑型材国家标准将更全面,更规范。至此,由兴发铝业主要起草及参与起草制定的国家标准多达12项。   据了解,建筑铝合金型材国家标准是由全国有色金属标准化技术委员会组织,具有一定实力的企业起草,再经过数次评审,才能正式实施,目前国内能达到行业制订标准的企业只有两三家,作为最早生产铝合金型材厂家之一,兴发铝业一直是行业创新的先行者。   1994年,兴发铝业就被全国有色金属标准化技术委员会评为GB5237标准试验基地,参与行业标准的制定。在兴发铝业技术副总吴锡坤带领的技术团队不断努力下,铝合金建筑型材国家标准得到了进一步完善,由最初的单一的基材部分,发展到现在的基材、阳极氧化、着色型材、电泳涂漆材、粉末喷涂型材、氟碳漆喷涂型材以及隔热型材6个部分。不仅如此,兴发铝业还参与铝合金表面处理及能源消耗限额国标的起草制定,对铝合金阳极氧化膜和有机聚合物膜的国标也是主要起草单位。   国标的完善意味着建筑铝合金型材厂家的技术门槛将大幅抬高,这对于规范行业发展和防范劣质产品的出现有着重要的意义。
  • 合金分析仪助力钛铝合金材料技术升级,手机变弯将不成问题
    据报道,韩国浦项大学最新研发了一种强度极高的钛铝合金材料,可以近乎完美地解决手机边框强度问题,再也不用担心手机变弯了。 至于钛铝合金的成本,据悉,这种材料是由钢、锰、铝、镍、钛等多种金属组成的合金,成本比传统的钛合金低了90%,智能手机完全能承受这一成本。 三星有望首先用上这种新材料,此外,这种材料还能用在汽车、飞机等领域。未来合金分析仪又将成为手机是否能够弯曲的检测大使。
  • 标准解读 | 《汽车用高强韧类高真空压铸铝合金材料技术条件》
    近日,中国汽车工程学会正式发布团体标准《汽车用高强韧类高真空压铸铝合金材料技术条件》(T/CSAE 198-2021)。该标准由汽车轻量化技术创新战略联盟提出,苏州有色金属研究院有限公司牵头,联合中铝材料应用研究院有限公司、广东鸿图科技股份有限公司、安徽江淮汽车集团股份有限公司、中铝山西新材料有限公司、南通鸿劲金属铝业有限公司、重庆长安汽车股份有限公司、东风汽车集团有限公司等多家整车及材料企业共同研制。根据《中国汽车产业发展报告(2020)》的数据显示,2005年~2017年,我国交通行业的二氧化碳排放量始终保持稳定增长态势,占比从8%增长到10%。随着汽车保有量的增长,道路交通的碳排放增长速度较高。根据公安部统计的最新数据显示,2020年全国汽车保有量达2.81亿辆,已有70座城市的汽车保有量超过百万辆。汽车保有量的增长,导致交通行业碳排放量增长速度要远高于其他行业。相关预测显示,到2025年交通运输行业的碳排放量将在现有的基础上增加50%。2020年10月,由工信部指导编制的《节能与新能源汽车技术路线图2.0》明确指出,我国汽车产业碳排放将于2028年左右提前达峰,至2035年,碳排放总量较峰值下降20%以上。在汽车行业,推动节能减排首要的任务之一是实现汽车的轻量化。目前我国正加快汽车轻量化进程,大力发展新能源汽车尤其是电动汽车,主要是通过车身连接件、电池托盘等结构件的铝化实现轻量化的目标。这些结构件对强度和韧性均提出了较高的要求,采用真空压铸技术和高强韧压铸铝合金制备汽车结构件越来越被主机厂接受。但是,我国目前仅有针对传统非承载压铸件的压铸铝合金材料标准,严重制约了我国汽车轻量化特别是新能源汽车的快速发展。因此,在这种背景下,汽车轻量化技术创新战略联盟提出制定汽车用高强韧类高真空压铸铝合金材料的团体标准,旨在通过本标准规范汽车用铝合金结构零件对压铸铝合金的整体要求,推动汽车轻量化行业的快速发展。本标准规定了汽车用高强韧类高真空压铸铝合金材料的术语和定义、技术要求、试验方法、检验规则、标志、包装、贮存和运输。在术语和定义方面,通过定义一种压铸前快速抽出型腔中的气体,使模具型腔中的真空度不超过50mbar,确保液态金属在高压作用下,以极高的速度充填模具型腔,并在一定压力作用下冷却凝固而得到铸件的成形工艺,引出高强韧类高真空压铸铝合金材料,并将其定义为抗拉强度大于180MPa,屈服强度大于120MPa,同时伸长率大于8%,且适合于高真空压铸成形的铸造铝合金材料。在技术要求方面,主要从外观质量、化学成分、力学性能、含氢量、夹渣量、断口组织、显微组织七个方面对该压铸铝合金材料进行规定,其中化学成分对合金的Si、Fe、Mn、Mg、Sr、Cu、Ti等元素进行了规定,同时对杂质的单项和杂质的总和进行了规定。在力学性能方面包括金属型铸造和高真空压铸条件下单铸试棒的室温拉伸性能、硬度、冲击韧性及疲劳性能,并给出了推荐的的热处理工艺和力学性能。在含氢量方面规定了铸锭针孔度等级和含氢量的最大值,具体包括建议铸锭针孔度等级不低于二级,合金液中含氢量不超0.2ml/100gAl。在夹渣量方面,若客户对夹渣量有要求时,应在订货单或合同中注明具体等级,并规定不应低于二级,同时利用测渣仪进行定量判定,夹渣量等级满足90s内通过的铝合金液超过2200g或者夹渣统计不超过0.15mm2/kg铝液。在试验方法方面,化学成分的试验方法按照GB/T7999-2015的规定执行。力学性能的检测方法中,拉伸性能的试验方法按GB/T 228.1-2010的试验要求的规定执行,硬度的试验方法按GB/T229-2020中的规定执行,冲击韧性的试验方法按GB/T 231.1-2018的规定执行,疲劳性能的试验方法按GB/T3075-2008的规定执行。本标准充分考虑了汽车行业用到的高强韧类铸造铝合金材料,适用于汽车薄壁结构件用高强韧真空压铸铝合金材料标准,也适用于其它高强韧类铸造铝合金的评价内容、评价方法及评价标准,可为主机厂及压铸件供应商在汽车车身结构件方面提供选材及检测要求基准,对于规范其在汽车结构件上的应用有重要的指导意义。
  • GB/T 20975《铝及铝合金化学分析方法》最新标准解读
    近年来,随着国家航空、铁路、电力等工业的不断发展,促使轻量化结构材料—铝合金的需求不断增长,今天就让我们一起来解读铝合金行业的重要标准GB/T 20975《铝及铝合金化学分析方法》中更新和补充的部分。 GB/T 20975《铝及铝合金化学分析方法》标准是铝及铝合金行业的基础标准,它规定了铝及铝合金中大多数元素的测定方法。分为37个部分,2020年发布,2021年正式实施的部分总结如下表:GB/T 20975.21-2020,GB/T 20975.17-2020和GB/T 20975.6-2020代替2008年发布的相关标准。除了编辑性修改外,锶和隔的测试增加了Na2EDTA滴定法。GB/T 20975.33-2020和GB/T 20975.34-2020补充了《铝及铝合金化学分析方法 》中钾和钠含量的测定。上述标准都规定了相关元素的火焰原子吸收光谱法适用测定范围及其仪器应满足的条件,具体内容如下表:岛津原子吸收分光光度计AA-6880系列和AA-7000系列,拥有优异的性能和灵活的配置,可满足GB/T 20975《铝及铝合金化学分析方法》中规定的原子吸收光谱法的测试要求。详情请复制网址前往查看https://www.shimadzu.com.cn/an/elemental/aa/index.htmlAA-7000系列 AA-6880系列
  • 明珠发布电子拉力试验机(铝合金护罩) 新品
    MZ-4000D2电子拉力试验机(铝合金护罩) 特点及用途: MZ-4000D2电子拉力试验机适用于金属、非金属、复合材料及制品的拉伸、压缩、弯曲、剪切、撕裂、剥离等物理性能试验。运用Windows7操作系统平台,图形图象化的软件界面、灵活的数据处理方式、安全的限位保护等功能。还具有算法自动生成、试验报告自动编辑功能;大大方便了调试和系统再开发能力,可计算力、屈服力、非比例屈服力、平均剥离力、弹性模量等参数;其结构新颖,性能稳定。操作简单、灵活,维护方便;集高度自动化、智能化于一体。可用于科研部门、大中专院校和工矿企业对各种材料进行力学性能分析和生产质量检验。技术参数: 1.量程范围:5kN 力值精度:2.力值精度:示值的±0.5% 以内 力值分辨率: 1/2500003.有效拉伸行程(不含夹具):900mm4.有效试验宽度:385mm5.变形精度:示值的±0.5%以内 6.位移精度:±0.5% 7.试验速度:0.01mm/min-900mm/min(滚珠丝杠+伺服系统)8.返回速度:1000mm/min(滚珠丝杠+伺服系统)9.打印功能: 可打印测试后的力值、抗拉强度、 断裂伸长率以及相应曲线等。 10.电 源: AC220V±5% 50Hz 11.主机尺寸: 650mm×580mm×1450mm 12.主机重量: 110kg 控制软件主要功能介绍: 1.测试曲线:力值-变形、力值-时间、应力-应变、应力-时间、变形-时间、应变-时间; 2.单位切换:N、kN、lbf、Kgf、g; 3.操作语言:中文简体,中文繁体,英文随意切换; 4.接口方式:USB;5.多传感器支持功能; 6.系统提供参数公式自定义功能,用户可以根据要求定义参数计算公式,并根据需要编辑报表;7.试验数据采用数据库管理方式,自动保存所有试验数据和曲线; 8.可将试验数据导成WORD、EXCEL、PDF格式; 9.同一组试验的多次试验数据及曲线可打印在一份报告中; 10.可将历史数据添加在一起进行对比分析; 11.可自动校正:标定过程中,在菜单中输入标准值,系统可自动实现示值的准确值标定。 配置:1. 日本松下伺服电机;2. 高精度减速机1台;3. 台湾滚珠丝杆;4. 全自动测力系统及光电编码器1套;5. 美国传感器1只;6. 铝合金护罩;7. 联想品牌电脑及彩色喷墨打印机1套(不含电脑柜);8. 标准拉伸夹具1付;9. 拉力机测控系统试验软件一套(含拉伸、压缩、剪切、弯曲、撕裂、剥离软 件); 10. 工作台、顶板及移动横梁等关键件的中心距均由日本小巨人LGMazak加工中心加工;11. 旋转件均由日本小巨人LGMazak车削中心加工。 创新点:试验速度:从0.01-500mm/min 变成0.01-900mm/min 外观:从白铁件护罩变成铝合金护罩 电子拉力试验机(铝合金护罩)
  • 快速掌握使用氧化铝抛光液制备铝合金样品
    铝合金在工业应用中十分广泛,作为有色金属结构材料,在航空航天、机械、汽车、船舶等工业中被大量应用。铝合金材料的研究和应用需求不断发展,金相分析作为对材料检测的重要手段和步骤之一,也随之更加深入,可脉检测金相工程师将快速掌握使用氧化铝抛光液制备铝合金样品的经验分享给朋友们,为提高我们的工作质量和效率提供参考。铝合金的金相样品制备,通常情况,在用四步法或五步法的制备时,使用MgO做精细抛光剂是非常理想的,但由于MgO很难以非常细小的粒度提供,实际上使用起来并不容易,所以,采用氧化铝抛光液来代替MgO是不错的方法。但,需要提示的是:标准的煅烧氧化铝抛光介质不适合铝合金金相样品的制备,而胶体三氧化二铝悬浮液才是铝合金样品制备非常理想的抛光剂。在铝合金家族中,许多铝合金的金相样品是通过四步制备法制备的,采用氧化铝抛光液配合短绒/中绒抛光布,对样品进行精细抛光,不仅可保留铝合金中全部的金属间化合物微粒,还能有效控制浮凸缺陷。可脉检测金相工程师的铝合金样品四步制备法如下表所示:温馨提示:在使用6μm和3μmd金刚石抛光液进行中等研磨时,可能会发生嵌入现象,这时,可用金刚石抛光膏替代金刚石抛光液研磨,会有效改善嵌入缺陷。快速掌握使用氧化铝抛光液制备铝合金金相样品的方法简单介绍这些,以上方法采用的是美国QMAXIS研磨抛光耗材,仅供参考!如您还有疑问或未解决的问题,欢迎联系可脉检测金相工程师,共同探讨更适合您的解决方案。
  • 如何准确测定铝合金中的高浓度和低浓度添加元素?
