当前位置: 仪器信息网 > 行业主题 > >

结构生物学

仪器信息网结构生物学专题为您整合结构生物学相关的最新文章,在结构生物学专题,您不仅可以免费浏览结构生物学的资讯, 同时您还可以浏览结构生物学的相关资料、解决方案,参与社区结构生物学话题讨论。

结构生物学相关的资讯

  • Nature:走向整合的结构生物学技术
    从一类技术角度来说,直接和间接获得诺贝尔奖的技术非结构生物学莫属。经过半个多世纪的耕耘,这一技术现在到了快速收割的季节。现在代表结构生物学技术的多种技术正在走向整合,但整合技术仍然需要进一步推动和推广。   上世纪50年代,开文迪许实验室M.Perutz J.Kendrew用X-射线晶体衍射技术获得了球蛋白结构。X射线晶体衍射技术的应用,使人们可在晶体水平研究大分子的结构,在分子原子基础上解释了大分子。1962年,Waston和 Crick因基于结构生物学技术的研究结果发现了DNA双螺旋结构获得了诺贝尔生理学与医学奖,M.Pertt和J.Kendrew获得了同年的诺贝尔化学奖。   60-70年代,开文迪许实验室又发展了电子晶体学技术,研究对象主要是有序、对称性高的生物体系,如二维晶体和高对称性三维晶体。70-80年代,多维核磁共振波谱学使研究水溶液中生物大分子成为可能,溶液中生物大分子更接近于生理状态。   80年代,冷冻电子显微镜出现,这种技术不仅能够研究生物大分子在晶体状态和溶液状态的结构,且能够研究研究复杂大分子体系和超分子体系,如核糖体、病毒、溶酶体和线粒体等。   杂交或整合方法把多种结构生物学方法结合在一起,大大推动了结构生物学的研究。荧光能量共振转移(FRET)是20世纪初发现的,随着绿色荧光蛋白应用技术的发展,FRET已经成为检测活体中生物大分子纳米级距离和纳米级距离变化的有力工具,在生物大分子相互作用分析、细胞生理研究、免疫分析等方面有着广泛的应用。   冷冻电子显微镜技术通过快速冷冻的方法进行固定的,克服了因化学固定、染色、金属镀膜等过程对样品构象的影响,更加接近样品的生活状态。研究对象非常广泛,包括病毒、膜蛋白、肌丝、蛋白质核苷酸复合体、亚细胞器等等。所研究的生物样品既可具有二维晶体结构,也可是非晶体。由于对于样品分子量没有限制,突破了X-射线晶体学只能研究三维晶体样品和核磁共振波谱学只能研究小分子量样品的限制。计算机技术则可以将各种信息进行整合,从而可以获得接近真实的三维分子模拟数据。   现在结构生物学研究越来越多地依赖这种整合技术。2012年加州大学Andrej Sali等解析了26S蛋白酶体的结构。这种结构在许多神经退行性疾病的神经细胞都存在异常。现在科学家正利用这种结构作为模型开发能调节蛋白酶体活性的药物。今年另外一个小组利用整合技术分析决定感染细胞的艾滋病蛋白结构,利用这种结构开发治疗艾滋病的药物。整合技术也被用在解析核糖体结构。核糖体是细胞制造蛋白质的细胞器,是实现基因表达的关键机构。   目前的蛋白数据库存在一些问题,如这些数据主要依靠晶体结构数据,缺乏对其他相关数据的整合,这一问题给结构生物学领域提出要求应该大力推动整合技术的发展。10月6-7日,由4个机构组织了一次整合结构生物学培训班,以推动结构生物学技术的扩展和引领大家将结构和疾病结合起来研究。   参加学习的大部分学员都支持应该采用标准模式描述多方面的数据,这有利于其他学者整合和利用这些数据。但由于结构数据往往十分巨大,如何有效储存和获取这些数据仍然存在一些问题。会议结束时达成一项共识,将申请经费构建一种&ldquo 分子机器&rdquo 数据库中心。   欧洲分子生物学实验室细胞生物学家Jan Ellenberg说,获取全部分子结构的数据是结构生物学的目标,这个愿望或许能在10或20年后实现。   原文检索:   Ewen Callaway. Data bank struggles as protein imaging ups its game. Nature, 22 October 2014 doi:10.1038/514416a
  • 冷冻电子显微学与结构生物学
    冷冻电子显微学近年来在电子显微镜的硬件设备及结构解析的软件算法等方面取得了多个重要的技术突破, 正在成为结构生物学研究的重要技术手段, 为越来越多的生物学研究者所重视. 冷冻电子显微学的技术特点决定了它所具备的一些独特优势和发展方向, 同时作为一个正在迅速发展的科学技术领域, 需要多学科的交叉促进.   近期来自清华大学生科院的王宏伟发文介绍了冷冻电子显微学的研究现状及面临的技术挑战, 并提出未来可能实现结构生物学与细胞生物学不同尺度的研究在冷冻电子显微学技术上融合的新方法.   结构生物学是 20 世纪后半叶, 尤其是在 80~90年代蓬勃发展起来的重要学科. 通过对生物大分子(蛋白质、核酸及其复合体)的三维空间结构的测定, 结构生物学可以在微观尺度上精确地描述复杂生物大分子的形状, 原子与分子组合方式, 及其表面带电、亲疏水等物理性质, 从而为生物大分子发挥生物学功能的机理提供关键的解释. 进入 21 世纪以来, 结构生物学研究的技术手段日益成熟, 在现代生物学研究的各个分支领域中均发挥着重要的作用. 至今为止, 国际蛋白质结构数据库中的结构数据已经超过 100000, 其中绝大部分结构由 X 射线晶体学及核磁共振波谱学解析而来.   近年来, 技术的进步使得结构生物学新的研究手段取得了长足的进展. 2013 年 12 月份发表在Nature 上的利用冷冻电子显微学解析获得 TRPV1 原子分辨率结构的两篇文章, 在结构生物学领域造成了巨大的反响. 美国加州大学旧金山分校的程亦凡研究组与 Julius 研究组合作, 利用冷冻电子显微学技术首次获得了 300 kD膜蛋白 TRPV1的 3.4 Å 分辨率的三维结构, 并建立了该分子的原子模型.   其实在过去的几年间, 已经有若干工作报道了利用冷冻电子显微学解析病毒、蛋白酶体复合物、核糖体等近原子分辨率模型. 这些工作的里程碑式意义在于: 高分辨率结构解析过程不需要生长三维晶体, 样品用量非常少, 而且可以在短时间内同时获得多个复合体状态的三维结构. 短短一年里, 冷冻电子显微学技术作为直接解析生物大分子原子分辨率结构的技术手段受到人们的广泛关注.   事实上, 电子显微学是结构生物学研究中的老兵. 该技术自从 20 世纪 50~60 年代以来, 一直在研究细胞、 亚细胞及生物大分子结构的研究中扮演着独特的角色, 揭示了很多重要的细胞内精细结构. 在研究生物大分子的结构方面, 该技术采取与 X 射线晶体学及核磁共振波谱学迥然不同的原理, 在过去的几十年里逐渐建立了成熟的图像处理及分析算法, 成为结构研究的一种独特技术手段. 近 10 年来, 该领域的日臻成熟以及科研团队的扩大更快地催生了冷冻电子显微学成像技术与结构解析技术的革命性突破. 自从 2008 年以来, 冷冻电子显微学已经连续获得多种生物大分子复合体的原子分辨率结构, 而且高分辨率结构的解析速度正在呈现迅速上涨的趋势。   冷冻电子显微学从 20 世纪中叶开始, 经历了 80年代到 90 年代的技术方法建立时期, 21 世纪初的技术成熟期, 在过去的两年里发生了革命性的技术进步, 进入了快速发展期. 结构生物学和细胞生物学研究者如何抓住这个契机, 如何尽快适应新的局面, 掌握新的技术, 充分发挥该技术的优势从而更加更深入地研究生命现象, 将是未来几年里的一个主题. 数学、物理学、计算机科学、材料科学、化学等众多领域的研究者们必将在未来冷冻电子显微学的新技术新方法的开发中发挥重要的作用, 成为该技术的进一步完善与成熟的重要力量.   冷冻电子显微学领域研究者们则需要以主动开放的态度吸引其他领域研究者的合作, 并积极迎接来自更多领域研究者的挑战, 保持并发展自己的技术特长, 站在技术发展的制高点上选准研究方向, 始终在冷冻电子显微学的技术前沿上开疆拓土.   原文检索:   王宏伟. 冷冻电子显微学在结构生物学研究中的现状与展望. 中国科学: 生命科学, 2014, 44: 1020&ndash 1028   Wang H W. Current status and future perspective of cryo-electron microscopy in structural biology. SCIENTIA SINICA Vitae, 2014, 44: 1020&ndash 1028 doi: 0.1360/052014-140
  • 颜宁等点评:AI 精准预测蛋白质结构,结构生物学何去何从?
    p style=" text-indent: 2em " 12 月 1 日,谷歌旗下的 DeepMind 公司宣布,其 strong 新一代 AlphaFold 人工智能系统 /strong 在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手, strong 精确预测了蛋白质的三维结构 /strong , strong 准确性可与冷冻电子显微镜(cryo-EM)、核磁共振或 X 射线晶体学等实验技术相媲美。 /strong /p p br/ /p p style=" text-indent: 2em " (详见《解决生物学 50 年来的重大挑战!生物界「AlphaGo」精准预测蛋白质结构》)这一消息引发了全球媒体关注,前 Genentech 首席执行官 Arthur D. Levinson 博士盛赞这一成就是 strong 「划时代的进步」 /strong 。 /p p br/ /p p style=" text-indent: 2em " 人工智能的「进击」对生物学、对其他学科会有什么影响?网络上有人提出: strong AI 都能解蛋白质结构了,结构生物学家是不是该失业了? /strong /p p br/ /p p style=" text-indent: 2em " 《返朴》总编、结构生物学家颜宁特邀几位同仁对这一新闻各抒己见, 回答大家的疑问。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 558px height: 618px " src=" https://img1.17img.cn/17img/images/202012/uepic/73bb911a-86ca-490b-a90a-f01fb76aa418.jpg" title=" 微信图片_20201204191414.jpg" alt=" 微信图片_20201204191414.jpg" width=" 558" height=" 618" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " by Asier Sanz | https://asiersanz.com/ /span /p p br/ /p p style=" text-align: center text-indent: 2em " strong AlphaFold2 是个大突破,但我们还有努力的方向 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 张阳 /p p style=" text-align: center text-indent: 2em " (ITASSER 创造者,美国密歇根大学教授) /p p br/ /p p style=" text-indent: 2em " AlphaFold2 显然是蛋白质结构预测领域的重大突破。这可能是从 1969 年第一篇& nbsp Journal of Molecular Biology& nbsp 用比较建模方法预测蛋白质结构发表& nbsp 51 年以来最大的突破。 /p p br/ /p p style=" text-indent: 2em " 这个领域过去 20 年来,进展一直比较缓慢,但最近几年,随着共同进化、接触图预测以及引入深度学习之后,很多软件,比如 I-TASSER 和 Rosetta 等,都有了很大进步。 /p p br/ /p p style=" text-indent: 2em " 就 I-TASSER 来讲,两年前在第 13 届 CASP(CASP13)时,它能够正确预测的非同源蛋白数目比其六年前在 CASP11 上提高了 5 倍。这次 CASP14 也比 CASP13 的预测能力提高了很多。但 AlphaFold2 这次比上次进步更大,和两年前的上一个版本相比,& nbsp AlphaFold2 的主要变化是直接训练蛋白质结构的原子坐标,而不是用以往常用的、简化了的原子间距或者接触图。 /p p br/ /p p style=" text-indent: 2em " 传统上,蛋白质结构预测可以分成基于模板和从头预测,但是 AlphaFold2 只用同一种方法 —— 机器学习,对几乎所有的蛋白质都预测出了正确的拓扑学的结构,其中有大约 2/3 的蛋白质预测精度达到了结构生物学实验的测量精度。这说明,至少是在单结构域的蛋白结构,他们接近解决了这个问题。 /p p br/ /p p style=" text-indent: 2em " 谷歌这次为什么能够取得如此大的成功? /p p br/ /p p style=" text-indent: 2em " 这首先与它们拥有强大的人力和计算资源有关。 /p p br/ /p p style=" text-indent: 2em " 计算机上,他们使用 TPU(据他们的宣传是比 GPU 快 15 倍),学术界的实验室只有 CPU 或者 GPU,而很多实验室都还没有 GPU。他们对媒体宣传中说 Alphafold2 最后只用相当于 100 个 GPU 的资源训练了两周就产生了最后的模型,学界大多数实验室都可以做到,这是不客观的。因为产生一个新的想法,到训练成功的模型,中间起码要反复测试重复 100 次甚至 1000 次。这就像吃了十个馒头的饿汉一 样,不能说吃了最后一个馒头吃饱了,就觉得只吃最后一个馒头就够了。 /p p br/ /p p style=" text-indent: 2em " 另外,他们可以高薪招聘大量专业人才,集中精力攻关一件事,不需要担心基金申请、教学和学生毕业论文等等。这些人力和计算资源上的差别是谷歌 DeepMind 这样的工业研究机构比起学术界在攻关科学或者工程问题上的最大优势。 /p p br/ /p p style=" text-indent: 2em " 当然,学术界在蛋白质结构预测这么多年的积累,也给 AlphaFold2 的成功奠定了基础。 /p p br/ /p p style=" text-indent: 2em " 我自己很高兴他们取得了这么大突破。这个工作首先证明了蛋白质结构预测问题是可以被解决的。这其实不是一个简单的问题,因为蛋白质结构和序列的复杂关系,常常让人们 —— 特别是做结构预测的人 —— 怀疑,蛋白质折叠这个问题是不是可解, 或者有没有唯一解。 /p p br/ /p p style=" text-indent: 2em " 我们在 15 年前的一篇 PNAS 论文中提到,用 PDB 库中的模板,在理论上可以解决 “单结构域蛋白质结构预测” 这个问题,但那是一个基于模板的传统解法, 难点是如何找到最好的模板。谷歌他们这次用「暴力」的机器学习,「暴力」地解决了这个问题。这个做法的成功会对很多相关领域都产生深远影响。 /p p br/ /p p style=" text-indent: 2em " 有人说这个 AlphaFold2 会让很多相关行业的人失业。我认为恰恰相反,它给很多领域提供了解决问题的新途径和新思维,因而会极大推动相关领域的发展,因此会产生更多更大的机会。即便是在蛋白质结构预测这个相对较小的领域,我们还有很多事情要做。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 这次只有 2/3 的蛋白预测做到实验精度,还有 1/3 做不到,是否还有更快更好的途径来产生更高精度结构的算法?基于商业或其它考虑,我相信谷歌可能不会公开代码或 Server。 /p p br/ /p p style=" text-indent: 2em " 所以,最终可能还得学术界的同行共同努力,完善和推广这一技术,让其真正惠及生物医学研究以及普通公众的健康需求。 /p p br/ /p p style=" text-align: center text-indent: 2em " strong 共赢大于竞争 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 龚新奇 /p p style=" text-align: center text-indent: 2em " (中国人民大学数学科学研究院教授,清华大学北京结构生物学高精尖中心合作研究员) /p p br/ /p p style=" text-indent: 2em " 2020 年第 14 届国际蛋白质结构预测竞赛(CASP14)共有 84 个常规(Regular)题目,其中有 14 个题目因为生物实验没给出确定结构等原因被取消或延缓,其他 70 个题目的单体和复合物蛋白质所含有的氨基酸个数从 73 到 2180 不等。 /p p br/ /p p style=" text-indent: 2em " 19 个国家的 215 个小组参加了 CASP14。最终,谷歌旗下 DeepMind 公司的人工智能系统 AlphaFold2 在 2018 年的 Alphafold 基础上迭代创新,超常发挥,一枝独秀,基本解决了「从氨基酸序列预测蛋白质结构」这个困扰人类 50 年的生物学第二遗传密码问题。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 的成功表现在三个方面: /p p style=" text-indent: 2em " 1.不少结构的预测精确度跟实验晶体结构相当,可以替代晶体结构; br/ /p p style=" text-indent: 2em " 2.一些含有多个结构域的复杂超长的单链结构也达到了可以跟实验结构比较的程度; /p p style=" text-indent: 2em " 3.帮助解析了竞赛中涉及到的、实验多年没拿到的 X 射线晶体和 cryo-EM 冷冻电镜结构,比如 T1058 的膜蛋白是用了 Alphafold2 的预测模型之后,才跟原有晶体学数据综合成功解析了结构。 br/ /p p style=" text-indent: 2em " AlphaFold2 团队的& nbsp John Jumper 报告表明,他们使用了基于注意机制的神经网络,动态调整网络中节点的顺序和链接;依靠的是端到端的优化整体构建结构,而不是氨基酸距离;网络中内置了大量的序列、结构和宏基因组等多重比较信息;还依赖分子模拟软件优化去掉了原子的堆积碰撞。 /p p br/ /p p style=" text-indent: 2em " 在 AlphaFold2 的摘要作者名单里,交叉团队的 30 位作者中有 19 位都被标记为相同贡献的第一作者。他们将近 8 分钟的宣介视频,记录了团队成员在新冠疫情期间精诚合作、攻坚克难的宝贵场景。 /p p br/ /p p style=" text-indent: 2em " CASP 组织者 John Moult 指出,计算下一步还有更困难的问题要解决:超大复合物结构、动态构象变化、蛋白质设计、药物设计等等。 /p p br/ /p p style=" text-indent: 2em " 除了我们蛋白质结构预测小同行对 AlphaFold2 的成功很欣喜之外,社会上还有多个不同方向的学术界、产业界和新闻界对它寄予了厚望。 /p p br/ /p p style=" text-indent: 2em " 在欣喜的同时,蛋白质结构预测小同行也有一些保留意见: /p p style=" text-indent: 2em " 1.工程化明显,依赖于强大的 GPU 计算资源和代码优化团队; br/ /p p style=" text-indent: 2em " 2.谷歌公司几乎可以收集全球所有网络信息,虽然看起来 AlphaFold2 的自动化程度很高,但他们在人工操作中使用了哪些信息值得关注; /p p style=" text-indent: 2em " 3.预测对了结构,但不等于明白了蛋白质折叠过程和原理。 /p p br/ /p p style=" text-indent: 2em " strong 生物实验科学家也有不少看法: /strong /p p style=" text-indent: 2em " 1.算出结构只是生物学规律发现的第一步; /p p style=" text-indent: 2em " 2.计算的多个 models 中,有时打分排序不准; /p p style=" text-indent: 2em " 3.开放 AlphaFold2 的 server 之后,使用效果不一定那么好; /p p style=" text-indent: 2em " 4.只是在已有蛋白质结构数据集上训练得到的模型,尚不能计算其它构象或其它类别的分子结构。 /p br/ p style=" text-indent: 2em " 还有关心这个领域的其他方向的专家也提出了问题:怎么理解这个算法成功的原理?怎么跟原有的热力学、物理学等基本原理相融相通? /p p br/ /p p style=" text-align: center text-indent: 2em " 我认为 AlphaFold2 是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;对生物学、数学和计算机学等学科而言,则会带来新的机遇。 br/ br/ strong 技术服务于科学探索,结构生物学早就进入新时代 /strong br/ 颜宁 /p p style=" text-align: center text-indent: 2em " (美国普林斯顿大学雪莉?蒂尔曼终身讲席教授,美国科学院外籍院士) /p p br/ /p p style=" text-indent: 2em " 首先,简单说一下,什么是生物学里的「结构」。 /p br/ p style=" text-indent: 2em " 用个不太恰当的类比:变形金刚。比如擎天柱是辆车还是个机器人,这就是不同的结构了,机器人能打架大车做运输,功能也不一样。而不同的汽车人组成成分可能差不多,都有合金、玻璃、橡胶,但是形态各异,特长也不一样。 br/ 生物分子的组成成分和基本单元就那么几种,但是组装起来,不同的序列不同的结构,于是功能各异、五花八门。这个结构不是静止的,每一个生物大分子基本都像个小机器,比变形金刚更复杂、更变化多端。 /p p br/ /p p style=" text-indent: 2em " 因为结构决定了生物大分子的功能,所以解析高分辨率结构在过去几十年一直是理解生物大分子工作机理最有力的工具。但是一直以来,因为技术局限,对于绝大多数生物大分子的结构解析困难重重。所以,一批科学家另辟蹊径,试图在已有的知识基础上,绕开劳心劳力又劳财的实验步骤,从蛋白质的序列直接通过计算预测出它们精准的三维结构。 /p p br/ /p p style=" text-indent: 2em " 蛋白结构预测并不是一个新鲜学科,一直以来就是结构生物学的一个分支,很多科学家不断开发算法,希望根据序列预测出来的结构越来越准确。 br/ 这个领域在过去十几年进步迅速,并且与实验结构生物学融合度越来越高。比如,自从进入电镜时代,看到一堆黑白灰的密度,如果其中某些部分没有同源结构,通过软件预测一个大致的结构模型,放到密度图里面做框架,再根据实验数据调整,已经是个常规操作。 /p p br/ /p p style=" text-indent: 2em " 这次人工智能赢得 CASP 的新闻亮点有两个,一是 AI,二是准确度高。这确实是突破,但是有了两年前的新闻(注:2018 年,DeepMind 开发的第一代 AlphaFold 首次参加 CASP 并且拔得头筹)做铺垫,现在这次委实是意料之中。 br/ 至于衍生出来的所谓「结构生物学家都要失业了」的调侃 —— 如果你对结构生物学的理解还停留在 20 年前,那这么说也不是不行。但是结构生物学自身一直在发展着,一场冷冻电镜的分辨率革命更是令结构生物学不同往日了。 br/ 我在 2015 年主持一个学术研讨会的时候曾经评论过:结构生物学的主语是生物学,是理解生命、是做出生物学发现。 br/ 但是,在 X - 射线晶体学为主要手段的时代,获得大多数研究对象的结构本身太难了,于是很多研究者把「获得结构」本身作为了目标,让外行误以为结构生物学就是解结构。但我从进入这个领域之初,就被教育得明明白白:结构本身只是手段,它们是为了回答问题、做出发现。而电镜使得「发现」二字尤为突出。 br/ br/ 看到结构本身、知道你的研究对象长啥样,倒也可以称之为发现,但我刚刚说的「发现」,特指那些超乎想象的、通过结构才揭示出来的、自然界里神奇的存在或者令人叹为观止的机理。 /p br/ p style=" text-indent: 2em " 我讲课最喜欢举的例子之一就是施一公组的剪接体结构。为啥呢?因为它集合了结构生物学发现里几乎所有的精彩要素和挑战。 br/ br/ 第一,在剪接体结构出来之前,有很多剪接体的组分甚至是未知的。不同于传统的结构生物学,先知道你要研究对象是啥,再吭哧吭哧地去把它们的结构解出来 —— 剪接体的电镜分析是看到了密度图之后,完全不晓得这是啥,需要通过质谱等手段去鉴定组分。我从 2015 年就预测:电镜与质谱组合,将会变成一个重要的生物学研究发现手段。在电镜时代,这样的例子越来越多。比如清华大学隋森芳老师组的那个巨大的藻胆体结构,靠质谱都不够了。为了搞明白组分,他们甚至先做了基因组测序。 br/ br/ 第二,几十上百个蛋白如何众星捧月地把那么几条貌似简单的 RNA 掰成与几个小小的金属离子配合的核酶反应中心,在茫茫碱基中,在正确的时间正确的地点牵线搭桥,剪掉 intron(内含子),连接 exon(外显子)?就为了这一「剪子」& nbsp 一「钩针」,为了几毫秒的过程,这么个庞然大物的几十上百个组成部件却要分分合合,这个过程是真神奇。 /p p br/ /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/72bc97e7-d254-461b-b199-1156f73a37c8.jpg" title=" 微信图片_20201204191624.jpg" alt=" 微信图片_20201204191624.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " 施一公实验室报道的首个酵母剪接体的结构 /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " (图源:生物化学经典教材 Lehninger Principles of Biochemistry(第七版)封面) /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " br/ /span 结构生物学目前的实验手段只能获得静止的 3D 照片,为了揭示这部电影,就要不断获得中间态的 3D 照片,帧数越多,电影越精准。但即便如此,这个过程中的动力学问题,简单说,就是变化速度,依旧不是现在的结构生物学实验手段可以揭示的,需要借助更多生物物理技术、计算生物学手段去探索。 br/ 我自己的工作虽然没有剪接体那么酷炫,但是电压门控钠离子通道如何感受膜电势的变化,开门关门,就这么个过程,听着简单,我们死磕三年了,依旧束手无策。另外,我们今年发的两篇 PNAS 论文其实代表了结构生物学的另一个努力方向:在实验操作过程中对生物大分子施加外力(电场、磁场、各种长度的波......)。 br/ 也许是受到我自身专业领域的局限,AlphaFold 迄今带给我的震撼还赶不上冷冻电镜的革命,后者将我们从技术挣扎中解放出来,可以专注于结构带来的生物学发现本身。 br/ br/ AlphaFold 目前最成功的预测是针对单链分子,当然将来预测复合物的高精结构也应该不在话下。相比于对蛋白折叠的贡献,我倒是更希望 AI 能够助力 Molecular Dynamics Simulation(分子动力学模拟)。对结构生物学而言,这个领域才是亟需进步的。 br/ br/ 我个人认为生命是地球上最神奇的存在,那么多未知要探索,任何一次技术进步都是契机。该考虑的是如何把新技术为我所用,去问出、去探索更有意思的问题。 br/ 最后,当 AI 能够成功预测我们正在孜孜以求的生物大分子动态、原位高分辨率结构的时候,那失业的一定不止是结构生物学家、或者生物学家了 :p br/ br/ strong 各抒己见 /strong /p p style=" text-indent: 2em " strong br/ /strong 根据现在披露的结果,AlphaFold2 已经基本达到实验解析结构的精度。前天 AlphaFold2 团队的报告展示了新冠病毒 SARS-COV-2 的预测结果,说明 RNA 聚合酶这么大的蛋白也能基本预测准确。 /p br/ p style=" text-indent: 2em " 理论上,这会对结构生物学有很大冲击,尤其是以后单颗粒 cryo-EM 的实验方法上,是否还需要把分辨率做得那么高?低分辨率的电子密度图,甚至 SAXS 数据结合预测结果应该就能解决问题了。 br/ 但是,现实中的冲击不会那么大。这是因为,AlphaFold2 模型的创新性非常高,其中结合的 2D transformer 和 3D equivariant transformer 都是 AI 领域的前沿技术,模型的训练难度很大。 /p br/ p style=" text-indent: 2em " DeepMind 的训练方法在学术界很难复现,估计学术界要花几年的时间才能跟上,因此短期内 AlphaFold2 对结构生物学的影响会比较有限。DeepMind 可能会和个别实验室合作,预测蛋白质结构。 /p br/ p style=" text-align: right text-indent: 2em " ——& nbsp 龚海鹏(计算生物学家,清华大学结构生物学高精尖创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 为结构生物学家提供了除晶体学、冷冻电镜、NMR 以外的另外一种手段,用于揭示生物大分子发挥作用的分子机制。 /p br/ p style=" text-align: right text-indent: 2em " —— 张鹏(结构生物学家,主要利用晶体学和冷冻电镜技术;中科院分子植物科学卓越创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 目前还不能预测复杂的分子机器,主要是因为蛋白 - 蛋白相互作用非常复杂,存在极多的可能性。实验手段所揭示出来的蛋白 - 蛋白相互作用方式还只是冰山一角,更何况在不同生理条件和过程中的结构变化。因此,未来对有特定功能的、多个成分组成的、生物大分子复合体的结构解析,以及体内的结构分析,将成为结构生物学实验研究的主要内容。无论有没有 AlphaFold,结构生物学也正在朝这个方向发展。 /p p style=" text-indent: 2em " Rosetta(注:从头蛋白结构建模算法)也好,AI 也罢,结构预测都是基于已有的实验数据够大。没有足够的数据积累,这些基于统计和数据库的预测就无法实现。完全基于物理学和化学第一性原理的结构预测还没有出现。 br/ 实验科学永远是探索未知的必要手段。新的软件算法应该是成为实验科学家的更有力工具,而不是取代实验科学。 /p p br/ /p br/ p style=" text-align: left text-indent: 2em " —— 王宏伟(cryo-EM 专家,清华大学结构生物学高精尖创新中心执行主任,清华大学生命科学学院院长) br/ br/ br/ br/ & nbsp & nbsp & nbsp 最近两年,结构生物学领域经历了与围棋界类似的故事。Alphago Fan 版本时围棋界并不认为它能够战胜人类顶尖高手,可是 Alphago Lee 后整个围棋界甘拜下风,并且转向 AI 拜师学艺。2018 年 Alphafold 出现时,实验结构生物学领域认为被战胜的仅仅是传统的结构预测领域,2020 年 Alphafold2 之后,实验结构生物学领域应该开始思考如何与之共存以及如何「拜师学艺」了。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 目前阶段人工智能在围棋上已经远远超过人类顶尖棋手,但是人类围棋比赛并未因此取消,如同汽车发明后奥林匹克仍然在进行田径比赛一样。原因之一是人工智能虽然超越了人类,但并未解决围棋的最终解。同样的道理,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。 /p br/ p style=" text-align: right text-indent: 2em " —— 周强(cryo-EM 专家,西湖大学生命科学学院特聘研究员) /p p br/ /p p br/ /p p style=" text-indent: 2em " 蛋白质体系越大,结构的解析越难仅依赖计算方法。Cryo-ET& nbsp (冷冻电镜断层成像)& nbsp 技术擅长解析体外难表达的大分子机器结构、细胞中的原位蛋白结构等复杂体系,因此很难被脱离实验手段的方法取代。目前,由于体系过于复杂,使用分子动力学模拟整颗病毒尚未实现,要模拟细菌、细胞、组织,还要很长的路要走。 /p p br/ /p
  • 施一公为首任主任 清华结构生物学中心挂牌成立
    清华大学结构生物学中心今日宣布成立。结构生物学中心依托于清华大学生命科学学院,共同发起方为医学院和化学系。致力于通过培养具有生物、医学、化学、物理等多学科背景的复合型人才,适应社会日益增长的对生命科学综合性人才的需求。中心的首任主任为清华大学生命科学学院院长、医学院常务副院长、著名学者施一公教授。   据介绍,结构生物学是现代生命科学研究的重要主流前沿方向,对于解决一系列生命领域重大基础科学问题,帮助人类更好地理解生命现象本质,指导新药研究与开发具有重要意义。清华大学结构生物学团队在国内前辈和同行的支持下,在与国际学术界的深入交流合作中,经过几年的培育发展,目前已经成为世界领先的结构生物学研究和人才培养基地之一。现有博士后、研究生和实验技术人员约170名,独立实验室15个,研究工作涵盖了现代结构生物学的诸多前沿领域,包括肿瘤抑制因子、细胞凋亡调节蛋白和糖尿病药物靶点蛋白等重要生物大分子的结构与功能研究。从2009年至今,清华大学结构生物学团队在世界顶尖学术期刊《自然》、《科学》和《细胞》上以通讯作者的身份发表高水平研究论文11篇,充分显示了中心良好的发展潜力,也展现了中国结构生物学研究领域的蓬勃生机。
  • 结构生物学:我们用一百年改变了什么?
