当前位置: 仪器信息网 > 行业主题 > >

抗病毒感染

仪器信息网抗病毒感染专题为您整合抗病毒感染相关的最新文章,在抗病毒感染专题,您不仅可以免费浏览抗病毒感染的资讯, 同时您还可以浏览抗病毒感染的相关资料、解决方案,参与社区抗病毒感染话题讨论。

抗病毒感染相关的资讯

  • 揭示抗病毒感染本质,军事医学研究院取得重大科研突破
    p   img src=" https://img1.17img.cn/17img/images/201902/uepic/1f580e19-84cb-45d7-bfe6-2c8008729134.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center " / /p p style=" text-align: center " 从左至右依次为:论文第一作者何新华、戴江、黄怡娇,论文通讯作者李涛 br/ /p p   中青在线北京2月22日电(邵龙飞 中国青年报· 中青在线记者 王裴楠)病毒感染因其变异性强、传播迅速等特点成为重大疫情防控的主要挑战,对机体抗病毒机理的深刻认识是应对病毒感染的关键所在,日前,我国科学家在该领域取得重要突破。军事科学院军事医学研究院李涛博士和张学敏院士团队经过近5年潜心研究,成功发现细胞“门神”——环鸟腺苷酸合成酶(cGAS)抵抗病毒感染关键调控机理。这也是新的军事科学院调整组建后,在生命科学基础研究领域取得的重要科研突破之一。 /p p   北京时间2月22日凌晨,国际顶级学术期刊《Cell》(《细胞》)在线发表了相关研究论文。该院戴江博士、博士生黄怡娇以及何新华博士是文章的共同第一作者。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/a2b51919-3e48-4231-ac02-a6b8bf221ffc.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 科研团队成员共同观测分子影像并交流发现 /p p   据了解, strong 当病毒入侵机体时,其自身遗传物质(如DNA等)会不可避免地被带入到宿主细胞中,继而导致机体针对这些外源DNA迅速做出强烈的免疫应答以清除病毒感染,甚至不惜以伤及自身为代价,这是病毒感染导致致死性炎症的主要原因 /strong 。其中, strong DNA感受器cGAS蛋白质在DNA从细胞内部触发免疫和自身免疫反应中起到了关键作用 /strong 。此外,除感受病毒入侵,cGAS的异常激活也是系统性红斑狼疮、AGS综合征等一类自身免疫疾病的关键致病因素。“寻找有效控制cGAS活性的手段并探究其调控机制,对抵抗病毒感染、重大传染病防控及自身免疫疾病的治疗都至关重要。”李涛博士介绍说。 /p p   围绕这个关键科学问题,李涛博士团队和张学敏院士团队展开了联合科研攻关,旨在从cGAS的调控机理研究入手,寻找控制cGAS激活的手段,以期为抗病毒感染和相关疾病的治疗寻找新的突破。经过近5年的深入研究, strong 该团队发现乙酰化修饰是控制cGAS活性的关键分子事件,并揭示了其背后的调控规律 /strong 。在药物设计专家何新华博士的具体参与下,研究人员综合利用生物质谱及色谱分析等技术,并通过特异位点乙酰化抗体等进行生物化学验证,最终发现 strong 乙酰水杨酸(阿司匹林)可以强制cGAS发生乙酰化并抑制cGAS的活性 /strong 。随后,研究人员利用实验动物和AGS病人的细胞进一步验证了他们的发现。 /p p   军事医学研究院院长张士涛介绍说,由于cGAS在疾病发生和治疗中的重要作用,其干预手段一直是国际前沿领域的热点竞争方向,许多国际制药集团和科研团队都在试图寻找cGAS的干预手段。李涛博士和张学敏院士团队从机理研究入手,聚焦前沿、独辟蹊径,挖掘出百年老药阿司匹林可以通过乙酰化作用抑制cGAS激活。该工作不仅揭示了阿司匹林作用于人体的全新靶点和分子机制,还可能为一类目前无药可治的自身免疫疾病提供治疗方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/2243182b-e22d-44bd-a244-cf480c9f05a1.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " 李涛博士与团队科研人员在实验室 /p p   在这一国际竞争激烈的前沿领域取得重要科研成果是军事科学院坚持从实验抓起大力推动科研创新的一个缩影。军事科学院领导表示,该院把抓好科学实验作为打造高水平军事科研机构的关键举措之一,他们系统梳理技术清单,调整资源投向投量,科学确定重点加强科研方向和重点培育科研方向,自主设计重大科研工程,重点抓好科研实验环境建设。目前,仅军事医学研究院就有3个国际组织指定实验室,1个国家重大科技基础设施,3个国家重点实验室。 strong 张学敏院士领衔的团队是“国家自然科学基金创新研究群体”,也是蛋白质组学国家重点实验室、抗毒药物与毒理学国家重点实验室的组成部分。 /strong /p p   今天,人类仍然面临着病毒感染的严重威胁。据悉,人类迄今已经认识的病毒可能仅占自然界病毒种类的1%。因此,如何在源头上掌握应对病毒感染及其所致重大疫情的主动权,是摆在科研人员面前的一项重要而艰巨的任务。张学敏院士说,该工作通过对抗病毒感染本质规律的揭示,使我们未来在应对重大疫情时,不仅对控制已知病毒感染具有手段,还有望对未知病毒感染具备应对能力。 /p
  • 抗病毒药物|打响健康保卫战
    病毒是什么?病毒是一种核酸分子RNA或者DNA或者蛋白质构成,或者仅由蛋白质构成的一个病原微生物。病毒遗传信息量非常小,但他们可以通过其他生命体进行自我复制。一粒小小的病毒进入细胞内,一天中可以产出上千个病毒。根据病毒进化论学说,病毒发展史要远超过人类进化史,人类对病毒的认识只是在近两百年间才有所发展,换而言之,人类对病毒知之甚少,但它于我们无处不在。人类抗病毒战役病毒感染疾病自古以来就是人类健康的重大威胁。迄今为止,人类已经经历过数百种病毒的挑战。1977年,人类在与天花的消灭战中大获全胜,打出了一场漂亮的战役,这也是在人类医疗史上,第一次被人类完全消灭的病毒。2003年的SARS病毒感染和2020年的新冠病毒感染都属于人类历史上严重的突发性公共卫生事件,对我们的生命健康造成了严重的威胁。除此之外,艾滋、流感、疱疹病毒、埃博拉病毒等也会给人们造成一定程度的危害。抗病毒药物抗病毒感染的途径很多,如直接抑制或杀灭病毒、干扰病毒吸附、阻止病毒穿入细胞、抑制病毒生物合成、抑制病毒释放或增强宿主抗病毒能力等。抗病毒药物的作用主要是通过影响病毒复制周期的某个环节而实现的。在我们不断对抗病毒的过程中,抗病毒药物的研发至关重要。因此,仪器信息网将于2021年5月14日举办“抗病毒药物筛选与评价”主题网络研讨会,将邀请多位业内专家做精彩报告,旨在加强学术、技术交流,为广大从事生物制药研发工作的用户搭建一个即时、高效的交流和学习的平台。(点击下方图片,免费参会)
  • 对抗病毒,微孔板检测和成像能够开展哪些工作?
    2020年注定是不平凡的一年,而在每个平凡工作岗位上的我们,总希望能在这个特殊的时期做点什么,哪怕微小的贡献,汇集在一起,一定会成为改变的推动力。所以,小编梳理了一下在抗病毒药物、疫苗研发生产等相关领域的工作中,我们的微孔板检测及成像设备能够开展的实验和项目,希望能够对在攻坚岗位上奋斗的老师们有所帮助。病毒,可以是恶魔,也可以是工具我们都知道,病毒(virus)由一种核酸分子(dna或rna)与蛋白质(protein)构成或仅由蛋白质构成(如朊病毒)的有机形态,它介于生命与非生命之间,超然在五界之外(传统的五界分类法)。这样一种看起来无比“简单而低级”的东西,却在人类历史上留下持续至今挥之不去的阴影,比如ebola,比如hiv,比如,现在全国上下一心对抗的新冠病毒。但是,拥有高级智慧的人类,怎会轻易被这些简单而低级的玩意儿打败?所以,我们有了疫苗,有了抗病毒药物,聪明的人类还利用病毒感染宿主细胞进行自我复制的机制,把恶魔变成工具,应用到人类的生产生活中,比如通过病毒进行花卉育种,利用病毒作为载体进行生物研究、基因治疗等等。所以今天,我们首先分享一些围绕抗病毒药物研发、疫苗生产等相关领域,微孔板检测和成像设备的应用方向,后续我们会为大家继续分享微孔板相关设备在如何“利用”病毒开展生物研究工作。病毒的数量与感染性测定病毒感染哺乳动物细胞后,除了通过rt-pcr的方法,可以通过细胞病变效应、红细胞吸附和免疫标记检查法等评价病毒在细胞中的增殖情况。细胞病变效应(cytopathic effect, cpe),是指病毒在敏感细胞内增殖引起的光镜下可见的细胞病理改变。大多数动物病毒感染敏感细胞培养都能引起其显微表现改变,例如细胞聚集成团肿大圆缩脱落及细胞融合成为多核细胞,细胞内出现包涵体(inclusion body),乃至细胞裂解等,正是因为cpe的表现,我们可以在体外细胞水平评价病毒感染宿主细胞的情况。病毒毒价测定是病毒学相关研究中最基本的技术手段,无论疫苗研发、抗病毒药物评估或者是病毒重组载体构建,均需要在不同环节评定病毒毒价,而目前主要方法包括蚀斑实验、tcid50测定和免疫染色法等。病毒蚀斑实验病毒蚀斑是一种检查和准确滴定病毒感染性的方法。方法:将稀释的病毒悬液加入单层细胞培养瓶中。病毒吸附后,再覆盖一层融化的半固体营养琼脂,使病毒在单层细胞培养中有限扩散。结果是每一个有感染性的病毒在单层细胞中可产生一个局限性的感染灶。用活性染料 (如中性红) 染色,则活细胞着色,受病毒感染而破坏的细胞不着色,形成肉眼可见的蚀斑(plaque)。每个蚀斑是由一个感染性病毒颗粒形成的,称作蚀斑形成单位 (plaque forming unit,pfu)。通常以每毫升病毒液的空斑形成单位既 pfu/ml表示。上图来自武汉大学基础医学院,病毒感染6孔板细胞后形成空斑病灶,使用中性红染色后,通过cytation的4x物镜明场模式对全孔进行拼接成像,软件分析识别孔中的空斑病灶个数。tcid50法tcid50法是测定病毒能使50%的组织培养细胞发生感染的最小量。方法:一般是将病毒悬液作10倍的系列稀释,分别接种细胞,经一定时间后观察cpe、血细胞吸附等指标,以最高稀释度能感染50%细胞的量为终点。最后用统计方法(reed muench法)计算出50%组织细胞感染量( 50%tissue culture infectious dose,tcid50)。免疫染色法空斑实验法或常规tcid50测定滴度依赖于病毒在感染细胞中的复制以及感染周边细胞形成局灶型病变;而免疫染色法只需要病毒感染靶细胞并表达病毒所编码的蛋白。因此,免疫染色法(infectious units per ml, or ifu/ml)测定病毒滴度需要的时间比空斑法(pfu/ml)更短。其中,免疫染色法包括hrp组化或免疫荧光染色等。同样类型方法也适用于表达荧光报告基因的重组病毒的毒价测定。例如,以针对杆状病毒囊膜蛋白gp64的单克隆抗体标记被病毒感染的细胞,然后以hrp-标记的二抗与感染细胞进行染色。通过底物显色,在光学显微镜下计数感染斑点的数量,经过稀释倍数的换算,即可得出病毒的滴度(ifu/ml)。输问题:无论是plaque assays还是tcid50,均涉及较多微孔的细胞计数或阴/阳性孔判断,常规的显微镜观测法,操作不便且对研究者伤害较大。因此biotek为大家提供了更加自动化的解决方法:通过cytation/lionheartfx自动化成像设备进行cpe或者plaque的成像及计数。上图:cytation5自动化成像系统支持明场、彩色明场、荧光场等模式自动化成像检测,并且可选择大视野成像模式,4倍镜一个视野可覆盖384孔板整孔,提高全孔、整板成像的检测速度。上图:两种病毒感染细胞后,通过红色/绿色荧光探针标记的抗体进行免疫荧光染色,采用cytation双荧光通道自动成像,并对病毒感染的细胞病灶进行识别成像。抗病毒药物筛选相关应用
  • 【安捷伦】战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究
    新型冠状病毒疫情牵动着每一个人的神经,自疫情发生以来,政府及时采取措施,全国各地医护人员团结一心,众志成城,在第一线与病毒作斗争。科研、临床、制药等领域人员通力合作,相信我们最终会取得这场战役的胜利。病毒结构简单,必须寄生在活细胞中并以复制的方式增殖,但它又十分狡猾,就像罪犯躲避警察追捕一样,躲避着免疫系统的追捕。因此,只有了解病毒是如何作用于宿主细胞的,人们才能更好地对付它。安捷伦的 Seahorse 能量代谢分析系统,能够实时无标记测量细胞的呼吸作用和糖酵解,从而反映细胞代谢的状态,在病毒学研究领域也有着广泛的应用。下面我们通过三个实例介绍 Seahorse 技术在病毒学研究中的具体应用。流感病毒的研究绝大多数人对流感都不陌生,流感是由流感病毒引起的。美国田纳西大学健康科学中心、圣犹大儿童研究医院的 Smallwood 等人于 2017 年在 Cell Report 上发表文章,阐述了流感病毒感染对宿主细胞的影响[1]。他们用 Seahorse 技术测量发现流感病毒会引起正常人支气管上皮细胞糖酵解和谷氨酰胺分解增加,同时也会使氧消耗增加(图1 ),也就是说,呼吸道细胞的代谢在病毒感染后升高了。这一发现启发了科学家们思考,改变代谢的药物是否可以用来治疗流感?结果与他们的预期相符,他们发现 PI3K/mTOR 的抑制剂 BEZ235 能够减少体内病毒的滴度,增加流感病毒感染小鼠的存活率,并且会逆转病毒感染诱导的宿主细胞的代谢变化。他们的研究为临床治疗提供了新的思路。图 1. 流感病毒感染使正常人支气管上皮细胞的代谢流增加。(A-C) 正常人支气管上皮细胞在Seahorse 24孔板中里培养和分化,然后经过不同的处理:未处理(control),在 MOI 1用活病毒(CA04)或β-propriolactone失活的病毒(BPL)感染 17 个小时,或用 TLR 激动剂(LPS,PolyIC,R848)刺激。(A) ECAR(细胞外酸化速率)。(B)OCR(氧气消耗速率)。(C)PPR(质子产生速率)。登革热病毒的研究登革热是一种蚊媒病毒感染,感染会导致流感样症状,有时还会发展为可能致命的并发症,称为重症登革热。2017 年,美国罗德岛大学的科学家 Barbier 等人发表在 Virology 上的文章表明,登革热病毒感染时,被感染细胞线粒体的长度和呼吸都会增加[2]。其中,对于线粒体呼吸作用的测量作者是用 Seahorse 技术来完成的(图2)。这篇文章表明,登革热病毒感染后会影响宿主细胞线粒体的形态和功能,也提供了这样一种假说,改变线粒体的形态或许可以用来治疗或干预病毒感染。图 2. 登革热病毒感染的细胞线粒体呼吸增加。(A)Seahorse 线粒体压力测试测量未感染和登革热病毒感染 48 小时后(MOI为1)Huh7 细胞的 OCR。(B)线粒体功能的参数,表现为与未感染细胞相比的倍数变化。风疹病毒的研究风疹是一种急性传染病病毒感染,风疹病毒感染通常会引起儿童和成人轻度发烧和皮疹。2018 年发表在 Journal of Virology 上的一篇研究风疹病毒的文章中,德国莱比锡大学的研究人员运用 Seahorse 技术发现风疹病毒感染诱导宿主细胞的生物能量状态转变为更高的氧化和糖酵解的表型(图3)[3]。这一崭新的研究成果揭示细胞代谢的改变是病毒-宿主相互作用过程中的重要一环,代谢表型可以作为病毒感染的生物标志物。图 3. 感染风疹病毒的上皮细胞 Vero 的氧气消耗速率和代谢表型。(A)Seahorse 细胞线粒体压力测试测量对照和感染风疹病毒 72 小时的 Vero 细胞的 OCR。(B)线粒体呼吸作用计算。(C)图 A 获得的数据被用来计算备用储备能力(SRC)和 ATP 产生(ATP prod)。(D)对照和感染风疹病毒 72 小时的 Vero 细胞的代谢表型。(E)对照和感染风疹病毒 72 小时的 Vero 细胞基线条件下 OCR 与 ECAR 的比率。此次新型冠状病毒的大规模感染使得人们重新审视流行病学的防治工作。对于新型病毒来说,短期内很难出现特效药或疫苗。抗病毒药物和疫苗的研制离不开对病毒本身的了解,由于病毒无法脱离宿主细胞而活,因此理解病毒如何作用于宿主细胞至关重要。安捷伦 Seahorse 技术聚焦代谢,能够帮助人们深入理解病毒作用于细胞的机制,为抗病毒药物和疫苗的研发奠定了理论基础。参考文献:1 Smallwood, H. S.et al. TargetingMetabolic Reprogramming by Influenza Infection for Therapeutic Intervention.Cell Rep 19, 1640-1653, doi:10.1016/j.celrep.2017.04.039 (2017).2 Barbier, V., Lang, D., Valois, S.,Rothman, A. L. & Medin, C. L. Dengue virus induces mitochondrial elongationthrough impairment of Drp1-triggered mitochondrial fission. Virology 500,149-160, doi:10.1016/j.virol.2016.10.022 (2017).3 Bilz, N. C. et al. Rubella Viruses ShiftCellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with aStrain-Specific Requirement for Glutamine. J Virol 92, doi:10.1128/JVI.00934-18(2018).推荐阅读:1. 安捷伦细胞分析出版物数据库 https://www.agilent.com/cell-reference-database/?utm_term=&utm_campaign=Agilent%20Seahorse%20October%20XF%20Publications%20Alert&utm= 2. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(一) https://www.agilent.com/zh-cn/rtca2-shaixuan3. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(二) https://www.agilent.com/zh-cn/liushi-yimiao4. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(三) https://www.agilent.com/zh-cn/rtca-cn5. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.agilent.com/zh-cn/hesuan-cn6. 快速测定口罩中的环氧乙烷残留,让医务人员和大家更安心! https://www.agilent.com/zh-cn/kouzhao-cn关注“安捷伦视界”公众号,获取更多资讯。
  • 历经8年,华东师范大学人工合成“抗病毒系统”
