当前位置: 仪器信息网 > 行业主题 > >

基因组结构

仪器信息网基因组结构专题为您整合基因组结构相关的最新文章,在基因组结构专题,您不仅可以免费浏览基因组结构的资讯, 同时您还可以浏览基因组结构的相关资料、解决方案,参与社区基因组结构话题讨论。

基因组结构相关的资讯

  • 默克投资加入结构基因组联盟
    默克公司今天宣布,将投资750万加元(约合600万美元)加入结构基因组联盟。   公司在声明中表示,投资所支持的研究项目是为开发分子探针以研究基因调控的表观遗传机制。应用探针将扩充和加深对多个疾病领域,特别是癌症和炎症性疾病领域生物学机制的理解   默克和结构基因组联盟表示,支持项目聚焦于竞争前期研发化学探针。   结构基因组联盟的公共部门与私人企业合作模式是为了推动新药靶点到私人企业这一药物研发计划。学术机构的合作研究者利用知识,技术和工具来发现和描述这些靶点。   结构基因组联盟由艾伯维(AbbVie),拜耳(Bayer),勃林格殷格翰(Boehringer Ingelheim),加拿大创新基金会(the Canada Foundation for Innovation),加拿大礼来(Eli Lilly Canada),加拿大基因组中心(Genome Canada),葛兰素史克(GlaxoSmithKline),杨森(Janssen),加拿大默克(Merck Canada),诺华(Novartis),安大略研究与创新部(the Ontario Ministry of Research & Innovation),辉瑞(Pfizer),武田(Takeda)和维康基金会(Wellcome Trust)联合资助。(仪器信息网译)
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 英国基因组计划完成:目标为5500万公民提供基因组医疗服务!
    p strong   医疗保健的下一次重大转型很可能始于基因组计划! /strong /p p style=" text-align: justify text-indent: 2em " 早在2013年夏天,Genomics England就开始为100,000 基因组计划项目进行紧锣密鼓的筹备。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/6918dc05-7bd5-49a3-b542-b9f4b72542e2.jpg" title=" 微信图片_20190201134555.jpg" alt=" 微信图片_20190201134555.jpg" width=" 532" height=" 266" style=" width: 532px height: 266px " / /p p   该试点项目在启动时的目标可谓是雄心勃勃:完成100,000人全基因组序列的患者测序。英格兰国家卫生服务局(NHS)招募的参与者获取的基因序列将用于建立罕见病和癌症的研究队列,同时未来还将使用这些数据为诊断提供信息并指导临床护理。 /p p   当时的总理大卫卡梅伦是这次项目启动背后的强大后盾,他的长子伊万患有罕见的遗传病大田原综合症,这种病的体征是无数次严重的癫痫发作。不幸的是,2009年伊万在他六岁时死于此病。 /p p   2017年BIO会议的一个人头攒动的大厅里,卡梅伦这样表示:“这让我觉得我们可以做更多的工作来帮助研究遗传学和基因组学的药物,所以我通过了100,000人基因组计划项目,第一个测序的基因组至今仍旧放在我的桌子上,我认为可以将基因组数据库与我们的国家卫生服务部门结合起来。” /p p    strong 这项庞大的基因组计划绝不仅仅是一个梦想,它的最终目的旨在为所有5500万公民提供基因组医疗服务。 /strong /p p   Genomics England首席商务官Joanne Hackett表示:“由于当时全基因组测序的成本非常高,所以并没有人大规模地做这件事。“而就在其成立一年多后,Genomics England宣布与测序巨头Illumina合作,继而耗资3亿英镑,建成了剑桥外的Wellcome Trust Sanger研究所Genome校区的测序中心。 /p p   根据Illumina副总裁兼首席科学家David Bentley的说法,英国基因组学在项目结构方面的远见卓识绝对不容小觑,而他们认为这便是医学遗传学的未来。 /p p   尽管这项任务面临庞大的挑战,但这一切最终还是得到了回报。去年10月,NHS宣布将从该试点过渡,并将开始为任何疑似患有罕见病和某些癌症的人提供全基因组测序,而迄今为止最大规模的基因组医学服务将部署于世界上每一个角落。 /p p   就在去年12月初,英格兰基因组计划领导人宣布:已完成在2018年底测序100,000个基因组的宏伟目标,而要知道,截止去年2月他们才刚刚对50,000个基因组进行了测序,这无疑是一个巨大飞跃。 /p p   目前测序中心的试验步伐依旧迅速,现在每个月的检测速度在6,000到7,000个全基因组之间。而如果服务需求增加,数量上仍有足够的空间上涨,因为其测序操作已从目前正在使用的HiSeq仪器转换到Illumina新的,更快的测序平台NovaSeq。 /p p    strong 临床基因组的挑战 /strong /p p   虽然100,000基因组计划的第一个任务是帮助开发通过NHS提供基因组医学的工作模型,但它还包括运行一个平行的研究机构来利用测序数据供学术和商业实体使用,数据和相关发现将使NHS能够不断改善其对患者的服务。 /p p    strong 如何实现研究到临床护理的转化 /strong /p p   该组织与该项目的NHS关键联络人福勒表示:“我作为一名区域流行病学家目前正在调查传染病的暴发,而100,000基因组项目能够促进医疗保健转型,我坚信,而这势必会将研究和临床实践紧密结合在一起。” /p p   该计划的目的是将罕见病和癌症序列分离为50%和50%。但是,在开始收集癌症样本后不久,福勒和他的团队发现,对于大多数研究环境而言依靠FFPE组织样本是无效的。虽然FFPE样本长期被临床医生和研究人员使用,在存储人体组织有优势,通常有助于比较在不同时间采集的样本以跟踪疾病的进展。但是这些样品的测序通常是针对少数基因的,这些活动通常不受组织固定过程中已知的DNA降解和片段化的影响,而这时新鲜冷冻变成了唯一可行的选择。 /p p   放弃FFPE组织样本的决定使该项目的癌症患者招募工作停滞了大约一年,最终分离的结果为60%的罕见疾病基因组和40%的癌症基因组。英国基因组学研究人员正在试验不同的冷冻方法,以确定它是否影响测序质量以及样品使用不同的运输方法保持其完整性的时间。 /p p   福勒表示:“我不确定具体的数字是怎样的,但我们每周收到400份新冷冻样品,而这种数量是我们始料未及的。” /p p    strong 教育和培训 /strong /p p   NHS在接下来的18个月内会让所有国家医院信托基金的工作人员得到培训,计划在10年内培养出一支训练有素的基因组医学工作者队伍。 /p p   Chandratillake表示:雄心壮志很重要,100,000人测序看似是一座不可攀登的山峰,而我们现在已经登上山顶。现在我们要攀登一座更大的山。 /p p   Pope表示:由于NHS的目的是继续从基因组医学服务的患者那里收集研究数据,患者必须经过一个知情同意过程。因此,临床医生需要与患者就临床决策达成共识。” /p p   对于Chandratillake来说,全国范围内的基因组医学也是NHS的一个具体例子,它关注的是跨越种族,区域和社会经济方面的护理公平。通过100,000个基因组计划,NHS跟踪了患者招募和人口覆盖情况。 /p p   然而,除了护理公平,除了迄今为止最大规模的基因组医学部署,NHS和Genomics England的努力也正在迈入一个新的领域。 /p p   也许医疗保健领域的数字革命才刚刚开始。 /p p    strong 参考文献: /strong /p p   Genomic Medicine for the Masses England’s National Health Service launches genomic medicine service for all 55 million citizens /p
  • Nature子刊!多种测序技术联合 助力高质量豌豆参考基因组和泛基因组发布
    2022年9月22日,中国农业科学院作物科学研究所联合中国科学院微生物所、山东省农业科学院农作物种质资源研究所、国际半干旱热带作物研究所和澳大利亚默多克大学等国内外多家单位在Nature Genetics上以长文的形式发表了题为Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics的研究论文。研究团队完成了中国豌豆主栽品种“中豌6号”的基因组组装和解析,解决了长期以来悬而未决的豌豆基因组精细物理图谱组装难题,揭示了豌豆基因组结构和进化的独特特征,发掘了一批与粒型、株高和荚型等孟德尔性状和重要农艺性状相关的位点和基因,同时构建了栽培和野生豌豆泛基因组,展示了豌豆近缘野生种和地方品种作为未来豌豆育种改良资源的巨大潜力。高质量的参考基因组、注释和泛基因组对豌豆种质资源挖掘利用和育种改良的基础与应用研究具有重要参考价值和指导作用,同时也为其他豆科作物基因组和泛基因组研究提供了重要借鉴。自孟德尔发现遗传定律以来,豌豆作为遗传研究的“明星”植物,受到了学界和公众的广泛关注。豌豆 (Pisum sativum L., 2n=2x=14) 是一年生冷季食用豆类,属于豆科(Leguminosae)、蝶形花亚科(Papilionoideae)、野豌豆族(Viceae)、豌豆属(Pisum L.)。豌豆富含蛋白质、淀粉、纤维素和多种矿物质,是粮菜饲兼用的食用豆类作物,在世界范围内广泛种植。据FAO统计资料显示(http://www.fao.org/faostat/),世界豌豆的总产量和种植面积逐年增加,中国豌豆特别是鲜豌豆的总产量与种植面积也增长迅速。同时,豌豆的生物固氮能力可以减少氮肥使用,有效改善土壤结构,还可作为倒茬作物减少病虫害,促进农业和自然生态系统的可持续发展。作物种质资源是支撑农业发展创新和作物遗传改良的物质基础,目前国家作物种质库保存豌豆种质资源达到7000余份,蕴藏着丰富的遗传多样性,亟待深入挖掘和利用【1】。图1 中豌6号形态特征及豌豆种质资源多样性豌豆基因组大小约为4.28 Gb,远大于大豆(4倍)、鹰嘴豆(6倍)、普通菜豆(7倍)、绿豆和小豆(8倍)等其他豆科作物基因组,其基因组中有超过80%的重复序列。由于豌豆基因组的复杂性,直到2019年,国际上才公布了第一版以二代测序技术(Next Generation Sequencing, NGS)为主的豌豆参考基因组,为豆科植物基因组进化提供了新的见解【2】。然而,由于NGS技术的短板,这一版基因组组装得到的218,010个contigs的 N50 值仅为37.9 Kb,组装结果碎片化严重,尤其是在复杂的重复区域,与高质量参考基因组的标准相去甚远【2】。此外,研究表明,与国外豌豆种质资源相比,中国豌豆具有独特的遗传背景和丰富的遗传变异【3】。由于缺乏豌豆高质量基因组和精细物理图谱,严重滞后了豌豆重要农艺性状的遗传解析和种质资源挖掘利用进展,尤其阻碍了对国内外不同豌豆种质资源的综合利用。为了解决上述科学难题,研究团队利用中国豌豆主栽品种“中豌6号(ZW6)”,以PacBio 单分子实时 (SMRT) 测序为基础,结合 10x 长片段测序、Bionano 光学图谱和染色质三维构象捕获 (Hi-C),以及 Illumina NGS 技术,联合优化多种组装策略,完成了迄今为止最高质量的豌豆基因组精细图谱和基因注释(图2)。该基因组组装大小约为3.8 Gb,序列对总共7条染色体的定位率达到97.96%,组装的contig水平N50达到了8.98Mb。通过遗传图谱一致性评估、BUSCO分析、Merqury分析以及LAI分析在内的综合基因组组装评估方法,均表明该组装在连续性、准确性和完整性方面表现优异。此外,该组装共注释出47,526个编码基因,并且在基因完整性、调控区完整性、转座子组装完整性和注释完整性方面均得到了明显改善。豌豆基因组高质量精细物理图谱的获得,拓宽了我们对豌豆巨大基因组背后遗传学的了解,为豌豆重要农艺性状的遗传解析和种质资源的挖掘利用提供了宝贵基因组资源。图2. 豌豆基因组的重要特征。豌豆大约在10,000 年前被驯化,被认为是最早驯化的豆类作物之一。然而,尽管它在推进植物遗传学方面发挥了关键作用,但豌豆属内的物种划分长期存在争议,其驯化过程仍不清楚【4】。研究团队基于118个栽培和野生豌豆的全基因组重测序数据,不仅揭示了栽培和野生豌豆SNP、InDel和SV等不同变异类型的基因组多态性特征,同时基于SNP和SV多态性变异信息的群体遗传结构和系统发育分析,阐明了栽培和野生豌豆的群体遗传结构,支持豌豆属内包含3个物种P. fulvum、P. sativum 和 P. abyssinicum的结论。同时在 P. sativum中鉴定出了三个遗传分组,其中 P. sativum II (PSII) 和 P. sativum III (PSIII) 主要对应于代表亚洲和欧洲不同地理区域栽培豌豆的两个遗传分组,可能与豌豆驯化后的传播途径有关(图3)。