    在近代生物学发展史上,有一个问题逐渐占据了科学家的视野:蛋白质、核酸、多糖… … 这些构成生命活动基础的大分子的微观结构是什么样的?解决这个问题满足的不仅仅是科学家们的好奇心,更重要的是对结构的认知将极大地帮助人类在分子层面理解复杂的生命活动,并据此设计出阻止或加强其作用的药物,特别是基于蛋白质结构的药物研发。我们现在知道目前解析生物大分子结构的主流实验手段是X射线晶体学和冷冻电镜,而AI又与这两种手段相辅相成。但在生物学发展早期,我们只能推测大分子的成分,窥见它们精巧而严密的运作机制,但对它们的结构细节一无所知,而结构的未知又影响了人类理解它们的功能。诺贝尔奖获得者费曼曾经半开玩笑地说:“许多基础的生物问题是非常容易解决的:只要能看到它们就行!"然而观测这些微小的分子以及它们那更加微小和复杂的空间结构谈何容易,实际上,这个问题直到今天也不能称得上完全解决。但几十年来,科学家们为此付出了巨大的努力并取得了可观的成果,并最终形成了结构生物学。这是一个漫长而艰难的故事,但也不乏有趣之处。01X射线晶体学的得与失1895年,威廉伦琴发现了X射线。这种具有穿透性的电磁波是19世纪最重要的物理学发现之一,对许多领域和学科都产生了深远的影响,不过这不是本文要讨论的重点,我们直接来看X射线是如何影响甚至可以说奠定了近代结构生物学的发展的。简单来说,人们发现极细的X射线流在穿过化合物晶体后,会在照相板呈现出一些具有规律的衍射图案,这些衍射图案是否有可能反映出了晶体的原子排列规律呢?经过几十年的探索,科学家们终于找到了通过数学规则,利用X射线衍射图案来推算晶体中原子排列的方法。这一技术,使得制备晶体→X射线衍射→推算结构的解析大分子结构的方式成为可能,X射线晶体学的时代开启了。X射线解析蛋白质结构的首例突破是在1960年。约翰与他的同事马克斯佩鲁兹””解析了第一个蛋白质——抹香鲸肌红蛋白的三维结构。与今天科学家们能解析的蛋白结构相比,肌红蛋白的结构较为简单,仅由8条α螺旋组成,且没有4级结构。但在当时,所有人都知道,一个新的时代开启了。蛋白质的折叠方式与空间构象对于蛋白质的功能有着决定性的作用。掌握了蛋白的三维结构,就掌握了开启和关闭蛋白功能的钥匙。在接下来的几十年里,一个又一个重要的蛋白质结构被解析出来,核糖体、肌动蛋白、ATP酶、氧化还原酶、RNA聚合酶… … 结构生物学的黄金时期一直持续到本世纪,以至于2006年诺贝尔化学奖获得者罗杰科恩伯格后来说“2007年至2019年,当我为Nature杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。”X射线晶体学并非完美,它的缺陷在这个过程中暴露出来。首先,想要获得一个相对完整的模型,就要获得分辨率足够高的能够得到清晰的X射线“照片”的蛋白晶体,另外,一次X射线穿透获得的是晶体某一角度的衍射图案,这对于计算蛋白质三维结构是远远不够的,需要多角度的几百张甚至成千上万张照片才能构建出一个蛋白质三维结构的雏形,并通过建模和修正得到最终的成品“模型”。这期间的工作量特别是数学部分无疑是巨大的,即使有计算机和更好的X射线设备的辅助计算,X射线晶体学仍然很耗时。还有一个问题是,一些类型的蛋白质被证明很难或不可能结晶,如何进行对于此类蛋白三维结构的探索呢?02冷冻电镜与传统的常温电镜不同,冷冻电镜通过将样品冷冻在一层非晶体的玻璃态冰膜中然后在低温下用电镜成像观察,从而得到结构。这个方法无疑不再对蛋白晶体有硬性要求,可以最大可能的观察到生物大分子的自然状态下。并且,由于样品制备时使用了瞬时冷冻的技术,与X射线晶体衍射学相比,冷冻电镜技术可以瞬时的捕捉到同个样品在不同状态下的近生理构象。不过,虽然这项技术发明得很早,但起初只能对于病毒等较大或具有高度对称性的结构进行解析。因为电镜用于轰击样品的电子具有高能量,无论是生物样品本身还是仪器都难以承受长时间的轰击,而有限次数的曝光得到的图像偏差过大,难以用于精细的结构生物学领域。为了降低电子对样品的损伤,冷冻电镜在低温下,采用了低剂量的图像采集方案,增强图像的信噪比。而近年来,直接电子检测相机的研发和飞速发展的图像处理算法的应用,使得冷冻电镜的分辨率得到了飞跃式的提升,这次分辨率的极大提升,被称为“第一次分辨率革命”。另一方面,随着电镜本身的技术发展,目前已经可以利用冷冻电镜技术观察到原子分辨率的信息,在300 kV冷冻电镜的帮助下,水分子的氢氧原子清晰可见,这就是近年来震撼了冷冻电镜学界的“第二次分辨率革命”。另外,200 kV的冷冻电镜也已经以高分辨解析、多功能用途而广泛安装使用。近年来,冷冻电镜逐渐成为了生物大分子解析的主流手段之一,但是一台冷冻电镜高昂的价格令许多科研工作者或药企研发人员望而却步。而为了使更多的科研工作者能在分辨率革命中受利,在诺贝尔化学奖得主Richard Henderson的呼吁和推动之下,更为“接地气”的100 kV冷冻电镜也被研发出来。100 kV的电镜打破了对于高电压的需求,在电镜整体设计上和相机选择上都以最高性价比的方案进行整合,相比之下较低的价格,使得100 kV的冷冻电镜成为了一台人人都有机会使用的冷冻电镜。03AI的未来?我们在文章最初说过,研究蛋白质和其他大分子的结构是为了了解其功能,并最终转化为改善人类健康和生命质量的应用成果。为了这个目标,科学家们利用X-射线晶体学和冷冻电镜技术解析了一个又一个蛋白的结构,而在无数量变的积累背后,是否有一项科学家们追求的质变存在呢?1965年,《生物化学年鉴》说"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"1972年,克里斯蒂安安芬森在诺贝尔奖演讲中说:"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"利用氨基酸序列直接预测蛋白空间构象是结构生物学家和分子生物学家们很早就有的渴望。虽然在过去的几十年中,科学家们一直致力于在实验室中用X射线或者冷冻电镜解析蛋白质结构,但科学家们并不会把“将一切存在的蛋白质用X-射线或者电子束打一遍”作为最终目标,掌握规律才是人类在科学探索中真正想要追求的东西。而AI的发展引出了这一目标成为现实的可能。经过深度学习的算法已经可以做到通过与已知结构的蛋白序列进行比较来预测目的蛋白的结构。尽管要真正解析未知蛋白的结构还言之过早,但诸如AlphaFold2等软件也的确为结构生物学的研究带来了不少便利。通过AlphaFold2等计算模拟的方法,与以冷冻电镜为代表的实验结构生物学相结合,两者相辅相成,为生物大分子结构解析,特别是药物发现领域带来了巨大的助力。04Structure Based Drug Design (SBDD)随着结构生物学的发展,人们对药物靶标蛋白的结构和功能的关系的了解越来越深入,逐渐形成了基于结构的药物设计策略,Structure Based Drug Design (SBDD)。1995年,罗氏基于SBDD开发了蛋白酶抑制剂Saquinavir,其抗逆转录病毒的功效可以配合其他药物治疗艾滋病。也使得基于结构的药物设计策略的潜力得到证实。之后,各类抗病毒、抗肿瘤、炎症等新药研发成功。时至今日,对靶标结构的认知和功能的预测几乎成为创新药开发中绕不过去的一环,以近年大热的难成药靶点KRAS为例,安进公司通过KRAS G12C突变体的GTP结合位点“口袋”研发出了首款抑制剂,而这只是结构生物学在药物开发中发挥基础作用的无数案例的一个。有越来越多的例子证明,结构中一些亚纳米级别的微小细节变化,为最终的药物成功与否带来了决定性的影响。相信在未来,技术的发展将带人类进一步认知生命活动中那微小而浩瀚,精密且复杂的分子世界,并为药物研发和疾病攻克带来更多启发和帮助。
  • 结构生物学领域迎来“不结晶”革命
    如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。  在英国剑桥市一座钢结构建筑深处的地下室里,一场大规模的“叛乱”正在上演。  一个约3米高的庞大金属箱正通过消失在屋顶上的橙色粗电缆,静悄悄地发射兆兆字节的数据。这是全球最先进的冷冻电子显微镜之一:一台利用电子束为冷冻的生物分子成像并揭秘其分子形状的设备。英国医学研究委员会分子生物学实验室(LMB)结构生物学家Sjors Scheres像个矮子一样站在这台价值500万英镑(合770万美元)的设备旁边介绍说,这台显微镜非常敏感,以至于一个叫喊声就能毁掉试验。  在全球实验室中,类似这样的冷冻电镜正影响着结构生物学领域。过去3年里,它们揭示了制造蛋白的核糖体细节,而这些发现正在以飞快的速度发表于顶级期刊。结构生物学家们毫不夸张地认为,他们的领域正处于一场革命当中:冷冻电镜能快速创建那些抗拒X射线结晶学和其他方法的分子的高分辨率模型。与此同时,利用此前技术获得诺贝尔奖的实验室正争先恐后地学习这种“新贵”方法。  挑战“王者”  当1973年生物学家Richard Henderson到LMB研究一种被称为菌视紫红质的蛋白时,利用光能量推动质子穿过细胞膜的X射线结晶学是毫无疑问的“王者”。Henderson和他的同事Nigel Unwin利用这种蛋白制成二维晶体,但它们并不适合X射线衍射。因此,两人决定尝试电子显微镜。  当时,电子显微镜用于研究被重金属染色剂处理过的病毒或组织切片。一束电子被射向样品,其中挣脱开来的电子被探测到并用于描绘它们所撞入的材料结构。这种方法产生了烟草病菌的首幅清晰图像,但染色剂使观察单个蛋白变得困难,更不用说X射线所能揭示的原子水平上的细节。  在一个关键步骤中,当Henderson和 Unwin利用电子显微镜对菌视紫红质的晶片进行成像时,他们省略了染色剂,相反把晶体放在金属网格上,以便使蛋白凸显出来。“你能看到蛋白中的原子。”和Unwin在1975年发表了菌视紫红质结构的Henderson介绍说。“这是一个巨大的进步。”美国加州大学旧金山分校细胞生物学家David Agard表示,“这就是说,利用电子显微镜研究蛋白结构将成为可能。”  冷冻电镜领域在上世纪八九十年代得到发展。一个关键进步是将液态乙烷用于瞬间冻结溶液中的蛋白并使其保持静止。不过,通常情况下,这种技术仍然只能将蛋白结构解析到10埃(1埃相当于1纳米的十分之一)的分辨率——与X射线晶体学超过4埃的模型相比并没有竞争力,并且远远无法满足将这些结构用于药物设计的要求。当诸如美国国立卫生研究院等资助者把上亿美元投资到野心勃勃的晶体学项目时,对冷冻电镜的资助远远落后于此。  1997年,当Henderson参加关于3D电子显微镜的年度高登研究会议时,一位同事在开幕式上发表了颇有挑衅意味的声明:冷冻电镜是一种“小生境”方法,不可能取代X射线晶体学。不过,Henderson能看到一个不同的未来,并且在随后的演讲中进行了反驳。“当时我说,我们应当让冷冻电镜在全球统治所有结构学方法。”他回忆道。  革命从此开始  此后第二年,Henderson、Agard和其他冷冻电镜的狂热支持者有条不紊地实现了各种技术改善,尤其是找到了感知电子的更好方法。在数码相机风靡世界很久之后,很多电子显微镜专家仍然偏好过时的胶片,因为它能比数字传感器更高效地记录电子。不过,和显微镜生产厂商一道,研究人员开发出远超胶片和数码相机探测器的新一代直接电子探测器。  这些从2012年左右获得应用的探测器,能以每秒几十帧的速率捕捉单一分子的速射图像。与此同时,诸如Scheres等研究人员编写了复杂的软件程序,将上千幅2D图像转变成在很多情况下可与晶体学解析的分子图像质量相媲美的3D模型。  冷冻电镜适合能忍受电子轰击而不会四处晃动的稳定、大型分子,因此通常由几十个蛋白制成的分子机器是很好的目标。而研究证明,没有什么比由RNA相互缠绕支撑的核糖体更加合适了。通过X射线晶体学解析核糖体结构的方法,让3位化学家获得了2009年诺贝尔化学奖。过去几年里,不同的研究团队迅速发表了来自众多生物体的核糖体冷冻电镜结构,包括首个人类核糖体高分辨率模型。在由分享了2009年诺贝尔奖的Venki Ramakrishnan领导的LMB实验室,X射线晶体学在很大程度上变得无人问津。他认为,对于大型分子来说,“冷冻电镜将大幅取代晶体学技术的预测是可靠的”。  今年5月,加拿大多伦多大学结构生物学家John Rubinstein和他的同事利用约10万幅冷冻电镜图像,创建了一种名为V-ATPase、形状类似转子的酶的“分子影片”。V-ATPase通过燃烧三磷酸腺苷(ATP)推动质子进出细胞液泡。“我们看到的是一切事情都在灵活进行。”Rubinstein说,“它在弯曲、扭动和变形。”在他看来,这种酶的灵活性能帮助其高效传递ATP释放的能量。  统治结构生物学领域  像任何新兴领域一样,冷冻电镜领域也有着成长的烦恼。一些专家担心,竞相利用此项技术的研究人员会产生有问题的结果。2013年发表的一种艾滋病病毒表面蛋白的结构,便受到科学家的质疑。他们认为,用于构建模型的图像是白噪声。从那以后,虽然其他团队产生的X射线和冷冻电镜模型对原始模型提出了挑战,但这些研究人员一直坚守他们的成果。  今年6月,在高登会议上,想要更多质量控制的研究人员通过一项决议,督促各期刊为审稿人提供关于冷冻电镜结构如何被创建的细节资料。  成本也会减缓此项技术的扩散。据Scheres估算,LMB每天花费约3000英镑运行其冷冻电镜设备,还要加上1000英镑的电费。大部分电费是由储存和处理图像所需的计算机产生的。“对于很多实验室来说,这是一项很高的开支。”  为了让冷冻电镜的使用更加便利,一些资助者建立了研究人员能预定时间的共享设备。霍华德休斯医学研究所(HHMI)在其弗吉尼亚州珍利亚农场校区运营着一个对HHMI资助的研究人员开放的冷冻电镜实验室。在英国,由政府和惠康基金会资助的一台全国性冷冻电镜设备,今年在牛津附近的迪德科特开始运行。“人们想要了解冷冻电镜,已成为当下的一股浪潮。”帮助建立上述设备的伦敦大学伯克贝克学院结构生物学家Helen Saibil表示。  追赶这一浪潮的还有纽约洛克菲勒大学生物物理学家Rod MacKinnon。他因确定了特定离子通道的晶体结构而共同分享了2003年诺贝尔化学奖,但如今却在深入研究冷冻电镜。“我正处在学习曲线的陡坡上,而这总是令我兴奋不已。”MacKinnon希望利用冷冻电镜研究离子通道是如何打开和关闭的。  当Henderson在1997年反驳说冷冻电镜将统治结构生物学世界时,他或许是在口是心非。但将近20年以后,他的预言已不像当时看上去的那么夸张。“如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。”Henderson说,“我们或许已经成功了一半。”
  • 冷冻电镜技术“接管”结构生物学
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202002/uepic/a30b56e7-51e3-4fed-aa1a-7c72bf69ff0e.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 英国剑桥分子生物学实验室的冷冻电子显微镜图片 /span span style=" color: rgb(127, 127, 127) " 来源:剑桥MRC分子生物学实验室 /span /p p   一项革命性的蛋白质三维形状测定技术正在蓬勃发展。上周,一个收集由冷冻电子显微镜(cryo-EM)测定的蛋白质和其他分子结构的数据库,获得了第10000个数据条目。 /p p   据《自然》报道,近年来,各实验室向电子显微镜数据库(EMDB,由欧洲生物信息研究所建立,旨在满足学术界对于冷冻电镜数据的需求)提交的数据呈指数级增长,这主要因为全世界实验室cryo-EM数量的爆发式增长。尽管数据库也接收其他电子显微镜结构分析的数据,但其中绝大部分数据来自cryo-EM。 /p p   cryo-EM通过将蛋白质或其他生物分子急速冷冻,并用电子对其轰击,从而生成单个分子的显微图像。它们被用来重建分子的三维形状或结构。这有助于揭示蛋白质如何工作、它们在疾病中如何发挥作用,以及如何用药物靶向它们。 /p p   此前几十年,X射线晶体衍射一直是备受结构生物学家青睐的研究方法,该方法首先使蛋白质结晶,然后用X射线对其连续打击,并根据衍射光的信号模式重建它们的形状。 /p p   X射线晶体衍射法虽然能够生成高质量的分子结构,但并不是所有蛋白质都可轻易使用,因为有些蛋白质可能需要数月或数年才能结晶,而有些甚至根本无法结晶。 /p p   这便体现出cryo-EM的优越性,该方法无需蛋白质结晶,但这项技术也存在局限,比如它经常生成低分辨率结构。 /p p   2012到2013年,由于在硬件和软件方面的突破,催生了更灵敏的电子显微镜和可将拍摄到的图像转换成分辨率更高的分子结构的复杂软件。 /p p   该项技术专家、英国剑桥MRC分子生物学实验室(LMB)结构生物学家Sjors Scheres说,这为cryo-EM的迅猛发展铺平了道路。 /p p   LMB结构生物学家Richard Henderson因对cryo-EM技术发展的贡献获得了2017年诺贝尔化学奖。他说,即使在这项技术取得进步后,最初的增长也很缓慢,因为只有少数实验室配置了该设备。但当他们开始使用冷冻技术绘制分子的详细结构图像时,比如被称作蛋白质制造机器的核糖体,这项技术很快就引起了其他科学家及其所在机构和资助者的注意。 /p p   Henderson说:“所有投资于其他研究和做出错误决定的人,花了一年的时间才赶上来。” /p p   他预计,到2024年,利用冷冻电镜技术测定蛋白质结构的数量将超过X射线晶体衍射法。cryo-EM已经取代了X射线晶体衍射,成为科学家特别感兴趣的研究嵌入细胞膜的蛋白质的工具。许多膜蛋白与疾病有关,可为药物提供靶点。 /p p   此外,Henderson还认为cryo-EM的发展将在某个时期开始放缓。他说,影响其快速增长的一个因素是成本高,一台如此强大的显微镜其成本可能超过500万英镑(700万美元)。而它们每天的运行成本也高达数千英镑,并且需要专门的实验室来安置,以降低震动。 /p p   Henderson正在努力说服相关公司开发性能好且价格更便宜的cryo-EM,以进一步推广这项技术。(徐锐) /p p br/ /p
  • 国际病毒结构生物学研讨会在生物物理所召开
    2015年4月9日,国际病毒结构生物学研讨会(International Mini-Symposium of Structural Virology)在所9501会议室顺利召开。会议由生物物理所主办,来自清华大学、中山大学、湖南师范大学以及美国Sripps研究所等专家学者和研究生们参加了此次会议。   首先,Sripps研究所的Jack Jonson教授和生物物理所的饶子和院士做了两个关于病毒研究领域的主题报告。Jack Jonson教授向大家介绍了其实验室以 Nudaureliacapensis omega virus、Sulfolobus turreted icosahedral virus 等病毒为基础,利用晶体学、电子显微学等技术手段系统地研究了病毒成熟的过程。饶子和院士作为中国病毒结构生物学的领军人物,他们的工作重点是与人体重大疾病密切相关的病毒的研究。饶院士向大家展示了过去几年在手足口病源病毒EV71以及CA16的系列研究工作,并且向大家阐述了基于结构的抗病毒药物研究动态。此外,饶院士还进一步展示了他们近期关于甲型肝炎病毒的重大研究进展。   冷冻电镜这一强大的技术手段在研究生物大分子结构特别是柔性结构研究方面具有特别的优势。生物物理所朱平研究员介绍了他们以冷冻电镜为主要技术手段对染色体30nm丝,染色体重塑复合物Tip49a/Tip49b以及病毒类似颗粒等结构研究 中山大学张勤奋教授则利用这一技术手段对青蟹呼肠孤正二十面体病毒柔性突出进行了结构研究。   相对于冷冻电镜,晶体学对于小分子量的生物分子结构研究具有独到的优势。生物物理所孙飞研究员作为生物物理所生物成像中心主任,近年来在发展冷冻电镜成像及图像重构算法方面有着显著的成绩。他向与会人员展示了以兔出血病毒RHDV为研究对象将不同尺度的数据进行整合,利用电镜低分辨数据获得晶体学相位的方法 清华大学的向烨教授以及生物物理所的章新政研究员则展示了利用晶体与电镜等联合手段来研究细菌的病毒&mdash &mdash 噬菌体浸染宿主的过程,这其中包括噬菌体T4噬菌体入口装置的近原子分辨率结构以及&phi 29浸染宿主过程研究。   冷冻电镜图像算法上的进步会极大地增加我们对于图像信息的提取。湖南师范大学的刘红荣教授和清华大学的程凌鹏副研究员通过合作系统地研究了非正二十面体对称质型多角体病毒结构并在重构算法上进行改进,使原本缺失的核酸结构得以显示。此外,作为本次会议的主要赞助商无锡App Tec公司的Henry Lu向与会人员展示了他们在利用小鼠与人的Chimera Liver 的Ex Vivo实验所取得的关于抗甲型肝炎病毒药物的研究进展。   研讨会报告深入浅出,与会者对冷冻电镜技术成像及算法的发展对于解析生物大分子特别是病毒结构的优势以及基于结构抗病毒药物的研发都表现出极大的热情,与会师生热烈讨论,受益匪浅。
  • 施一公Cell综述:X射线晶体学技术和结构生物学的历史与现状
    X射线晶体学技术是人们了解原子世界的利器,人们通过这一技术获得了许多重要的生物学结构。在晶体学技术百年诞辰之际,Cell杂志发表了清华大学施一公教授的前沿文章。这篇综述性文章全面介绍了X射线晶体学技术和结构生物学的历史和现状,读者现在可以在Cell网站免费获取全文。   1914年,德国科学家Max von Laue因为发现晶体中的X射线衍射现象,获得了诺贝尔物理学奖,这一发现直接催生了X射线晶体学。从那以后,研究者们用这一衍射技术解析了大量复杂分子的晶体结构,从简单的矿物、高科技材料(如石墨烯)到病毒等生物学结构。   自1957年确定了肌红蛋白的结构以来,X射线晶体学技术就成为了结构生物学的重要工具,为人们不断揭示生命的奥秘。这一技术不仅增进了我们对细胞的认识,还大大推动了现代医学的发展。   这篇文章首先从结构生物学的角度,回顾了X射线晶体学技术的发展简史。随后,施一公教授以蛋白激酶和膜整合蛋白为例,阐述了结构生物学的发展和现状,探讨了技术发展带来的影响并对未来进行了展望。   作者简介:   施一公,世界着名的结构生物学家,美国双院外籍院士,中国科学院院士。曾是美国普林斯顿大学分子生物学系建系以来最年轻的终身教授和讲席教授。   2008年2月至今,受聘清华大学教授 2009年9月28日起,任清华大学生命科学学院院长。获2010年赛克勒国际生物物理学奖。2013年4月当选美国艺术与科学院外籍院士、美国科学院外籍院士。2013年12月19日,施一公当选中国科学院院士。2014年4月2日,施一公获爱明诺夫奖,成为获此奖项的第一位中国人。该奖为国际知名奖项,由瑞典国王亲自颁发。   主要科研领域与方向:主要运用结构生物学和生物化学的手段研究肿瘤发生和细胞凋亡的分子机制,集中于肿瘤抑制因子和细胞凋亡调节蛋白的结构和功能研究与重大疾病相关膜蛋白的结构与功能的研究   推荐阅读   英文全文下载:A Glimpse of Structural Biology throughX-Ray Crystallography
  • 两位诺奖得主回忆结构生物学发展史