    随着全球气候变暖,未来全球将面临更多新发或再发病毒引发的传染病疫情。此前的埃博拉病毒、甲型H1N1流感、寨卡病毒、以及最近的新冠病毒肺炎(COVID-19)疫情,都对全球的经济、公共卫生安全、以及人类健康,产生了巨大冲击。除此类突发病毒外,长期潜伏于机体的病毒,如人类免疫缺陷病毒(HIV)、乙型肝炎病毒(HBV)、人乳头瘤病毒(HPV)以及单纯疱疹病毒1型(HSV-1)等,也因其高传染性和反复发作的特点,较难防治。因此,迫切需要建立针对病毒感染的广谱性抗病毒新策略。但是现有的病毒检测和清除策略均分开独立进行,尚未有集病毒检测和清除为一体的工程化系统。这促使我们设计开发针对病毒的闭环式基因线路,实现体内病毒检测清除一体化、自动化和智能化。历时8年研究,叶海峰课题组研究人员让《生化危机》电影中的病毒终结者ALICE成为现实。灵活、创新、模块化的抗病毒治疗新策略研究团队设计了一组集病毒检测清除于一体的闭环式人造免疫样系统ALICE。该系统成功模拟了人体的抗病毒免疫系统,能够自动感应和破坏入侵的病毒。该系统以感知外源核酸的STING蛋白为接头,连接人工搭建的信号反应网络,同步输出多重抗病毒功能模块(包含抗病毒细胞因子IFN-α和IFN-β、降解病毒核酸的CRISPR-Cas9、抗病毒中和抗体)。当病毒入侵时,ALICE系统能够自动感知,并同步输出抗病毒功能蛋白,发挥抗病毒效果。为了进一步探索ALICE系统的临床应用前景,研究团队选取由单纯疱疹病毒1型(HSV-1)感染引发的疱疹性角膜炎(HSK)小鼠模型,由腺相关病毒(AAV)载体递送ALICE系统至小鼠的眼角膜。实验结果显示:ALICE系统能够成功抑制小鼠角膜、三叉神经节以及大脑中的病毒载量;并且面对病毒的迭代感染,也能发挥良好的抗病毒效果。目前,临床上治疗HSV-1的常用方法是抗病毒药物,如阿昔洛韦(ACV)等核苷类似物,这类药物靶点单一,极易造成耐药毒株的出现。ALICE系统的出现无疑是给抗病毒治疗领域,提供了一种灵活、创新、模块化的抗病毒治疗新策略。能够灵活应用于特定的病原体防控需求模块化设计的闭环式ALICE系统,拥有可更换的检测模块、灵活布线的内源信号网络、多重的输出模块,经由不同的底盘细胞或AAV载体递送,能够灵活应用于特定的病原体防控需求。ALICE技术平台作为人造抗病毒免疫系统,可诱导干扰素表达释放发挥非特异性抗病毒免疫功能,或诱导中和抗体等发挥适应性免疫防御,增强机体的免疫防御体系。研究团队认为,本研究中的各类ALICE系统可作为示例模型,未来很容易适应特定免疫样细胞的设计开发,实现以哺乳动物为目标的潜在病原体的智能感应和清除。杰出校友团队与母校科研合作12月9日,国际知名期刊《自然通讯》刊登了华东师范大学叶海峰研究员团队和杜克-新加坡国立大学医学院王林发院士团队,历时8年在抗病毒免疫领域的最新研究成果“Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice”。据悉,华东师范大学叶海峰研究员和杜克-新加坡国立大学医学院王林发院士为该研究论文的共同通讯作者,华东师范大学博士后王义丹为该研究论文的第一作者。国际顶尖新发传染病领域专家、世界卫生组织顾问委员、华东师范大学校友及荣誉教授王林发院士长期与母校合作,已带出了一批青年教师正在从事相关领域的研究工作。该工作得到南京大学李尔广教授、同济大学王平教授、中科院武汉病毒研究所周鹏研究员及其团队、中科院武汉病毒研究所裴荣娟副研究员及其团队以及杜克-新加坡国立大学医学院王林发教授及其团队的大力支持。该工作也获得了国家自然科学基金国际合作项目、国家重点研发计划“合成生物学”重点专项、上海市科委等的资助。
  • 曹雪涛团队揭示抗病毒免疫应答新型表观遗传机制
    曹雪涛团队揭示抗病毒免疫应答新型表观遗传机制中国工程院院士曹雪涛团队发现,DNA甲基化酶Dnmt3a能使天然免疫细胞针对病毒感染处于一种敏感状态,一旦识别病毒入侵就可以显着产生干扰素和启动抗病毒天然免疫反应,该发现揭示了抗病毒免疫应答新型表观遗传机制,也为病毒感染性疾病防治提出了新的潜在分子靶标。成果近日发表于《自然—免疫学》。树突状细胞与巨噬细胞作为关键性天然免疫细胞,能及时识别病毒入侵并启动有效的天然免疫应答以抵御病毒感染,但为什么天然免疫细胞“天生”具备如此快速应答的抗病毒免疫功能?哪些调控分子决定了天然免疫细胞具备快速免疫应答的功能特征?曹雪涛与浙江大学免疫所博士生李霞、第二军医大学免疫所讲师张迁合作,发现DNA甲基化酶Dnmt3a能促进天然免疫细胞释放I型干扰素以抵御病毒感染。研究表明,Dnmt3a结合在HDAC9远端启动子区并维持该区域的DNA高甲基化,从而拮抗该区域的H3K27me3,促进近端启动子的活化型组蛋白修饰水平以维持HDAC9高表达。高表达的HDAC9进而通过一定机制高效诱导Ⅰ型干扰素产生,启动抗病毒天然免疫反应。该研究揭示了表观遗传调控因子参与构建天然免疫细胞特异性抗病毒功能状态,即DNA甲基化能够通过其非经典功能维持信号转导通路的关键调控分子高表达,从而为天然细胞在病毒入侵时能够及时高效地启动抗病毒免疫反应做好准备。该研究为如何有效抗御病毒感染提供了潜在的药物靶点。
  • 武汉病毒所等揭示靶向病毒RNAi抑制子的抗病毒药物研发新策略
    RNAi是一种在真核生物中高度保守的转录后基因沉默机制,也是一种高效的抗病毒天然免疫机制。当病毒感染宿主细胞后,病毒RNA复制所产生的dsRNA被RNAi通路关键蛋白Dicer识别,并切割成病毒来源的小干扰RNA(vsiRNA),这些vsiRNA进一步组装入RNA诱导的沉默复合物RISC,介导被感染细胞内病毒RNA的降解。同时,许多病毒通过编码病毒RNAi抑制子(Viral Suppressor of RNAi,VSR)来拮抗RNAi抗病毒免疫。2017年,中国科学院武汉病毒研究所/病毒学国家重点实验室研究员周溪团队合作发现,肠道病毒EV71的非结构蛋白3A具有RNAi抑制(VSR)活性,能阻止Dicer对病毒dsRNA切割及vsiRNA产生;而缺失3A-VSR活性的EV71突变病毒能在被感染的哺乳动物细胞与体内产生大量vsiRNA,激发RNAi抗病毒反应,从而证明RNAi作为一种抗病毒免疫在哺乳动物中依然存在,并揭示了一种人类病毒逃逸RNAi免疫的机制【Immunity(《免疫》) 2017】。此外,该团队还发现了黄病毒(登革病毒、乙脑病毒、寨卡病毒等)、SARS-CoV-2、甲病毒、风疹病毒、丙肝病毒等多种重要人类病毒编码的VSR蛋白,并揭示其与宿主RNAi抗病毒通路相互作用的分子机制(Cell Research 2019,Science Advances 2020,Journal of Virology 2020,SCIENCE CHINA Life Sciences 2020,Virologica Sinica 2020,Viruses 2021)。  该科研团队创新性的提出了靶向VSR,从而释放RNAi抗病毒潜能的药物研发概念。研究以肠道病毒EV71为对象,针对其3A蛋白的VSR关键功能区域设计了数种VSR靶向多肽(VSR-targeting peptide,VTP)。这些VTP能与3A蛋白直接结合,通过竞争作用,在EV71感染的细胞中解除3A对RNAi的抑制,诱导大量病毒vsiRNA的产生;这些vsiRNA进而被组装入RISC,介导被感染细胞内EV71 RNA的降解,高效抑制EV71复制。VTP在小鼠体内也能释放RNAi抗病毒反应,产生大量vsiRNA,抑制EV71在小鼠全身各器官的复制,拯救病毒感染导致的小鼠死亡与临床症状。同时,VTP所针对的3A蛋白上的靶点区域在多种肠道病毒的3A蛋白中高度保守,研究还发现VTP能抑制多种肠道病毒的复制,具有广谱抗肠道病毒活性。  该研究首次证实了通过VTP特异性靶向VSR,可以在病毒感染的细胞与体内有效释放RNAi抗病毒免疫,充分证明了RNAi作为哺乳动物抗病毒免疫在生理和功能上的重要性。从抗病毒药物研发上来说,该研究基于新的抗病毒机制发现VSR是一类全新的药物靶标,并针对肠道病毒的VSR研发出机制上first-in-class的候选抗病毒药物,为其他重要病毒的抗病毒药物研发提供了新的思路与策略。此外,针对肠道病毒的VTP具有较低的动物体内毒性与抗原性,较高的热稳定性与蛋白酶稳定性,有望进一步开发为治疗手足口等肠道病毒感染疾病的新型药物。  9月22日,相关研究成果以Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo为题,在线发表在Immunity上。武汉病毒所/病毒学国家重点实验室与复旦大学医学分子病毒学教育部/卫健委重点实验室合作完成这一研究工作。该研究已申请PCT及多个国家的发明专利。
  • 曹雪涛团队提出抗病毒天然免疫表观调控新机制
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/608a3f6e-d4ec-4525-ab7c-ba8259558755.jpg" / /p p   《自然—免疫学》杂志8月29日发表了中国医学科学院院长、中国工程院院士曹雪涛研究团队的论文,报道了RNA解旋酶DDX46能够通过RNA去甲基化修饰导致抗病毒效应分子mRNA核滞留、进而抑制抗病毒天然免疫应答的研究结果。 /p p   干扰素在机体抗病毒天然免疫应答中发挥关键性的作用。在病毒感染过程中,干扰素产生的多少与持续时间受到精确调控,以确保机体清除入侵病毒的同时能避免病理性自身免疫损伤。目前关于干扰素表达精确调控的分子机制研究主要集中在天然免疫信号通路蛋白分子,而以细胞核内RNA修饰的方式调控干扰素表达的机制尚不清楚。 /p p   曹雪涛院士与中国医学科学院基础所博士后郑青亮以及第二军医大学医学免疫学国家重点实验室教授侯晋联合攻关,针对DEAD-box解旋酶(DDX)家族成员在RNA识别和代谢及其在调控抗病毒天然免疫应答中发挥的重要功能,通过筛选多种DDX家族成员在病毒感染巨噬细胞天然免疫应答中的作用,发现了DDX46能显着抑制病毒感染诱导的干扰素表达。 /p p   研究表明,DDX46能结合到抗病毒效应分子mRNA的CCGGUU保守基序上,当病毒感染时DDX46与m6A去甲基化酶ALKBH5结合增加,使得与DDX46结合的抗病毒效应分子mRNA发生去甲基化修饰而导致其核滞留,阻滞了这些抗病毒效应分子的蛋白表达从而降低干扰素产生,最终抑制了抗病毒天然免疫应答反应。 /p p   本研究揭示了RNA解旋酶DDX46在细胞核内通过RNA修饰的新方式参与调控抗病毒天然免疫应答,提出了一种新的天然免疫与炎症调控机制,为病毒感染和炎症性疾病的防治提供了新的潜在靶标与思路。 /p p /p
  • 曹雪涛提出抗病毒天然免疫表观调控新机制
    p   《自然—免疫学》杂志8月29日发表了中国医学科学院院长、中国工程院院士曹雪涛研究团队的论文,报道了RNA解旋酶DDX46能够通过RNA去甲基化修饰导致抗病毒效应分子mRNA核滞留、进而抑制抗病毒天然免疫应答的研究结果。 /p p   干扰素在机体抗病毒天然免疫应答中发挥关键性的作用。在病毒感染过程中,干扰素产生的多少与持续时间受到精确调控,以确保机体清除入侵病毒的同时能避免病理性自身免疫损伤。目前关于干扰素表达精确调控的分子机制研究主要集中在天然免疫信号通路蛋白分子,而以细胞核内RNA修饰的方式调控干扰素表达的机制尚不清楚。 /p p   曹雪涛院士与中国医学科学院基础所博士后郑青亮以及第二军医大学医学免疫学国家重点实验室教授侯晋联合攻关,针对DEAD-box解旋酶(DDX)家族成员在RNA识别和代谢及其在调控抗病毒天然免疫应答中发挥的重要功能,通过筛选多种DDX家族成员在病毒感染巨噬细胞天然免疫应答中的作用,发现了DDX46能显著抑制病毒感染诱导的干扰素表达。 /p p   研究表明,DDX46能结合到抗病毒效应分子mRNA的CCGGUU保守基序上,当病毒感染时DDX46与m6A去甲基化酶ALKBH5结合增加,使得与DDX46结合的抗病毒效应分子mRNA发生去甲基化修饰而导致其核滞留,阻滞了这些抗病毒效应分子的蛋白表达从而降低干扰素产生,最终抑制了抗病毒天然免疫应答反应。 /p p   本研究揭示了RNA解旋酶DDX46在细胞核内通过RNA修饰的新方式参与调控抗病毒天然免疫应答,提出了一种新的天然免疫与炎症调控机制,为病毒感染和炎症性疾病的防治提供了新的潜在靶标与思路。 /p p br/ /p
  • 科学家发现增强干扰素抗病毒效应新分子新机制
    p   中国工程院院士、中国医学科学院院长曹雪涛团队日前发现,甲基转移酶分子SETD2能够显著增强干扰素的抗病毒效应,促进机体抵抗病毒能力,提高干扰素疗法清除乙肝病毒效果。该发现为抗病毒免疫应答效应机制提出了新观点,也为有效防治病毒感染性疾病提供了新思路。相关成果发表于新一期《细胞》杂志。 /p p   干扰素是机体抵抗病毒感染的关键性细胞因子,可通过激活免疫细胞内信号通路而诱导出一系列抗病毒效应分子,从而激活和维持免疫系统抗病毒能力。干扰素是目前临床治疗乙型肝炎的常用药物之一,然而其疗效有限,因此,揭示干扰素抗病毒效应的具体机制以寻找有效防治病毒感染的新型免疫措施具有重要意义。在国家基金委、科技部973项目等资助下,曹雪涛院士与浙江大学医学院免疫学研究所陈坤博士以及第二军医大学医学免疫学国家重点实验室联合攻关,针对表观遗传机制参与免疫应答过程与免疫性疾病发生,而目前尚不清楚表观遗传分子如何调控干扰素抗病毒免疫功能这一重要科学问题,通过高通量RNA干扰筛选体系分析了700余种表观遗传酶分子在干扰素抑制乙肝病毒中的作用,发现了甲基转移酶分子SETD2对于干扰素抑制乙肝病毒复制至关重要。通过制备肝细胞特异性敲除SETD2基因小鼠模型的体内实验,证实SETD2能显著增强干扰素抑制乙肝病毒以及其他多种病毒复制的体内效应。机制研究表明,SETD2分子通过其甲基转移酶活性,直接催化干扰素关键性信号蛋白分子STAT1的第525位赖氨酸发生单甲基化修饰(STAT1-K525me1),从而促进干扰素效应信号的活化,诱导出更高水平的抗病毒蛋白,发挥更强抗病毒效应。 /p p   该研究揭示了甲基转移酶SETD2分子能够直接诱导干扰素信号蛋白分子的甲基化并促进干扰素抗病毒效应的重要功能,表明该发现丰富了人们对于机体抗病毒免疫调控机制的认识也为下一步开展相关研究提供了新思路。鉴于干扰素信号调控异常与炎症性疾病、慢性感染疾病发生发展等密切相关,该研究也为研发抗病毒、抗炎药物提供了潜在靶标,为干扰素临床应用方案的优化提供了新方向。 /p p /p
  • 浅谈广谱抗病毒药物研发的普适性策略(一)
    浅谈广谱抗病毒药物研发的普适性策略徐淑静# ,丁当# ,刘新泳*,展鹏*(山东大学药学院药物化学研究所,化学生物学教育部重点实验室,山东 济南 250012)摘要:病毒感染疾病严重威胁人类生命健康与社会发展。 为应对未来可能暴发的 新发和再现病毒疫情,研发广谱抗病毒药物成为重要且紧迫的研究课题。 本文精 选近年经典案例, 从抗病毒药物研究的共同靶标、共性环节、通用策略以及广谱抗病毒分子等四个主要方面总结了广谱抗病毒药物研发的普适性策略, 期望对当下及未来的抗病毒药物研发提供参考。关键词:病毒;广谱抗病毒药物;抑制剂;药物设计;药物化学艾滋病、乙肝等病毒感染导致的慢性传染性疾病严重危害人类的健康与生命[1-3]。新发病毒在人类历史上不断出现, 已累计造成数千万人死亡。近年来气候变化和全球化都为病毒传播创造了更有利的条件。 与其他微生物相比, 病毒具有极高突变率,使其迅速适应新宿主并对疫苗和抗病毒药物产生耐药性[4-6]。与DNA 病毒相比, RNA 病毒的突变率更高,可以跨种传播感染人类,这导致 RNA 病毒占人畜共患病病毒的 80%以上,是过去20年中重大流行病的罪魁祸首。除了高遗传变异性, RNA 病毒可以通过气溶胶传播,人传人的传播性很高。自 2000 年以来,所有主要的流行病和大流行性暴发都是由 RNA 病毒引起的。例如,甲型H1N1 流感病毒(2009/2010)疫情、埃博拉病毒(Ebola virus,EBOV)疫情(2014—2016)、寨卡病毒(Zikavirus,ZIKV)疫情(2015—)、基孔肯雅热病毒(chikungunya fever ,CHIKF)(2015/2016)及 3 次高致病性冠状病毒(coronavirus,CoV)感染疫情,包括 2002/2003年 SARS-CoV(severe acute respiratory syndrome-CoV)感染导致的非典肺炎疫情、2012 年 MERS-CoV(middle east respiratory syndrome-CoV)感染引起的中东呼吸综合征疫情和2019/2020 年SARS-CoV-2(severe acute respiratory syndrome-CoV 2)感染所造成的新冠肺炎 (corona virus disease 2019 ,COVID- 19)疫情。特别是,CoV引发的瘟疫呈现出越来越频繁的趋势, 由于缺乏疗效确切的特效药物, 给人类社会造成了极大的危害[4]。不容忽视的是,未来随时可能暴发的新型病毒是人类一直面临的巨大威胁,也让全球公共卫生体系面临严峻的挑战。 近期,世界卫生组织(WHO)提出要防御“Disease X”,即由目前未知的病原体(包括 SARS-CoV-2)引起的严重国际大流行的人类疾病(http://www.who.int/blueprint/priority -diseases/en/)。因此,研发广谱、高效的抗病毒备选药物对于应对当前疫情以及将来可能发生的新型病毒感染来说都是十分重要的[7-9]。本文从药物化学的角度, 精选近年经典案例, 从抗病毒药物研究的共同靶标、 共性环节、通用策略以及广谱抗病毒分子等方面总结了广谱抗病毒药物研发的普适性策略,期望对当下及未来的抗病毒药物研发提供参考。1 抗病毒药物研究的共同靶标1.1 合成糖受体 包膜病毒通常在进入细胞之前, 通过聚糖介导的相互作用与宿 主细胞膜上的蛋白质对接。研究者提出了一种通过使用合成糖受体( synthetic carbohydrate receptors ,SCRs)来破坏这些相互作用,进而抑制病毒生命周期来 降低病毒传染性的方法。近期,SCRs 作为高糖基化包膜病毒的有效抑制剂,受到普遍关注。该类分子不但可以抑制病毒侵入,而且可以通过干扰包膜的糖分子, 使病毒暴露于宿主免疫系统中得以清除, 具有双重作用模式[10- 13] 。SCRs 已报道 具有抗 ZIKV、流感病毒和艾滋病毒(human immunodeficiencyvirus,HIV)活性, 有望成为抗登革病毒(denguevirus,DENV)及 SARS-CoV-2 等其他包膜病毒的 广谱抑制剂[14-16]。苯基硼酸作为顺式邻二醇的可逆结合基团, 是糖分子的有效配 体,可作为 SCRs 的关键药效团元素,用于设计广谱抗病毒分子[17]。1.2 靶向病毒膜的广谱抗病毒策略 由于脂质成分对于细胞膜的膜曲率和流动 性至关重要, 因此通过改变(降低或增加)脂质成分有望成为广谱抗病毒策略[18- 20]。例如, 一些阳离子的抗病毒肽(antiviral peptides,AVPs)在高浓度下具有类似洗涤剂的性质,可以导致病毒膜孔的形成及胶束化。多不饱和内质网-靶向脂质体(polyunsaturated endoplasmic reticulum‑targeting liposomes ,PERL)通过耗 竭细胞和病毒膜的胆固醇发挥广谱抗病毒作用;胆固醇耗尽会降低膜的流动性,影响病毒和细胞膜融合所必需的负曲率(图 1)。Figure 1 Broad-spectrum antivirals targeting viral membranes楔子状或倒锥状分子和一些嗜碱性抗病毒肽可以增加病毒膜脂双链的自发正曲率, 提高病毒融合蛋白介导的膜融合所需的能垒。同样,膜靶向 II 型光敏剂在病毒膜平面上产生的单层氧能够氧化不饱和磷脂并诱导病毒膜纳米结构的变化。氧化磷脂的簇合物导致脂质包装的差异化,降低流动性,增加正曲率,增加 分子脂质面积,减小膜的厚度。磷脂特异性抗体可以靶向病毒膜中丰富的特定磷脂家族, 例如磷脂酰丝氨酸, 进而阻止病毒的吸附和侵入。Figure 2 Chemical structures of CLR01 and CLR05大多数致病性病毒病原体都是包膜病毒。“分子钳”是靶向病毒膜的特殊化 合物,该类化合物的发现是受天然的“锁钥模型”的启发[21,22] 。“分子钳”选择性地与病毒包膜的脂筏区域作用,代表性的“分子钳”为 CLR01 和 CLR05(图 2)。CLR01 是赖氨酸和精氨酸特异性的配体,可以破坏 HIV 、EBOV和ZIKV等包膜病毒。CLR01和CLR05 对单纯疱疹病毒(herpes simplex virus ,HSV)、梅斯勒病毒、流感病毒和SARS-CoV-2等具有广谱抑制活性,但对非包膜病毒无效[23-25]。近日,清华大学研究人员从埃及伊蚊肠道内分离出的具有抗蚊媒病毒活性的色素杆菌新菌株 Chromobacterium sp. Beijing 入手,筛选并鉴定了两个对多种包膜病毒(DENV、ZIKV 、SARS-CoV-2、HIV 和 HSV)均有较强抑制作用的抗病毒效应因子 CbAE-1 和 CbAE-2。机制研究表明, CbAE-1 和 CbAE-2 通过其脂酶活性,直接破坏病毒包膜结构导致其失活。同时, CbAE-2 在人类细胞和小鼠上均表现出了较强的安全性,具有作为广谱抗病毒药物的潜力[26]。此外,病毒聚合酶镁离子螯合区域[27]、铁硫簇(iron-sulfur cluster)[28]、锌指结构[29]等也可作为广谱抗病毒药物发现的共性靶标。参考文献见【附件】参考文献 浅谈广谱抗病毒药物研发的普适性策略_徐淑静.docx
  • 武汉病毒所在抗病毒免疫研究方面获得重要突破