以上结果解决了长期以来关于豌豆属物种划分的争议,为豌豆起源驯化提供了新的基因组学证据,也为豌豆种质资源的综合开发利用提供了科学依据。图3 基于SNP (a, b, e)和SV (c, d, f)的118份栽培和野生豌豆的群体遗传结构。孟德尔通过研究豌豆的七个性状发现了遗传规律,开创了遗传学研究的先河。在过去的几十年中,孟德尔研究的四个性状包括粒型(R/r)、株高(Le/le)、子叶颜色(I/i)以及种皮和花色(A/ a)的四个基因位点已经被克隆并进行了功能分析;而其他三个孟德尔性状,果荚颜色 (GP/gp)、荚型 (V/v) 和花的位置 (Fa/fa)相关的基因位点尚未解析【5】。为了探索豌豆重要农艺性状的遗传基础,研究团队利用GBS测序对WJ×ZW6杂交构建的300个F2群体中的12个农艺性状进行了QTL分析(图4),鉴定出了25 个与12个农艺性状相关的QTLs,其中有三个为孟德尔性状相关位点和基因,包括控制粒型(圆粒/皱粒,R/r)和株高(高/矮,Le/le)的孟德尔基因,以及与荚型(硬荚/软荚,V/v)相关的候选基因。图4 豌豆12个农艺性状QTL分析结果以及与孟德尔性状相关的3个QTL位点和基因【5】。越来越多的研究表明,单一的参考基因组不足以代表一个物种,特别是对于豌豆这类经历过长期驯化的物种,而泛基因组分析为作物种质资源变异解析和挖掘利用提供了有效手段。为了更深入地了解栽培和野生豌豆的多样性,研究团队构建了基于116个栽培和野生豌豆全基因组测序的泛基因组(图5),发现栽培和野生豌豆种质资源大部分泛基因组多样性主要存在于不同物种和遗传分组之间,并且以特有基因组序列的形式存在。对豌豆泛基因的存在/缺失变异模式(PAV)分析发现,随着新基因组数目的增加,核心基因的数量减少,而泛基因的数量增加,并逐渐趋于饱和(图5a)。同时,在多个豌豆基因型中存在的核心基因在其他27 个植物基因组中也更保守(图5b),表明它们具备通用的核心功能。基于跨基因组同源基因系统发育分类方法(HOG),研究人员将116个泛基因组的基因聚类生成 112,776个泛基因簇,在不同物种之间显示出差异显著的PAV模式(图5c)。对不同泛基因分组中特有泛基因的 GO 分析显示出保守基因和可变基因之间的不同功能富集。值得注意的是,P. abyssinicum独特的泛基因在刺激和化学反应方面富集,而P. fulvum的泛基因在发育、生长、繁殖、细胞骨架等方面富集,进一步证实了豌豆野生近缘种和地方种质资源作为育种材料在未来提高豌豆品种抗性和产量方面的潜在价值。图5 116个代表性栽培和野生豌豆的泛基因组分析结果(包括 ZW6)。总之,研究人员克服了复杂基因组组装的多重障碍,成功绘制了中国豌豆基因组高质量精细物理图谱,还构建了栽培和野生豌豆泛基因组,揭示了豌豆基因组进化特征、群体遗传结构与重要性状的分子基础,为豌豆起源驯化、基因挖掘、种质创新和育种改良以及豆科植物比较基因组学研究提供了重要借鉴和宝贵资源。这项研究邀请了澳大利亚默多克大学Rajeev K Varshney教授共同开展国际合作研究,他认为这次研究成果为公众提供了高质量的豌豆参考基因组,产生的基因组资源不仅有助于豌豆的遗传基础研究,以应对气候变化带来的挑战,还将促进豌豆优异基因的挖掘和优良品种的开发。此外,宗绪晓课题组及其合作团队还建立了豌豆遗传转化体系,利用CRISPR/Cas9基因编辑体系成功实现对豌豆PDS基因的编辑【6】。恰逢孟德尔诞辰200周年,豌豆高质量基因组和泛基因组的发布,以及豌豆基因编辑技术体系的建立将为豌豆重要农艺性状的遗传解析和种质资源的挖掘利用提供有力的技术支撑。中国农业科学院作物科学研究所杨涛副研究员和刘荣助理研究员、中国科学院微生物研究所骆迎峰副研究员和胡松年研究员以及山东省农业科学院农作物种质资源研究所王栋助理研究员为论文的共同第一作者。中国农业科学院作物科学研究所宗绪晓研究员、中国科学院微生物所高胜寒特别研究助理、山东省农业科学院农作物种质资源研究所丁汉凤研究员、国际半干旱热带作物研究所和澳大利亚默多克大学Rajeev K Varshney教授为论文的共同通讯作者。中国科学院植物研究所葛颂研究员,西北农林科技大学徐全乐副教授、山东省农业科学院作物种质资源研究所李娜娜副研究员、云南省农业科学院何玉华研究员、青海大学刘玉皎研究员、江苏沿江地区农业科学研究所王学军研究员、四川省农业科学院项超副研究员以及中国农业科学院作物科学研究所研究生王晨瑜、李冠、黄宇宁、季一山、李孟伟,国际半干旱热带作物研究所Manish K Pandey和Rachit K Saxena博士,也参与了该项研究。辽宁省农业科学院李玲研究员,澳大利亚谷物种质库Bob Redden教授和美国农业部农业研究中心、华盛顿州立大学胡锦国教授对项目开展提供了重要帮助。豌豆基因组研究得到了科技部国家重点研发计划(2018YFD1000701/2018YFD1000700)、中国科学院青年创新促进会(2017140)、山东省农业品种改良项目(2019LZGC017)、中国农业农村部食用豆现代产业技术体系(CARS-08)、国家自然科学基金(31371695和31801428)、山东省农业科学院科技创新项目(CXGC2018E15)、作物种质资源保护(2130135)、山东省农科院科技创新项目产业团队农业科学(CXGC2016A02)、山东省现代农业产业技术体系粗粮创新团队(SDAIT-15-01)、中国农业科学院创新工程(ASTIP)和山东省农业科学院青年研究基金(2016YQN19)等项目的支持。
  • 发现98%基因组中的隐藏癌基因
    《Nature Genetics》杂志详细介绍了这种称为Cis表达或cis-X的方法,这是一种创新的分析方法,在患者肿瘤的调控非编码DNA中识别新的致病性变体和由这种变体激活的癌基因。cis-X通过识别肿瘤RNA的异常表达发挥作用。研究人员分析了白血病和实体瘤,并证明了这种方法的有效性。不编码基因的非编码DNA占人类基因组的98%。越来越多的证据表明,超过80%的非编码基因组是功能性的,可能调节基因表达。大量人群研究已经确定了非编码DNA中与癌症风险升高相关的变异。但是,在肿瘤基因组中,只有少量的非编码变异导致了肿瘤的发生。发现这些变异需要对大量肿瘤样本进行全基因组测序分析。“cis-X是一个根本性的改变,现有的方法需要数千个肿瘤样本,只识别反复发生的非编码变体,”St.Jude计算生物学系主任Jinghui Zhang博士说。她和上海儿童医学中心的Yu Liu博士是本文的通讯作者。刘博士也是第1作者。“通过使用异常的基因转录来揭示非编码变体的功能,我们开发了cis-X,从而能够在单个肿瘤基因组中发现驱动癌症的非编码变体,”张博士说。“识别导致癌基因失调的变异可以将精-确医学的范围扩大到非编码区域,以确定抑制肿瘤中异常激活癌基因的治疗方案。”cis-X的灵感来源于2014年Dana Farber癌症研究所的Thomas Look医学博士及其同事的一篇科学论文。Look也是这篇论文的合著者。Look的研究小组在细胞系中发现了导致癌基因(TAL1)异常激活导致T细胞急性淋巴细胞白血病(T-ALL)的非编码DNA变体。这项研究促使张博士继续她长期以来的兴趣,即研究基因每个拷贝的表达变化。cis-X通过两种方式寻找表达改变的基因。研究人员利用全基因组和RNA测序来寻找只在一条染色体上表达并在异常高水平表达的基因。“当分析等位基因之间基因表达的不平衡时,可能会产生噪音,”刘博士说。“这项分析使用了一种新颖的数学模型,使cis-X成为一种强大的发现工具。”然后cis-X通过在3D基因组结构中寻找非编码DNA调控区域的变化来寻找异常表达的原因。“这种方法模仿了变种在活细胞中的工作方式。这些变化包括染色体重排和点突变等变化。“如果不确定非编码变体,我们可能无法全面了解导致癌症的原因。”研究人员使用cis-X分析了13例T-ALL患者的癌症基因组,这些数据是由圣裘德和上海儿童医学中心合作收集的。该算法识别已知和新的癌基因激活非编码变体,以及可能的新的T-ALL癌基因PRLR。研究人员还表明,这种方法在成人和儿童实体瘤中有效,包括神经母细胞瘤。实体瘤对分析提出了更大的挑战。与白血病不同的是,实体瘤分布在肿瘤内的染色体数目往往不均匀。“cis-X为研究非编码变体在癌症中的功能作用提供了一种强有力的新方法,这可能会扩大精-确药物治疗由此类变体引起的癌症的范围,”张博士说。
  • 基因组学前沿研讨会会议通知
    基因组学的发展日新月异,已经渗透到生命科学领域的各个方面,并显示出强大的发展活力,如何利用新技术来解决重大科学问题已成为基因组学面临的最大挑战。   中科院北京基因组所继2012年首次在北京、2014年在合肥举办前两次研讨会后,定于今年回到北京举办第三届&ldquo 基因组学前沿研讨会&rdquo ,本系列研讨会与中科院北京基因组所每两年举行一次的&ldquo 国际基因组学大会&rdquo 互为补充,追踪本学科的研究前沿,促进学术交流。系列研讨会主席为中科院北京基因组所于军研究员。   本次研讨会将有三个主题:RNA修饰、单细胞组学和基因组高级结构。目前确认将参会的主题报告人包括:中科院生物物理所的陈润生院士,美国哈佛大学的谢晓亮院士、法国CNRS的Giacomo Cavalli博士、美国华盛顿大学的段治军博士、美国德克萨斯大学达拉斯分校的张奇伟博士、以色列威兹曼科学院的Jacob Hanna博士、日本东京大学的Akimitsu Okamoto博士和中科院北京基因组所于军博士,并邀请了北京大学汤富酬博士、中科院生物物理所李国红博士及中科院北京基因组所杨运桂博士等国内外知名大学和研究所研究人员作报告,总报告人约为30人。研讨会规模预计在150人左右,将就基因组学当前研究热点进行研讨,积极促进相关领域科研工作者的交流和合作,共同进取。   会议时间:2015年7月16-19日   会议地点:北京   会议网址:http://gpb.icgchina.org/   主办单位:中国科学院北京基因组研究所   承办单位:Genomics Proteomics & Bioinformatics (GPB)   北京路思达生物信息科技有限公司   组织委员会:   主席:于军 中科院北京基因组研究所   委员:陈非 中科院北京基因组研究所   方向东 中科院北京基因组研究所   胡松年 中科院北京基因组研究所   雷红星 中科院北京基因组研究所   李国亮 华中农业大学   林巍 美国贝勒免疫学研究所   刘江 中科院北京基因组研究所   王德强 中科院重庆绿色智能技术研究院   肖景发 中科院北京基因组研究所   杨运桂 中科院北京基因组研究所   章张 中科院北京基因组研究所   张治华 中科院北京基因组研究所   张猛 北京路思达生物信息科技有限公司   周水庚 复旦大学   会议主题:   RNA修饰   单细胞组学   基因组高级结构   主题报告人:(已确认人员如下,持续更新中)   Giacomo Cavalli 法国CNRS   陈润生 中科院生物物理研究所   段治军 美国华盛顿大学   Jacob Hanna 以色列威兹曼科学院   Akimitsu Okamoto 日本东京大学   谢晓亮 美国哈佛大学   于军 中科院北京基因组研究所   张奇伟 美国德克萨斯大学达拉斯分校   报告人:(已确认人员如下,持续更新中)   陈月琴 中山大学   贺建奎 南方科技大学   侯春晖 南方科技大学   贾桂芳 北京大学   李国红 中科院生物物理研究所   李响 华中农业大学   林巍 美国贝勒免疫学研究所   刘默芳 中科院上海生命科学院生化细胞所   宁康 华中科技大学   戚益军 清华大学   宋旭 四川大学   汤富酬 北京大学  田卫东 复旦大学   王德强 中科院重庆绿色智能技术研究院   汪小我 清华大学   杨朝勇 厦门大学   杨运桂 中科院北京基因组研究所   伊成器 北京大学   会议安排: 详见会议网站http://gpb.icgchina.org/ 会议日程 7月16日 报到;大会报告-基因组高级结构 7月17日 大会报告-单细胞组学 7月18日 大会报告-RNA修饰 7月19日 GPB编委会;离开 关键时间点 6月15日(含) 大会摘要提交截止;注册优惠截止 7月15日(含) 在线注册截止 7月16日 现场注册 注册日期 国内科研人员 国内学生 国际人员 6月15日以前(含) RMB1000 RMB 800 US$300 6月16日&mdash 7月15日 RMB1350 RMB 1000 US$300 7月16日 RMB1500 RMB 1200 US$300
  • “材料基因组计划”已成全球热点