    转载自Knowable Magazine "Structural biology: How proteins got their close-up"前言从细菌到人类,所有的生物都由细胞组成。细胞由四种大型生物分子构成:碳水化合物、脂肪、核酸(即DNA和RNA)和蛋白质。这些生命的重要组成部分小到肉眼无法观测,甚至用光学显微镜也难以成像。因此,尽管19世纪的科学家们知晓这些"隐形"分子的存在,也能够通过实验找出它们的化学成分,但科学家们却看不到它们:这些分子结构的任何细节始终是个谜题。这就是今天的主题:这些"隐形"分子是如何在20世纪被人们成功观测到的。 "许多基础的生物问题是非常容易解决的:只要能看到它们就行!" —理查德• 费曼这是一个漫长而艰辛的故事:关于开发能够解析生物分子结构的工具和技术,以及对这些分子结构的解析如何使我们能够理解它们的功能,并设计出阻止或加强其作用的药物。为了讲述这个故事,我们将重点放在蛋白质上:这些大分子参与了我们身体中几乎所有的化学过程:它们解读遗传密码、催化化学反应、并充当我们细胞的守门员。蛋白质由名为氨基酸的小分子链构成。了解这些链如何折叠成三维结构至关重要,因为正是蛋白质的三维形态决定了它们的功能。若要创建一个准确的蛋白质三维模型,我们需要知道组成该蛋白质的所有氨基酸中的所有原子在空间中的排列。 我们无法看到原子,因为它们比可见光的波长还要小。 为了探测这些原子,我们需要一种波长更短且穿透性极佳的波:这种波使我们能够同时对蛋白质内部和外部的原子进行观测。因此,今天的故事开始于德国的维尔茨堡大学城。在那里,伦琴发现了X射线。X射线的发现那是1895年,威廉• 伦琴正在实验室里工作。像他那一代的许多物理学家一样,他正在做阴极射线的实验:在一个叫做克鲁克司管的设备中产生的电子流。但与他同时代的人不同的是,伦琴注意到了一些意想不到的事情:离克鲁克司管相当远的一个屏幕在发光。伦琴认为,那个屏幕太远了,发光绝不可能是由阴极射线引起的。在接下来的几周里,他研究了这种发光的荧光,并意识到他发现了一种能够穿透固体物体的新型射线。 就在圣诞节前,他把他的妻子带到实验室,给她的手拍了一张照片。 在照片中,她的血肉消失了,但骨头和戒指都清晰可见。威廉• 伦琴因发现X射线于1901年获首届诺贝尔物理奖关于他的发现,伦琴写了一份的报告。1896年初,一份英文译本发表了在《自然》杂志上。"我们看到,一些剂能够穿透对紫外线、阳光或弧光不透明的黑色纸板。所以,研究其他物体能在多大程度上被同一个剂穿透是很有意义的。"该报告继续说道:"厚的木块仍然是透明的。两三厘米厚的松木板只吸收了很少的光线。一块15毫米厚的铝板仍然能够让X射线通过,但大大减少了发出的荧光。"伦琴的发现立即产生了影响。在几个月内,医生们就开始用X射线来拍摄骨折。人们为X射线写诗,奇妙的X射线也成为各大展览中的热点。1901年,伦琴因其发现被授予第一个诺贝尔物理学奖:这是本故事中授予科学家们的众多诺贝尔奖中的第一个。与此同时,在实验室里,物理学家们对X射线的性质感到困惑。它们究竟是波还是粒子?另一位德国物理学家马克斯• 冯• 劳厄推断,如果X射线是波,那么它们的波长可能与晶体中原子之间的规则空间相似,从而提供一种破译晶体结构的方法。马克斯• 冯• 劳厄因发现晶体中X射线的衍射现象获得1914年诺贝尔物理学奖这是一个非常重要的推断,它启蒙了X射线晶体学的发展,这种技术最终将使科学家们能够弄清蛋白质结晶的结构,但走到这一步却花了几十年。起初,X射线晶体学被应用于更小的分子。而在这之前,弄清楚该技术的原理也花费了很长的时间。X射线晶体学时代1912年夏天,数学家和物理学家威廉• 亨利• 布拉格和他的儿子,另一位物理学家劳伦斯• 布拉格在英国的海边度假时听闻了冯• 劳厄的一个讲座。 假期结束后,父子俩回到他们的大学,思考晶体对X射线的衍射问题。那年晚些时候,老布拉格给《自然》杂志写信。 他首先描述了通过发射X射线获得的显著效果。"...细小的X射线流在通过晶体后并被发射到照相板时,有了显著效果。在照相板上发现了一种奇怪的斑点排列,其中一些斑点与中心斑点相距甚远,以至于它们必须被解释为大角度的散射....."这些是被晶体中的原子散射的X射线,在胶片上形成了一个独特的斑点图案。"这些斑点的位置似乎取决于简单的数字关系,以及晶体对入射流的呈现方式。我发现,当晶体(锌闪石)被放置到入射光线平行于晶体中立方体的边缘时,斑点的位置可以通过以下简单规则预测。假设原子以矩形方式排列,相邻原子产生的斑点距离为NA,其中A是相邻原子之间的距离,而N是一个整数......"闪锌矿的X射线衍射照片布拉格父子找到的数学规则提供了一种解释X射线产生的衍射图案的方法,从而揭示了晶体中原子的排列。老布拉格设计了一种新的、更强大的方法来进行X射线衍射,发明了一种叫做X射线光谱仪的仪器。1914年,冯• 劳埃因其工作获得了诺贝尔奖。第二年,布拉格父子也得到了诺贝尔奖。当时只有25岁的小布拉格目前仍是最年轻的诺贝尔奖科学得主。布拉格父子的布拉格定律使科学家能够解析各种晶体的原子结构获1915年诺贝尔物理奖起初,布拉格的方法被应用于简单物质,如食盐、苯和糖分子,揭示了它们结构的秘密。许多科学家对像蛋白质结构这样复杂的东西能否用这种方法解析持怀疑态度。1936年,《生物化学年度评论》中讨论了X射线研究的进展。DOI: 10.1146/annurev.bi.05.070136.000431"对于像糖和氨基酸这样的晶体物质,晶体内分子和原子的排列是能被完全解析的;但对于像多糖和蛋白质这样的物质,其中原子的排列不太规则,同时缺乏共同的晶体外观,我们不能指望完全解析它们。"但几年后,即1939年,有人提出了一个更乐观的观点:作者指出,像X射线晶体学这样的技术,正在深刻地改变生物学。 当作者考虑到各种可能性时,他似乎相当兴奋。DOI: 10.1146/annurev.bi.08.070139.000553"生物学迅速成为了一门分子科学,站在物理学和化学的肩膀上,生物学的前景广阔,人们迫切地想知道生物学会将人类带向何方。生物分子的结构成为了学界的主流追求。这些分子中最重要的是蛋白质,而蛋白质的结构解析也是最激动人心的。"为了解决蛋白质问题,需要取得一些进展:寻找更好的蛋白质结晶方法,并用新的数学方法解析X射线的衍射图案;以及用计算机计算数据。 英国剑桥的科学家们正致力于应对所有这些挑战。1953年,X射线晶体学获得了巨大突破:它被用于解析一个极其重要的结构, 并不是蛋白质,而是DNA,詹姆斯• 沃森、弗朗西斯• 克里克和莫里斯• 威尔金斯为此获得了诺贝尔奖。因解析DNA分子结构,以及一些相关研究获1962年诺贝尔生理学或医学奖的三位得主约翰• 肯德鲁是沃森和克里克在剑桥的同事,作为一位非常积极的研究人员,他下决心解析肌红蛋白的结构。 肌红蛋白是在肌肉中储存氧的蛋白质。肯德鲁选择它的原因是尺寸:肌红蛋白并不大。 他的首要任务是培育适合被X射线解析的晶体。在尝试对马、鼠海豚、海豹、海豚、企鹅、乌龟和鲤鱼的肌红蛋白进行结晶后,他终于成功地培育出从抹香鲸肉中提取的肌红蛋白的美丽晶体。 鲸鱼肌肉细胞内部的含氧肌红蛋白(红色)以及肌动蛋白和肌球蛋白纤维(黄色和棕色)。大量的蛋白质结构现在已经被确定,这是一个曾经无法想象的成就--为生命的生物化学提供了关键的见解,也为新型药物设计和其他发明提供了素材。与此同时,肯德鲁的同事马克斯• 佩鲁兹开发了一种向蛋白质分子添加"重"原子的技术。这些重原子并不会改变蛋白质的结构,但它们为比较不同角度的X射线照片提供了一个参考框架。经过多年的工作,肯德鲁仍然不知道肌红蛋白中每一个原子的精确位置,但他拥有了足够的信息,使得他可以制作一个蛋白质的三维模型。 这个模型并不像DNA的双螺旋那样漂亮;它看起来更像一根扭曲的香肠。马克斯• 佩鲁兹(左)与约翰• 肯德鲁(右),因发现血红蛋白分子结构获1962年诺贝尔化学奖肯德鲁和他的肌红蛋白3D模型就在这个时候,理查德• 亨德森加入了这个小组。直到今天,亨德森仍然在剑桥从事蛋白质结构解析的工作,并以开拓新技术而闻名,我们稍后将听到这些技术。但那时他刚刚毕业,正在寻找一个博士生职位。他还记得从爱丁堡到剑桥参观实验室的情景:理查德• 亨德森(右)冷冻电镜三位开创者之一于2017年获诺贝尔化学奖理查德• 亨德森: "他们有一个开放日,也就是星期六上午,他们周末居然也在工作!而在我去过的其他实验室,科学家都回家了,积极性也不够高。所以我当时就想:“哦,这是个非常好的实验室”。亨德森加入了这个勤奋的剑桥团队。这项工作虽令人激动,但进展极慢。理查德• 亨德森: "在1959年,他们以非常高的分辨率得到了肌红蛋白的结构,1960年这项研究成果发表,之后的五年没有任何其他结构被发表,直到伦敦的皇家研究所发表了溶菌酶。然后在那之后,又过了三年才有了第三个结构。"难以相信科学家们花了这么久的时间,为什么进展如此缓慢?一开始,X射线晶体学家研究的小分子包含不到50个原子,例如苯和糖环。相比之下,肌红蛋白,一种相对较小的蛋白质,包含了超过1000个原子。为了弄清这么多原子的位置,科学家不得不拍摄数百张X光照片,测量每张照片中每个光点的强度,并进行繁琐的计算。这是一个对数据处理的巨大挑战。理查德• 亨德森:"在我的博士论文中,我拍摄了大约300张这样的照片,一开始我必须亲自测量它们:我得把胶片放在胶片扫描仪里,一束光沿着一排斑点移动,然后每隔三分钟,就能得到一张印有痕迹的纸,上面可能有40个斑点。这时我需要用尺子在纸上测量斑点被衍射的强度,然后再把这个数字打到电脑纸上。而这仅仅是一排斑点的工作量。"这是非常耗费时间的。研究人员逐渐渴望如何将这一过程的一部分自动化。他们发明了自动的X射线探测器和仪器,以加快斑点的测量。约翰• 肯德鲁意识到,解析一个结构所需的计算可以由计算机来完成。幸运的是,剑桥大学数学实验室刚刚建成了第一批具有存储程序的电子计算机。它们被称为EDSAC,肯德鲁便学习了如何为它们编程。随着更强大的计算机的出现,X射线晶体学家们开始使用借助计算进行结构解析。亨德森回忆说,在20世纪60年代,他们前往伦敦,使用帝国学院的IBM 7090。剑桥大学的团队每天可以使用这台计算机1个小时。最早的两台IBM7090之一理查德• 亨德森 :"于是,每天下午4点,一辆出租车就来了,带着一批研究人员和一箱箱打包好的电脑卡,送到剑桥的火车站。她们上了去伦敦的火车,上了地铁,在南肯辛顿站和帝国学院之间的隧道里带着所有这些沉重的盒子走上大约有一公里。然后从晚上7点到8点,剑桥大学的MRC程序在计算机上运行,操作程序的人大多数是被招募的年轻女性,在当时被我们称为 "计算机女孩",她们现在都是大师了。在当时,她们做的极其完美:数据会被打印好并带回来。第二天早上9点,每个研究员都会检视他们前一天的数据,并为下午4点的寄送工作做好准备"。罗莎琳• 富兰克林“DNA之母”世界公认的名誉诺奖得主难怪这是个缓慢的工作! 女士们不仅要携带着成箱的数据穿越伦敦,她们还要抽出时间去做X射线晶体学解析。在伦敦国王学院,罗莎琳• 富兰克林制作了DNA的X射线衍射图案。她的照片使沃森和克里克能够制作他们著名的模型。 在牛津,多萝西• 霍奇金解决了青霉素的结构,后来又研究了其他重要的医学分子,包括维生素B12和胰岛素。她于1964年获得了诺贝尔奖,该领域的另一个诺贝尔奖!多萝西• 霍奇金因解析青霉素、维生素B12等结构获1964年诺贝尔化学奖随着更多计算机的出现和计算能力的提高,更多的结构被解决了。计算机的持续进步是另一个主题,我们将回到这里。对结构生物学这一新领域的兴奋之情日渐高昂。一些科学家认为,最终他们甚至不需要X射线晶体学便能弄清蛋白质的结构。"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"那是在1965年在《生物化学年鉴》上被提出的。 当时的想法是,如果你知道展开的蛋白质链中的氨基酸序列,那么通过遵循原子和分子如何相互作用的简单规则,你可以算出蛋白质链将如何折叠起来。DOI: 10.1146/annurev.bi.34.070165.001335化学家克里斯蒂安• 安芬森在1972年的诺贝尔奖演讲中重复了这一主张。"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"这是一个有吸引力的想法。 如果可以用蛋白质折叠的规则对计算机进行编程,并输入氨基酸序列,那么结构可能在几天而不是几年内得到解决,为昂贵和耗时的实验方法提供一个替代方案。克里斯蒂安• 安芬森因对核糖核酸酶的研究获1972年诺贝尔化学奖但现在还不行。为了实现这样的目标,生物学家首先必须通过使用和改进X射线晶体学来解决更多蛋白质的结构。并通过发明新的方法来观察蛋白质。而这项工作将产生更多的诺贝尔奖。在1999年的最后几周,生物化学家罗杰• 科恩伯格终于抵达了他十多年工作的顶点:他在斯坦福同步辐射实验室成功解析出他一直在研究的蛋白质的结构。罗杰• 科恩伯格因对真核转录的分子基础所作的研究获得2006年诺贝尔化学奖罗杰• 科恩伯格: "一开始的时候,我们远远不清楚是否可以做到。当然,这是让我们从也许永远不会成功的恐惧中解脱出来的原因,也是对最终结果感到振奋的原因。"科恩伯格和他的团队已经解决了RNA聚合酶的结构。 这是一个巨大的成就,并且得到了另一个诺贝尔奖的认可。罗杰• 科恩伯格: "在我们解析这个结构的时候还是20年前,但迄今为止,这依然是通过X射线衍射法研究的最大和最具挑战性的结构。"RNA聚合酶可以说是生物学中最重要的蛋白质。 这是一个挑战,因为它不是一个单一的蛋白质。该团队研究了来自酵母的RNA聚合酶,它实际上是由12种蛋白质组成的。更重要的是,它是一个有活动部件的分子机器。罗杰• 科恩伯格:"RNA聚合酶实际上是在读取遗传信息。因此,它负责决定哪些信息将被储存在基因组的DNA中,以指导每个生物的活动能力。简单如病毒,或复杂如人类,没有生物体不依赖RNA聚合酶而生存。"为了解决RNA聚合酶的结构,科恩伯格和他的团队花了数年时间,为他们的蛋白质寻找合适的晶体和 "重 "原子。但这还不够。他们还需要更强烈的X射线束。罗杰• 科恩伯格: "X射线衍射的方法依赖于结构中各个原子的X射线光子散射--原子数量越多,为此必须记录的散射光子数量就越大。 如果光束强度太低,光子的数量就太少了,获得的信息也会因此不足。使用强度较高的光束,可以检测和记录更多的原子"。这一难题的解决方案便是同步加速器。同步加速器是一种粒子加速器,它以极高的速度推动电子束,这些高速电子发出的X射线比传统的X射线要亮几百万倍。它本质上是伦琴发现X射线时使用的克鲁克司管的一个升级版本。来自同步加速器的高强度X射线和不断提高的计算机能力相结合,使得像科恩伯格这样的科学家能够解决更复杂的蛋白质结构。2007年至2019年,当我在《自然》杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。但这是有限制的。X射线晶体学仍然很耗时,尽管不像早期那样耗时。 而且一些类型的蛋白质被证明很难或不可能结晶。冷冻电镜时代在世纪之交,一种新的技术进入了人们的视野。或者说,一种新的技术让科学家们对蛋白质有了新的认识。 该技术不使用X射线,而使用电子束。 这就是所谓的冷冻电镜。称之为冷冻,是因为蛋白质样品会被冻结。理查德• 亨德森是最早使用该技术的人之一。ThermoFisher Krios G4 冷冻透射电镜理查德• 亨德森: "当你照射任何东西时,无论是用X射线还是电子,除了得到一个美丽的图像外,分子实际上在被破坏,在一定的曝光后,分子已经失去了它的结构,所以在不得不因照射次数太多而停止之前,能得到的信息量是有限的,因为样品已经失活了。而事实证明,对于同样数量的有用信息,电子所造成的损害要比X射线小一千倍。"对于冷冻电镜,蛋白质不需要是一个晶体。相反,它被从细胞中分离出来,然后冷冻到液氮温度或以下。 冷冻有助于保护蛋白质免受辐射损害。亨德森将该技术应用于嵌入细胞膜的蛋白质。事实证明,这些大型蛋白质复合物极难通过X射线晶体学进行研究。 冷冻电镜变得非常流行。 在2000年代,科学家们谈到了一场 "冷冻电镜革命",许多人从X射线晶体学转向了这种新的、更快的技术。2017年,理查德-亨德森被授予诺贝尔奖。与X射线晶体学一样,随着计算能力的提高,冷冻电镜成为一个更强大的工具,使更多的数据能够更快地被分析出来。罗杰• 科恩伯格:"我们不能低估计算能力的非凡进步所做出的贡献。从这个角度来看,就RNA聚合酶而言,当我们在1999年底记录RNA聚合酶的X射线衍射以解决其结构时,需要在制造商提供给我们的特制计算机上进行一个多月的计算。今天,同样的计算可以在几分钟内在一台笔记本电脑上完成"。计算机一直是X射线晶体学和冷冻电镜成功的关键。 现在我们是否可以完全摒弃这些实验技术,而仅仅使用计算能力来预测蛋白质的结构?还记得克里斯蒂安• 安芬森在其诺贝尔演讲中提出的挑战吗?"...使预测蛋白质构象的想法更加现实。"AlphaFold的盛大登场为了预测一串氨基酸将如何折叠起来,科学家们使用了一个叫做"自由能"的概念。自由能使蛋白质不稳定。我们的想法是,氨基酸将以这样一种方式折叠起来,以使自由能最小化。理查德• 亨德森: "你可以通过能量最小化来做结构,最多可达60或70个氨基酸。所以美国西雅图的大卫• 贝克小组在这方面做得特别好。但是一旦你想尝试1000个氨基酸左右的蛋白质,答案就会迅速变得遥不可及。"因此,这项技术对于弄清一个蛋白质的一小部分,也许是一个重要的侧链,是有效的。但是对于有数百或数千个氨基酸的整个蛋白质,科学家们采用了不同的方法。他们并不是要求计算机从第一原理中找出结构,而是利用已知的蛋白质结构数据库训练一种算法。 这就是谷歌的人工智能实验室最近所做的,他们的蛋白质预测算法AlphaFold在2020年的一次比赛中超过了所有其他的算法。罗杰• 科恩伯格:"AlphaFold的基础确实来自于蛋白质结晶学的悠久历史和它的巨大成功,以及已经解析并存入蛋白质数据库的巨量的结构。AlphaFold的不同之处可能在于,其公司背景下大量的人工智能专家,这远远超出了任何个人学术研究者所能做到的,他们所拥有的计算能力,来自于分布在全球各地的顶级计算中心。从某种程度上说,他们除了将他们所拥有的资源用于解决一个经过充分研究的、现在看来已经解决的问题之外,也没做太多贡献嘛。科恩伯格当然认识到像AlphaFold这样的蛋白质预测程序在预测非常多的蛋白质结构方面的潜力,包括那些以前没有被解决的蛋白质。罗杰• 科恩伯格: "而如果预测的数量足够多,那么AlphaFold对生命科学,尤其是生物学的影响是深远的。"
  • “冷冻电镜理论与技术在结构生物学中应用”研讨会举行
    p   11月25日,由上海市科学技术协会主办的“冷冻电镜理论与技术在结构生物学中应用”研讨会在蛋白质中心顺利举行。本次会议由上海市生物物理学会和蛋白质中心共同协办,会议邀请了国内冷冻电镜知名专家学者、电镜工作者和学生近60余人参会。 /p p   同济大学祝建教授主持会议,他代表大会主办方热烈欢迎各位专家以及与会人员的到来,希望大会能够在理论与技术上给国内科研工作者提供帮助。 /p p   蛋白质中心丛尧研究员回顾了蛋白质中心电镜系统创立的过程。她谈到,作为国家蛋白质科学研究(上海)设施的核心技术力量,电镜系统旨在满足国内外科研用户在蛋白大分子复合物方面的结构解析需求。随后,她还介绍了课题组最新研究成果,在最新的蛋白结构解析工作中分辨率成功突破了3埃,达到世界先进水平。随后,围绕“冷冻电镜单颗粒重构技术以及电子断层三维重构技术在结构生物学中的应用”这一主题,中山大学张勤奋教授、第二军医大学杨勇骥教授、浙江大学洪健教授、浙江大学博士研究生王春艳和蛋白质中心博士研究生曹龙兴依次登台作了精彩的学术报告。” /p p   后基因组时代,蛋白组学研究是生命科学研究焦点,蛋白质的空间结构往往决定其功能,因此揭示蛋白质的空间结构是一项非常有意义的工作。近些年,冷冻电镜技术的快速发展,为蛋白结构解析提供了一个强有力的手段,大大推动了结构生物学的发展。本次会议的成功举办有效促进了冷冻电镜技术在中国的推广,将进一步发挥蛋白质中心冷冻电镜设施的示范窗口作用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/4ea9bc7b-37d8-4b5a-8d53-b21d6419f9d0.jpg" title=" 图.jpg" / /p
  • 冷冻电镜:结构生物学研究的利器——访中国科学院生物物理所朱平研究员
