当前位置: 仪器信息网 > 行业主题 > >

基因组检测

仪器信息网基因组检测专题为您整合基因组检测相关的最新文章,在基因组检测专题,您不仅可以免费浏览基因组检测的资讯, 同时您还可以浏览基因组检测的相关资料、解决方案,参与社区基因组检测话题讨论。

基因组检测相关的资讯

  • 云健康发布四款全基因组检测健康产品
    p   2016新年伊始,云健康基因科技有限公司,在JP摩根健康大会召开之际,于1月11日面向全球隆重推出四款其自主开发的基于全基因组测序的健康产品,为关注健康的人群提供基因大数据指导下的精准保健解决方案。 /p p   据悉,市场上虽然不乏各类基因检测产品,但基本上都是基于人的部分基因和部分位点,而基于人全基因组测序数据开发的健康产品,无论在国内还是国外都可以说是凤毛麟角。因此,云健康这四款全基因组检测健康产品的问世,在基因行业乃至整个健康行业都是一件具有里程碑意义的产品革新。 /p p style=" TEXT-ALIGN: center"    strong 云健康此次发布的四款产品 /strong /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 402px" title=" 1.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201601/noimg/36b92dbe-b1dc-4e26-b2ef-7280628d321f.jpg" width=" 450" height=" 402" /    /p p style=" TEXT-ALIGN: center" GenoMe sup TM /sup —解你奥秘 sup TM /sup /p p    strong 云健康全基因组检测和健康评估 /strong /p p   GenoMe sup TM /sup 是基于国际目前最先进的高通量的全基因组测序平台(HiSeq X10),依靠国际化的分析团队,结合国际权威疾病数据库和云健康自己的中国人群全基因组数据库,从而实现对个人全基因组2万多基因30多亿位点数据进行全基因组范围的深度挖掘和疾病风险评估,为客户提示潜在的患病风险以及精准的个性化用药指导,从而更好地帮助客户了解自身的生命奥秘,更科学更精准地进行保健,为临床医生提供精准诊断和精准治疗的建议。 /p p   所谓人全基因组检测,就是通过血液,组织以及其他体液如唾液等对细胞中的所有DNA(携带人类所有生命遗传信息的2万多基因)进行全面检测的技术,从而使人们能了解自己的所有基因信息,最大程度上预知患病风险。它不仅能够检测遗传病,也可用于评估某些药物的疗效和副反应,如癌症靶向药物,检测出对药物敏感的基因,从而指导医生为病患提供个性化精准治疗。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 395px" title=" 2.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201601/noimg/c551630d-88f0-4f61-b9c2-af6a3c91373a.jpg" width=" 450" height=" 395" / /p p style=" TEXT-ALIGN: center"   Geno span style=" TEXT-DECORATION: line-through" Tumor /span sup TM /sup —远离肿瘤 sup TM /sup /p p    strong 云健康全基因组预防肿瘤检测 /strong /p p   Geno span style=" TEXT-DECORATION: line-through" Tumor /span sup TM /sup 采用国际目前最先进的高通量全基因组测序技术(HiSeq X10),通过全基因组测序检测的结果结合个人肿瘤史、家族肿瘤史进行较准确的风险提示,预测,监测,最终达到超早发现和超早预防和精准诊治。 /p p   众所周知,大多数肿瘤是由生命过程中获得的导致肿瘤的体细胞变异造成的。但是有一部分肿瘤(约5-10%)是由于从父母那遗传到变异而造成了肿瘤的高风险,这类肿瘤被称为遗传性肿瘤。这类肿瘤的特点是在家族内高发,每代人中都可能出现患者。一旦成员携带有害变异,一生患癌的风险非常高。著名的例子,影星安吉丽娜朱莉,由于携带Brca1 的有害变异而患乳腺癌的几率为87%,患卵巢癌的风险为50%。本产品对肿瘤基因的深度分析囊括了来自国际权威文献和数据库业界共认的所有遗传性肿瘤相关的基因,涵盖了以下部位的肿瘤:乳腺癌、卵巢癌、肠癌、子宫癌、黑素瘤、胰腺癌、胃癌、前列腺癌、甲状腺癌、肾癌、眼癌、肺癌,并结合基因与肿瘤的相关性、变异的有害性分析以及个人肿瘤史、家族肿瘤史进行综合风险评价。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 413px" title=" 3.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201601/noimg/0727d03c-ae0a-4274-8e73-b929d6e66be6.jpg" width=" 450" height=" 413" / /p p style=" TEXT-ALIGN: center"   GenoSlim sup TM /sup —还你纤细 sup TM /sup /p p    strong 云健康全基因组预防肥胖检测 /strong /p p   GenoSlim sup TM /sup 采用国际目前最先进的高通量全基因组测序技术(HiSeq X10),通过全基因组测序,分析了到目前为止所有引起成人肥胖的基因以及具有环境-基因相互作用的基因。经过数十万东亚人群的模型训练,本产品能够精准计算风险区间,从而进行肥胖症风险评估与预测。 /p p   肥胖症的遗传度为70%左右,2014年中国18岁以上人群肥胖症发生率34.4%。肥胖症不仅影响个人形象,还会引起一系列疾病如糖尿病、高血压、高血脂、心血管疾病、肌肉骨骼疾病、乳巢癌、子宫内膜癌和结肠癌等。本产品不仅提供风险评估,还同时结合了代谢基因组学、营养基因组学和运动基因组学,为客户提出了个性化的健康管理方案,如节食、运动、饮酒、睡眠、吸烟、微量元素哪个对减肥最有效以及最有效的减肥组合方案,帮助人们减少开支又能快速瘦身,从而预防一系列肥胖相关疾病的发生,让客户能够轻松享受健康生活。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 405px" title=" 4.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201601/noimg/7dec568f-7b70-4358-954b-28b79b8c27cc.jpg" width=" 450" height=" 405" / /p p style=" TEXT-ALIGN: center"   GenoMed sup TM /sup —你的药典 sup TM /sup /p p    strong 云健康全基因组精准用药检测 /strong /p p   GenoMed sup TM /sup 采用国际目前最先进的高通量全基因组测序技术,通过全基因组测序,依据国际权威药物基因组学数据库对药物基因进行深度分析。参照美国药监局FDA和中国药监局CFDA 等机构发布的药物及相关基因检测标准,对十多种常见高发疾病,一百多种药物进行科学准确、全面高效的检测和评估,提供个体化的用药指导服务。 /p p   药物对人类而言是一把双刃剑,可以防治疾病,也可以因为不良反应危害健康。世界卫生组织统计资料显示,全球每年死亡的患者中,三分之一是由于不合理用药,而并非自身疾病导致的死亡。而遗传基因的不同导致个体对药物的临床疗效和不良反应存在显著的差异,因此根据不同基因型来指导个性化用药已经成为各国制定的精准医疗计划中极其重要的一项内容。 /p p   云健康总裁,国家千人计划专家,金刚博士表示: /p p   ”云健康通过这四款创新的全基因组检测产品的发布,希望能为大众解析自己的生命奥秘,远离肿瘤,保持健美,精准用药提供科学的支持,为大众掌握生命健康保驾护航。同时,也为中国健康人群的基因组学研究和即将启动的中国“十三五”精准医疗计划研究提供精准的分析平台。“ /p
  • 基因组检测让乳腺癌患者术后无需化疗
    p   美欧多国研究人员日前在新一期《新英格兰医学杂志》上报告说,基因组测试可以识别出部分早期乳腺癌患者复发风险低,术后无需化疗。这一方法可用来预测癌症患者的生存情况,为医生和患者选择治疗方案提供依据。 br/ /p p   欧洲9国近6700名乳腺癌早期患者在接受手术治疗后,研究人员采用一种名为MammaPrint的方法来检测被切除肿瘤样本的标志性基因,分析癌症复发风险。研究人员还用肿瘤大小、是否有淋巴结转移等常规指标评估了患者的临床风险。临床风险较高的患者通常在手术后还需要接受化疗,但化疗有严重毒副作用。 /p p   研究人员筛查出1550名临床风险较高但基因组风险较低的患者。这些患者被随机分成两组,一组术后接受化疗,另一组术后放弃化疗。术后5年,研究人员发现,约95%没有接受化疗的患者依然活着,5年生存率仅比接受化疗的患者低1.5%,也没有发生距离原发肿瘤较远部位的转移。 /p p   研究人员认为,这意味着临床风险较高、基因组风险较低的早期乳腺癌患者放弃术后化疗是安全可行的。 /p p   报告主要作者、MammaPrint基因组检测方法发明人、美国加利福尼亚大学旧金山分校教授劳拉· 范· 特费勒说,这是第一次通过随机试验证明,基因组检测结果可以帮助医生和患者就是否化疗做出明智的选择,这项研究结果对于早期乳腺癌患者具有重要意义。 /p p   乳腺癌是女性常见癌症。美国癌症学会估计,2012年全球范围有近170万新增乳腺癌病例,占女性所有新增癌症病例的四分之一。 /p p br/ /p
  • 美公司开发检测技术 999美元了解个人完整基因组信息
    p style=" TEXT-ALIGN: center" img title=" 201603111100579626.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/4a2fa729-e408-4e7c-aa59-94b5cb870dcc.jpg" / /p p   在美国马塞诸塞省的剑桥市,一家叫做Veritas的遗传信息公司,近日宣布了一项让消费者更方便了解自己基因组的服务。通过智能手机应用以及与遗传学咨询师的视频电话咨询就能深入了解他们的遗传信息。 /p p   这家公司将在今年4月开展一项前所未有的基因组测试,这项测试可以一次性提供所有答案。它包括60亿个字母的基因组序列,还有序列被分析后着重标记出的疾病倾向以及医学相关信息。消费者将会了解各种事实,有些是可笑的(比如他的耳垢是干是湿),有些则是可怕的(比如他们是否有将导致恶性高热等疾病的强致病性的胚系突变)。他们也会知道自己是否有和癌症相关的150种基因突变。 /p p   现有的绝大部分遗传测试,比如一些癌症风险测试,是分开进行的,每一项花费几百至几千美元不等。Veritas也提供这些传统测试, 但是该公司的创始人MIRZA CIFRIC表示,现在整个基因组测试正变得更容易。这项新服务显然会引来FDA的审查。不过要注意的是,Veritas提供数据的准确性不及一些有针对性的基因测试。“这是一种筛选试验,不是诊断。”CRFRIC这样解释。 /p p   Veritas将于今年四月开始血液和唾液样本收集,第一批顾客会在六月得到结果。这项服务的手机应用(目前还在试运行阶段)能够把个人的DNA数据信息同他的咨询师分享,还能收到与本人DNA密码相关的医学新闻提要。 /p p   已经有一些患者对他们的基因组进行过测序,他们有些患有癌症或疑难病症,有些只是出于好奇。但是这个过程并不简单。它需要由医生订购测试,而且得到的原始数据如果没有专家解读,常人根本无法理解。现在这种测试要花费6000美元甚至更高。“1000美元测基因组”的价位首先由ILLUMINAIN公司在2014年提出,但它只包含在该公司的设备上运行得到原始数据的过程。Veritas提供的新服务则包含原始数据和解读,并且价格低于1000美元。 /p p   使用Veritas时,顾客首先将通过电话或者手机上的应用进行遗传学咨询。通过医生订购测序服务使Veritas避免了FDA对于直接面向消费者的DNA测试的严格规定。Veritas称它的产品属于规定较为宽松的普通实验室测试,类似于血细胞或者血脂测量。 /p p   这种逃避手法显然会遭到规则制定者的严格审查,尤其这款产品中还包含手机应用。还有人质疑Veritas怎样从这么低廉的服务中获利。Cifric承诺“我们这样运营不会亏本”。他说,比如有消费者需要更多或者更为详细的遗传学咨询时,Veritas可以向其收取100元或者更高费用。 /p p   Veritas是10多年前哈佛大学科学家为激起人们对遗传信息的兴趣而建立的非营利性组织“个人基因组项目”的衍生公司。这个项目号召人们进行基因组测序,并且公开发布他们的基因数据,以服务于更深入的医学研究。 /p p   如果你在了解你的基因组时发现了改变命运的信息,比如某种严重疾病的威胁,那么这个检测是非常有价值的。问题是对于很多人来说,他们并不急需自己的基因组信息。有质疑声音说“普通人在体重秤上获得的信息都要比他们的DNA信息更有用”。 /p p   Misha Angrist是杜克大学基因组科学和政策研究院的教授,他几年前在哈佛大学的项目中完成了自己的基因组测序。他认为Veritas需要针对他们的测序服务回答很多问题,比如检验出坏消息时如何告知消费者,如何处理信息尚不明确的基因,如果公司倒闭,消费者的数据会被怎样处理。 /p p   对于基因组,Angrist教授引用说,“& #39 恶魔总隐藏在细节中。& #39 ” /p p br/ /p p br/ /p
  • 讲座预告|后基因组时代的临床质谱生物大分子检测
    蛋白质是重要的疾病分子标志物和药物靶标,随着生物质谱技术以及生物信息学的飞速发展,生物大分子及蛋白组学将在后基因组时代独占螯头,开创下一个千亿级蓝海。生物大分子临床质谱(如蛋白组学、核酸检测、质谱成像等)有哪些全新的应用场景?目前已经产生哪些喜人的科研成果?作为蛋白质组学研究的核心工具平台——生物质谱近些年有哪些跨越式进步?展望蛋白组学的下一个阶段,有哪些新的机会?2月25日,在直播间,融智生物董事长、首席技术官周晓光博士将会为您一一解答。时间:2021年2月25日,14:00-14:50主题:后基因组时代的临床质谱生物大分子检测主讲人:周晓光博士 融智生物董事长、首席技术官长按识别二维码报名关于融智生物:融智生物,由资深质谱研发专家创立,是专业致力于生命科学分析仪器设备、耗材及解决方案的研发、生产、销售、服务的国家级高新技术企业,注册资本6000万元。公司在美国波士顿、北京、青岛、深圳和杭州等地布局了研发、生产、应用开发、销售、服务等分中心,与中国农业大学、中国科学院等多家科研机构建立了联合实验室,并承担了多项国家和地方科技创新研发项目。目前已拥有“宽谱定量飞行时间质谱(新一代基质辅助激光解吸飞行时间质谱)”及“微流控芯片核酸快速分析”两大技术平台。扎根国内,放眼国际,成为具有国际竞争力的生物科技企业是融智生物的经营目标,融智生物将持之以恒地为高端生命科学仪器的国产化、国人医疗健康水平的提高做出贡献。
  • Illumina CEO 认为全基因组检测成本未来或降至一百美元