    p   6月21日,中国科学院武汉病毒研究所周溪研究员课题组与军事医学科学院微生物流行病研究所秦成峰研究员课题组合作,在抗病毒免疫研究方面取得重要进展,揭示了RNA干扰(RNAi)通路在哺乳动物中具有抗病毒免疫功能。相关研究成果以“Human virus-derived small RNAs can confer antiviral immunity in mammals”(人类病毒来源的小RNA在哺乳动物中产生抗病毒免疫反应)为题发表在Immunity上。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/07f8ce46-d0a4-462c-b5c0-322f70a48b87.jpg" / /p p   RNAi是一种在真核生物中高度保守的转录后基因沉默机制, 并已被公认在真菌, 植物和无脊椎动物中起到关键的抗病毒免疫作用。在RNAi抗病毒过程中, 病毒RNA复制所产生的双链RNA(dsRNA)被宿主Dicer蛋白识别并切割成小干扰RNA(siRNA)。这些病毒衍生的siRNAs(vsiRNAs)被转移到 RNA 诱导沉默复合体 (RISC), 并介导同源病毒RNA的降解,从而达到抗病毒的目的。尽管RNAi在哺乳动物中也保守存在,并被广泛用于生命科学与技术研究,然而,在哺乳动物中,RNAi是否同样能起到抗病毒免疫作用仍不清楚。 /p p   在该研究中,研究者利用人肠道病毒71型(EV71)感染的人类体细胞及小鼠为模型,发现其非结构蛋白3A具有RNAi抑制子(VSR)功能。3A能够通过与病毒dsRNA结合来阻止Dicer对其剪切,抑制vsiRNAs的产生。当3A的VSR活性被缺失,VSR缺陷型EV71病毒能在细胞与小鼠中激发RNAi反应,并产生大量vsiRNAs。这些vsiRNA通过Dicer剪切病毒dsRNA产生、被装配进RISC、并高效的介导同源病毒RNA的降解。在正常的人体细胞和小鼠中,VSR缺陷型病毒的复制被极大的抑制 而在RNAi通路缺失的细胞中,突变病毒的复制得到显著的拯救。同时,研究者们还证明RNAi在哺乳动物中所发挥的抗病毒作用不依赖于干扰素反应。 /p p   该研究在人类体细胞及动物水平发现了病毒感染可以产生具抗病毒功能的vsiRNA,确证了RNAi在哺乳动物中是一条抗病毒天然免疫通路 同时,也揭示了一种人类病毒在逃逸RNAi天然免疫的具体机制。该工作完善了对哺乳动物抗病毒免疫机制的认识,并为该领域的后续研究以及针对该通路的抗病毒药物设计或免疫疗法研究提供了理论基础。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/83124831-da0d-461c-9ddc-1d5837657c0c.jpg" / /p p style=" text-align: left " span style=" color: rgb(153, 153, 153) " br/ /span /p p style=" text-align: center " EV71激发与拮抗RNAi天然免疫 /p
  • 郑慧团队揭示病毒流行期间适当低盐饮食有助于提升抗病毒防御力
    病毒感染一直伴随着人类文明的进程。不仅如此,病毒变异常常使得人们措手不及、难以应对,最终导致病毒大量传播,人们的健康和生命受到严重威胁。因此,研究广谱抗病毒策略是一项十分重要而又艰巨的科学任务。除了期待抗病毒药物和疫苗的发明,人们也非常关注如何改变日常生活习惯来提升抗病毒防御力,从而在病毒流行期间能够有效抵抗病毒的感染。饮食在人们的日常生活中占有举足轻重的地位,那么能否通过改善人们的一日三餐来提升抗病毒免疫力呢?为此,2021年11月15日,苏州大学郑慧教授带领团队在EMBO Reports上发表了文章High Salt Activates p97 to Lower Host Antiviral Ability by Restricting Viperin Protein Induction,深入分析了饮食中盐的含量对于机体抗病毒能力的影响。高盐饮食一直以来被认为是导致高血压和心血管疾病的元凶之一。近来研究表明,高盐与炎症和免疫也存在密切的关联。这些成果为人们理解高盐饮食与疾病的关系做出了重要贡献。有趣的是,郑慧教授团队发现,长期高盐饮食对机体的抗病毒能力影响并不显著。然而,摄入高盐后的短时间内,机体和细胞的抗病毒免疫力被显著抑制。这一结果表明,高盐饮食在一定时间内降低了机体抗病毒免疫力,导致机体在此期间病毒易感性增高,而这种作用在长期高盐饮食习惯中将会被削弱。重要的是,郑慧教授团队进一步发现,在病毒感染期间适当降低饮食中盐的含量,将显著增强机体的抗病毒免疫力。这一发现为人们通过调整食用盐量来增强抗病毒免疫力提供了指导。郑慧教授团队进一步揭示了高盐调控抗病毒免疫力的机理。该研究发现,高盐诱导了内质网相关降解 (ERAD) 蛋白p97发生Lys 663位点的乙酰化修饰。乙酰化活化的p97进而促进了细胞内泛素化蛋白质的降解。这一降解作用显著降低了去泛素化酶USP33的水平。研究进一步发现,USP33是稳定抗病毒蛋白Viperin的关键分子,而Viperin蛋白近来被报道是一个广谱和强大的抗DNA病毒和RNA病毒的蛋白。高盐导致的USP33水平的降低,严重破坏了Viperin蛋白的稳定性,造成机体细胞无法有效产生Viperin蛋白来抵抗病毒感染,最终在很大程度上削弱机体的抗病毒免疫力。重要的是,低盐饮食可抑制p97乙酰化,上调USP33 表达,进而促进病毒感染过程中Viperin蛋白的表达,显著提升了机体的抗病毒免疫力(图1)。图1 高盐调控机体抗病毒免疫力的作用模型这项研究首次揭示了高盐对机体的一种急性损害——抑制抗病毒免疫力。同时,该研究鉴定了高盐调控细胞内的多个信号分子和p97降解通路,以及发现了重要抗病毒蛋白Viperin的一个关键去泛素化酶USP33。综上,该研究促进了人们对于膳食盐量和疾病之间关系的理解,并为人们日常抵抗病毒感染提供了饮食建议。据悉,苏州大学生物医学研究院郑慧教授为本文的通讯作者,该工作主要由袁玉康副教授完成,同时得到郑慧教授团队的多名成员以及苏州大学附属医院的多位专家协助。原文链接:https://www.embopress.org/doi/full/10.15252/embr.202153466
  • 我国科学家发现天然免疫抗病毒反应关键蛋白
    近日,中国科学技术大学生命科学学院、医学中心和中科院天然免疫与慢性疾病重点实验室江维、周荣斌和金腾川研究组与复旦大学丁琛研究组合作,发现一个在天然免疫抗病毒反应中起关键作用的蛋白TRIM65。相关研究成果于2016年12月28日以“TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity”为题,在线发表在生物医学顶级期刊《J Exp Med》上。  在机体抵抗病毒感染过程中,天然免疫抗病毒受体尤其是RIG样受体起着非常关键的作用。他们通过识别病毒复制中产生的RNA,激活下游信号通路,促进机体产生I型感染素,从而抑制病毒复制。MDA5是一种胞内的RIG样受体,在抵抗脑心肌炎病毒和脑脊髓炎病毒等病毒的感染中起重要作用,但是到目前为止其活化和信号转导机制还很不清楚。该研究通过免疫共沉淀/质谱的方法,发现E3泛素连接酶TRIM65与MDA5之间存在特异的相互作用,且抑制TRIM65表达后EMCV病毒诱导的MDA5介导的感染素的产生完全被阻断,说明TRIM65对MDA5的活化和信号转导非常重要。机制研究发现,TRIM65能够介导MDA5的泛素化和多聚化从而促进其活化。利用脑心肌炎病毒感染小鼠模型也发现,TRIM65缺陷后小鼠不能产生感染素且对脑心肌炎病毒敏感性显著增加。该项研究不仅发现了MDA5信号通路中的一个关键蛋白,还为泛素化在MDA5活化中的关键作用提供了确实证据。   本研究得到了基金委、科技部、中科院和中组部的支持。
  • 药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)
    药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)病毒变异vs抗病毒药物病毒是一种以DNA或RNA为遗传物质,无独立营养代谢系统,需寄生于宿主内,进行复制和生存的类生物体。病毒在自然界内与宿主共生的过程中,一些病毒可逃脱宿主免疫防御系统,导致宿主发病致死。病毒遗传物质突变几率非常高,可帮助病毒逃脱不断升级的宿主免疫系统。根据病毒进化论学说,病毒发展史要远超过人类进化史,相比之下,人类对病毒知之甚少。随着分子细胞生物学的发展,目前发现病毒种类7000多种,其中可感染人类的病毒有300多种。病毒感染类疾病占传染类疾病的3/4,严重威胁人类健康。从上个世纪60年代开始,已有广谱类的抗病毒药物出现,但由于病毒突变速度非常快,随后陆续产生病毒耐药性和副作用,导致对病毒类感染疾病无特异性有效药物进行临床治疗。瑞德西韦——人民的希望?2020年伊始,COVID-2019肆虐,开发特异性抗新冠病毒药物迫在眉睫。2月1日《新英格兰杂志》发表论文中,报道美国第一例新冠肺炎患者病情恶化后,经瑞德西韦(Remdesivir/GS-5734)静脉注射同情用药后病情好转[1]。2月6日,瑞德西韦“双盲临床实验”在武汉市金银潭医院、市肺科医院和协和医院等入组761例患者进行临床评价[2]。“人民的希望”——瑞德西韦抗新冠肺炎临床疗效,需等至4月底揭晓谜底。瑞德西韦是由一直致力于抗病毒领域的吉利德科学公司研发(抗流感药物奥司他韦,商品名达菲,最早也由吉利德研发,后卖给罗氏进行全球销售)。2013-2016年(西非)和2018-2019年(刚果)埃博拉病毒肆虐期间,全球各大制药公司掷重金进行抗埃博拉病毒药物研发。由美国陆军传染病医学研究所,吉利德科学公司,美国CDC和波士顿大学医学院四家业内顶级实验室联合进行的瑞德西韦抗埃博拉病毒临床前药效学研究,于2016年发表在《自然》杂志[3]。瑞德西韦分子机制——前药(Prodrug)三磷酸代谢物有效制止RdRp酶活性RNA依赖型RNA聚合酶(RNA-dependent RNA-polymerases, RdRp)为广谱的抗病毒药物开发靶点,目前以RdRp为靶点的抗冠状病毒药物多为核苷类似物或RNA干扰类[4]。瑞德西韦以前药(Prodrug)形式进入细胞后,通过三步转化为三磷酸代谢物NTP,NTP和天然ATP竞争结合病毒RdRp,插入RNA合成链中,引起病毒RNA合成终止,并抑制RdRp酶活性(下图a)[3]。瑞德西韦结构上的1‘-氰基,一方面针对RdRp酶提供更好的针对ATP竞争的结合活性,另一方面针对病毒RdRp酶提供了比人源RNA聚合酶II和人源线粒体RNA聚合酶(h-mtRNAP)更好的选择性抑制。在Hela细胞水平,瑞德西韦对两种埃博拉病毒和另外三种病毒都有显著浓度依赖型抑制(下图c);且在分子水平,瑞德西韦活性分子NTP能选择性抑制病毒RdRp酶活性(下图e蓝色),而对人源RNA聚合酶II(下图e黑色)和线粒体RNA聚合酶(下图e红色)无明显抑制作用[3]。瑞德西韦细胞活性——高效选择性抑制病毒在细胞内复制研究人员又通过进一步的细胞学实验,分别在不同的细胞模型上评价了瑞德西韦(GS-5734)对埃博拉病毒和其他RNA病毒的抗病毒活性。数据显示,瑞德西韦可在五种细胞模型,包括原代巨噬细胞上有效抑制埃博拉活性;并对呼吸道感染病毒,如RSV和MERS,以及出血热感染病毒,如JUNV和LASV病毒有一定抑制作用;但对其他病毒如CHIV,VEEV和HIV-1,无明显抑制(下表)[3]。2019年,在《柳叶刀传染病》杂志报道,美国CDC科研人员建立的Zoanthus绿色荧光蛋白(ZsG)标记的埃博拉病毒体外细胞表型快速评价方法(下图左),再次验证了瑞德西韦可在低浓度抑制两个品系(Ituri/Makona)的埃博拉病毒复制,并对细胞活性无明显影响(下图右)。对Ituri品系埃博拉病毒,EC50为12nm,SI(selectivity index,SI)为303倍;对Makona品系埃博拉病毒,EC50为13nm,SI为279倍[5]。 瑞德西韦体内药效——快速扩散至病灶区,提高模式动物存活率在恒河猴(rhesus monkeys)动物模型上,按10mg/kg计量静脉注射给药后,检测健康恒河猴体内瑞德西韦(下图a黑色) 及其代谢物,丙氨酸代谢物(下图a红色), 单磷酸代谢物Nuc(下图a蓝色)和三磷酸代谢物NTP(下图a绿色),在不同时间点的血药浓度。数据显示瑞德西韦前药在体内两个小时内达到峰值,随后很快被清除;而其三磷酸活性代谢物NTP在体内,特别是外周血单核细胞(PBMCs)内,可在更长的时间内维持高血药浓度。通过同位素14C标记瑞德西韦药物后,进一步研究药物在体内分部发现,药物可快速到达睾丸、附睾、眼睛和脑部(下图b)[3]。通过病毒暴露动物模型实验,瑞德西韦通过静脉注射给药后,可显著提高恒河猴实验动物的存活率,特别是在病毒暴露3天后按10mg/kg计量的给药组,其28天后存活率和空白对照组同样可达100%(下图d),且通过核酸定量方法进一步验证,给药组体内的病毒RNA拷贝数与空白对照组相比得到明显抑制(下图e)[3]。瑞德西韦抗病毒药物机制总结瑞德西韦以RdRp酶为药物靶点,在广谱抗病毒核苷类似物抑制剂中脱颖而出,主要归因于以下三点:1) 对其药物靶点RdRp酶,比其天然底物ATP有更高的竞争亲和性;2)在体外细胞水平,可高效选择性的抑制RNA病毒在细胞内复制,并无明显细胞毒性。3)在体内动物水平,有良好的药代学基础,其活性代谢物NTP可快速扩散至病灶,抑制体内RNA复制,提高病毒暴露后模式动物存活率。试验方法珀金埃尔默仪器&试剂方案RNA聚合酶活性检测[a-32P]-GTP 同位素标记细胞内病毒感染评价高内涵细胞成像表型分析平台Opera/Operetta细胞成像专用微孔板抗病毒药物细胞毒性评价多模式读板仪 EnVision药物组织分布[14C]GS-5734 同位素标记同位素液闪计数仪病毒基因组测序分析自动化NGS文库制备工作站 Sciclone G3抗病毒药物实验设计及仪器&试剂摘录列表[3,5]“工欲善其事,必先利其器”。在以上瑞德西韦抗病毒药物研发实验设计及检测过程中,珀金埃尔默在每一个环节都给一线的科学家们提供了高效的“实验武器”:经典的同位素标记技术,准确分析RdRp活性和药物组织分布;业内金标准EnVision多模式读板仪和高内涵成像表型分析平台Opera/Operetta,快速进行细胞内病毒感染和药物毒性评价;自动化NGS文库制备工作站Sciclone G3,加速病毒基因组快速分析。扫描下方二维码,即可查看珀金埃尔默病毒感染疾病研究整体解决方案。参考文献1.First Case of 2019 Novel Coronavirus in the United States. NEJM Jan 2020.2.http://www.wuhan.gov.cn/2019_web/whyw/202002/t20200207_304511.html3.Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.NatureMarch 2016.4.Coronaviruses — drug discovery and therapeutic options. NATURE REVIEWS DRUG DISCOVERY May 20165.Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. The Lancet Infectious Diseases July 2019
  • 浅谈广谱抗病毒药物研发的普适性策略(二)
    上一期,主要介绍了抗病毒药物研究的共同靶标相关内容,本文将继续从抗病毒药物研究的共性环节、 抗病毒药物研究的通用策略方面进行阐述与探讨。2 抗病毒药物研究的共性环节2.1 靶向病毒膜融合过程 在包膜病毒的复制周期中,需要病毒和细胞膜融合才能进入细胞。病毒通过受体识别以及膜融合或内吞等步骤进入靶细胞是首要环节。 在该过程中, 介导病毒与细胞受体识别的病毒表面蛋白(surface protein,SP)的 受体结合亚基、介导膜融合的病毒 SP 跨膜亚基、细胞上的受体、切割 SP 所需 的宿主细胞蛋白酶等均是常见的抗病毒靶点[30]。CoV 是 I 型包膜病毒,位于包膜表面的 S 蛋白介导病毒入侵宿主细胞过程,包括受体结合及膜融合等步骤。在膜融合的过程中,形成六螺旋束(six-helix bundle,6-HB)是一个非常保守且关键的机制。目前发现感染人的冠状病毒(HCoV) 中,其 HR1 (heptad repeat- 1)三聚体与 HR2 (heptad repeat-2)作用的表面氨基 酸大都为保守的疏水性氨基酸,因此 HR1 是 CoV S 蛋白上非常保守的药物靶点[30]。2018 年,姜世勃与刘克良团队发现靶向病毒融合蛋白的α-螺旋脂肽具有广 谱抗 MERS-CoV(EC50 = 0.11 μmol L-1 ,CC50 100 μmol L- 1 )及甲型流感病 毒(influenza A virus,IAV)活性(H1N1 EC50 = 1.73 μmol L- 1,CC50 100 μmol L-1)[31] 。近日,复旦大学姜世勃/陆路团队与上海科技大学杨贝/Wilson 团队合作, 通过系统地筛选与结构修饰,发现了能够广谱抑制多种 HCoV 感染的多肽类融 合抑制剂 EK1 及脂肽 EK1C4,并揭示了其作用靶点与分子机制[32,33] 。该研究同时证明了 CoV 刺突蛋白的 HR1 区域是一个重要且保守的药物靶点, 为后续广谱抗 HCoVs 药物研发提供了思路。2.2 核酸复制 病毒进入靶细胞后, 病毒基因组 DNA/RNA 被释放到细胞中, 作 为模板指导病毒蛋白的合成。 RNA 病毒的基因组复制需要 RNA 依赖的 RNA 或 DNA 聚合酶(RNA-dependent RNA polymerase ,RdRp ;RNA-dependent DNA polymerase,RdDp),这类酶在人体中不存在且相对保守,成为抗病毒药物研发 的重要靶点。不同病毒聚合酶的结构和功能有许多相似之处,因此针对某一种病 毒聚合酶设计的抑制剂往往对其他病毒也有较好的抑制作用[34,35]。自从 1962 年世界第一个抗病毒药物碘苷被批准上市以来,全球已有众多抗病毒核苷类似物药物获批上市。 在病毒疫情暴发时, 核苷类药物往往成为人们的首选。 早在 2014 年西非暴发的大规模 EBOV 疫情中,部分核苷类似物药物在临床阶段均表现出一定的抗病毒活性——例如日本富山化学的新型抗流感药物法匹拉韦(favipiravir)以及瑞德西韦(remdesivir,图 3),特别是瑞德西韦目前已经完成 EBOV 的试验药物 III 期临床试验。随着研究的深入, 瑞德西韦被发现具有广谱抗病毒活性, 涵盖丝状病毒科病毒(EBOV 和马尔堡病毒等) 、沙粒病毒科病毒(拉沙病毒和胡宁病毒等)、 CoV 科病毒(SARS 、MERS 和猫科冠状病 毒等)和黄病毒科病毒(ZIKV 等) 等,因此也成为了治疗 SARS-CoV-2 的首个 小分子药物[36]。阿兹夫定(azvudine ,FNC,图 3)具有抑制 HIV 、丙型肝炎病毒(hepatitis C virus ,HCV)、肠道病毒 71 型等 RNA 病毒复制的功能,2021 年 7 月, 已在 中国上市用于治疗高病毒载量的成年 HIV- 1 感染者。此外, 阿兹夫定在新冠肺炎 临床研究中也取得显著效果[37]。瑞德西韦进入临床研究后,其抗病毒效果与预期有一定差距,原因可能是: 疾病的病程及动物模型与人体药动学差异、药物之间的相互作用和个体差异。 此 外, CoV 特有的“复制矫正”(proofreading)机制,即将掺入 RNA 产物链的核 苷药物“剔除”,进而逃逸核苷类抗病毒药物的抑制, 可能是此类抗病毒药物效 果不佳的一个重要原因[38]。近日,美国乔治亚州立大学的研究人员报道了一种抑制呼吸道合胞病毒 (respiratory syncytial virus,RSV)、相关 RNA 病毒和 SARS-CoV-2 的广谱抗病 毒核苷分子——4' -氟尿啶(4' -FlU,EIDD-2749,图3),它在细胞和分化良好的 人气道上皮中具有高选择性指数。RSV 和 SARS-CoV-2 体外 RdRp 聚合酶抑制显 示掺入后 i 或 i+3/4 位出现转录暂停。每日一次的口服治疗对 RSV 感染的小鼠或SARS-CoV-2 感染的雪貂非常有效[39]。EIDD- 1931(即NHC,图3),是一种核苷酸类似物。 NHC 上的肟形式模仿 尿苷, 与腺苷匹配, 而另一个互变异构体模仿胞苷, 与鸟苷匹配。它的原理是通 过给病毒 RNA 引入大量的突变,“瘫痪”病毒的基因组,进而导致遗传信 息大量错误使病毒无法存活[40-45]。目前仅有 NHC 及其衍生物能够躲避病毒复制 矫正机制的干扰。 在体外模型中,NHC 对 RSV、流感病毒、CHIKF、EBOV、委内瑞拉马脑炎病毒、东部马脑炎病毒、MERS-CoV、SARS-CoV 以及 SARS-CoV- 2(多数变异毒株)等具有广谱抗病毒活性,无明显细胞毒性[46-48];但在食蟹猕 猴中口服生物利用度较差。 