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。   在这项研究当中,朱平研究员长期从事冷冻电镜三维重构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。   日前,仪器信息网编辑特别采访了从事冷冻电镜(注:下文提到的冷冻电镜特指300kV和200kV场发射冷冻透射电子显微镜)应用研究的朱平研究员,请他为我们介绍了自己与冷冻电镜结缘的故事,以及冷冻电镜的特点和应用情况,希望使广大网友能对冷冻电镜有更多的了解。 中国科学院生物物理所朱平研究员   因对三维重构技术的喜爱,与冷冻电镜结缘   Instrument:朱老师,您好!首先请您为我们介绍一下您和冷冻电镜结缘的故事。   朱平:其实我并不是生物专业出身,我的本科是在浙江大学学习金属材料热处理,1990年毕业后,我被保送到西安交通大学断裂疲劳国家重点实验室读硕士研究生,博士研究生期间又到清华大学机械系开始学习焊接专业,研究焊接接头断口分析,当时有一个很热门的研究方向是断裂表面的分形研究,断裂表面的分形维数和断裂性能被认为是密切相关的。开始我们只是做断口轮廓线的分形研究,但发现由于断裂表面不是各向同性的,不同的方向可能会对应不同的分形维数,所以我们就尝试利用扫描电镜立体对照相方法将断裂表面三维形貌重构出来,来研究断裂面的二维分形维数。   博士毕业后我在清华做了一年讲师,由于对电镜三维重构比较感兴趣,我就据此联系国外的进一步研究机会。恰好这时美国佛罗里达州立大学一个研究艾滋病毒结构的实验室需要做电镜三维重构的人员,于是我就将在材料研究中积累的关于电镜和三维重构的知识转到了对生物样品的研究,从而有机会开始接触冷冻电镜。   Instrument:到美国佛罗里达州立大学后,您主要开展了哪些方面的研究工作?   朱平:当时,我所在的实验室是比较早开始艾滋病毒表面包膜蛋白结构重构研究的单位。开始我们只是想通过电镜技术来研究艾滋病毒表面很重要的一个包膜蛋白gp120的结构。后来,研究者发现虽然不同的艾滋病毒抗体具有毒株特异性,但有几种抗体它们对于多种艾滋病毒都有中和活性,所以我们也开始研究这些广谱中和抗体的结构特点。   在最初的研究中,我们主要利用普通电镜,通过负染色方法研究表达纯化出来的艾滋病毒表面包膜蛋白gp120以及它们与不同的中和抗体形成的复合物的结构。后来我们的研究发现这些包膜蛋白在真实病毒表面的三维结构及分布对艾滋病毒的感染非常重要,所以就转向研究整个艾滋病毒颗粒及表面蛋白的三维结构。我们是最早将电子断层成像方法应用于艾滋病毒三维结构重构的研究组,并利用负染色电子断层成像方法获得了艾滋病毒表面的包膜蛋白的一个高清晰三聚体结构和分布图,发在美国科学院院刊上。由于负染色法对病毒结构影响很大,虽然观察到了艾滋病毒表面的gp120蛋白的结构为三聚体,但同时结构信息损失也很多。所以之后我们逐渐开始采用冷冻电镜电子断层成像法来开展研究,并做出了一个艾滋病毒冷冻电镜三维重构图像,于2006年在Nature上发表了一篇文章,也产生了较大影响。   Instrument:2008年您以&ldquo 百人计划&rdquo 身份加入到生物物理所生物大分子国家重点实验室,请问促使您回国发展以及加入生物物理所的原因主要有哪些?  朱平:在美国待了几年后,我也有了回国工作的念头,于是就开始和国内的相关研究单位联系。结构生物学研究是生物物理所的传统优势研究学科,所里也非常看好冷冻电镜在结构生物学研究方面的发展前景,已经在采购相应的设备,可以说这里有一个非常好的平台。   回国后,我们依然做一些艾滋病毒及疫苗的研究工作,同时也开展一些其他病毒的研究,如高对称性病毒的高分辨结构解析等。   另外,回国后我参加了以&ldquo 千人计划&rdquo 身份回国的许瑞明老师主持的科技部的一个&ldquo 973&rdquo 项目,其中我负责的一个课题就是利用冷冻电镜研究染色质的结构。后来,李国红老师回国,我们一起开始做染色质的冷冻电镜三维重构研究。   冷冻电镜是结构生物学研究的重要手段,但入门和上手都有一定难度   Instrument:请问和普通电镜技术相比,冷冻电镜在生物研究当中有哪些特点和优势?   朱平:普通电镜主要用于观察样品形貌,要看到原子分辨率的细节很难做到 另外制样方法如染色、固定等对样品的结构破坏很严重。而冷冻电镜可以将样品瞬间冻成玻璃态,冷冻速度平均可达以几万摄氏度每秒,这样样品所有的结构细节则都被保留下来。但是由于没有经过染色,直接观察样品的衬度就会差很多,所以需要三维重构来慢慢挖掘它的结构信息。   另外,结构生物学研究当中最常用的方法蛋白质晶体学的一个很大的瓶颈就是样品结晶,如将蛋白质产生结晶,需要各种各样的条件 此外在生物体中蛋白质往往不是单独起作用,而是多个蛋白质结合到一起的超大分子复合体,这样的超大分子复合物要长晶体就更难。但冷冻电镜不需要长晶体,直接将样品冰冻即可进行分析。 300kV Titan Krios场发射冷冻透射电子显微镜   Instrument:目前,国际上冷冻电镜研究的热点主要集中在哪些方面?   朱平:这两年冷冻电镜的应用主要集中在结构生物学研究,分析的样品类型从病毒、核糖体扩展到了其它蛋白。冷冻电镜三维重构早期比较多的应用是病毒分析,因为病毒结构比较对称,可以得到比较高的分辨率。近年来,随着仪器硬件及软件性能的提升,冷冻电镜结构解析的分辨率越来越高,现在我们可以做到近原子级别的分辨率。对于一些不对称的样品也能获得比较高的分辨率,所以冷冻电镜三维重构在其它蛋白质的结构分析研究上也比较热。   Instrument:冷冻电镜技术应用的难点有哪些?要让冷冻电镜更好的在科学研究当中发挥作用,需要哪些积累?   朱平:冷冻电镜的操作程序比较多,入门和上手都有一定的难度。先从制样来说,单冷冻这一步,就有许多的玄机在其中。冻的冰层太厚,电子束穿不过去,冰层太薄又会被完全蒸发 而冷冻的速度如果慢了就会形成冰晶,冰晶遇到电子束发生衍射,我们就无法观察到样品 此外,环境的变化,如空气的温度和湿度变化,甚至每次使用的滤纸如果不同都会对制样效果有影响。   在照片的拍摄中,要调节好电镜的状态,掌握照相的细节,这样才能拿出一张好的二维冷冻电镜照片。如,电子束照射在样品表面时,如果调节不好很可能就把样品轰坏了。所以需要调焦,找准位置,然后慢慢放大。得到好的二维照片后,接着还有一大堆的图像处理工作。   当然现在软件自动化程度更高了,仪器的操作也比以前容易了。比如制样,有专门的制样设备,通过计算机控制温度、湿度、滤纸吸收的时间长短,使制样的可重复性高了很多。不过要使用好电镜,还是有许多的经验在其中。北京大学丁明孝老师正在组织国内优秀的专家撰写一部电镜实验操作手册,虽然这本书以普通电镜为主,但其中至少会有一章来介绍冷冻电镜的基本情况,以及如何使用好冷冻电镜,希望更多的人了解这一技术。   Instrument:请问目前我国冷冻电镜的研究和应用水平怎么样?   朱平:近年来,为推动我国生物学快速发展,国家不断加大投资力度。一方面引进了不少人才,另外在仪器配置方面,我国不少单位已经或将要建设国际一流的冷冻电镜设备平台,如清华大学、生物物理所、北京大学、上海生命科学研究院等。   其实十几年前,我们就有很多优秀的电镜人才,只是国家没有这么大的投入。就是在&ldquo 小米加步枪&rdquo 的条件下,他们也做的非常好。现在我们的高端电镜配置已在世界前列,但人才依然是最重要的,目前国内在冷冻电镜研究方面确实也没有那么多的人才,希望有更多的年轻人被培养出来。   科学的竞争也很残酷,团队合作才能走得更快更远   Instrument:最后,请问对于在高水平期刊上发表文章,您有哪些心得体会,以及团队合作在科学研究当中的重要性。   朱平:一是要有好的项目,好的科学问题 二要有好的设备 三要有好的团队 最后还要坚持。首先要敢于挑战科学难题,另外也要敢于面对挑战中的困难,要耐得住性子去做,要有长时间做不出来的准备。我们这个项目,前后花了5年时间,期间遇到了很多的困难。   在30nm染色质结构解析研究中,不同的研究组分工合作,发挥各自的特长也是我们这个项目的重要特点。在我们的研究当中,染色质样品的组装非常重要,我们需要均一的样品,否则电镜状态再好,再会调节操作和计算处理,也无法获取样品真正的结构信息。   我对组装染色质样品没有太多的经验,而李国红老师长期从事30nm染色质及表观遗传调控方面的研究,但冷冻电镜三维重构也需要一个较为长期的积累和经验,面对30nm染色质这么一个复杂的超大分子复合体,其结构解析有很多技术上的困难和挑战,若要让李老师重头来学电镜也不是很容易的事。还有许瑞明老师参加了我们很多的项目讨论,给了我们很多的鼓励,这也很重要。   科学的竞争也很残酷,我们知道世界上还有其他的团队也在做同样的研究,而我们能够先做出来,一个重要的因素就是我们是几个团队一起在做。 采访编辑:秦丽娟   附录:朱平研究员个人简历   1986.9-1990.6 浙江大学 学士   1990.9-1993.6 西安交通大学 硕士   1993.9-1997.6 清华大学 博士   1997.7-1998.12清华大学 讲师   1999.3-2008.5 美国佛罗里达州立大学生物系 博士后、助理研究员、副研究员(Non tenure-track faculty系列)   2008.6-至今  中国科学院生物物理研究所课题组长、&ldquo 百人计划&rdquo 研究员
  • Science:冷冻电镜助力结构生物学发展
    图中展示的就是构成酵母线粒体大核糖体亚单位(yeast mitochondrial large ribosomal subunit)的各个组成蛋白质。Amunts等人根据利用低温冷冻电镜技术获得的酵母线粒体大核糖体亚单位及完整核糖体的结构图谱,一个个地合成出了上述这些组分蛋白。这个经过不断完善的结果与根据X线晶体成像技术获得的原子模型非常吻合。   先进的低温冷冻电镜(cryo&ndash electron microscopy)技术让我们获得了大量高分辨率的蛋白质结构图。   结构生物学(structural biology)研究的主要目的就是获得用于构成活体细胞的各种各样大分子(macro-molecules)生物组件的高分辨率图像信息。该研究主要依赖的技术手段就是X线晶体照相术(x-ray crystallography)以及核磁共振光谱分析检测技术(nuclear magnetic resonance spectroscopy, NMR spectroscopy)。不过这两种技术都有各自的局限性,比如X线晶体照相术只能够对生长得极为有序的三维结晶进行观察,而核磁共振光谱分析检测技术则要求被检测样品的纯度非常高,不能够有重叠峰出现。有很多生物大分子相互结合、组装之后形成的都是非常大的,或者非常不稳定、比较罕见的结构,都不太适合用上述这两种技术进行分析和检测。单粒子电子显微镜技术(Single-particle electron microscopy, EM)则能够观察少量非结晶样品,获得高分辨率的结构图谱。   使用单粒子电子显微镜技术可以获得任意排列方向的分子复合体( molecular complexes)的结构图像。该技术会从每一幅图像中选出单个的复合体(粒子),然后借助计算机来判断它们的排列方向。最后将各个不同视角的图像组合在一起,得到该分子的三维立体图像。不过由于高能电子束会对生物大分子起到破坏作用,打断分子内的共价键(covalent bonds),并且诱发一系列级联式的有害化学反应,所以这种放射性损伤效应给单粒子电子显微镜技术带来了极大的局限性,在实验时用来记录影像的电子束的能量受到了非常大的约束。   20世纪80年代,Dubochet等人报道了一种单粒子电子显微镜技术革新成果,将该技术引向了高分辨率成像之路。他们在低温条件(cryogenic conditions)下将待检样品放在一层薄薄的、透明的冰上用单粒子电子显微镜进行成像观察。这种方法就是所谓的&ldquo 低温冷冻电镜技术(cryo&ndash electron microscopy, cryo-EM)&rdquo ,他能够对含水的粒子(hydrated particles)进行直接成像。低温除了具有这些优势之外,还能够减少电子束对样品产生的放射性损害。不过电子束的照射量还是不能够太大,只有这样才能够清晰地反映出分子结构的细节,获得高质量的、低信噪比(signal-to-noise ratio, SNR)的三维结构图像。由于将每个分子的多张图像信息组合在一起能够更进一步地降低图像的信噪比,所以,对数万、乃至数百万个蛋白质复合体进行分析就会产生数十万张图像。   不过依靠低温冷冻电镜图像来判断生物大分子的结构给计算机处理分析工作带来了一大挑战。在借助多图像组合平均手段来改善信噪比时,必须知道每一颗粒子的方向,但是由于信噪比太低,我们对这些粒子方向的判断又明显感觉准确性不够,这就形成了一个矛盾。要解决这个问题,最成功的方法就是&ldquo 重复(iterative)&rdquo ,质量高的图像能够给出更准确的方向信息,而这些方向信息又可以帮助我们获得更高质量的图像。   直到最近这一段时间,绝大部分单粒子低温冷冻电镜图片的分辨率都非常低,连10埃都达不到,所以很多人都将这种技术嘲笑为 &ldquo 一团浆糊学(blob-ology)&rdquo 。蛋白质二级结构中的&alpha 螺旋(&alpha helices)结构只有在分辨率达到9~10埃,甚至更高分辨率的情况下才能够看清 而另外一种二级结构,&beta 折叠(&beta strands)结构则只有在分辨率达到4.8埃以上时才能够看清。达到3.5埃的分辨率,就可以为蛋白质或核酸等生物大分子构建原子模型(atomic models),将各种目前已知的核酸结构或氨基酸结构填入其中了。如果要了解蛋白质复合体形成时发生的各种化学变化,就必须获得原子级别分辨率的细节信息。低分辨率的结构信息也不是一无是处,当在与高分辨率结晶图像相互配合、印证,用来判断组成复合体的各种不同组分时更加有意义。因此,即便分辨率较低,低温冷冻电镜技术也还是帮助科学家们解决了很多生物学难题,比如解析出了与其他辅因子共同结合的核糖体的结构问题,以及构象只能够维持片刻时间的核糖体瞬时结构等问题。   在过去的三十年,低温冷冻电镜设备取得了长足的进展,在样品制备、成像、计算机处理等实验技术方面有了一定的提升,这些使低温冷冻电镜成像技术的分辨率有了极大的提高。高度连贯的场发射电子枪(Highly coherent feld-emission electron guns)也使保留焦点以外的图像的高分辨率信息成为可能,这对于单粒子低温冷冻电镜非常有帮助。这种技术创新帮助科研人员获得了20面体病毒粒子(icosahedral virus particles)的图像,而且清楚地看到了其中的&alpha 螺旋结构。由于这种病毒是高度对称的,所以比较容易生成高质量的、最佳分辨率的低温冷冻电镜图像。   随着研究人员不断地开发出更稳定的载物台、更好的显微镜抽真空技术,以及自动化的数据采集系统,这一切的技术进步都让我们能够获得更多、质量更好的电镜图像,因此才能够得到高质量的、能够对其中的氨基酸侧链进行解析的二十面体病毒粒子三维结构图像,以及分辨率达到5埃的核糖体结构图像。不过在对更小一点的非对称粒子的解析工作中还是很难解析到&alpha 螺旋结构。   最近在低温冷冻电镜设备领域取得的最大进展就是引入了直接检测设备(direct detector device, DDD)照相机。这种DDD设备能够直接在传感器上记录图像,从而绕过了传统的、需要闪烁设备和光纤的电荷耦合装置(charge-coupled device, CCD)探测器,以及其他一些在用摄影胶片(photographic film)记录图像时必须要经过的繁杂的处理过程。因此,图像的信噪比也得到了极大的提升。在分辨率方面的提升也与之前的一些革新手段相当。在使用了DDD设备之后,还有可能在电镜图像中直接构建原子模型,甚至能够在最具挑战性的检测工作中进行&alpha 螺旋和&beta 折叠的解析工作。   DDD设备的引入还在另外一个方面对低温冷冻电镜的图像起到了改善作用,凭借的就是该设备极快的读出速度(readout rate),该读出速度能够发现被冰包裹的被观测粒子在电子束中的运动情况。使用DDD设备不仅能够发现这种问题,还能够解决这种问题,因为现在的电镜就好像是一台摄像机,可以拍摄一段录影,记录整个过程,而不再像以前那样,只是一台照相机,只能够拍摄出一张张固定的图像。   有了高质量的图像,又有可以借助计算机对因为电子束而移位的粒子进行矫正的工具,我们就可以获得大量高质量的低温冷冻电镜图像,比如本文开头展示的那张分辨率高达3.2埃的线粒体核糖体亚单位图像,以及下图那张分辨率达到3.3埃的20S蛋白酶体图像和哺乳动物感受器通道TRPV1的图像。 TRPV1的图像尤其值得一提,因为TRPV1蛋白是一种膜蛋白,只有四级对称性(four-fold symmetry),比核糖体要小一个数量级。所以之前大家一直都认为很难用低温冷冻电镜对该蛋白进行结构解析的研究工作。有了 DDD成像技术、更好的计算机辅助和生物化学技术之后,Liao等人终于在某些区域获得了分辨率高达3.4埃的图像,从而有机会开展原子建模工作,在整个结构生物学(structural biology)发展历史上写下了重重的一笔。   单粒子低温冷冻电镜结构解析图。左图展示的是随机排列的蛋白质粒子在电镜下的图像,这些图像经过计算机处理之后可以用来计算大分子复合物的三维立体结构图像。由于有了DDD技术,左边的这些图像信息就可以构建出右图中展示的原子模型。图中展示的就是20S蛋白酶体的结构图。   乍一看上去,这些成果都好像是特例。比如核糖体里由于含有大量的RNA,所以是一幅高度紧缩的图像,非常紧密,不太容易受到辐射的损失。而20S蛋白酶体拥有14级对称性,所以也非常适于进行低温冷冻电镜成像操作。即便是TRPV1通道蛋白也都拥有一定的内部对称性。但是最近刚刚成功获得的一幅电镜图像就完全不具备上述这些&ldquo 先天优势&rdquo ,这就是分辨率达到4.5埃的人&gamma 分泌酶复合物(&gamma -secretase)的结构图。人&gamma 分泌酶复合物是一种更小的膜蛋白复合体,完全没有对称性。该成果说明,只要待测样品能够准备得恰当,尽可能减少其在结构上的异质性,我们就完全有可能利用低温冷冻电镜技术获得各种蛋白质的三维立体结构图。   这些科研新进展恰好出现在低温冷冻电镜技术的低谷期。最近刚刚获得的HIV-1病毒糖蛋白三聚体结构模型就引起了极大的争议,因为多位电镜专家都坚持认为,这个结构模型不仅在结构上不准确,就连用来进行分析的原始图像也都没有真实地反映该三聚体的真实信息。这场争论也让我们意识到,我们目前的确没有太多的手段对低温冷冻电镜图像的质量进行验证,虽然有一些手段,但是都没有得到广泛的推广和应用,另外也缺乏一套规范,图像的信号非常差,所以也很难判断最终得出的结构图是否就是被测样品的结构。这是一个非常值得关注的问题,不仅仅是因为这次的HIV-1病毒糖蛋白三聚体结构模型具有重大的科研价值,比如在HIV疫苗的开发工作中会起到非常重要的指导作用等。   在结构解析方面还有大量的工作需要我们去完善:方便使用的显微镜相板(phase plates)有助于更好地聚焦,获得高对比度的图像,就好像相衬光学显微镜(phasecontrast light microscopy)那样,这能够让对图像进行信息采集的工作更加简便,而且质量更高。另外在探测器方面也可以进一步提高图像的质量。即便是最先进的探测器也达不到符合理论要求的表现。各种用来进行图像分析的计算机软件,比如用来矫正电子束相关移位的软件,或者对各种粒子进行分类、解读的软件也将会变得越来越强大。新型的样品承载系统会进一步减少电子束对样品的位移作用。更加可靠的、更加强大的验证工具可以让我们更有信心,保证不会纳入质量不高的原始图片素材。虽然现在还不知道低温冷冻电镜技术未来会走向何方,但是有一点是可以肯定的,那就是低温冷冻电镜图像绝对不再是一团浆糊了。   原文检索:   Martin T. J. Smith, John L. Rubinstein. Beyond blob-ology. Science 8 August 2014 DOI: 10.1126/science.1256358
  • 【论坛速报】宝特科技亮相第五届华南结构生物学论坛
    第五届华南结构生物学论坛于2017年11月24日-26日在福州怡山大厦成功举办并圆满落幕。此次论坛由中国生物物理学会、福州大学、中科院福建物质结构研究所等联合主办的“2017年华南结构生物学论坛,吸引了来自广州、深圳、香港、台湾、澳门、广西、福州、厦门等地的各大高校、实验室及医院领域的专家学者参会。本届论坛广聚业内贤士、博览众家之长,各高校学者们分别就不同的专题结合自己的研究领域为与会人员进行了精彩的技术讲座,涵盖多种结构生物学方法,包括X射线晶体学、冷冻电镜、核磁共振等,带来了一场理论与事件完美结合的“技术盛宴”。科研工作离不开新产品和新技术的有力支持,科研设备的创新极大助力了科学技术的发展。本届论坛上各大仪器厂商也都“争奇斗艳”,纷纷亮相,宝特科技亦携产品—莱弛MM400混合球磨仪展在其列,此外,还展示了FEI扫描电镜,高通的分子互作,Elementar同位素质谱,莱驰CROMILL全自动冷冻研磨仪,睿科的洗瓶机、液体样品处理工作站、全自动浓缩仪、全自动氮气发生器等,以及TAITEC和IRM、哈佛等产品资料,并针对与会客户们的咨询做出热情回应,并详细解答其所提之问题,广泛交流在结构生物学领域的新技术和新经验,尤其是电镜在结构生物学领域的应用。二十一世纪是生命科学的世纪,而作为现代生命科学研究的前沿主流学科之一的结构生物学,帮助人们更好的理解生命现象本质。宝特科技作为一家专业的分析测试仪器代理/服务商,不仅仅专注于生命科学领域,也专注于化学、材料测试仪器的销售及技术服务,因为你们刚好需要,而我们刚好足够专业。
  • 布鲁克GHZ级NMR技术为功能结构生物学赋能
    巴尔的摩市 -(美国商业资讯)- 在2020年实验性核磁共振大会(ENC)上,布鲁克公司(Nasdaq代码:BRKR)宣布两则消息,公司近日向位于意大利佛罗伦萨大学的CERM(欧洲核磁研究中心)交付了世界上第一台Avance™ NEO1.2 GHz NMR系统,并在田纳西州孟菲斯市St. Jude儿童研究医院首次安装了Avance NEO1.1 GHz 系统。迄今布鲁克瑞士GHz级磁体厂已成功使三套1.2 GHz磁体达到目标场强。此外,布鲁克在2019年底收到了首批另外两份分别来自美国(俄亥俄州立大学)和韩国(KBSI)的1.2GHz客户订单。 位于意大利佛罗伦萨大学的CERM内的布鲁克 1.2 GHz NMR波谱仪(图片来源:美国商业资讯) 佛罗伦萨大学CERM的Lucia Banci和Claudio Luchinat教授表示:“我们的实验室收到了世界上第一台1.2 GHz NMR波谱仪,我们对此感到非常兴奋。它是布鲁克多年来在超导材料科学、磁体设计、探针技术和NMR波谱仪电子技术等多个领域取得的研发成果。我们期待着将该仪器用于我们对阿尔茨海默氏症和帕金森氏症等神经退行性疾病相关蛋白质结构与功能的研究,以及对癌症的研究。” 新的GHz级NMR技术有助于推进对蛋白质和蛋白质复合物的新的功能结构生物学的研究。研究内容包括重要的球形蛋白、膜蛋白和蛋白质复合物的结构、动力学和功能。超高场强NMR的独特之处在于,它可以对占人类蛋白质组30~50%的固有无序蛋白质(IDP)的性质和相互作用开展研究。IDP在基础细胞生物学中起着重要的功能作用,也与疾病生物学的许多实例有关。 布鲁克BioSpin集团总裁Falko Busse博士指出:“新型GHz级NMR磁体技术不断取得良好进展,我们现在的重点是在佛罗伦萨安装世界上第一台1.2 GHz NMR波谱仪,并加大1.2 GHz系统的小批量生产。到目前为止,在瑞士工厂的三套1.2GHz磁体已经多次达到目标场强,这表明了我们设计的稳健性。我向客户在整个开发阶段对我们的信任表示衷心的感谢。我们对能够为功能结构生物学和IDP方面的重要研究提供支持感到非常满意。” 布鲁克独特的GHz级NMR磁体采用了全新的混合设计,其内部为先进的高温超导体(HTS),外部为低温超导体(LTS)。Ascend™ 1.2 GHz 是一种稳定的标准孔径(54mm)磁体,其均匀性类似于布鲁克现有的用于高分辨率NMR的1.0 GHz和1.1 GHz磁体。1.2 GHz波谱仪配有不同的超高场探针,包括面向液态NMR的CryoProbes,以及快速旋转的MAS固态NMR探针。在ENC 2020上,我们的科学合作伙伴将展示使用新的1.2 GHz 3 mm三反TCI CryoProbe® 获得的出色的1.2 GHz高分辨率NMR数据。 关于Bruker公司布鲁克的产品帮助科学家不断取得突破性进展,并开发出能够提高人类生活质量的全新应用。其高性能科学仪器以及极具价值的分析诊断解决方案,使科学家能够在分子、细胞和微观层面上对生命和物质进行探索。通过与客户的密切合作,布鲁克致力于帮助实现创新、生产力提升以及客户成功,领域涉及生命科学分子研究、应用材料与制药行业应用、显微技术、纳米级分析、工业应用,以及细胞生物学、临床前成像、临床表型组学与蛋白质组学研究、微生物学和分子诊断。更多信息,请访问布鲁克中国官方网站。
  • 交联质谱与冷冻电镜技术联用前沿解析:推动结构生物学进入新时代