    金属铝(Al)以其独有的特性广泛应用于众多各领域。将Al与硅(Si)、铁(Fe)、铜(Cu)和锌(Zn)等元素结合制成铝合金,通常非铝添加元素占总合金重量的15%。与纯铝相比,铝合金的物理特性得到明显增强,如具有更好的强度,更优异的导电性和焊接性等;也可添加不同的量的其它元素,得到具有特殊性质的铝合金。铝的大多数工业应用为铝合金,鉴于铝合金应用广泛和组分多样,伦敦金属交易所(LME)列出了四种铝合金组成规格,主要用于欧洲、亚洲和北美。在所列规格中,主要添加组分是Si、Cu、Zn和Fe,占组成重量的百分比通常大于1%。因此,必须以比其它元素更高的精度来测定这四种元素。珀金埃尔默Avio® 系列 ICP-OES是进行铝合金检测实验室的理想选择,可根据伦敦金属交易所的高水平和低水平铝合金规格要求测量铝合金中的添加元素。使用电荷耦合检测器(CCD),可同时提供背景和分析物测量;对于铝合金中的主要成分(高浓度添加元素)通过使用较长读取时间和线性插入法校准,可以获得±2%以内的准确度;对于次要成分(低浓度添加元素)通过使用较短的读取时间和线性法校准,可以获得±5%以内的准确度。本文使用Avio 200 ICP-OES测定LME规格要求的铝合金中的添加组分。欲详细了解Avio 200 ICP-OES是如何根据LME规格要求在测定金属铝锭中的杂质元素中体现其优越性,扫描下方二维码即刻获取《按照伦敦金属交易所指南使用Avio 200 ICP-OES分析铝合金中的添加元素》和《Avio 200 电感耦合等离子体发射光谱仪》产品手册。
  • 中南大学在开发3D打印高强耐热铝合金方面取得重要进展
    铝合金以其质轻、高比强、抗腐蚀等优异性能,广泛应用于航空航天、武器装备、轨道交通、汽车等领域的轻量化结构。增材制造技术不受工艺条件的约束和限制,为航空航天等领域复杂铝合金构件(如复杂框梁、薄壁、内流道结构等)的定制化生产提供了前所未有的机遇。然而,常见的铝合金通常表现出较差的成形性,增材制造过程中极易出现裂纹等冶金缺陷,导致较差的力学性能。目前,取得广泛商业应用的增材制造铝合金仅限于AlSi12、AlSi10Mg等少数铝硅系合金。而2xxx系和7xxx系等传统高强铝合金因其较宽的凝固区间,在增材制造复杂热应力环境下极易产生严重的热裂纹倾向,导致实际应用于增材制造铝合金种类非常少,难以满足承重、耐热等复杂服役环境对铝合金构件的迫切需求。因此,亟需开发兼具良好成形性与强韧性的增材制造铝合金。良好的高温稳定性近期,中南大学粉末冶金国家重点实验室的陈超和长沙理工大学的刘小春等人在开发增材制造高强耐热铝合金方面取得重要进展。该工作基于Al−Ni共晶合金凝固区间小、流动性好等特点,有效降低了铝合金在增材制造复杂热应力条件下的裂纹敏感性,在非常宽的工艺参数范围内合金内部都没有出现微裂纹。选区激光熔化(SLM)增材制造过程的高冷却速度还极大地细化了共晶组织,获得了纳米级球状Al3Ni粒子均匀分布于铝基体的粒状共晶组织。相比于铝硅系合金,Al−Ni共晶具有更高的共晶温度 (640℃)、在铝基体中更低的固溶度 (0.02wt.%) 以及更低的扩散系数,形成的Al3Ni 粒子具有非常好的高温稳定性,增材制造的Al−Ni合金表现出较好的耐热性能。选区激光熔化成形Al−Ni共晶合金室温抗拉强度超过400 MPa,室温延伸率10%,300℃的抗拉强度超过140 MPa,同时还具有较宽的成形工艺窗口。相关论文以题为“A high-strength heat-resistant Al−5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting”发表在期刊Scripta Materialia上。SLM 成形的Al−Ni共晶合金致密度超过99.8%。在极高的冷却速度下,合金晶粒细小,形成了平行于凝固方向的细小柱状晶合金,在垂直于建造方向的横截面和平行于建造方向的纵截面两个截面统计晶粒大小分别为 5.1μm和7.1μm。图1 SLM成形Al-Ni合金的显微组织:(a) SLM 示意图;(b) 横截面和 (c) 纵截面的EBSD图;(d) 合金的晶粒尺寸分布;(e) KAM统计图;(d) XRD。亚晶和晶内亚结构发达,合金较高的平均局部取向差,反映了合金内部较高的位错密度。SLM成形的Al−Ni合金主要由α-Al相和Al3Ni相组成。不同于传统铸造Al−Ni合金中呈棒状或纤维状的Al3Ni相,SLM成形Al−Ni合金中的Al3Ni相为球状,弥散分布于α-Al基体中,平均尺寸约为32nm。同时,α-Al基体中Ni元素的含量仍高达3.5wt.%,表明在SLM过程中极高的冷却速度下,大量Ni原子固溶在α-Al基体中形成超饱和固溶体。部分尺寸较小的Al3Ni颗粒与α-Al基体存在着Al//Al3Ni、{111}Al//{211}Al3Ni的位相关系。图2 合金的TEM分析:(a) TEMBF;(b)HAADF;(c)面扫描;(d)线扫描。图3 Al3Ni与α-Al基体的位相关系:(a) HRTEM;(b) IFT,(c,d) FT。SLM成形Al−Ni合金在室温下的抗拉强度、屈服强度及延伸率分别为410 MPa、280 MPa和9.5%,远高于铸造Al−Ni合金的性能。细小弥散分布的球状Al3Ni粒子是高强度的重要来源。合金在250℃时仍保持210MPa的屈服强度,在300℃的屈服强度接近140 MPa,显示出优于Al-Si系合金的高温力学性能。Ni原子在铝基体中更低的扩散系数(300℃下,dNi=2.7×10−17m2/s,dSi=2.6×10−16m2/s)和较低的固溶度保证了Al−Ni合金优异的高温强度和抗蠕变性能。图4 合金的力学性能:(a)应力应变曲线;(b)柱状图。
  • 安徽省镁铝合金产品质量检验检测中心落户池州
    日前,《安徽省市场监管局关于同意筹建安徽省镁铝合金产品质量检验检测中心的批复》下发,正式批准以池州市质量监督检验研究院(国家非金属矿质检中心)(以下简称“市质检院”)为母体单位,在江南新兴产业集中区筹建安徽省镁铝合金产品质量检验检测中心。  据介绍,镁铝合金产品广泛应用于汽车、建筑、包装、交通运输、电力、航空航天、军工、光伏太阳能、家电家居等领域。“十四五”期间,省委、省政府大力发展新材料产业,实施包括镁基、铝基在内的“六基”提升计划。当前,我市正聚焦镁基、铝基新材料产业发展,立足全国、全省战略布局,发挥宝镁轻合金项目龙头带动作用,加快补链延链固链强链,推动产业链向价值链高端延伸。该中心建成后,将以市场需求为主导,促进政产学检研深度融合,降低研发和检测成本,提高企业效益,助力镁基、铝基产业高质量发展。  作为该中心的承建单位,市质检院拥有近800余台先进仪器设备,先后通过CNAS和CMA资质认定,检测产品和参数达1000多个,检验检测能力覆盖非金属矿产品、非金属和建筑材料、食品、药品、保健食品、化妆品、农资、轻工、化工、小家电等领域。“市质检院将加紧项目实施,加强与重庆大学等科研院校合作,进一步整合资源、链接要素,全面提升技术能力和管理水平,确保如期建成一个集产品检验、标准研制、技术研发、信息交流的国家级质检平台,不断提升平台能级、扩大平台影响。”该院院长汪安表示。
  • 应用 | 激光表面处理对铝合金粘接头润湿性的影响
    研究背景新能源汽车的推广和应用对汽车轻量化设计提出了更高的要求,车身轻量化研究也成为研究热点。采用铝合金等轻质材料是实现汽车轻量化的有效途径。胶接技术由于其均匀的载荷分布,在汽车、高铁、飞机等先进结构的连接中得到了广泛的应用。激光表面处理技术是一种非接触、环境友好型的表面处理技术,在工业产品中具有广阔的应用前景。激光在基体表面形成微纳表面形貌,增大了界面的粗糙度,增强了胶粘剂与基体表面之间的结合强度。此外,表面污染物的去除和新的表面氧化层的形成,有助于改善激光烧蚀表面的润湿性,提高胶粘剂在基体表面的结合强度。尽管现阶段针对粘接力学性能开展了大量的研究,但在性能提升机制方面仍存在不足。本文通过改变激光能量密度,界面形貌以及激光重叠率,系统地分析了激光表面处理工艺参数对铝-铝粘接接头剪切强度的影响。通过激光参数优化,有效地提高了铝-铝粘接接头的剪切强度。图1激光表面处理工艺示意图实验方法与仪器接触角分析仪是一种应用广泛的润湿性测量方法,该方法是通过水滴在不同表面上的形状对表面润湿性能进行分析。本文采用德国KRÜ SS接触角测量仪DSA25测定样品表面润湿性。结果与讨论激光能量密度处理对润湿性的影响不同激光能量密度处理的粘接表面的接触角结果如图2所示。随着激光能量增加,界面接触角随之增大。这是因为激光加工的横纹微结构对水滴的支撑以及水滴自身的表面张力造成的,可以通过“荷叶效应”进行解释。激光处理表面疏水角度与粘接棒材的剪切强度具有一致性,这可能是棒材在轴向预紧力作用下,粘接剂进入到激光处理表面的微槽中,表面微结构提供的水接触角越大表明激光处理的沟槽深度和宽度越大,进而提高了界面的剪切强度。 图2 激光能量密度对粘接接头浸润性的影响。界面形貌对润湿性的影响不同形状激光处理表面沟槽形貌的疏水结果如图4所示。由于液滴沿着沟槽方向的浸润性以及视角的不同,使得沟槽角度从0,45°增加到90°,界面的接触角值从159.3°下降到128.8°。此外,45°+135°和0°+90°界面的接触角值接近,分别为160.1°和160.6°。这可能是交叉加工表面微结构的凸起导致的。在45°+135°和0°+90°加工的表面相当于微结构发生了转动,对界面的疏水性能影响较小。 图3. 典型的激光处理表面沟槽加工路径示意图:(a) 0°;(b) 45° (c) 90°;(d) 45°+135° (e) 0°+90° 图4 五种沟槽形状表面的润湿性。重叠率对润湿性的影响不同激光重叠率下,粘接接头界面粘接区域的润湿性如图20所示。随着激光重叠率Ψ的降低,界面的CA值随之增加。当重叠率Ψ为0时,重叠率的进一步降低对界面CA值影响较小。通过前文的研究可知,激光处理界面具有“荷叶效应”,是通过界面微结构与水滴之间的表面张力使得界面具有疏水性能。并且轴向载荷使得粘接剂进入到激光加工界面的沟槽中,界面的润湿性能表征了界面的剪切强度。 图5 不同重叠率下,粘接接头界面的润湿性。小结针对薄板拉伸剪切过程中的面外弯曲,本研究开发了粘接接头剪切强度的测试夹具。通过改变激光能量密度、界面形貌以及激光重叠率,探究了激光表面处理工艺对铝-铝粘接接头剪切强度的影响机制。最终可以发现粘接接头的剪切强度是受界面粗糙度和表面润湿性的共同作用的。参考文献[1]于贵申,陈鑫等.激光表面处理对铝-铝粘接接头剪切强度的影响[J/OL].吉林大学学报(工学版):1-16[2024-05-22].https://doi.org/10.13229/j.cnki.jdxbgxb.20231227.
  • 网络研讨会 | 汽车用铝材的控制湿度腐蚀加速试验CATCH
    为了提高燃油效率并改善电动汽车电池的性能,汽车工业正转向轻质材料,铝合金的使用正在增加,因为与钢相比,铝合金的强度高、重量轻。当铝合金取代钢材时,汽车的防腐性能必须重新评估,在很多情况下还需要重新设计。Q-FOG循环腐蚀盐雾箱喷淋功能本次网络研讨会,Q-Lab公司将介绍一种新的铝合金测试方法的开发和试验结果,该方法与户外腐蚀测试的相关性及腐蚀速率俱佳。通过结合多种方法,与SAE中国合作开发的带湿度控制的腐蚀加速试验 (CATCH)条件优于汽车行业中使用的其它知名试验条件。车身被腐蚀这次免费的网络研讨会中,将介绍CATCH开发过程中两项主要腐蚀研究的结果。第一项研究包括1000多个试样,分别代表5000和6000系列铝,三种类型的预处理,三种类型的电泳涂层,有或无面漆。这项研究与两种类型的户外测试有很好的相关性。第二项研究建立在第一项研究的基础上,提高了测试速度,同时保持了良好的相关性。网络研讨会时间:2021年9月15日(周三)上午10点研讨会主题:汽车用铝材的控制湿度腐蚀加速试验(CATCH)参与方式:网络参与,请扫下方二维码研讨会费用:免费主办单位美国Q-LAB公司:一家全球性的材料耐久性测试产品供应商。其生产的紫外老化试验机、氙灯试验机、盐雾试验机是目前国际最高端的老化实验仪器,特别是其QUV更是全球使用最广泛的老化试验机。翁开尔公司是Q-LAB在中国及东南亚行业总代理商。翁开尔公司是Q-LAB在中国及东南亚行业指定代理商。全力支持本次研讨会。主讲人孙杏蕾(Sunny Sun)美国Q-Lab公司上海代表处技术经理,理学硕士孙女士参与过塑料、涂料、纺织品、汽车、建材、木材等行业十多项与耐候老化、腐蚀测试相关的国家标准、行业标准、团体标准的制修订工作,并发表了二十多篇相关技术论文。是GB/T 32088《汽车非金属部件及材料氙灯加速老化试验方法》、GB/T 31899-2015《纺织品耐候性试验紫外光曝晒》、GB/T33569-2017《户外用木材涂饰表面人工老化试验方法》、T/CSAE 71-2018《汽车零部件及材料循环腐蚀试验方法》等标准的主要起草人员。参与方式请扫下方二维码,注册成功后,您将受到系统发出的注册成功邮件,邮件里有唯一的参会链接,9月15日(周三)当天上午9:45后,可点击链接进入会场。期待您的参与!