EIDD-2801(molnupiravir,图 3)是 NHC 的异丙 酯前体药物,旨在改善 NHC 体内药代动力学以及在人类和非人类灵长类动物的 口服生物利用度。Molnupiravir 在雪貂和非人类灵长类动物中具有较好的口服 生物利用度。对感染流感病毒的雪貂进行 molnupiravir 口服治疗,可将大流行 流感和季节性甲型流感的病毒载量降低数个数量级, 并可减轻发热、呼吸道上皮 组织病变和炎症[39,49] 。Molnupiravir 使轻 中度新冠肺炎患者的住院率或死亡风险降低了约 50% 。2021 年 11 月 4 日, 英国药品和保健产品监管局(MHRA)已在英国批准 molnupiravir 上市,用于治疗重症和住院风险较高的轻至中度新冠肺炎成人患者( http:// www.21jingji.com/article/20211104/herald/f0b15254b2fcc17b70b26b839e32b1c6.html)。除了 molnupiravir 之外,法匹拉韦也可以掺入到病毒 RNA 链,诱发病毒的基因组突变, 并通过累积这种突变,导致病毒失活或失去感染能力[50]。总之, 靶向病毒最为保守的 RdRp 是一种开发广谱抗病毒药物非常有前景的策略。 目前处于临床研究阶段的多个新冠病毒 RdRp 抑制剂类药物结构差异较大,靶向 RdRp 影响病毒复制的机制也不尽相同,特别需要从结构生物学角度解析抑制剂与 RdRp 复合物结构,明确作用机制,为精准开发高效特异的、以 RdRp 为靶标的广谱抗病毒药物提供理论基础。2.3 核糖体移码 (ribosomal frameshifting) 在正常细胞内,核糖体(ribosome) 以 3 个碱基为单位(即密码子codon)由 5 到 3 端单向、连续地读取 mRNA 中的 遗传信息, 合成蛋白质[51]。由于体积的限制, 病毒的基因组通常较小, 所携带的 遗传信息较少。 包括 SARS-CoV-2 在内的各种 RNA 病毒在复制过程中会利用一 些特殊的机制调控病毒基因表达,扩展其所携带遗传信息的利用率, 其中一种常 用的机制是称为程序性“移码”的蛋白质合成重编码机制(programmed ribosomal frameshifting,PRF)[52-54]。即核糖体不遵循常规读取 3 个字母的步骤, 而是会漏 掉一两个 RNA 字母。核糖体发生的这种错位被称为“移码”,会导致核糖体错误读取遗传密码。例如, SARS-CoV-2 严重依赖其 RNA 折叠引起的“移码”来 合成蛋白[52-54]。理论上, 任何通过靶向 RNA 折叠来抑制“移码”的化合物都可能作为一种 治疗感染的药物。 “移码”现象在人类自身基因的表达中极为罕见, 因此靶向读 码框“移码”是一个可行的抗病毒策略。研究者通过运用荧光蛋白报告基因系统联合高通量筛选技术, 鉴定出了一个可以高效抑制读码框“移码”的小分子化合物美拉沙星(merafloxacin,图 4),它能在细胞水平(Vero E6 细胞)显著抑制 SARS-CoV-2 复制[55] 。美拉沙星抑制读码框“移码”的机制尚不清楚,可能直接作用于核糖体与病毒 RNA 的结合,或者抑制内源性调控蛋白。近期, Ahn 等[56]从9689 个小分子中发现了一种新型的呋喃[2,3-b]喹啉类化合物 KCB261770(图 4),它能够抑制 MERS-CoV 的“移码”和细胞水平 MERS-CoV 的复制。此外,该化合物还能抑制 SARS-CoV 和 SARS-CoV-2 的“移码”,具有广谱抗病毒活性。3 抗病毒药物研究的通用策略3.1 细胞纳米“海绵” SARS-CoV-2 的细胞结合和进入是由其刺突糖蛋白(S 蛋 白)介导的, S 蛋白不仅与人类血管紧张素转换酶 2(angiotensin convertingenzyme II,ACE2)受体结合, 还与肝素等糖胺聚糖结合。 近期研究发现细胞膜包被的纳 米颗粒(细胞纳米“海绵”)模拟宿主细胞,通过自然的细胞受体吸引和中和 SARS-CoV-2 ,可作为一种广谱抗病毒策略,还发现增加细胞纳米海绵表面肝素密度可以提高抗 SARS-CoV-2 作用[57]。3.2 抗体募集/杀死细胞 2009 年, 研究者设计了一种新的小分子 ARM-H,有可 能通过两种机制抑制 HIV:①通过招募抗体到 gp120 表达病毒颗粒和受感染的人 类细胞, 从而增强其吸收和人类免疫系统的破坏; ②通过结合病毒糖蛋白 gp120, 抑制其与人 CD4 结合和防止病毒进入。研究人员通过实验证明了 ARM-H 能够 同时结合 gp120 和抗 2,4-二硝基苯抗体(DNP ,存在于人血液中) [58]。抗体、 ARM-H 和 gp120 之间形成的三元复合物具有免疫活性,导致补体介导的表达 env 细胞的破坏。此外, ARM-H 可以阻止病毒进入人类 T 细胞, 因此应该能够通过两种相互强化的机制(抑制病毒进入和抗体介导的杀伤) 来抑制病毒复制。这些研究表明, 通过抗体招募的小分子具有可行的抗艾滋病毒活性, 并有可能启动 HIV 治疗的新范式。2020 年,Low 团队通过将神经氨酸酶抑制剂扎那米韦与高免疫原性半抗原2,4-二硝基苯(DNP)结合, 设计并合成了一种双功能小分子, DNP 专门针对游离病毒和病毒感染细胞的表面。该类分子抑制病毒释放的同时, 通过免疫介导清除游离病毒和病毒感染的细胞,对感染 100 倍 MLD50 病毒的小鼠进行鼻内或腹腔注射单剂量药物,可以根除 A 型和 B 型流感毒株的晚期感染[59]。近期研究发现, 抗生素分子 concanamycin A 可让免疫系统杀死被 HIV 感染的人体细胞[60]。DDX3 抑制剂可以让 HIV- 1 感染的细胞选择性死亡,进而耗竭病毒潜伏库[61] ,为根治艾滋病提供了新思路。3.3 多价结合——靶向病毒表面的非特异作用 细胞表面的糖链是细菌、病毒、 免疫细胞的接触点。病毒进入宿主细胞的过程涉及与不同细胞表面受体稳定但短 暂的多价相互作用。几种病毒的最初接触始于在细胞表面附着硫酸肝素蛋白聚糖, 最终导致病毒进入。已经开发出的广谱抗病毒药物如肝素或类肝素材料模拟细胞 表面糖负责最初的病毒附着, 如硫酸乙酰肝素(heparan sulfate)。高磺化金纳米 粒子具有广谱杀病毒性能。然而, 由于未知的清除机制和潜在的长期毒性是金纳 米颗粒成药性的不利因素。环糊精(cyclodextrins,CDs)是天然的葡萄糖衍生物, 具有一种刚性的环状结构,由α(1-4)连接的吡喃葡萄糖组成。磺化环糊精对HIV 具有可逆及特异的抑制活性。最近,英国曼彻斯特大学研究小组对天然葡萄糖衍生物环糊精进行磺化修饰 开发出了一种能够破坏病毒的外壳且对耐药性病毒也有效的新的广谱抗病毒分 子,其有望治疗 HSV 、RSV 、HCV 、HIV 和 ZIKV 等多种病毒感染[62]。基于多价相互作用的抗病毒药物,如柔性纳米凝胶,通过干扰病毒颗粒和阻 断与细胞受体的初始相互作用已经成为广谱抗病毒药物研究的有效策略。负电荷多硫酸盐可以结合 SARS-CoV-2 受体结合区域( receptor binding domain,RBD)上的正电荷斑块(patches),阻止病毒与宿主细胞相互作用进而 抑制感染。 与肝素相比, 合成的线型聚甘油硫酸酯(linear polyglycerol sulfate , 图 5)的抗病毒活性更高,且抗凝血活性较低[63]。巨大球状多价糖富勒烯、糖基化碳纳米管能抑制 EBOV、ZIKV 和 DENV 的 感染, 活性可达皮摩尔水平[64-66]。多价唾液化(sialylated)聚甘油对甲型流感毒 株(含耐药株)具有广谱抑制活性[67]。3.4 基于拓扑匹配的药物设计 IAV 颗粒表面均匀分布血凝素和神经氨酸酶。近 期,Nie 等[68]运用拓扑匹配(topology-matching design)的药物设计理念, 设计了 一种纳米颗粒抑制剂(纳米抑制剂, 图 6A), 它与 IAV 病毒粒子的纳米拓扑结 构匹配,对血凝素和神经氨酸酶具有多价抑制作用, 可以在细胞外中和病毒颗粒, 阻断其附着和进入宿主细胞。病毒复制显著减少了 6 个数量级, 即使在感染24 h 后使用, 仍能达到 99.999%以上的抑制作用。 2020 年, 该团队用类似的思路, 发现了与 IAV 表面空间匹配的尖峰纳米抑制剂(spiky nanoinhibitor,图 6B),峰 值在 5~10 nm 之间的纳米结构与病毒粒子的结合明显优于平滑的纳米粒子,获 得的红细胞膜(erythrocytemembrane,EM)包覆的纳米结构可以有效地阻止 IAV 病毒粒子与细胞的结合, 并抑制随后的感染。 EM 包覆的纳米结构在细胞无毒剂 量下降低了99.9%的病毒复制[69]。2021 年,该课题组运用拓扑匹配设计理念,基于宿主红细胞膜设计了与病 毒状球面相匹配的碗状纳米结构(“纳米碗”,heteromultivalent nanobowl,Hetero- MNB,图 6C),可作为广谱病毒进入抑制剂。与传统的同多价抑制剂不同, 该 类异多价抑制剂由于协同多价效应和拓扑匹配的形状,其半最大抑制浓度为 32.4 ± 13.7 μg mL- 1 。在不引起细胞毒性的剂量下,可减少99.99%的病毒传播。由 于在 SARS-CoV-2 的 S 蛋白上也发现了多个结合位点, 因此, 异多价纳米结构有 望为开发一种有效的预防 CoV 感染提供新思路[70]。3.5 靶向病毒核酸 病毒 RNA 会折叠成复杂的 RNA 结构,在病毒的生命过程调 控中起重要作用,为开发抗病毒疗法的靶标提供了新的机会。很多研究已经发现 多种病毒的非编码区 RNA 结构可以调控病毒的翻译、复制以及稳定性,它们通常在相关病毒中高度保守[71-73] 。例如,黄病毒中 5' UTR 和 3' UTR 之间的分子内 RNA-RNA 相互作用促进基因组环化并帮助协调复制;HCV 5' UTR 内部核糖体 进入位点的结构对于翻译至关重要;并且 ZIKV 和其他黄病毒的 3' UTR 中的多 假性结构已显示出使 RNA 外切核酸酶 Xrn1 失速,从而产生了亚基因组黄病毒 RNA,有助于病毒逃避细胞抗病毒过程[74,75]。需要指出的是,与蛋白质类药物靶标相比, RNA 结构的动态性与复杂性为药物筛选增加了困难, 往往需要借助于高通量筛选。例如, SARS-CoV-2 的 RNA基因组含有 15 个独立的 RNA 调节元件。 研究者通过基于 NMR 的片段筛选, 从含有 768 个小分子的片段库中发现了 SARS-CoV-2 的 RNA 配体[76]。近日,新加坡科学家使用多种 RNA 分子结构探测方法以及 RNA-RNA 相互作用分析技术, 解析了 SARS-CoV-2 基因组 RNA 的二级结构信息和病毒-宿主之间的 RNA 相互作用;同时发现在 SARS-CoV-2 基因组 RNA 上广泛存在 2' -O- 甲基化修饰, 推测可能有助于新冠病毒逃避宿主免疫攻击,揭示病毒逃避宿主免疫的潜在机制[77]。G- 四链体是由 G-quartet 层叠而形成的 DNA 或 RNA 四链构象, 是最重要的非典型核酸二级结构之一, 因其独特的构象、重要的基因功能和生物学意义而备受关注,是很有前途的药物靶点[78]。中国科学院长春应用化学研究所曲晓刚团队使用多种生物物理技术和分子生物学技术,发现 SARS-CoV-2 基因组中存在 G-四链体结构 RNA ,证实 SARS-CoV-2 中的富 G 序列(位于 SARS-CoV-2 核衣壳 磷酸化蛋白 N 编码序列区域)可以在活细胞中折叠成稳定的单分子 RNA G- 四 链体结构。该 G- 四链体 RNA 可以被 G- 四链体特异结合配体 PDP(图 7)等识别 并稳定,进而影响 G- 四链体 RNA 的生物功能。因此,该 G- 四链体可能是抗 SARS- CoV-2 药物新靶点[79]3.6 超分子配位化学 病毒基因组的未翻译区域(the untranslatedregions,UTR) 包含多种保守和动态结构,这些功能性的 RNA 结构对病毒复制至关重要,为广 谱抗病毒研发提供了药物靶点。 然而, 计算机对接筛选对于具有内在柔性特征的 RNA 结构仍存在较大挑战。 研究者将体外 RNA 分析与分子动力学模拟相结合, 构建 SARS-CoV-2 基因组 5' UTR 关键区域结构和动力学的3D 模型,进而确定了 圆柱形金属超分子螺旋([Ni2L3]4+ 、[Fe2L3]4+)对这种 RNA 结构的约束。这些纳 米尺寸的金属超分子螺旋分子可以与核酸结合,并且在细胞水平具有抗 SARS- CoV-2 等病毒复制作用[80,81]。3.7 核糖核酸酶靶向嵌合体 核糖核酸酶靶向嵌合体( ribonuclease targeting chimeras,RIBOTACs)是降解 RNA 的新策略, RIBOTACs 基于小分子选择性结 合 RNA(特别是形成复杂的二级和三级结构的RNA), 进而激活核糖核酸酶 L(ribonuclease L,RNase L)。RNase L 是一种在脊椎动物细胞中广泛表达、具有单链 RNA 内切活性的蛋白质。该技术已被用于靶向 SARS-CoV-2 的 RNA 基因组,抑制 RNA 的移码,并且募集细胞核糖核酸酶彻底杀死 SARS-CoV-2。该策略有望用于抗其他病毒药物研发[82]。3.8 反义核酸技术 反义核酸(antisense oligonucleotides)可以序列特异性地与靶 标 RNA 结合,实现高效的寻靶和抑制活性。近期,北京大学的研究人员构建了 一类靶向 SARS-CoV-2 包膜蛋白 RNA(E-RNA)和刺突蛋白 RNA(S-RNA)的 单链嵌合反义寡聚核苷酸, 通过在 2' 甲氧基修饰的反义核酸序列 5' 端缀合 RNase L 招募基团 2-5A,可实现有效的病毒 RNA 降解并抑制病毒增殖[83]3.9 核酸适配体技术 核酸适配体(nucleic acid aptamers)是一小段经体外筛选 得到的寡核苷酸序列(单链 DNA 或 RNA 分子),能与相应的配体进行高亲和 力和强特异性的结合[84] 。适配体已经在抗病毒药物开发方面 (含 SARS-CoV-2) 展现出巨大的潜力[85-87]。3.10 基于蛋白自组装的配体发现 动态组合化学( dynamic combinatorial chemistry,DCC)融合了组合化学和分子自组装过程两个领域的特点, 开辟了使 用相对较小的库组装很多的物质的途径, 而不必单独合成每一个物质。早在 2003 年,研究者通过基于点击化学的蛋白模板诱导片段组装, 发现了高活性的 HIV 蛋 白酶抑制剂[88]。2008 年,研究者通过动态连接筛选(dynamic link screening,DLS) 开发了一种潜在的抗 SARS 药物,其亲核片段通过与醛抑制剂的可逆反应将亲核 片段指向蛋白质的活性位点。它们的抑制作用可以通过与荧光酶底物的竞争检测 到。有了这一概念, 与活性位点特异性结合的低亲和力片段在功能酶分析中迅速 被识别出来[89]。2021 年,基于 Knoevenagel 反应的蛋白模板诱导片段组装策略用 于 Enterovirus D68 蛋白酶抑制剂的发现[90]。总之,动态组合化学在抗病毒药物 发现领域仍具有广阔的前景。参考文献,点击查看《浅谈广谱抗病毒药物研发的普适性策略(一)》文末。
  • 战"役"主题讲座|“抗病毒药物/疫苗研发筛选与评价”会议视频回放
    p style=" text-align: left line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 当前,新冠肺炎疫情在全球持续蔓延,截至今天,全球已有近30万人确诊感染,尽快开发针对新型冠状病毒的治疗方法和治疗药物以及疫苗是当务之急,意义重大。然而,不同于细菌,病毒由于没有独立细胞结构,不需要依赖其他宿主细胞,广谱抗生素对其无效,只能靠抑制病毒复制来对付它。因此,抗病毒药物研发难度大,当前急需快速检测和评价抗病毒药物/疫苗的方法。 /p p style=" text-align: left line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 为此,仪器信息网于2020年3月17日举办了“抗病毒药物/疫苗快速筛选与评价方法”主题网络研讨会,共邀请到8位业内专家做精彩报告,以期助力疫情平复。会议共吸引近500位来自科研院所、药企、政府单位、检测机构的人员前来参会。为方便用户回顾报告内容,小编特此整理视频回放集锦,点击报告名称即可观看视频。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 杨振军(北京大学): /strong a style=" color: rgb(255, 0, 0) text-decoration: underline " href=" https://www.instrument.com.cn//webinar/video_112029.html" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 《于功能(寡)核苷酸的新冠肺炎治疗药物与检测剂研发》 /strong /span /a /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 基于通行修饰策略并结合课题组的突破性核酸递送系统,研发功能寡核苷酸(反义核酸、siRNA)、环二核苷酸及核苷酸类的有效精准治疗药物可能为 SARS-CoV-2感染患者的治疗方案提供更有效的选择,也可能会开发出更高效、更精确的临床所亟需的核酸适配体类病毒检测试剂盒,为此类药物和诊断制剂的临床应用奠定基础,助力未来各类疫情的防控。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 钱志康(中国科学院上海巴斯德研究所): a href=" https://www.instrument.com.cn//webinar/video_112031.html" target=" _blank" span style=" color: rgb(255, 0, 0) " 《针对新发病毒研发疫苗的机遇和挑战》 /span /a /strong /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 报告中总结出新冠病毒感染以下特点:1、病毒滴度在感染早起(就诊第一次检测)达到峰值;2、很大比例的轻症和不小比例的无症状感染者;3、儿童感染多为轻症且长时间排毒;4、康复出院者存在复阳性;唾液、尿液、粪便中存在病毒,因此认为该病毒可能会长期与人共存。药物和抗体是打赢这场防疫战的希望,如疫苗研发成功,或有希望消灭病毒。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 黄永东(中科院过程工程研究所): /strong a href=" https://www.instrument.com.cn//webinar/video_112035.html" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 《病毒颗粒样(VLP)疫苗分离纯化工艺设计与开发》 /strong /span /a /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 病毒颗粒样(VLP)疫苗具有分子量大、颗粒尺寸大、结构复杂、稳定性差等特点,同时活性与其结构完整性密切相关,给其分析检测和分离纯化带来极大的挑战。开发表征疫苗结构完整性和结构变化的分析技术,研究疫苗结构变化规律和稳定策略,指导疫苗分离介质设计和分离纯化工艺开发,建立高效的疫苗纯化工艺。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 刘旸(贝克曼库尔特): a href=" https://www.instrument.com.cn//webinar/video_112030.html" target=" _blank" span style=" color: rgb(255, 0, 0) " 《新冠病毒疫情下的新药研发-自动化为新药筛选提速》 /span /a /strong /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 随着新冠状病毒的发展,抗新冠状病毒的药物研发迫在眉睫。传统新药开发,历时长,花费巨额资金,使得很多制药公司望而却步。随着科学技术的发展,自动化逐渐代替人的手工操作,不仅给我们带来准确数据,也使得实验时间大大缩短。特别是在药物筛选阶段,自动化更是可以实现大量样品的同时筛选。加速新药开发步伐。