    p   美国、欧盟相继启动“材料基因组计划”,以满足新兴制造业对高性能新材料的需求。专家15日在河北固安举行的迈海材料基因组国际研究院揭牌仪式上表示,“材料基因组计划”已成全球热点,中国版“材料基因组计划”呼之欲出。 br/ /p p   法国巴黎萨克莱大学热能实验室主任兼迈海材料基因组国际研究院首席科学家冯志强说,材料基因组工程是研发新材料的一种先进手段,即从元素周期表中选出元素搭配成新的材料微观结构。法国在材料基因组工程方面拥有深厚的经验和先进技术,他希望中法乃至中欧在这一领域的合作能够推动高端制造业的发展。 /p p   为重塑全球制造业的领导者地位,美国于2011年提出“再工业化”战略,其中一个关键是通过“材料基因组计划”来满足新兴制造业对高性能新材料的需求。该计划目前正在采用人工智能技术加快新材料的开发。美国“材料基因组计划”负责人、美国西北大学教授彼得· 沃里斯曾表示,“这可将需要10到20年的新材料实用化进程缩短一半”。 /p p   冯志强表示,美国、欧盟相继启动“材料基因组计划”,并正利用各种先进技术,因此该领域可谓是交叉学科。中国自己的“材料基因组计划”正快速形成。迈海材料基因组国际研究院将计划采用企业化运作模式,联合美国、俄罗斯和中国等知名高校,搭建国际化的材料基因组研究中心,加速“材料基因组计划”的研发和产业化。 /p p   今年5月,中国国家发展改革委、科技部联合批复同意建设北京怀柔综合性国家科学中心,其中材料基因组等首批五大交叉研究平台已经顺利开工。上海等一些城市也在积极推进材料基因组等领域功能型平台规划布局。 /p p   据迈海材料基因组国际研究院执行院长曾庆丰介绍,“材料基因组计划”是在利用现有数据库平台的基础上,通过数学计算、材料的原理来预测要达到某种材料所需要的组成,然后再通过实验合成,并检测是否符合要求。材料基因组可以反映材料某种特性的基本单元,如原子、分子、电子、离子等物质粒子及其组装机理。 /p p   曾庆丰指出,这种做法把传统的“研发产品”过程翻转过来,即从应用需求出发,倒推符合相应结构功能的材料。 /p p   参与揭牌仪式的专家举例说,有的材料研发理论上可能需要30多万次实验,按照一天做一次实验计算,需要约1000年时间才能完成。而利用“材料基因组计划”的平台和先进技术,可以缩短到几年内获得成果。 /p p   曾庆丰说,迈海材料基因组国际研究院是在华夏幸福、清华产业园、陕西金控等产业资本支持下成立的,预计到2020年形成初具规模的产业链布局,主要包括材料基因组软件、新能源材料、低维材料与器件、石墨烯、生物3D打印和特色专科医院等,将形成超过10亿元人民币规模的材料基因组产业集群。 /p p br/ /p
  • 基因组所完成鲤鱼基因组初步测定分析
    近日,中国科学院北京基因组研究所运用新一代高通量测序技术以及高性能的生物信息分析,完成了鲤鱼基因组初步测定与分析工作,获得了鲤鱼基因组高覆盖的基因组数据。&ldquo 鲤鱼基因组计划&rdquo 是基因组所与水产生物应用基因组研究中心和黑龙江水产研究所联合开展的研究项目,目前项目进展顺利,是我国鱼类第一个全基因组测序计划,也是世界上第一个鲤科经济鱼类基因组计划。   本项目主要依托于基因组所基因组及生物信息学平台第二代高通量测序仪进行测序分析工作,该平台拥有13台新一代高通量测序仪(SOLiD、Solexa和 454测序仪)、3台3730xl,1台3130xl的测序规模,拥有超过10万亿次/秒的计算能力和大于1000TB的存储。目前已经完成部分454shotgun文库段测序,总体数据已经达到4乘的覆盖度,完成部分组织转录组的工作,为基因组注释提供参考。目前该项目正在加紧进行生物信息学的分析,预计将比计划提前完成鲤鱼基因组框架图的工作。   科学家希望通过鲤鱼基因组测序及其序列分析,为研究养殖鱼类的生长、发育、繁殖、遗传变异、疾病、与环境的相互用(包括抗逆能力)及其遗传改良提供重要的参考甚至指导信息。通过鲤鱼基因组的研究,可以获得与经济性状相关的基因,与疾病的发生及免疫相关的基因等,为鲤鱼的遗传育种提供基础。   随着人和其它主要动植物基因组的破译,模式动物和经济动物基因组计划方兴未艾,越来越多的鱼类被提上议程,世界各国的科学家相继完成了一些鱼类的基因组测序和分析工作,大都以本区域或者本国的鱼类产品为主,例如日本完成的青鳉鱼,挪威和加拿大共同完成的大西洋鲑等。作为我国鱼类中分布最广、品种最多、产量最高的鲤鱼基因组计划的开展,是我国水产科研步入现代科学先进行列的标志性事件,将对我国乃至世界水产业的发展产生重要的影响。
  • 首个完整无间隙人类基因组序列公布
    被誉为生命科学“登月计划”的人类基因组测序再次取得重大进展:国际科学团队端粒到端粒联盟(T2T)发表了第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”。当地时间31日,《科学》杂志连发6篇论文报告这一成就。2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。然而由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。新的无间隙版本被称为T2T-CHM13,由30.55亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,已知其在进化和疾病中发挥重要作用。新序列还在识别和解释遗传变异方面具有重要改进,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。研究人员称,这一完整的、无间隙的序列对于了解人类基因组变异的全谱和了解某些疾病的遗传贡献至关重要。研究人员表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及我们与近亲、其它灵长类动物的关系。【总编辑圈点】基因组的某些区域,其实是一遍又一遍的重复,这些重复区域包括细胞分裂中一些极其关键的部分,也包括可能帮助物种适应的新基因。在过去,所有这些重复使得科学家无法以正确的顺序“组装碎片”——就像高难度的、几乎每一块都相同的拼图,而人们不知道其中哪一块该放在哪,就在基因组图谱上留下了巨大空白。现在的最新成果不再有任何隐藏或未知的部分,或者也可以说,一个全新的基因宝库正在全人类面前徐徐打开。
  • 中外学者在沪研讨材料基因组发展
    相较于&ldquo 人类基因组计划&rdquo 的火热,公众对于&ldquo 材料基因组计划&rdquo 一直知之甚少。&ldquo 材料基因组&rdquo 一词,应该是受了&ldquo 人类基因组计划&rdquo 极大的影响。这两个计划虽然针对的对象完全不同,但是其最大的相似点是两者都是从对研究对象最基本组份(一为核苷酸-基因-细胞,一为原子-分子-化合物)的了解出发,来试图更多地了解&ldquo 人&rdquo 和&ldquo 材料&rdquo ,或者可以说,材料基因组和人类基因组这两大科学计划存在内在逻辑上的关联。从材料来讲,只有知道元素不同的排列组合以及它的性能,才能发展出的新的材料。   传统的材料研制方法主要为试错法,即利用现有关于材料的理论与知识经验,通过调整研究材料配比,进行表征测试和检验,最终找到满足需求的材料。这样的方法导致材料研发周期过长,远不能满足人们对新材料的需求,能否有一个更加科学的方法替代试错法?能不能在现有数据库平台的基础上,通过数学计算、材料的原理来预测要达到某种材料所需要的组成,然后再通过实验进行合成,并检测是否符合要求?正是基于这样的考量,&ldquo 材料基因组计划&rdquo 应运而生。   中国工程院院士、中国钢研科技集团有限公司教授级高工王海舟曾经表示,&ldquo 材料基因组计划&rdquo 可以将新材料的研发速度&ldquo 至少翻一番&rdquo 。王海舟认为,材料基因组计划的做法把传统的&ldquo 研发&mdash 产品&rdquo 这一过程整个翻转过来,即从应用需求出发,倒推符合相应结构功能的材料。这样一种颠覆性的改变,意味着需要对各种材料有足够多的认识和积累,包括结构组成、性能、工艺优化等。&ldquo &lsquo 材料基因组计划&rsquo 不像人类基因组计划那样璀璨耀眼,但其意义却十分重大。&rdquo   他表示:&ldquo &lsquo 材料基因组计划&rsquo 可以实现材料领域发展模式的转变,把新材料研发和应用速度从目前的10~20年缩短为5~10年。它能够揭示物质构成、不同元素排列与材料功能之间的关系,进而实现有目的地设计新材料。   日前,第六届无机材料专题&mdash &mdash 材料基因组工程研究进展研讨会在上海大学举行。吴以成、陈立泉、崔俊芝、叶恒强、江东亮、南策文、王崇愚、丁文江、周国治、王海舟等多位院士以及国家自然科学基金委员会副主任高瑞平、澳大利亚科学院院士Jeffrey Reimers等200余位中外学者,共同研讨了材料基因组工程的最新进展。   原中国工程院院长徐匡迪致信表示,希望科学家能抓住机遇,积极建设我国材料创新平台,加快我国从材料大国向材料强国的转变,使材料创新成为推动我国制造业和经济增长的原动力。   中国科学院院士叶恒强在报告中介绍了原子尺度的结构预测与直接观察相结合取得的进展。同时,他坦言目前材料研究中存在&ldquo 铺摊子&rdquo 或&ldquo 摊大饼&rdquo 问题。为此,他建议在国家层面建立新材料研究协调小组,以推动材料科学健康可持续发展。   计算材料科学是材料科学与工程领域最活跃的前沿方向之一。中国工程院院士崔俊芝介绍了以多家合作方式研发的初具规模的&ldquo 支持新材料研发的集成化信息平台&rdquo 以及以此平台为基础完成的&ldquo 面向飞行器设计的材料建模与多学科优化&rdquo 等研究项目。   上海大学校长罗宏杰则表示,上海大学将努力推进材料知识库、计算和设计、可控制备、精确表征和性能服役等环节的交叉、融合及协同创新,吸引国内外一流科学家前来合作交流。
  • 2020年全球基因组学市场预计达221亿美元
    p   美国调研机构Grand View research发布最新调研结果,全球基因组学市场在2014年至2020年间将保持10.3%的复合增长率,到2020年市场总额将达到221亿美元。基因组学是生物学的一个分支,主要研究基因及其作用和基因组的作用和结构。基因组学用于生物科学、基因药学、人类学和多种其它社会科学领域等。基因组学包括功能基因组学、比较基因组学、药物基因组学、结构基因组学和表观基因组学。 /p p   由于技术发展,全球基因组学市场已经经过了一次增长。随着糖尿病和癌症等胎儿 a style=" COLOR: rgb(255,0,0) TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target=" _self" span style=" COLOR: rgb(255,0,0)" strong 疾病 /strong /span /a 发病率的增加,一些国家政府对基因组学研究的资助,全球基因组学将迎来再一次的增长。 /p p   北美市场占全球基因组学市场的35%,占最大市场份额。主要是因为病人意识强,医疗设施先进。亚太地区应该是增长最快的地区,在未来六年将保持12.7%的增长率。在中国和印度,医疗需求满足率低,医疗外包需求的增加,将促进基因组学市场的发展。 /p p   主要的供应商包括Agilent Technologies, Bio-Rad Laboratories Inc., Illumina Inc., Roche Diagnostics, Cepheid, Affymetrix, Inc., BGI, GE Healthcare, Qiagen, and Life Technologies. /p
  • 基因组重排再造出超级酵母
    p style=" text-indent: 2em " 天津大学元英进教授带领的合成生物学团队,继人工合成酵母染色体打破非生命物质和生命物质界限后,日前首次利用精确控制基因组重排技术,培养出了能几何级生长的“超级酵母菌”。该成果填补了国内基因组结构变异的技术空白,提高了细胞工厂生产效率。该研究成果的三篇相关论文在《自然通讯》期刊同期发表。 /p p style=" text-indent: 2em " 据介绍,以前的DNA变异技术大多只针对基因层面进行小规模改造,在更加复杂的基因组结构变异层面的人工构建技术仍具有挑战。& nbsp & nbsp & nbsp & nbsp /p p style=" text-indent: 2em " 天津大学科研团队正是瞄准这一难题,研究出能够精准控制基因重排的方法,使作为研究对象的合成型酵母菌,在有限时间内产生几何级增长的基因组变异,驱动其快速进化生长。 /p p style=" text-indent: 2em " 为了能够精准调控合成型酵母基因组重排过程,天地大的科研人员特意为细胞设计了一把“入门锁”,打开这把“锁”要用两把“钥匙”,只有两把“钥匙”同时转动的状态下,细胞内的基因组重排才会开启。而这两把“钥匙”就是添加到菌株培养基中的两种物质——半乳糖和雌激素。在它们的互相作用下,通过使用这一精准控制技术对合成型酵母基因组进行多轮迭代重排,酵母种类多样性得到了极大丰富。科研人员从中筛选出大量高产β-胡萝卜素的菌株,经过5轮迭代基因组重排,合成型酵母菌中β-胡萝卜素产量提升了38.8倍。 /p p style=" text-indent: 2em " 在此基础上,研究人员还分别通过杂合二倍体基因组重排和跨物种基因组重排,获得了可以在摄氏42度温度下生长加快的菌株和咖啡因耐受性明显增强的酵母菌株。英国帝国理工大学的研究者们也利用天津大学合成型5号染色体的酵母菌进行基因组重排,实现底盘细胞的快速进化,显著提升了酵母紫色杆菌素合成能力和五碳糖代谢利用能力。 /p p style=" text-indent: 2em " 这一研究未来对提升能源医药化学品的生产合成,对于工业菌株进化和功能知识发现具有重要意义。上述研究还得到国家自然科学基金委、科技部973计划以及国际合作项目的支持。 /p
  • 2017: 基因组学的突破之年