    p   近来,结构生物学领域发现了研究蛋白质机构和相互作用的两种非常互补的分析技术——交联质谱(XL-MS)技术和荣获诺贝尔奖的冷冻电镜(cryo-EM)技术,两种技术被结合应用于蛋白质机构和相互作用的研究中。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/201906/uepic/1db47922-dd4e-4a74-9689-d8dc5825a5c3.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p   作为一对“强大”的技术,XL-MS和cryo-EM在结合运用中在共同弥补着各自的缺点不足。当cryo-EM图像中分子区域定义不太清晰明确时,XL-MS就会介入,提供关于特定氨基酸残基关键信息,从而可以识别蛋白质并准确推断蛋白质结构。以下,让我们详细探讨一下这两种技术的发展情况,以及它们如何共同推动结构蛋白质组学领域进入一个新的时代。 /p p    span style=" font-size: 18px " strong 蛋白质结构:“组装机器的计划蓝图” /strong /span /p p   蛋白质及其复合物是生物细胞的生物“主力”,调节着细胞功能不可或缺的过程,如细胞生长、细胞死亡以及细胞生命周期的各个阶段。 /p p   “我喜欢将蛋白质结构与组装机器的蓝图进行比较,”荷兰格罗宁根大学高分辨率cryo-EM实验室助理教授Cristina Paulino在最近的一次采访中谈到,“虽然遗传学和生物化学有助于理解蛋白质的生理作用,但结构生物学揭示了这些纳米机器的外观以及它们的连接方式。” /p p   因此,对这种“连接方式”的了解为科学家们提供了修复、设计和复制蛋白质,或潜在地阻断蛋白质功能的机会——蛋白质组学的应用,预计将成为个性化医学和现代药理学不可或缺的组成部分。 /p p    span style=" font-size: 18px " strong 关于XL-MS技术应用 /strong /span /p p   生物学的一个基本原理是蛋白质由氨基酸残基通过肽键连接形成多肽。除了肽键外,还存在非共价键,如范德华力、静电和疏水相互作用。在结构生物学中,这些键很难检测到,在原子水平上研究蛋白质结构时增加了额外的复杂性。在过去的十年中,蛋白质组学领域见证了MS技术逐渐增加丰富的一系列令人深刻的技术,其中。XL-MS技术是已证明对结构蛋白质组学不可或缺的技术之一。[1] /p p   图1总结了典型XL-MS的工作流程,其中,蛋白质(或其邻近)之间的非共价键相互作用(或接近它们)通过用交联试剂溶解天然蛋白质转化为人工共价键。由于赖氨酸残基的广泛存在、在水溶液中的稳定性和高反应活性,赖氨酸残基的伯胺基团或蛋白质的N-末端是交联剂的常见靶标。最常用的是同位功能交联剂包括辛二酸二琥珀酰胺(DSS)和辛二酸(磺基琥珀酰亚胺基)。[2]在交联阶段之后,蛋白质被蛋白酶加工成肽段。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/05df0100-7766-418e-b884-48a3df737aec.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1:通用XL-MS工作流程。图片来源:乌得勒支大学Heck实验室Richard Scheltema /span /p p   “随后通过MS测量混合物进行鉴定——在大多数情况下,可以指定交联中涉及的氨基酸,用间隔臂的长度和两侧链的长度定义的距离进行约束” 乌特勒支大学Heck实验室Richard Scheltema博士解释说,“这些距离限制提供了关于蛋白质如何折叠(两种来自相同蛋白质的肽段)或蛋白质相互作用的有价值的信息,以及这种相互作用的界面位于何处(两种来自不同的蛋白质肽段)。” /p p   通常情况下,XL-MS实现的结构分辨率在15-50埃米,其分辨率无法与X射线晶体学、核磁共振(NMR)光谱学、cryo-EM等其他结构生物学技术的分辨率相匹敌。因此,这些技术必须相互补充使用。[3] /p p    span style=" font-size: 18px " strong cryo-EM:提供的进一步解决方案 /strong /span /p p   冷冻电镜(cryo-EM)是由透射电镜(TEM)发展而来的,它通过二维(2D)图像投影来确定三维(3D)结构,同时保持样品的完整性和结构接近原始状态。这是通过研究玻璃化状态下的样品来实现的。在玻璃化状态下,样品的薄片迅速浸入液态乙烷溶液中,低温保存并保护其免受TEM内的真空和辐射损伤。[4]Paulino也进一步讨论了cryo-EM与其他结构生物学技术相比的优势。 /p p script src=" https://p.bokecc.com/player?vid=2D0A61DE3EBDEABB9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p img src=" https://img1.17img.cn/17img/images/201906/uepic/df940b25-54db-4467-9ea6-bf2efb791961.jpg" title=" 0.jpg" alt=" 0.jpg" style=" max-width: 100% max-height: 100% " / br/ /p p   近年来,cryo-EM技术已经取得了长足的进步,这意味着许多样品现在可以用近原子分辨率(通常为3-5埃)进行分析。[5]不幸的是,在这个分辨率范围内,科学家们仍然难以区分和表征蛋白质复合物中所有氨基酸侧链,这意味着重新构建模型是一项复杂的任务。“cryo-EM的使用正在大幅增加,从这项技术记录的蛋白质结构轮廓来看,很难确定哪些蛋白质相互关联,以及它们在整个结构中是如何排列的。而这就是XL-MS介入的地方。 /p p   XL-MS中的交联数据描述了肽段中两个特定氨基酸残基之间的最大距离。将提出的蛋白质结构模型及其结构域插入由cryo-EM重构获得的三维体中,并整合交联数据,以验证蛋白质复合物内特定肽的位置和方向。 /p p   将蛋白质整合到三维体中是一项艰巨而复杂的任务,需要对所涉及的蛋白质复合物及其子成分有透彻的理解。因此,Sali团队开发了集成建模平台(IMP),这是一个希望将XL-MS和cryo-EM结合起来的研究人员的通用工作流程平台。 /p p    span style=" font-size: 18px " strong XL-MS和cryo-EM在结构生物学中被配合应用 /strong /span /p p   最近,Henry等人确定了载脂蛋白E4(ApoE4)的活性结构和结合机制。ApoE4与阿尔茨海默病(AD)和心血管疾病(CVD)有关,是载脂蛋白(ApoE)的脂质化同种型,ApoE是一种蛋白质,通过充当细胞表面受体的配体,促进富含胆固醇的脂蛋白的内化。采用结合XL-MS,cryo-EM和生物信息学建模工具的混合方法,Henry等表明ApoE4存在于两种不同的确证中,指向依赖于调节其受体结合区可及性的激活机制。作者指出,这些发现可能对于解释蛋白质在AD和CVD中的作用以及随后潜在治疗方法的发展具有重要价值。[6] /p p   Schmidt和Urlaub在2017年全面综述中概述了类似的令人印象深刻的研究,包括Lü hrmann和Stark组对剪接体的结构表征。 /p p   2019年1月,荷兰科学研究组织(NWO)向一个名为“细胞中蛋白质社会行为的监测和可视化”的项目拨款160万欧元的资助,其中XL-MS和cryo-EM技术以及其他分子方法,被综合使用。项目可视化了蛋白质之间的相互作用,该项目的主要研究人员包括Albert Heck、John van der Oost、Alexandre Bonvin、Friedrich Foerster和Scheltema等人。 /p p   “在这个项目中,我们的目标是使用(一种cryo-EM的专门应用),在选定的一组嗜热菌中不偏倚地发现所有的蛋白质复合物。在这里,XL-MS被用来提供识别复合物内蛋白质的身份、空间顺序(通常不能直接从断层扫描数据中得到答案),以及结构模型来填补最终的空白。” Scheltema说,“之所以选择嗜热菌,是因为这些微生物是具有生物化学用途的蛋白质复合物的潜在宝库。” /p p    span style=" font-size: 18px " strong 重新定义限制,继续前进 /strong /span /p p   总之,XL-MS和cryo-EM为结构蛋白组学领域提供了巨大的发展潜力。然而,每种技术都面临着自己的局限性,必须克服这些局限性才能形成完美的配合使用。 /p p   “Cryo-EM不断重新定义其局限性,但我们仍然面临着一些挑战,”Paulino评论道,“对于X射线晶体学来说,获得完全可操作和维护的同步加速器束流线基本上是免费的,而cryo-EM的高成本和操作显微镜所需要的专业知识水平便成为一个障碍。” 在一定程度上(但并非全部),政府实施对Cryo-EM设备的补贴政策的解决了这一问题。 /p p   “冷冻断层扫描提供了一种相对较低分辨率的蛋白质复合物视图,直接解释很困难。” Scheltema补充说,“另一方面,来自XL-MS的数据提供了解决方案中包含所有空间信息的视图。然而,我认为将这两者联系起来是最大的挑战,因为XL-MS提供了样本中所有蛋白质的信息, 这需要以某种方式过滤掉由断层扫描揭示的复合物内的蛋白质。” /p p    strong 参考文献 /strong /p p   1. Rappsilber, Juri. 2011. The Beginning of a Beautiful Friendship: Cross-Linking/Mass Spectrometry and Modelling of Proteins and Multi-Protein Complexes. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2010.10.014. /p p   2. Yu and Huang. 2017. Cross-Linking Mass Spectrometry (XL-MS): An Emerging Technology for Interactomics and Structural Biology. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b04431. /p p   3. Schmidt and Urlaub. 2017. Combining Cryo-Electron Microscopy (Cryo-EM) and Cross-Linking Mass Spectrometry (CX-MS) for Structural Elucidation of Large Protein Assemblies. Current Opinion in Structural Biology. https://doi.org/10.1016/j.sbi.2017.10.005. /p p   4. Murata and Wolf. 2019. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. Biochimica et Biophysica Acta (BBA). https://doi.org/10.1016/j.bbagen.2017.07.020. /p p   5. Lyumkis. 2019. Challenges and Opportunities in Cryo-EM Single-Particle Analysis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.REV118.005602. /p p   6. Henry N., et al. 2019. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. Plos Computer Biology. doi: 10.1371/journal.pcbi.1006165. /p
  • 结构生物学里程碑:低温电子显微镜技术时代来临
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/noimg/fea33c3e-9d39-4848-8e95-052ebaa33259.jpg" title=" 1.jpg" / /p p    strong X射线晶体衍射技术(X-RAY CRYSTALLOGRAPHY)即将成为历史,低温电子显微技术(CRYO-ELECTRON MICROSCOPY)引起了揭示细胞内隐秘机制的革命。 /strong /p p   在剑桥大学一幢建筑的地下室里,一场技术革命正在酝酿。 /p p   一个笨重的、大约3米高的金属盒子通过连接细胞的橙色缆线,安安静静地传输着以万亿字节计算的数据。这是世界上最先进的低温电子显微镜之一:低温电子显微镜通过电子束对冷冻的生物分子进行成像,从而得到分子的三维结构。站在这个耗资770万美金的仪器旁,英国医学研究委员会分子生物学实验室(UK Medical Research Council Laboratory of Molecular Biology, LMB)的结构生物学家 Sjors Scheres表示,低温电子显微镜非常敏感,一声喊叫就会带来极大误差,导致实验失败。“英国需要更多低温电子显微镜,因为未来它会成为结构生物学的主流。” /p p   低温电子显微镜震惊了结构生物学。过去30年里,低温电子显微镜揭示了核糖体、膜蛋白和其它关键细胞蛋白的精细结构。这些发现都发表在顶级杂志上。结构生物学家们表示,毫不夸张地说,低温电子显微技术正处于革命之中:低温电子显微镜能够快速生成高分辨率的分子模型,这一点远超X射线晶体衍射等方法。依靠旧方法获得诺奖的实验室也在努力学习这一技术。这种新模型能够准确地揭示细胞运行的必要机制,以及如何靶向针对疾病相关的蛋白。 /p p   “低温电子显微镜能够解决很多以前无法解决的谜题。”旧金山加利福利亚大学(University of California)的结构生物学家David Agard这样说道。 /p p   几年前Scheres被招进LMB,任务是帮助改进低温电子显微镜,最终他成功了。上个月,他们发表了这个领域最令人振奋的成就:阿兹海默症相关的酶的高清图片,图片包括该酶的1200左右个氨基酸,分辨率达到零点几纳米。 /p p   生物学家们如今仍在努力发展该技术,以期用它解决小分子或可变形分子的精微结构——这对低温电子显微镜来说,也是一大挑战。来自加利福利亚大学(University of California)的结构生物学家Eva Nogales表示,叫它革命也好,飞跃也好,低温电子显微镜的确打开了一扇大门。 /p p   strong  蛋白结晶 /strong /p p   结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,研究者们才能了解这个蛋白的功能。例如,核糖体是如何根据mRNA的序列来制造蛋白,分子孔道是如何开和关的。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,接着利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100,000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。很多诺贝尔奖也与这一技术相关,例如1962年揭示DNA双链螺旋结构的诺奖。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/noimg/fe5402ce-8a68-46ea-a731-d1b2f037ea42.jpg" title=" 2.jpg" / /p p   尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它有较大的限制。科学家们可能需要几年才能找到把蛋白形成大块结晶的方法。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。 /p p   当Richard Henderson 1973年到LMB,研究菌视紫红质(一种利用光把质子运进膜内的蛋白)结构时,X射线晶体衍射是首选工具。Henderson和他的同事Nigel Unwin成功地做出了该蛋白的二维结晶,但却不适用于X射线衍射。因此他们决定使用电子显微镜。 /p p   当时,电子显微镜主要用于研究用重金属染过色的病毒或组织切片。一束光子打在样本上,新生的电子被检测到,被用于解析样本结构。这种方法成功制作了第一幅病毒的精微图片——一种烟草病毒。但染色导致无法看清各个蛋白,更不要说原子细节了。Agarad表示,样本上要么满是斑点,要么没染上,你只能看到分子的轮廓。 /p p   Herderson等人省略了染色的步骤,把菌视紫红质的单层晶体放到金属网格中,然后用电子显微镜进行成像。Agard表示,这个过程里,你看到的是蛋白的原子。这在当时是很大的进步,因为当时人们都认为不可能利用电子显微镜解析蛋白结构。Henderson等人在1975年发表了这一成果。 /p p   20世纪80年代和90年代,低温电子显微镜领域发展迅速。一个关键性突破是利用液态乙烷来快速冷冻蛋白溶液。这也是为什么叫低温电子显微镜的原因。但这个技术的分辨率仅为1纳米,远远达不到针对蛋白结构进行药物设计的需求。而当时X射线晶体衍射的分辨率能达到0.4纳米。NIH等资助者投入了数亿美金来支持蛋白晶体领域的发展,但对于低温电子显微镜领域的资助却很少。 /p p   1997年,Henderson参加了高登研究会议(Gordon Research Conference )关于3D电子显微镜的年会。一位同事以这样的话做为开幕致词,“低温电子显微镜技术非常有限,不可能超越X射线晶体衍射。” 但Henderson的想法完全不同,在下一场发言中,他做出了反击。Henderson指出,低温电子显微镜会超越其它各种技术,成为全球研究蛋白结构的主流工具。 /p p   strong  革命由此开始 /strong /p p   在此之后,Henderson等人致力于提高电子显微镜的性能——尤其是感知电子的灵敏度。在数码相机席卷全球很多年后,很多电子显微镜学家仍然倾向于使用传统的胶片,因为比起数码感应器,胶片能更有效地记录电子。与显微镜生产商合作时,研究者们发明了一种新的直接电子探测器,这种探测器的灵敏度远高于胶片和数码相机探测器。 /p p   大约在2012年,这种探测器能够以一分钟几十帧的高速得到单个分子原子的连续图像。同时,和Scheres一样的研究者们精心编写了将多张2D图片建成3D模型的软件程序。这些3D图像的画质可以媲美X射线晶体衍射获得的图像。 /p p   低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。 /p p   这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。 /p p   5月,多伦多大学(University of Toronto)结构生物学家John Rubinstein等人使用了100,000张低温电子显微镜图片来生成V-ATPase 的“分子电影”,V-ATPase的作用是消耗ATP,把质子运进运出细胞液泡。”我们发现,这个酶非常灵活,可以弯折、扭曲和变型。” Rubinstein说道。他认为,这是由于这个酶的灵活性,它能够高效地把ATP 释放的能量传递到质子泵。 /p p   2013年Nogales的团队拼接了调控DNA转录成RNA的复合体的结构。他们发现,复合体的一个臂上悬挂着紧绕DNA链的10纳米结构,这段结构可能影响基因转录。Nogales表示,这个结构很漂亮,它可以帮助我们分析这个分子起作用的机制。 /p p   strong  小而漂亮 /strong /p p   现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。 /p p   这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。“当我看到TRPV1的结构时,我激动得一晚上睡不着觉。”Rubinstein说道。 /p p   研究者们可能面临更多这样无眠的夜晚。Agard表示,会有更多膜蛋白相继被解析出来。 /p p   上个月由Scheres和清华大学的结构生物学家施一公合作发表的一篇文章就成功解析了一个膜蛋白。他们建立了& amp #947 -分泌酶的模型,& amp #947 -分泌酶负责合成与阿兹海默症相关的& amp #946 -淀粉斑。0.34纳米分辨率的图谱显示,比较少见的遗传性阿尔茨海默病的& amp #947 -分泌酶突变后会在图谱上呈现两个“热点”(突变或者重组频率显著增加的位点),并且这种突变最终会合成有毒性的& amp #946 -淀粉斑。& amp #947 -分泌酶的结构图帮助研究者发现为什么以往的抑制剂会无效,从而促进新药的研发。程亦凡表示,& amp #947 -分泌酶的结构非常惊人。 /p p   类似的成功吸引了制药公司的注意。他们希望借助低温电子显微镜去解析那些无法结晶的蛋白,从而更好地研发药物。Scheres如今和辉瑞公司合作,攻克离子通道。离子通道包含很多膜蛋白,例如痛感受分子和神经递质受体。“我几乎被每一个人联系过。”Nogales这样说道。 /p p   尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。 /p p   与任何热门领域一样,低温电子显微镜的发展也有烦恼。一些专家担心研究者们盲目追求该仪器会诱发一些问题。2013年HIV表面蛋白的结构图遭到了科学家们的质疑,他们认为用于建模的图片很多都是白噪声。此后,其他团队得到的X射线晶体衍射和低温电子显微镜模型也对原模型提出了质疑。但这些研究者们坚持相信自己的结果。今年6月,在高登研究会议(Gordon Research Conference )上,研究者们希望低温电子显微镜的结构图要有严格的质量控制。并且杂志要求作者们提供详细的建模方法。 /p p   成本问题可能会限制低温电子显微镜的推广。Scheres估计,LMB每天用于支持低温电子显微镜的经费就达到近3万人民币,外加近1万的电费——这是由于存储和处理图片的电脑耗电量很大。Scheres表示,每天至少要花费近4万人民币,对于很多地方来说,这个费用太高。为了推广低温电子显微镜,很多基金会建立了对外公开的设备,各地研究者们可以预约使用。霍华德· 休斯医学研究所(Howard Hughes Medical Institute, HHMI)在珍利亚农场研究园区配备了一台。这台设备对所有HHMI资金的研究者公开。在英国,政府和维康信托在牛津大学附近建立了低温电镜公开使用平台。参与该平台搭建的伦敦大学(University of London)的结构生物学家Helen Saibil表示,有很多人想学习使用低温电镜。 /p p   洛克菲勒大学(Rockefeller University)的生物物理学家Rod MacKinnon就是这些人之一。他在2003年因解析一些离子通道的结晶结构而获得诺贝尔奖。MacKinnon现在对低温电镜非常着迷。“我现在处于学习曲线的斜坡阶段,非常热切。” MacKinnon这样说道。他打算用低温电镜来研究离子通道是如何开和关的。 /p p   1997年时,Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。 /p p   原文检索: /p p   Ewen Callaway. (2015) The revolution will not be crystallized. Nature, 525(7568):172-174. /p
  • 诺奖得主、院士领衔|第七届全国冷冻电子显微学与结构生物学专题研讨会召开!