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 肖志良(SCIEX)& nbsp & nbsp : /strong a style=" color: rgb(255, 0, 0) text-decoration: underline " href=" https://www.instrument.com.cn//webinar/video_112034.html" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 《SCIEX液质联用技术在抗病毒药物研发中的应用》 /strong /span /a /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 目前新冠病毒肆虐,新型抗病毒药物/疫苗的开发迫在眉睫。从整个抗病毒药物的生命周期来看,液质联用技术在药物的发现以及开发阶段均发挥着不可替代的作用。本次报告将从抗病毒药物靶点发现、新药高通量筛选、亲和力筛选、药代动力学研究四个层面介绍液质联用技术在抗病毒药物研发中的应用。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 张坤 (赛默飞世尔科技):& nbsp /strong a href=" https://www.instrument.com.cn//webinar/video_112033.html" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 《冷冻电镜技术在病毒研究中的应用》 /strong /span /a /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 近年来,冷冻电镜技术的发展使冷冻电镜单颗粒而分析技术成为解析病毒形态及组装策略的重要手段,并逐步被应用于基于结构的药物和疫苗开发。另外,日益发展的冷冻断层成像技术可提供病毒复制、组装和成熟过程更多见解,为研究病毒诱发的疾病机制提供更为广阔的前景。本次报告,我们将介绍冷冻电镜技术进展,及其在病毒学研究和相应药物开发领域的最新应用。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 常青(Luminex公司): /strong a href=" https://www.instrument.com.cn//webinar/video_112032.html" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 《高通量流式细胞术在抗病毒疫苗研发中的应用》 /span /strong /a /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 面对埃博拉、新冠等新发的病毒性疾病,明晰病毒感染的病理机制,进一步通过疫苗进行预防控制、发现有效药物及时治疗,建立快速有效的预防和治疗体系既是当务之急,也是长久之计。流式细胞技术在病毒颗粒检测、疫苗效价评估、免疫细胞亚群及免疫反应分析等流程中是必不可少的方法之一。 此次我们将为您介绍利用高通量多色流式细胞仪提高抗病毒疫苗/药物研发效率的最新应用。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " & nbsp /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10488" target=" _blank" img width=" 550" height=" 120" title=" 抗病毒药物.jpg" style=" width: 550px height: 120px max-height: 100% max-width: 100% " alt=" 抗病毒药物.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/30e1ad49-8591-4983-b931-82d803ebf040.jpg" border=" 0" vspace=" 0" / /a /p p style=" text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10488" target=" _blank" 抗病毒药物会议回放视频集锦 /a /p
  • Science:一滴血检测病毒感染史
    霍华德休斯医学研究所(HHMI)的研究人员开发了一项新的技术,使人们有可能通过一滴血来检测目前和曾经任何已知人类病毒的感染情况。这个方法称为VirScan,是一种有效的测试病毒感染的替代诊断方法。文章发表在最新一期的Science杂志上。   VirScan工作原理是筛查血液中存在的针对任何206种已知感染人类的病毒的抗体。我们的免疫系统在检测到病毒首次入侵的时候,会产生病原体特异性抗体,即使病毒感染清除后,它仍然可以继续生产那些抗体持续几年或几十年。所以说VirScan不仅能识别免疫系统正在积极应对的病毒感染,而且还提供了个人过去的感染史。      Elledge和他的同事合成了超过93000个病毒编码蛋白的DNA短片段。他们将这些DNA片段插入细菌感染病毒&mdash &mdash 噬菌体中。每个噬菌体生产相应的蛋白质肽单位,并会将肽表露在其表面外壳上。这些噬菌体将1000多种人类病毒中发现的所有蛋白质序列都表露了出来。血液中的抗体通过识别嵌在病毒表面抗原决定簇,找到病毒目标。为了执行VirScan分析,所有的被改造过表露一定肽的噬菌体被混合到血液样品中。血液中的病毒抗体发现并结合特定的病毒抗原决定簇上(这个抗原决定簇是在改造表达的肽结构内)。然后,科学家提取抗体,洗去除了少数结合在抗体上的噬菌体以外的其他物质。通过测序这些噬菌体的DNA,便可以识别哪些病毒肽片段能被血样中的抗体识别结合。这便告诉我们到底一个人的免疫系统以前遇到过那些病毒,无论是通过感染还是通过接种疫苗。 Elledge估计需要大约2-3天处理100个样本,假设在测序工作保持在最佳状态。   为了测试方法的可行性,研究人员使用它来分析从已知感染了病毒(特别包括HIV和丙肝)患者那得到的血样。事实证明,它的检测很准确。准确度保持在95%至100%,而且特异性灵敏&mdash &mdash 对于没有感染的个人,并未得到错误地识别。因此研究人员表示相信它的真实性。   Elledge和他的同事们用VirScan分析569个来自四个国家的个人的抗体,检查了大约1亿的潜在抗体/抗原决定簇的相互作用。他们发现,平均每个人有针对十个不同病毒的抗体。正如预期的,抗某些病毒更常见于成年人而非儿童,这表明孩子尚未暴露于这些病毒中。位于南非、秘鲁、泰国的个人,多半在美国的个人有抗更多病毒的抗体。研究人员还发现,艾滋病病毒感染者有比非HIV感染者存在更多的抗病毒抗体。   Elledge说,这个方法其实不限于对抗体的检测。他们正在用它来寻找那些攻击人体自身的组织并与癌症相关的某些自身免疫性疾病的抗体。类似的方法也可用于筛选其它类型的病原体抗体。   借助VirScan,科学家可以通过运行一个测试就能确定哪些病毒感染了个体,而不受限于必须对特定病毒进行分析。这种中立的方法可以有助于发现影响个体健康的意外因素,同时也增加了分析比较大量人口病毒感染情况的可能。这个全面的病毒分析大约耗费25美元/每血样。
  • 《新型冠状病毒感染诊疗方案(试行第十版)》发布 增加抗原检测阳性为诊断标准
    为进一步做好新型冠状病毒感染医疗救治工作,切实提高规范化、同质化诊疗水平,国家卫生健康委会同国家中医药管理局,根据新冠病毒感染乙类乙管及疫情防控措施优化调整相关要求,结合奥密克戎变异毒株特点和感染者疾病特征,组织对《新型冠状病毒肺炎诊疗方案(试行第九版)》进行了修订,形成了《新型冠状病毒感染诊疗方案(试行第十版)》。重点修订内容如下:一、对疾病名称进行了调整根据国务院联防联控机制综合组《关于对新型冠状病毒感染实施“乙类乙管”的总体方案》,将疾病名称由“新型冠状病毒肺炎”更名为“新型冠状病毒感染”。主要考虑,疫情早期新冠病毒致病力较强,临床上大部分有肺炎表现。随着新冠病毒不断变异,奥密克戎毒株成为主要流行株后,病毒致病力减弱,感染人体主要表现为咳嗽、发热、咽痛等,仅有少部分感染者会进展为肺炎。因此,“新冠病毒感染”能够更加准确地反映疾病特征。二、不再判定“疑似病例”随着诊断手段的日益丰富和诊断效率的不断提高,目前新冠病毒感染已可通过核酸和抗原检测等实现及时、快速、准确诊断。绝大多数情况下,不会出现因流行病学史、临床表现符合疾病特点但病原学检测较长时间不能明确的情况。因此,为进一步提高临床诊疗效率,更好实现快速收治,十版方案不再判定“疑似病例”。三、增加新冠病毒抗原检测阳性作为诊断标准抗原检测对于病毒载量较高的感染者具有较好的检测灵敏性。随着抗原检测技术的不断成熟和检测准确性的不断提高,新冠病毒感染者特别是传染性较强的感染者,能够通过抗原检测得到及时诊断。且考虑到多数感染者居家治疗,抗原检测操作简便,方便感染者进行快速自我检测。因此,十版诊疗方案在诊断标准中增加了“新冠病毒抗原检测阳性”。四、进一步优化“临床分型”从疾病临床表现来看,普通型一般代表了疾病最常见的典型表现。新冠病毒早期致病力较强,相当数量感染者出现典型的肺炎表现,因此,在临床分型上采用了“轻型、普通型、重型、危重型”的分类方式。随着病毒不断变异,特别是奥密克戎毒株流行以来,病毒致病力逐渐减弱,疾病特点发生了明显变化,大多数感染者症状较轻,发生肺炎的比例大幅降低。为更好体现疾病特点,十版方案对临床分型进行了调整,主要根据感染者病情严重程度,分为“轻型、中型、重型、危重型”,更加符合临床实际。五、不再要求病例“集中隔离收治”随着乙类乙管措施的实施,新冠病毒感染者可根据病情救治需要选择居家治疗或到医疗机构就诊,各类医疗机构均可收治新冠病毒感染者。为此,十版方案因时因势调整收治策略,不再要求病例集中隔离收治。六、进一步完善了治疗方法一是将我国已经批准上市的抗新冠病毒治疗药物纳入新版诊疗方案,进一步丰富抗病毒治疗手段。二是进一步完善了重型、危重型病例诊断标准和预警指标,对新冠病毒感染重症病例进行科学准确判定,同时将未全程接种疫苗的老年人加入重症高危人群,将生命体征监测特别是静息和活动后的指氧饱和度监测指标等加入重症早期预警指标。三是进一步强化新冠病毒感染与基础疾病共治理念,强调要加强感染者基础疾病相关指标监测,并针对基础疾病给予相应治疗,更加有利于促进患者全面恢复健康。四是进一步优化了儿童病例临床表现和救治相关内容,结合临床实际提出了儿童感染奥密克戎毒株的特点,完善了儿童重型病例早期预期预警指标,对儿童感染者可能出现的急性喉炎、神经系统并发症等特殊情况提供了治疗方案。五是进一步完善了中医治疗相关内容。加强了对重型、危重型病例中医药救治指导,增加随症用药方法,更加贴合临床。在此基础上,进一步完善儿童病例中医药治疗方案,增加针灸治疗方法,结合部分患者恢复期咳嗽明显等情况,提供了相应的中医治疗措施。七、调整“出院标准”新冠病毒感染乙类乙管措施实行后,不再强化对感染者的隔离管理,而是可按乙类传染病予以诊断治疗。为此,十版方案不再对感染者出院时核酸检测结果提出要求,而是由临床医生根据患者新冠病毒感染、基础疾病或其他疾病诊疗及健康恢复状况等进行综合研判。当患者病情明显好转,生命体征平稳,体温正常超过24小时,肺部影像学显示急性渗出性病变明显改善,可以转为口服药物治疗,没有需要进一步处理的并发症等情况时,可考虑出院。八、调整医疗机构内感染预防与控制疫情防控政策调整后,所有医疗机构都有接诊新冠病毒感染病例的可能,我们在十版诊疗方案中对医疗机构内感染预防与控制有关内容进行了调整,使感染防控措施更加科学精准,更具针对性、可操作性。一是进一步落实门急诊预检分诊制度,做好患者分流。同时,指导就诊患者和陪同人员佩戴医用外科口罩或医用防护口罩,提供手卫生、呼吸道卫生和咳嗽礼仪指导。二是加强诊室、病房、办公室和值班室等区域清洁消毒和通风。三是根据暴露风险落实医务人员个人防护要求。四是规范处理医疗废物,落实患者转出或离院后的终末消毒。附相关资料:最新:新型冠状病毒感染诊疗方案(试行第十版)附件:新型冠状病毒感染诊疗方案(试行第十版).pdf
  • Nature子刊!曹雪涛院士课题组揭示病毒感染导致干扰素失能新机制
    p   在国家自然科学基金基础科学研究中心项目、中国医学科学院医学与健康科技创新工程等基金的资助下,中国医学科学院曹雪涛院士与刘硕博士、姜明红副教授等利用高内涵筛选体系,对E3泛素连接酶RNF家族分子在I型干扰素抗病毒天然免疫应答反应中的调控作用进行了筛选,发现RNF家族的多个分子能够参与调控抗病毒天然免疫,其中E3泛素连接酶分子RNF2能够显著抑制干扰素的抗病毒功能。 /p p   干扰素刺激靶细胞后,通过激活转录因子STAT1,诱导一系列干扰素刺激基因的表达而发挥抗病毒免疫功能。研究发现,病毒感染可触发RNF2与STAT1的DNA结合功能域相互作用,促进STAT1第379位赖氨酸发生K33连接的多聚泛素化修饰,从而促使STAT1从其结合的DNA上解离,最终降低了下游的干扰素刺激基因的表达。体内实验表明,髓系细胞特异性缺陷RNF2小鼠对多种病毒感染的抵抗能力增强并伴随抗病毒干扰素刺激基因的表达增加,从而证实了RNF2确实具有抑制干扰素抗病毒效应的作用。 /p p   该研究结果揭示了病毒感染可以通过调动RNF2分子,诱导干扰素发挥抗病毒功能的重要转录因子STAT1发生一种新型的K33多聚泛素化修饰,抑制转录因子STAT1发挥作用进而抑制干扰素抗病毒功能。这一发现深化了抗病毒天然免疫调控机制的认识,对病毒感染及相关的炎症性疾病等的治疗及药物研发提供了新的潜在靶点。 /p p /p
  • 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(一)
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 2020年新年伊始,武汉新型冠状病毒感染肺炎的疫情牵动着社会各界的心。在本次疫情爆发之际,安捷伦有幸向中科院武汉病毒研究所和中国疾病预防控制中心病毒病所捐赠xCELLigence RTCA系统。协助两家国家重点病毒科研单位用于病毒CPE(细胞病变效应),抗病毒药物和疫苗的研究,集中力量,快速突破,攻克技术难关,遏制病毒蔓延。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/202002/uepic/c322699d-d7ae-4d84-8ddf-2276c56dfb44.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" vspace=" 0" height=" 450" border=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em " 安捷伦技术支持王颖在受捐单位国家病毒病所仪器培训后和老师合影 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " xCELLigence RTCA实时细胞分析检测技术可满足研究人员尽可能少地接触病毒,并可以做到无需研究人员值守的病毒研究任务。有效保证研究过程中相关人员的安全,且不耽误研究进程,从而协助攻关专家,助力病毒研究。 br/ xCELLigence RTCA 实时细胞分析技术是一种独特的活细胞检测技术。该技术可实现无标记和持续性的跟踪记录病毒感染细胞过程中CPE的进展,为多种病毒学检测提供异常简易的实验流程,包括但不限于:病毒滴度测定、疫苗研发、中和抗体的检测与定量和抗病毒药物的开发等。& nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 367px " src=" https://img1.17img.cn/17img/images/202002/uepic/72ae799b-ea8c-46a0-b32c-c35a5354f48e.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" vspace=" 0" height=" 367" border=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 一、病毒CPE和滴度研究 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 美国加利福尼亚大学疾病研究中心的Reisen及其同事使用xCELLigence RTCA测定了西尼罗河病毒(WNV)和圣路易斯脑炎病毒(SLEV)的病毒滴度。未感染的对照细胞正常生长至汇合,并维持稳定的细胞指数。感染病毒的细胞显示出时间和剂量依赖性的细胞指数降低,表明细胞被感染后已完全裂解死亡(下图A和B的上图)。两种病毒均表现出CPE动力学,该动力学与病毒的已知效价相关。通过绘制CIT50(细胞指数降低50%所需的时间)与病毒滴度的曲线,可以突出显示这一点(下图A和B的下图)。使用这种类型的标准曲线,可以轻松确定未知浓度样品中的病毒滴度。& nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 391px " src=" https://img1.17img.cn/17img/images/202002/uepic/6c665f66-765c-4c77-977d-a74e3bfbf7b8.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" vspace=" 0" height=" 391" border=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 图A和图B.& nbsp 使用xCELLigence RTCA确定病毒滴度。& nbsp 实时检测不同浓度WNV(图A上)和SLEV(图B上)诱导的Vero细胞的CPE细胞病变效应。水平线表示细胞指数已降至其初始值的50%(即在添加病毒之前)的点。达到这一点所需的时间称为“ CIT50”。通过CIT50与病毒浓度的关系绘制成一条标准曲线,可用于确定各种类型样品中的病毒浓度。数据摘自参考文献1。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 二、疫苗研发及中和抗体检测和定量研究 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 法国Sanofi Pasteur研究所使用xCELLigence& nbsp RTCA进行登革热病毒CPE和疫苗研发的研究。研究人员先将Vero细胞接种到E-Plate孔板中,再加入不同稀释滴度的登革热病毒或者不同处理组的病毒。他们利用xCELLigence& nbsp RTCA系统实时追踪记录病毒CPE的发作时间,以及整个过程。同时,通过绘制CITmed(细胞指数降低50%所需的时间)与抗体滴度的标准曲线,量化了阻断病毒CPE的中和抗体浓度。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 359px " src=" https://img1.17img.cn/17img/images/202002/uepic/4867c125-795b-4439-8d78-348c9aabcfb5.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" vspace=" 0" height=" 359" border=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 图A. 登革热病毒感染后的细胞实时检测结果。xCELLigence RTCA实时检测被感染细胞与未感染的对照Vero细胞的生长曲线,被登革热病毒感染的Vero细胞的生长曲线呈现处明显的差异。同步使用成像法捕获Vero细胞倍登革热病毒感染后的生长状体。数据摘自参考文献3。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 图a、图b和图c. 经典CCID50(cell culture infectious dose 50%)病毒滴度检测法与RTCA病毒滴度检测法的相关性。a)RTCA检测不同浓度病毒感染后的Vero细胞的生长曲线;b)通过病毒浓度梯度与CITmed间的关系绘制出标准曲线;c)& nbsp 使用135个不同的登革热病毒样品,由不同技术人员在八个月内进行评估,比较使用RTCA方法和CCID50方法获得的病毒浓度的相关性。