  • 手持合金分析光谱仪可以检测铜合金材料吗
    铜合金具有出色的材料性能,可用于许多场景。在过去的数千年中,纯铜一直是最重要的金属之一,与其他金属相比,它的优点在于:导电性好、高导热率、强度和可塑性的杰出结合、在许多环境中的耐腐蚀性。  关于如何分类铜合金呢?  由于铜合金中的合金元素含量都不同,要测得准,光谱仪精度必须足够高,铜合金和铝合金、钢铁有所不同,它通常要对含量达到80%~90% 的材质进行检测。  手持光谱仪在铜合金材料检测中具有以下优势:  非破坏性检测:手持光谱仪可以通过物质的光谱特征来进行分析,而无需对样品进行破坏性测试或取样。这样可以保持材料的完整性和可用性,并节省时间和成本。  实时性和迅速性:手持光谱仪通常具备快速采集和处理数据的能力,可以在几秒钟内给出结果。这使得在现场或实时监测环境下,能够迅速获得铜合金材料的检测结果。  便携性和灵活性:手持光谱仪通常具有小巧轻便的设计,易于携带和操控。使用者可以随时随地进行检测,无需将材料送到实验室或专门设备的限制。  宽泛的应用范围:手持光谱仪可用于检测不同类型、形状和大小的铜合金材料,例如铜合金管、板、线等。同时,它也可用于其他材料的检测,具有较高的适用性。  数据准确性和可靠性:手持光谱仪通常采用先进的光谱分析技术,能够提供准确和可靠的检测结果。通过与预先建立的光谱数据库进行比对,可以准确确定铜合金材料的成分和特性。  赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
  • 使用新型Vulcan Optimum+手持式LIBS光谱仪,瞬间鉴定铝锂合金
    铝锂合金的发展创造了一种全新的合金类别,集高强度、高耐蚀性和超轻量于一体。这些性能对于航空航天工业减轻重量和提高燃料效率特别重要,铝锂合金可用于商用飞机的机翼和机身。这种合金还用于一级方程式(F1)赛*车和各种航天器——同样,在这种情况下,值得针对低克重高强度投入额外成本。锂是一种非常轻的高活性元素,位于元素周期表第一组。锂在电池中很常见,但对我们大多数人而言,对这种元素最难忘的经历可能发生在中学的科学课上,老师在课堂上演示锂金属加入水中时产生激烈反应的现象。这就是铝锂合金的问题所在。尽管锂具有优越的强度和低密度,但锂的高活性意味着必须在专门设计的熔炉中制造铝锂合金。如果您在标准熔炉中加入铝锂熔体,锂会与耐火熔炉壁发生反应并毁坏熔炉壁。只要在合适的熔炉中生产合适的合金,就不会出现这个问题。当需要回收铝时,可能会出现这个问题。铝回收市场非常庞大。铝是当前回收最多的材料之一,仅次于纸和钢材。目前生产的铝有50%以上来自回收材料。这可以节省大量能量;回收过程使用的能量占比不及铝土矿生产铝所需能量的十分之一。我们周围的回收材料如此之多,废料场和铸造厂鉴定和隔离含锂合金以防止对熔炉造成灾难性损坏的职责显得尤为重要。迄今为止,这一直是一个挑战。许多技术可以用于鉴定铝合金牌号,例如XRF,但由于锂质量太轻,因此根本无法检测锂。日立分析仪器最*新的手持式激光分析仪可在一秒内鉴定含锂铝合金。推出 Vulcan Optimum+日立分析仪器的Vulcan系列手持式LIBS(激光诱导击穿光谱)光谱仪已经成为当今市场的翘楚,并开始取代传统XRF光谱仪。随着Optimate+型号推出,您现在可以分拣所有铝系列,包括现代航空航天合金(包括锂)。Vulcan Optimum+的设计非常灵活、轻便易携,可以在一秒内提供结果,因而成为制造设施和废料场的理想之选。这是一种激光分析仪,不存在辐射问题,您可以在任何地方使用。只需一台仪器,您就可以区分1000到8000范围内的所有普通锻铝系列。Vulcan可轻松区分一个系列内的不同牌号,包括具有挑战性的6061/6063、3003/3004和7050/7075铝合金牌号。Vulcan Optimum+新增检测铝合金中锂的功能,能够真正鉴定所有关键合金元素,包括Li、Si、Mg、Mn、Cu和Zn,实现精确、可靠和快速的铝牌号鉴定,您可以放心。了解 Vulcan Optimum+ 作用如需安排样机演示或获取Vulcan Optimum+报价,请联系我们,或者来我们7月铝工业展现场,还有好礼等您赢取!
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—2008197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • 加快绿色建材标准确立 完善第三方评价体系
    关注儿童房建材选材,也是关注儿童健康成长。同时能促进绿色建材标准的建立。5月13-15日将在国家会议中心召开的第十五届中国国际绿色建筑绿色建材贸易博览会上,现场将派发《健康儿童房知识手册》,并联手轻舟装饰公司共同搭建大型实景儿童房,以实例展示各种可应用于儿童房装修的环保材料。现场还将请来权威建材检测机构到场,为现场观众提供免费咨询。   绿色装修,作为一种新兴的消费理念,已经和正在为越来越多的消费者所接受。那么,究竟怎样的装修才算是真正意义上的“绿色装修”?时下,建材市场上到底有那些产品称得上绿色的?如何鉴别它们?对这些问题给出准确答案,将是消费者所尤其关注和期待解决的问题。人们期待绿色室内环境,那么,什么才是真正意义上的绿色室内环境?   提到绿色装修,就不得不说到绿色建材,怎样评价建材产品是否是绿色的,中国建筑材料检验认证中心、国家建筑材料测试中心副主任蒋荃教授就绿色建材评价体系给出了这样的回答。他说,绿色建材评价体系是一个综合评价体系,在该体系内,建材产品必须遵循:优质、安全、功能性和全生命周期的可再生性。目前消费者一提到“绿色”“环保”就会想到甲醛含量低,或者前段时间媒体热议的“可以喝的漆”。但是这些仅仅是绿色建材评价体系的一方面,蒋教授告诉我们,生产企业更应该重视产品全生命周期内的可再生性,在工艺上,尽量选用无毒、少毒,无污染、少污染的施工工艺,降低施工中粉尘、噪音、废气、废水对环境的污染和破坏,并重视对垃圾的处置,以及产品在结束使用时可以被回收利用,这样才能算得上是真正的绿色建材。   完善绿色建材评价体系,可以促进绿色建材标准制定,规范绿色建材市场。目前市场上没有明确对绿色建材这一概念进行统一标准制定。蒋教授建议,应从两方面规范绿色建材市场。第一:做好前端控制 企业必须保证产品生产过程低污染,低排放,生产出的产品需接受国家认可的第三方检测机构进行检测,测试产品的各项特质应符合国家制定的各项指标,并远远低于国家强制规定的指标值。第二:推广末端检测机制 在产品应用于室内装修后,对该居室进行空气质量检测,确保产品使用安全。第三:在设计师及消费者中普及绿色建材特定标识。只要经过国家认可的权威检测机构检测并符合相应规定的建材,才可以被授予绿色建材特定标识,设计师及消费者在选材过程中可以选择带有这种标识的企业。同时蒋教授也呼吁:建立一个诚信、公正、良好的市场氛围,并且第三方检测机构有责任跟踪所检测的建材产品各个批次的质量,一旦出现问题第三方检测机构也将成为责任方之一。   近几年来,人们对健康越来越重视,因此,建筑和室内装修的健康性问题也备受瞩目。尤其是对儿童及孕妇居住环境更加重视。蒋教授说儿童房不光要重视材料本身的各项指标应低于国家规定指标,还要控制施工过程中的污染,例如各种胶的使用,往往各种低于国家标准几十倍的绿色环保建材在不恰当的施工后也会产生大量有害物质。其次儿童房建材还应考虑功能性,例如现在一些墙体涂料有集热,除湿等功能,有些地板可以散发负氧离子等等。还有儿童房更应考虑设计要素,根据儿童的心理特点布置,这样更能促进儿童智力发育。并且儿童房家具应注重可回收性。毕竟孩子是在成长的,儿童房内家具在使用几年后将会被淘汰,这时家具最好可以做到可回收利用。
  • OPTON的微观世界|第10期 从合金的断口看材料的塑性性能
    ——不同断口在SEM下的微观分析 前期回顾上期我们探索了蚂蚁在扫描电子显微镜下的形貌。从整体形貌到细节上的形貌,详细的描述了蚂蚁身体上的各个结构的形貌以及功能。本期我们继续借助扫描电子显微镜研究不同加工条件下合金的断口,以表征其塑性性能。序 言合金通常要经过铸造、压力加工(如轧制、挤压、锻造、拉丝以及冲压等)和热处理等过程,以获得优良的组织,制成合适的型材和工件,应用在国民经济等各种领域。在产品批量生产前,通常利用一系列的拉伸试验以检验材料的一些力学性能。从拉伸试验过程中,可以得出一系列的拉伸曲线,以表征材料的本征弹性、塑性、韧性等。在拉伸曲线的最后阶段,试样在外力作用下丧失连续变形,就会断成两段。试样的断裂过程包括裂纹的萌生和裂纹的扩展两个基本过程。金属材料的断裂过程在工程上有很大的实际意义。桥梁、轮船、汽车、宇航器的断裂行为给国民经济带来了巨大的危害。金属材料的抗断裂行为主要取决于两大因素。一是外因。如应力状态、温度、湿度等。二是内因。如显微组织和化学成分等。人们可以通过调整合金的化学成分,改善加工参数以及热处理方案,以提高材料的性能指标。人们在追求合金的高强度的同时,越来越关注材料的塑性和韧性等。本文主要通过一些合金的断口的微观形貌来分析材料的塑性指标。材料的断裂主要分为两大类:塑性断裂和脆性断裂。塑性断裂又叫延性断裂,断裂前发生大量的宏观塑性变形;脆性断裂过程中,几乎没有宏观塑性变形,但是在局部区域内存在一定的微观塑性变形。本文选取了四种不同变形量的铝合金的断口,观察其形貌组织,以表征其塑性指标。 20%变形量下的合金断口——形貌分析从图1可以看出,20%变形量下样品的断口主要是韧窝解理型断口,在解理断口的周围有一些韧窝。一般来说,韧窝越大,分布越多,材料的塑性性能越好。在较低的倍数下,有解理台阶和微裂纹的形成。解理裂纹继续扩展过程中,解理台阶相互汇合,形成“河流花样”。在较高的放大倍数下,可以从这些解理断口看出试样的晶粒呈长条状分布,这些长条状晶粒的尺寸多为15um左右,主要是由于加工变形造成的。在这些长条状晶粒的周围分布着少量的小晶粒,这些小尺寸晶粒的尺寸多为5um左右,主要是由于局部再结晶造成的。此外,在有的解理断口中还含有少量的第二相颗粒或孔洞。这些孔洞可能是由于在断裂过程中,晶体内部的第二相颗粒的脱落留下的位置造成的。图1 20%变形量下合金的断口形貌图 30%变形量下的合金断口——形貌分析图2 30%变形量下合金的断口形貌图从图2可以看出,30%变形量下样品的断口主要是韧窝解理型断口。与20%变形量下样品相比,30%变形量下样品的韧窝增多,表征在较大的变形量下,材料的塑性增强。主要表现在两个方面,一是韧窝的体积增大,二是韧窝的数量增多。在较高的放大倍数下,从这些解理断口看出呈长条状分布的变形晶粒,这些长条状晶粒的尺寸多为10um左右。在这些长条状晶粒的周围分布着少量再结晶晶粒,这些小尺寸晶粒的尺寸多为3um-5um左右。此外,在这些解理断口分布区域还有一些撕裂棱和第二相颗粒的分布。 50%变形量下的合金断口——形貌分析从图3可以看出,50%变形量下样品的断口主要是韧窝解理断口。有明显的解理台阶以及“河流花样”。在较高的放大倍数下,从解理断口的形貌可以看出长条状晶粒的周围分布着大量的近乎等轴的再结晶晶粒。这些长条状晶粒较少,且其尺寸多在7um-10um范围内,这些小尺寸晶粒的尺寸多为5um左右。表明材料发生了明显的再结晶。在这些解理断口中有第二相颗粒的分布,且这些颗粒尺寸较20%变形量下的颗粒尺寸要小一些。表明第二相颗粒的固溶强化作用增强,材料的力学性能以及塑性会有一定的改善。在这些几乎等轴的晶粒边缘含有一定的韧窝。这些韧窝的体积较小,可能是由于大变形量下颗粒尺寸较小,形成的韧窝也比较小。图3 50%变形量下合金的断口形貌图 60%变形量下的合金断口——形貌分析从图4可以看出,60%变形量下样品的断口主要是韧窝解理断口,在解理断口的周围有一些韧窝。从解理断口可以看出晶粒都呈近乎等轴分布,且这些晶粒的尺寸较50%变形量下的晶粒尺寸较大。这表明再结晶过程已经较充分进行,并且发生了一定程度的再结晶晶粒长大的行为,这不利于材料的塑性性能。在部分几乎等轴的解理断口中含有细小的第二相颗粒。这些第二相颗粒起到了很好的固溶强化的作用,对材料的塑性性能也有一定的益处。图4 60%变形量下合金的断口形貌图后记通过扫描电子显微镜下不同变形条件下的合金的断口形貌观察,可以看出随着变形量的增加,合金的再结晶程度增加,晶粒的尺寸逐渐减小,第二相的颗粒也会发生一定的碎化。材料的塑性会有一定的提高。但是,当变形量到达一定数值时,部分再结晶晶粒会发生一定的长大,可能对合金的塑性性能有一定的损害。当然,材料的力学性能与多种外因和内因有关。我们在选择合适的加工工艺同时,可以通过调节合金的成分、改善合金的热处理工艺等,获得优良的塑性性能。