    p   近日,生命科学工具开发制造商、基因行业领导者,美国 Illumina 公司的 CEO Francis deSouza 抵达上海,开启了他上任后的首次访华之旅。 /p p   作为基因测序领域的技术领先者,Illumina 的理念是 “解放基因组力量,提升人类的福祉”。Francis deSouza 说:“有很多疾病是跟人的基因有关的,给科研工作者提供一个很好的工具,使得他们能够在这方面更好地做一些诊断和后期治疗的工作,可以帮助我们更好地处理这些疾病,减少人类的病患。” /p p   Francis 来华的目的,也是带着 “提升人类福祉” 理念,让 Illumina 进一步深入中国市场。具体包括提升大众对于 Illumina 的了解——公司有能力和意愿继续在重点领域保持优势,如肿瘤、生殖健康、应用市场和生物信息学等 同中国领先的生物和技术公司一起合作,促进“中国智造” 向公众确保 Illumina 将专注于继续向科学家、临床医生、客户提供可靠、全面、准确的设备和解决方案等。 /p p style=" TEXT-ALIGN: center" img title=" 201704131312454161.png" src=" http://img1.17img.cn/17img/images/201704/insimg/8138cf8f-5ef6-4d70-a693-ec0fe63b6a32.jpg" / /p p strong   基因技术的实际应用:可以解决诸多具体问题 /strong /p p   Illumina 是一家立足于基因测序平台的公司,那么相关技术可以解决什么问题,又有哪些应用?Francis 介绍,Illumina 近期推出了一项具有突破性的技术,可以从外周循环血液里面找到肿瘤 DNA 的片断,进行一些早期的诊断,简化了肿瘤切片检查的方法。基因技术还可以通过免疫治疗的方法,进行肿瘤的治疗,对于延长肿瘤患者的生存期会有很大的帮助。 /p p   Francis 也谈到,现在基因疗法治疗肿瘤还面临一些问题。从研发的领域来说,怎么样找到新的靶点?从临床的角度来说,一旦找到这些有意义的靶点,如何开展有针对性的治疗方法?不过,这两个领域现在也在携手并进,共同促进基因疗法在肿瘤治疗上的应用。 /p p   基因检测也可以应用到生殖相关问题上,对公众的影响比较广泛。比如孕妇的产前检查,可以帮助其在早期了解胎儿的基因方面的问题,避免生下有基因缺陷的婴儿。做体外受精、试管婴儿的时候,基因技术可以更好地筛查出健康的受精卵。 /p p   Francis 介绍,现在有 2-3% 的正常新生儿在基因上或多或少有是一些变异的。如果有很容易的方法,比如通过一次性的测试,可以早期知道基因突变的问题,那么就能通过一些干预去消除隐患,避免有病症发作时都查不出来是哪里的问题。 /p p   除了在医学领域,基因技术还有很广阔应用市场。比如对农、林、牧、渔来说,一些作物方面好的性状,能够保存下来 一些牲畜的抗病性,可以通过基因方法很容易地把它优选出来。Francis 也指出,现在可以检测出越来越多的序列数据,但是这些信息要怎么样用好,还是个难点。 /p p strong   创新投入与获得成绩正相关 /strong /p p   既然基因领域的应用市场这么大,一个科技公司要如何把技术做好?Francis 认为,Illumina 在市场上最被大家看重的地方,就是创新。他说:“我们每年在创新方面的投入是 18%,而这个行业差不多是 9%。我们在创新方面的努力也得到了业界的认可,现在全球约 90% 的基因数据是基于 Illumina 平台产生的。” /p p   Illumina 最广为人知的一个创新成果,就是令人类全基因组检测的成本以超过摩尔定律的速度下降,从 2010 年的 1 万美元下降到 2014 年的 1 千美元。Francis 相信,全基因组的检测成本有一天会降到一百美元。 /p p   2014 年,Illumina 进入《麻省理工科技评论》评出的 “2014 年度全球创新企业 50 强”。此后,又相继获得了 TOP 10 十大创新科技(2015 THE SCIENTIST MAGAZINE 科学家杂志)、十大创新科技(2016 MIT TECHNOLOGY REVIEW 麻省理工技术回顾)等荣誉。 /p p   今年 1 月,Illumina 新发布了一款产品 NovaSeq,主要目标是进一步降低基因组扫描的成本,让更多的人可以享受基因扫描的福利。 /p p   为了推广受众,Illumina 也跟各国政府一起开展大规模人群基因组的工作。比如说支持中国做精准医疗方案,跟美国有精准医疗方面的方案,跟英国有一个十万人基因组的合作。最近也在同法国和爱沙尼亚政府的合作。 /p p   公司为何如此大费周章,投入大量研发经费、降低测序成本、开展全球合作,Francis 坚信,解放基因组力量,提升人类福祉,就是他们的信仰。 /p p strong   基因技术对中国市场意义深远 /strong /p p   关于基因与疾病的问题,对中国而言,由于人口众多,中国由基因突变引发的肿瘤等疾病人数非常庞大。根据世界卫生组织的数字,每年全球新诊断的癌症大概是 1400 万人,中国约有 400 万人。如果能更好地理解基因,更早地知道这些癌症的情况,就可以更好地靶向地治疗它。 /p p   因此,更好的基因检测手段、基因治疗技术对中国意义深远。对于相关领域的科研工作者,先进的检测设备和技术理念也是必要的研究保障。 /p p   在中国,基因行业相关的公司也不在少数。Illumina 并不把相关公司都看作竞争对手,Francis 表示,基因行业现在刚刚揭开了面纱,有很多的应用可以做,几家公司是完全不能覆盖到的。所以 Illumina 欢迎并且鼓励企业来合作,一起把技术向前推进。比如 Illumina 跟国内的贝瑞和康、安诺优达、厦门艾德等企业都有合作,它们基于 Illumina 平台来开发试剂,给客户提供整体的解决方案。 /p p   Illumina 也同多家国内机构开展合作,建立中草药基因库等。并在中国投入了孵化器的项目,帮助中国的企业,也包括全球的一些企业更好地发展。 /p p   关于中国基因市场的未来,Francis 认为,在过去的几十年里,基因组主要在科研领域发展。现在它开始在临床、应用和消费者领域展现头角,机会巨大。“现在无创产前诊断业务比较成熟,也帮助了很多怀孕的妈妈们。但在这个领域,中国的使用率小于 15%。其他的领域,比如,体外授精、伴随诊断、伴随治疗等,中国的使用率均在 5% 以下。”Francis 说。所以,Illumina 相信基因组产业现在还处在它的早期,今后基因组产业不但可以提供更好的医疗方案,还能同时降低社会系统的压力。 /p
  • 基于电荷检测质谱(CDMS)对AAV提取的DNA的分析揭示基因组的截断
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations1,文章的通讯作者是来自印第安纳大学化学系的Jarrold, Martin F.教授。  腺相关病毒(AAV)是一种小的(26纳米)、无包膜二十面体病毒。由于其低免疫原性和高组织亲和性,AAV已成为一种很有前途的基因治疗载体。AAV衣壳包含三种病毒蛋白质,VP1、VP2和VP3。对于来自HEK细胞的重组AAV (rAAV),VP1-3的比例约为1:1:10。AAV包裹单链(ss)DNA基因组。野生型基因组的长度约为4.7 kB。基因组两侧有两个倒置末端重复序列(ITRs),它们在复制和基因组包装中起着重要作用。目前,主要用于rAAV研究的生产平台是人HEK293细胞的瞬时转染,然而其HEK293细胞的制造限制其大规模地用于AAV载体的生产。杆状病毒感染的Sf9细胞系已被发现是一种可行的生产方法,但是研究发现在生产过程中出现的ITR丢失和基因组截断现象,似乎成为了Sf9细胞系必须关注的一个问题。因为包裹着不完整的基因组的载体,会使得治疗的有效性降低。  在本研究中,作者提出了一种利用电荷检测质谱(CDMS)直接检测从AAV中提取的DNA的方法。CDMS可以使用静电线性离子阱(ELIT)同时检测单个粒子的电荷数和质荷比,从而直接获得粒子的质量。测量是在一个自制的仪器上进行的,简单地说,纳喷雾(Advion Triversa Nanomate)产生的离子通过金属毛细管进入仪器,然后通过几个不同真空区域。第一个区域包含FUNPET(an ion-funnel ion-carpet hybrid),随后是射频六极杆和分段射频四极杆。FUNPET会破坏气体通过毛细管时形成的气体射流,样品离子随即在六极杆中被热化,最终的离子能量由六极杆上的直流电位决定。离子束在分段四极杆中的径向分布被压缩,经过四极杆的离子通过非对称艾泽尔透镜聚焦到双半球形偏转能量分析器中,并设置传输具有较窄动能分布的离子(以100 eV/z为中心)。传输的离子被聚焦到ELIT中,其中一些离子被捕获并通过位于ELIT端帽之间的检测圆筒来回振荡。振荡离子产生的信号被电荷敏感放大器接收。信号被放大和数字化,然后用快速傅里叶变换(FFTs)进行分析。短时间窗口FFT通过每个捕获事件的信号进行转换,以确定离子是否在整个事件中被捕获。没有在整个事件中存活的离子信号将被丢弃。振荡频率与m/z有关,振幅与电荷成正比。用这种方法测量了数千个离子,并将其分成直方图以给出质量分布。    图1. 来自Sf9细胞的AAV8-CMV-GFP的CDMS测量。(a,b)未孵育样品的质量分布和电荷与质量散点图。电荷与质量散点图中的橙色线是球形离子瑞利电荷极限的预测。(c,d)在45°c孵育15分钟后测量的质量分布和散点图。(d)中的插图显示了基因组从衣壳挤出的示意图。(e,f) 80°C孵育15 min后的结果。绿色虚线表示释放的ssDNA GOI的序列质量,紫色虚线表示互补DNA链碱基对进入溶液后的序列质量。图1第一排的图片显示了用CDMS测量的Sf9细胞制备的AAV8-CMV-GFP的质量分布。在4.5MDa处的主峰是由于rAAV对GOI进行了包装,在5.2MDa处的峰值是由于异质DNA的包装达到了包装容量,在3.7处MDa的肩峰是由于空颗粒。对应的电荷-质量散点图如图1第二排所示。其中空颗粒和包装了DNA的颗粒在电荷上的数值比较接近是因为DNA被包裹到了衣壳的内部。图1c显示了AAV8-CMV-GFP在45°C孵育15min后测量的质量分布。rAAV已经开始分解,存在大量质量低于3 MDa的离子。在3.7 MDa处的空颗粒的数量也大幅增加,这表明基因组正在被释放。而在80℃孵育15min后可见AAV已经完全分解,对应峰也消失了,而剩下的峰与推测的互补DNA链的分子量相当。图2显示了培养后为提取GOI而测量的rAAV载体的CDMS质量分布和电荷-质量散射图。值得注意的是,AAV8-CMV-CRE和AAV8-CAG-GFP(来自Sf9细胞)的平均电荷约为400 e, AAV8-CMV-GFP(来自HEK细胞)的平均电荷约为900 e。平均电荷的差异可能反映了dsDNA的整体几何结构,电荷越高的GOIs具有更广泛的结构。    图2. 在80°C孵育15分钟后记录的代表性质量分布和电荷与质量散点图。结果显示AAV8-CMV-CRE、AAV8-CAG-GFP和AAV8-EF1a-GFP来源于Sf9细胞,AAV8-CMV-GFP来源于HEK细胞。紫色虚线显示dsDNA GOI的序列质量。插图显示了dsDNA GOI的峰值的扩展视图。图3a显示了测量到的dsDNA GOI与AAV样本序列质量的偏差的柱状图,对于大多数AAV样本,测量的dsDNA GOI大于序列质量。这种偏差可以用反离子来解释。DNA在中性溶液中带负电荷,因为它的一些主链磷酸被电离,dsDNA GOI有2219−3443个碱基对,因此它们可能有多达4438−6886个反离子。最可能的反离子是NH4+因为样品是用醋酸铵溶液电喷涂的。如果所有的dsDNA GOI主链磷酸都被电离并且有NH4+反离子,则附加质量(超出完全电离序列质量)为80 ~ 124 kDa。而有些dsDNA的分子量低于预测的序列质量,这是因为序列发生了截断导致的,图3d显示了为该样品测量的DNA峰值的扩展视图。峰宽可以提供截断分布的信息。如果所有的DNA链都损失了425 nt,峰值就会很窄。另一方面,如果截短长度分布较宽,则会产生较宽的峰值。图3d中的峰值相对较窄,说明分布较窄。有一个高质量拖尾,这可能表明一些基因组被截断了小于425 nt。    图3. 来自Sf9和HEK细胞的一系列GOIs的AAV8、AAV9和AAVDJ血清型的dsDNA质量测量总结。(a)测量质量与序列质量偏差的柱状图。(b)考虑反离子的测量质量与预期质量的偏差的柱状图。(c) AAV基因组结构示意图。(d)来自HEK细胞的AAV8-CMV-CRE的dsDNA GOI峰的扩展视图。最后,将CDMS测量的基因组截断与来自第三代测序方法的信息进行比较将具有指导意义。尽管CDMS测量可以判断基因组是否被截断以及缺失的数量,但它不能确定截断发生在哪里。关于截断发生位置的信息可以从第三代测序中获得,这些信息反过来可以深入了解其机制。因此,CDMS测量全基因组MW和第三代测序是互补的。CDMS测量可用于筛选截断的基因组,以便通过第三代测序进行后续深入分析。  撰稿:李孟效  编辑:李惠琳  文章引用:Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Barnes, L. F. Draper, B. E. Kurian, J. Chen, Y. T. Shapkina, T. Powers, T. W. Jarrold, M. F., Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations. Analytical Chemistry, 4310-4316.
  • 北京大学发布突破性单细胞基因组检测技术
    全球有多达15%的夫妇受到不孕不育的影响,体外受精(IVF)是治疗这种常见疾病的一种方法。在发表于13年12月19日的《Cell》杂志上的一项新 研究中,北京大学的研究人员报道了一项安全、准确且廉价的方法,可为IVF程序选择出基因正常的胚胎,因此提高了一对夫妇生育健康孩子的机会。   通过对单个的卵细胞进行全基因组测序,这种方法可以检测到与遗传疾病相关的染色体异常和DNA序列变异。论文作者、北京大学第三医院乔杰 (Jie Qiao)教授说:&ldquo 采用这种方法,我们可以一箭双雕:采用一套深度测序分析,避免了两种遗传问题。从理论上讲,如果这种方法能够很好地发挥作用,我们将 能够将试管婴儿技术的成功率从30%提高到60%,甚至更高。&rdquo   IVF程序涉及将女性的卵子和男性的精子取出后,置于一个实验皿中使其受精,在将胚胎前体&mdash &mdash 受精卵移植回母体子宫内发育成胎儿。当前有各种程 序可用于检测植入前胚胎遗传缺陷,但这些方法往往是侵入性的,需要从不断生长的胚胎中取得一些细胞,且不能同时检测与遗传疾病相关的染色体异常和DNA序 列变异。   研究人员近期开发了一些全基因组测序方法可同时检测单个人类精子细胞中的两种缺陷,但直到现在,还没有类似的方法被应用于卵细胞,而卵细胞中的染色体异常相比于精细胞中要更为常见。   在这项新研究中,任职于北京大学和哈佛大学的谢晓亮(Sunney Xie)教授,与北京大学的乔杰教授及汤富酬(Fuchou Tang)研究员,开发了一种测序极体(polar bodies)全基因组的方法。雌性生殖细胞形成过程中经过两次乘数分裂,形成一个大型的单倍体卵细胞和2-3个小型的细胞,这些小型的细胞就称为极体。 由于极体对于人类胚胎发育可有可无,可以安全地移除它们而不会损伤胚胎。   谢晓亮说:&ldquo 我们现正启动一项基于这种方法的临床试验。如果临床试验行得通,这一技术有可能极大地提高体外受精的成功率,尤其是对于那些年龄较大以及习惯性流产的妇女。&rdquo
  • 16亿美元!拜登政府斥巨资加大新冠病毒检测和基因组测序力度
    白宫COVID-19应急小组周三宣布,拜登政府将提供16亿美元,用于扩大和改进新型冠状病毒检测和新冠病毒基因组测序。据美国白宫网站,白宫新冠检测协调员卡罗尔约翰逊(Carole Johnson)在当地时间17日举行的记者会上表示,美国卫生与公共服务部将斥资6.5亿美元用于测试,帮助学校重新开放,并覆盖此前接受服务不足的人群。白宫还将投资近2亿美元识别和跟踪新出现的变异新冠病毒,并投入8.15亿美元提高检测用品的生产力度。Carole Johnson指出,在非医疗环境下很难实施检测。该机构还将建立区域协调中心,以提高实验室检测能力,并将其与特定需要领域相匹配,帮助弥合这一差距。协调中心将与实验室合作,包括学术和商业实验室,收集标本、进行测试、并报告结果。美国卫生和公众服务部和国防部还将投资8.15亿美元,用于国内制造和增加测试用品,如吸液管尖端、含有测试试剂的注塑塑料和用于即时抗原测试的硝化纤维素。与此同时,美国疾病控制和预防中心将投资近2亿美元,扩大病毒的基因组测序,并检测新出现的变种。白宫表示,这笔资金将使测序工作增加三倍,从每周7,000个样本增加到每周约25,000个样本。约翰逊说,随着人数的增加,美国疾控中心将能够更快地识别出SARS-CoV-2的变种。疾病预防控制中心主任罗谢尔华伦斯基说,该机构每天都在加大测序的力度,达到2.5万份样本的目标不会立即实现。Walensky 说,该机构正在与各州、商业实验室和学术界合作,以增加测序样品的数量和地理多样性。除了更多的样本,华伦斯基说,该机构还需要计算和分析能力,以了解传入的信息。
  • 替代核酸检测?浙江疾控上线全基因组检测分析平台,“新冠”疑似病例将被更快确诊!