数据摘自参考文献3。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong span style=" text-indent: 2em " 三、抗病毒药物的研究 /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" text-indent: 2em " 苏黎世分子生命科学研究所的Urs Greber及其同事要确定一种可以减轻腺病毒对感染患者影响的药物。他们在筛选试验中使用了xCELLigence RTCA系统,在不同候选药物存在的情况下,用人腺病毒感染Hela细胞。他们发现其中最有效的是黄酮哌啶醇,一种已知能抑制细胞周期依赖性激酶Cdk9的半合成类黄酮化合物。如下图A所示,在没有药物的情况下,腺病毒感染细胞后会诱导CPE发作,阻抗信号降低至零(红色曲线)。但是,黄酮哌啶醇以剂量依赖性方式能够显著延迟或阻断病毒CPE的发作(蓝色和橙色曲线)。这些基于阻抗检测的结果同时通过显微镜分析也得到了证实(下图B)。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 339px " src=" https://img1.17img.cn/17img/images/202002/uepic/e4bfb7cc-95de-431c-b74a-87fcb6b77dae.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 600" vspace=" 0" height=" 339" border=" 0" / /p p style=" text-align: center" br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 图A和图B.& nbsp 监测黄酮哌啶醇的抗病毒活性。HeLa细胞接种约50小时后,在不同浓度的黄酮哌啶醇存在下,使用人腺病毒株C5感染细胞(图A)。黄酮哌啶醇对腺病毒具有广泛的保护作用。同步进行成像实验,使用人腺病毒D37感染WI38肺成纤维细胞,四小时后加入或不加入黄酮哌啶醇。在48小时后,可以清楚地看到该药物已经阻止了细胞病变的发生。数据摘自参考文献3。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 四、杀病毒剂研究 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 杀病毒剂可通过灭活固体表面(例如台面,门把手、手掌等)或液体悬浮液中存在的病毒来防止感染。比勒陀利亚大学的Venter及其同事使用xCELLigence RTCA系统用于评估杀病毒剂的功效。他们将市售的杀病毒剂与具有传染性的法氏囊病病毒(IBDV)孵育20分钟,再将该病毒连续稀释,并添加到预先接种Vero细胞的E-Plate孔板中。如下图所示,未经处理的病毒会引起细胞病变效应CPE,CPE的发作时间取决于病毒滴度,而使用杀病毒剂对IBDV预处理会后可以大大降低其感染能力。尽管结果显示10倍稀释的病毒依然可以诱导CPE,但是100倍或更大稀释倍数的IBDV对Vero细胞完全没有影响(图B)。通过大量实验研究,他们认为:“xCELLigence RTCA系统测定杀病毒剂功效的方法与传统杀病毒剂测定法所得结果完全一致,而且该方法可以更简洁快速,更精确地测定杀病毒剂的功效和及其自身的细胞毒性。” /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/60fb8ab1-6076-4766-b228-b79741008c3b.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 图A和图B.& nbsp 使用杀病毒剂保护Vero细胞免受IBDV侵害。未用杀病毒剂预处理(图A)或使用杀病毒剂预处理(图B)的IBDV感染的Vero细胞。暴露于杀病毒剂后,只有最浓的病毒溶液仍然能够诱导CPE(细胞病变作用)。病毒浓度表示为稀释倍数(即101=10倍稀释,102=100倍稀释等)。数据摘自参考文献4。 /p p style=" text-indent: 2em " strong 关于安捷伦 /strong /p p style=" text-indent: 2em " 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有50多年的敏锐洞察与创新经验,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。2019财年,安捷伦营业收入为56.1亿美元,全球员工数约为16,300人。 /p p style=" text-indent: 2em " strong 关于安捷伦生物 /strong br/ /p p style=" text-indent: 2em " 安捷伦生物—原艾森生物,是生命科学研究高性能细胞分析平台的开发和商业化先驱。xCELLigence实时细胞分析技术和NovoCyte、Quanteon流式细胞仪广泛运用于新药研发、免疫治疗、疫苗研发、毒理学、安全药理学、质控和基础生命科学研究,目前,在全球范围内已安装3000多台仪器,并有2000多篇经同行专家评审的高水平学术文献中被引用。 /p
  • 国务院联防联控机制印发方案 对新冠病毒感染实施“乙类乙管”
    关于印发对新型冠状病毒感染实施“乙类乙管”总体方案的通知联防联控机制综发〔2022〕144号各省、自治区、直辖市及新疆生产建设兵团应对新型冠状病毒感染疫情联防联控机制(领导小组、指挥部),国务院应对新型冠状病毒感染疫情联防联控机制各成员单位:为贯彻落实党中央、国务院决策部署,平稳有序实施新型冠状病毒感染“乙类乙管”,国务院应对新型冠状病毒感染疫情联防联控机制综合组制定了《关于对新型冠状病毒感染实施“乙类乙管”的总体方案》。现印发给你们,请认真组织实施。各地各部门在执行过程中如有相关建议,请及时反馈机制综合组。国务院应对新型冠状病毒感染疫情联防联控机制综合组 2022年12月26日(信息公开形式:主动公开)关于对新型冠状病毒感染实施“乙类乙管”的总体方案为贯彻落实党中央、国务院决策部署,高效统筹新型冠状病毒感染疫情防控和经济社会发展,稳妥有序将新型冠状病毒感染从“乙类甲管”调整为“乙类乙管”,有力有序有效应对调整后可能出现的风险,依据《中华人民共和国传染病防治法》,制定本方案。一、制定背景新型冠状病毒感染疫情发生以来,以习近平同志为核心的党中央高度重视疫情防控,全面加强对防控工作的集中统一领导,明确了疫情防控的体制机制、策略原则、目标任务、工作要求,为打赢疫情防控的人民战争、总体战、阻击战和做好常态化疫情防控工作提供了根本遵循和科学指引。我国的疫情防控始终坚持人民至上、生命至上,各地区各部门密切协作、履职尽责,因时因势动态优化调整防控措施,不断提高科学精准防控水平。14亿人民同心抗疫、坚韧奉献,有效应对全球先后五波疫情流行冲击,成功避免了致病力相对较强的原始株、德尔塔变异株的广泛流行,极大减少了重症和死亡,也为疫苗、药物的研发应用以及医疗等资源的准备赢得了宝贵的时间。我国疫情流行和病亡数保持在全球最低水平,人民健康水平稳步提升,统筹经济发展和疫情防控取得世界上最好的成果,有力彰显负责任大国担当,创造了人类同疾病斗争史上的防控奇迹。当前,随着病毒变异、疫情变化、疫苗接种普及和防控经验积累,我国新型冠状病毒感染疫情防控面临新形势新任务,防控工作进入新阶段。从病毒变异情况看,国内外专家普遍认为病毒变异大方向是更低致病性、更趋向于上呼吸道感染和更短潜伏期,新冠病毒将在自然界长期存在,其致病力较早期明显下降,所致疾病将逐步演化为一种常见的呼吸道传染病。从疫情形势看,奥密克戎变异株已成为全球流行优势毒株,虽然感染人数多,但无症状感染者和轻型病例占比超过90%,重症率和病亡率极低。从我国防控基础看,我国目前累计接种新冠病毒疫苗超过34亿剂次,3岁以上人群全程接种率超过90%;国内外特异性抗病毒药物研发取得进展,我国筛选出“三药三方”等临床有效方药;广大医疗卫生人员积累了丰富的疫情防控和处置经验,防治能力显著提升。综合评估病毒变异、疫情形势和我国防控基础等因素,我国已具备将新型冠状病毒感染由“乙类甲管”调整为“乙类乙管”的基本条件。二、总体要求(一)指导原则。以习近平新时代中国特色社会主义思想为指导,充分发挥制度优势,坚持人民至上、生命至上,坚持科学防治、精准施策,完善应对准备,调整防控措施,统一规则、分类指导、防范风险,平稳有序实施“乙类乙管”。(二)工作目标。围绕“保健康、防重症”,采取相应措施,最大程度保护人民生命安全和身体健康,最大限度减少疫情对经济社会发展的影响。(三)进度安排。2023年1月8日起,对新型冠状病毒感染实施“乙类乙管”。依据传染病防治法,对新冠病毒感染者不再实行隔离措施,不再判定密切接触者 不再划定高低风险区;对新冠病毒感染者实施分级分类收治并适时调整医疗保障政策;检测策略调整为“愿检尽检”;调整疫情信息发布频次和内容。依据国境卫生检疫法,不再对入境人员和货物等采取检疫传染病管理措施。三、主要措施(一)进一步提高老年人新冠病毒疫苗接种率。我国大规模的疫苗接种实践证明,我国的新冠病毒疫苗是安全、有效的。要进一步加强组织动员力度,科学评估接种禁忌,加快提高疫苗加强免疫接种覆盖率,特别是老年人群覆盖率,优先采取序贯加强免疫,努力做到“应接尽接”。在第一剂次加强免疫接种基础上,在感染高风险人群、60岁及以上老年人群、具有较严重基础疾病人群和免疫力低下人群中推动开展第二剂次加强免疫接种。(二)完善新型冠状病毒感染治疗相关药品和检测试剂准备。做好治疗新型冠状病毒感染相关中药、对症治疗药物、抗新冠病毒小分子药物、抗原检测试剂的准备。县级以上医疗机构按照三个月的日常使用量动态准备新型冠状病毒感染相关中药、抗新冠病毒小分子药物、解热和止咳等对症治疗药物;基层医疗卫生机构按照服务人口数的15%-20%动态准备新型冠状病毒感染相关中药、对症治疗药物和抗原检测试剂,人口稠密地区酌情增加;药品零售企业不再开展解热、止咳、抗生素和抗病毒4类药物销售监测。各地联防联控机制(领导小组、指挥部)切实担负起药品试剂准备的领导责任。(三)加大医疗资源建设投入。重点做好住院床位和重症床位准备,配足配齐高流量呼吸治疗仪、呼吸机、ECMO等重症救治设备,改善氧气供应条件。各地按照“应设尽设、应开尽开”的原则,二级以上医院均设置发热门诊,配备充足的医疗力量;有条件的基层医疗卫生机构应设置发热门诊或者诊室。定点医院重症床位和可转换重症床位达到总床位数的20%。二级综合医院应当独立设置重症医学科,二级传染病、儿童专科医院应当设置重症监护病房。三级医院要强化重症医疗资源准备,合理配备重症医护力量,确保综合ICU监护单元可随时使用,通过建设可转换重症监护单元,确保需要时24小时内重症监护资源增加一倍。根据人口规模,将符合条件的方舱医院提标改造为亚(准)定点医院,其他方舱医院仍然保留。加强对基层医疗卫生机构的设备配备和升级改造,尽快实现发热诊室(门诊)“应设尽设、应开尽开”。各地要加大投入,按照填平补齐原则,确保完成建设改造。(四)调整人群检测策略。社区居民根据需要“愿检尽检”,不再开展全员核酸筛查。对医疗机构收治的有发热和呼吸道感染症状的门急诊患者、具有重症高风险的住院患者、有症状的医务人员开展抗原或核酸检测。疫情流行期间,对养老机构、社会福利机构等脆弱人群集中场所的工作人员和被照护人员定期开展抗原或核酸检测。对社区65岁及以上老年人、长期血液透析患者、严重糖尿病患者等重症高风险的社区居民、3岁及以下婴幼儿,出现发热等症状后及时指导开展抗原检测,或前往社区设置的便民核酸检测点进行核酸检测。外来人员进入脆弱人群聚集场所等,查验48小时内核酸检测阴性证明并现场开展抗原检测。在社区保留足够的便民核酸检测点,保证居民“愿检尽检”需求。保障零售药店、药品网络销售电商等抗原检测试剂充足供应。(五)分级分类救治患者。未合并严重基础疾病的无症状感染者、轻型病例,采取居家自我照护;普通型病例、高龄合并严重基础疾病但病情稳定的无症状感染者和轻型病例,在亚定点医院治疗;以肺炎为主要表现的重型、危重型以及需要血液透析的病例,在定点医院集中治疗;以基础疾病为主的重型、危重型病例,以及基础疾病超出基层医疗卫生机构、亚定点医院医疗救治能力的,在三级医院治疗。全面实行发热等患者基层首诊负责制,依托医联体做好新型冠状病毒感染分级诊疗,加强老年人等特殊群体健康监测,对于出现新冠病毒感染相关症状的高龄合并基础疾病等特殊人群,基层医疗卫生机构密切监测其健康状况,指导协助有重症风险的感染者转诊或直接到相应医院接受诊治。确保重症高风险人员及时发现、及时救治。统筹应急状态医疗机构动员响应、区域联动和人员调集,进一步完善医疗救治资源区域协同机制。动态监测定点医院、二级以上医院、亚定点医院、基层医疗卫生机构的医疗资源使用情况,以地市为单位,当定点医院、亚定点医院、综合医院可收治新型冠状病毒感染患者的救治床位使用率达到80%时,医疗机构发出预警信息。对于医疗力量出现较大缺口、医疗服务体系受到较大冲击的地市,省级卫生健康行政部门视情通过省内协同方式调集医疗力量增援,必要时向国家申请采取跨地区统筹方式调派医疗力量增援,确保医疗服务平稳有序。(六)做好重点人群健康调查和分类分级健康服务。摸清辖区65岁及以上老年人合并基础疾病(包括冠心病、脑卒中、高血压、慢性阻塞性肺疾病、糖尿病、慢性肾病、肿瘤、免疫功能缺陷等)及其新冠病毒疫苗接种情况,根据患者基础疾病情况、新冠病毒疫苗接种情况、感染后风险程度等进行分级,发挥基层医疗卫生机构“网底”和家庭医生健康“守门人”作用,提供疫苗接种、健康教育、健康咨询、用药指导、协助转诊等分类分级健康服务。社区(村)协助做好重点人群健康服务工作,居(村)民委员会配合基层医疗卫生机构围绕老年人及其他高风险人群,提供药品、抗原检测、联系上级医院等工作。(七)强化重点机构防控。养老机构、社会福利机构等人群集中场所结合设施条件采取内部分区管理措施。疫情严重时,由当地党委政府或联防联控机制(领导小组、指挥部)经科学评估适时采取封闭管理,并报上级主管部门,防范疫情引入和扩散风险,及时发现、救治和管理感染者,建立完善感染者转运机制、与医疗机构救治绿色通道机制,对机构内感染人员第一时间转运和优先救治,控制场所内聚集性疫情。医疗机构应加强医务人员和就诊患者个人防护指导,强化场所内日常消毒和通风,降低场所内病毒传播风险。学校、学前教育机构、大型企业等人员聚集的重点机构,应做好人员健康监测,发生疫情后及时采取减少人际接触措施,延缓疫情发展速度。疫情严重时,重点党政机关和重点行业应原则上要求工作人员“两点一线”,建立人员轮转机制。(八)加强农村地区疫情防控。做好农村居民宣教引导。充分发挥县、乡、村三级医疗卫生网作用,做好重点人群健康调查,加强医疗资源配置,配足呼吸道疾病治疗药物和制氧机等辅助治疗设备。依托县域医共体提升农村地区新型冠状病毒感染医疗保障能力,形成县、乡、村三级联动的医疗服务体系,建立村-乡-县重症患者就医转介便捷渠道,统筹城乡医疗资源,按照分区包片的原则,建立健全城市二级及以上综合医院与县级医院对口帮扶机制。畅通市县两级转诊机制,提升农村地区重症救治能力,为农村老年人、慢性基础疾病患者等高风险人群提供就医保障。根据区域疫情形势和居民意愿,适当控制农村集市、庙会、文艺演出等聚集性活动规模和频次。(九)强化疫情监测与应对。动态追踪国内外病毒变异情况,评估病毒传播力、致病力、免疫逃逸能力等特点变化,及时跟踪研判并采取针对性措施。监测社区人群感染水平,监控重点机构暴发疫情情况,动态掌握疫情流行强度,研判疫情发展态势。综合评估疫情流行强度、医疗资源负荷和社会运行情况等,依法动态采取适当的限制聚集性活动和人员流动等措施压制疫情高峰。(十)倡导坚持个人防护措施。广泛宣传倡导“每个人都是自己健康第一责任人”的理念,坚持戴口罩、勤洗手等良好卫生习惯,在公共场所保持人际距离,及时完成疫苗和加强免疫接种。疫情严重时,患有基础疾病的老年人及孕妇、儿童等尽量减少前往人员密集场所。无症状感染者和轻型病例落实居家自我照护,减少与同住人接触,按照相关指南合理使用对症治疗药物,做好健康监测,如病情加重及时前往医疗机构就诊。(十一)做好信息发布和宣传教育。制定疫情信息报告和公布方案,逐步调整疫情发布频次和内容。全面客观宣传解读将“乙类甲管”调整为“乙类乙管”的目的和科学依据,充分宣传个人防护、疫苗接种、分级分类诊疗等措施对于应对疫情的关键作用,筑牢群防群控的基础。(十二)优化中外人员往来管理。来华人员在行前48小时进行核酸检测,结果阴性者可来华,无需向我驻外使领馆申请健康码,将结果填入海关健康申明卡。如呈阳性,相关人员应在转阴后再来华。取消入境后全员核酸检测和集中隔离。健康申报正常且海关口岸常规检疫无异常者,可放行进入社会面。取消“五个一”及客座率限制等国际客运航班数量管控措施。各航司继续做好机上防疫,乘客乘机时须佩戴口罩。进一步优化复工复产、商务、留学、探亲、团聚等外籍人士来华安排,提供相应签证便利。逐步恢复水路、陆路口岸客运出入境。根据国际疫情形势和各方面服务保障能力,有序恢复中国公民出境旅游。四、组织保障(一)强化组织领导。国务院联防联控机制落实党中央、国务院决策部署,统筹领导各有关部门分工负责、协调配合,优化调整各工作组职责,建立健全有关工作专班,积极稳妥推进实施新型冠状病毒感染“乙类乙管”各项措施。(二)强化责任落实。地方各级党委和政府要守土有责、守土尽责,压实主体责任,切实增强紧迫性和责任感,主要负责同志亲自抓,结合实际细化本地实施方案,明确责任分工,加强力量统筹,周密组织实施,按照国家要求抓紧抓实抓细各项工作。国务院联防联控机制综合组向地方派出督查组,督促指导各地做好应对准备和措施调整工作。(三)强化培训指导。国务院联防联控机制综合组协调相关工作组或专班,通过全国疫情防控视频会商会、调度会等方式,对疫苗接种、药物储备、医疗资源准备、分级分类诊疗、疫情监测、宣传引导等工作开展部署培训和政策解读,明确工作目标,细化工作要求,推动工作落实。各行业主管部门及时调整相关政策,加强督促指导,确保相关要求落实到位。
  • 岛津抗病毒药物分析方案助力战疫安全用药
    2020年3月3日,国家卫生健康委员会及国家中医药管理局联合发布了《新型冠状病毒肺炎诊疗方案(试行第七版)》。洛匹那韦/利托那韦、利巴韦林、磷酸氯喹、阿比多尔等抗病毒药物位列其中,供临床治疗参考。诊疗方案同时提出,要注意上述药物的不良反应及禁忌症(如患有心脏疾病者禁用氯喹)以及其他药物的相互作用问题,在临床应用中进一步评价目前所试用药物的疗效。同时,由中国药师协会治疗药物监测药师分会及众多权威组织编撰《新型冠状病毒肺炎及常见合并症药物治疗与药学监护指引》,该指引明确指出加强对上述抗病毒药物进行药学监护。 岛津新冠肺炎治疗药物监测分析方案采用岛津临床质谱LCMS-8050CL(国械进注20182400195)开发了一种多种抗病毒药物的治疗药物监测分析方案,该方案3分钟即可完成洛匹那韦、利托那韦、利巴韦林、磷酸氯喹、阿比多尔、奥司他韦共6种抗病毒类药物的分析测定。LCMS-8050CL优异性可轻松应对治疗药物监测。岛津 LCMS-8050CL 宽动态范围的标准曲线完美适用临床监测标准曲线跨越四个数量级,涵盖临床范围,各浓度点均有较好的准确度。洛匹那韦标准曲线图 利托那韦标准曲线图 卓越的灵敏度及稳定性依托岛津成熟的质谱技术,6种抗病毒药物灵敏度可完美胜任临床治疗药物监测,仪器稳定性坚如磐石,数据稳定性始终如一。匹配岛津高性能色谱柱,易拖尾化合物也可保证良好峰型。标准曲线低浓度点连续6针进样分析稳定性谱图 CLAM-2030让治疗药物监测变得更安全,更简单为使治疗药物监测更加安全、准确和自动化,岛津推出了一款全自动前处理系统-- CLAM-2030(Clinical Laboratory Automated sample preparation Module),只需简单放置采血管或其他样品管,系统就会自动完成对样品的前处理,然后自动传送至 LCMS 进行分析。新冠肺炎病毒表现出传播快、易感染等流行病学特征,直接或间接接触都有较大感染风险,因此,减少医务工作者对所检测生物样本的接触可大大降低感染风险。CLAM-2030系统能够最大限度地减少人与样品的接触,可以更加安全、有效、简单的实现临床研究中高精度需求的工作流程。完善的治疗药物监测方案包括新冠肺炎治疗药物监测在内,岛津临床质谱对常见治疗药物监测均可提供完整分析方案。岛津液质联用系统获得临床注册证以来,在治疗药物监测方面做了多类药物的方案开发。该多种抗病毒药物的分析方法成熟高效可供临床相关人员选择参考,同时进一步完善了岛津在治疗药物监测方面的解决方案。 科学防疫,安全用药,岛津与全国人民一道众志成城,坚决打赢这场疫情防控攻坚战!