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/6d24d129-b200-4ee0-805e-22b518688387.jpg" title=" 1.jpg" style=" width: 599px height: 322px " width=" 599" vspace=" 0" hspace=" 0" height=" 322" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Francis deSouza br/ /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong & nbsp Illumina公司总裁兼CEO /strong /span br/ /p p style=" text-align: left " br/   Evelyn Villareal出生时患有1型脊肌萎缩症(SMA1),这是一种遗传病,患病的婴儿会逐渐瘫痪。诊断结果让她的父母心碎不已,因为他们的第一个女儿也被这种疾病夺去了生命,当时她只有15个月大。大多数患病的儿童活不过两岁。 br/   不过这一次,这个家庭发现了一种临床试验。八周时,Evelyn接受了一种实验性治疗,具体方案是让携带健康基因的病毒穿过血脑屏障,提供一种关键的缺失蛋白。试验获得了惊人的成功:所有15个婴儿都取得了良好的反应,Evelyn现在已经三岁了。 br/   SMA1并不是个例。经过20年的紧张工作,我们突然发现一系列的基因治疗都取得了成功。Spark Therapeutics公司的Luxturna有望成为第一个被批准用于遗传性失明的药物。另一种针对大疱性表皮松解的实验性治疗也在开发当中。这些患病的孩子常被称为“蝴蝶儿童”,因为他们的皮肤如蝴蝶翅膀一般脆弱。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 对抗癌症 /strong /span /p p   癌症是一种遗传病,所以基因组测序可以在癌症诊断和治疗中发挥重大作用。Foundation Medicine的综合性实体瘤遗传检测FoundationOne CDx& #8482 近日获得了美国食品药物管理局(FDA)的批准,这一事件具有里程碑式的意义。 br/   利用新一代测序,这种检测寻找324个基因中与黑色素瘤、乳腺癌、结直肠癌、卵巢癌以及非小细胞肺癌相关的变异。肿瘤医生根据检测的结果,将每位患者与获批的靶向疗法、免疫疗法或临床试验相匹配。 br/   这一成功案例并不是孤证。今年,美国FDA简化了肿瘤分析检测的批准程序。更多产品即将获批。 br/   FDA也创造了历史,批准了美国第一个基因治疗:诺华(Novartis)的Kymriah,适用于治疗患晚期白血病的儿童。FDA很快又批准了吉利德(Gilead)旗下Kite Pharma的Yescarta,它适用于一种成人淋巴瘤。这些疗法从人体中提取出T细胞,对其进行遗传改造,使其对抗患者的特定癌症。 br/   默克(Merck)的免疫治疗药物Keytruda则是另一个监管上的里程碑,它是第一个获批的癌症治疗药物,适用于带特定基因组生物标记的实体瘤,而无论其在身体中的何处。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 基因编辑的进展 /strong /span /p p   作为近年来最激动人心的发现之一,CRISPR-Cas9基因编辑能够确保稳定的食物供应,让生物燃料更经济,并治愈许多遗传病。此外,一种新的CRISPR变体Cas13让研究人员能够编辑RNA,而不仅仅是DNA,这打开了许多治疗应用的大门。 br/   2017年,一名患者首次接受了一种意在精确编辑体内细胞DNA的疗法,该临床试验利用基因编辑工具来治疗亨特综合征,这是一种遗传代谢疾病,可导致严重残疾。 br/   另外,研究人员还利用CRISPR来校正胚胎的遗传性疾病。研究小组修复了MYBPC3基因中的突变,这些突变可能导致心源性猝死及其他心血管疾病。如今,我们拥有了工具,有望消除亨廷顿舞蹈症、囊性纤维化及其他遗传病。不过,生殖系的编辑也引发了伦理问题。研究需要开展下去,而法律、监管和伦理的讨论也必须跟进。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 患者权益的改善 /strong /span /p p   基因组测序已经推动了医疗保健的各种进步,但如果患者享受不到,便毫无意义。今年,精准医疗在付费者接纳方面迈出了重要的一步。 br/   FoundationOne Cdx实体瘤检测除了获得FDA的监管批准,还获得了美国联邦医疗保险(Medicare)的初步覆盖,这意味着最容易患癌症的老年患者将有更多的机会使用这种检测。 br/   其他付费者也正参与其中。11月,美国最大的私营保险公司联合健康保险(United Healthcare)开始报销罕见病患儿的全外显子组测序。 /p p br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 更多的群体基因组学 /strong /span /p p   全世界的多个国家在群体基因组学上继续取得进展,希望更好地了解遗传学与疾病之间的关联。丹麦和印度也加入英国、美国、中国、卡塔尔、沙特阿拉伯、土耳其和爱沙尼亚的行列,开展群体基因组学计划。截至本月,全球首个也是最大的群体基因组学行动Genomics England的十万人基因组计划已经对癌症或罕见遗传病患者的41,000多个基因组进行了测序。英国国民保健署(NHS)正准备将全基因组测序作为某些罕见病和癌症患者的常规诊断检测。 br/   同时,法国也首次指定了2个测序点,而最终将有12个测序点分布在该国的大学医院,作为法国2025年基因组医疗计划的一部分。该计划旨在将基因组医疗整合到法国的临床保健行动中,其目标是在2020年之前,每年对23.5万个基因组进行测序。 br/   在美国,国立卫生研究院的All of Us研究计划开始招募参与者,而美国退伍军人事务部也签订了一份合同,对百万退伍军人计划(MVP)的首批34,000个基因组进行测序。最终,All of Us和MVP计划将分别收集超过百万名美国人的健康数据,包括基因组信息。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 基因组学无处不在 /strong /span /p p   2017年,基因组学生态系统以多种方式扩大,包括直接面向消费者的市场。Helix推出了在线消费者市场,提供基于DNA的产品。23andMe的客户超过了200万。单就今年来看,AncestryDNA的客户就翻了一番,超过600万,也创造出世界上最大的DNA数据库。 br/   这一势头将逐步强劲,而周密的监管将起到重要作用。FDA宣布,它正在简化消费者检测公司的审查程序。 br/   以基因组学为重点的创业公司也呈爆炸式增长,包括Illumina加速器资助的那些。例如,Checkerspot正利用先进的生物技术和化学来设计高性能的材料,而Mantra Bio正利用外泌体(exosomes)这种天然存在的细胞结构来输送新一代的靶向治疗药物。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 临床基因组学 /strong /span /p p   研究人员和临床医生正为充分利用基因组学而另辟蹊径。基因组测序技术让新境界触手可及:更大规模的研究,以全基因组而不是外显子组为对象的更广范围应用,以及超深度测序。这将让“大海捞针”的应用成为现实,比如开展深度的肿瘤分析,或通过一滴血来寻找单个癌症分子。 br/   麻省理工学院和哈佛大学旗下Broad研究所的研究人员表明,他们能够检测患者血液中几乎90%的肿瘤遗传特征,而Illumina子公司Grail也推进了其液体活检项目。 br/   Illumina的NovaSeq架构也支持这些及其他方面的工作,而这种技术才刚刚开始在患者中发挥作用。 br/   保健革命的潜力是惊人的。目前,只有少数实体瘤得到了测序。科学家已经开始揭示ApoE4基因变异如何增加阿茨海默病的风险。同时,人类细胞图谱(Human Cell Atlas)计划正在绘制人体中全部37万亿个细胞。通过描绘和定义健康与疾病的细胞基础,这项大胆的举措将影响生物学和医学的方方面面。 br/   测序有望彻底改变癌症、未确诊的罕见遗传病及进行性疾病(如阿茨海默病)的治疗方式。对于Evelyn等孩子来说,生活从此变得不同,他们如今也有机会过上健康长寿的生活。而作为Illumina的一份子,我们很荣幸能够推动这些进步,让全世界的广大民众受益。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/6322412a-1eff-448c-9715-2532ee6f71f3.jpg" title=" 2.jpg" style=" width: 600px height: 400px " width=" 600" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p
  • 个人基因组测序收费将大幅降价
    新华社伦敦2月9日电针对个人的基因组测序服务刚出现时,测序费用高达上百万美元,普通人望尘莫及。不过,美国一家公司计划从今年6月开始,推出低价个人基因组测序业务,顾客只需支付5000美元,就可向这家公司预约基因组测序服务。   据英国《新科学家》杂志网站报道,这家名为&ldquo 完全基因组&rdquo 的公司位于美国加利福尼亚州。这家公司称,其测序技术最关键的一点是将放大后的DNA(脱氧核糖核酸)片段固定在硅阵列上,从而实现快速、高效测序。   世界首份&ldquo 个人版&rdquo 基因组图谱数据的拥有者是DNA双螺旋结构的发现者之一詹姆斯&bull 沃森。2007年,美国贝勒医学院和&ldquo 454生命科学公司&rdquo 共同完成了沃森个人基因组的测序工作,并将图谱数据免费赠予沃森,当时这一测序的费用总计约100万美元。沃森当时在接受媒体采访时预测说,将来一旦个人基因组测序的费用&ldquo 降到一辆雪佛兰汽车的价格&rdquo ,那么人类基因变异研究领域将迎来一场变革。   此后,几家生物公司相继利用更为快速、成本更低的测序技术推出了&ldquo 个人版&rdquo 基因组测序服务。例如,加州一家名为&ldquo 应用生物系统&rdquo 的公司去年就曾宣布,他们为一名尼日利亚男子测序了基因组,花费不到6万美元。   如今,&ldquo 完全基因组&rdquo 公司的报价甚至比许多二手汽车的价格还要低。2月5日,该公司在美国举行的一个基因组生物学会议上公布了他们完成的第一份个人基因组测序数据,并将相关数据刊登在公司网站上。据悉,他们的目标是2009年完成1000个客户的基因组测序,2010年完成2万个客户的测序。
  • 日本完成中药材“甘草”基因组测序
    p   日本理化学研究所、千叶大学、高知大学和大阪大学等组成的一个研究小组宣布,他们对中药材“甘草”进行了全基因组测序,成功取得了推测的全部基因94.5%的基因信息。 /p p   甘草是一种豆科植物,广泛应用于各种中药中,是重要的中药原料。它具有改善肝功能、治疗消化性溃疡、抗炎症及止疼止咳等多种功效。甘草根部富含的主要成分甘草甜素的甜度是砂糖的150倍,可用作非糖基甜味料,具有预防代谢综合征的作用。同时甘草也是医药、化妆品、天然甜味料的重要原料,需求量极大。对其进行基因组测序,不但可根据其基因组信息高效育种,还可对有效药用成分甘草甜素遗传基因进行深入研究,以期实现生物合成。 /p p   研究小组选择甘草中质量最好的“乌拉尔甘草”进行全基因组测序。通过对获得的基因信息进行分析,发现了34445个蛋白质遗传基因代码。研究小组用甘草的基因组信息,与其他豆科植物的基因组信息及全基因组进行了分析比较,结果发现了药效成分之一、异黄酮的生物合成相关基因群的一部分形成基因簇。研究小组进一步对生物合成相关的含有酶基因的基因家族深入分析,发现了其遗传结构和遗传表达。 /p p   目前,日本90%的医生使用中药来治疗疾病,使用量逐年增加。现日本甘草等中药材85%从中国进口,为了满足不断扩大的市场需求,该研究对日本甘草的分子育种栽培、改进中药材功效,以及深入研究生产药效成分所必需的有用遗传基因具有重要意义。 /p p br/ /p
  • 新DNA测序法打开基因组“黑匣子”
    许多救命药物直接与DNA相互作用以治疗癌症等疾病,但科学家们一直很难理解它们如何以及为何起作用。近日,英国剑桥大学的研究人员在《自然生物技术》杂志上发表的一篇论文中提出了一种新的DNA测序法,可检测小分子药物与基因组特定位置之间的相互作用。“了解药物在体内的作用方式对于创造更好、更有效的治疗方法至关重要。”剑桥大学优素福哈米德化学系余祖涛(音译)博士说,“但当一种治疗药物进入具有30亿个碱基的癌细胞基因组时,就像进入了一个黑匣子。”这种方法名为Chem-map,利用它,研究人员通过一种名为小分子定向转座酶Tn5标记的策略,以前所未有的精度进行小分子—基因组相互作用的原位测绘。也就是说,研究人员能够检测小分子药物与DNA基因组上的目标相互作用的位置,从而打开了这个基因组的“黑匣子”。每年,数以百万计的癌症患者接受基因组靶向药物(例如阿霉素)的治疗。这项研究中,研究人员使用Chem-map来确定广泛使用的抗癌药物阿霉素在人类白血病细胞中的直接结合部位。该技术表明,在暴露于组蛋白脱乙酰酶(HDAC)抑制剂西达本胺的细胞上使用阿霉素的联合治疗,可能具有潜在的临床优势。这项技术还被用来绘制DNA G-四链体上某些分子的结合位置,即G4s。G4s是四链二级结构,与基因调控有关,可能成为未来抗癌治疗的靶点。研究人员表示,Chem-map可以精确地绘制出药物与基因组结合的位置,能为一些药物疗法如何与人类基因组相互作用提供大量新见解,并使开发更有效和更安全的治疗药物变得容易。