    p & nbsp & nbsp & nbsp & nbsp 2月1日,浙江省疾控中心上线自动化的全基因组检测分析平台。利用阿里达摩院研发的AI算法,可将原来数小时的疑似病例基因分析缩短至半小时,大幅缩短确诊时间,并能精准检测出病毒的变异情况。 /p p & nbsp & nbsp & nbsp & nbsp 该平台采用不同于核酸检测方法,而是以一项全基因组检测技术,对疑似病例的病毒样本进行全基因组序列分析比对,能够有效防止病毒变异产生的漏检,大幅提高疑似病例的确诊速度和准确率。 /p p & nbsp & nbsp & nbsp & nbsp 阿里巴巴达摩院称,未来,这项AI算法还将用以支持疫苗与药物的研发。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/202002/uepic/f06d0413-7c1c-4e26-831a-56cf72b55a2a.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p strong & nbsp & nbsp & nbsp & nbsp 核酸检测的效率和缺陷 /strong /p p & nbsp & nbsp & nbsp & nbsp 全国新型冠状病毒肺炎疫情依然严峻,快速精确的诊断,对疫情控制尤为重要。 /p p & nbsp & nbsp & nbsp & nbsp 目前,主流检测手段为核酸检测方法,原理是比对疑似病例的核酸构成跟病毒的核酸构成,完全对上就可以确诊。 /p p & nbsp & nbsp & nbsp & nbsp 这项技术相对成熟,但由于新型冠状病毒生物安全等级较高,为防止泄漏和操作人员感染,大量自动化过程改由纯手工操作,导致实际检测时间相对较长。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/noimg/4701a500-4ad5-4d8d-a3c7-b1284fb6bbd8.gif" title=" 2.gif" alt=" 2.gif" / /p p style=" text-align: center " 央视记者探访新型冠状病毒核酸检测过程 /p p & nbsp & nbsp & nbsp & nbsp 此前,央视记者曾探访过陆军军医大学第一附属医院传染病专科实验室,记录下新型冠状病毒核酸检测的全过程。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 270px " src=" https://img1.17img.cn/17img/images/202002/uepic/0de55e52-cea0-4834-9789-c8f701ff0913.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 500" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: center " 实验室操作人员需要采用里外三层防护 /p p & nbsp & nbsp & nbsp & nbsp 实验室操作人员均采用里外三层防护,从疑似患者鼻咽部采集到的上皮细胞,与液体相混安置在试管之中。打开试管后,由于里面可能含有新型冠状病毒,操作人员为了避免产生气溶胶(比飞沫更微小的粒子,借助空气传播),无法用漩涡震荡器混匀溶液,只能小心翼翼地用手来混。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/noimg/f2afacea-437f-4f49-b4f9-715561946068.gif" title=" 4.gif" alt=" 4.gif" / /p p & nbsp & nbsp & nbsp & nbsp 接着,操作人员还要把试管放入56摄氏度的金属加热器中,以裂解病毒释放核酸,然后经过2分钟12000转的离心操作,将病毒吸附在一根有两道绿色薄膜的试管上,后面又经过三次不同规范的离心操作,提取出疑似病毒核酸。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/noimg/31494640-3c84-4006-b9c6-5777df00af92.gif" title=" 5.gif" alt=" 5.gif" / /p p style=" text-align: center " 把试管放入56摄氏度的金属加热器中 /p p & nbsp & nbsp & nbsp & nbsp 全部完整检测要经历十几道工序,从实验室门口接样到最后出检测结果,单一样本需3个小时才可以完成。 /p p & nbsp & nbsp & nbsp & nbsp 此外,为了确保检测结果可靠可信,通常一个疑似病例都要采取2至3份标准样本,同时开展标准核酸检测,复核后才能公布疑似病例检测结果。 /p p & nbsp & nbsp & nbsp & nbsp 眼下,全国能够进行新冠状病毒核酸检测的医院和机构逐渐增多,核酸检测试剂盒产量也逐步跟上。比如武汉大学中南医院医学检验科就改良了核酸提取的方法,最快2个小时就可以得出核酸检测结果。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/c5c535de-f4de-495b-bf4c-df23b773a986.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " 武汉大学中南医院医学检验科工作人员在进行样本检测 /p p & nbsp & nbsp & nbsp & nbsp 然而,截至2月1日24时,国家卫生健康委收到31个省(自治区、直辖市)和新疆生产建设兵团累计报告确诊病例14380例,疑似病例有19544例。人工的核酸检测“扛不住”每天不断新增的疑似患者。 /p p & nbsp & nbsp & nbsp & nbsp 更重要的是,核酸检测方法也有不足之处。 /p p & nbsp & nbsp & nbsp & nbsp 此前,湖北省疾控中心已成功完成新型冠状病毒分离与全基因组测序工作,获得病毒全基因组序列,全长29847bp,是基因组序列最长的病毒之一。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 463px " src=" https://img1.17img.cn/17img/images/202002/uepic/8a5c7667-7d9e-44ca-8c3e-2f4f1ac7d822.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 500" height=" 463" border=" 0" vspace=" 0" / /p p style=" text-align: center " 新型冠状病毒结构 /p p & nbsp & nbsp & nbsp & nbsp 而核酸检测方法,只能检测到病毒基因的局部。由于病毒存在变异可能,因此对于整个基因序列来说,核酸检测犹如盲人摸象,一旦病毒发生变异,就可能出现漏检的情况。 /p p strong & nbsp & nbsp & nbsp & nbsp 达摩院AI算法克服高通量测序不足 /strong /p p & nbsp & nbsp & nbsp & nbsp 不同于核酸检测方法,浙江省疾控中心上线的自动化全基因组检测分析平台,是以全基因组检测技术,对疑似病例的病毒样本进行全基因组序列分析比对,能够有效防止病毒变异产生的漏检。此外,平台在新型仪器以及算法的加持下,有效缩短了全基因测序的时间。 /p p & nbsp & nbsp & nbsp & nbsp 据介绍,疫情早期,核酸检测可以顶上用,但越往后走,越需要全基因检测,因为后期防疫的核心是防止病毒变异。 /p p & nbsp & nbsp & nbsp & nbsp 全基因组检测分析平台由浙江省疾控中心、阿里巴巴达摩院、杰毅生物共同研发,为浙江省疾控在新型冠状病毒疫情防控上提供了全自动建库和分布式计算分析能力。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/202002/uepic/e95d31d2-99d1-4d7a-beb6-dd8f92db98cc.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: center " 设置基因检测分析参数 /p p & nbsp & nbsp & nbsp & nbsp 达摩院称,此次研发的自动化全基因组检测分析平台属于高通量测序,在AI算法的加持下,克服了前处理和数据分析费时费力的不足。 /p p & nbsp & nbsp & nbsp & nbsp 在整个平台中,杰毅生物开发了全自动高通量测序建库仪,把整体常规人工需要12小时的工作缩短到2个小时。 /p p & nbsp & nbsp & nbsp & nbsp 当每次测序过程中产生的海量基因数据,则交由达摩院AI算法进行分析。 /p p 疫情发生后,达摩院组建了十余人的团队,算法专家顾斐博士第一时间奔赴浙江省疾控中心。 /p p & nbsp & nbsp & nbsp & nbsp 达摩院团队针对新型冠状病毒基因进行特征分析,决定采用分布式设计的分析算法,并基于蛋白质数据库(PDB)等公共数据集的数据进行算法的优化训练。 /p p & nbsp & nbsp & nbsp & nbsp 顾斐表示,在序列比对过程中,他们对算法增加了分布式设计,病毒基因分析的速度由数小时缩短到半小时,从而大幅提高疑似病例的确诊速度。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/202002/uepic/a4eeb386-6016-4a23-a079-3de6b90bd7fc.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: center " 达摩院算法专家顾斐博士在疾控中心基因检测分析现场 /p p & nbsp & nbsp & nbsp & nbsp 同时,由于采用分布式算法,病毒拼接的速度由30分钟-1小时缩短到15-30分钟,能帮助医护人员检测到病毒全貌,变异的病毒也能精准检测,大幅提升确诊效率。 /p p & nbsp & nbsp & nbsp & nbsp 顾斐提到,病毒序列拼接完成后,通过设计BiLSTM+DNN的方式训练模型,可以在15-30分钟内预测病毒蛋白二级结构。同时,达摩院还在研究基于序列的蛋白质三维结构预测模型以及药物筛选模型,为药物研发贡献技术能力。 /p p & nbsp & nbsp & nbsp & nbsp 这个平台已于2月1日上线浙江省疾控中心,可有效提升疑似病例确诊效率,及时阻断病毒的传播。达摩院表示,他们也正在努力与合作伙伴共同将这套系统推广至全国。 /p p & nbsp & nbsp & nbsp & nbsp 目前,有6个确诊病例样本,正在通过该平台进行基因组序列的测定与分析。截至发稿前,这些样本中检测到的新型冠状病毒与最早在武汉确诊病人身上发现的病毒基因组序列高度同源。 /p p & nbsp & nbsp & nbsp a href=" https://www.instrument.com.cn/zt/xxgzbd" target=" _blank" span style=" color: rgb(0, 112, 192) text-decoration: underline " strong 点击进入仪器信息网特别专题:“抗击新冠疫情 仪器人在行动” /strong /span /a /p
  • Facebook:2016关注健康的4大领域 包括基因组检测
    p style=" text-align: center "    img width=" 500" height=" 313" title=" 201601041353256789.jpg" style=" width: 500px height: 313px " src=" http://img1.17img.cn/17img/images/201601/noimg/65e1aa94-c408-435c-98aa-cb5e29e3fae3.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   1月1日, a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 医疗行业 /span /a 知名网站的编辑Stephanie Baum先生在其博客中写道:Facebook网站一直在健康科技领域做一些尝试,并特意强调不是指扎克伯格的野心(扎克伯格夫妇捐赠的450亿美元里,选择疾病治疗领域)。毫无疑问的是,Facebook已经证实了在一些不同领域的兴趣,包括从最先进的分子诊断方式(基因组检测)到最大众化的公共卫生(献血)等等。不过,该公司对于究竟是青睐于创业者还是技术公司的 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 医疗健康 /span /a 项目,一直三缄其口。 /p p    strong 以下是Stephanie Baum先生对Facebook公司2016年展望的关乎医疗健康的4大领域 /strong 。 /p p    strong 基因组学 /strong /p p style=" text-align: center " strong img width=" 500" height=" 313" title=" 201601041353535162.jpg" style=" width: 500px height: 313px " src=" http://img1.17img.cn/17img/images/201601/noimg/84508130-248c-4aef-a533-45ec83dbf129.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p   密歇根大学的研究人员开发了一个Facebook的APP叫做“Genes for Good”,用以激发用户对基因检测的积极性。参与者使用“Genes for Good”可以参与这项研究、回答与健康有关的问题、并查看与他们健康相关的信息概要。这个正在进行的研究旨在帮助人们了解自己的基因史,以及相较于其他参与者的日常健康习惯。根据Facebook最新博文,它已经获得了8310名研究参与者,但只有3702名参与者被认为有资格提供DNA样本。虽然它限制了给参与者提供的健康数据量,警惕陷入FDA的困境,但它似乎并没有敷衍自愿参与者。在接下来的一年中,该公司计划通过简化资格审核的程序,来扩大该项目。今年的参与者将在1月份获得访问他们基因数据的机会。考虑到在密歇根州的成功,其他的研究项目也极有可能将开发Facebook自己的APP。 /p p    strong 用药依从性 / 患者参与 /strong /p p   作为Facebook与其他机构的研究的一部分,Partners HealthCare可以通过服药提醒和积极的反馈等来提高患者的参与,来管理哮喘。将来或有更多的医院和卫生系统能够在诸如高血压、糖尿病、癌症以及病人恢复过程中会产生的潜在病症的环境下,评估通过Facebook接触患者的有效性。 /p p    strong 患者社区 /strong /p p   2014年,路透社曾披露过关于在Facebook的推动下创建患者社区的传言。到目前为止,笔者没有听到更多有关于此的消息,但这并不一定意味着Facebook放弃了这个想法。正如英国的患者社区PatientsLikeMe、HealthCrowd、以及HealthUnlocked等,倘若患者社区以正确的方式组建,且能够在使用患者数据并保持透明度中平衡,这将有吸引许多患者会加入并使用患者社区。 /p p    strong 献血/器官捐献 /strong /p p   Social Blood想通过Facebook的Free Basics把Facebook变成 “最大的血库”,以提高在发展中国家的互联网接入。Facebook 在最近的一篇文章中声称,通过 Free Basics,Social Blood 已经在全球范围内将成千上万的患者和挽救 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 生命 /span /a 的血液制品建立了联系。回首ALS 冰桶挑战的普及,部分原因是由于为伟大事业而做一些有趣事情的视频分享的力量。分享的力量如何能够被用来提高公共卫生需求的意识(如器官捐献),是值得深思的。基于位置的Facebook推送和短信能够最大程度鼓励人们献血,节省从献血到血液转移到患者手中的时间。 /p
  • 浙江省分析测试协会立项《大豆转基因序列检测 高通量全基因组测序法》等两项团体标准
    各相关单位:根据国家质检总局、国标委、民政部《团体标准管理规定》和《浙江省分析测试协会“浙江测试”团体标准管理办法》的有关规定,浙江省分析测试协会于2023年12月组织专家对《大豆转基因序列检测 高通量全基因组测序法》、《玉米转基因序列检测 高通量全基因组测序法》“浙江测试”团体标准进行立项论证,符合立项条件,现批准立项。请申报单位严格按照浙江省测试分析协会团体标准工作要求及专家意见,尽快组织相关单位进行标准编写,强化编制质量管理,确保按期完成编制任务。为使各立项标准的制定更具广泛性、更科学合理,欢迎与本标准有关的企业、科研机构、高等院校等相关单位加入标准的起草制定工作,有意参与标准起草制定工作的单位请与协会秘书处联系。联系方式:胡勇平 0571-85157210 zjtest@126.com协会地址:浙江省杭州市西湖区体育场路508号地矿科技大楼439/436 江省浙江省分析测试协会2023年12月8日计划公告-浙江省分析测试协会关于发布第十七批团体标准立项的公告.pdf
  • 科学家开发出用于肝癌特异性筛查的全基因组cfDNA片段化特征检测方法
    肝癌的发病率和死亡率在癌症中位居前列,全世界每年新增病例超过90万,死亡病例超80万。在所有肝癌病例中,肝细胞癌 (HCC)占比约90%,对肝细胞癌高危人群进行有效、高灵敏度的筛查显得尤为重要。目前对肝癌高危人群早筛的方法是肝脏超声检查和血清甲胎蛋白(AFP)监测,其筛查灵敏度从47%-84%不等,特异性在67%-90%之间。因此,当前急需开发灵敏、高效的非侵入性肝细胞癌筛查方法。  近期,来自美国约翰霍普金斯大学的研究团队在《Cancer Discovery》上发表题为“Detecting liver cancer using cell-free DNA fragmentomes”的文章。该研究开发出一种基于血液的全基因组cfDNA片段化检测方法(DELFI),为HCC检测提供了一种高性能、具有成本效益的新选择。  研究人员检测了501名训练队列个体的血浆样本,对cfDNA片段进行低覆盖率基因组测序,分析HCC患者中cfDNA的分子来源,并确定了与片段化变化相关的基因组和染色质特征。通过机器学习方法构建DELFI模型。结果显示,在平均风险人群中,DELFI模型对HCC检测的敏感性为88%,特异性为98%;在高危人群中,DELFI模型对HCC检测的敏感性为85%,特异性为80%。此外,研究人员将来自223名香港患者的全基因组序列数据作为验证队列进行检测。在验证队列中,DELFI模型可将AUC为0.97的HCC患者与高危个体区分开来,有效证明了模型的可靠性。  该研究开发的全基因组cfDNA片段化特征检测方法对HCC具有高灵敏度和特异性,弥补了血清甲胎蛋白监测敏感性低、准确率差的不足,有望为肝癌高危人群提供可靠且具有成本效益的筛查方式。  注:此研究成果摘自《Cancer Discovery》杂志,文章内容并不代表本网站的观点和立场,仅供参考。
  • 亲身经历:测完我的基因组,会发生什么?