  • 赛默飞:病毒感染中基于代谢及脂质组学的亮点研究成果
    p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 2020年,新型冠状病毒肺炎在中国和国际的迅速传播引发了全球卫生紧急情况。仪器信息网在密切关注疫情发展态势的同时,也更加关注病毒感染的致病机理等相关研究进展。近年来,组学研究成为生命科学基础研究领域的重点,对于病理、毒理学、药物动力学等具有重要价值,相关高水平学术期刊大量报道了科研人员利用组学技术开展的病毒致病病理学的研究成果,也对于此次疫情的进一步研究具有一定参考意义。 /span /p p style=" line-height: 1.75em text-align: justify text-indent: 2em " 基于此,仪器信息网推出了 a href=" https://www.instrument.com.cn/zt/omics2020" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong “组学技术在病毒感染致病机制中的亮点研究及技术进展”专题 /strong /span /a ,为广大业内专家及用户介绍基于蛋白组学或代谢组学等多组学技术在病毒感染致病机制中的研究应用及技术进展,增强业界专家与仪器企业之间的信息交流,提供更丰富、更专业的技术文章,谨以此致敬所有奋战在抗疫一线的白衣天使以及幕后深耕的研究学者。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 新型冠状病毒(SARS-CoV-2)感染的新型肺炎(COVID-19)疫情正在全世界范围内持续蔓延,引发的感染人数不断增加。截止到目前,全球感染人数已近300万,每天新增报告人数超过8万。由此疫情引发的社会影响不但扩大,让人们再一次感受到传染性病毒研究的紧迫性。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 科研界已有大量研究论文对SARS-CoV-2 病毒基因结构特点,COVID-19的流行病学和临床特征进行了较为系统性的研究。然而,SARS-CoV-2 病毒进入人体后,如何引起体内代谢水平的变化,以及这些变化如何影响患者及预后水平尚未可知。代谢组学和脂质组学技术作为精准医疗研究的重要组成部分,在中东呼吸综合征,埃博拉病毒,SARS-Cov-2等病毒研究中体现出重要价值,帮助研究人员确定病毒侵染宿主后代谢物的变化,阐明致病潜在机制、寻找诊断生物标志物,以及疾病分期分型等 sup [1] /sup 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此,采用代谢组学和脂质组学技术研究SARS-CoV-2对机体系统的损害及其潜在机制,可以帮助研究人员更快的发现药物靶点,开发诊断和预后评价生物标志物,以便及时诊断,有效地治疗COVID-19患者,并降低死亡率。本文中将对 span style=" color: rgb(0, 112, 192) " strong 病毒感染中基于代谢组学和脂质组学的代表性研究成果和进展做简要的介绍 /strong /span 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(192, 0, 0) " strong 1.& nbsp & nbsp 基于Orbitrap的多组学技术研究新冠肺炎轻重症患者分型和生物标志物 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 根据新冠状病毒感染的肺炎诊断和治疗计划,患有合并症的老年人更容易感染SARS-CoV-2,尤其是那些患有高血压,冠心病或糖尿病的人。 此外,CVD患者如果感染SARS-CoV-2,则更有可能出现严重症状 sup [2] /sup 。另据世界卫生组织调查,新冠肺炎患者大约80%患者症状较轻,14%左右发展为严重疾病,5%左右属于重症病例,其中,重症患者的死亡率超过50%。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在临床治疗中,为什么轻症患者会在短时间内迅速演变为重症成为急需解决的难题之一。国内西湖大学生命科学学院郭天南教授与合作团队,采用Q Exactive HF-X和 Q Exactive HF质谱分别对新冠肺炎患者血液中的蛋白质,代谢物和脂质进行系统考察,研究结果以预印本形式发表在2020年4月在medRxiv杂志上 sup [3] /sup 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究人员发现,新冠肺炎重症患者的样本中出现了93种特有的蛋白表达和204个特征性改变的代谢分子。这些变化中,可以发现100多种代谢物和100多种脂质均出现显著下调,而21-羟基孕烯醇酮增加,犬尿氨酸通路被激活;鞘脂,胆碱,甘油磷脂等脂类分子降低显著。这些代谢物的变化与患者体内的巨噬细胞、补体系统、血小板脱颗粒有关。并通过机器学习分析方法,整合蛋白质组、临床、生物、代谢组、计算等多学科数据筛选出重症患者特征性的22个蛋白质和7个代谢物。这些体内分子水平的变化,为临床疾病分型,重症病人的早期诊断,以及治疗手段提供理论依据,有望为预测轻症患者向重症发展提供导向。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 1015px " src=" https://img1.17img.cn/17img/images/202004/uepic/2fb6f9ca-0c41-4122-b672-22354f5f53b2.jpg" title=" 图片 1.png" alt=" 图片 1.png" width=" 600" height=" 1015" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图1a: 新冠肺炎轻重症患者差异性蛋白,代谢物,脂质 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/10894884-5a7c-47f4-918d-6c15cd2bafff.jpg" title=" 图片 2.png" alt=" 图片 2.png" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图1b:机器学习预测重症患者 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2. 基于Q Exactive代谢组学技术研究免疫应答的过程 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 目前全球共有数十个科研团队在加紧进行针对新冠病毒的疫苗研发工作,中国和美国已经有一些项目进入临床试验,期望更早一步将研究成果应用到健康人身上。根据临床经验,疫苗虽然可以预防许多疾病,但不同人群接种同一种疫苗后,所产生的免疫反应和预防效果也有很大的不同。2017年发表在Cell 杂志的一项研究表明[4],小分子代谢物对免疫细胞的增殖分化及其功能息息相关。整合转录组学和代谢组学研究显示,代谢反应是人类对带状疱疹病毒疫苗的免疫反应有效性的基础。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 447px " src=" https://img1.17img.cn/17img/images/202004/uepic/3d25f14c-316f-49ec-b968-36f1e3aa53df.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 600" height=" 447" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图2:接种疫苗后,体内免疫应答过程 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究人员开展了病毒疫苗接种在健康成人上的纵向研究,分别收集接种前和接种后的血液进行转录组学和代谢组学分析。研究结果显示,接种疫苗后第1天起,嘌呤代谢,亚油酸代谢、蛋氨酸和半胱氨酸代谢、甘油磷脂代谢和糖磷脂代谢等于转录组学密切相关。并构建MMRN网络,结合接种者年龄、性别和病毒载量相关的网络来预测有效性,揭示甾醇代谢基因和代谢物之间的联系,而磷酸肌醇代谢提供了代谢表型,影响免疫结果。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 通过此项研究,可以帮助研究人员对疫苗接种的免疫反应进行情境分析,确定影响疗效的相关因素,同时为免疫反应提供新的生物学见解,促进未来的生物标记物研究和疫苗开发。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3.机制研究助力广谱抗病毒药物的研发 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " SARS-CoV-2 病毒引起的严重疫情的主要原因,除了和病毒本身传播力强有关之外,也与尚未有获得批准的特定药物或疫苗因素有关。而全球医疗体系在冠状病毒治疗药物方面还处于非常被动的层面。采用组学技术研究病毒侵染人体后,机体代谢水平的变化及其机制的研究,可以发现病毒侵染人体的代谢通路。为发现抗病毒新药靶点,以及广谱抗病毒药物的研发提供依据。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 病毒在侵染机体的过程中,需要利用宿主的新陈代谢,通过重构宿主的代谢途径进行复制。核苷酸,蛋白质和脂质合成是病毒侵染宿主的主要物质基础。研究人员通过培养SARS-CoV-2感染的组织细胞,雪貂和COVID-19已故病人样本表明,病毒感染会显着抑制NAD代谢组,雪貂和人类的SARS-CoV-2感染下调了色氨酸和烟酸(NA)的NAD合成,同时上调了烟酰胺(NAM)和烟酰胺核苷(NR)的合成能力,这可能会给细胞带来巨大压力。基因表达和药理学数据表明,通过烟考酰胺和烟酰胺核糖苷激酶途径增强NAD +可能恢复抗病毒PARP功能以支持对SARS-CoV-2的先天免疫[5]。这一研究成果与西湖大学研究团队不同,可能与选择的模型和疾病所处的分期有关。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 382px " src=" https://img1.17img.cn/17img/images/202004/uepic/791a8568-1db4-46f2-897f-4ed6ae782fba.jpg" title=" 图片 4.png" alt=" 图片 4.png" width=" 300" height=" 382" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图3: SARS-CoV-2 感染后体内NAD+等代谢变化 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " & nbsp span style=" text-indent: 2em " Nils C. Gassen等对SARS-CoV-2控制的自噬的分析表明,亚精胺,MK-2206和烟酰胺可能是潜在有效的抗病毒药物。既有研究显示,基于自噬等新陈代谢相关的方法显著降低了高致病性中东呼吸综合征(MERS)-CoV的传播。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 588px " src=" https://img1.17img.cn/17img/images/202004/uepic/e58e71b3-b417-4030-9036-a049097f5194.jpg" title=" 图片 5.png" alt=" 图片 5.png" width=" 600" height=" 588" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图4: SARS-CoV-2 影响的主要代谢通路 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究人员发现,SARS-CoV-2感染通过干扰多种代谢途径来限制自噬,采用化合物干预手段来干预自噬过程,可降低SARS-CoV-2 在体外的传播。自噬信号传导和代谢组学技术深入分析表明,SARS-28 CoV-2通过限制AMP蛋白激活激酶(AMPK)和雷帕霉素复合物1(mTORC1)的激活来减少糖酵解和蛋白翻译,减少自噬。病毒感染会下调自噬诱导的亚精胺合成,促进自噬引发的Beclin-1(BECN1)的AKT1 / SKP2依赖性降解。 通过外源给予亚精胺,AKT抑制剂MK-2206,Beclin-1稳定剂,烟酰胺可抑制SARS-CoV-2的传播 sup [6] /sup 。 /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 4.赛默飞代谢组学和脂质组学技术方案 /strong /span /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 由于代谢组学样本的高度复杂性和代谢物的特征,研究者在病毒研究中遇到了诸多的挑战,特别是提高代谢物组覆盖率,更高的灵敏度诉求、大队列研究中的稳定性和重现性,代谢物鉴定等方面一直制约着代谢组学学科的发展。要想获得高质量、高准确度的分析结果,对平台技术的建设和提升无疑也是极为重要的。 /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 赛默飞作为生命科学仪器领域的领导者,致力于帮助科研人员收获代谢组学和脂质组学技术在病毒研究中的作用,深度探究病毒侵染宿主的代谢分子变化机制,加速生物标志物和抗病毒药物的发现。我们已在色谱分离、质谱检测与生物信息软件等方向构建了非常有特色的完整解决方案。 /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 解决方案包含四部分:(1)推荐的样品制备方法;(2)不同色谱分离手段:如LC(亲水性的HILIC、疏水性的C30和常规C18)、GC和离子色谱构成;(3)质谱检测平台:由定性定量的Orbitrap平台(Q Exactive 系列、Exploris 480,Fusion系列),以及三重四级杆系列(TSQ Altis、Quantis)构成;(4)数据处理平台:由侧重非靶标代谢组学和代谢流的Compound Discoverer软件、脂质组学软件LipidSearch,以及大规模代谢物靶向定量的TraceFinder软件组成。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/d1ee2acf-1ea6-4c7f-a7e1-382c0c978f5a.jpg" title=" 图片 6.png" alt=" 图片 6.png" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图5:赛默飞代谢组学解决方案 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 4.1 特色解决方案1:离子色谱解决极性大代谢物分析难题 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 作为病毒侵染宿主重要的物质,糖酵解途径代谢产物、三羧酸循环代谢产物,NAD+以及核苷酸代谢物,因其重要的生物学功能,在代谢组学研究中越来越受到重视。以往这类化合物的检测,研究者多采用GC-MS技术,但由于这些代谢物的极性强、挥发性低,往往需要进行衍生化处理,大大增加研究者的工作量和数据挖掘过程中的不确定性。离子色谱作为液相色谱的一种,对糖类、氨基酸、核酸、有机酸等物质的分析起着重要的作用 sup [7] /sup 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/9d130aa3-a2e5-4eaa-9c6c-7a7a2d7b59b2.jpg" title=" 图片 7.png" alt=" 图片 7.png" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图6:糖酵解途径中单磷酸糖类离子色谱研究 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 4.2 特色解决方案2:稳定同位素标记技术(代谢流组学) /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 传统代谢组学分析的结果不能提供有关细胞内代谢率和代谢途径活性的信息 sup [8] /sup 。例如,丰度的变化提高可能来源于上游物质产量的增加,但也可能来自于下游物质消耗量的减少。同时应注意的是,生物体内的代谢物来源可能存在多条路径,因此代谢物丰度的变化也可能来源于已知或未知的代谢通路。因此,单纯从代谢物丰度变化的显著程度来解释疾病发生发展的过程,存在很大的不确定性。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 确定代谢物在代谢途径中的作用的最有希望的方法之一是“稳定同位素”示踪剂跟踪其去向 sup [8] /sup 。通过稳定同位素标记的葡萄糖或谷氨酰胺(含有 13C、15N),检测下游代谢物的稳定同位素标记的状态,代谢流量等参数,深度挖掘代谢物的精确流向,可提供相关代谢物在某一流路的动态变化信息。这项技术已成为近年来的研究热点技术之一,在肿瘤、糖尿病等疾病机制研究中大放异彩。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 多项研究表明,仪器的质量分辨率在代谢流研究中起着非常重要的作用 sup [8-9] /sup 。足够高的分辨率和质量精度可以排除背景离子干扰,从而在未知代谢物发现和代谢途径方面获得更好的结果。Demo实验室采用含有稳定同位素标记的 13C6葡萄糖和 sup [13] /sup C5 sup [15] /sup N2谷氨酰胺培养基中培养MDB-MA-231细胞, 24小时后检测样品中三磷酸腺苷(ATP)含量的变化。 随着仪器上的MS分辨率增加,同位素峰变得更加明确,13C和15N双标记的同位素代谢物在更高分辨率下得到基线分离。结果表明,高分辨率和稳定的质量准确度是准确分别同位素标记代谢物的重要因素,帮助更准确的示踪复杂样品中的代谢物同位素,确认代谢途径。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 377px " src=" https://img1.17img.cn/17img/images/202004/uepic/b508ada2-56d5-493a-8837-a1075fed2739.jpg" title=" 图片 8.png" alt=" 图片 8.png" width=" 600" height=" 377" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图7:超高分辨率在区分ATP精细同位素上的重要性 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 4.3 特色解决方案3:脂质组学 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们看到在新冠病毒肺炎研究中,脂类发生了非常显著的变化。脂质组学作为一门新兴的研究学科,其成果对科学家深入理解细胞生理和病理过程十分重要。作为代谢组学的重要分支,脂质组学在研究细胞凋亡、信号传导、疾病感染、免疫功能、新生儿代谢缺陷等方面起着重要的作用 sup [9] /sup 。脂类化合物的代谢还与糖尿病、肝癌、肾病、乳腺癌密切相关 sup [10-12] /sup 。“十三五”重大项目指南,国家自然科学基金委员会等重大项目指南中,均把脂质研究列为重点研究专项,期望通过特异性脂质生物标记物的分析,我们有希望区分健康人群与患病风险人群,进行疾病早期诊断,为脂代谢紊乱疾病的预防和治疗提供理论基础 span style=" text-indent: 2em " & nbsp sup [10] /sup 。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 赛默飞和业内科学家紧密合作,在脂质组学应用中开发了完整的靶标和非靶标脂质组学分析流程,配合LipidSearch 专业脂质组学数据处理软件,可以快速实现脂质分子的自动鉴定和相对定量。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/fc1f1ac9-dc21-42ac-bf6d-766e3d9467c3.jpg" title=" 图片 9.png" alt=" 图片 9.png" / br/ /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 图8:赛默飞脂质组学方案 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们期望通过全球各个国家和各个行业的共同协作,在攻克新型病毒上努力行动。作为赛默飞的成员,希望通过本文基于Orbitrap的多组学技术在SARS-CoV-2 研究进展的梳理,帮助一线的医务工作者和科研人员更好的发力,早日战胜这场疫情。谨以此文致敬白衣天使和深耕医学研究的学者。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参考文献: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.& nbsp Beger R D , Dunn W , Schmidt M A , et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”[J]. Metabolomics, 2016, 12(9):149. /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.& nbsp Zheng YY, Ma YT, Zhang JY, Xie X. Nat Rev Cardiol. COVID-19 and the cardiovascular system. 2020 May 17(5):259-260. doi: 10.1038/s41569-020-0360-5. /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.& nbsp Proteomic and Metabolomic Characterization of COVID-19 Patient Sera.https://www.medrxiv.org/content/10.1101/2020.04.07.20054585v1 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4.& nbsp Li S, Sullivan NL, Rouphael N, et al. Metabolic Phenotypes of Response to Vaccination in Humans. Cell. 2017 169(5):862–877.e17. doi:10.1016/j.cell.2017.04.026 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5.& nbsp Coronavirus Infection and PARP Expression Dysregulate the NAD Metabolome: A Potentially Actionable Component of Innate Immunity /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6.& nbsp N. C. Gassen et al., SKP2 attenuates autophagy through Beclin1-ubiquitination and its 235 inhibition reduces MERS-Coronavirus infection. Nat Commun 10, 5770 (2019). /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 7.& nbsp Wang J, Christison TT, Misuno K, et al. Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Anal Chem. 2014 86(10):5116-24 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 8.& nbsp Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016 17(7):451-9 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 9.& nbsp Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AH. Principles and practice of lipidomics. J Inherit Metab Dis. 2015 38(1):41-52 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 10.& nbsp 刘虎威,白玉.脂质组学及其分析方法[J].色谱,2017,35(01):86-90. /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 11. Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019 567(7747):257-261 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 12.& nbsp Garcia-Bermudez J, Baudrier L, Bayraktar EC, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death.& nbsp Nature. 2019 567(7746):118-122 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " br/ span style=" text-indent: 2em " /span /p p br/ /p p style=" text-align: right " 投稿来源:赛默飞色谱与质谱 /p p br/ /p