    仪器信息网讯 2021年9月24日,第七届全国冷冻电子显微学与结构生物学专题研讨会在深圳隆重开幕。本次会议由中国生物物理学会冷冻电子显微学分会主办,南方科技大学冷冻电镜中心承办。会议受广东疫情影响,曾一度从6月延期至今,作为两年一届国内重要的冷冻电子显微学盛会,会议继续吸引400余名业内代表与会。签到一角会议的成功离不开会议内容的精心设计,本次会议主题为“处于又一次技术革命中的冷冻电子显微学”,会议学术安排包括大会特邀报告、邀请报告、口头报告、科学墙报交流、圆桌论坛等。在冷冻电子显微学“又一次技术革命”之际,大会特邀报告邀请七位国内外知名科学家分别在9月24-26日依次线上或线下分享,包括:两位诺奖得主Joachim Frank院士和Richard Henderson院士(因冷冻电镜技术获得2017年诺贝尔化学奖)、高福院士、饶子和院士、章佩君教授、孙飞研究员、高宁教授等。会场掠影学术报告部分,设立五个专题依次展开。分别为:高分辨率结构解析方法与应用、细胞器与亚细胞结构、原位结构生物学研究进展、冷冻电子显微学新技术方法学,及AI技术在结构生物学的进展及应用。南方科技大学王培毅教授主持大会开幕式中国科学院院士、大会名誉主席隋森芳致辞隋森芳院士在致辞中回顾了我国冷冻电子显微学的发展历程,两年一届的全国冷冻电子显微学与结构生物学专题研讨会走到了第十二个年头,已经成为全国最重要的冷冻电子显微学盛会。回首2005年在正郑州召开的第一届会议大概仅有二三十人,而如今疫情影响限制下,依旧吸引400多人参会,凸显了冷冻电子显微学在中国的蓬勃发展。2017年,冷冻电镜技术获得诺贝尔化学奖将冷冻电子显微学推向高光时刻,2020年,冷冻电镜达到原子分辨率入选《Nature》公布 2020 年十大科学发现。近年来,国内冷冻电镜事业进入高速发展时期。在研究方面,我国发表了一些列高水平研究成果有目共睹,在冷冻电镜领域的研究进展得到国际同行的认可和尊重。硬件方面,300kV高端冷冻电镜设备由2017年的不足10台,经过4年快速增长,发展到现在的超过60台,相关机构硬件设备条件极大提升。同时,与国际相比,国内冷冻电子显微学领域还有需要加强的地方,尤其技术方法方面的研究开发需要进一步加强。而本次会议便非常重视冷冻电镜技术和方法方便的研究内容,包含了许多青年科学家、学者的相关研究内容分享,也安排了冷冻电镜平台建设和管理圆桌论坛,相信丰富的内容设置可以让大家满载而归。中国科学院院士、南方科技大学生命科学学院院长张明杰致辞张明杰院士表示,荣幸南方科技大学电镜中心能够承办此次会议,也很高兴有60多个高校研究组能够齐聚深圳,希望能给大家提供一个很好的交流机会。我国冷冻电子显微学在世界学术界有一定的地位,作为相关科研工作者十分自豪,这离不开隋森芳院士所言的前辈们在此领域多年的耕耘,前辈们发挥了至关重要的作用。南方科技大学电镜中心成立还不久,正在成长过程中,需要更多的关注与支持。电镜中心在倍感责任重大的同时,也期望能在助力生物学本身的发展、推动产学研结合和经济发展等方面作出一些贡献。也希望通过这次会议,大家能进一步知识共享,共同推进中国结构生物学的发展,使之在国际上的影响力越来越大。同济大学附属第十人民医院教授、中华医学会内科学分会副主任委员徐亚伟致辞徐亚伟教授代表中华医学会内科学分会、中国医师协会心血管内科医师分会、世界华人心血管医师协会等对本次会议召开表示热烈祝贺,并预祝会议圆满成功。赞助厂商代表,赛默飞生命科学电镜业务拓展总监Eric Chen发言大会特邀报告一:中国科学院院士、清华大学教授 饶子和报告题目:Living in the cell: Understand SARS-CoV-2 replication and transcription from structures至今,新冠病毒COVID-19在全球范围内已导致约1.59亿人感染,300余万人死亡。SARS-CoV-2作为新冠病毒致病因子,编码16种非结构蛋白(nsp1-nsp16),它们组装形成复杂的超分子蛋白质机器“转录复制复合体”(RTC),在整个病毒复制和转录周期中起到关键作用。饶子和院士报告分享了团队在SARS-CoV-2 RTC结构方面开展的系列研究,在疫情爆发早期阶段,便迅速开展了相关研究,以剖析该病毒如何在人类细胞中生存的关键机制,并为发现有效的抗病毒药物提供结构信息。系列研究工作不仅为从结构生物学角度理解SARS-CoV-2在宿主细胞中复制提供了基础,也为针对SARS-CoV-2快速出现的抗病毒药物的开发提供了依据。大会特邀报告二(线上):美国科学院院士,Columbia University,2017年诺贝尔化学奖得主 Joachim Frank报告题目:Resolution in State Space and Time单颗粒冷冻电镜技术在高空间分辨率探索方面取得的巨大成功,使我们对热平衡中生物分子及其构象的结构有了前所未有的深入理解,尤其是膜结合离子通道和受体的研究非常受益这项技术。Joachim Frank教授在报告中分享了其团队开发的两种技术的现状,即time-resolved cryo-EM和mapping of the conformatinal continuum in state space,这两种技术超越了以往收集数据的标准方法,以及通过聚类确定状态的状态的表征方法。据介绍,冷冻电镜时间分辨需要一个带有微流控装置的特殊装置,两种组分在其中混合,反应一定时间,然后喷洒至网格上。目前为止,其团队的应用仅限于细菌翻译领域,在此领域,20-600毫秒范围内的短寿命状态首次可视化。对于离子通道和受体的作用,时间范围是否可以降低到1毫秒,还有待进一步研究。大会特邀报告三(线上):中国科学院院士,中国疾病预防控制中心主任 高福报告题目:新冠疫情:病毒出现、病毒发现、溯源与疫苗近一年的新冠疫情全球大流行已经极大影响了全球经济发展和生活风貌,高福院士从新冠疫情的发生、发展讲起,介绍了我国防控措施及取得的成就,进而介绍在抗体药物研发、疫苗开发等干预措施等方面取得进展。从病原发现,流行病学研究,病毒特性揭示,入侵机制阐明,病毒感染的免疫学特性研究;到防控策略的指定,诊断试剂、治疗性小分子药物、抗体药物和疫苗的开发,都需要向科学要答案。结构生物学在新冠病毒与受体互作及入侵机制的阐明,药物、抗体、疫苗的研发设计及优化方面均起到重要作用,也将继续助力通用疫苗的研发,中国疫苗的科技自强。大会特邀报告四:北京大学教授 高宁报告题目:Structural Aspects of Ribosome Biogenesis and Translation Regulation高宁教授首先分享了其团队在近年来在核糖体生物生成、蛋白质生物生物合成控制方面的系列研究进展。实验室以冷冻电镜为主要工具,主要致力于解析翻译控制及核糖体生物发生中新的核糖体相互作用因子的机制,相关研究揭示了原核生物和真核生物核糖体亚单位的组装过程。最后也分享了利用冷冻电镜进行的一些大家关注比较少的、有趣的生物学研究工作。专题1:高分辨率结构解析方法与应用“高分辨率结构解析方法与应用”专题报告掠影在“高分辨率结构解析方法与应用”专题部分,复旦大学徐彦辉、北京大学陈雷、清华大学刘俊杰、西湖大学周强、Gatan袁昊、浙江大学张兴、上海蛋白质中心丛尧、西湖大学马丹、中科院生物物理所宋丹枫、中国科技大学柳维、中科院生物物理所王有望、赛默飞张天庆等为大家带来12个精彩报告。接下来两天会议日程,将依次进行后续大会特邀报告、后4个专题报告,以及冷冻电镜平台建设和管理圆桌论坛,更多详情,关注仪器信息网后续报道。合影留念
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • 哈佛华人团队结合冷冻电镜和AlphaFold揭示核孔复合体精细结构 有望成为结构生物学新规范
    “我们通过冷冻电镜技术拿到了核孔复合体高分辨率的密度图。然后借助于 AlphaFold 结构预测,搭建出核孔复合体胞质环的精细模型。通过原子模型,为解释细胞核的运输机制,理解细胞生命活动的基本过程提供了重要的结构基础,同时也能为非常多相关的疾病提供重要的线索。”美国国家科学院院士、哈佛大学医学院生物化学及分子药理学教授团队表示。6 月 10 日,该课题组在 Science 上发表题为《核孔复合体胞质环的结构》的论文 [1]。图 | 相关论文(来源:Science)董颖、皮雄、彼得罗丰塔纳(Pietro Fontana)担任共同第一作者,吴皓担任通讯作者。图|吴皓(来源:吴皓个人主页)利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞中一个接近完整的结构对于在该研究中 AlphaFold 所起到的作用,董颖表示,此次解析的核孔复合体(NPC,nuclear pore complex)是真核生物中最大的膜蛋白复合物之一,它位于核膜上,介导核膜内外的物质转运。由于其分子量巨大,组成成分复杂,动态变化多样,这使得电镜解析图谱的分辨率很有限(6-7 埃),并且搭建分子模型困难重重。但是 AlphaFold 的出现很好地弥补或一定程度上解决了图谱分辨率不足的问题,它可以预测很多没有结构的蛋白亚基,从而补充解释蛋白复合物结构里缺失的结构单元的高分辨信息;还可以预测部分亚基相互作用界面,从而说明亚基作用的结构基础以及生物学意义。另一方面,AlphaFold 预测也并非万能,它给出了诸多的可能性之后,课题组也需要理性分析哪一种结果最为合理,最能解释得清楚相关生物学现象。论文共同作者皮雄表示:“AlphaFold 能够预测出相互作用的蛋白亚基,与我们通过冷冻电子显微学计算出来的比较相符,从而大大方便了我们确定相互作用的蛋白亚基,进而加速我们模型搭建的过程。”图 | 皮雄(来源:皮雄)据悉,核孔复合体是细胞质和细胞核之间双向物质运输的管道。该团队利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞的核孔复合体胞质环的一个接近完整的结构。使用 AlphaFold 预测核孔蛋白的结构,并以突出的二级结构密度作为指导,将核孔蛋白的结构拟合到中等分辨率的图谱中。利用 AlphaFold 进行复杂的预测,还可以进一步建立或证实某些分子间的相互作用。课题组鉴定了 Nup358 的 5 个拷贝的结合模式,这是最大的核孔复合体亚基,具有 Phe-Gly 重复序列,并预测它包含一个线圈-线圈结构域,在一定条件下可能作为成核中心辅助核孔复合体形成。核孔复合物是真核细胞核膜中的分子管道,可以调节细胞核和胞质溶胶之间生物分子的进出口,脊椎动物核孔复合体的分子量约为 110 至 125 MDa,直径约为 120 nm。核孔复合体被分为四个主环:胞质侧的细胞质环(CR,cytoplasmic ring),核膜平面上的内环(Inner Ring, IR)和管腔环 (Luminal Ring, LR),以及面向细胞核的核环 (Nuclear Ring, NR)。每个环具有相似的八重对称,并由不同的核孔蛋白的多个副本组成。核孔复合体参与了许多生物过程,其功能障碍与越来越多的严重疾病有关。尽管在过去的 20 年里,许多团体进行了开创性的研究,但人们仍然缺乏对核孔复合体的组织、动态和复杂性的充分理解。图 | 董颖(来源:董颖)(来源:Science)预测核孔复合体中最大的蛋白 Nup358 具有 s-形球状结构域此次研究中,该团队使用非洲爪蟾卵母细胞,作为结构表征的模型系统,因为每个卵母细胞都有大量的NPC颗粒,因此这些颗粒可以在没有去垢剂提取的帮助下,在天然核膜上可视化。据悉,课题组使用单颗粒冷冻电子显微镜,来分析不同倾斜角度的数据并进行三维重建,之后用 AlphaFold 进行模型构建和结构预测,重建了 X.laevis NPC 的 6.9 和 6.7埃分辨率的全 CR 原聚体和一个核心区域,并使用 AlphaFold 预测了单个核孔蛋白的结构。对于任何模糊的亚基相互作用,该团队也预测了复杂的结构,这进一步指导了 CR 原聚物的模型拟合。他们将核孔蛋白或复杂结构置于 CR 密度中,以获得一个几乎完整的 CR 原子模型,由内部和外部 Y复合物、两个 Nup205 拷贝、两个 Nup214-Nup88-Nup62 复合物拷贝、一个 Nup155 和 5 个 Nup358 拷贝组成。值得注意的是,课题组预测了核孔复合体中最大的蛋白 Nup358 具有 s 形球状结构域,一个线圈结构域和一个含有苯丙氨酸-甘氨酸(FG)重复序列的 c 端区域,而先前显示形成的一个凝胶样的凝析相,可用于选择性物质通道。其中,四个 Nup358 拷贝夹在内部和外部 y 复合体周围以稳定 CR,第五个 Nup358 位于夹子簇的中心。另据悉,AlphaFold 还预测了一个同源低聚物,可能是 Nup358 的五聚体、卷曲螺旋结构,这可能为 Nup358 募集到核孔复合体提供亲合力,并降低 Nup358 在核孔复合体生物发生中凝聚的阈值。可以说,此次研究提供了一个整合的低温冷冻电子显微镜和结构预测的例子,可作为从中等分辨率密度图中、获得更精确的兆道尔顿蛋白复合物模型的新方法。该论文提出的更准确、以及几乎完整的 CR 模型,扩展了他们对NPC分子相互作用的理解,代表了向完整的NPC分子结构迈出的实质性一步,对NPC的功能、生物发生和调控具有影响。(来源:Science)有望成为结构生物学的规范该团队在论文中表示,几乎完整的 NPC CR 模型揭示了其内部的分子相互作用及其生物学意义。CR 组装的一个意想不到的方面是,他们观察到了 Nups 之间的组成和绑定模式的不对称性:其一,两个 Y 配合物之间的构象差异;其二,两个 Nup205 分子与 Y 配合物的结合模式不同;其三,两个 Nup214-Nup88-Nup62 配合物并排放置;其四,5 个 Nup358 配合物具有不同的结合模式。因此,这种不对称性是代表 CR 的基础状态、还是由放线菌素 D(Actinomycin D,ActD) 的结合引起的,以及它是否会是 NR、IR 或 LR 结构中的共同特征?这将是一个很有趣的问题。而研究人员的 X.laevis NPC 样本来自单倍体卵母细胞,这可能与体细胞中的核孔复合体有更大的不同。该团队认为,Nup358 的多个拷贝、及其低聚卷曲螺旋关联,解释了其在细胞质中卵发生过程中,作为NPC组装的关键驱动因素的作用,这不同于有丝分裂后和较慢的间期NPC组装。这一过程发生在内质网(ER,endoplasmic reticulum)的堆叠膜片上,称为环状膜层(AL,annulate lamellae),其苯丙氨酸-甘氨酸(FG,Phenylalanine-glycine)重复序列中的 Nup358复合物作为紧固件,从开始空间就可指导核孔复合体生物发生。这说明,Nup358 的低聚结构可能会降低 Nup358 复合体形成的阈值,从而有助于解释其在不同 Nups 中的成核作用。此外,课题组还提出了一种综合的方法,利用冷冻电子显微镜和 AlphaFold 结构预测的最新发展,从而带来了更精确的核孔复合体建模。在学界最近发表的论文或预印本论文中,也使用了类似的方法来确定核孔复合体的结构。AlphaFold 预测与传统结构建模不同,这是基于人工智能的建模方式。实现高分辨率的目标,是获得尽可能好的最佳模型。而在建模过程中,包含来自 AlphaFold 的信息,可能类似于该领域之前对立体化学约束所做的事情。随着复杂预测的能力更加普遍,该团队预计这种方法不仅有助于新结构的建模,而且有助于重新绘制以前的中分辨率低温电子显微镜图,成为结构生物学的规范。(来源:Science)董颖表示:“很多时候,我们采取科学的验证方式——用一系列生化实验对 AlphaFold 预测结果进行反向验证。我们利用人工智能,冷冻电镜与传统生物化学综合研究方式,推动了我们对复杂、动态的生物大分子的结构和功能的进一步理解。由此可见,AlphaFold 的出现给我们研究科学问题的方式也带来了革命性影响。我们在未来的科学研究中,只要大胆尝试,多方位思考,总能碰撞出美妙的火花!”担任论文共同作者的傅天民,目前在俄亥俄州立大学药学院,担任生物化学与药理学助理教授。其表示,该课题由他之前在吴皓教授实验室发起。他介绍了该研究的背后故事:2019 年初,吴皓教授与实验室的学生们,在佛罗里达参加美国生物化学与分子生物学年会。会后,吴老师带着学生们去吃火锅,饭桌上大家聊起结构生物学最重大的问题还有哪些,傅天民提出核孔复合物的结构是一个重要且没完全解决的问题,这个提议得到了吴皓教授的支持。回到波士顿后,王隆飞打算用酵母细胞来研究核孔复合物,傅天民则着手用非洲爪蟾的卵母细胞来研究。之所以选定爪蟾卵母细胞主要因为这类细胞易于获取,而且细胞核上有丰富的核孔复合物。后来,傅天民要去俄亥俄州立大学建立自已的实验室,课题转交给两个新来的博后董颖和 Pietro,他们两个紧密合作,克服了一系列技术难题,初步拿到了一些高质量的样品,收集了一些数据。随后,皮雄博士加入课题。皮雄博士和董颖博士通过大量的数据处理,为冷冻样品优化提供了正确的方向。最后通过大家几个月不懈的努力,利用进一步优化的高质量样品,收集了几万张冷冻电镜照片。最终皮雄博士通过冷冻电镜三维重构技术得到了高分辨率的密度图。Alex 利用 AI 结构预测对结构模型搭建起了重要作用。吴皓教授整个过程的支持、指导是课题得以成功的决定力量。董颖表示:“NPC是我进入吴老师实验室的第一个课题。现在回想起来整个研究经历都有些百感交集。当时我们‘白手起家,从零开始’。我从未接触过动物实验,我只能查找文献,自己摸索一切实验流程。中途可谓困难重重,我时常在解剖镜前解剖蛙卵,铺膜制样,一坐就是一整天。制样优化样品周期很长,我们寻找了各式各样的载网(因为不是所有载网在高角度拍摄的条件下都稳定),我做了很多载网稳定性的分析,光是优化样品就花了半年多。优化中途,陆续已有相关研究报道出现,当时我们整个团队几乎都要放弃。就在这时,皮雄博士通过大量的计算,得到了七埃左右分辨率的密度图。同时吴老师提议我们为模型搭建寻找新的切入点——恰逢AlphaFold横空出世,我们一不做二不休,立刻开启寻找冷冻电镜与AlphaFold对接的可能。”经过几个月没日没夜的计算、预测、模型搭建,课题组惊奇地发现新的研究方式带来了意想不到的研究结果。功夫不负有心人,最终他们非常有幸地与来自不同研究组的科学家们同台展示了研究结果。皮雄表示:“核孔复合体作为细胞生命活动的‘南天门’,严密调控着细胞的生命活动。作为一个功能如此复杂,形态巨大的复合体,它的精细结构是如此的严密和复杂。拿到它的精细结构也是非常困难。作为一个如此困难的课题,需要团队每个成员紧密合作,协同前进。每一部分工作都包含了团队每个成员的巨大努力。研究中,我主要负责冷冻电镜的数据处理,拿到高分辨率的核孔复合体的密度图,同时也参与了冷冻样品的优化。”(来源:Science)对于该成果的应用,董颖表示:“已经有相关研究报道说明NPC结构和功能的异常和许多疾病相关,例如神经退行性疾病阿尔兹海默症,介导了一些病毒如HIV的入侵,甚至会诱导一些癌症的发生。由于核孔复合体介导了很多重要物质的转运,其研究一直是近几年来科学界研究的一大热点。目前针对它的研究还处于相对基础的阶段,这主要受到它的复杂性,和动态性的局限。但就它推广到应用的可能性来讲,我认为只要我们能够把它‘看’得足够清楚,运动的原理理解的足够清楚,我们就有可能对它进行靶向药物设计,调节它的底物转运。给治疗人类疾病提供更多可能。最近几年来随着冷冻电镜技术和人工智能的进步,相信二者能共同推动其成为新兴药物靶点,逐步应用到疾病治疗。”对于后续计划,董颖表示:“我们队 NPC 的研究还只是冰山一角,后续有很多有趣的研究方向——现举几个例子:(1)由于核孔复合体底物众多,但出核和入核的底物的识别和转运机制如何?NPC 转运物质的孔道呈现有趣的胶状结构,这一结构高度动态,很可能在底物转运过程中发生相分离,我们可以借助单分子荧光标记来细化这些转录途径。(2)研究 NPC 的某些特定的活动状态,已经有研究报道酵母中可能存在多种 NPC 的状态和组装形式,这些结构组成具体参与了怎样的生物学功能还不清楚。(3)NPC 组装和解聚如何发生,特定组装状态下有哪些多辅助分子参与稳定其状态,这些我们可以联合质谱技术来鉴定新的作用亚基。”澳大利亚莫纳什大学药物科学研究所曹剑骏评价称,在本文中,该团队首先利用核孔复合体在非洲角蟾卵母的极高丰度这一特质,对天然膜环境中地核孔复合体进行直接观察,避免了可能存在人为纯化干扰。同时,课题组使用倾斜样品的方式,解决了膜蛋白样品在膜中的受限的角度分布,从而实现蛋白结构的三维重建。此过程中,该团队以令人敬佩的毅力手工选取了 20 万单颗粒样品,以实现整个核孔复合体的低分辨率(19 埃)结构,并集中于胞质环的局部结构解析得到中等分辨率(~7 埃)的电子云密度图。但这一分辨率依旧只能辨别大致的二级结构特征,而存在建模困难。因此,该团队尝试借助最新的 AlphaFold 基于序列的结构预测功能,由单个亚基、多亚基局部预测出发,实现整个胞质环的结构解析。该团队同时将基于 AlphaFold 的结果与传统的同源结构预测相对比,为蛋白结构工作者提供了一个优秀范例,展示了如何借助 AlphaFold 这一新工具解析未知蛋白结构。研究中,课题组同样也得到了核内环的信号,但是尚未得以解析,想来将来会由相应的工作面世,从而完备整个核孔复合物的结构信息。同时,该论文的蛋白结构分辨率受制于天然核孔结构的非均一性和单颗粒的人工手动筛选通量,而后者有希望得到 AI 辅助单颗粒筛选软件的帮助,从而解放研究人员双手实现以更多的单颗粒数据收集,最终有望解析出各类不同状态的核孔复合体结构,进一步阐述这一精妙的分子复合体的调节机制。-End-支持:Ren参考:1、Pietro Fontana et al., Structure of cytoplasmic ringof nuclear pore complex by integrative cryo-EM and AlphaFold. Science (2022) DOI: 10.1126/science.abm9326
  • 解决生物学50年来的重大挑战!生物界“AlphaGo”精准预测蛋白质结构
    p style=" text-indent: 2em " 提到DeepMind公司,我们首先想到的可能是几年前,它开发的人工智能AlphaGo“横扫”顶尖人类围棋职业选手,变革了围棋的思考方式。除了在棋类比赛中所向披靡以外,DeepMind也在加速科学发现上迈出了重要一步。今日,DeepMind宣布,其新一代AlphaFold人工智能系统,在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手,能够精确地基于氨基酸序列,预测蛋白质的3D结构。其准确性可以与使用冷冻电子显微镜(CryoEM)、核磁共振或 X 射线晶体学等实验技术解析的3D结构相媲美。这一突破被多家媒体称为“变革生物科学和生物医学”的突破。前基因泰克(Genentech)首席执行官Arthur D. Levinson博士称这一成就为“划时代的进步”(once in a generation advance)。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/33325072-7059-48e8-b1d4-6321cae2e263.jpg" title=" 微信图片_20201201221037.png" alt=" 微信图片_20201201221037.png" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " 图片来源:DeepMind Blog /span /p p br/ /p p style=" text-indent: 2em " strong 生物学50年来的重大挑战 /strong /p p br/ /p p style=" text-indent: 2em " 我们都知道,蛋白质对生命来说是不可或缺的,它们支持生物体的几乎所有功能。这些复杂的大分子由氨基酸链构成,而蛋白质的功能很大程度上决定于它的3D结构。生物医学领域的众多挑战,包括开发治疗疾病的创新疗法,依赖于对蛋白质结构和功能的理解。 /p p br/ /p p style=" text-indent: 2em " 在过去的五十年中,科学家们已经能够利用冷冻电子显微镜、核磁共振或 X 射线晶体学等实验手段在实验室中确定蛋白质的形状,但每种方法都依赖于大量的试错,耗时耗力,可能需要花上好几年时间。1972年,诺贝尔化学奖得主Christian Anfinsen博士表示,理论上,蛋白质的氨基酸序列应该能够完全决定它的3D结构。这一假说激发了50年来基于氨基酸序列,通过计算方法预测蛋白质3D结构的探索。 /p p br/ /p p style=" text-indent: 2em " 然而,这一领域面临的重大挑战是理论上,氨基酸链可能形成的蛋白质构象的数目是个非常庞大的天文数字。有学者估计,一个典型的蛋白质理论上可以形成10的300次方(1后面加300个0)个可能构象。然而在自然界,蛋白质能够自发地在几毫秒内,迅速折叠成其中一个构象。用什么样的计算方法,才能从10的300次方的可能构象中找到那个正确的构象? /p p br/ /p p style=" text-indent: 2em " strong AlphaFold:生物界的“AlphaGo” /strong /p p br/ /p p style=" text-indent: 2em " DeepMind的研究人员把折叠好的蛋白质设想成一幅具有3D结构的“空间图画”(spatial graph),而氨基酸则是这副“空间图画”中节点和线条。基于神经网络系统,他们设计了AlphaFold系统来解析这一空间图画的结构。它使用了进化相关的氨基酸序列,多序列对比(multiple sequence alignment, MSA)以及对氨基酸对(amino acid pairs)的评估来优化“空间图画“的描绘。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/7ffebf8d-21e2-421e-bff5-adf328b90caf.jpg" title=" 微信图片_20201201221204.png" alt=" 微信图片_20201201221204.png" / /p p style=" text-align: center text-indent: 2em " ▲AlphaFold的神经网络模型构架(图片来源:DeepMind Blog) /p p br/ /p p style=" text-indent: 2em " 研究人员使用蛋白质数据库中接近17万个不同的蛋白质结构,以及包含未知结构的蛋白序列数据库对AlphaFold进行训练。