    在几乎长达一年筹备全基因组测序期间,我不担心这件事。顶多只是有一点小小的顾虑,也许老板知道我的基因组信息后,很容易地就把我解雇。我已经签署了一份严谨的知情同意书,被告知我可能遇到的一些情况,可能对某些疾病易感。我以一副必须知道的决心签署了文件,冷静的等待结果,时钟犹如水滴一样在慢慢的滑走,滴答,滴答,滴答&hellip &hellip   然而,在我得知基因组测序结果那天的早晨,在圣地亚哥遗传学座谈会上,我醒来的早,轻弹打开我的电脑,看新闻:几乎所有网站的头条都在报道安吉丽娜&bull 朱莉的BRCA1基因检测结果以及她的决定,双乳房切除术。这多少让人感到有点气馁。我一直认为知道自己的基因信息比不知道要好些,而且,无论如何,你从自己的家族病史中大体已经知道什么讨厌的疾病漂浮在你的基因库中。   &ldquo 不一定!&rdquo 一个叫BobBest的遗传学家在早餐时乐呵呵地告诉我。BRCA1基因并不总是表现出疾病症状,如果这个基因遗传自于父亲。&ldquo 再有就是刚刚出现的全新的突变&rdquo ,他说,&ldquo 关键是,我们现在知道的不比我们过去知道的多多少,十年前,詹姆斯&bull 沃森在国会作证时说,一旦我们有了基因组序列,我们将拥有生命的语言,但事实证明,这种语言是我们不明白的语言。&ldquo   但当我告诉他关于朱莉的新闻时,他几乎从椅子上滑落了下来:&ldquo 你在开玩笑吧!这可是一个改变游戏规则的事件&rdquo 。当会议开始后,第一个发言者是EricTopol,他是斯克里普斯转化科学研究所所长,走上台去做一个名为&ldquo 数码化人类&rdquo 的演讲,安吉丽娜是研讨会的热门话题。&ldquo 从这一刻起,将向前推动基因组医学,这具有非常重要的象征意义&rdquo ,他总结到,随后,性感的朱莉靓照出现在他身后的屏幕上。   很难用夸大其词来赞扬新一代的基因组科学如何迅速的变化、如何革命性的改变医学。朱莉的艰难选择仍然是一个选择,通过基因检测的跨越式发展成为可能的选择。但全基因组测序是要借此提升到一个新的水平,检测我们身体完整的基因代码,它正逐渐成为主流的检测标准。在人类历史上,第一个人的基因组完全测序在十年前刚刚完成,花了13年时间,耗资27亿美元。第一个单纯的生物人个体(以前的基因组测序用的是复合材料样品)-克雷格&bull 文特尔的基因组测序是在2007年完成了。   &ldquo 明天&rdquo ,MattPosard,Illumina公司的高级副总裁说:&ldquo 在这个房间里的每个人都能拿到你们自己的基因组,像我一样&rdquo 。他拿着一台iPad,里面装着从Illumina公司下载的基因组测序结果。&ldquo 你将能浏览你的基因组,找出所有你自己感兴趣的信息&rdquo 。   就像科幻小说中穿越时空的感觉,人类基因组测序这样一个重大突破,其草图在2001年宣布,但我现在的感觉就好像那是大约两分钟前刚刚宣布如此巨大的新闻一样,我无法相信自己就在发布会的现场。但随后,房间里,熙熙攘攘的遗传学家谁也不能完全相信他们也在新闻发布会的现场,他们花了毕生的心血在遗传学研究领域,他们拿着自己的基因组信息就像刚刚入学的新生一样,懵懂,而他们拿到的一切,不是一些企业已经开始提供服务的&ldquo SNP&rdquo 信息,不是只检测蛋白质编码区域的外显子组测序,而是终极的一切:全基因组测序。   在欢迎酒会上,我与ColinSmith聊天,他是从萨里大学来的功能基因组学教授。   &ldquo 你有没有想到,有一天,你会拥有自己的基因组序列信息?&rdquo 我问他,   &ldquo 没有&rdquo ,他说。   我:&ldquo 你什么时候觉得成为了一种可能?&rdquo   &ldquo 当我收到Illumina公司邀请我到这里的电子邮件时。&rdquo 他兴奋的回忆。   只所以普通人也可以拿到自己的基因组信息,是因为测序价格惊人的下降速度。有一个广泛流传的图表,显示了测序成本下降的速度是摩尔定律(即计算机的处理能力每两年翻一番的规律)四倍。   EuanAshley,一个在斯坦福医学院的助理教授更生动地讲了这件事情:&ldquo 每天,我开车经过帕洛阿尔托的法拉利4S店,看到法拉利458蜘蛛这款土豪车的零售价是398000美元。我现在计算出,如果这是第一个人类基因组测序的价格,汽车成本再以测序价格同样的速度下降,车子现在只值40美分。&rdquo   今天测序一个人类基因组的价格只是原有成本的一小部分,已经从2003年的27亿美元降到今天房间里每个人都可以支付的5000美元,还包括一个查询结果的iPad。没有人预料到价格会下降的如此之快,如此之低。当我第一次看到关于人全基因组测序的文章时,它的成本48000美元,当时提供这种测序服务的Knome公司公关部门负责人告诉我,&ldquo 我们可以做你35,000美元的低价&rdquo ,&ldquo 嗯,&rdquo 我说,&ldquo 我可能要过段时间才能接受&rdquo 。这才是不到三年前的事情。   解释序列信息和将数据返回给消费者,还处于起步阶段,仍然是一个耗时的、艰苦的过程。去年秋天,Illumina公司举办了第一届&ldquo 了解你的基因组&rdquo 活动,我参加的这次活动是第二届。这是第一次大型的队列全基因组测序并获得结果的研究活动,目的是让遗传学专业人士在大众接受这项服务之前体验并了解这个过程。Illumina公司的CEOJayFlatley估计迄今只有不到500个人进行过自己的全基因组测序,&ldquo 更多样品已经匿名测序完成并用于研究,只有这500人拿到自己的结果,而你是其中之一&rdquo 。   我感到享有特权后的不知所措,有一小点点担心。从某种角度讲,生命科学可以说是最后的边疆。在小组的一次会议上,有人问遗传咨询教授BonnieLeRoy,从时间顺序上讲,人类现在位于基因组学时代的什么位置,她说:&ldquo 这就好比登月,感觉就像我们刚刚降落在月球上,除非我老得不记的登月这件事,那时候每个人都在参与,世界上的每个人都知道他们在登月。而现在,在基因组学领域,我们都正在飞船上,但没有人知道我们在飞船上正在降落这件事。&rdquo   她是对的,每天报纸上都在报道新基因发现的故事,虽然巨大的个人健康保健突破还没有完全发生,但终究会来到。当测序技术应用到大规模的人口群体,我们将拥有海量数据,而数据将揭示一切。在开幕式上,JayFlatley自信地谈论关于如何在短短几年内,所有的新生儿都会有自己的基因组序列信息,并在5到10年,癌症将被降级为一种慢性疾病。这听起来像一个匪夷所思的进步,但实际上,每个与我交流的人,无论是美国的,还是英国的,都认为基因组技术在癌症治疗中的突破已经发生,并将改变这种恶性疾病的治疗模式。&ldquo 化疗还处于中世纪的水平&rdquo ,EricTopol说,&ldquo 基因组技术是一个击中要害有力武器,我们回头看看就像还处在黑暗时代。&rdquo 肿瘤现在可以进行测序,药物个性化地施与个人,这是个性化医学的曙光,且已经在NHS中发生,但还仅仅是在NHS小范围内,只有几个医生经过基因组学的训练,如果将来全科医生都接受这项技术,效果将无法估量。&rdquo   去年秋天,我轻松地等待着手术,问我的医生要签知情同意书。一个临时代理拿走了,说他们会联系。然后我的医生,从来没有见过我(事实上,他确实从来没有见过我),给我发了封好像&ldquo 装满蠕虫的罐子&rdquo 一样短语的电子邮件,&ldquo 我敦促你非常仔细地考虑能完成基因组测序这一检测,不是作为一个练习,而是我们确实可以利用这个。&rdquo   现在,我屏住呼吸,我完整的遗传信息就在那里,很快它不会花费5000美元,更有可能是500美元,然后再降到50美元。人们将开始得到他们的基因组信息,NHS将不得不处理这些信息。我为EricTopol的话欢呼雀跃,就像他说的话已经实现一样,对于我来说,就像一个定制的火箭船已经落在我的身边。(&ldquo 在未来,像安吉丽娜这样的消费者将不必再切除双乳房。将来完全可以做到的这样,在你的血液中可能有一个感应器,一旦血浆中出现癌症的第一个信号,提示信息将发到您的手机里。)   但令他感到&ldquo 疯狂&rdquo 的是站在基因组学和病人之间的医生,他们对基因组所知甚少,传统的医生掌握专业医学信息和病人对疾病认识肤浅之间的信息不对称,现在,病人需要咨询医生的情况开始逐渐的发生改变。   NHS已经在其他领域领先,2013年早些时候,英国首相卡梅伦承诺1亿英镑为100,000名患者进行基因组测序,这是目前为止最雄心勃勃的国家计划。多年来一直在游说NHS面对基因组学醒来的科学家,比如PHG遗传学智囊团的RonZimmern,则高兴得像一只小猫。&ldquo 这是一个潜在的巨大宝库!&rdquo 他告诉我。&ldquo 我们在这个国家中处于独特地位,因为NHS和记录系统,我们可以把基因组信息和大众健康关联起来。&rdquo   越接近我的测序结果,我就越来越清楚我的全职医生应该来自那里。在每一个人的基因组中存在64亿个碱基对,几乎占据半个TB的存储空间,数据都存在亚马逊的云平台上,像所有的数据一样,也存在黑客袭击及窃取数据的可能性。当Illumina公司去年10月首次举办这种研讨会时,曾解释354种临床上已知的致病基因。这一次,它已经做了1600种,Illumina的临床服务副主任TinaHambuch解释说,在参加座谈会的47个人的基因组中,他们发现1,600个基因与1,221种情形相关。然后,他们评估了在这些条件下可能发挥作用的23,144个突变位点,并认为其中65个位点可能是引起疾病的致病性突变。他们组织了一小队精干的队伍对数据进行分析,读了一遍又一遍的论文,2个双盲的小组对突变进行分析。基因组测序的成本已经快由高富帅变成屌丝,但如何对数据进行准确的解释仍然是一项昂贵、棘手的事情,很多问题还没有解决。   在茶歇期间,人们都兴奋地分享他们的基因组测序结果。来自萨里的遗传学家ColinSmith告诉我,他注意到自己一个基因,这个基因的两个拷贝都发生突变,其编码的酶无法发挥效力,这意味着,有一个特定种类的药物会杀了他,或者至少有一个很好的机会可以杀死他,这种药物是相当广泛应用于抗癌治疗或移植的免疫抑制剂。他告诉我说其他人的基因中也发现了一些突变,那些人或他们的孩子在麻醉情况下可能会死。&ldquo 他们找到你的基因有什么异常吗?&rdquo 他问我,我还不知道,我说。他扬起眉毛,但随后他找到了个很好的理由来解释我的回答。他的父亲患有亨廷顿病,这是最令人讨厌的遗传性疾病之一,是一种致命的神经退行性疾病,通常在中年发病,作为患者的孩子,Smith表示自己有50%的患病机会。   他七年前进行了测试。&ldquo 我告诉你,经过测试后认为,这是一件轻而易举的事。&rdquo 他是那种对基因非常熟悉的人,知道基因往往是抽签的结果。&ldquo 如果我真的发病了,我打算放弃工作,并移民到西西里岛,&rdquo 他说。然后,他祝我好运。   我必须说,在得到我的基因组测序结果时有点小小的紧张,一种简单、好奇和兴奋的感觉把我带到科学的面前。几年前,我写了一部与遗传有关的小说,但我的家庭并没有可怕的疾病史让我进一步了解。在圣迭戈,我努力的去回忆我家中什么人死于某种疾病......但我什么都不知道。我的家族有一种倾向,往往相对年轻的年龄去世,我认为主要是死于工薪阶层贫穷导致的疾病,我的祖父抽烟死于肺气肿,我的爸爸抽烟死于肺癌。   基因并不决定命运,还有很多因素会影响你,比如你居住的环境,你的表观遗传学(你爷爷吃或没吃早餐的效应会传递并影响到下几代人)。但他们有一个近乎神话的效力影响我们看待自己的方式。BonnieLeRoy,她在做学术研究前为家庭基因检测提供咨询,告诉我说,&ldquo 这些因素如此的重要,影响人们看待自己的方式,明确的告知他们来自于哪里,虽然听起来有一点点吓人。不像其他临床检测,如果有人告诉你或者你的家庭有什么地方出了问题,会让你感到不太舒服,因为这是很私人的事情。   &ldquo 如果他/她们发现已经把致病的基因传递给孩子,会给他/她们造成巨大的愧疚感。&rdquo LeRoy有一个养女,并且有清晰的愿景通过文化和环境塑造她融入我们这个大家庭。&ldquo 然而,人们并不感到踏实,除非他们通过基因知道他们具体来自哪里。知道自己到底是谁的孩子,是非常普遍存在的一种心态。&rdquo   两个Illumina的遗传学家和一个咨询师当面告诉了我结果,他们会给我一个硬盘,里面保存了初步的报告,第二天会给我装有剩余信息的iPad。有很多技术细节需要处理,遗传学顾问EricaRamos进行整个检测列表的分析,包括兴趣、亨廷顿病,并解释它们如何把列表分成&ldquo 致病&rdquo 、&ldquo 可能致病&rdquo 和&ldquo 可疑&rdquo 。然后,她递给我一个文件夹。我看到文件后困惑了一会儿,因为关于我的所有部分都是空的。在临床总结栏目上可以显著地看到:在三个类别中都是&ldquo 0&rdquo &ldquo 0&rdquo 和&ldquo 0&rdquo 。在结果的后半部分,在&ldquo 携带状态&rdquo 或&ldquo 隐性基因&rdquo 栏目下,只有一个记录:&ldquo 半乳糖血症&rdquo 。&ldquo 似乎没有太多信息在报告里,&rdquo 我告诉Erica。&ldquo 不,&rdquo 她说。&ldquo 大多数人至少有两个或三个需要注意的地方。你基本上是在这里最健康的人。&rdquo &ldquo 真的吗?我觉得我已经赢了一场我不知道的比赛。&rdquo   &ldquo 现在,尽管在我的基因组中没有发现他身上存在的致病基因,但并不是说我身上不存在明天或者5年后的在他们身上发现的新的致病基因。&rdquo   &ldquo 你的基因组怎么样?&rdquo 后来Colin看到我后问。&ldquo 有点无聊,&rdquo 我说。&ldquo 无聊!&rdquo 他说。&ldquo 你没有什么可怕的遗传性疾病,你认为这是无聊?&rdquo 他当然是对的。我甚至有一点自己要活太久的恐惧。我的姑婆Ruth活了101岁。她在我出生前退休。我的结果都让我惊慌了一小下,不是关于我的健康,而是对于我未来财务状况的担忧。我没有退休金。我想我可能要在60岁时开始吸烟,并获得一种WelshCadwalladr生活类疾病,我发送一条轻率的短信给我的男朋友,告诉他我至少没有&ldquo 安吉丽娜基因&rdquo 。他没有多少心情逗乐。头条新闻关于基因检测的事情影响的不只是我。&ldquo 请不要告诉我了,&rdquo 他说。&ldquo 我真的宁愿不知道。&rdquo   宁愿选择不知道就像想知道任何事情一样。第二天,当我收到一台已经装有我的基因组信息的iPad时,我可以通过Illumina的MyGenome应用程序玩转我的基因组,我开始佩服他们的思想路线。   我轻轻触摸iPad上的标签,找到我的半乳糖血症相关基因,是一个橙色的按钮,但后来我发现代表满负荷的紫色按钮。他们标有&ldquo 遗传相关&rdquo ,我有69个相关性,从静脉血栓栓塞、克罗恩病、抑郁症到眼睛颜色、癫痫和中风。   