  • 【征集】关于征集“新型冠状病毒感染肺炎科技防治”快速诊断及药物治疗研发项目的通知
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 2020年2月1日,北京市科技委员会公布“关于征集“新型冠状病毒感染肺炎科技防治”快速诊断及药物治疗研发项目的通知& nbsp ” (下称“通知”)。通知面向本市医药健康企业征集快速诊断及药物治疗方向的研发项目,重点支持近期开展的针对2019-nCoV的快速诊断试剂研发及相关治疗药物研发。快速诊断试剂研发包括采用免疫法、核酸法等检测时间在半小时内的检测试剂盒、配套设备开发。治疗药物研发包括已上市药物的筛选验证及真实世界应用研究,中成药、天然药物有效成分的筛选验证研究,抗体、疫苗类抗病毒新药研发等。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 288px " src=" https://img1.17img.cn/17img/images/202002/uepic/c8670313-b172-4e57-bf8a-1d53c39678fd.jpg" title=" 通知.png" alt=" 通知.png" width=" 500" height=" 288" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 以下为通知原文: /p p style=" text-align: center " strong 【征集】关于征集“新型冠状病毒感染肺炎科技防治”快速诊断及药物治疗研发项目的通知 /strong & nbsp & nbsp & nbsp span style=" text-indent: 0em " & nbsp /span /p p style=" text-indent: 2em " 各有关单位: /p p style=" text-indent: 2em " 为落实市委、市政府科技防治新型冠状病毒(2019-nCoV)感染肺炎疫情相关工作要求,引导支持我市创新主体积极投入到抗击疫情的科研攻关工作当中,有效支撑此次疫情防控,增强应对新发突发传染病的系统防控能力,市科委迅速启动科技攻关布局,在节前已启动了病毒变异监测研究、抗病毒药物筛选研究、重症预警及临床诊疗方案研究等应急项目的定向组织实施工作。在此基础上进一步扩大科技布局和支持范围,现面向本市医药健康企业征集快速诊断及药物治疗方向的研发项目,具体要求如下。 /p p style=" text-indent: 2em " strong 一、重点支持方向 /strong /p p style=" text-indent: 2em " 重点支持近期开展的针对2019-nCoV的快速诊断试剂研发及相关治疗药物研发。 span style=" color: rgb(0, 112, 192) " 快速诊断试剂研发包括采用免疫法、核酸法等检测时间在半小时内的检测试剂盒、配套设备开发。治疗药物研发包括已上市药物的筛选验证及真实世界应用研究,中成药、天然药物有效成分的筛选验证研究,抗体、疫苗类抗病毒新药研发等。 /span /p p style=" text-indent: 2em " strong 二、申报条件 /strong /p p style=" text-indent: 2em " 1.品种的核心技术或知识产权需由申报单位掌握。 /p p style=" text-indent: 2em " 2.与同类品种、产品或技术相比能够提供有效性依据,在技术成熟度、应用可及性方面体现出明显优势。 /p p style=" text-indent: 2em " 3.研究内容及计划按月分解,技术路线设计科学合理,实施可行性强、保障性强,明确研发里程碑节点性指标。 /p p style=" text-indent: 2em " 4. span style=" color: rgb(0, 112, 192) " 鼓励企业联合医疗机构、科研院所共同申报 /span 。 /p p style=" text-indent: 2em " strong 三、填报说明 /strong /p p style=" text-indent: 2em " 采用网上申报备案的形式,请申报单位填报《北京市科委应急项目情况简表》,相关证明材料作为附件,电子版于2020年2月7日前发送至swyy@kw.beijing.gov.cn /p p style=" text-indent: 2em " strong 四、咨询电话 /strong /p p style=" text-indent: 2em " 医药健康科技处: /p p style=" text-indent: 2em " 王 璐 18612953677 /p p style=" text-indent: 2em " 刘 义 13401134011 /p p style=" text-indent: 2em " 附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202002/attachment/16e41f6c-f5e7-46a1-96c6-f873754861cc.docx" target=" _self" title=" 《北京市科委应急项目情况简表》.docx" textvalue=" 《北京市科委应急项目情况简表》.docx" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 《北京市科委应急项目情况简表》.docx /span /a /p p style=" text-indent: 2em text-align: right " 医药健康科技处 /p p style=" text-indent: 2em text-align: right " 2020年2月1日 /p p style=" text-indent: 2em " & nbsp & nbsp /p p br/ /p p br/ /p
  • 新型空气生物采样技术亮相2009中国抗病毒大会
    中国抗病毒大会于2009年7月18至20日在北京国际会议中心成功举行。大会涵盖了抗病毒研究领域中的基础理论研究、临床治疗和公共卫生方面的新进展、新成果,新型抗病毒药物研发,抗病毒生物治疗药物,抗病毒药物管线产品以及商务发展方面的最新进展。 此次大会邀请了罗氏、诺华、GSK各部门代表等300余位抗病毒领域内从事前沿工作研究的企业代表、专家和研究学者在本次大会上作了演讲。 奥然科技的法国供应商Bertin公司,也派代表Elina Machefer小姐在会议上做了题为《控制病毒空传污染的新方法》精彩发言(点击下载此发言稿)。她的发言围绕着Bertin公司新型的Coriolis &mu 空气采样器的性能、用途及认证等展开,吸引众多专家的兴趣。 Coriolis &mu 采用的是全新的气旋式采样技术,收集空气中的生物样品,样品溶于液体中,适用于各种类型的实验分析。这种技术彻底抛开传统的Anderson法(用琼脂平板收集样品的撞击式空气采样技术),且收集效果远远优于Anderson法。它不仅能收集细菌样品,还能够收集病毒、花粉等生物颗粒。采集的样品不仅能用于培养,还可直接用于Elisa、荧光定量PCR或者是气相、液相色谱分析。 目前Coriolis &mu 已经被国内部分CDC、医院、环境检测机构等单位用于微生物样品采集。 Coriolis &mu 空气生物采样器外观 关于该产品技术问题请咨询:侯经理 13918980949
  • 中国首家中药抗病毒研究中心成立 钟南山任学科带头人
    日前,国内首家中药抗病毒研究中心——白云山和黄中药抗病毒研究中心正式成立。钟南山院士担任该中心学科带头人。   据悉,该中心将依托美国国立卫生研究院、呼吸疾病国家重点实验室等数十家科研单位的科研力量,旨在打造国际领先的抗病毒中药研究基地,引领我国中药现代化的产业创新。   该中心将以中医药理论为指导,充分采用现代高科技手段,研发对病毒性传染病具有显著疗效的现代化中药 继续推进抗病毒中药指纹图谱研究,建立国际化的质量标准,使抗病毒中药能早日走出国门。
  • 抗病毒口服液指纹谱图做不好?
    2015版《中国药典》规定“抗病毒口服液”要做指纹谱图,要求:1、与标准图谱的相似度:除6号峰外,计算特征峰1?7 号与S峰的相对保留时间,其中1号峰的相对保留时间在规定值的±5%之内,其余特征峰的相对保留时间在规定值的±8%之内。规定值为:0.58(峰 1)、1.0(峰 2 )、2.38 (峰 3 )、2.61(峰 4)、2. 65(峰 5)、4. 94(峰7)。 2、4号峰与5号峰的分离度不得低于1.0。2015版《中国药典》规定“抗病毒口服液”要做指纹谱图,要求:1、与标准图谱的相似度:除6号峰外,计算特征峰1?7 号与S峰的相对保留时间,其中1号峰的相对保留时间在规定值的±5%之内,其余特征峰的相对保留时间在规定值的±8%之内。规定值为:0.58(峰 1)、1.0(峰 2 )、2.38 (峰 3 )、2.61(峰 4)、2. 65(峰 5)、4. 94(峰7)。 2、4号峰与5号峰的分离度不得低于1.0。柱温:30℃检测波长:236nm流速:1.0mL/min进样体积:10μL实验图谱1)对照溶液2)样品3)供试品放大图结论:相对保留时间均在药典规定范围内;峰4与峰5的分离度为1.34,可以达到药典要求的1.0要求。
  • 中药抗病毒文献解读丨岛津LCMS-8060解密灵芝药用价值
    中医药是五千年中华文明的文化瑰宝,凝聚着中国人民和中华民族的博大智慧。在此次新型冠状病毒(COVID-19)感染的肺炎疫情中,中医药为挽救病人生命发挥了巨大的作用。中药以其独特的魅力,不仅在中国,更是在世界范围内不断地掀起研究热潮。EB病毒(Epstein-Barr virus,EBV)被列为可能致癌的人类肿瘤病毒之一,并被认为与鼻咽癌、胃癌等癌症的发生有相关性。最近,韩国庆北国立大学的科研团队研究了槲皮素和灵芝提取物对EB病毒相关胃癌的协同抑制效果,并借助岛津旗舰级的LCMS-8060对灵芝提取物中的生物活性成分进行了定量研究。相关成果以“Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts”为题,发表在Molecules杂志上。该研究是第一次报道加入了槲皮素的灵芝提取物可能有效治疗EB病毒相关胃癌。研究人员首先用不同浓度的灵芝提取物和槲皮素联合用药,以评估它们对SNU719(人胃癌细胞)的细胞毒性。Chou-Talalay法分析结果表明,低浓度的灵芝提取物和槲皮素联合用药可能产生针对SNU719细胞的细胞毒性协同作用。 随后,研究人员通过在无胸腺裸鼠身上移植MKN1-EBV细胞(EB病毒相关人胃癌细胞),研究了裸鼠在不同浓度的灵芝提取物与槲皮素、单独用药及联合用药等条件下,肿瘤细胞的生长情况。结果表明,低浓度的灵芝提取物和槲皮素联合用药可能对EB病毒相关胃癌导致的肿瘤产生协同抗肿瘤作用。 在潜在的分子机制研究方面,作者进行了细胞生存力测试以评估联合用药在SNU719细胞中发挥的细胞毒性协同作用,证实了灵芝提取物可能通过增强细胞凋亡来支持槲皮素介导的细胞毒性。更进一步研究发现,灵芝提取物和槲皮素可能通过上调EB病毒裂解基因表达,以诱导EB病毒裂解再激活,从而诱导肿瘤细胞凋亡。 灵芝提取物中富含灵芝酸A、灵芝酸F等生物活性物质,其中灵芝酸A除了抗肿瘤作用外,还具有针对EB病毒和HIV的强大抗病毒作用。研究人员采用LCMS-8060定量分析了灵芝提取物中各种活性成分的含量,表明灵芝提取物的生物活性主要来源于灵芝酸A。 图. 灵芝提取物中的灵芝酸A的识别。(A)500 nM灵芝酸A的LC-MS/MS谱图。(B)灵芝提取物样品的LC-MS/MS谱图。 (图片引自:Huh, S. Lee, S. Choi, S.J. Wu, Z. Cho, J.-H. Kim, L. Shin, Y.S. Kang, B.W. Kim, J.G. Liu, K. Cho, H. Kang, H. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules 2019, 24, 3834.) 另外,研究人员采用同样的研究方法评价了灵芝酸A和槲皮素联合用药的效果,确认了低浓度的灵芝酸A和槲皮素联合用药同样可增强SNU719细胞中槲皮素介导的细胞毒性和槲皮素介导的细胞凋亡。 文章最后提出,辅助以槲皮素的灵芝提取物未来可用作兼具EB病毒相关胃癌治疗的抗肿瘤和抗病毒双重功能的药用食品。同时,灵芝提取物和槲皮素的联合使用可以减轻常规化疗的毒性,并改善免疫功能,可能对癌症治疗有益。 岛津LCMS-8060三重四极杆液相色谱质谱联用仪 文献题目:《Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts》使用仪器:岛津LCMS-8060第一作者:Sora Huh原文链接:https://www.mdpi.com/559854 声明1、本文仅出于知识分享之目的引用相关文献。2、本文不提供文献原文,如有需要请自行前往原文链接查看。3、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 小贝战“疫”:当抗病毒药物筛选遇上自动化工作站
    p style=" text-align: justify text-indent: 2em " 近日,我国研究人员评估了几种广谱抗病毒药物对新型冠状病毒SARS-Cov-2的抑制作用。1细胞实验发现,瑞德西韦和盐酸氯喹的半数有效浓度EC50分别为0.77 uM和1.13 uM,选择系数SI分别大于129和88。这表明它们在细胞水平能够有效抑制SARS-Cov-2的感染。& nbsp /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/59b48d17-5ccf-4192-8de2-8ef278e1b86b.jpg" title=" image001.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/824f53ce-f245-474c-9d28-3660bcbb8505.jpg" title=" image002.jpg" / span style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 事实上一个抗病毒药物绝非朝夕炼成,需要经历体外实验、体内动物实验、临床试验的一系列研究历程,周期长、投入大、风险高。体外实验处于药物发现的早期,是非常重要的基石步骤。通过细胞模型对化合物的细胞毒性和病毒抑制能力进行筛选,能够定量地评价其有效性,也可以排除不必要的药物化学结构设计、筛选,或者后续体内实验的前期投入。 /p p style=" text-align: justify text-indent: 2em " 类似于对瑞德西韦和盐酸氯喹的实验,测试现有的抗病毒药物对新型冠状病毒的药效,是对新型冠状病毒这样突发疫情的一条高效路径。同时,开展对大量先导化合物库的高通量筛选,也将是发展抗新型冠状病毒药物的重点工作。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 随着筛选通量和复杂程度的增加,自动化工作站已逐渐成为药物筛选的重要手段。Biomek自动化工作站可以有效地管理实验流,处理多类型、多进程的高通量实验。与传统的人工实验相比,Biomek工作站能够有效节省人力,标准化工作流,缩短研发周期,提高研发效率。 /span /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/4126b5bb-8f04-4069-9653-526e79098570.jpg" title=" image004.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/cd783c43-1d4a-458d-9ee1-33e175e9331f.jpg" title=" image003.png" / /p p style=" text-align: justify text-indent: 2em " strong 【自动化的抗病毒药物筛选方案】 /strong /p p style=" text-align: justify text-indent: 2em " 绝不仅仅是移液 /p p style=" text-align: justify text-indent: 2em " 无菌、振荡、温控、储存、孵育,全都可以有 /p p style=" text-align: justify text-indent: 2em " 读板检测、在线离心、细胞计数、大体积分液,也都可以有 /p p style=" text-align: justify text-indent: 2em " 我们还有 /p p style=" text-align: justify text-indent: 2em " · 开放的仪器设计,轻松实现拓展整合 /p p style=" text-align: justify text-indent: 2em " · 软件工具支持数据的采集、保存与溯源 /p p style=" text-align: justify text-indent: 2em " · 工作流的时序优化,实现多进程、无人值守实验 /p p style=" text-align: justify text-indent: 2em " · 红外光幕自动感应防护,内置摄像头捕捉出错瞬间 /p script src=" https://p.bokecc.com/player?vid=0361421F54B195C89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=550& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" text-align: justify text-indent: 2em " 小贝的药筛方案可辅助完成: /p p style=" text-align: justify text-indent: 2em " · 高通量先导化合物初筛 /p p style=" text-align: justify text-indent: 2em " · 化合物次级筛选 /p p style=" text-align: justify text-indent: 2em " · 药物靶点量效关系 /p p style=" text-align: justify text-indent: 2em " · 细胞实验 /p p style=" text-align: justify text-indent: 2em " · 细胞培养 /p p style=" text-align: justify text-indent: 2em " · 化合物库管理 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/bf6daed0-f3c9-46b6-806c-92d93b4e1edf.jpg" title=" image007.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202002/uepic/870667e7-6110-4087-946f-64284efecb96.jpg" title=" image008.jpg" / /p p style=" text-align: justify text-indent: 2em " Biomek自动化工作站已经应用到抗菌化合物2,SARS冠状病毒抑制物3,甲型流感病毒H3N2抑制物4等药物筛选。自动化实验和手工实验的IC50值高度一致。 /p p br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " strong 参考 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " 1.& nbsp Wang M., Cao R., Zhang L. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res (2020). https://doi.org/10.1038/s41422-020-0282-0 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " 2. Forry S. P., Madonna M. C., Ló pez?Pé rez D. et al. Automation of antimicrobial activity screening. AMB Expr (2016) 6:20. DOI: 10.1186/s13568-016-0191-2 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " 3. Severson W. E., Shindo N., Sosa M. et al. Development and Validation of a High-Throughput Screen for Inhibitors of SARS CoV and Its Application in Screening of a 100,000-Compound Library. Journal of Biomolecular Screening 12(1) 2007. DOI: 10.1177/1087057106296688 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " 4. Severson W. E., Mcdowell M., Ananthan S. et al. High-Throughput Screening of a 100,000-Compound Library for Inhibitors of Influenza A Virus (H3N2). Journal of Biomolecular Screening 13(9) 2008 DOI: 10.1177/1087057108323123 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " *本文涉及的内容与产品仅用于科研和工业,不用于临床诊断。 /span /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制