通过不断地迭代,AlphaFold系统学习到了基于氨基酸序列,精确预测蛋白结构的能力。 /p p br/ /p p style=" text-indent: 2em " 与实验结果相差无几的蛋白质结构预测 /p p br/ /p p style=" text-indent: 2em " 国际蛋白质结构预测竞赛(CASP)是由马里兰大学的John Moult教授和加州大学戴维斯分校的Krzysztof Fidelis教授联合创建的国际性比赛,旨在评估、促进和确认最佳的蛋白质结构预测手段。CASP选择已经通过实验手段解析,但是尚未公布的蛋白质结构作为目标,让世界各地的研究团队运用自己的计算手段预测它们的结构。一个独立的团队会评估预测结构与通过实验手段解析的蛋白结构之间的差异。 /p p br/ /p p style=" text-indent: 2em " 2018年,DeepMind开发的第一代AlphaFold首次参加CASP并且拔得头筹。而今年,新一代的AlphaFold在CASP中的表现更为惊艳。CASP使用称为GDT的评分系统来评估预测蛋白结构的精确性。这个评分从0到100,如果评分达到90分以上,可以认为预测的结构与实验手段获得的结构相当。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/87def9e4-8753-401b-9fa9-3ada59e01d7b.jpg" title=" 微信图片_20201201221209.png" alt=" 微信图片_20201201221209.png" / /p p style=" text-align: center text-indent: 2em " strong ▲2006-2020年CASP比赛中最佳蛋白折叠预测系统的评分表现(图片来源:DeepMind Blog) /strong /p p br/ /p p style=" text-indent: 2em " 在今年的CASP中,AlphaFold系统对所有蛋白靶点3D结构预测的中位GDT评分为92.4分。即便是针对最难解析的蛋白靶点,AlphaFold的中位GDT评分也达到了87.0分。在接受检验的近100个蛋白靶点中,AlphaFold对三分之二的蛋白靶点给出的预测结构与实验手段获得的结构相差无几。CASP创始人Moult教授表示,在有些情况下,已经无法区分两者之间的区别是由于AlphaFold的预测出现错误,还是实验手段产生的假象。 /p p style=" text-align: center" br/ /p p style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202012/uepic/14003fd2-fbf1-4fc4-b34a-087e4fa5f63d.jpg" title=" 微信图片_20201201221209.png" alt=" 微信图片_20201201221209.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 2em " ▲AlphaFold根据氨基酸序列预测的蛋白结构与实验手段解析的结果几乎完全重合(绿色,实验结果;蓝色,计算预测结果;图片来源:DeepMind Blog) /p p br/ /p p style=" text-indent: 2em " strong 对真实世界的影响 /strong /p p br/ /p p style=" text-indent: 2em " 在今年早些时候,DeepMind已经利用这一系统预测了多种新冠病毒蛋白的结构。后续的实验显示, strong AlphaFold预测的新冠病毒Orf3a蛋白结构与冷冻电镜解析的结构非常相似。 /strong /p p br/ /p p style=" text-indent: 2em " 虽然,AlphaFold不见得会取代冷冻电子显微镜等其它实验手段,但是DeepMind的研究人员表示,这一令人兴奋的结果表明,生物学家们可以使用计算结构预测作为科学研究的核心工具之一。这一手段对于特定类型的蛋白来说可能尤为便利,例如膜蛋白一直非常难于结晶,因此很难用实验手段获得它们的结构。 /p p br/ /p p style=" text-indent: 2em " 而对于从事计算和机器学习研究的DeepMind团队来说,AlphaFold的表现证明了AI在辅助基础科学发现方面惊人的潜力。该团队在公司发布的博文中表示,他们相信,AI将成为人类拓展科学知识前沿最有力的工具之一! /p p br/ /p
  • 安捷伦科技推出用于结构生物学应用的新一代 X 射线衍射仪
    安捷伦科技推出用于结构生物学应用的新一代 X 射线衍射仪 2012 年 7 月 30日,北京&mdash 安捷伦科技公司(纽约证交所: A)在波士顿召开的美国晶体学协会年会上发布了 GV1000 X 射线单晶衍射仪。 这一革命性的新一代仪器将用于收集生物大分子晶体样品的高质量衍射数据。 GV1000 配备了体积紧凑且高亮度的 X 射线源,采用创新的梯度真空技术,使得该款仪器不仅稳定可靠,而且使用简单。 GV1000 结合了安捷伦高精度四圆测角仪以及高性能 CCD 检测器,是满足现代大分子晶体学实验室极具挑战性需求的理想解决方案。 大分子晶体学是研究蛋白质和核酸分子(这两种物质是生物体的重要成分)原子级别结构的学科。 在制药行业的新药研发中,这门学科也扮演着重要的角色。 安捷伦 X 射线衍射产品线总经理 Leigh Rees 博士说:&ldquo 有了 GV1000,我们可以将产品系列扩展到高端的蛋白质晶体学中。 相比于竞争产品-旋转阳极系统,梯度真空系统GV1000具有许多显著优势,终将成为应用于蛋白质晶体学和其它晶体学研究的尖端实验室系统。&rdquo GV1000 是安捷伦正在扩展的 X 射线晶体学产品系列中性能最高的单波长系统。 GV1000的研发得益于安捷伦为所有X 射线单晶衍射应用提供创新性解决方案的专业技术。 安捷伦所有用于 X 射线晶体测量仪器的主要部件的设计和制造都有 20 年以上的历史。 要了解更多信息,请访问 www.agilent.com/lifesciences/GV1000 。 关于安捷伦科技 安捷伦科技公司(纽约证交所: A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。 公司的 20,000 名员工为 100 多个国家的客户提供服务。 在 2011 财政年度,安捷伦的业务净收入为66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn 。
  • 布鲁克成功验收两套全新紧凑型1.0GHz核磁系统,持续推进结构生物学研究
    2023年2月3日,瑞士费兰登报道。布鲁克今日宣布,提前于2022年底成功为客户安装两套全新紧凑型1.0GHz核磁共振波谱仪,用于结构分子生物学高级应用。这两套全新Ascend Evo 1.0 GHz核磁共振系统在4.2 K温度条件下运行,无需在液氦温度以下进行低温冷却,因而液氦消耗量比以前的1.0 GHz 2 K双层磁体低65%左右。此外,新型1.0 GHz核磁共振磁体对占地面积、重量和天花板高度的要求也显著降低,适用于大多数单层实验室。紧凑型系统更易于制造、选址和安装,从而能够在更短时间内完成验收。这两套紧凑型超高场核磁共振系统正在为功能结构分子生物学以及表型临床研究提供优秀的科学数据。这让科研人员得以深入研究蛋白质结构及复合物的结构细节、结合和动力学,从而开展基础细胞生物学和病理生物学研究。位于日本横滨的RIKEN生物系统动力学研究中心是首个收到Ascend Evo 1.0 GHz核磁共振系统的客户,该系统在不到两个月的时间内即成功完成安装并通过验收。Ichio Shimada博士带领的RIKEN团队将使用GHz级NMR,研究溶液中生物分子的动态结构,并探索动态结构与生物功能或病理生物学之间的关系。Ichio Shimada教授表示:“这款全新Ascend Evo 1.0 GHz波谱仪在2022年底顺利完成交付和安装,这让我非常满意。在成功完成调试后的几周内,我们便开始收获第一批核磁共振研究结果。这套超高场GHz级核磁共振波谱仪拥有卓越的分辨率以及对15N和13C的高度灵敏的直接检测能力,为我们新启动的GPCR(G蛋白偶联受体)和RNA研究提供了新的见解。这将支持并加强我们在结构生物学——尤其是动力学方面的研究。”2022年,西班牙奇异的科学和技术基础设施(ICTS)高场核磁共振网络(节点位于巴塞罗那、马德里和毕尔巴鄂)采购了两套1.0 GHz系统,并分别为其选址于巴塞罗那和毕尔巴鄂。这两套系统将保持开放,并将为西班牙新成立的结构生物学中心铺平道路。选址于巴塞罗那的Ascend Evo 1.0 GHz核磁共振波谱仪在不到6周时间内即成功完成安装,并已开始生成优秀数据。另一套1.0 GHz系统预计将于2023年夏季,交付给位于毕尔巴鄂的CIC bioGUNE。巴塞罗那大学生物核磁共振组组长Miquel Pons Valles教授和他的团队采用生物物理方法——尤其是核磁共振法,以及化学生物学、分子生物学和计算方法,来研究蛋白质的调节过程(其中,动力学分析对功能研究至关重要)。Ascend Evo 1.0 GHz NMR还将推进他们对功能非常重要的固有无序蛋白(IDP)的研究。布鲁克BioSpin集团总裁Falko Busse博士表示:“我们很高兴地宣布,这两套1.0 GHz核磁共振系统非常迅速地完成了交付并通过了客户的验收。这些维护要求低、结构紧凑且液氦消耗量低的核磁共振波谱仪将给越来越多的实验室带来GHz级核磁共振系统的助力。”
  • 冷冻电子显微学与“细胞器、亚细胞及原位结构生物学研究”专题报告会召开
    p strong 仪器信息网讯 /strong  第六届全国冷冻电子显微学与结构生物学专题研讨会在北京隆重召开,研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。19日下午,“细胞器、亚细胞及原位结构生物学研究”作为大会三大专题之一,在中科院生物物理所孙飞研究员主持下,顺利召开。会议围绕“细胞器、亚细胞及原位结构生物学研究”共安排了6个专题报告,吸引了来自海内外400多名代表与会。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/6d2dd523-e8dd-419b-b1a2-47d32db518f5.jpg" title=" 全景小.jpg" alt=" 全景小.jpg" / /p p style=" text-align: center "   研讨会现场 /p p   中国科学技术大学毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告,分享在A型γ-氨基丁酸受体(GABAARs)的原位结构和组织研究方面的成果。毕国强用高分辨率冷冻电子断层扫描(Cryo-CLEM),确定了GABAARs在培养的海马神经元的抑制性突触中的结构。定位分析显示,GABAARs超复合物具有固定的11nm受体间距离但相对角度可变。这些超级复合物形成多受体网络,与随机分布的受体相比具有更低的Voronoi熵。受体网络进一步组织成具有~18nm的相界的中间组件。这种分层的自组织既保持规律性又灵活性,从而可以在突触信息处理中实现平衡的可靠性和可塑性。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/26ffc5a5-9914-4e50-a103-e06077a70894.jpg" title=" 毕国强.jpg" alt=" 毕国强.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告 /p p   染色质结构的高度动态变化在基因转录调控过程中起重要作用,并受多种表观遗传调控因子,如DNA 的甲基化、组蛋白的化学共价修饰、组蛋白变体置换、染色质结构蛋白的动态结合、ATP 依赖的染色质重塑以及非编码RNA 等的调控。中国科学院生物物理研究所朱平的《细胞核内染色质的电镜结构研究》报告介绍了利用冷冻切片、电镜和电子断层成像、CLEM等技术,在体外组装的染色质纤维纤维结构、以及用不同方法制备的细胞核内染色质结构研究的一些初步结果。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/4ed382f4-dba9-497e-ad1b-0a2ccab43a89.jpg" title=" 朱平.jpg" alt=" 朱平.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   朱平作《细胞核内染色质的电镜结构研究》报告 /p p   中国科学院生物物理研究所纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告。报告内容中展示了所开发的冷冻和干涉单分子定位成像技术、冷冻超分辨光电融合成像技术。展示了使用csCLEM(cryogenic super-resolution correlative light and electron microscopy)精确确定蛋白质与其天然细胞结构之间的空间关系的研究过程和成果。在构建冷冻超分辨成像系统时,发现几种荧光蛋白(FP)是光可切换的并且发射更多的光子,可以得到更高的、与超分辨率成像相当的定位精度。引入冷冻切片,将csCLEM扩展到哺乳动物细胞,并观察到线粒体蛋白与线粒体外膜在三维纳米分辨率下的良好相关性。纪伟分享了最新工作进展,借助新设计的超稳定冷台,将冷冻超分辨成像系统升级为超稳定的超分辨荧光冷冻显微镜。该冷冻显微镜具有出色的热稳定性和机械稳定性,10小时内的温度波动小于0.1K,并且在5小时内三维机械漂移小于200nm。报告中的应用实例表明,超分辨荧光冷冻显微镜系统适合长时间观察和csCLEM实验。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/76fdeaad-1028-4e9b-a7bb-b3164af3baac.jpg" title=" 纪伟.jpg" alt=" 纪伟.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告 /p p   此外还有,生物化学与细胞生物学研究所何勇宁作《Architecture of cell–cell adhesion revealed by electron microscopy》报告,北京生命科学研究所何万中作《Direct synthesis of EM-visible gold nanoparticles on genetically encoded tags for single-molecule visualization in cells》报告,清华大学李赛作《Three-dimensional imaging by Cryoelectron tomography and subtomogram averaging at sub-nanometer resolution》报告。虽然是研讨会的最后一场,但全场观众依然聚精会神,台上台下展开了热烈交流。 /p p   会议期间,借助冷餐会及会议间隙,特别设立了Poster交流环节,并在19日现场颁发了Poster奖。清华大学田元元、北京大学程稼萱、中国生物物理所吴春玲、浙江大学黄子惠、清华大学徐魁、中山大学邵千芊、中国生物物理所黄小俊、北京大学康云路获得Poster奖。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/ea3738f8-7e43-4327-9700-90aaccbf460a.jpg" title=" poster.jpg" alt=" poster.jpg" / /p p style=" text-align: center "   孙飞教授、高宁教授与Poster奖获得者合影留念 /p p br/ /p
  • 第六届全国冷冻电子显微学与结构生物学专题研讨会隆重召开
    p    strong 仪器信息网讯 /strong  6月17日,第六届全国冷冻电子显微学与结构生物学专题研讨会在北京开幕。本次研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。开幕式由研讨会秘书长、北京大学生命科学学院副院长高宁教授主持。本次研讨会共组织安排了44场精彩报告,其中包含:2个大会特邀报告,“中国冷冻电镜杰出贡献奖”获得者特别报告,以及41个专题报告(冷冻电子显微学新技术新方法,生物大分子复合物的高分辨率动态结构,细胞器、亚细胞及原位结构生物学研究)。作为单数年国内最重要的冷冻电子显微学盛会,吸引了来自海内外400多名代表与会。 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/5b666457-3b8f-4b97-8826-959e9cd62627.jpg" title=" 会场局部.jpg" alt=" 会场局部.jpg" / /p p style=" text-align: center "   研讨会现场 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 276px " src=" https://img1.17img.cn/17img/images/201906/uepic/8bef02e0-ea6c-47dc-b6f1-bb56d98ab605.jpg" title=" 高宁.jpg" alt=" 高宁.jpg" width=" 450" vspace=" 0" height=" 276" border=" 0" / /p p style=" text-align: center "   高宁教授主持开幕式及上午特邀报告 /p p   大会主席、中国冷冻电镜分会荣誉理事长、中科院院士、清华大学教授隋森芳出席并致开幕辞。隋森芳在致辞中说到, 2009年第一届冷冻电子显微学与结构生物学专题研讨会召开,二三十人参会,本次会议到会400多人,这彰显了冷冻电子显微学学科在中国的蓬勃发展。中国冷冻电子显微学学科发展有两个特点:(1)国内同行互助互通,引领走出当年十几个人三四条枪的艰难、困苦 (2)海内海外一家亲,打开学科发展新局面。隋森芳寄语新一代能继承和发扬优良传统,取得更大辉煌! /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 276px " src=" https://img1.17img.cn/17img/images/201906/uepic/3f60e01c-4f57-4904-aba6-bc004bc15ec0.jpg" title=" 隋森芳1.jpg" alt=" 隋森芳1.jpg" width=" 450" vspace=" 0" height=" 276" border=" 0" / /p p style=" text-align: center "   隋森芳院士致辞 /p p   本次研讨会特邀文安德尔研究所(Structural Biology Program Van Andel Research Institute GrandRaids,MI)教授李慧林作《Let’s Talk about Evolution - of me, EM, and Complex I》大会报告,特邀普渡大学(Purdue Cryo-EM Facility)教授江文作《High-resolution Cryo-EM: From Sample Preparation to Image Processing》大会报告。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 276px " src=" https://img1.17img.cn/17img/images/201906/uepic/356ccc86-f9d3-4e2a-a06d-b12dc46d82a6.jpg" title=" 李慧林.jpg" alt=" 李慧林.jpg" width=" 450" vspace=" 0" height=" 276" border=" 0" / /p p style=" text-align: center "   李慧林作《Let’s Talk about Evolution - of me, EM, and Complex I》大会报告 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 276px " src=" https://img1.17img.cn/17img/images/201906/uepic/8df45acc-6989-4ee9-bc77-92764c5e6874.jpg" title=" 江文.jpg" alt=" 江文.jpg" width=" 450" vspace=" 0" height=" 276" border=" 0" / /p p style=" text-align: center "   江文作《High-resolution Cryo-EM: From Sample Preparation to Image Processing》大会报告 /p p   为奖励在冷冻电镜的方法学开发与应用方面获得重要突破、在中国冷冻电镜的重要设施建设与技术服务做出杰出贡献、在中国冷冻电镜的人才培养和推广中做出杰出贡献的国内科学家,以进一步推进中国冷冻电镜学科的发展,全面加强中国冷冻电镜的人才队伍建设,中国生物物理学会冷冻电子显微学分会在2017年特别设立了“中国冷冻电镜杰出贡献奖”。研讨会期间,揭晓2019年第二届“中国冷冻电镜杰出贡献奖”获奖名单,并举行“中国冷冻电镜杰出贡献奖”仪式,文安德尔研究所李慧林为清华大学生命科学学院教授王宏伟颁发“中国冷冻电镜杰出贡献奖”。王宏伟受邀作《From Biology to Methodology in Cryo-EM》报告。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/8804203a-efca-468e-bfce-0856d69828de.jpg" title=" 颁奖.jpg" alt=" 颁奖.jpg" / /p p style=" text-align: center "   王宏伟荣获“中国冷冻电镜杰出贡献奖” /p p   本次研讨会得到赛默飞世尔、Gatan、日本电子、蔡司、徕卡、日立等20多个企业的支持,其中有常见的仪器企业,更有类似DELL Technologies、思腾合力等AI、数据计算处理类型企业。研讨会会期为6月17日——19日,后续3个专题报告会更多精彩内容欢迎关注:冷冻电子显微学新技术新方法,生物大分子复合物的高分辨率动态结构,细胞器、亚细胞及原位结构生物学研究。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/5f803510-4ec2-4e5a-bb8a-f4d4d4fe3fc2.jpg" title=" 厂商掠影.jpg" alt=" 厂商掠影.jpg" / /p p style=" text-align: center "   部分研讨会赞助企业掠影 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/1e4adf53-806b-4b10-aba2-8e954b81b7ad.jpg" title=" 合影.jpg" alt=" 合影.jpg" / /p p style=" text-align: center "   全体会议代表合影留念 /p p br/ /p
  • 自主研发高真空光学冷台 高效助力原位结构生物学研究——访“朱良漪奖”获得者中科院生物物理研究所李硕果