伴随着每次的点击都会带来一点点的惊慌,来自威斯康星州的遗传学教授HowardJacob就坐在我旁边,他解释说这些相关性并不全是坏事,其中有些是显示了良好的、保护性基因,并且在任何情况下,只有一小部分是被高度证实的。有些文献只是暗示基因与特征或条件的相关性,且这些研究可能是小规模的,还缺乏必要的重复。他教给我如何通过点击阅读相关文献,看看有多少人在总人口中有相同的突变,并帮助我做统计。   在我的家庭中又II型糖尿病患者,我的基因旁边有一个紫色的点,但结果是无足挂齿。在基因G6PC2中,我有一位C等位基因,与增加空腹血糖水平的因素相关联,关联系数有0.06,这个等位基因出现在85%的人口群体中。它并不是魔法子弹。在休克风险中,我有一个与中风风险增加了5.62倍的基因突变,并且仅见于的8%人口中,这似乎有点让我担忧。并不是一个总有意外,惊喜地看到,我处于一个存在&ldquo 腰围增大&rdquo 风险的NRXN3基因突变的20%人群中,与我的家族历史相对应的是,有六个基因会增加我患上烟瘾的行为。   还有一个讨厌的可能反应,氟氯西林药物是一个很常见的抗生素,我有一个基因会增加我对这种药物的合适反应,另一个基因则是降低(&ldquo 合适&rdquo 这个词听起来有些做作,但它已被证明是一个有效的心理特质且是高度遗传的)。有两个基因显示我会略微增加患类风湿关节炎的风险。然后,也许,最有趣的是,我注意到旁边的&ldquo 卡铂和紫杉醇药物(肺癌)&rdquo 紫色的圆点。我的EIF4E2基因有一个突变,它的出现会导致用于非小细胞肺癌治疗的药物使患者生存时间下降2.38倍,希望它不是我们想象的那样,即化疗先于癌症杀死我父亲。   很难准确知道这些&ldquo 相关性&rdquo 深到什么程度。研究的质量差别很大,药物敏感性研究具有有益的指导作用,但性状信息(比如我性格开朗外向,但我并不神经质)仍然指出出路在哪儿,因为复杂性疾病很复杂,单个基因的效应很微弱。   虽然我的全科医生拒绝告诉我更多信息,但一位陪同我办理知情同意程序的友好的遗传学家告诉我,现在还缺乏足够多的临床证据,但也要正视检测的结果。   不过,我很高兴在休息的时候,病理学家DeonVenter跑过来问我,他是否可以看看我的基因是否更适合的力量或耐力运动。   &ldquo 你当然可以&rdquo ,我说,&ldquo 但我已经知道我是否适合&rdquo 。我肯定适合耐力运动。我跑步的速度很慢,但我可以一直坚持跑下去。   他用笔轻触我的iPad说:&ldquo 不,你适合力量型运动,你有两个力量等位基因&rdquo 。&ldquo 真的吗?&rdquo 我惊讶地问道,&ldquo 但我跑得这么慢!可以跑很长的距离。我应该怎么做?&rdquo   &ldquo 场地自行车,举重,诸如此类的事情&rdquo ,他说道。   这个多少有点儿令人难以置信。在各种级别的运动中,至少我的基因似乎预示着我可以去做东德举重运动员。它会改变我们日常的运动吗?如果我在年轻的时候就知道的我的基因适合什么类型的运动,我可能就做出了改变。只有上帝知道父母可能制造出什么样的基因信息,或自称&ldquo 处理速度的基因&rdquo 或者&ldquo 智能基因&rdquo 。   这并没有超越可能的边界。JayFlatley预计新生儿的基因组测序在10年内成为常规检测。&ldquo 儿童早发性疾病是一个非常重要的领域。以自闭症为例,如果我们可以在孩子出生后就诊断出来,可以想象,出生后就开始治疗比五六岁时才开始治疗的效果会有效很多。&rdquo   也许并不奇怪年轻父母最有可能尝鲜基因组测序的群体。一种新的基因测试在去年开始推广推,这种无创技术可以测试唐氏综合征,通过采取怀孕母亲的血液样本,而不是使用具有流产风险的羊膜穿刺术,这种应用快速开展起来,被认为是医学史上最迅速采取新技术的案例。更重要的是,就在几个月前,一个研究团队成功地从一个怀孕母亲的外周血中完成了胎儿的全基因组测序。   JayFlatley意味深长地指出,Illumina公司不会考虑这样做。还有更多比优生领域更有意思的创新,已经有一家名为GenePeeks的公司可以将你的基因与一个潜在的配偶进行匹配,制造一个双方的&ldquo 虚拟宝贝&rdquo ,看看是否有任何隐性基因,从而避免双方走到一起时创造出一个遗传性疾病小孩儿。我不确定残障人士维权活动比较活跃的国家如何看待这项技术,但在较为温和的国家,比如中国。&ldquo 这不是一个技术问题&rdquo ,JayFlatley说,&ldquo 而是一个社会问题&rdquo 。他是正确的。技术变革的速度超过了我们处理它的速度,使得我们无暇考虑先进的技术对我们究竟意味着什么。   回到英国,我跟Cardiff大学Cesagen研究中心主任RuthChadwick聊天,他还是人类基因组组织伦理委员会委员,这个委员会即将发布的一份报告,探寻全基因组测序可能带来的伦理问题。&ldquo 你觉得有人比如安吉丽娜&bull 朱莉,如果她的基因信息在出生时就已经知道,她会如何处理,或者如果出生前就已经知道这些基因,她们的父母会选择流产吗?一种疾病也许在50岁时才发病,甚至终生不会表现出症状,又该如何处理?而且不管怎么说,人终有一死&rdquo 。RonZimmern更是直言不讳,他&ldquo 死心塌地&rdquo 反对新生儿的测序,&ldquo 他们(新生儿)不能自己选择同意,那对我来说是完全不能接受的。&rdquo   然而,这是被消费者驱动的技术.目前,只需要几百美元,你就可以做一个所谓的SNP检测,判断各种疾病的易感性,包括老年痴呆症,是否具备某种性格特征以及关于你祖先的信息。AncestryDNA拥有一家检测家族病史的网站Ancestry.com,其高级副总裁KenChahine谈到从开展这项服务起已经有16万人已经接受了99美元的测试,软件分析直接连接基因组信息到家系谱,而且服务已经逐渐扩展到了堂兄弟和亲戚。   Chahine是古巴黎巴嫩裔美国人,他认为,测试证明&ldquo 确实没有什么东西可以作为种族的证据,我们都是混血儿,DNA是伟大的均衡器。我们之间的关系比我们想象的更紧密,我非常乐观看待这种观念对人类社会的影响。&rdquo   我接受了检测,在等待结果时,我Google了半乳糖血症,惊讶地注意到半乳糖血症在爱尔兰行者和吉普赛人中更加流行。多么的令人兴奋!难道我是一个吉普赛人?不过,当然...当我想起父亲黑黝黝的样子,想起我一直喜欢的伟大的儿童经典之作,Diddakoi...   做一个白日梦是无害的。也许Ken的检测可以给出一些有趣的体验,但消费者检测会给出一些遗传关联研究,给你一个百分比的患病风险。而且,一旦一个你可能会患某种疾病的想法植入你的心头,你就很难再打消它。ColinSmith   告诉我,他开始表现出症状后接受了Huntington的检测,&ldquo 我真的表现出了症状,我确信自己得了这种病,虽然,谢天谢地,我没有继承这种病的基因,原先患病的阴影绕在心头,挥之不去。所以检测有一种危险,可能会导致心身症状。&rdquo   在会议的最后一天,我和遗传咨询师EricaRamos就我的卒中风险进行了讨论。只有在一篇文献中提到了这个基因与中风的相关性,且这篇文章并不令人印象深刻(即使这样,我还是写了一张字条嘱咐我老妈每天服用阿司匹林:))。但随后她提到,他们并没有包括APOE基因的检测结果,如果你拥有这个基因的某些突变,可能增加你患老年痴呆症的风险。   我可以看看它,但当它真的来临时,我决定不去碰它。我开始关注&ldquo 不想知道&rdquo 的观点。这预测都是关于风险和概率的,所有的信息表明作为人类的我们并不擅长理解它们,并能够很好地与我们自己的生活联系起来。全球经济危机就是人类不能很好理解风险的一个恰当例子。我很高兴能够完成自己的基因组测序,但也许这是我的错误的风险计算。   谁知道我的基因组在5年、10年后才可能会发现的秘密?但毫无疑问,基因组学将改变医学。当我问BobZimmern,他会最喜欢我的文章中哪一点时,他兴奋地说:&ldquo 我希望人们能够理解基因组学是如何地奇妙,其革命性作用是多么地令人激动,NHS的100,000基因组计划多么地具有非凡的潜力。但同时意识到,我们还没有走到那一步&rdquo 。   我们确实还没有到达,但前方的路已经不远了。
  • NMPA批准三类注册证:首个核酸质谱药物基因组多基因检测试剂盒
    2024年7月,迪谱诊断自主研发的“先蕊谱® 人CYP2C19、ALDH2、ApoE和 SLCO1B1 基因检测试剂盒(PCR-飞行时间质谱法)”,成功获批三类医疗器械注册证(国械注准20243401289)。先蕊谱® C8基因检测试剂盒示意图先蕊谱® C8试剂盒(Cardiovascular Diseases 4基因8位点),是以冠心病患者为代表的药物基因检测试剂,是国内首个基于飞行时间核酸质谱技术进行合并用药多基因多位点检测的试剂盒,搭载DP-TOF飞行时间质谱检测系统,合并用药-联合检测,缩短了检测技术人员多管多次PCR操作时间,减少了临床医生的选药困扰,降低了患者病程药物不良反应事件,减轻了患者经济负担,无荧光标记干扰,质谱检测提升了检测准确度,打造了更准、更全、更灵敏的心血管疾病药物基因组多联检解决方案。作为国内首个基于飞行时间核酸质谱技术进行药物基因组(PGx)“合并用药-联合检测”的多基因多位点获证试剂盒,该产品通过体外定性检测人体外周血样本中的CYP2C19、ALDH2、ApoE和SLCO1B1基因多态性,检测结果可辅助氯吡格雷、硝酸甘油和他汀类药物的个体化用药指导,助力心血管疾病精准治疗。据《中国心血管健康与疾病报告2022》数据显示,我国心血管疾病(CVD)现患者达3.3亿,每5例死亡中就有2例死于心血管疾病,每年心血管疾病死亡387万,占我国疾病总死亡的44.74%,高居疾病死亡构成的首位。合并用药:由于心血管疾病患者往往多种症状并存,因此临床治疗上经常需要合并用药。以冠心病为例,《冠心病合理用药指南(第2版)》中明确指出,改善缺血、减轻症状的药物(含硝酸甘油)应与预防心肌梗死的药物(含氯吡格雷、他汀类)联合使用。《稳定性冠心病诊断与治疗指南》中建议,最佳药物治疗方案应包括至少1种抗心绞痛/缓解心肌缺血药物(含硝酸甘油)与改善预后(含氯吡格雷、他汀类)的药物联用。《急性冠脉综合征急诊快速诊治指南》指出,ACS抗血小板(含氯吡格雷)、抗缺血治疗(含硝酸甘油)是基本治疗,无他汀类药物禁忌症的患者入院后尽早开始他汀类药物治疗,长期维持。精准治疗:心血管疾病患者大多数需要长期服药,同类疾病的患者服用同一种药物的疗效和安全性往往存在较大个体差异。除了年龄、性别、种族/民族、疾病状态、器官功能等其他因素,遗传因素基因多态性是引起药物不良反应及其疗效个体差异的首要原因。心血管药物基因学的卫生经济学研究备受关注。根据CPIC指南、PharmGKB数据库、FDA公布的相关遗传信息与用药建议、国内《药物代谢酶和药物作用靶点基因检测技术指南(试行)》等,CYP2C19基因可指导抗血小板药物种类和剂量的选择(1A证据);SLCO1B1基因指导选择更合理的他汀药物剂量,避免肌病风险(1A证据);ApoE基因评估他汀疗效,助力选择更合适的他汀(2级证据);ALDH2基因评估硝酸甘油疗效,指导心绞痛发作的预防(2级证据)。迪谱诊断DP-TOF核酸质谱检测特点多基因多位点检测检测周期短,高效率高准确度,高灵敏度操作简便,成本低样本量与类型灵活样本类型人体外周血样本,需要采集受检者静脉血不小于1ml,注入含EDTA抗凝剂的采血管。适用人群需要服用氯吡格雷、他汀、硝酸甘油相关药物的冠心病患者/心肌梗塞或其他外周动脉疾病的患者/进行PCI手术预后治疗的患者以及高脂血症治疗。用于脑卒中、癫痫、抑郁症、焦虑症、消化道出血、肾移植等患者的用药指导;载脂蛋白E(ApoE)基因多态性可作为阿尔兹海默症风险筛查指标。
  • 北京基因组所开发国际领先基因组序列变异库
    p   近日,中国科学院北京基因组研究所生命与健康大数据中心开发了国际领先、国内首个规模最大的基因组序列变异库——GVM(Genome Variation Map)。该库基于人工审编整合了多个物种的大量基因组序列单核苷酸多态位点和小的插入与删除变异信息,是基因组序列变异信息汇交、管理与检索的资源库。研究成果以Genome Variation Map: a data repository of genome variations in BIG Data Center为题,在线发表在Nucleic Acids Research上。 /p p   基因组序列变异是基因组DNA水平发生的可遗传变异,是生物多样性的基础,是物种进化、分子育种、优良性状选育、人类疾病等研究最为宝贵的遗传资源。近年来,随着测序技术发展,越来越多物种的基因组被精细解析 物种内遗传多态变异位点也通过大规模的群体测序获得,并广泛应用于复杂性状的关联解析。国际两大数据中心NCBI和EBI旗下的dbSNP和EVA是主要的基因组序列变异资源库。今年5月,NCBI宣布自2017年9月1日起,dbSNP和dbVar两大数据库停止接收非人物种的SNP提交信息,自2017年11月1日起停止非人物种的SNP在线查询与提交。这对基于序列变异研究的科研人员造成了不便。 /p p   为此,GVM作为生命与健康大数据中心的核心数据资源库之一,搜集了以二代测序和芯片技术为主要检测手段的全基因组序列变异检测的原始数据,通过标准化的变异位点鉴定与注释,获得包括人、畜牧动物、主要农作物和其他资源物种在内的19个物种共约50亿的变异信息,8,884个个体的基因型数据,并通过人工审编收录了13,262条高质量非人物种的基因型与表型知识数据,整合了180,911条人变异位点的知识信息。其中,大熊猫、虎鲸、毛竹、橡胶、小麦是GVM数据库所特有的物种。 /p p   GVM开发了友好的数据提交、浏览、搜索和可视化功能。用户可通过基因组位置、变异影响、基因名称和基因功能等检索变异位点信息,并下载数据 可通过ftp服务下载VCF和FASTA文件格式的全基因变异信息 可在线或离线方式向系统提交数据,这方便了科研人员的数据共享。 /p p   研究工作得到了中科院战略性先导科技专项、中科院国际大科学计划、国家科技攻关计划、国家高技术研究发展计划(863计划)、国家自然基金项目、中科院百人计划、中科院青年创新促进会等的资助。 /p p 论文标题:Genome Variation Map: a data repository of genome variations in BIG Data Center /p p style=" text-align: center " img title=" W020171027507396378092.png" src=" http://img1.17img.cn/17img/images/201710/insimg/a8ee4d25-d8cb-4e86-a1de-06e90d767ff5.jpg" / /p p style=" text-align: center " strong GVM数据库物种变异信息统计表 /strong /p
  • 英国基因组计划完成:目标为5500万公民提供基因组医疗服务!