  • 知名华人专家云集北京 共话基因组学研究热点
    7月16日,为期四天的2015基因组学前沿研讨会在北京亚奥国际酒店召开。本次会议由中国科学院北京基因组研究所主办,Genomics Proteomics & Bioinformatics (GPB)和北京路思达生物信息科技有限公司承办。共有大约100余位代表出席本次研讨会,其中多为华人学者,包括中科院生物物理所陈润生院士,美国哈佛大学谢晓亮院士、中科院北京基因所于军博士、新加坡国立基因组研究院阮一骏博士等。本次会议共设有三个主题:基因组高级结构、单细胞组学和RNA修饰,充分反映了当前基因组学领域的研究热点。 会议第一天的报告主要聚焦在了第一个主题,即基因组高级结构。虽然十几年前人们就获得了人类基因组序列的线性图谱,但却忽略了基因组的一个关键要素,即基因组的空间结构。基因组的空间结构一直以来被公认是基因表达的一个重要调控因素。远程基因组元件,如增强子和启动子,可通过染色质相互作用来调控与其相距数千个碱基对的目标,这充分说明了三维染色质结构的重要性。本次会议首日的报告也表明建立基因组的三维结构并研究其功能已成为遗传学当下的研究前沿之一。 同时,为了帮助解析基因组三维结构,相关技术也在不断发展。从最初的3C(染色质构象捕获)技术到更高通量的衍生技术4C、5C等。而2009年,两种新方法(即Hi-C图谱和ChIA-PET图谱技术)的出现,则有望帮助人们绘出全基因组范围的染色质相互作用图谱。本次会议上,也有科学家报告了如何对现有技术做进一步提升,以期获得更好的分辨率和更高的灵敏度。另外一项在会议首日报告中被提及的重要技术,就是最近几年开始成熟起来的冷冻电镜技术,它已开始在诸如染色质的三维重构研究中发挥重要的作用。
  • 国内首个全基因组测序临床研究在沪启动
    p   儿童罕见病诊断领域10日率先启动创新型临床研究项目,将系统地评估全基因组测序在不明原因智力落后/发育迟缓、多发畸形等罕见未确诊儿童患者中的应用指征及诊断效果,通过临床表型和基因型关联统计分析我国临床应用和共识,进一步规范和指导全基因组测序在儿科临床应用、实验室的检测及报告,并构建我国儿童遗传疾病检测基因组数据库。 /p p br/ /p p   项目由中国医师协会医学遗传医师分会、上海交通大学附属新华医院和中南大学湘雅医院共同发起,其中新华医院亦是上海市罕见病诊治中心。 /p p   “基因测序已经经历了两个阶段,即一代的基因芯片和二代测序。此次推动的将是真正的全基因组测序。” 这一项目负责人,新华医院儿科专家、上海儿科研究所分子平台负责人余永国教授说,“单基因、全外显子、基因芯片等现行的基因测序方法在临床上仍然无法对一些罕见病做出明确诊断,有患者要耗费3、5年经过7次基因检测才能确诊,而全基因组测序可以检测出此前无法检测的复杂的基因组结构变异等。这一技术如果在临床上的应用,有望大大提高罕见病的诊断。 /p p   “为儿童罕见病诊断,提供全基因测序是一件非常严谨的事情。即便是患者材料的审核都非常关键,新华医院目前严格执行相关方案,这些方案都经过医院伦理委员会的严格审批。”余永国介绍,“根据方案,应由临床医生筛查临床资料,由实验室重分析测序数据,由此才能保证实验的科学性和可行性。” /p p   目前阶段,在罕见病诊疗中,诊断更重于治疗。目前全球范围内已确认的罕见病种约6000至7000种,约有80%的罕见病是由遗传缺陷所致,其中一半的罕见病患者在出生时或者儿童期即发病,但大部分罕见病的成因目前尚不明确。 /p p   项目将探索通过全基因组测序和数据解读,明确遗传性疾病的发病机制,筛选鉴定疾病诊断的生物标记物和药物靶点,为更精准的个性化治疗方案提供理论基础和研究数据。并以此为基础,建立临床应用标准和共识,指导各医院的儿科临床应用,提高儿科医生诊疗儿童罕见病的整体水平。最终,逐步构建中国儿童遗传疾病检测基因组数据库。 /p
  • 再精一点!3000+脑细胞基因组高清图谱来了
    哺乳动物的大脑各不相同,脑细胞数量也有差别:人约有1千亿个脑神经细胞,狗约有5.3亿个,而小鼠约有7千万个… … 那么,单个脑细胞的基因长什么样?它们的形状和功能之间又有何关联?1月22日,一项刊发在《细胞》上的研究带来了超过3000个哺乳动物脑细胞的转录组图集和三维基因组图集。根据这些数据,研究者可为神经发育及相关疾病的诊疗提供帮助。该研究由北京大学生物医学前沿创新中心主任谢晓亮带领团队完成。大脑细胞里关键基因的高清三维结构。左侧为来自父亲的基因,右侧为来自母亲的基因。(图片来源:《细胞》)结构决定功能人类对生命的探索不止不休。1953年,世界首个DNA模型问世,双螺旋结构深入人心。2001年,人类基因组工作草图问世,人类遗传密码的破译程度前所未有。在基因组学成为生物学一大子领域的今天,科学家对“结构决定功能”这句话的理解愈发深刻:不止是基因组序列,DNA分子本身的三维结构对单个细胞的功能也有重要影响。每个细胞的基因组结构都不尽相同。得益于不断更新的技术手段,科学家已经能构建出哺乳动物单细胞基因组的三维结构——这项2018年发表在《科学》上的研究,作者之一正是谢晓亮。该成果的发表得益于一系列技术,其中一项新技术——单细胞染色质构象捕获技术(diploid chromatin conformation capture,Dip-C)起到了关键作用。在当时,谢晓亮团队的博士后成员谭隆志参与了相关技术的开发工作。本次发表在《细胞》上的新成果,就是凭借Dip-C等技术获得的。“过去的技术无法测量单细胞的三维基因组结构,此前也没有哺乳动物大脑产后发育的单细胞数据”,论文第一作者、斯坦福大学生物工程系博士后谭隆志告诉《中国科学报》。大脑皮层单个神经细胞的结构图,分辨率20kb。(图片来源:谢晓亮课题组)不断精进的单细胞测序技术全职加入北大前,谢晓亮曾在美国哈佛大学从事单分子生物研究多年。2012年,谢晓亮课题组推出的单细胞全基因组均匀扩增的新方法—多重退火循环扩增法(MALBAC),大幅提高了单细胞测序的通量和精准度。“MALBAC是一项非常独特、创新的单细胞测序技术”,谭隆志表示,该技术从设计层面入手,注重提升扩增均一性,能够灵敏、准确地测量单细胞中含量极少的DNA和RNA。这之后,该课题组一直致力于开发高精度的单细胞测序方法。2017年,谢晓亮和同组的陈崇毅、邢栋、谭隆志、李恒等人采用RNA而非DNA拷贝来扩增基因组,推出的单细胞基因组线性扩增(linear amplification via transposon insertion,LIANTI)进一步提升测序的均一性和准确性。从生物体角度来看,人类、相当一部分高等动物都是二倍体。但基因组学诞生后的很长一段时间里,单个二倍体细胞的结构测量无法实现。2018年,为了将研究范围从单倍体拓展到二倍体,课题组开发了Dip-C技术。人类的46条染色体平分为2套,套内的23条染色体分别来源于父母,这之中的序列相似度高达99.9%,差异非常细微,但通过Dip-C技术,研究者可以对两套染色体进行区分。“迄今为止,Dip-C仍然是测量单个二倍体细胞高分辨率3D全基因组结构的唯一方法。”谭隆志表示。随着测序技术的不断精进,相关的研究发现也越来越多。比如作为细胞“大脑”的细胞核,其内部的染色质在细胞特异性基因表达中发挥着重要作用——视觉和嗅觉都与高度专门化的功能神经元密切相关,而这些神经元的基因组有着独特的三维结构,很可能决定着相应的功能。本次新发表的研究中,谢晓亮等人用到了MALBAC技术的升级版:MALBAC-DT(数字转录组学)。进一步提高灵敏度和准确度后,课题组首次得到了哺乳动物大脑在产后发育过程中的单细胞转录组图谱,具体数量为3517个。而借助Dip-C方法,他们完成了3646个三维基因组结构图集。根据这些数据,他们又得到不少有趣的发现。向理解脑内神经发育更进一步根据转录组图谱的数据,课题组发现小鼠出生后,大量基因被动态表达,从而形成初生、成年两个基因表达模组。“这说明初生与成年大脑在基因表达上有巨大差异、并可能影响大脑认知功能的形成。”谭隆志表示。而将三维基因组图集和转录组图集结合起来看,谭隆志等人发现小鼠出生后一个月内,其大脑在三维结构和转录组层面都有变动,这意味着大脑的确在分子层面发生了转化。“这一转化恰好发生在大脑开始接收外界感官刺激的时期,即小鼠出生后第一个月。”谭隆志说。那么,这些这些分子层面的变化是由外界感官刺激引起的吗?针对这一问题,课题组从视觉研究入手,将出生的小鼠饲养于黑暗环境中,避免其受到视觉刺激。但他们发现,这些“暗中饲养”的小鼠视觉皮层的三维基因组和转录组转化几乎都不受后天影响,因此答案是否定的。另一个有趣的发现是,先前研究中,谭隆志与谢晓亮等人发现嗅觉细胞的基因组内有独特的内移现象:很多平时处在细胞核表面的基因区域,会在神经细胞分化时大幅移向细胞核内部。而这种现象对嗅觉受体调控有重要作用。而在本次发表的研究中,课题组发现这种内移现象同样存在于大脑的各种神经细胞中,大约发生在小鼠出生后的一个月内。“这一发现表明,中枢与周围神经细胞系在三维基因组结构方面可能共享某些特殊通路,未来可以深入研究。”谭隆志说。接下来,课题组还会拓展现有技术的应用范围,并继续开发测序新方法。谭隆志表示,他们将进一步测量单个细胞的三维基因组结构、转录组或其他组,“生物方面,我们将测量更多器官、更多年龄的更多细胞,更全面地解释哺乳动物发育的分子原理。”单个海马体神经细胞结构图,分辨率20kb。(图片来源:谢晓亮课题组)相关论文信息:https://doi.org/10.1016/j.cell.2020.12.032
  • 汤富酬课题组实现基于单细胞测序数据的人类基因组从头组装
    随着三代测序技术(TGS,也即单分子测序技术)的发展,基于大量细胞的三代基因组测序数据被广泛应用于各种复杂大型基因组的组装,由于其读长相比于二代测序(NGS)技术有数百倍的增加,因此基因组中重复序列区域以及染色体重排等复杂结构变异区域都能被更好地组装出来。对于人类基因组的组装研究,端粒到端粒(T2T)联盟在2022年3月,使用纯合二倍体细胞系CHM13率先发布了首个完整的端粒到端粒的人类基因组参考序列CHM13v1.1。2022年3月,人类泛基因组联盟(HPRC)在预印本平台bioRxiv上发布了首个高质量人类杂合二倍体细胞系HG002的单倍型组装结果。目前,高质量的基因组组装通常依赖于大量细胞混合样本的三代测序数据,需要大量的基因组DNA(通常需要从数百万个细胞中提取几十微克基因组DNA),然而在基因组组装的实际应用中常常要面对两个困难:1、细胞群体中存在遗传异质性。基于大量细胞三代测序数据的基因组组装需要确保测序的样本中每个细胞的遗传背景高度一致,否则组装结果将很难区分同一个细胞内的不同单倍型基因组之间的差异和不同细胞亚群之间的基因组差异。只有降低或者消除细胞间的遗传异质性才能确保单倍型组装的准确性。但是,在人体正常组织样本中也常常广泛存在体细胞拷贝数变异(CNA)。与此同时,正常的人类细胞也会不断积累突变,同一块人体组织常常是由很多包含不同突变的细胞克隆组成。在癌症研究中,同一个肿瘤样本中不同癌细胞亚克隆之间的基因组异质性就更为明显。2、细胞数量稀少。在很多情况下,很难获取上百万个细胞以提取大量(几微克)基因组DNA。例如,在早期胚胎发育研究、司法检验、特别是在癌症基因组研究中(如循环肿瘤细胞、肿瘤活检样本、脑脊液中的肿瘤细胞、以及腹水中的肿瘤细胞等),能够获取的细胞数量常常很稀少,而且这些细胞很难在体外培养和扩增;即使偶尔可以培养扩增,也不能保证在体外培养扩增过程中其基因组不会进一步产生新的遗传变异。基于二代测序(NGS)平台的单细胞基因测序技术被广泛应用于微生物等简单小型基因组的组装。许多种类的细菌无法在实验室中培养,单细胞基因组测序可以与宏基因组学方法结合起来完成微生物的基因组组装。由于人类基因组结构、大小、以及复杂程度远超细菌等微生物,单纯使用基于二代测序平台的大量细胞基因组测序数据也无法组装出高质量的人类基因组参考序列(NG50很难达到Mb(百万碱基对)级别),那么使用少量DNA甚至单细胞基因组测序数据组装人类基因组则更具挑战性,它不仅需要基于三代测序平台的单细胞基因组长读长测序技术的支持,还需要合适的组装软件以及良好的生物信息学分析策略。2022年7月12日,北京大学生物医学前沿创新中心(BIOPIC)汤富酬课题组在Nucleic Acids Research发表了题为De novo assembly of human genome at single-cell levels的研究论文。该研究使用优化的SMOOTH-seq单细胞基因组三代测序技术,基于Pacific Biosciences(PacBio)HiFi和Oxford Nanopore Technologies(ONT)两种三代测序平台首次在单细胞水平上完成了Mb级连续性的人类基因组组装,并使用多种评价指标,充分探索了不同测序策略和组装工具对基因组组装结果的影响。1、全面优化了SMOOTH-seq单细胞基因组三代测序技术,使其同时适用于PacBio和ONT两种主流单分子测序平台。此前的SMOOTH-seq技术只适用于PacBio单分子测序平台,使用场景有较大的局限性。