    2022年1月,中国仪器仪表学会分析仪器分会十届三次理事会及“朱良漪分析仪器创新奖”颁奖在京举行。经过10位专家的会评,2021年“朱良漪分析仪器创新奖”最终评选出“创新成果奖”3项,“青年创新奖”4名。仪器信息网同中国仪器仪表学会分析仪器分会对“朱良漪创新奖”获奖人员进行了联合采访,本期我们的采访对象是“朱良漪青年创新奖”获得者中国科学院生物物理研究所李硕果。李硕果 高级工程师 中科院生物物理研究所主要成果:一种光镜电镜关联成像用光学真空冷台。其研制的成果在科技创新方面,为原位结构生物学研究提供了一种新型、高效的技术手段;在成果转化方面,合作研发产品已落户清华大学生命科学学院。仪器信息网:请您介绍一下您自己,以及您所在的单位?李硕果:感谢仪器信息网的采访,也再次感谢分析仪器学会对我的认可和鼓励。我2012年毕业于四川农业大学生命理学院生物物理学专业,同年加入中国科学院生物物理研究所蛋白质科学研究平台生物成像中心,是一名技术支撑工程师。我的研究方向是生物显微成像新技术新方法的研究,涉及到的主要成像技术包括:超分辨荧光显微成像技术、冷冻聚焦离子束技术和冷冻透射电镜技术以及配套的样品制备技术等。仪器信息网:请介绍您进入仪器技术领域的机缘?您在仪器的研制和产业化方面开展了哪些工作,取得了怎样的创新成果?李硕果:要说“进入仪器技术领域的机缘”,我觉得可能要得益于我的物理学背景。我本科专业是物理学,后来决定考研和从事科研工作。主要有两方面的原因:一方面是因为物理学是一门基础学科,在学习过程中我意识到,仅以一个受教育者的身份来学习,不足以深入了解一门学科,需要进一步进修和钻研;另一方面是现实原因,刚毕业的时候找工作确实很迷茫,没想好人生的发展方向,选择考研是希望能给自己进入社会前安排一个缓冲期,同时也可以慎重思考一下自己未来的职业规划。我在读研的时候曾经有一段时间陷入过深深的迷茫与困惑,看待问题不够全面,经常判断错误,导致很多事情都进展不顺利,挫败感带来了很深的焦虑和自我怀疑,也是在那个时候产生了很多次放弃的念头。机缘巧合,我在这种很不成熟的情绪状态下竟然幸运地加入了生物物理所蛋白质科学研究平台。那个时候我就对自己说,也许是天意,那就再给自己一次机会吧。更幸运的是,我在生物物理所遇到了非常多优秀的前辈以及志同道合的朋友。在生物物理所蛋白质科学研究平台韩玉刚主任,生物成像中心孙飞研究员、李栋研究员和季刚教授级高工以及各位同事们的指导、支持和帮助下,我先后以项目负责人的身份承担了中国科学院仪器设备功能开发项目和国家自然基金委青年基金项目,还参与了多项国家重点研发计划、中科院先导专项等,我们项目组团队设计完成了一款基于高真空光学冷台的冷冻光电关联成像系统HOPE,以及一款基于冷冻结构光照明的光电关联成像系统SIM-HOPE,申请发明专利5项,其中已授权2项(含1项美国发明专利);申请实用新型专利3项,其中已授权3项,发表研究成果性论文5篇。基于高真空冷台的冷冻光电关联成像系统HOPE仪器信息网:您所研制的仪器成果解决了哪些实际问题,仪器的主要用户有哪些,成果的市场前景如何?李硕果:由我们自主研发的高真空光学冷台HOPE,提出了一种全新的真空环境冷冻光学成像以及光电关联成像技术,解决了冷冻光电关联成像技术流程繁琐、操作复杂、实验效率低下的难题,研制成果——高真空低温光电关联荧光成像仪入选《2021年中国科学院自主研制科学仪器》最新产品名录,获中国国家发明专利授权一项,美国国家发明专利授权一项,发表SCI方法学论文一篇,技术应用论文2篇,还先后受邀在2018冷冻电镜国际研讨会(获最佳墙报奖)、2019年冷泉港亚洲专题研讨会等国际学术会议上就该成果的应用进展做大会报告。2019年2月,就该研究成果达成技术成果转化协议,2020年6月,第一台合作研发产品落户清华大学并完成技术验收。随后,我们在该系统基础上完成升级的冷冻结构光照明光电关联成像系统SIM-HOPE也已经研制完成,并入选《2022年中国科学院自主研制科学仪器》最新产品名录。该研究成果已经提交了发明专利申请,并于2022年4月达成技术成功转化协议,后续的市场推广也在稳步推进中。结构光照明成像技术的引入将有助于实现通过三维高分辨率荧光定位指导聚焦离子束对目标区域的精准加工,以及后续开展对目标区域生物大分子的原位高分辨率电子断层数据收集和高分辨数据重构,是对原位结构生物学研究的一大助力。仪器信息网:作为一名同时熟悉技术开发和应用的人员,请您谈谈您对当前我国生物显微成像仪器研制和应用现状的看法,您认为在实际应用中,现有技术最需要解决的问题是什么?李硕果:作为生物显微成像领域的一名科研工作者,我觉得我们处在一个机遇与挑战并存的时代。在技术基础方面,超分辨荧光成像技术、冷冻电镜高分辨率解析技术等等划时代的技术突破如雨后春笋,喷薄而出;在应用研究方面,随着技术的发展,多科学领域,特别是生命科学领域出现了非常多惊人的重大发现,并衍生出了越来越多的精细分支,而新的实际应用需求又将迫使技术不断更新迭代,引发新的技术突破。从眼前看,实际应用似乎更倾向于新技术新突破,但追本溯源,技术的发展,是根植于对基本原理的深刻理解和灵活运用。因此,我个人认为,现有技术最需要解决的问题是,科技工作者们对基本原理的深入认知,以及融会贯通。因为技术创新本质上,是对原理认知的提升和推演。仪器信息网:对于此次获奖您有何感受?您认为“朱良漪分析仪器创新奖”将给青年人带来怎样的影响?李硕果:首先要再次感谢分析仪器学会“朱良漪分析仪器创新奖”对我的认可和鼓励!我个人对本次获奖最大的感受是:深受鼓舞!真的很受激励,这些激励会让人获得被认可的满足感,进而转化为排除万难努力前进的动力。有一句话叫做“热爱是一种能力”,我觉得在个人成长过程中,“扶持”和“鼓励”真的是非常重要的一种力量,它能在你疲惫的时候给你注入新的力量,让你持续保持热爱的能力。我是在获奖之后才了解到,朱良漪先生是我国仪器仪表行业、自动化控制技术行业最早和始终不渝的开拓者之一,是分析仪器行业的主要创始人,也是不断身体力行的实践者,而且,在他的指导和带领下,造就了一大批中、青年科技人材。朱老先生是一位对新生事物敏感而又敢于接受挑战的探索者,而这种精神和意志力正是需要年轻人用一生的时间去学习和锻炼的。我特别希望未来能有更多的科研工作者们可以获得这样精神层面上的鼓励与引导,这些对于年轻人来说才是最宝贵的财富。仪器信息网:后续您还将开展哪些创新工作?我未来近三年的工作重点是将我们的研发成果,包括高真空冷台和冷冻结构光照明光电关联成像系统进一步优化,同时结合聚焦离子束以及冷冻电子断层成像技术开展精准原位结构生物学研究。关于“朱良漪分析仪器创新奖”朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。“朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发五届,先后有15项分析仪器创新成果、18位青年创新科学家获奖。
  • 布鲁克公司推出世界首台用于生物学结构解析的1.1GHz高分辨率超导NMR磁体
    加利福尼亚州阿西洛马-2019年4月8日-在第60届实验核磁共振会议上(ENC)今天,Bruker公司宣布在超高场(UHF)高分辨率NMR波谱学中取得突破性进展,该成果将应用于结构生物学和固有无序蛋白(IDPs)的研究。UHF NMR技术与X射线晶体学或低温EM等其它结构生物学分析方法互为补充,可以提供溶液和生理条件下的蛋白质分子动力学、功能性折叠以及与药物分子的结合等信息。布鲁克在2018年末成功地推出了世界上第一台稳定且均匀的标准腔 Ascend 1.1GHz NMR磁体。该磁体的开发旨在满足科学家们在研究更大分子量的蛋白质,功能无序性和大分子复合物过程中日益增加的灵敏度和更高分辨率的科学需求。最近几个月,Bruker和一些重要的UHF合作者在Bruker瑞士的GHz级磁体工厂通过一系列高分辨率和固态NMR实验展示了这一前沿技术的强大功能和优势。多年来,高分辨率NMR仅限于23.5特斯拉的磁场,相当于1.0GHz的质子(1H)共振频率。这个限值是由金属低温超导体(LTS)的物理性质决定的,第一台Avance 1000 NMR波谱仪是2009年在法国里昂的超高场磁共振中心实现的。高温超导磁体(HTS)最早发现于20世纪80年代,它为在低温下获得更高磁场打开了一扇大门,但YBCO HTS磁带制造和超导磁体技术中的巨大的挑战使得UHF进一步发展直到最近都令人望而生畏。Bruker的新型高分辨率1.1GHz磁体的推出很好地证明了新的LTS-HTS混合磁体技术的可行性,在HTS材料制造,测试和磁带连接以及UHF磁体稳定,均匀性,淬火保护和动力控制领域都取得了巨大的进步。布鲁克Biospin集团总裁Falko Busse博士说:“这款破纪录的25.9特斯拉NMR谱仪很好地展示了我们在LTS-HTS混合超导磁体领域以及UHF NMR探头和谱仪开发领域的技术能力”。“Bruker很自豪能够再次为生命科学研究界提供一种全新频率的NMR波谱仪,来推动生物化学,结构生物学和材料学走在研究的前沿。这个1.1GHz的系统也是我们开发第一个1.2GHz NMR磁体过程中的关键一步。”来自意大利佛罗伦萨大学磁共振中心和化学系的Lucia Banci和Claudio Luchinat教授是布鲁克UHF项目的长期合作伙伴,有望完成世界上第一台高分辨率1.2GHz波谱仪。在1.1GHz系统上进行实验后,他们表示:“我们对关于UHF NMR的这一重要成就表示赞赏。我们用一个3毫米TCI超低温探头在这种场强下实现了1.1GHz,不能不说这一进步十分惊人,这让我们能够在原子分辨率水平上更详细地研究固有无序蛋白质的结构。在1.1GHz谱仪上采集的实验数据很好地展示了超高场NMR实验的优点,我们期待着不久的将来能够在1.2GHz谱仪上进行实验。”“我们对布鲁克的UHF磁体技术印象深刻,这让我们可以和111 kHz魔角旋转(MAS)固态NMR探头一起进行测试。一位来自苏黎世联邦理工学院(ETH Zürich)的1.2GHz潜在用户Beat Meier教授这样说道,“明显提升的灵敏度将是生物和生物医学研究中成功的一个关键点,例如针对蛋白质复合物和阿尔茨海默-β纤维。”来自苏黎世联邦理工学院(ETH)的Matthias Ernst教授继续说道:“这种新仪器的灵敏度令人印象深刻,高速MAS下质子检测的新应用将成为可能。此类新型高温超导磁体的均匀性是无可挑剔的,符合我们对均匀性的严格要求,这也是领域里一直备受关注的问题。”德国哥廷根马克斯普朗克生物物理化学研究所主任兼研究员的Christian Griesinger博士观察到:“结合静态X射线结构,这1.1GHz数据首次定量解释了FRET(福斯特共振能量转移)效率。这一量化结果为传感器研究开发人员进一步优化钙离子传感器打下了坚实的基础,钙离子传感器是利用空间分辨荧光分析技术测量神经元中钙浓度的关键点,因此也是神经生物学中必不可少的工具。我们期待着1.2GHz波谱仪的诞生,并把它用于目前的项目中来表征固有无序蛋白质的液滴和低聚物,这些蛋白质是许多疾病的主要参与者,例如神经变性和癌症。这些重要的无序系统目前无法用结构生物学中的其他方法,如X射线结晶学或低温电子显微镜,以埃分辨率进行研究。”来自田纳西州孟菲斯市St. Jude儿童研究医院的结构生物学系主任Charalampos Kalodimos博士说,一旦工厂完成所有测试,他们有望获得世界上第一台1.1GHz NMR光谱仪。他又补充道:“我们期待着今年晚些时候,我们的机构将收到第一台1.1GHz NMR波谱仪。1.1GHz系统将是我们在动态分子机器领域进行研究的最重要的工具,例如对分子伴侣和蛋白激酶的研究。我们对布鲁克能够取得这一巨大的技术成就表示由衷的赞美。”布鲁克公司今天还宣布,它已收到德国柏林Leibniz Forschung分子药理学研究所教授Hartmut Oschkinat和Adam Lange的1.2GHz NMR系统的额外采购订单。Bruker公司现在总共已收到九台1.2GHz NMR波谱仪的采购订单,到目前为止全部都在欧洲。关于布鲁克公司布鲁克公司致力于为科学家们创造有利条件,实现技术突破,并且开发一系列全新的应用程序,以便提高人们的生活质量。科学家们借助于布鲁克公司的高性能科学仪器以及高价值分析和诊断解决方案,能够在分子、细胞和微观层面对生命和物质进行研究和探索。布鲁克公司与客户密切合作,在生命科学分子研究、应用和制药应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学和蛋白质组学研究,以及临床微生物学领域推动创新,提高生产力,并且为客户实施的方案和项目助一臂之力。
  • 非变性质谱技术融合结构生物学和组成蛋白组学
    大家好,本周为大家分享一篇发表在Accounts of Chemical Research上的综述,Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics [1],文章的通讯作者是美国西北大学的Neil L. Kelleher教授。生命活动由一系列生物大分子相互作用驱动,这些相互作用距今已进化了数十亿年。正如乙酰化和磷酸化等共价修饰可以改变蛋白质的功能一样,与金属、小分子和其他蛋白质的非共价相互作用也可以改变蛋白质的功能。然而,传统的蛋白质组学方法会分离非共价相互作用并使蛋白质变性,导致许多蛋白质水平的生物学信息尚未被发现或仅靠推断获取。就在过去的几年中,质谱(MS)技术不断发展,目前已具备维持内源性蛋白复合物完整组成并表征其特征的能力。采用非变性质谱(Native Top-Down MS, nTDMS)激活蛋白复合体,可以释放部分或全部亚基,通过与中性气体或固体表面碰撞,在进一步表征之前分离。亚单位质量、母离子质量和活化亚单位的碎片离子可以拼凑出复合物的精确分子组成,包括蛋白质修饰在内的相互作用也能被阐明,并与人类疾病状态下的功能障碍联系起来。在本综述中,作者详述了nTDMS技术目前的发展和未来在表征更大的生物复合体方面所面临的挑战。目前,nTDMS可以靶向内源性核小体复合物,而病毒颗粒、外泌体和高密度脂蛋白颗粒表征或将在未来几年内得到深度解析。为充分解决这类大小为兆到千兆道尔顿级别的复合物的表征,未来的工作将主要集中于非变性分离、单离子质谱(Single ion mass spectrometry)和新的数据类型。为了实现这一目标,Kelleher教授课题组近年来发展了一系列策略,概括为以下几个方面(1)靶向非变性质谱表征整个核小体(图1);(2)非靶向蛋白质组学深度解析内源性蛋白质复合物;(3)单分子质谱(Single molecule MS)。其中提到,阻止对非变性蛋白质进行整体表征最大的障碍之一可能是分子量分布于100 kDa到1 MDa的复合物的分辨率较差。而电荷检测MS通过直接测量离子电荷提供大型复合物的分子分布。此外有研究表明,通过对单分辨离子进行centroiding和rebinning,Orbitrap仪器的有效分辨率可以在电荷检测工作流程之上大大提高。在这种被称为“单离子质谱法(Individual Ion Mass Spectrometry, I2MS)”的技术中,可以同时检测数千个单离子,并允许在复杂混合物中分配约500种proteoforms的质量(前提是它们先前已被表征并且在数据库中可查找)。I2MS可用于分析病毒样颗粒和AAVs(图2)。图1. 核小体表征图2. 病毒颗粒检测未来随着技术的发展和创新,nTDMS都将扩展到研究极其稀缺和高度异质的生物复合物,了解蛋白质间的相互作用以及它们是如何出错的(例如错误折叠,在功能失调的化学计量和组成中形成复合物)。这些将不仅为疾病治疗的发展提供信息,还将深化我们在分子水平上对生命的理解。撰稿:张颖编辑:李惠琳原文:Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics
  • 清华大学结构生物学高精尖创新中心招聘岗位通知
    p style=" text-indent: 2em " 清华大学结构生物学高精尖创新中心胡名旭博士团队招聘软件工程师1人,助研/算法工程师1-2人,具体岗位信息如下: /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 招聘岗位1 /strong /span /p p style=" text-indent: 2em " strong 岗位名称 /strong /p p style=" text-indent: 2em " 软件工程师 /p p style=" text-indent: 2em " strong 岗位数量 /strong /p p style=" text-indent: 2em " 一人 /p p style=" text-indent: 2em " strong 团队介绍 /strong /p p style=" text-indent: 2em " 协助胡名旭博士开发和维护一个基于CUDA C加速、Python语言实现的冷冻电镜图像处理软件。 /p p style=" text-indent: 2em " strong 岗位职责 /strong /p p style=" text-indent: 2em " 1& nbsp & nbsp & nbsp 根据编程说明,编写以及优化各个相互基本独立的CUDA C kernel。 /p p style=" text-indent: 2em " 2& nbsp & nbsp & nbsp 组织此Python语言实现的软件,负责打包和发布流程。 /p p style=" text-indent: 2em " 3& nbsp & nbsp & nbsp 若应聘者有图像处理的相关背景,可共同进行图像处理算法的研究和开发。 /p p style=" text-indent: 2em " strong 任职必备条件 /strong /p p style=" text-indent: 2em " 1& nbsp & nbsp 计算机/软件工程/数学/电子背景,本科及以上学历。 /p p style=" text-indent: 2em " 2& nbsp & nbsp 精通Python编程。 /p p style=" text-indent: 2em " 3& nbsp & nbsp 熟悉GPU计算概念,精通CUDA C kernel的编写和优化。 /p p style=" text-indent: 2em " 4& nbsp & nbsp 熟悉CuPy的使用,以及使用其封装CUDA C kernel的方法。 /p p style=" text-indent: 2em " 5& nbsp & nbsp 精通pip或conda的打包和发布流程。 /p p style=" text-indent: 2em " 6& nbsp & nbsp 熟悉版本控制软件git。 /p p style=" text-indent: 2em " strong 任职优先考虑条件 /strong /p p style=" text-indent: 2em " 1& nbsp & nbsp & nbsp 有图像处理相关研究经验,熟悉信号处理中常用算法和原理。 /p p style=" text-indent: 2em " 2& nbsp & nbsp & nbsp 熟悉Docker等容器工具。 /p p style=" text-indent: 2em " 3& nbsp & nbsp & nbsp 熟悉Numpy,SciPy以及Matplotlib等数据处理以及可视化库包。 /p p style=" text-indent: 2em " 4& nbsp & nbsp & nbsp 熟练使用pytorch。 /p p style=" text-indent: 2em " strong 岗位亮点 /strong /p p style=" text-indent: 2em " 接触生命科学研究中最前沿动态,收入丰厚。在校园环境以及轻松愉快的工作氛围之中学习并发挥创造性,推动人类知识前沿的拓展。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong & nbsp 招聘岗位2 /strong /span /p p style=" text-indent: 2em " strong 岗位名称 /strong /p p style=" text-indent: 2em " 助研/算法工程师 /p p style=" text-indent: 2em " strong 岗位数量 /strong /p p style=" text-indent: 2em " 一人至两人 /p p style=" text-indent: 2em " strong 团队介绍 /strong /p p style=" text-indent: 2em " 协助胡名旭博士开发冷冻电镜图像处理算法。 /p p style=" text-indent: 2em " strong 岗位职责 /strong /p p style=" text-indent: 2em " 1& nbsp & nbsp & nbsp 参与实验室算法方面的讨论会,协助设计图像处理算法。 /p p style=" text-indent: 2em " 2& nbsp & nbsp & nbsp 分析和测试图像处理算法。 /p p style=" text-indent: 2em " strong 任职必备条件 /strong /p p style=" text-indent: 2em " 1& nbsp & nbsp 数学/电子背景,本科及以上学历。清华在校本科生可兼职。 /p p style=" text-indent: 2em " 2& nbsp & nbsp 已修泛函分析课程。 /p p style=" text-indent: 2em " 3& nbsp & nbsp 对图像分析有浓厚兴趣。 /p p style=" text-indent: 2em " strong 任职优先考虑条件 /strong /p p style=" text-indent: 2em " 1& nbsp 有图像处理相关研究经验,熟悉信号处理中常用算法和原理。 /p p style=" text-indent: 2em " 2& nbsp 已修近世代数课程。 /p p style=" text-indent: 2em " 3& nbsp 熟悉Numpy,SciPy以及Matplotlib等数据处理以及可视化库包。 /p p style=" text-indent: 2em " 4& nbsp 熟悉LaTeX。 /p p style=" text-indent: 2em " strong 岗位亮点 /strong /p p style=" text-indent: 2em " 接触生命科学研究中最前沿动态,收入丰厚。在校园环境以及轻松愉快的工作氛围之中学习并发挥创造性,推动人类知识前沿的拓展。 /p p style=" text-indent: 2em " 可推荐就读CLS或PTN生命科学院/医学院博士生项目(无需保研名额)。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 联系人: /strong /span 胡老师,E-mail: humingxu@mail.tsinghua.edu.cn /p p style=" text-indent: 2em " & nbsp /p p br/ /p
  • 中国结构生物学冷冻电镜培训班与国际冷冻电子显微镜高级图像处理研讨会在京圆满结束
    由中国生物物理学会、中科院生物物理研究所、清华大学和FEI 公司联合主办的第一次中国结构生物学冷冻电镜培训班(Get acquainted with Cryo-Electron Microscopy:First Chinese Workshop for Structural Biologists)于2015 年5 月29 日-6 月3 日在北京顺利举行。本次培训班主任由中科院生物物理所孙飞研究员、清华大学王宏伟教授和美国FEI公司Marc Storms博士担任,讲授队伍来自中科院生物物理所、清华大学、北京大学、中科院上海生化细胞所、中国科技大学、英国剑桥大学LMB实验室和FEI公司等工作在冷冻电镜一线的教授和工程师们,并精心地为学员们准备了包括讲义、课件、学习资料、实习材料和数据在内的教学材料。本次培训班得到了FEI公司的独家赞助和大力支持。   作为生物大分子结构研究的手段之一,冷冻电子显微镜三维重构技术,尤其是单颗粒三维重构技术(SPA),近期取得了非常瞩目的成果。近两年来,利用SPA技术解析的重要生物大分子复合体层出不穷,分辨率也日益提高。在此契机下,中国生物物理学会生物超微结构显微成像专业委员会与FEI公司进行合作,利用中科院生物物理研究所和清华大学生命科学学院在国际上领先的冷冻电子显微平台,联合发起了此次培训班,旨在为零基础学员提供全面了解和学习电镜三维重构理论和技术的机会,系统地将冷冻电镜前沿技术带给国内的相关研究人员,特别是X射线晶体学、NMR等非电镜领域的专家学者和学生们。这无疑将极大地推动我国冷冻电镜和结构生物学领域的发展。   培训班为期四天,包括上午讲座报告、下午实际操作和上机实习、以及晚上的答疑讨论会。来自全国百余学员参加了此次培训活动。5月30日上午,北京大学的尹长城教授对冷冻电镜的发展历史、现状进行总结并对未来的发展进行展望,提出电镜技术已经进入&ldquo 黄金时代&rdquo 。随后,清华大学的王宏伟教授和中国科技大学的蔡刚教授分别对负染色和冷冻两种电镜制样方法进行了非常详尽的介绍。5月31日上午,清华大学的雷建林教授详细讲解了透射电子显微镜(TEM)的光学系统、成像原理等关键理论,FEI公司的应用工程师王庆博士则介绍了如何操作电镜,如何进行拍照成像等具体的工作流程。6月1日上午,清华大学的高宁教授介绍了如何评估电镜数据质量,李雪明教授介绍了目前最前沿的直接电子探测相机技术及其相关的motion 校准技术,英国MRC的白晓晨博士分享了解析高分辨率电镜结构涉及到从前期制样到后期图像处理的大量技术细节。利用前三天下午的实习操作时间,学员们不仅零距离看到工程师们现场演示制作电镜样品和电镜操作,而且还亲自练习制样方法并实际操作电镜。6月2日,中科院生物物理所的孙飞研究员、中科院上海生化细胞所的丛尧教授介绍了单颗粒三维重构的基础知识和原理,中科院生物物理所的朱平研究员系统讲解了如何对重构结果进行分析和展示。2日下午学员们在老师们的指导下上机练习了两个冷冻电镜三维重构软件EMAN2和Relion,对三维重构的流程有了更加直观的认识。除此之外,每天晚上的讨论会,学员们都带着问题来的,互动交流的主动性很高,积极发言,深入讨论,将白天所学知识消化掌握,反响很好。   (中国结构生物学冷冻电镜培训班)   国际冷冻电子显微镜高级图像处理研讨会(International Workshop of Advanced Image Processing of Cryo-Electron Microscopy 2015)由清华大学隋森芳教授担任组委会主席,由清华大学王宏伟教授、中科院生物物理所孙飞研究员共同担任执行主席,于2015 年6月3日-6 月7日在北京顺利举行。教师队伍来自MRC分子生物学实验室(英国)、Brandeis University(美国)、University of Colorado Boulder(美国)、脑科学MPI 研究所(德国)、University of Basel(瑞士)等多所国外大学与研究机构。研讨会为期五天,包括上午讲座报告、下午软件操作与上机实习、及晚上的答疑讨论会,围绕近原子分辨率单颗粒重构技术、三维模型建立与精修、电子断层扫描与sub-tomo平均计算等主要议题,分别就DED图像的信息分析与处理方法、单颗粒锐化及电子密度图校正、低分辨率冷冻电镜图像的模型建立与验证、冷冻电镜图谱原子模型的搭建、近原子分辨率冷冻电镜图谱的结构细化与验证、电子断层扫描技术的理论与原理、电子断层扫描数据采集与处理中重要影响因素、sub-tomo平均计算的流程与应用、及其理论、方法与前景等多项话题展开深入的交流与细节探讨。来自日本、印度、美国等多个国家一百四十余名学员参加了本次研讨会,反响热烈。   (国际冷冻电子显微镜高级图像处理研讨会)   作为生物大分子结构研究的重要手段之一,冷冻电子显微镜技术近年来取得了非常瞩目的成果,分辨率获得极大提高。在此契机下,中国生物物理学会生物超微结构显微成像专业委员会与FEI等公司进行合作,利用中科院生物物理研究所与清华大学生命科学学院在国际上领先的冷冻电子显微镜平台,联合发起中国结构生物学冷冻电镜培训班与国际冷冻电子显微镜高级图像处理研讨会,不仅为零基础学员提供全面了解和学习电镜三维重构理论与技术的机会,同时为电镜结构生物学领域青年科学家们系统地介绍冷冻电镜前沿技术与图像处理最新研究方法与进展,积极促进国际交流与合作,极大的推动我国冷冻电子显微镜和结构生物学领域的进步与发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制