    p strong   医疗保健的下一次重大转型很可能始于基因组计划! /strong /p p style=" text-align: justify text-indent: 2em " 早在2013年夏天,Genomics England就开始为100,000 基因组计划项目进行紧锣密鼓的筹备。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/6918dc05-7bd5-49a3-b542-b9f4b72542e2.jpg" title=" 微信图片_20190201134555.jpg" alt=" 微信图片_20190201134555.jpg" width=" 532" height=" 266" style=" width: 532px height: 266px " / /p p   该试点项目在启动时的目标可谓是雄心勃勃:完成100,000人全基因组序列的患者测序。英格兰国家卫生服务局(NHS)招募的参与者获取的基因序列将用于建立罕见病和癌症的研究队列,同时未来还将使用这些数据为诊断提供信息并指导临床护理。 /p p   当时的总理大卫卡梅伦是这次项目启动背后的强大后盾,他的长子伊万患有罕见的遗传病大田原综合症,这种病的体征是无数次严重的癫痫发作。不幸的是,2009年伊万在他六岁时死于此病。 /p p   2017年BIO会议的一个人头攒动的大厅里,卡梅伦这样表示:“这让我觉得我们可以做更多的工作来帮助研究遗传学和基因组学的药物,所以我通过了100,000人基因组计划项目,第一个测序的基因组至今仍旧放在我的桌子上,我认为可以将基因组数据库与我们的国家卫生服务部门结合起来。” /p p    strong 这项庞大的基因组计划绝不仅仅是一个梦想,它的最终目的旨在为所有5500万公民提供基因组医疗服务。 /strong /p p   Genomics England首席商务官Joanne Hackett表示:“由于当时全基因组测序的成本非常高,所以并没有人大规模地做这件事。“而就在其成立一年多后,Genomics England宣布与测序巨头Illumina合作,继而耗资3亿英镑,建成了剑桥外的Wellcome Trust Sanger研究所Genome校区的测序中心。 /p p   根据Illumina副总裁兼首席科学家David Bentley的说法,英国基因组学在项目结构方面的远见卓识绝对不容小觑,而他们认为这便是医学遗传学的未来。 /p p   尽管这项任务面临庞大的挑战,但这一切最终还是得到了回报。去年10月,NHS宣布将从该试点过渡,并将开始为任何疑似患有罕见病和某些癌症的人提供全基因组测序,而迄今为止最大规模的基因组医学服务将部署于世界上每一个角落。 /p p   就在去年12月初,英格兰基因组计划领导人宣布:已完成在2018年底测序100,000个基因组的宏伟目标,而要知道,截止去年2月他们才刚刚对50,000个基因组进行了测序,这无疑是一个巨大飞跃。 /p p   目前测序中心的试验步伐依旧迅速,现在每个月的检测速度在6,000到7,000个全基因组之间。而如果服务需求增加,数量上仍有足够的空间上涨,因为其测序操作已从目前正在使用的HiSeq仪器转换到Illumina新的,更快的测序平台NovaSeq。 /p p    strong 临床基因组的挑战 /strong /p p   虽然100,000基因组计划的第一个任务是帮助开发通过NHS提供基因组医学的工作模型,但它还包括运行一个平行的研究机构来利用测序数据供学术和商业实体使用,数据和相关发现将使NHS能够不断改善其对患者的服务。 /p p    strong 如何实现研究到临床护理的转化 /strong /p p   该组织与该项目的NHS关键联络人福勒表示:“我作为一名区域流行病学家目前正在调查传染病的暴发,而100,000基因组项目能够促进医疗保健转型,我坚信,而这势必会将研究和临床实践紧密结合在一起。” /p p   该计划的目的是将罕见病和癌症序列分离为50%和50%。但是,在开始收集癌症样本后不久,福勒和他的团队发现,对于大多数研究环境而言依靠FFPE组织样本是无效的。虽然FFPE样本长期被临床医生和研究人员使用,在存储人体组织有优势,通常有助于比较在不同时间采集的样本以跟踪疾病的进展。但是这些样品的测序通常是针对少数基因的,这些活动通常不受组织固定过程中已知的DNA降解和片段化的影响,而这时新鲜冷冻变成了唯一可行的选择。 /p p   放弃FFPE组织样本的决定使该项目的癌症患者招募工作停滞了大约一年,最终分离的结果为60%的罕见疾病基因组和40%的癌症基因组。英国基因组学研究人员正在试验不同的冷冻方法,以确定它是否影响测序质量以及样品使用不同的运输方法保持其完整性的时间。 /p p   福勒表示:“我不确定具体的数字是怎样的,但我们每周收到400份新冷冻样品,而这种数量是我们始料未及的。” /p p    strong 教育和培训 /strong /p p   NHS在接下来的18个月内会让所有国家医院信托基金的工作人员得到培训,计划在10年内培养出一支训练有素的基因组医学工作者队伍。 /p p   Chandratillake表示:雄心壮志很重要,100,000人测序看似是一座不可攀登的山峰,而我们现在已经登上山顶。现在我们要攀登一座更大的山。 /p p   Pope表示:由于NHS的目的是继续从基因组医学服务的患者那里收集研究数据,患者必须经过一个知情同意过程。因此,临床医生需要与患者就临床决策达成共识。” /p p   对于Chandratillake来说,全国范围内的基因组医学也是NHS的一个具体例子,它关注的是跨越种族,区域和社会经济方面的护理公平。通过100,000个基因组计划,NHS跟踪了患者招募和人口覆盖情况。 /p p   然而,除了护理公平,除了迄今为止最大规模的基因组医学部署,NHS和Genomics England的努力也正在迈入一个新的领域。 /p p   也许医疗保健领域的数字革命才刚刚开始。 /p p    strong 参考文献: /strong /p p   Genomic Medicine for the Masses England’s National Health Service launches genomic medicine service for all 55 million citizens /p
  • 如何选择新冠病毒基因组测序的方法和策略?
    高通量测序之于病毒基因组,在检测和研究中的意义和价值已得到广泛验证。但在开展具体的高通量测序工作时,可能会面临很多实际的操作问题,譬如:方法上选择宏基因组测序还是靶向测序?测序策略上选择多少数据量、何种读长?哪些测序平台的通量和数据量更能满足实验室检测要求?以新冠病毒为例,本文对高通量测序在检测和研究中可能面临的问题与选择进行一一剖析。图1 在检测和研究中可能面临的问题与选择测序目的:快速检测or序列组装?高通量测序技术应用于新型冠状病毒的检测和研究,可以实现快速检测以及病毒序列组装。测序目的不同,需要选择合适的方法和策略:如需对qPCR检测呈阴性的疑似病例进行确诊,或对复合性感染、继发性感染等进行鉴别诊断,或对大量待测样本进行大规模筛查,可以利用高通量测序技术进行快速检测;如果需要实现病毒序列组装,以进行未知病原的检测、分析和研究,可以利用高通量测序技术进行更高深度更高覆盖度的测序,获得完整的病毒基因组序列。测序方法:宏基因组测序or靶向测序?对病毒基因组进行高通量测序,可以采取宏基因组测序或靶向测序(包括探针捕获测序和多重PCR扩增子测序)。不同的方法各有优势,可根据实际应用进行选择。图2 不同高通量测序方法的比较可供参考的建议如下:1. 对未知病原的发现及确认,首选宏基因组测序;2. 如需检测或研究样本中所有可能感染的微生物,比如诊断不明原因感染、混合感染、继发感染等,可以选择宏基因组测序;3. 如只需针对目的病毒进行检测,希望以较少的数据量获得目的病毒全长序列,可以选择靶向测序。测序数据量关于测序数据量,需结合具体的测序目的、测序方法、样本病毒载量等因素进行综合评估。通常,提高测序数据量,可以提高检测灵敏度,改善临床检测的阳性率。另外,提高测序数据量,可以提高数据覆盖度,病毒序列组装效果更好。以满足病毒基因组覆盖度95%,且单碱基深度10x为条件:如采用宏基因组测序,可根据使用的研究材料(即待检样本)的情况,选择测序数据量。病毒载量在104 copies/ml以上或qPCR定量CT值qPCR定量CT值在24.5~28.7范围的样本,推荐数据量为100Gb(PE100,500M reads)。对于病毒载量极低的样本(CT值>28.7),不建议使用宏基因组测序,可以采用多重PCR扩增子测序。如采用多重PCR扩增子测序,推荐数据量为5-20M。该方法也适用于病毒载量极低(<102copies/ml)的极端样本检测。注:推荐样本数据量仅供参考图3 基于测序方法及样本病毒载量的测序数据量选择测序读长如进行快速检测,可采用单端测序,推荐SE50/SE100读长,快速、经济;如需要进行病毒全长序列组装,建议使用双端测序,推荐PE100/PE150读长,测序数据质量高、Reads比对更好。图4 测序读长选择测序文库的处理针对病毒RNA测序,在文库制备过程中是否去除核糖体RNA(rRNA)也是一个值得探讨的问题。rRNA占总RNA的80%以上,去除人类rRNA可以提高有效数据利用率。同时也需要考虑样本情况:如果病毒核酸投入量低,以及放置时间久、降解严重的样本,去除rRNA可能会影响建库效果,可以选择不去rRNA,以提高建库成功率。图5 MGIEasy rRNA去除试剂盒测序平台的选择根据实验室样本规模,选择合适的测序平台。每个平台单次运行的样本数与测序方法、测序数据量相关。其中,宏基因组测序方法,一般以单个样本的数据通量100M reads为参考;多重PCR扩增子测序方法,以单个样本的数据通量>5M reads为参考。注1.以单个样本的数据通量100M reads为例;注2.以单个样本的数据通量>5M reads为例。图6 测序平台单次运行的样本数估算小贴士基于DNBSEQ平台的已发表文章目前,已有多篇基于DNBSEQ平台的新冠科研文章在Lancet、nature、Cell等顶级期刊获发。基于DNBSEQ平台的高通量测序技术助力新冠病毒科研攻关,得到了越来越多科研学者的认可。参考文献Multiple approaches for massively parallel sequencing of HCoV-19(SARS-CoV-2) genomes directly from clinical samples.