  • 首都科技条件平台北京建材总院基地成功举办“2020 绿色建筑实用技术发展论坛——建筑隔声材料研讨会”
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5973a923-87c0-49ed-93cf-ac4ac797acf8.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   11月25日,“2020 绿色建筑实用技术发展论坛——建筑隔声材料研讨会”在北京新世纪日航饭店隆重召开。本次会议由北京建筑材料科学研究总院研发实验服务基地(以前简称“北京建材院基地”)、清华大学研发实验服务基地、检测与认证领域中心、北京建材总院基地专业服务机构北京建筑材料检验研究院有限公司、奥来国信(北京)检测技术有限责任公司、固废资源化利用与节能建材国家重点实验室、北京绿标建材产业技术联盟等联合举办。本次会议以“汇聚新动能孕育新发展”为主题,广泛邀请了行业主管部门、科研院所、高等院校、质检机构以及设计、施工、监理单位和生产企业的相关领导、技术专家共150余人参会,旨在更好促进隔声新材料、新技术的应用和发展,推动绿色建筑隔声技术的进步。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/02bf4925-bb38-45d6-a4d6-1affa3d1a09b.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/88d74777-bbf3-4a83-9603-a54a34c57e08.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   北京金隅集团副总经理、固废资源化利用与节能建材国家重点实验室主任王肇嘉代表主办方对大会的召开表示热烈祝贺,对致力于建筑和建材事业发展的各位同仁表示诚挚欢迎。他指出,发展绿色建筑,是建筑业贯彻新发展理念、推动绿色发展、践行新时代高质量发展的时代要求,建设“安全耐久、健康舒适、生活便利、资源节约、环境宜居”的绿色建筑是实现城镇化可持续发展的必要手段。其中,建筑隔声是绿色建筑技术中技术含量高,最能体现建筑舒适度的一项重要指标,也是关乎人们生活质量的重要因素之一。近年来,以人为本的绿色发展理念逐步深入人心,绿色建筑的隔声越来越受到重视,相关政策、标准先后发布实施,建筑隔声新技术、新材料不断涌现,绿色建筑隔声行业的发展也迈向了一个新的阶段。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202011/uepic/4e83b99c-10b4-47b3-a74f-aec426f2d328.jpg" title=" 4.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202011/uepic/e83f5cf4-8a2d-463c-8d3e-668d89754bfe.jpg" title=" 5.jpg" / /p p   同时奥来国信(北京)检测技术有限责任公司董事长龚治国以及北京东方雨虹防水技术股份有限公司特种砂浆事业部总经理严兴李也分别为大会致辞。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/e51e3142-cc42-483c-b6c5-3d12d2957196.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p   大会报告发言及研讨阶段,住房和城乡建设部科技与产业化发展中心绿色建材部品处处长刘敬疆围绕中央、国务院、各部委发布的一系列关于绿色建材行业的政策,从宏观到局部、从现状到发展,全面细致的进行了介绍和解读。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/312972f1-7b7f-4532-aedf-dcbdf10a5478.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p   北京康居认证中心主任张小玲介绍了建设被动房对于缓解能源紧张、减少碳排放、减少大气污染起到的重要作用,并结合管道、隔墙、门窗、地面、新风机组、油烟处理器、断热桥构件等几个方面的噪声控制,对被动房的隔声控制技术进行了讲解。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/c3dc255a-44f9-4ddd-98f3-07ed62703734.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p   哈尔滨工业大学卢爽教授介绍了一种全新的增强水泥基材料阻尼性能的方式,通过在水泥基材料中掺入介孔硅或改性介孔硅以提高材料的阻尼性能,从而实现减振隔声的目的,同时也可以使农业废弃物变废为宝,前景可期。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/be8ca5e7-3a76-4833-9815-d80e173561fa.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p   清华大学研发实验服务基地燕翔教授以高隔声量的建筑轻质构造研究为题,讲解了建筑的传声途径,并从隔声评价、隔声标准及隔声影响因素几个方面,分享了关于空气声传播的相关知识。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/974c41dd-6ed2-474a-a48a-9398c4d9123a.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p   山西省建筑材料工业设计研究院滕朝晖主任从隔声砂浆的配比研究和机理分析角度进行了细致的讲解。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/20b5acdb-806c-4904-9785-71210ed05854.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p   奥来国信(北京)检测技术有限责任公司副总经理、北京绿标建材产业技术联盟执行理事长檀春丽对目前隔声砂浆的检测研究工作进行了系统介绍,并围绕隔声砂浆检测技术及科研标准等方面进行了深度剖析和创新思考。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b9ed8cb4-e551-40d2-9c34-f116ab155f04.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p   首都科技条件平台北京建材总院基地专项负责人马国儒详细介绍了目前在建筑隔声方面的相关检测技术,深入分析了目前的行业现状,同时对未来相关技术的的发展趋势进行了展望。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ba8a0c64-20cb-4c94-ac86-9d918651c830.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p   郑夏明总经理做“隔声砂浆在民用建筑楼板上的应用”的主题发言 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9687dfe2-cdcd-4698-aaeb-a4b0a80a41a3.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p   杜春林总工做“轻质隔声墙体的隔声性能研究”的主题发言 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8c4fef2d-a6e4-452e-aeef-5a53e42f8562.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p   张勇敢总经理做“隔声门的声学设计与应用研究”的主题发言 /p p   本次会议围绕绿色建筑及隔声领域相关法规政策、标准解读、行业现状分析、未来发展方向以及隔声材料和技术、声学设计、检验检测技术研究等方面内容进行深入交流和探讨,为建筑设计、生产制造、施工应用、质量与测试及材料供应等环节提供了一个良好的技术交流和沟通平台,聚集智慧、凝聚共识、汇聚力量,共享隔声新技术,共谋绿色新发展,对隔声领域的技术提升和绿色建筑的品质提升方面起到重要影响和推动作用,进一步促进了绿色建筑行业的健康有序发展。 /p p   会上,与会代表与报告发言的各位专家就各自领域发言内容进行了即兴的交流和互动,现场气氛热烈,极大提升了首都科技条件平台及相关成员单位的行业影响力。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ff118f76-9049-4c8d-a297-1c0d61e90e9a.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p br/ /p
  • 赛恩思光谱仪为精密合金产业提供先进的检测技术
    随着先进材料科学与工程技术的迅猛发展,对于精密合金的需求也随之日益增长。而在这一领域,品质和精确度始终处于核心地位。对于众多合金生产企业而言,确保产品质量与合金成分的精确度就显得至关重要。而四川赛恩思仪器,正为这些行业领头企业提供了先进、可靠的检测技术。东莞市天耀五金实业有限公司,作为专业的精密镁合金压铸、铝合金压铸生产商,近日采购了赛恩思OES-802直读光谱仪。作为该领域的行业领头,天耀五金实业非常注重其产品的质量与合金成分的精确度。赛恩思OES-802直读光谱仪将帮助他们进行四系铝合金以及镁合金的检测,确保A356、A365等铝合金牌号的产品品质始终保持在行业的前列。赛恩思OES-802直读光谱仪凭借其卓越的性能,准确地检测合金的元素成分,确保合金生产过程中的严格质控,为客户带来更高的产品信赖度。无论是对于精密合金压铸,还是高要求的技术研发与产品应用,这款仪器都能提供强大的技术支持。四川赛恩思仪器,多年来一直致力于研发与生产先进的分析检测仪器。与国内外的许多知名企业建立了长期稳固的合作关系,积累了丰富的经验。公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 关于印发重庆市材料工业高质量发展“十四五”规划的通知