优化后的SMOOTH-seq技术既可以用于PacBio单分子测序平台,也可以用于ONT单分子测序平台,使用场景更加灵活,可以兼顾测序数据准确性和测序成本。2、使用hifiasm,Hicanu,wtdbg2等主流组装工具和95个单细胞的三代基因组测序数据(Pacbio HiFi平台),对人类慢性粒细胞性白血病(CML)细胞系K562进行了高质量基因组组装。组装出的主要叠连群(primary contig)的NG50(可覆盖50%的已知基因组区域的最短叠连群的长度)可达2.11Mb,也就是说在这个组装出的参考序列中,人类基因组中一半(15亿碱基对)以上的区域都被至少2.11Mb以上的叠连群覆盖了。最长叠连群可达14.12Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近95%,且大部分组织相容性复合体(MHC)位点(基因组上的一个有代表性的复杂区域,全长约6Mb)被成功组装出来(如图1所示)。图1. 95个K562细胞的基因组组装结果(Pacbio HiFi)3、使用hifiasm,Hicanu,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的157个单细胞的基因组三代测序数据(Pacbio HiFi平台)对人类基因组进行了高质量组装。组装出的主要叠连群(primary contig)的NG50可达0.65Mb,最长的叠连群可达6.82Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近91%。在使用此数据进行HG002的单倍型组装的过程中该研究发现经过指数扩增的基因组数据的k-mer分布会发生偏移,因此使用有双亲二代测序数据作为辅助的Trio-binning模式进行基因组单倍型组装结果更为准确。因此该研究分别使用Trio hifiasm和Trio Hicanu两种组织工具进行单倍型组装,得到的亲本叠连群的NG50可达0.3Mb左右,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例均超过84%。通过比较HG002亲本六种经典人类白细胞抗原(HLA)位点的组装分型结果,Trio Hicanu能够正确组装出HLA区域的两个亲本的大部分基因位点(如图2所示)。图2. 157个HG002细胞的基因组组装结果(Pacbio HiFi)4、使用Flye,Necat,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的192个单细胞的三代基因组测序数据(ONT平台,低测序深度)对人类基因组进行高质量组装。研究发现,不同的组装工具对最终组装结果有很大影响,Flye展现出更为适合单细胞ONT三代测序数据的特性,组装出的叠连群的NG50可达1.38Mb,最长叠连群可达11.42Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例超过93%,多项指标都远超另外两个组装工具。同时组装结果能够补齐39个hg38版本的人类参考基因组中未组装出的缺口(gap)区域,其中14个区域在hg38中注释的长度超过50Kb(如图3所示)。图3. 192个HG002细胞以及30个HG002细胞的基因组组装结果(ONT)5、使用Flye,wtdbg2等组装工具和人类正常二倍体细胞系HG002的30个单细胞的三代基因组测序数据(ONT平台,高测序深度)对人类基因组进行高质量组装。为了探究仅使用极少量单细胞的基因组测序数据进行人类基因组组装的极限情况,该研究分别使用1个、10个、20个和30个单细胞尝试进行人类基因组组装,发现仅需要高测序深度的30个单细胞的基因组测序数据(平均基因组覆盖度~41.7%)就能完成叠连群 NG50高达1.34Mb连续性的组装。同时组装结果能够补齐38个hg38版本的人类参考基因组未组装出的gap区域,其中15个区域在hg38注释的长度超过50Kb(如图4所示)。图4. 30个基因组高覆盖度HG002细胞的基因组组装结果(ONT)6、通过对K562细胞系基因组的从头组装,该研究相比于使用原始单细胞基因组三代测序数据能更精准地鉴定出更多的基因组插入事件和复杂结构变异事件。对于K562这样的白血病细胞系,基因组从头组装之后是否能更好地鉴定出基因组结构变异(SV)事件是癌症研究中的重要问题。该研究分别使用hifiasm和Hicanu组装出的主要(primary)叠连群和替代(alternate) 叠连群来进行结构变异鉴定。发现组装后的叠连群比起原始单细胞数据直接比对能更准确地鉴定出基因组插入事件,召回率达到70%以上,精确度达到90%以上。同时,K562中的三对经典融合基因:CDC25A-GRID1、BCR-ABL1和NUP214-XKR3都能被精准地鉴定出来,而CDC25A-GRID1融合在原始单细胞基因组数据直接比对到参考基因组时是无法被发现的 (如图5所示) 。为了进一步验证基因组从头组装后找到的结构变异事件的准确性,该研究挑选了20个(14个插入事件,6个缺失事件)在组装后的叠连群中被鉴定到、但是在单细胞基因组原始测序数据直接比对到参考基因组时没有被鉴定出来的结构变异事件进行了PCR验证,准确率高达80%,证明了组装后的叠连群对结构变异事件的鉴定是精准可靠的(如图6所示)。图5. 组装后叠连群(contig)中结构变异事件检测的准确性 图6. PCR验证基因组结构变异事件的结果综上,为了解决基因组从头组装在实际应用中遇到的细胞遗传异质性和细胞稀缺性的问题,该研究使用优化的SMOOTH-seq技术在两种不同的主流三代测序平台上,采用不同的测序策略(高通量、低深度测序策略(multi-cells with low sequencing depth)和低通量、高深度测序策略(few-cells with high sequencing depth)),使用多种不同组装软件(hifiasm,Hicanu,wtdbg2, Flye,Necat等)、多个评价指标、以及不同组装策略,探讨了利用单细胞测序数据从头组装人类基因组的可行性,并确定了影响组装结果的主要因素,将基因组组装的分辨率提高到单细胞水平(少至30个单细胞)。未来随着单细胞测序技术和基因组组装策略的进一步发展,最终必将实现只用一个单细胞的测序数据就能组装出Mb级连续性的人类参考基因组的梦想。北京大学生命科学学院博士生谢昊伶以及北京大学前沿交叉学科研究院博士生李文为该论文的并列第一作者。北京大学生物医学前沿创新中心汤富酬教授为该论文的通讯作者。该研究项目得到了北大-清华生命科学联合中心、国家自然科学基金委、北京市科技委和北京未来基因诊断高精尖创新中心的支持。论文链接:https://doi.org/10.1093/nar/gkac586汤富酬研究员简介:汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • 英研制出“U盘”基因组测序仪
    中国科技网讯 据美国物理学家组织网近日报道,英国牛津纳米孔技术公司在佛罗里达州基因组生物学与技术会议上宣布了一个爆炸性消息,即推出GridION和MinION两款基于新一代DNA测序技术的便携式基因组测序仪,后者仅有U盘大小,可插入电脑USB端口完成测序,价格仅900美元。   两个仪器都是基于纳米孔测序技术,采用一种特殊的蛋白在薄膜结构上打出纳米级小洞或小孔,在膜的一侧施加电压将单条DNA链(带负电)拉进纳米孔。当DNA的化学碱基通过时,引起细微的电流变化,测量这种变化即可识别出不同的碱基(T、C、G和A)组成顺序,然后通过电脑将每一部分的结果编织在一起呈现。人类基因组包含大约30亿个碱基,DNA测序就是将这些碱基的顺序识读出来。   该消息令投资者大为振奋,而对于牛津纳米孔技术公司的竞争对手美国Illumina公司和生命科技公司来说犹如一记重创。生命科技公司于今年初推出的最新台式离子质子序列发生器测序需要24小时,价格约15万美元。相比之下,如果将20个单元连接在一起,GridION可在15分钟内完成整个人类基因组测序,价格为5000美元 如U盘大小、即插即用的MinION可直接插入笔记本电脑USB端口测序。   无疑,新测序仪将带来DNA测序更为广泛的应用,允许非专业科学家提取DNA信息,即使在野外研究人员也可将样品置于仪器中,将其插入载有相关软件的笔记本电脑后,几乎片刻就会得到基因组样品的信息,以确定植物或动物的遗传性状。种子研究公司可使用它来分析田间作物,如查查是否有外源混合 肉类检查员可拿它测试不同类型的微生物 生物学家可以用它来寻找几代人基因中的微小变化。   然而,在这些愿景中也有小小瑕疵:目前这种设备有4%的错误率 MinION是一次性的,产量不如GridION高 尽管该公司称,在今年某个时候发售相关产品之前,价格会大幅下降,但对于许多应用者来说还是有些贵。
  • 深度解读:个人基因组学的现状与发展
    什么是Personal Genomics?   Personal Genomics,一般翻译为&ldquo 个人基因组学&rdquo 。是基因组学的一个分支,主要关注个人基因组的测序和分析。   1990年开始发起的浩大的&ldquo 人类基因测序计划&rdquo 是从大量的个体中获取基因信息,综合之后建立一个具有&ldquo 参考价值&rdquo 的人类&ldquo 平均&rdquo 基因组。然而,每个个体的基因都是独一无二的,并且随着DNA测序技术的发展,个体了解自己的基因组情况不管是从价格还是实践性上都成为了可能。而这就是Personal Genomics。   许多的疾病,比如镰状细胞贫血、地中海贫血、囊胞性纤维症等都与遗传基因息息相关。常见的疾病通常有多重致病因素,而这经常是由多重的基因、以及环境因素造成的。   简单来说,Personal Genomics对于识别与常见疾病、遗传致病基因、家族特征、常用药物疗效和不良反应等相关的遗传基因倾向有十分重要的意义。   最初进行&ldquo 个人&rdquo 基因测序的主要有Celera Genomics公司创始人Craig Venter、DNA双螺旋结构的联合发现者James Watson。苹果公司联合创始人,著名的&ldquo 乔帮主&rdquo Steve Jobs也是世界上最早了解自己的基因序列情况的20个人之一,为此他支付了10万美元。他同时也进行了癌症基因筛查,并希望可以以此为自己的癌症治疗提供更多有用的信息。(但最终他还是没能战胜癌症。)   而在互联网医疗中,Personal Genomics在疾病预测和精准医学等方面扮演着举足轻重的角色。   Personal Genomics能够帮助预测个体感染某种疾病的可能性并进行个性化的治疗和药物选择,以便获得最大化的疗效。   虽然获取自己的个人基因信息在目前仍然是一个较新的领域,但动脉网认为,在未来这将成为我们进行医学研究和疾病治疗的关键部分之一。Personal genomics可以让我们从一个前所未有的高度观察我们的身体健康状况,改善我们的饮食和锻炼习惯。而随着DNA测序和大数据分析技术方面的进步,进行基因检测的成本也在随之大幅下降。在可以预见的将来,随着相关成本的进一步降低,personal genomics也将成为每个人都能承受的一项基本的技术。   Personal genomics的成本正在逐年下降   Personal Genomics有什么用?   通过对个人基因组进行测序,研究者可以全面的了解个体的身体状况,比如他们感染某种疾病的可能性。   Personal Genomics尤其有用的一个地方是&ldquo 药物基因组学&rdquo 。比如来自个体的基因信息可以被作为给患者开某种药品的关键依据之一。这可以让医生确保发挥药物的最大化疗效,并最大程度上减少副作用。   Personal Genomics也可以被用来预测和确定遗传疾病。通过详细的了解个体的基因情况,就有可能确定遗传变异导致个体患某种遗传疾病的可能性。   Personal Genomics还有一个重要的作用便是为想要生孩子的夫妇提供建议。比如,父母当中的一方很可能携带有某种遗传致病性基因,但这是一种隐形基因,在父辈身上并没有患该种疾病。但如果父母中的一方,甚至双方都携带了该基因,那么他们的孩子未来患该疾病的可能性将大大的升高。目前已经有公司专门提供了这种针对夫妇基因的筛查服务:《Recombine:基因分析实现个性化优生优育》   目前开展Personal genomics服务的公司   目前开展Personal genomics服务的主要公司   Personal Genomics作为一项新兴技术,目前基因检测服务主要包含有以下内容:   教育和咨询   医疗服务提供   基因测试结果说明   信息分析   检测过程前后的服务,增强患者意识   利用遗传因素对诊疗选择提供支持   而personal genomics常见的应用主要包括:   分析各种基因疾病,如色盲、镰状细胞性贫血等的载体情况   识别罹患各种常见疾病,如糖尿病、冠心病等的可能性   了解哮喘、肺纤维化等各种疾病的遗传原因   了解患乳腺癌、结肠直肠癌的家族风险   较少对药物的不良反应情况   与祖先进行基因对比   进行基因咨询以降低或避免遗传疾病   当前的市场及发展趋势   根据Markets and Markets的数据,personal genomics市场将会从2013年的111亿美元增长到2018年的190亿美元,复合年增长率达到12%。该市场主要包含以下几大领域:   产品(仪器、耗材、服务)   技术(核酸萃取和提纯、聚合酶链反应,即PCR、DNA测序、DNA微阵列)   应用(诊断、新药研发、学术研究、农业与动物研究、个性化医疗及其他)   产品市场中最大的细分领域是耗材,占到了整个市场营收的60%。   personal genomics市场发展的推动因素主要有:   基因组学研究和试验应用的扩大   仪器和耗材的成本下降   基因组学从试验到临床应用的整合   对检查和审批程序的监管更为透明   下一代全基因组测序技术的进步   良好的补偿机制   政府投资的增加   越来越多的医生参与其中   生物信息学自身的发展   消费者的逐渐接受   personal genomics市场发展的制约因素主要有:   全球大多数地方对于遗传基因病变的认识程度还较低   大多数基因测序技术还无法完成全基因组测序   大多数筛查服务只能筛查出数量有限的疾病   DNA测序成本过高   审批程序仍然复杂