  • 基因组所完成鲤鱼基因组初步测定分析
    近日,中国科学院北京基因组研究所运用新一代高通量测序技术以及高性能的生物信息分析,完成了鲤鱼基因组初步测定与分析工作,获得了鲤鱼基因组高覆盖的基因组数据。&ldquo 鲤鱼基因组计划&rdquo 是基因组所与水产生物应用基因组研究中心和黑龙江水产研究所联合开展的研究项目,目前项目进展顺利,是我国鱼类第一个全基因组测序计划,也是世界上第一个鲤科经济鱼类基因组计划。   本项目主要依托于基因组所基因组及生物信息学平台第二代高通量测序仪进行测序分析工作,该平台拥有13台新一代高通量测序仪(SOLiD、Solexa和 454测序仪)、3台3730xl,1台3130xl的测序规模,拥有超过10万亿次/秒的计算能力和大于1000TB的存储。目前已经完成部分454shotgun文库段测序,总体数据已经达到4乘的覆盖度,完成部分组织转录组的工作,为基因组注释提供参考。目前该项目正在加紧进行生物信息学的分析,预计将比计划提前完成鲤鱼基因组框架图的工作。   科学家希望通过鲤鱼基因组测序及其序列分析,为研究养殖鱼类的生长、发育、繁殖、遗传变异、疾病、与环境的相互用(包括抗逆能力)及其遗传改良提供重要的参考甚至指导信息。通过鲤鱼基因组的研究,可以获得与经济性状相关的基因,与疾病的发生及免疫相关的基因等,为鲤鱼的遗传育种提供基础。   随着人和其它主要动植物基因组的破译,模式动物和经济动物基因组计划方兴未艾,越来越多的鱼类被提上议程,世界各国的科学家相继完成了一些鱼类的基因组测序和分析工作,大都以本区域或者本国的鱼类产品为主,例如日本完成的青鳉鱼,挪威和加拿大共同完成的大西洋鲑等。作为我国鱼类中分布最广、品种最多、产量最高的鲤鱼基因组计划的开展,是我国水产科研步入现代科学先进行列的标志性事件,将对我国乃至世界水产业的发展产生重要的影响。
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 2017: 基因组学的突破之年
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/6d24d129-b200-4ee0-805e-22b518688387.jpg" title=" 1.jpg" style=" width: 599px height: 322px " width=" 599" vspace=" 0" hspace=" 0" height=" 322" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Francis deSouza br/ /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong & nbsp Illumina公司总裁兼CEO /strong /span br/ /p p style=" text-align: left " br/   Evelyn Villareal出生时患有1型脊肌萎缩症(SMA1),这是一种遗传病,患病的婴儿会逐渐瘫痪。诊断结果让她的父母心碎不已,因为他们的第一个女儿也被这种疾病夺去了生命,当时她只有15个月大。大多数患病的儿童活不过两岁。 br/   不过这一次,这个家庭发现了一种临床试验。八周时,Evelyn接受了一种实验性治疗,具体方案是让携带健康基因的病毒穿过血脑屏障,提供一种关键的缺失蛋白。试验获得了惊人的成功:所有15个婴儿都取得了良好的反应,Evelyn现在已经三岁了。 br/   SMA1并不是个例。经过20年的紧张工作,我们突然发现一系列的基因治疗都取得了成功。Spark Therapeutics公司的Luxturna有望成为第一个被批准用于遗传性失明的药物。另一种针对大疱性表皮松解的实验性治疗也在开发当中。这些患病的孩子常被称为“蝴蝶儿童”,因为他们的皮肤如蝴蝶翅膀一般脆弱。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 对抗癌症 /strong /span /p p   癌症是一种遗传病,所以基因组测序可以在癌症诊断和治疗中发挥重大作用。Foundation Medicine的综合性实体瘤遗传检测FoundationOne CDx& #8482 近日获得了美国食品药物管理局(FDA)的批准,这一事件具有里程碑式的意义。 br/   利用新一代测序,这种检测寻找324个基因中与黑色素瘤、乳腺癌、结直肠癌、卵巢癌以及非小细胞肺癌相关的变异。肿瘤医生根据检测的结果,将每位患者与获批的靶向疗法、免疫疗法或临床试验相匹配。 br/   这一成功案例并不是孤证。今年,美国FDA简化了肿瘤分析检测的批准程序。更多产品即将获批。 br/   FDA也创造了历史,批准了美国第一个基因治疗:诺华(Novartis)的Kymriah,适用于治疗患晚期白血病的儿童。FDA很快又批准了吉利德(Gilead)旗下Kite Pharma的Yescarta,它适用于一种成人淋巴瘤。这些疗法从人体中提取出T细胞,对其进行遗传改造,使其对抗患者的特定癌症。 br/   默克(Merck)的免疫治疗药物Keytruda则是另一个监管上的里程碑,它是第一个获批的癌症治疗药物,适用于带特定基因组生物标记的实体瘤,而无论其在身体中的何处。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 基因编辑的进展 /strong /span /p p   作为近年来最激动人心的发现之一,CRISPR-Cas9基因编辑能够确保稳定的食物供应,让生物燃料更经济,并治愈许多遗传病。此外,一种新的CRISPR变体Cas13让研究人员能够编辑RNA,而不仅仅是DNA,这打开了许多治疗应用的大门。 br/   2017年,一名患者首次接受了一种意在精确编辑体内细胞DNA的疗法,该临床试验利用基因编辑工具来治疗亨特综合征,这是一种遗传代谢疾病,可导致严重残疾。 br/   另外,研究人员还利用CRISPR来校正胚胎的遗传性疾病。研究小组修复了MYBPC3基因中的突变,这些突变可能导致心源性猝死及其他心血管疾病。如今,我们拥有了工具,有望消除亨廷顿舞蹈症、囊性纤维化及其他遗传病。不过,生殖系的编辑也引发了伦理问题。研究需要开展下去,而法律、监管和伦理的讨论也必须跟进。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 患者权益的改善 /strong /span /p p   基因组测序已经推动了医疗保健的各种进步,但如果患者享受不到,便毫无意义。今年,精准医疗在付费者接纳方面迈出了重要的一步。 br/   FoundationOne Cdx实体瘤检测除了获得FDA的监管批准,还获得了美国联邦医疗保险(Medicare)的初步覆盖,这意味着最容易患癌症的老年患者将有更多的机会使用这种检测。 br/   其他付费者也正参与其中。11月,美国最大的私营保险公司联合健康保险(United Healthcare)开始报销罕见病患儿的全外显子组测序。 /p p br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 更多的群体基因组学 /strong /span /p p   全世界的多个国家在群体基因组学上继续取得进展,希望更好地了解遗传学与疾病之间的关联。丹麦和印度也加入英国、美国、中国、卡塔尔、沙特阿拉伯、土耳其和爱沙尼亚的行列,开展群体基因组学计划。截至本月,全球首个也是最大的群体基因组学行动Genomics England的十万人基因组计划已经对癌症或罕见遗传病患者的41,000多个基因组进行了测序。英国国民保健署(NHS)正准备将全基因组测序作为某些罕见病和癌症患者的常规诊断检测。 br/   同时,法国也首次指定了2个测序点,而最终将有12个测序点分布在该国的大学医院,作为法国2025年基因组医疗计划的一部分。该计划旨在将基因组医疗整合到法国的临床保健行动中,其目标是在2020年之前,每年对23.5万个基因组进行测序。 br/   在美国,国立卫生研究院的All of Us研究计划开始招募参与者,而美国退伍军人事务部也签订了一份合同,对百万退伍军人计划(MVP)的首批34,000个基因组进行测序。最终,All of Us和MVP计划将分别收集超过百万名美国人的健康数据,包括基因组信息。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 基因组学无处不在 /strong /span /p p   2017年,基因组学生态系统以多种方式扩大,包括直接面向消费者的市场。Helix推出了在线消费者市场,提供基于DNA的产品。23andMe的客户超过了200万。单就今年来看,AncestryDNA的客户就翻了一番,超过600万,也创造出世界上最大的DNA数据库。 br/   这一势头将逐步强劲,而周密的监管将起到重要作用。FDA宣布,它正在简化消费者检测公司的审查程序。 br/   以基因组学为重点的创业公司也呈爆炸式增长,包括Illumina加速器资助的那些。例如,Checkerspot正利用先进的生物技术和化学来设计高性能的材料,而Mantra Bio正利用外泌体(exosomes)这种天然存在的细胞结构来输送新一代的靶向治疗药物。 br/ /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 临床基因组学 /strong /span /p p   研究人员和临床医生正为充分利用基因组学而另辟蹊径。基因组测序技术让新境界触手可及:更大规模的研究,以全基因组而不是外显子组为对象的更广范围应用,以及超深度测序。这将让“大海捞针”的应用成为现实,比如开展深度的肿瘤分析,或通过一滴血来寻找单个癌症分子。 br/   麻省理工学院和哈佛大学旗下Broad研究所的研究人员表明,他们能够检测患者血液中几乎90%的肿瘤遗传特征,而Illumina子公司Grail也推进了其液体活检项目。 br/   Illumina的NovaSeq架构也支持这些及其他方面的工作,而这种技术才刚刚开始在患者中发挥作用。 br/   保健革命的潜力是惊人的。目前,只有少数实体瘤得到了测序。科学家已经开始揭示ApoE4基因变异如何增加阿茨海默病的风险。同时,人类细胞图谱(Human Cell Atlas)计划正在绘制人体中全部37万亿个细胞。通过描绘和定义健康与疾病的细胞基础,这项大胆的举措将影响生物学和医学的方方面面。 br/   测序有望彻底改变癌症、未确诊的罕见遗传病及进行性疾病(如阿茨海默病)的治疗方式。对于Evelyn等孩子来说,生活从此变得不同,他们如今也有机会过上健康长寿的生活。而作为Illumina的一份子,我们很荣幸能够推动这些进步,让全世界的广大民众受益。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/6322412a-1eff-448c-9715-2532ee6f71f3.jpg" title=" 2.jpg" style=" width: 600px height: 400px " width=" 600" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p
  • 对10万患者基因测序,以色列将建基因组数据库
    p style=" text-indent: 2em " 今年早些时候,为确立自己在精准医学和数字健康领域的世界领先地位,以色列提出了一项开发基因组和临床数据研究平台的国家倡议。 strong 近日,以色列宣布将开启一项大型人口基因组计划,计划到2023年,对超过10万名患者进行基因组测序,以改善患者的个体化医疗服务。该计划还将于2019年初开始与以色列健康管理组织(HMO)合作并收集患者样本。 /strong span id=" _baidu_bookmark_start_25" style=" line-height: 0px display: none " ? /span /p p style=" text-align: center " img width=" 598" height=" 240" title=" 311.jpg" style=" width: 529px height: 218px " alt=" 311.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7f38dd31-6fc6-4abb-998b-cd6924afd51f.jpg" / /p p style=" text-align: center " strong 凭借独特优势 建立国家健康数据库 /strong /p p   据悉,以色列政府计划花费约10亿新谢克尔(约2.66亿美元)来支持这项基因组和个性化医疗计划。该计划的共同组织者、以色列创新管理局技术基础设施部门高级专家Ora Dar表示,该计划的 strong 最初动机就是改进数字医疗健康技术和基础设施,使以色列人民受益。 /strong 除创新管理局外,以色列总理办公室、财政部、卫生部、社会平等部、经济部、科学技术部以及高等教育委员会的领导人也在牵头开展这项计划。据他透露,领导该计划的CEO已经被选举出来,将负责政府以外的资金筹集工作,详细信息目前尚未公布。 /p p   Dar介绍道,工作团队将专注于整合医学、学术科研和工业转化,以便为患有多种疾病患者提供个性化的解决方案。作为该计划的一部分,研究团队还将开展Mosaic Project,招募可代表以色列流行病和种族特征的志愿者, strong 在保证隐私安全和匿名的前提下,收集其临床和基因组信息,最终建立一个可用于研究遗传学和医学信息的国家健康数据库 /strong 。研究团队将在常规医院收集志愿者的生物样本,包括血液、唾液、尿液、粪便以及其他类型的样本,以收集全面的生物信息。志愿者还可以预约进行特定样本收集。 /p p   在Mosaic数据库中,研究人员可以通过识别不同患者的信息,选择性进行NGS测序和其他检测。同时,该研究团队也将开发数据分析技术,尤其是肿瘤的个性化治疗研究领域,但患者样本采集收集工作流程仍需要详细的验证。此外,该计划也将建立科学和伦理委员会,负责研究项目批准和测序资金分配。人们需要申请以获得数据可的访问权。 /p p   Mosaic数据库将借助以色列的独特“竞争优势”得到充实,包括国家获取的患者医疗数据,多样化的遗传人群、先进的科学研究项目以及日益增长的创业环境等。 strong 因为在过去的20年中,98%的以色列人口已经完全被电子医疗记录体系覆盖 /strong ,包括以色列人、贝都因人以及来自世界各地的人,而且大部分人都获得了两个大型HMOS的投保。Dar相信,借助近20年的医疗健康信息,Mosaic Project能够展示以色列公民患有的长期疾病和发病趋势。 /p p   尽管有政府支持,但不可否认的是,该计划的实施仍存在一些障碍。首先就是进一步加强数据系统和数据标准化。为方便人工智能检查患者的数据,要对患者的电子医疗记录、医学影像和样本进行实时监测。同时,还要改善和扩大研究人员获取临床数据的机会,以及加强数据分析人员的培训和资格认证。在道德伦理审查、知情同意和隐私安全方面也要投入大量精力。 /p p style=" text-align: center " strong 大人群基因组计划的兴起 /strong /p p   除了以色列的基因测序计划,也有多个国家先后宣布启动大型人口基因组测序计划,夯实以基因数据为基础的精准医学,为疾病诊疗、药物研发提供更多的数据基础。近日,英国方面宣布,其“十万人基因组计划”工作已经完成。该计划于2012年启动,历经5年半,耗资超5亿美元。计划收集的10万人的基因组测序信息可以帮助科学家和医生更好的了解罕见病和癌症,创造新型“基因组医学服务”框架。此外,2018年10月,英国政府宣布将在未来5年内开展500万人基因组计划,这是迄今为止全球最大规模的人群基因组计划。 /p p   2017年12月,中国正式启动“十万人基因组计划”。这是我国在人类基因组研究领域实施的首个重大国家计划。该计划将绘制中国人精细基因组图谱,研究疾病健康和基因遗传的关系。其覆盖地域包含我国主要地区,涉及人群除汉族外,还将选择人口数量在500万以上的壮族、回族等9个少数民族。 /p p   2018年5月,美国国立卫生研究院正式启动All of Us 研究项目,以加速精准医学研究、改善健康状况。All of Us是NIH近年来资助规模最大的项目之一,也是一项全民参与的健康研究项目。该项目预计纳入100万人的队列研究,参与者包括各种族、不同年龄和性别的人群,也包括病人和健康人。 /p p   此外,法国、澳大利亚、日本等国家都启动了大型的人口基因组测序计划。所有这些计划都指定了多个公司作为合作伙伴,为研究的开展提供特定测序技术服务,帮助分析基因组数据。以以色列的基因组计划为例,目前有500多家以色列公司在数字健康处理方面为该计划提供服务,同时将有更多技术型企业加入合作,某些公司还可以开发网络技术保护患者的个人数据和隐私。具体信息将在2019年年初公布。 /p p   基因组医学为医学研究带来了一场革命。随着世界各国万人级别基因组测序计划的逐渐兴起,以基因组学为基础的精准医学也迅猛发展,大数据竞备赛的帷幕已经拉开。大量基因测序计划的实施为为开发医疗解决方案和创建大数据分析平台提供了数据基础,为癌症、罕见病等疾病的研究提供了数据支持。同时,从事医疗设备、药品、医疗人工智能和数据分析的科学公司也能从中获得临床、基因组和其他相关数据,并最终造福患者。 /p p   参考资料: /p ol class=" list-paddingleft-2" style=" list-style-type: decimal " li p Israel to Sequence 100K People, Create Genomic Database to Support & #39 Digital Health& #39 /p /li /ol
  • 人类基因组计划完成15周年——从个人基因组到精准医疗