    重庆市材料工业高质量发展“十四五”规划我市材料工业包含冶金、建材及其新材料产业,是实体经济的根基,是全市经济稳增长的压舱石。为推动材料工业高质量发展,依据《成渝地区双城经济圈建设规划纲要》《“十四五”原材料工业发展规划》《重庆市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》《重庆市制造业高质量发展“十四五”规划(2021—2025年)》等文件,特制定本规划。一、现状及形势(一)取得的成效。综合质效跃上新台阶。2020年全市规模以上材料工业企业超过1100家,总产值达到3233亿元,培育百亿级企业4家,新材料占材料工业总产值比重比“十二五”末提升21.8个百分点。产业结构调整迈出新步伐。“十三五”期间,化解钢铁产能816万吨、电解铝18.5万吨、水泥420万吨,烧结砖10亿标砖,钢铁、电解铝、水泥、平板玻璃产能利用率达到80%以上。创新驱动激发新动能。创建6家国家级企业技术中心,2家市级制造业创新中心,成立重庆市轻量化材料产业联盟,建成3家智能工厂和27个数字化车间,3家企业获评5G+工业互联网先导应用和创新示范智能工厂,4种产品获评国家制造业单项冠军产品。绿色发展引领新趋势。在西南地区率先开展水泥行业错峰生产,水泥、墙材行业协同处置利废逾千万吨,减排二氧化碳300余万吨,建成绿色工厂19家、节水型企业22家。(二)面临的形势。“十四五”时期,我市材料工业高质量发展机遇和挑战并存。从机遇看,国内超大市场规模优势进一步发挥,新型城镇化、乡村振兴、农业现代化加快推进,我市作为国家中心城市和西部地区唯一的直辖市,加速引领周边地区新兴领域和消费升级对高端材料的需求,为材料工业持续健康发展提供了广阔空间;依托“一带一路”和长江经济带,构建起西部陆海新通道、中欧班列、渝甬通道等国际贸易大通道,为材料工业要素集聚和产品输出提供了便利条件;成渝地区双城经济圈发展战略的实施,将有效促进国内两大制造业基地生产要素资源合理流动、高效聚集、优化配置,为材料工业强化产业链韧性提供了基础支撑;新发展格局加快构建,新一轮科技革命和产业变革加速演进,为材料工业转型升级锻造新优势提供了强劲动力。从挑战看,国际政治经济形势日益复杂多变,新冠肺炎疫情影响深远,对产业链供应链稳定提出了更高的要求 “双碳”以及“能耗双控”目标下,绿色低碳发展任务更加紧迫;行业创新能力体系建设有待加强,新旧动能转化亟待加快,高端产品供给仍显不足;空间布局仍需完善,要素成本提升预期加强,重点产业链补链强链挑战依旧艰巨。总体来看,“十四五”时期是我市材料工业跨关口、培优势、上台阶的战略决胜期,面对新形势、新要求,要保持战略定力,增强底线思维,紧紧抓住战略契机,积极应对挑战,加强统筹谋划,推进材料工业高质量发展。二、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大、十九届历次全会和二十大精神,全面落实习近平总书记对重庆提出的营造良好政治生态,坚持“两点”定位、“两地”“两高”目标,发挥“三个作用”和推动成渝地区双城经济圈建设等重要指示要求,立足新发展阶段,完整、准确、全面贯彻新发展理念,积极融入新发展格局,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,着眼提升产业基础高级化、产业链现代化、供给高端化、发展绿色化、智造数字化,统筹传统材料和新材料发展,深化补短板、锻长板、固底板,促进绿色低碳转型,加速信息技术赋能,为我市建设国家重要先进制造业中心提供有力的材料支撑。(二)基本原则。坚持创新驱动。强化企业创新主体地位,构建以企业为主体的产学研用联合创新平台,加大原始创新、集成创新、引进消化吸收再创新和协同创新力度,着力突破一批核心关键技术和共性技术,持续推动数字化转型,促进产业向智能、高效、服务方向转变。坚持市场主导。充分发挥市场在资源配置中的决定性作用,强化企业主体地位,更好发挥政府作用,以经济社会发展及支柱产业、新兴产业需求为导向,因地制宜构建具有本地特色的材料工业体系。坚持生态优先。以长江经济带绿色发展为引领,绿色制造为重点,鼓励研发绿色低碳新材料;以节能减排为抓手,提升资源能源利用效率和清洁生产水平,强化产品全生命周期和全产业链绿色发展。坚持集群发展。依托领军企业和“链主”企业完善产业生态链,着力固根基、扬优势、补短板、强弱项,建设国家重要轻合金、玻璃纤维和复合材料以及具有较强影响力的先进钢铁、绿色建材产业基地,培育一批具有核心竞争力和带动力强、特色鲜明、优势互补的新材料产业。坚持开放引领。加大新材料招商力度,加强国际国内的交流与合作,积极承接中东部地区产业转移,通过引资、引智、重组等方式,提升研发、制造、应用和服务水平,构建共享共赢的开放型产业体系。(三)发展目标。做大做强三大特色新材料产业,培育壮大三大前沿新材料产业,做优做精两大先进基础材料产业,重点围绕轻合金、先进钢铁、装配式建筑三条产业链补链强链延链,推动产业基础高级化、产业链现代化,着力构建现代产业体系。到2025年,全市材料工业总产值和增加值增速保持合理水平,新材料产业规模持续扩大,企业效益稳步提升,产业布局更加合理,创新能力明显增强,绿色低碳发展水平显著提高,产业基础再造取得成效,高质量发展格局初步形成。专栏1 “十四五”主要发展目标指标类别指标名称2020年现状2025年预期目标绝对值年均增速总量结构规模以上(下同)总产值(亿元)3323.7850008.5%新材料产业产值(亿元)925.15200016.7%增加值(亿元)909.9150010.5%综合质效全员劳动生产率(万元/人)56.7766%营业收入利润率(%)6.77/创新能力研发投入(亿元)53.48610%企业中建有研发机构的企业占比(%)23.25016.6%企业牵头的高端创新平台(个)27/两化融合数字化车间(个)27102/智能化工厂(个)313/绿色发展绿色工厂(个)1940/节水型企业(家)2237/企业培育百亿级领军、“链主”企业(家)36/“小巨人”企业(家)1020/三、重点方向(一)做大做强三大特色新材料产业。1.先进有色合金。围绕打造轻合金产业链,重点发展铝合金、镁合金、钛合金等产业,做大做强铜产业,有序发展再生有色金属等绿色循环经济产业,打造1800亿级先进有色合金产业集群,其中轻合金产业链超过1500亿元。专栏2 先进有色合金重点板块铝合金:引导氧化铝、电解铝绿色低碳发展,稳步发展再生铝,构建与后端铝加工制造能力相适应的原材料本地供应保障体系。铝加工重点发展航空航天用铝、新能源汽车用铝、轨道交通用铝、船舶用铝,支持发展电子电器用铝、新型包装用铝、建筑用铝、装饰装修用铝、全铝家具等高附加值铝合金精深加工产品。镁合金:重点开发面向新基建、电子信息、汽车、电动工具、油气开采等领域应用的型材、板带材、压铸件等。鼓励拓展应用领域,加快开发高性能铸造镁合金及变形镁合金、耐蚀镁合金等产品。支持综合利用项目和先进节能环保工艺技术改造。钛合金:鼓励发展钛合金棒、线、板、带材,加快钛合金生产企业现有产能释放和后续产线建设。积极引进精深加工配套企业,延长钛合金产业链。铜产业:做强做大高端铜管,积极发展精密铜带、箔、丝材,新能源汽车及高效电机专用电磁线,支持发展低松比铜粉、复合铜粉、包覆铜粉等铜基粉末材料。鼓励上游原材料供应、仓储和下游铜材加工、检测、应用企业集中布局。2.高性能纤维和复合材料。聚焦汽车、航空航天、装备制造等领域轻量化需求,以玻璃纤维及复合材料、金属基复合材料为主攻方向,探索发展其他高性能纤维和复合材料,建设250亿级高性能纤维和复合材料产业集群。专栏3 高性能纤维和复合材料重点板块玻璃纤维及复合材料:重点发展超细、高强高模、耐碱、低介电、高硅氧、可降解、异形截面等高性能玻璃纤维及制品,支持发展低介电玻璃纤维电子布、微纤维玻璃棉高效绝热及过滤材料、微纤维棉衍生品等。金属基复合材料:重点发展铝镁复合板、铝铜复合板材、钢钛复合材料等,加强铝(镁、钛、铜)等金属基复合材料、金属—陶瓷复合材料等新型复合材料开发。其他高性能纤维和复合材料:重点培育玄武岩纤维、碳纤维、陶瓷纤维、石英纤维等其他高性能纤维及增强复合材料。3.新能源材料。把握新能源产业快速发展机遇,以光伏材料、风电材料和储能材料为主攻方向,培育200亿级新能源材料产业。专栏4 新能源材料重点板块光伏材料:重点发展光伏玻璃、边框、支架等,培育发展宽幅、超薄光伏玻璃,以及太阳能光伏组件。风电材料:着力培育风电纱研发生产基地,延伸发展风电叶片;积极引育基体、芯材、涂层材料和金属材料等风电材料。储能材料:重点发展高能量密度锂电池材料及其前驱体,石墨、石墨烯、硅碳等负极材料,高性能隔膜,金属箔及复合箔等电化学储能材料产业体系。探索发展磁储能用高性能高温超导材料,相变储能材料,金属液流电池材料,氢能制造、存储、运输用新材料等。(二)培育壮大三大前沿新材料。1.气凝胶。以硅基气凝胶为重点,加快推动气凝胶产品设计及应用,聚力开拓下游应用领域,完善上下游产业链,打造全国气凝胶产业之都。专栏5 气凝胶重点板块硅基气凝胶材料:重点发展高质量、规模化、稳定化、低成本的气凝胶颗粒、绝热毡、隔热板、涂料、纤维等产品。新型气凝胶材料:针对超高温绝热、废水吸附治理、大气污染物过滤、电极材料、催化、生物医药等应用领域,探索发展铝、钛、锆基等新型氧化物气凝胶,聚丙烯纤维气凝胶等有机气凝胶,碳气凝胶、石墨烯气凝胶等碳基气凝胶。气凝胶产品设计及应用:加快推动气凝胶在深冷绝热领域的产品设计开发,扩大在工业保温、建筑节能、高端装备、纺织服装领域的应用规模;研发在污染物治理、有机物过滤、超级电容器等非绝热保温应用领域产品。2.石墨烯。围绕石墨烯材料的低成本规模化制备开发,提高石墨烯产品质量稳定性和一致性。加快在电子信息、新能源、复合材料、健康环保等领域的应用,开发具有吸附、过滤、净化等功能的石墨烯环保产品和系统,培育发展电化学、超级电容、燃料电池等领域用石墨烯。突破石墨烯产业前沿技术和共性关键技术,研发单层石墨烯、微片衍生物、高导热功能材料、电磁屏蔽材料、传感器材料、改性涂料、医用敷料、抗菌复合材料等,推动石墨烯上下游产业集聚。3.未来材料。积极引育纳米材料,拓展纳米材料在光电、新能源、医药等领域应用范围。加强智能材料、仿生材料、液态金属、高熵合金和新型超导材料等领域探索。面向空天、深海、深地等国家重大工程需求,加强极端环境所需特种材料研发,形成一批创新成果。(三)做优做精两大先进基础材料。1.先进钢铁材料。面向全市经济社会建设需要和下游产业升级需求,以高品质绿色建筑用钢、汽车用钢、优特钢、高端不锈钢等为主攻方向,做强1300亿级先进钢铁材料产业链。专栏6 先进钢铁材料重点板块高品质建筑用钢:重点发展耐候钢、大尺寸型钢、海工钢、高强结构用钢,加快建筑结构用高强度抗震钢筋、高延性冷轧带肋钢筋等产品开发,支持热镀锌无铬钝化板、无铬彩涂板等应用。汽车用钢:加快推动超高强钢和热成型钢研发及产业化,支持发展汽车用棒、线材,加快节能与新能源汽车用钢、先进轨道交通装备用钢等产品开发应用。优特钢:重点发展耐高温钢、耐蚀钢、钝化或耐指纹膜钢、轴承钢、高性能工模具钢、高性能电工钢、非晶合金、高温合金等,鼓励短流程生产优特钢,培育发展高品质铁基合金粉末、半导体用钢等。高端不锈钢:重点发展装饰管、不锈钢流体焊管和无缝管,培育发展高端精密不锈钢板、带、丝、线材等。2.绿色建材。以发展节能环保、安全耐久的绿色建材为目标,以高技术含量、高附加值产品为主攻方向,重点完善装配式建筑产业链,做优做精玻璃、陶瓷和新型墙材产业,打造1500亿级绿色建材产业集群,其中装配式建筑产业链达到1000亿元。专栏7 绿色建材重点板块装配式建筑:水泥产业重点发展低熟料水泥、利废水泥等绿色水泥,做优做强高标号优质水泥,机场跑道、高速铁路等工程专用水泥和低热、低碱、膨胀等特种水泥。支持拓展水泥制品应用领域和范围,积极发展预拌砂浆、高性能混凝土、功能化混凝土等下游产品。砂石产业布局一批千万吨级大型机制砂石生产保障基地,提高供应保障能力,不断提升优质和专用产品应用比例。装配式建筑产业重点发展梁、柱、板、墙、阳台、楼梯等预制混凝土部件,集成式厨房、卫生间等部品,以及钢筋灌浆套筒、预埋锚件、临时支撑系统等配件。玻璃:重点发展在线Low-E(低辐射镀膜)玻璃、高端汽车玻璃、高档建筑玻璃、装饰玻璃、热致调光玻璃等玻璃深加工产品。积极发展与汽车、电子信息、智能家电等先进制造业产业集群配套的航空玻璃、机车玻璃、电子玻璃、微晶玻璃等特种玻璃。陶瓷:提升发展轻质高强陶瓷、薄型陶瓷、高端装饰装修陶瓷砖、发泡陶瓷、地暖陶瓷、岩板等绿色化、功能化、高端化的建筑陶瓷产品。大力发展节水和轻量化、智能化卫生陶瓷及整体卫浴产品。支持发展以压电陶瓷材料、热电陶瓷材料、铁电陶瓷材料、介电陶瓷材料、超导电陶瓷材料为代表的电子陶瓷材料,以高导热陶瓷材料、耐热陶瓷材料、隔热陶瓷材料为代表的热功能陶瓷材料。新型墙材:重点研发生产导热系数小、性能优良的高效节能保温砌块。支持利用煤矸石、建筑固废、页岩资源等,发展烧结页岩空心砌块、轻质高强节能隔墙板材、高档清水装饰砖、生态透水砖等新型墙体材料。四、主要任务(一)健全产业创新体系。加快研发机构培育,支持建立企业技术中心、工程技术中心、工业和信息化重点实验室等,争取设立区域性研发总部、组建法人化独立研发公司,鼓励有条件的企业牵头建设制造业创新中心。推动创新平台加快制定本领域技术路线图,健全成果转化、专利许可转让等机制,提升共性技术转移扩散能力。