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。   基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。   目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。   这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 北京基因组所开发国际领先基因组序列变异库
    p   近日,中国科学院北京基因组研究所生命与健康大数据中心开发了国际领先、国内首个规模最大的基因组序列变异库——GVM(Genome Variation Map)。该库基于人工审编整合了多个物种的大量基因组序列单核苷酸多态位点和小的插入与删除变异信息,是基因组序列变异信息汇交、管理与检索的资源库。研究成果以Genome Variation Map: a data repository of genome variations in BIG Data Center为题,在线发表在Nucleic Acids Research上。 /p p   基因组序列变异是基因组DNA水平发生的可遗传变异,是生物多样性的基础,是物种进化、分子育种、优良性状选育、人类疾病等研究最为宝贵的遗传资源。近年来,随着测序技术发展,越来越多物种的基因组被精细解析 物种内遗传多态变异位点也通过大规模的群体测序获得,并广泛应用于复杂性状的关联解析。国际两大数据中心NCBI和EBI旗下的dbSNP和EVA是主要的基因组序列变异资源库。今年5月,NCBI宣布自2017年9月1日起,dbSNP和dbVar两大数据库停止接收非人物种的SNP提交信息,自2017年11月1日起停止非人物种的SNP在线查询与提交。这对基于序列变异研究的科研人员造成了不便。 /p p   为此,GVM作为生命与健康大数据中心的核心数据资源库之一,搜集了以二代测序和芯片技术为主要检测手段的全基因组序列变异检测的原始数据,通过标准化的变异位点鉴定与注释,获得包括人、畜牧动物、主要农作物和其他资源物种在内的19个物种共约50亿的变异信息,8,884个个体的基因型数据,并通过人工审编收录了13,262条高质量非人物种的基因型与表型知识数据,整合了180,911条人变异位点的知识信息。其中,大熊猫、虎鲸、毛竹、橡胶、小麦是GVM数据库所特有的物种。 /p p   GVM开发了友好的数据提交、浏览、搜索和可视化功能。用户可通过基因组位置、变异影响、基因名称和基因功能等检索变异位点信息,并下载数据 可通过ftp服务下载VCF和FASTA文件格式的全基因变异信息 可在线或离线方式向系统提交数据,这方便了科研人员的数据共享。 /p p   研究工作得到了中科院战略性先导科技专项、中科院国际大科学计划、国家科技攻关计划、国家高技术研究发展计划(863计划)、国家自然基金项目、中科院百人计划、中科院青年创新促进会等的资助。 /p p 论文标题:Genome Variation Map: a data repository of genome variations in BIG Data Center /p p style=" text-align: center " img title=" W020171027507396378092.png" src=" http://img1.17img.cn/17img/images/201710/insimg/a8ee4d25-d8cb-4e86-a1de-06e90d767ff5.jpg" / /p p style=" text-align: center " strong GVM数据库物种变异信息统计表 /strong /p
  • 《基因组生物学》:基因融合被证明是 水稻新基因产生的重要机制
    科技日报讯 (记者赵汉斌)新基因是生物表型进化和物种形成的动力和源泉。记者近日从中国科学院昆明植物研究所获悉,研究人员近期研究发现,基因融合是水稻及其近缘种新基因产生的重要机制,这意味着新基因研究取得了又一项重要进展。相关研究结果发表在著名国际期刊《基因组生物学》上。  “由两个或两个以上基因形成的融合基因,不仅可以绕过漫长而又低效的位点突变带来的有害步骤,又可以通过序列重排而将远源相关或者不相关的功能结构域进行组合,极易产生新的结构特征和新的功能,从而助推物种的适应性演化。”论文通讯作者之一、中国科学院昆明植物研究所研究员章成君介绍,基于此,由他领衔的专题攻关组自主开发了基于系统发育框架的动态鉴定融合新基因的流程。  此次研究中,章成君、周艳丽等人利用我国最主要的粮食作物中稻属的多个基因组数据,在最年轻的分支上选取了4个目标物种,共鉴定到310个融合基因。其中粳稻、籼稻、非洲栽培稻和短舌野生稻分别含有80、62、67和43个物种特异的基因。通过基因组重测序分析,他们发现这些物种特异基因在群体中的固定频率分别为31.8%、15.4%、21.5%和93.3%,这可能对物种的适应性演化起着至关重要的作用。  研究人员进一步以粳稻为例,分析发现约有三分之一的融合新基因与其母基因有相似的表达模式,约三分之一的融合新基因具有分化的新表达模式。用基因编辑技术CRISPR/Cas9敲除实验表明,无论表达模式分化与否,融合基因都能介导表型效应,从而影响物种的适应性。  此项工作有望在大数据时代为融合基因的研究奠定方法和理论基础,并对未来优质水稻育种产生重要影响。
  • 人类基因组测序或将只需数分钟
    来自伦敦帝国理工学院的科学家正在开发一种技术,它能够在几分钟内完成个人基因组的测序,且费用比目前的技术要低得多。研究人员已经将这项原型技术申请专利,其研究成果发表在近期的《纳米快报》(Nano Letters)杂志上。   在这个新研究中,研究人员证明能在50nm孔中利用电荷高速推动DNA链。当DNA链出现在芯片后面时,它的编码序列被一种电极隧道接头(tunnelling electrode junction,生物通译)读取。电线之间的2nm间隔支持一种电流,它能与每个碱基的不同电信号相互作用。然后,一台强大的计算机能够解析碱基的信号,以构建出基因组序列。   一直以来,因纳米孔测序的高速和高通量,它被认为是DNA测序技术的重大进步。在典型的纳米孔实验中,生物分子在电力驱动下穿过一个外加电场的纳米孔。这导致孔内离子电流的特征性阻断。通过分析,能提取出有关分子性质的一些信息,如长度、成分以及与其他分子的相互作用。但是,目前基于粒子电流阻断或荧光的检测似乎还缺乏时空的分辨率,不能获得结构信息。   而另一种基于DNA的隧道运输的检测方法有望打破这些限制。因其源于量子力学,隧道电流随距离迅速衰减,从而提高空间分辨率,还提供了分子的特异性。   帝国理工学院化学系的Emanuele Instuli博士解释了研究时面临的挑战:&ldquo 直到现在还很难精确对齐接头和纳米孔。此外,对这种尺寸电线的改造接近原子规模,实际上已达现有仪器的极限。然而,在实验中,我们能够让两个铂电线进入电极接头,其间隔足够小,让电流能够通过。&rdquo   研究人员通过隧道光谱学鉴定出有功能的隧道装置,随后第一次证明能在纳米孔平台上同时进行隧道检测和DNA分子的离子电流检测。这是迈向超快DNA隧道测序的重要一步。   与现有技术相比,这项技术有几个明显优势:纳米孔测序很快、很简单 硅芯片比目前使用的一些易损材料更耐用,它们能够处理、洗涤、并重新使用很多次,而完全不会折损其性能。   作者之一,化学系Joshua Edel博士谈到:&ldquo 与目前的技术相比,这个装置能够带来更廉价的测序:只需几美元而已。我们还未试过全基因组测序,但是初期实验表明理论上能够在几分钟内完成人类基因组的全基因组扫描。它显然快得多,更可靠,且有望放大成一种装置,每秒钟读取1千万个碱基。&rdquo
  • 基因组学推进肿瘤研究未来发展
    基因组学正在改变肿瘤研究,其最终目标是推进癌症的诊断、治疗、监控及最终的筛查方式。癌症通常按照形态进行分类,这指的是病理学家在显微镜下看到的内容。“如今,癌症分类依据已经开始从形态特征转变为更有效的治疗方式,其中的主要转变在很大程度上归功于基因组研究。”美国生物技术公司亿明达(Illumina)肿瘤业务营销副总裁约翰莱特(John Leite)近日在接受《中国科学报》记者采访时说。他表示,基因组学正在改变肿瘤研究,其最终目标是推进癌症的诊断、治疗、监控及最终的筛查方式。影响肿瘤学未来发展在肿瘤诊断方面,亿明达的目标是提供体细胞变异的评估。与形态学相比,基因组学可以对疾病进行分类,并告知医生一名特定患者的疾病驱动因素是什么,从而实现更好的诊断。以骨髓增生异常综合征(MDS,白血病的一种)为例。莱特表示,该病可根据奥氏小体或环形铁粒细胞等分为很多亚类。这些子分类对病理学家有用,因为他们在显微镜下能看到小的亚结构,但其对主治医生的价值却有限。“与之相对的是根据5号染色体部分缺失进行分类,这种分类对医生如何治疗患者很有意义。”莱特说。因为根据遗传组分,患者通常对药物来那度胺反应良好。“随着可以对更多癌症进行遗传分类,人们可以看到这一趋势,即基因组学正帮助我们根据遗传标志物来定义疾病,这些标志物可能激发肿瘤恶变,可作为治疗靶点。”目前,亿明达正在力争成为这一领域的领导者。“我们开发从试剂盒到仪器和软件的研究方案,以改善未来的肿瘤诊断、预后、治疗和监控。”莱特说。该公司目前还在参与一些临床试验,并与制药公司合作,以开发与其疗法相匹配的诊断方式。据介绍,该公司目前将总体目标放在转化研究市场,鼓励研究人员建立新一代的癌症干预、诊断工具和疗法。“我们的目标是为研究人员提供解决方案,尽管研究人员今天仍在使用仅供科研用的解决方案,但在不久的将来有望看到临床体外诊断检测方案。”莱特表示,该公司目前正在研究的TruSight Tumor 15试剂盒就旨在利用新一代测序技术对15个实体瘤中常常突变的基因进行全面评估,以期未来将其推向临床。聚焦免疫肿瘤学体细胞变异是亿明达肿瘤业务的基础。同时,该公司对免疫肿瘤学存在很大兴趣,正迅速地在这一新兴应用领域加强核心能力。“最近一些侧重于不同免疫疗法的临床试验发现,一些原本预后较差的患者获得了有希望的治疗结果。”莱特表示,“在免疫肿瘤学方面,人们必须评估许多不同的参数,才能从整体上了解患者的免疫系统如何与癌症相互作用,确定他们是否适合免疫治疗。”他举例说,新抗原检测或能表明一些患者是否适合接种疫苗或T细胞疗法,并可利用全外显子组测序(WES)确定。肿瘤浸润淋巴细胞则是另一个参数,可协助预测患者对治疗如何应答。“包含这些淋巴细胞(即渗透到肿瘤的免疫细胞)的肿瘤,通常意味着更积极的结果,因为它们的存在意味着患者的免疫系统在参与对抗癌症。而这个参数可通过基因表达评估。”据介绍,亿明达的转录组或RNA-Seq方案可帮助研究人员开发诊断工具,用于上述分析过程。同时,肿瘤整体问题还包括哪些炎症过程参与了个别病例,这也是基因表达的问题。该公司产品线中的RNA-Seq或RNA Access可开展相关研究,而且这两种方法同样适用于一些免疫调控基因被癌症所利用、以“规避”个体免疫系统检测的病例。为患者带来全方位福音基因组学不仅能够更好地实现对肿瘤的分类和诊断,而且对于接下来的一个问题,即患者的整体风险状况怎样如何,是低风险、中等风险还是高风险的癌症也具有预后意义。医生可利用临床因素组合以及检测到的突变,了解患者的整体风险状况。莱特表示,这些知识最终将带来更多个性化的治疗选择,从而快速准确地分配疗法与靶向药物。例如,在诊断出5号染色体部分缺失的情况下,MDS患者可根据遗传图谱选择使用药物Revlimid。再比如肺癌中多个基因(如EGFR、ALK)的突变可能需要选择特定的抑制剂。同时,一旦患者接受治疗,医生还需要知道,这是否是依据患者的所有信息做出的适当疗法。据介绍,目前亿明达正在评估ctDNA,以监控治疗后或手术后的干预。其目的是确定患者癌症的单个突变克隆,以及监控血液中的相同变异。“在连续治疗或干预后,我们期望变异被清除,不会再次出现,因为这可能与复发相关。如果再次看到变异,这也许是一个早期警告信号,提示人们改变疗法或以不同的方式干预。”莱特说。此外,还有其他的问题,如能否实现癌症较早期阶段筛查?病情可能如何发展?是否会复发?整体的生存概率如何?除了患者,其家人是否有风险?莱特表示,这些类型的问题目前只是基因组学潜在的研究方向,仍处于理论阶段,但有着巨大的社会意义。
  • 亚洲10万人类基因组测序计划发布!
    p   非盈利联盟GenomeAsia 100K最近宣布了一项计划,测序10万亚洲人的基因组,希望能加速精准医疗在亚洲人群中的应用。该计划除测序外也将利用大数据分析和数据科学及人工智能的研究进展。至少12个南亚国家,7个北亚和东亚国家将参与其中。 /p p & nbsp ??第一阶段,该计划将主要为亚洲所有主要种族分布构建参考基因组,这代表着向理解亚洲地区的人口历史和子结构迈出了一大步。10万人基因组测序的结果将与微生物组、临床和表型信息进行配对,以便在本地血缘的背景下对患病人群和健康个人进行更深入的分析。 /p p   近期,对亚洲种族基因组多样性的研究,使得理解亚洲人群的疾病生物学成为可能。此外,南亚、北亚和东亚独特的遗传学多样性也为理解若干罕见和遗传疾病,及慢性疾病如癌症、糖尿病和心血管疾病,提供了临床资源。 /p p   新加坡南洋理工大学教授Stephan Schuster将作为科学主席,首尔国立大学基因组医学研究所主任、千年基因的Seo Jeong-Sun教授作为联盟的共同科学主席(北亚和东亚),Emerge Ventures公司CEO Mahesh Pratapneni担任执行主席。 /p p   Schuster说:“测序、计算和移动访问的进展促使我们开始研究亚洲人群”。Seo表示:“我们在韩国参考基因组构建和对东北亚人群遗传学研究的经验,可保证该计划的成功”。南洋理工大学校长Bertil Andersson教授认为,对亚洲人群基因组深入的理解可导致未来更好地医疗服务,“人类基因组在影响我们的疾病如癌症、糖尿病和心血管疾病中发挥着重要作用。 /p p   目前几乎所有的个人基因组计划的研究对象都是西方人群,该项计划对亚洲人基因结构的研究将最终使亚洲人群受益”。该联盟目前正积极寻求更多的创始成员和科学合作者。 /p
  • Nature:儿童癌症基因组研究迎来大突破
    p   Hopp-Children癌症中心的Gr?bner等人对961名癌症患者进行泛癌症基因组分析,这些患患有24种不同的肿瘤。另外,St.Jude儿童研究医院的Ma教授等人在1699名儿童癌症患者中取得了肿瘤样本与健康组织的样本,并使用了多种下一代测序技术,寻找两者基因组中存在的不同。这些儿童患者患有6种不同的癌症,具有很好的代表性。这两项研究详细地指出了儿童和成人癌症基因组间的关键性差异。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/8ce5ff8c-b17f-40be-9620-65f896c82b51.jpg" / /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/c490b828-3089-4a23-958b-f7dc41209dc0.jpg" / /p p style=" text-align: left text-indent: 2em " strong 儿童癌症突变率少于成人 /strong /p p   首先,研究人员发现儿童癌症的基因突变和结构变异少于成人癌症。Gr?bner等人的报告中指出了未成年的突变率比成人癌症低14倍。Gr?bner等人与Ma等人均发现儿童癌症基因组中的突变总数与年龄有显著相关性,这与细胞会随着年龄增长而积累突变的观点一致。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/5b3772e7-72d1-49fd-b335-3b73831ebd93.jpg" / /p p style=" text-align: center " Ma等人的研究中儿童癌症体细胞的突变率 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/b1687dd9-179a-4e51-95da-4d23d87c07d9.jpg" / /p p style=" text-align: center " Grö bner等人的研究中儿童癌症体细胞的突变率 /p p    strong 儿童癌症由单个驱动基因引起 /strong /p p   其次,研究人员指出儿童通常由单个驱动基因引起。Gr?bner及其同事分析的癌症基因组中57%携带单个驱动突变,而且,父母遗传并存在于身体所有细胞中的种系突变是儿童癌症的致病因素,7.6%的癌症与可检测的种系突变相关。 /p p   此外,儿童癌症基因组中多含有突变或结构变体之一,而非二者的混合物。Ma和他的同事从结果中也注意到,儿童患者的主要致癌因素是拷贝数异常,或是DNA结构的改变。这些因素占到了62%,高于大家普遍认为的DNA点突变。从机理上看,拷贝数异常会让患者产生过多或过少的特定基因,而DNA结构改变则会造成基因的重排。 /p p   在针对结构变体表征的癌症研究中,研究人员还观察到了DNA修复途径的种系突变。这些差异突出了儿童与成人不同的癌症发生的潜在机制。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/c436bdf5-0883-4d0a-a3a2-07e223d0768b.jpg" / /p p style=" text-align: center " Grö bner等人的研究中儿童癌症的种系突变 /p p    strong 儿童癌症基因更易突变 /strong /p p   再者,与成人癌症基因相比,儿童基因更容易发生突变。Gr?bner及其同事发现成人癌细胞内只有30%与成人癌症重叠的突变基因,Ma和他的同事在癌细胞中也只发现了45%。这就提示,儿童癌症基因组中存在驱动突变的因子,导致儿童基因更易发生突变。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/594b6295-7b52-4e48-be39-d162dbb9b132.jpg" / /p p style=" text-align: center " strong Grö bner等人的研究中儿童癌症与成人癌症类型相比显着突变的基因 /strong /p p   从这些分析中收集到的数据对儿童癌症精确医学的发展具有启示意义。 /p p   另外,Gr?bner等人发现约50%的肿瘤可以通过临床或正在开发的药物进行靶向基因组改变,同时还提供了特异性改变儿童肿瘤的设计方案。此外,这些研究还提高了儿科肿瘤学家对生殖突变的重视。尽管这些研究提供了有价值的见解,但仍需大量工作才能有更精确更令人满意的结果诞生。 /p p   目前,Gr?bner及其同事还无法确定其研究的部分肿瘤是否存在驱动突变,而且也没有足够的样本来检测罕见突变,因此需要持续的协作和数据共享来收集足够的肿瘤信息。此外,两各研究组都鉴定出了结构变异,因而需要全基因组测序来检测编码区域外的驱动,才能为大型儿童肿瘤的进一步分析工作铺平道路。 /p p   参考资料: /p p   1.Susanne N. Gr?bner,et al.The landscape of genomic alterations across childhood cancers.Nature.28 February 2018 /p p   2. Xiaotu Ma, et al.Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours..Nature.28 February 2018 /p p   3. Landscapes of childhood tumours /p p   4.Genome studies unlock childhood-cancer clues /p
  • 浪潮携手中科院基因组 生命科研“大提速”
    浪潮集团副总裁王恩东(右)与中科院北京基因组研究所副所长于军   信息技术对其他产业的影响已不再局限于IT产品和方案的提供了,而是更多地参与到科研、工业和国防领域重大装备的技术上来,其技术的辐射效应日益显现。   因生命科学被越来越广泛关注,基因成为全球争抢的宝贵战略资源和财富,而信息技术已成为生命科学发展的核心动力。   国产测序仪三年后问世   中科院北京基因组所与浪潮&ldquo 高效能服务器和存储技术国家重点实验室&rdquo 成立的&ldquo 中科院基因组所&mdash 浪潮基因组科学联合实验室&rdquo 承担研发的国产第三代基因测序仪预计三年内问世。   该产品的成功研制,不仅将填补我国在基因测序基础装备领域的空白,提升自主化水平,同时也将使国内生命科学研究机构能够获得低成本、高效率的测序工具,更有效的开发和利用我国丰富的基因资源,加速我国基因战略的发展,为我国在该领域取得领先优势奠定基础。   当前,我国基因研究所目前使用的第二代基因测序仪完全依靠进口,设备价格高昂,国内研究院所在经费受限的情况下,难以获得足够数量的基因测序设备,导致科研进度缓慢。更为严重的是,由于基因资源具有唯一性,国外公司可以利用基因测序设备方面的先发优势,抢先申请基因专利,从而垄断未来全球的基因产业。   据中科院北京基因组研究所副所长于军研究员介绍,相比第二代产品1个月以上的测试周期,我国自行研发的第三代基因测序仪几十分钟即可完成一个人的完整基因测序。同时,测试成本也将下降到5000元左右,仅为当前的1%。   显然,第三代基因测序仪在成本、速度等方面将取得革命性进展。然而,第三代基因测序仪的研制是一项系统的工程,需要IT、半导体、光学等诸多领域的共同推进。对此,科技部高新司杨咸武副司长说:&ldquo 如何更有效地促进信息技术与基因科学的结合,已成为我国下一步能否在基因科学领域继续取得更好成果,我们基因科学研究能不能持续快速发展的非常关键的因素。&rdquo   山东省科技厅副厅长徐茂波认为,不同学科、不同产业之间的技术互联互通,不仅将为生命科学等前沿应用的发展提供深层次的信息化推动,也对国家重点实验室探索技术成果的产业化途径,最大化发挥成果的应用价值具有开创作用。   装备制造与信息技术深度融合   浪潮集团高级副总裁王恩东认为,第三代基因测序仪不仅仅是一项科研重大装备,也代表着国产IT厂商难得的&ldquo 做大做强&rdquo 的机遇。   据IDC报告,截止到2009年第三季度,全球服务器市场已经连续第五个季度收入下滑,今年服务器市场收入下滑的态势已成必然。   借金融危机,国际厂商展开了新一轮的全球布局,并购风潮的不断上演使得跨国公司借机进一步完善了产品线,强化了一体化方案提供能力。同时,国际厂商的研发投入不断增加,使其进一步增强了对产业技术的控制力度。以IBM为例,其每年向研发投入资金已超过 60亿美元资金,其中超过50%投入到与 &ldquo 智慧地球&rdquo 相关的研发中,2008年全年,IBM在美国共注册4186项专利,成为美国历史上第一家在单一年度专利注册数量超过4000项的公司。   缺乏资本后盾的国产厂商无法单凭收购实现技术和市场的快速扩张。因此,如何增强自身的竞争能力,以便在服务器产业复苏的浪潮之中不被国际厂商远远抛在后头,已经成为每个国内厂商必须要审慎思考的课题。   对此,王恩东表示,国家重大装备的国产化与数字化趋势,为国产服务器厂商提供了非常好的发展机会。   当前,我国装备制造业与发达国家相比水平低下,严重制约了我国产业结构的升级和产业竞争力的提升,导致全社会固定资产投资中设备投资的2/3依赖进口,在装备上我国每年有数百亿美元的逆差。   而随着信息技术的快速发展,装备制造与信息技术的融合已经成为一种普遍现象,重大装备制造的数字化趋势越来越明显。&ldquo 十一五&rdquo 规划中提到了九大高技术产业专项工程,除去IT产业领域内的工程,其他如生物医药、民用飞机、卫星、新材料等专项工程,越来越依赖于如高端计算、海量存储、高速互联等信息技术的突破。信息技术已经超出了业务电子化、网络化、大规模数据处理等常见的形式,正在更加深入的融入到各种产业装备中。   信息技术的广泛应用为IT厂商带来了更多的商业机会,除了传统的产品之外,对其他产业领域的技术输出或者技术合作,将成为国产服务器厂商未来新的竞争焦点。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制