加强关键核心技术攻关和应用研究,以“卡脖子”的战略性新兴材料为重点,探索“揭榜挂帅”“赛马机制”等方式,支持材料生产、应用企业联合科研单位开展协同攻关。鼓励创新资源聚合,支持新材料领域应用示范、测试评价以及产业联盟等平台建设。探索建设一批面向社会开放的共性技术资源库、行业数据资源库、通用模型库等共享数据库。加快完善计量校准、标准普及、检验检测与认证认可咨询、质量诊断与改进提升、品牌培育等产业创新服务体系。专栏8 创新发展重点任务企业技术中心:在轻合金、功能材料、高性能纤维和复合材料、优特钢、装配式建筑、玻璃、陶瓷等领域持续培育壮大一批技术创新中心,提升重点产业链创新能力和创新水平。制造业创新中心:以关键共性技术协同开发、转移转化和产业化应用为主要任务,在高性能纤维和复合材料、轻合金、气凝胶、石墨烯、先进钢铁等重点领域建设一批市级制造业创新中心,争创国家级制造业创新中心。应用示范平台:围绕新材料技术应用创新,建立和完善气凝胶、石墨烯、新能源材料、轻合金、功能材料、新型建筑材料等领域搭建新材料应用示范平台,加快材料研制、生产、验证及应用进程。(二)培育壮大产业链群。深入落实“链长制”,围绕轻合金、先进钢铁、装配式建筑等重点产业链,支持领军企业、“链主”企业积极向重点产业链中与现有主营业务关联度较高环节延伸布局,补齐产业链短板。加强创新链、供应链、价值链与产业链招商协同,依托生产制造类项目同步引进企业研发设计、营销结算中心等生产性服务类项目。推动领军企业、“链主”企业加强供应商管理库存、协同式供应链库存管理和供应链运输管理,建立供应链风险等级预警机制,做好应急预案。围绕产业链部署创新链,探索领军企业、“链主”企业提需求及认可采购、上下游企业揭榜参与的协作模式,推动领军企业、“链主”和中小企业补链成群。支持企业通过中欧班列(成渝)、西部陆海新通道、长江黄金水道等通道建设,加速有序优化产业链、供应链配置。专栏9 产业链培育重点任务轻合金产业链:培育产业链领军和“链主”企业,支持企业通过强创新、拓市场、抓重组等方式快速做大做强。加快推动高端铝加工、钛合金精深加工、特铝新材、镁合金等产业链补短板项目建设,不断推进轻合金产业链上游提质、下游延伸。先进钢铁材料产业链:依托领军和“链主”企业,加快推进提质增效、智能热轧、特冶航材、高端金属材料等产业链补短板项目建设,着力补齐优特钢、不锈钢短板。深化战略合作,吸引各类钢铁相关产业布局完善产业链上下游关键环节。装配式建筑产业链:培育壮大领军和“链主”企业,推进一批绿色智能装配式建筑基地等产业链补短板项目建设,支持定标准、强创新、拓市场、抓重组等方式做大做强。(三)促进产业融合发展。加快新一代信息技术和材料工业融合,促进5G、工业互联网、大数据、人工智能等技术在全产业链的集成应用。鼓励智能生产设备、智能检测与装配设备、智慧物流与仓储装备等智能制造装备在材料工业的普及,推动企业信息系统与生产设备的互联互通,支持建设数字化车间和智能工厂。促进工业设计与材料工业深度融合,连接材料产品需求和供给、艺术和技术,丰富产品品种、提高产品附加值, margin-top:10px "(四)抓好示范引领。聚焦国民经济、国防安全重点领域,针对新材料供需衔接、产用合作等短板,探索搭建新材料生产应用示范平台,重点突破关键领域新材料共性应用技术,引导制定产品标准与设计规范,促进新材料标准及下游应用设计规范衔接配套,推动形成新材料产业化应用示范。认真落实重点新材料首批次应用保险补偿机制试点工作,突破材料应用的初期市场瓶颈,激活和释放下游行业对新材料产品的有效需求。鼓励在创新驱动、智能制造、绿色低碳、补短板等领域建设示范项目。加快对节能低碳、安全性好、性价比高的绿色建材的推广应用,支持企业参与绿色建材下乡活动。(五)加强要素保障。多措并举抓好煤、电、水、气、运等生产要素协调,稳住关键产品供应,保障园区建设、项目用地和用工需求。促进金融服务重点向人工智能、大数据、工业软件、5G通信、工业互联网等与材料工业融合创新应用项目和“专精特新”企业倾斜,扩大直接融资渠道,缓解融资难问题,降低融资成本。鼓励资源型企业“走出去”,提高材料工业发展和经济社会发展必需的矿产品原材料保障水平。落实创新领军人才等相关政策,大力引进材料工业海外高层次人才及团队,加大专业技术人才、经营管理人才和技能人才的培养力度,提高产业技术队伍整体素质,完善面向材料工业的人才服务体系。(六)加大宣传引导。充分利用各种媒体,采取多种方式,加强对我市材料工业高质量发展宣传报道,消除对钢铁、有色、建材等行业在市场准入时“一刀切”列入“两高一资”行业的误区,切实增强行业自信,引导产城共融发展,全面打造市场化法治化国际化一流营商环境,为材料工业高质量发展营造良好的舆论氛围和有利外部环境。充分发挥行业协会、专业机构作用,加强规划宣贯落实。
  • 北川建材检测实验室 严把灾区建材质量关
    “凡是进入灾区重建房屋施工场地的建筑材料,没有我们的质检报告一律禁入工地”。昨天上午,绵阳质监局负责人向放心产品见证体验团的成员们介绍,投资180多万元建成的北川精品实验室是全省6大精品实验室之一。以前,北川没有专业的建材检测实验室,建材质量的检测需跑到绵阳市甚至省质检院,“以后,北川灾区的重建房屋建材检测就地可解决,质量监督关口实现了前移”。   无精品实验室合格报告   建材一律禁入重建工地   昨天上午,由本报联合省市质监局举办的放心产品见证之旅体验团的成员,来到北川安昌镇绵阳市质检所北川灾后重建建材产品质检站(精品实验室)。今年6月3日成立的精品实验室占地400多平方米,能够满足灾后重建对建筑用钢材、水泥、砖以及建筑装饰材料、电器等产品检测的需要。   体验团到达现场时,检测人员正在对一家工地送来的水泥样品进行分样,分样完成后送到另外一间养护室进行样品培养,7个工作日后,样品的权威检测报告就会出来。   省质监局相关负责人介绍,按照省质监局的要求,凡是要进入北川灾后重建工地的水泥、砖、钢材,都必须有这家精品实验室出具的质量合格检测报告。目前,山东援建北川的23个施工工地的建材检测已经纳入该实验室的检测范围内,实验室对北川的灾后重建房屋建材质量检测实现了全覆盖。另外,平武、安县等地震灾区的建材质量检测也将陆续纳入该实验室的检测范围。随着北川新县城的开建,北川精品实验室的作用会更加明显。   设百万专项资金   部分农房建材免费检测   省质监局相关负责人介绍,除了北川的精品实验室,四川省质监局在什邡、绵竹、青川、汉源和汶川五个重灾县(市)规划建设的具有国内高水平的重建建材精品质检站都已落成投入使用。   据了解,省质监局还专门拿出100万元的专项资金,为灾区部分农房的建材实行免费检测。北川吉娜羌寨一受灾群众说,拿到重建农房的建材检测报告,他们就感到重建房屋的质量有了保障,心里很踏实。
  • 政府采购新标准!国内六城市试点推广绿色建材 供应商需提供检测或认证文件
    p   财政部、住房和城乡建设部会同相关部门根据建材产品在政府采购工程中的应用情况、市场供给情况和相关产业升级发展方向等,结合有关国家标准、行业标准等绿色建材产品标准,制定发布绿色建筑和绿色建材政府采购基本要求(试行,以下简称《基本要求》)。 /p p   《基本要求》首先在南京市、杭州市、绍兴市、湖州市、青岛市、佛山市六个城市的医院、学校、办公楼、综合体、展览馆、会展中心、体育馆、保障性住房等新建政府采购工程进行试点,试点时间为2年。同时也鼓励其他地区按照本通知要求,积极推广绿色建筑和绿色建材应用;鼓励试点地区将使用财政性资金实施的其他新建工程项目纳入试点范围。 /p p    strong 采购人要在编制采购文件和拟定合同文本时将满足《基本要求》的有关规定作为实质性条件,直接采购或要求承包单位使用符合规定的绿色建材产品。绿色建材供应商在供货时应当提供包含相关指标的第三方检测或认证机构出具的检测报告、认证证书等证明性文件。 /strong 对于尚未纳入《基本要求》的建材产品,鼓励采购人采购获得绿色建材评价标识、认证或者获得环境标志产品认证的绿色建材产品。 /p p   具体通知如下: /p p style=" text-align: center " strong 关于政府采购支持绿色建材促进建筑品质提升试点工作的通知 /strong /p p   各省、自治区、直辖市、计划单列市财政厅(局)、住房和城乡建设主管部门,新疆生产建设兵团财政局、住房和城乡建设局: /p p   为发挥政府采购政策功能,加快推广绿色建筑和绿色建材应用,促进建筑品质提升和新型建筑工业化发展,根据《中华人民共和国政府采购法》和《中华人民共和国政府采购法实施条例》,现就政府采购支持绿色建材促进建筑品质提升试点工作通知如下: /p p    strong 一、总体要求 /strong /p p   (一)指导思想。 /p p   以习近平新时代中国特色社会主义思想为指导,牢固树立新发展理念,发挥政府采购的示范引领作用,在政府采购工程中积极推广绿色建筑和绿色建材应用,推进建筑业供给侧结构性改革,促进绿色生产和绿色消费,推动经济社会绿色发展。 /p p   (二)基本原则。 /p p   坚持先行先试。选择一批绿色发展基础较好的城市,在政府采购工程中探索支持绿色建筑和绿色建材推广应用的有效模式,形成可复制、可推广的经验。 /p p   强化主体责任。压实采购人落实政策的主体责任,通过加强采购需求管理等措施,切实提高绿色建筑和绿色建材在政府采购工程中的比重。 /p p   加强统筹协调。加强部门间的沟通协调,明确相关部门职责,强化对政府工程采购、实施和履约验收中的监督管理,引导采购人、工程承包单位、建材企业、相关行业协会及第三方机构积极参与试点工作,形成推进试点的合力。 /p p   (三)工作目标。 /p p   在政府采购工程中推广可循环可利用建材、高强度高耐久建材、绿色部品部件、绿色装饰装修材料、节水节能建材等绿色建材产品,积极应用装配式、智能化等新型建筑工业化建造方式,鼓励建成二星级及以上绿色建筑。到2022年,基本形成绿色建筑和绿色建材政府采购需求标准,政策措施体系和工作机制逐步完善,政府采购工程建筑品质得到提升,绿色消费和绿色发展的理念进一步增强。 /p p    strong 二、试点对象和时间 /strong /p p   (一)试点城市。试点城市为南京市、杭州市、绍兴市、湖州市、青岛市、佛山市。鼓励其他地区按照本通知要求,积极推广绿色建筑和绿色建材应用。 /p p   (二)试点项目。医院、学校、办公楼、综合体、展览馆、会展中心、体育馆、保障性住房等新建政府采购工程。鼓励试点地区将使用财政性资金实施的其他新建工程项目纳入试点范围。 /p p   (三)试点期限。试点时间为2年,相关工程项目原则上应于2022年12月底前竣工。对于较大规模的工程项目,可适当延长试点时间。 /p p    strong 三、试点内容 /strong /p p   (一)形成绿色建筑和绿色建材政府采购需求标准。财政部、住房和城乡建设部会同相关部门根据建材产品在政府采购工程中的应用情况、市场供给情况和相关产业升级发展方向等,结合有关国家标准、行业标准等绿色建材产品标准,制定发布绿色建筑和绿色建材政府采购基本要求(试行,以下简称《基本要求》)。财政部、住房和城乡建设部将根据试点推进情况,动态更新《基本要求》,并在中华人民共和国财政部网站(www.mof.gov.cn)、住房和城乡建设部网站(www.mohurd.gov.cn)和中国政府采购网(www.ccgp.gov.cn)发布。试点地区可根据地方实际情况,对《基本要求》中的相关设计要求、建材种类和具体指标进行微调。试点地区要通过试点,在《基本要求》的基础上,细化和完善绿色建筑政府采购相关设计规范、施工规范和产品标准,形成客观、量化、可验证,适应本地区实际和不同建筑类型的绿色建筑和绿色建材政府采购需求标准,报财政部、住房和城乡建设部。 /p p   (二)加强工程设计管理。采购人应当要求设计单位根据《基本要求》编制设计文件,严格审查或者委托第三方机构审查设计文件中执行《基本要求》的情况。试点地区住房和城乡建设部门要加强政府采购工程中落实《基本要求》情况的事中事后监管。同时,要积极推动工程造价改革,完善工程概预算编制办法,充分发挥市场定价作用,将政府采购绿色建筑和绿色建材增量成本纳入工程造价。 /p p   (三)落实绿色建材采购要求。采购人要在编制采购文件和拟定合同文本时将满足《基本要求》的有关规定作为实质性条件,直接采购或要求承包单位使用符合规定的绿色建材产品。绿色建材供应商在供货时应当提供包含相关指标的第三方检测或认证机构出具的检测报告、认证证书等证明性文件。对于尚未纳入《基本要求》的建材产品,鼓励采购人采购获得绿色建材评价标识、认证或者获得环境标志产品认证的绿色建材产品。 /p p   (四)探索开展绿色建材批量集中采购。试点地区财政部门可以选择部分通用类绿色建材探索实施批量集中采购。由政府集中采购机构或部门集中采购机构定期归集采购人绿色建材采购计划,开展集中带量采购。鼓励通过电子化政府采购平台采购绿色建材,强化采购全流程监管。 /p p   (五)严格工程施工和验收管理。试点地区要积极探索创新施工现场监管模式,督促施工单位使用符合要求的绿色建材产品,严格按照《基本要求》的规定和工程建设相关标准施工。工程竣工后,采购人要按照合同约定开展履约验收。 /p p   (六)加强对绿色采购政策执行的监督检查。试点地区财政部门要会同住房和城乡建设部门通过大数据、区块链等技术手段密切跟踪试点情况,加强有关政策执行情况的监督检查。对于采购人、采购代理机构和供应商在采购活动中的违法违规行为,依照政府采购法律制度有关规定处理。 /p p    strong 四、保障措施 /strong /p p   (一)加强组织领导。试点地区要高度重视政府采购支持绿色建筑和绿色建材推广试点工作,大胆创新,研究建立有利于推进试点的制度机制。试点地区财政部门、住房和城乡建设部门要共同牵头做好试点工作,及时制定出台本地区试点实施方案,报财政部、住房和城乡建设部备案。试点实施方案印发后,有关部门要按照职责分工加强协调配合,确保试点工作顺利推进。 /p p   (二)做好试点跟踪和评估。试点地区财政部门、住房和城乡建设部门要加强对试点工作的动态跟踪和工作督导,及时协调解决试点中的难点堵点,对试点过程中遇到的关于《基本要求》具体内容、操作执行等方面问题和相关意见建议,要及时向财政部、住房和城乡建设部报告。财政部、住房和城乡建设部将定期组织试点情况评估,试点结束后系统总结各地试点经验和成效,形成政府采购支持绿色建筑和绿色建材推广的全国实施方案。 /p p   (三)加强宣传引导。加强政府采购支持绿色建筑和绿色建材推广政策解读和舆论引导,统一各方思想认识,及时回应社会关切,稳定市场主体预期。通过新闻媒体宣传推广各地的好经验好做法,充分发挥试点示范效应。 /p p   附件:绿色建筑和绿色建材政府采购基本要求(试行) /p p br/ /p
  • 河南发文大力发展新材料,目标产业规模突破1万亿
    近日,河南省人民政府印发《河南省加快制造业“六新”突破实施方案》(下称《方案》),提出把“六新”(新基建、新技术、新材料、新装备、新产品、新业态)突破作为提升战略竞争力的关键举措和重要标志,找准着力点、突破口,开辟发展新领域、新赛道,塑造发展新动能、新优势,加快推进新型工业化。《方案》提到,要大力发展新材料。将新材料作为新兴产业发展的基石和先导,聚焦先进基础材料、关键战略材料、前沿新材料等领域,推动全省新材料产业产品高端化、结构合理化、发展绿色化、体系安全化。到2025年,全省新材料产业规模突破1万亿元,实现从原材料大省向新材料强省转变,为制造强省建设提供有力支撑。《方案》明确,为实现1万亿元新材料产业规模目标,将开展以下三大措施:(一)提质发展先进基础材料1. 先进钢铁材料。推进先进钢铁材料产业精品化、优特化、品质化、特色化发展,大力发展EP防爆钢、超高强钢等高品质特殊钢,重点开发智能制造、轨道交通等领域高端装备用钢,突破发展海洋工程装备和高技术船舶用特种棒线材、板材、管材以及高强度汽车钢等尖端产品,加快发展高端轴承钢、齿轮钢等核心基础零部件用钢,依托河南钢铁集团打造全国一流大型钢铁企业,优化钢铁产业布局,引领先进钢铁材料全产业链提升。2. 先进有色金属材料。推动先进有色金属材料产业延伸高端产品链条,实现从材料向器件、装备跃升。突破铝基复合材料、高端工业型材等关键技术,大力发展新能源、航空航天等领域轻量化高端铝材,推动铝合金向高端精品铝加工延伸。加快发展高精度铜板带、高端铜箔等铜基新材料,推进高端铜基材料在高端装备、新能源汽车等领域应用。推进研发低成本高纯镁提纯精炼、高性能铸造镁合金和镁铝复合材料等制备及精密成型技术,拓展轻量化高强度镁合金在军工、电子信息等领域应用。发展超宽高纯度高密度钨钼溅射靶材、电子功能钨钼新材料及精深加工产品。加强铅锌冶炼伴生有价金属提取、提纯等技术研发应用,提高资源综合利用率。3. 先进化工材料。推进先进化工材料产业向功能化学品、专用化学品、精细化学品发展,延伸发展下游高端产品,实现从关键基础原料到高端化工新材料跨越。大力发展特种尼龙纤维、尼龙切片等尼龙新材料,发展尼龙注塑、聚氨酯精深加工,打造国内领先的尼龙新材料生产研发基地。加快推动可降解材料、生物基材料、先进膜材料、氟基新材料、盐化新材料向终端及制成品方向发展,推动产品迭代升级。4. 先进无机非金属材料。推进先进无机非金属材料向绿色化、功能化、高性能化方向提升,实现从耐材、建材等传统领域向电子信息、航空航天等新兴领域拓展。重点发展芯片制造、油气钻探等领域用复合超硬材料及制品和关键装备,扩大应用领域,打造全球最大的超硬材料研发生产基地。聚焦细分领域,加快发展吸附分离、高效催化分子筛材料,空心玻璃微珠材料,气凝胶材料等先进无机非金属材料,重点发展功能耐火材料、高效隔热材料、氢冶金用关键耐火材料等,积极发展优质浮法玻璃、超薄玻璃等新型玻璃和特种水泥、绝缘及介质陶瓷等新型建材。(二)培育壮大关键战略材料1. 电子功能材料。加快发展半导体、光电功能材料、新型电子元器件材料产业,打造全国新兴先进电子材料基地。加快布局发展氮化镓、碳化硅、磷化铟等半导体材料,开发Micro—LED(微米发光二极管)、OLED(有机发光二极管)用新型发光材料,薄膜电容、聚合物铝电解电容等新型电子元器件材料,电子级高纯试剂和靶材、封装用键合线、电子级保护及结构胶水等工艺辅助及封装材料。加快湿电子化学品、高纯特种气体、高纯金属材料研发和规模化生产。2. 高性能纤维材料。重点研发48K以上大丝束、T1100级碳纤维制备技术,重点发展玄武岩纤维、电子级玻璃纤维等高性能纤维材料,推动碳纤维在汽车制造、航空航天等领域应用,建设国内最大的碳纤维生产基地。重点突破对位芳纶原料高效溶解等关键技术和大容量连续聚合、高速纺丝等制备技术,推动产业链向航空航天、国防军工等领域延伸。重点发展超高分子量聚乙烯板材、薄膜、纤维等制品,拓展在机械制造、医疗器械等领域应用。加快发展光致变色纤维、温感变色纤维等功能化、差别化再生纤维素纤维和差别化氨纶纤维,推动氨纶产业发展壮大。3. 新型动力及储能电池材料。大力发展正负极、电解液、隔膜等金属离子电池材料,布局发展钠离子电池、全(半)固态电池产业。突破发展质子交换膜、膜电极、催化剂和扩散层等氢燃料电池关键材料,建设国家氢燃料电池产业基地。重点发展晶体硅光伏电池材料和化合物薄膜,开发大尺寸单晶硅、多晶硅太阳能硅材料、多晶硅薄膜等,研发新型高效钙钛矿电池材料和铜铟镓硒等薄膜电池材料,打造“硅烷—颗粒硅—单晶硅片—电池片—组件—电站”产业链。4. 生物医用材料。重点研发体外膜肺氧合机用中空纤维膜、CT(电子计算机断层扫描)用弥散强化金属及合金等医疗装备材料,打造一批医疗装备材料生产基地。加快发展用于心血管、人工关节等临床治疗的功能性植/介入医用材料,推动聚乳酸可降解材料在医用领域应用。突破发展医用苯乙烯类热塑性弹性体、生物相容性材料、生物墨水、医用级聚砜/聚醚砜材料等先进材料,推动医疗耗材产业高端化发展。5. 节能降碳环保材料。加快发展基于溶剂、膜材料、金属有机框架等碳捕集材料,重点研发CO2(二氧化碳)合成低碳烯烃、芳烃、醇酯等碳利用技术,加快发展结构装饰一体化保温板材、节能自保温型墙体及材料,推动珍珠岩保温材料、超高保温节能玻璃等产品研发应用。大力发展水污染治理、工业废气处理等领域催化剂材料、混合基质膜、高性能中空纤维膜,加强相关技术研发和产品推广,研发推广有害物质含量低的涂料、油墨等材料,减少有害物质源头使用。(三)抢滩占先前沿新材料1. 纳米材料。积极发展金属、陶瓷、复合材料等领域纳米材料,开发电子级球形纳米材料、稀土纳米材料等产品,前瞻布局发展量子点发光材料、球形氧化铝氮化硼导热材料等先进纳米材料,加快济源纳米材料产业园建设,支持碳纳米管、分子筛等细分领域持续壮大。2. 石墨烯材料。重点发展石墨烯储能器件、功能涂料等特种功能产品,拓展在防腐涂料、触摸屏等领域应用,开发基于石墨烯的散热、传感器材料等,研发规模化制备和微纳结构测量表征等关键技术,开发大型石墨烯薄膜制备设备及计量检测仪器,加快建设一批石墨烯产业基地。3. 增材制造材料。加快发展3D打印专用钛合金、铝合金等金属粉末,开发高性能稳定性光敏树脂、粘结剂、工程塑料与弹性体和碳化硅、氮化硅等陶瓷粉末、片材,研发金属球形粉末、纳米改性球形粉体等材料成形与制备技术,加快培育增材制造材料产业。4. 先进复合材料。大力发展超导复合材料、碳/碳复合材料等,开发高性能碳纤维、硼纤维、碳化硅纤维等增强体和先进树脂、合金、陶瓷等基体材料,开展高熵合金、液态金属等先进合金研究,打造“高性能纤维—先进复合材料—功能部件”产业链。附件:河南省新材料重点事项清单
  • 民航局与南山铝业签订建立民用航空材料检测实验中心合作协议
    2012年9月20日,民航局与南山铝业股份有限公司(以下简称“南山铝业”)在京签订了建立民用航空材料检测实验中心合作协议。该协议旨在支持南山铝业在我国建立高标准、世界一流的民用航空材料检测实验中心,使之具备满足适航管理要求的民用航空材料检测实验能力,为确保民用航空安全、促进我国航空材料产业的科学健康发展服务。   协议提出了期待通过双方合作实现的目标,即南山铝业建立满足国际先进标准的民用航空材料检测实验中心,民用航空材料检测实验中心获得CAAC委任单位代表资格,民用航空材料检测实验中心为民用航空材料适航审定技术和管理研究提供服务。同时,协议也对双方具体的工作内容进行了细分。   据了解,我国民用航空工业发展几经曲折,导致我国航空铝合金材料基础也相对比较薄弱。如今,航空材料已经成为制约我国航空装备发展的一个瓶颈,是决定飞机及其发动机性能、可靠性、寿命和经济性的重要因素之一。   对于我国航空材料的现状,民航局总工程师张红鹰表示,虽然与欧美发达国家相比,我国生产航空铝合金材料的水平相差较远,但随着我国大飞机项目的发展及航空材料、机载设备最终要靠自主研制战略目标的确立,国产航空铝合金材料出现了较为广阔的发展前景。因此,在中国航空发展的征程上,航空材料必须立足国内,自主发展。   张红鹰认为,航空材料的安全可靠是保障民用航空产品安全的基础,检测实验则是判断材料是否符合标准规范的必要手段。满足适航管理规章要求的民用航空材料检测实验能力,必须达到国际认可水平,制定的材料标准规范必须跟国际上普遍采用的相一致,这样生产的航空材料才能够通过严格的适航检查,保证航空器的适航性和先进性。他说,南山铝业有计划也有实力建设一个满足国际先进标准的民用航空材料检测实验中心,局方愿意给予相关政策支持,确保实验中心顺利建成,并建立健全民用航空铝合金适航标准,开展民用航空铝合金检测分析和适航审定工作,为确保民用航空安全、促进我国航空材料产业的科学健康发展服务。   南山铝业作为国内一家知名民营企业,在民用铝合金的研发生产上已具规模。该公司近年来一直有进军航空铝合金产业、为我国大飞机战略目标提供优质材料的强烈意愿和实际行动,民用航空材料检测实验中心就是其发展计划的项目之一。据悉,南山铝业计划投资100多亿元,建设世界级航空工业高端装备制造的材料基地,其中包括航空预拉伸板生产线、高端材料挤压生产线、航空大型模锻件生产线、材料及技术研发中心、材料检测实验中心、航空硬铝合金熔铸和钛合金熔铸等项目。
  • 哈希公司受邀参加2010美国创意设计、绿色建材及水环境(南宁)研讨会
    2010美国创意设计、绿色建材及水环境(南宁)研讨会于7月7日在邕成功召开,本次会议由美国驻广州总领事馆主办,由南宁城乡建设委员会、中国国际贸易促进委员会南宁市支会等四家单位承办。本次会议重要议题是“如何维护清洁水源”。在会上,美国驻广州总领事高来恩介绍了美国治理污水的经验,同时他希望美国企业能为南宁提供最好的水处理系统,以确保有足够的水资源,共同努力解决清洁水源的问题。   参加此次研讨会的有广西环保厅、广西建设厅、南宁建宁水务集团、广西华蓝设计院等几十家单位、近三百位相关领导和技术专家。作为世界水质分析仪器行业的领导者,美国哈希公司受邀参加本次会议,在会上华南区销售经理许锋介绍了哈希公司产品特点,并针对污水处理方案做了重点介绍。赢得了与会者的热烈掌声。此外,哈希公司的新产品引起了大家浓厚兴趣。   当天下午,主办方组织各与会人员代表前往南宁市江南污水厂参观。南宁市江南污水厂(24万吨/天)为世行贷款项目,采用的各种仪器、设备都是国际一流水平。哈希产品就在其中,而且水质分析仪表全部是哈希产品。该厂领导在向大家介绍到哈希仪表时表示非常满意和认可。第二天上午,哈希公司还与有关与会者针对“如何维护清洁水源”等相关问题进行了交流和探讨。
  • 发布赛谱司手持式合金分析仪X-50新品
    概况SciAps X系列 XRF 是专为现场金属材料分析,野外矿物元素分析及土壤重金属分析而研发的一款手持元素分析设备,采用先进的X射线荧光技术,分析速度快,结果准确,操作简单,整体设计适用野外高温,雨淋,多尘等多变的作业环境。与X 系列的其它仪器相比,SciAps 合金分析仪 采用一种新的X射线管及全新的分析方法(专利申请中),该方法将铝合金材料分析的速度又提高了一个档次,且对高温合金和不锈钢等金属的分析性能与其它仪器一样。软件特性特 点:技术先进,分析速度快且精度高X系列XRF 分析仪是美国Don Sackett 博士所带领的团队继 XT, Alpha, Omega, Delta系列XRF元素分析之后的研发第5代手持XRF分析仪器;采用了新进的硬件及软件.体积小,轻便便于携带便携X射线分析仪器的使用者希望新一代的X射线分析仪器更小更轻。将用户的需求和我们数10年积累的XRF知识结合,最轻,最小,最省力,分析速度更快,分析效率更高的手持式X射线分析仪器X系列问世了。重约1.34斤。高清显示技术采用顶新技术5”大显示屏,结果在所有光照条件下都清晰可见质量好,耐用独特不锈钢防护罩,SciAps X 分析仪采用工业级双层探测器保护技术,极大的降低了X分析仪损坏的风险,降低了后期拥有成本。操作简单,兼容性好的操作平台SciAps X 系列分析仪与手机一样运行安卓系统,操作简单,兼容性好,可以通过蓝牙或无线与电脑及打印机连接,分享与打印测试结果。应 用:合金牌号识别快速识别各类合金牌号快速分拣铝合金90%以上的铝合金在2-5秒钟之内就可以识别开来;极大的提高了铝合金的分拣速度及效率。合金元素合规检测X-200 无与伦比的轻元素分析功能,可以快速精确的分析低含量的Mg, Si, Al, P, S, 及其它常规金属元素Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Y, Zr, Nb, Mo, W, Ta, Hf, Re, Au, Pb, Bi, Ru, Pd, Ag, Cd, Sn, Sb。分析镀层元素厚度(选配)客户可以根据公司分析需求选配镀层分析模式创新点:1.首先品牌不同,新款手持式合金光谱仪可以更短时间内看到检测结果 2.仪器重量更轻,更便携 3.设计更符合人体力学,手柄指纹设计,防滑,底座设计,在使用中稳定
  • 足不出“沪”览尽全球顶尖新材料,匠心独“聚”打造材料应用新平台
    p   第十九届中国工博会-新材料产业展(NMIS)将于11月7日-11日在国家会展中心盛大开幕,展会汇聚全球顶尖材料供应商,重点展示十三五规划重点基础材料、关键材料与前沿创新材料,呈现新材料技术的最新研发应用成果,充分利用工博会平台优势,为材料供应商与下游行业用户搭建一个商贸洽谈、技术交流、需求对话与趋势展望的新平台。 /p p   本次展会吸引了一批材料领域顶尖企业参展,包括巴斯夫、亨斯迈、南南铝、上海华谊、上海建材、普利特、花王(中国)、嘉宝莉化工、赫格纳斯、石墨烯产业园、百色百矿、广西碳歌新材料等企业届时均将一一亮相,为专业观众带来企业在轨道交通、汽车、航空航天、建筑工程、航空航天、新能源、信息通信等各行各业的最新产品和应用解决方案。其中,南南铝将在本次展会上展示多个行业多项产品,如航空轻质合金中厚板和薄板、航空航天铝合金锻坯、高速动车组铝材、汽车铝材、船舶铝材、IT铝材、军工产品等。另外全球领先的化学企业巴斯夫也将展示其在生活和工业领域的材料解决方案,带来适用于运动场地的InfinergySP材料、除室内甲醛污染的最新创新技术 Formaldpure& #8482 以及可完全降解的Ecovio塑料,有效地解决厨余垃圾处理和堆肥的难题。更多精彩内容,欢迎莅临展会现场4.2号馆 /p p   现场还将举办新材料新(产)品发布会,发布产品将集中展示国内外新材料技术的最新发展成果,并以石墨烯、汽车轻量化关键材料、环保材料为三大主题于11月8-10日在国家会展中心4.2号馆内展开活动,发布会已吸引了包括百色百矿、普利特、中复神鹰、上海交通大学轻合金精密成型国家工程研究中心等十余家企业及科研机构报名,有兴趣了解这些材料的最新趋势、技术和产品的小伙伴们千万不要错过哦 /p p   不止于此,展会期间,主办方还将于11月8日上午在国家会展中心M3-02会议室举办2017中国工博会新材料产业创新发展国际高峰论坛。本次高峰论坛邀请行业专家与领军企业代表分享包括中国材料试验标准体系建设、中国新材料系统解决方案顶层设计以及材料最新成果及实践应用等行业关注的热点话题。同时现场还将颁发优秀新材料奖、布展设计奖和组织奖等评选活动,以表彰在新材料展中做出贡献的企事业单位。 /p p   这么多精彩活动,尽在11月7-11日国家会展中心4.2号馆,等你来! /p p   扫描下方微信公众号,预约登记,参与现场抽奖活动! /p p style=" text-align: center " img width=" 291" height=" 285" title=" 33.png" style=" width: 221px height: 226px " src=" http://img1.17img.cn/17img/images/201710/noimg/888b604e-e2ff-488c-b89d-982c70b0d036.jpg" / /p
  • 艾克第三代手持光谱分析仪 | 合金模式及技术参数介绍
    艾克(i-CHEQ)第三代手持X射线荧光光谱分析仪——将改变你的材料分析方式!创新再升级!艾克第三代手持式光谱分析仪新品正式发布,从未知到精确,将为您解锁新的可能性。无论您的需求是回收行业还是精密制造行业,只要需要对材料元素的检测,艾克新品—第三代手持式光谱分析仪都是您的不二选择!艾克第三代手持光谱仪应用于金属回收及未知材料、贵重及特种合金等检测,轻巧便携、坚固耐用,人体工学设计,只需轻轻扣动板机,即可进行无损的元素分析,告别高成本、耗时长的实验室检测,让你真正体验到“口袋中的实验室”所带来的便捷。 金属回收及未知材料现场检测和快速分类,1-3秒即可测出合金牌号和成分含量,精度可达0.01%。常规钢材金牌号识别200、300、400、500、600系列不锈钢及模具钢牌号;铝合金牌号鉴定及成份分析,常见的1-7系列铝合金的分析。高温合金牌号识别GH2132、GH4169、GH3128、GH4145、GH3030、GH3039、GH4140、GH3600、GH3625,等系列合金。三元锂电池正极材料检测NCM523、NCM622、NCM811等材料。贵金属检测快速检测:金、银、铂、铑、钯、钌、铱、锇等贵金属。优势及配置:"一键式"开机并检测,减少人为错误操作;一体式供电,超大容量电池,无续航焦虑;智能化体验,结果中英文显示;全息地理信息标注(GPS);高清摄像头,自动对焦;(选配)通过 WiFi,4G/5G、手机热点、USB、蓝牙、APP进行数据及报告输出;5.5寸高分辨率主流电容屏,自动感光清晰可见;Intel 高性能四核处理器,256GB 固态硬盘,DDR内存,Windows 10系统,运行速度碾压同类仪器;1/3机身为轻质铝合金结构,具有优良的防辐射和散热效果;最新 FP 算法,测试速度快,2-3秒内身份等级鉴定;优秀的架构,高低温环境使用无任何差异,舒适的人体工学设计,使用更轻松便捷;无操作待机时自动关机,减轻元器件的消耗;(用户可自定义关机时间)符合IP65标准。技术参数:重量基本重量不超过1.5kg;(带电池)电池10200 mA;尺寸245mm x 86mm x 310mm;(长宽高)激发源大功率高性能X射线管;靶材:5种可选择 金(Au)、银(Ag)、钨(W)、钽(Ta),钯(Pb);电压35kv50KV(电压智能可变)滤波器多种滤波器可选择,根据不同的被检测物自动调节;探测器高灵敏度Si-Pin/SDD探测器;(解析度≦180eV)探测器制冷温度Peltier效应半导体制冷,制冷温度-35℃;标准片外置316标准片/窗口保护盖;处理器Intel 2133MHz高性能四核处理器;操作系统Microsoft Windows 10系统;数据处理256GB,固态硬盘,内存DDR4 4GB;软件模式合金、矿石、土壤、RoHS (按需选择)数据分析搭载专业智能分析软件,具有智能化、速度快、操作简单等优点。整个分析过程仅需数秒便可完成;数据显示精确到百分比(%)显示,光谱或峰强度(计数率)或;数据传输手机4G、共享热点、WiFi与手机APP进行数据传输;显示屏720x1280高分辨率5.5寸主流电容屏,自动感光清晰可见,智能化人机界面;外形设计一体化机身设计,坚固、防水防尘及防冻,有效防震,适应潮湿或低温等野外环境使用;安全操作一触式“扳机”,软件具有自锁和防空测等保护功能;分析元素Mg(镁)、Al(铝)、Si(硅)、P(磷)、S(硫)、Ti(钛)、V(钒)、Cr(铬)、Mn(锰)、Fe(铁)、Co(钴)、Ni(镍)、Cu(铜)、Zn(锌)、Hf(铪)、Ta(钽)、W(钨)、Hg(汞)、Se(硒)、Au(金)、Br(溴)、Pb(铅)、Bi(铋)、Zr(锆)、Nb(铌)、Mo(钼)、Ag(银)、Cd(镉)、Sn(锡)、Sb(锑)、Re(钛)、Ir(依)、Pt(铂)、Ru(钌)、Rh(铑)、Pd(钯)等元素;测试环境条件温度-20~+40℃,湿度<80%RH。售后服务:24/7服务热线;两小时内响应回复;远程在线故障诊断排除;长期备品备件保有库存;新机免费安装及培训;新机15天内包换;(除人为毁坏外)可根据客户需求定制保修期限;新机保修一年,长期维护(含软件升级)
  • 一文看懂不同材料如何使用氧化铝抛光液抛出理想表面!
    铝合金、镁合金、硬钢、软钢、陶瓷涂层,印刷线路板?这么多种类材料的金相样品制备,精细磨抛如何用氧化铝抛光液抛光?只知道一般情况,末道工序要使用0.05μm的氧化铝抛光液。但是需要抛光多长时间呢?加载力是多少N呢?是否需要加水?......。对于刚入行的金相小白,对如何使用氧化铝抛光液抛光还真是一头雾水,有点懵圈......,只有恰当使用氧化铝抛光液抛,才能快速抛光出理想表面!可脉检测小编让您一文看懂,不同材料如何使用氧化铝抛光液抛出理想表面,希望能帮到你。在氧化铝抛光液的家族中,粒度径有0.05μm、0.3μm和1μm等多个粒度径型号,其中0.05μm的使用较多,主要用于金相样品的末尾一道抛光工序,可有效去除微小划痕,理想再现材料的微观组织形貌。依据各种类材料的性质不同,氧化铝抛光液在使用方法上略有差别。小编依据日常实验经验,整理出常见材料制备时的具体使用方法,列表如下:以上是0.05μm氧化铝抛光液,在对不同材料样品抛光时的使用方法,供大家参考。温馨提示:1、抛光过程中,当磨盘相对转数500转以上快速抛光时,则需要添加抛光冷却润滑液或者 水。 添加时,注意流速要慢些再慢些,以确保氧化铝磨料颗粒不被水流冲离抛光布而造成浪费。2、对于易氧化的材料,千万不可加水,换成酒精作为冷却润滑剂是不错的方法。介绍这么多对氧化铝抛光液的使用方法,你看懂了吗?如有疑问可随时联系可脉检测的应用工程师咨询。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制