    本文作者基因组学科技工作者田埂,原文题目&ldquo 写给人类基因组计划完成十五周年:从一个人的基因组计划到精准医疗&rdquo 。   &ldquo 美国总统克林顿于当地时间26日上午10时在白宫举行的记者招待会上郑重宣布,由一批国际科学家组成的人类基因组研究计划已经完成人类基因组草图。英国首相布莱尔以卫星电视的形式参与了这个发布会。克林顿在评价这一历经10年时间完成的科学成果的深远意义时说,&lsquo 人们将世世代代记住这一天&rsquo 。他感谢美国、英国、德国、日本、中国和法国的上千名科学家为取得将这一开辟新纪元的成果所作出的贡献。&rdquo   田埂教授   刚刚看到这个2000年6月26日的新闻,突然发现不知不觉时间已经过去了15年。那个时候人们对刚刚完成的人类基因组草图充满了期盼:通过人类基因组信息帮助人们克服疾病,达到人们的终极健康长寿的需求。   在人类基因组计划完成的这15年里,那些主要参与国美国、英国、中国都发生了什么?   15年后的今天人们所能感受到的人类基因组计划的影响究竟是个什么样子?   未来的人类基因组研究和应用在往哪个方向发展?   15年后的今天,人们依然充满了期望。   美国在人类基因组计划完成后的变化   人类基因组计划组织和塞雷拉基因组公司兵分两路   在美国,人类基因组计划完成以后,原先竞争的两大阵营:人类基因组计划组织和塞雷拉基因组(Celera Genomics)公司,分别走向了两个方向:人类基因组计划原先的参与Whitehead Institute(后来的著名的Broad Institute)、美国能源部基因组中心、华盛顿大学医学基因组测序中心、贝勒大学医学基因组测序中心等11个基因组中心继续开展各类大型的基因组研究计划 塞雷拉基因组公司,则转向了心血管病和个体化医疗管理等商业方向。   可以说美国的人类基因组研究有一个贯穿始终的目的,就是将人类遗传和基因组信息应用到医疗和健康领域。因为科学家们认识到从第一个人类遗传病亨廷顿氏舞蹈症(Huntington&rsquo s Disease,又称为慢性遗传舞蹈病)的基因被定位,这种通过家系研究定位遗传病的方式,在没有对人类基因组序列的深刻认识,没有对人类遗传规律深刻的了解情况下,医学遗传学研究的速度将无法从本质上提高。   在这个认识的基础上,美国先后启动了&ldquo 国际人类基因组单体型图计划&rdquo (The International HapMap Project,HapMap计划) &ldquo 癌症基因组图集&rdquo (The Cancer Genome Atlas,TCGA)计划 &ldquo DNA元件百科全书&rdquo 计划(Encyclopedia of DNA Elements,简称ENCODE) 千人基因组计划(1000 Genome Project),以及最近炒的火热的&ldquo 精准医疗计划&rdquo (The Precision Medicine Initiative)。这些计划投资规模以百亿美元计,参与科学家以数万人计。可以说美国人在朝着既定的目标一步一步向前发展,脉络清晰,步骤明确,并且从人才培养到技术支撑,从领导科学家选拔到商业运行模式上的探索,都走在世界的前面。   在这15年的时间里,参与人类基因组计划的几位领导科学家也有了各自的发展:当时的领导科学家Francis Collins已经是现任NIH的主任 Whitehead Institute研究所的主任Eric Lander完成了将Whitehead Institute从MIT和Harvard的独立出来的工作,已经成为美国最大的基因组研究中心,他本人也是奥巴马总统的科技参赞,可以参与美国的科技政策决策 &ldquo 科学狂人&rdquo 塞雷拉基因组公司创始人Craig Venter则独辟蹊径,虽然塞雷拉基因组公司已经不再复当年风光,但是Craig Venter却先后成为第一个合成原核生物基因组的人,第一个用计算机模拟生物整个代谢途径的人,第一个提出海洋基因组学研究并实施的人。   与此同时,美国在基因组研究技术上也领先于世界,从人类基因组计划所使用的ABI和Amersham的第一代测序仪,到HapMap计划使用的Affymetrix和Illumina公司的芯片,再到千人基因组和TCGA以及Encode计划使用的Illimina公司的第二代测序系统,以及Pacbio的第三代测序系统,美国人在测序和基因组技术上的创新和积累,依然领先于世界。   英国在人类基因组计划完成后,率先启动十万人基因组项目   再看看英国:英国人对基因组研究的热情始终如一,从Frederick Sanger先生发明第一代测序系统,到首先参与美国提出的&ldquo 人类基因组计划&rdquo ,贡献仅次于美国,英国有欧洲大陆最大的基因组研究中心&ldquo Sanger Institute&rdquo ,是第二代测序技术的参与发明国,共同提出和启动了&ldquo 千人基因组计划&rdquo ,共同提出并启动和领导了&ldquo 国际肿瘤基因组计划&rdquo ,率先启动了Genome England的十万人基因组项目,间接影响到美国的&ldquo 精准医疗计划&rdquo 的提出。   英国人在人类遗传学上的投入也不遗余力,英国有全世界研究人类遗传病最好的研究团队,并且英国有政府引导,科学家和企业共同参与的举国基因组研究体制,可以说虽不及美国人在人类基因组研究上的布局深刻,但是英国总能在某些领域里有独特的见解和布局,通过自己的方式影响着世界,并且不得不说的是,英国在基因组研究领域对中国科学家毫无保留的帮助的无私情怀,从捐赠中国华大基因研究中心测序仪,到在各种国际合作中为中国提供便利和帮助,以及帮助中国培养基因组学研究人才,可以说中国的基因组学发展处处都有英国的帮助。   中国在人类基因组计划完成后,积极探讨&ldquo 中国版的精准医疗计划&rdquo   再看看中国这15年人类基因组学的研究进展。首先看看当时的报道&ldquo 1999年的日历翻开了。杨焕明说,要干就要干大,再难也要干大。于是,杨焕明、汪建、于军凑出了自己积蓄的200多万元。他们用这笔钱,购买了一台&ldquo 377&rdquo 型测序仪和一台美国产的毛细管测序仪。在不到半年的时间里,他们递交了人类基因组序列70万个碱基的测序结果,并做了热泉菌测序。这些成果,引来了国际同行的瞩目。&rdquo   6月29日,记者来到了中科院遗传所人类基因组中心。在实验室,记者看到,工作平台是用集装箱搭成的。在平台上,有三根玉米棒,旁边有一行字:穷棒子精神永放光芒!据介绍,深居京郊的这些科研人员,收入不高,也没有娱乐,在&lsquo 1%&rsquo 测序中,他们测序精确,但相应的测序成本却只有美国等国家测序成本的四分之一。&rdquo &ldquo &lsquo 中心&rsquo (作者注:北京华大基因研究中心)执行主任汪建对记者说:&ldquo 中国虽然只做了1%,但意义重大。中国科研人员在测序过程中,不仅增加了设备,而且培养了技术。21世纪生物产业发展的机遇,中国没有失去。&rdquo 他意味深长地说。&rdquo   随后,中国科学院成立了&ldquo 中国科学院北京基因组研究所&rdquo ,专注基因组研究,中国也参与了HapMap计划,同时发表了一系列植物和动物的基因组学研究成果,但从那以后中国的基因组学研究一度遭到寒冬,在大约三年的时间里,鲜有大型研究项目启动,研究成果也较少。   2007年6月华大基因南下深圳,成立了&ldquo 深圳华大基因研究院&rdquo ,深圳华大抓住了二代测序发展的关键时期,用独特的运行模式,先后完成了&ldquo 炎黄一号&rdquo 第一个黄种人基因组测序研究,发起并实施了&ldquo 炎黄九九基因组研究项目&rdquo ,共同参与设计和启动&ldquo 千人基因组计划&ldquo ,共同参与和发起&ldquo 国际肿瘤基因组计划&rdquo ,共同发起&ldquo 中国肿瘤基因组协作组&rdquo ,上个月华大发表了&ldquo 炎黄一号&rdquo 单倍型图的研究成果,将黄种人的基因组组装成了最完整的人类基因组单倍型图。   这些研究计划开展和研究成果陆续发表的同时,华大还培养了大批基因组科技人才,这些人才活跃在国内外基因组研究和产业化的各个领域。在有感于产业链上游测序仪的限制后,深圳华大于2012年完成了对美国Complete Genomics公司的收购,打通了产业链上下游。当然,这些大型的研究计划,都得到了深圳市政府和国家科技部等的支持。   展望:把握住基因组学发展的脉络,真正实现精准医疗的设想   在英国和美国相继提出自己的大型基因组研究计划后,中国也在积极讨论&ldquo 中国版的精准医疗计划&rdquo ,作为基因组学科技工作者我们也期望中国的&ldquo 精准医疗计划&rdquo 把握住基因组学发展的脉络,顺应人类基因组学研究发展的规律,真正实现精准医疗的设想。   回顾人类基因组计划完成这15年历史,我们会发现,在当年人类基因组计划的基础上,已经逐步建立起来的人们使用基因组和遗传信息来指导健康生活和医疗的路线图,相信在下一个15年,我们再笑谈15年里人类基因组研究和应用的发展时,我们可以欣慰的告诉自己,我为人类了解自己的基因组并应用做出了贡献。最后,由衷感谢参与人类基因组计划的所有科学家和科技工作和的工作,更加感谢中国参与过人类基因组计划的科学家和科技工作者们,是你们的辛苦工作让国人有机会更早的享受到基因组学进展为我们的健康生活和医疗带来的好处。   备注:作者田埂系基因组学科技工作者。
  • 浙江省分析测试协会发布 《水稻转基因序列检测 高通量全基因组测序法》 浙江测试团体标准
    根据国家标准化管理委员会、民政部《团体标准管理规定》和《浙江省分析测试协会“浙江测试”团体标准管理办法》的相关规定,《水稻转基因序列检测 高通量全基因组测序法》(标准编号:T/ZJATA 0018-2023)浙江测试团体标准经本协会批准,自2023年11月10日起实施。 特此公告。浙江省分析测试协会2023年10月10日浙江省分析测试协会关于发布《水稻转基因序列检测 高通量全基因组测序法》标准的公告.pdf
  • 北京基因组所等开发出叶绿体基因组综合数据库
    叶绿体是植物将光能转化为化学能的重要细胞器,具有独立的基因组。自植物叶绿体基因组被发现以来,被广泛应用于植物系统进化关系研究、光合作用调控机制研究、叶绿体基因工程等方面。随着基因测序技术的发展,尽管已发布了海量的植物叶绿体基因组序列,但如何整合应用这些数据目前仍面临数据命名标准不统一、数据信息不全以及较高经济价值的物种尚未进行测序等问题。  近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心章张、宋述慧团队,联合中国中医科学院中药资源中心袁媛、黄璐琦团队,开发了迄今为止物种数量最多的叶绿体基因组综合数据库Chloroplast Genome Information Resource(CGIR )。CGIR收录了来自11,946个物种的19,388条叶绿体基因组序列,包括利用全国第四次中药资源普查标本自测的718种未发表的叶绿体基因组序列,按照基因组(Genomes)、基因(Genes)、微卫星序列(SSRs)、DNA条形码(Barcodes)、DNA特征序列(DSSs)五个功能模块对数据进行组织与管理。相关研究成果以Towards comprehensive integration and curation of chloroplast genomes为题,发表在Plant Biotechnology Journal上。  根据生物物种名录(The Catalogue of Life),经过大规模人工审编,CGIR对所收录叶绿体基因组的物种分类信息进行审编,按照纲、目、科、属、种不同分类层级进行整理,并依据权威植物研究机构邱园发布的世界功能植物名录(World Checklist of Useful Plant Species)对药用植物、食用植物、环境植物、能源植物、有毒植物、能源植物等进行标注。同时,CGIR审编修正基因名的不规范命名、异名、错误注释等情况。在此基础上,CGIR系统整理各基因组的基因注释信息,为用户检索、浏览和信息获取提供便利。  针对分子标记开发这一叶绿体基因组最为常见的应用情景,CGIR使用生物信息学方法计算了所收录叶绿体基因组的微卫星序列、DNA条形码和DNA特征序列三种不同类型分子标记信息,同时,开发了相应的树型视图方便用户根据分类层级信息快速寻找目标标记,简化了科研人员开发分子标记的流程。  CGIR通过自主测序、整合公开基因组资源和人工数据审编向用户提供了目前最全面、物种数量最多的叶绿体基因组数据。经审编的物种分类、物种功能、基因名称与序列、分子标记等保证了数据的高度可靠,对植物系统发育、物种鉴定、叶绿体基因工程的发展均具有重要意义。  研究工作得到科技基础资源调查专项、中国中医科学院科技创新工程项目、中央本级重大增减支项目“名贵中药资源可持续利用能力建设项目”的支持。  论文链接 CGIR数据处理示意图及主要功能模块的数据统计
  • 功能基因组学高峰论坛---基因大数据时代
    p & nbsp /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 第四届全国功能基因组学高峰论坛共设基因与大数据、基因组与功能基因组学、基因科技与精准医疗三个分会场有近七十位学术专家带来了精彩报告。报告内容涉及基因组学在各领域内的前沿及研究进展,可谓百花齐放,百家争鸣,与会专家积极提问交流,现场反响热烈。 /p p & nbsp /p p strong 基因大数据时代的关键是数据分析 /strong /p p style=" text-align: center " img title=" IMG_6778_副本.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/7f5c106c-ac3e-492a-a21d-318f0cce4688.jpg" / /p p style=" text-align: center " 中国科学院生物物理研究所院士陈润生 /p p & nbsp /p p & nbsp & nbsp & nbsp & nbsp & nbsp 中国科学院生物物理研究所的陈润生院士是中国最早从事理论生物学和生物信息学研究的科研人员之一,他站在开拓者的高度上为大家带来了报告:大数据· 精准医疗。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 陈润生院士介绍:在美国的牵头下,精准医疗已被各国列入战略规划,因其有着直接解决当前医疗行业面临的诸多困难的潜力,预计接下来的几年将会爆发式的增长,到2018年全球市场规模会到达2238亿美元。随着技术的发展,测序已不再是难题,现在制约发展的关键是大量测序数据如何到高效的解读。陈院士打了一个有趣的比喻说,一个人的基因数据写成每本100页的书要10000本书才能写完,数据量如此大,并且生物个体间的测序数据又呈现异质化。故大量并且高度异质化的数据如何与表型正确关联,解决这一难题才是真正的挑战。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 挑战往往伴随着机遇,数据解读大有可为,同时陈院士指出:基因中只有3%符合中心法则,而97%的非编码RNA存在着大量的遗传密码暗信息。对这一领域的探究也孕育着颠覆性的发现,甚至我们认可的中心法则都有可能被改写。本次会议中有多位专家带来了其在非编码RNA领域的研究成果,其中北京大学高歌研究员建立了非编码RNA数据库并在会上与大家做了分享。期待该领域研究的重大发现! /p p & nbsp /p p strong 基因测序离不开技术的支持 /strong /p p style=" text-align: center " img title=" IMG_6775_副本.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/1b758035-9f85-4e17-82af-4bb2e646723e.jpg" / /p p style=" text-align: center " 中国科学院北京基因组研究所研究员于军 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 中国科学院北京基因组研究所于军研究员在会上分析了二代测序的优势,突破及局限并展望了三代、四代测序仪未来体外诊断技术方面应用的发展前景。于军研究员还带来了他纳米孔在测序仪方面应用的研究进展,纳米孔技术在分析研究DNA,RNA的变化行为,如共价修饰方面的应用有着巨大的潜力。 /p p & nbsp /p p style=" text-align: center " img title=" 腾讯云,百迈克.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/b01749bb-a38c-4e51-819c-f5ecc4ff20c1.jpg" / /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 数据处理就离不开计算机技术平台的配合支持,大会中百迈克公司与腾讯达成了合作。计算机技术显示出其在大数据领域的前景,腾讯开发了服务基因行业的PAAS平台—腾讯双螺旋,浪潮公司会上报告分享了其开发的在基因测序数据的整合和分析平台。 /p p & nbsp /p p strong 基因组学助力各领域科研 /strong /p p img title=" 辛业芸.JPG" src=" http://img1.17img.cn/17img/images/201710/insimg/263b29a2-456a-4d5e-813a-d5e2d86a31fa.jpg" / /p p style=" text-align: center " 湖南杂交水稻研究中心袁隆平团队中心研究员辛业芸 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 湖南杂交水稻研究中心袁隆平团队中心辛业芸研究员的报告中指出:其利用基于表型组、基因组和转录组综合分析杂交水稻产量优势相关的基因和QTLs对推动杂交稻的分子设计育种实践有重要的意义。其团队对水稻杂种优势的表型及分子基础进行了综合分析找出了小花数与有效穗数两种造成水稻产量优势的两个重要原因。 /p p & nbsp /p p img title=" 康.JPG" src=" http://img1.17img.cn/17img/images/201710/insimg/cda305f5-0beb-49e4-ae7d-ff76b70af471.jpg" / /p p style=" text-align: center " 首都医科大学附属天坛医院教授康熙雄 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 首都医科大学附属天坛医院的康熙雄教授在报告中指出临床个体化系统的建立与应用生物治疗给临床带来了崭新的治疗领域。分子检测技术的发展为实现精准医疗提供了巨大的支撑。康教授为大家带来了其在建立免疫检测点评价体系方面的研究进展,目前正在尝试新的功能辨识平台,也在寻找实验室评价体系依赖的治疗方法和抗体药物。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 基因组学研究,基因大数据分析,精准医疗等领域专家都报告了可喜的研究进展,但也可见:生物大数据时代,科研路漫漫其修远兮,任重而道远。每处研究进展都是为了让世界更明了更美好,向科研人员致敬! /p p & nbsp /p
  • 中国启动十万人基因组计划:绘制国人精细基因组图谱
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/4ff2dbe1-e196-45d3-8e15-c70b870d0740.jpg" / /p p   科学家们希望通过绘制中国人精细基因组图谱,来研究疾病健康和基因遗传的关系。 /p p   此次启动的“中国十万人基因组计划”覆盖地域包含我国主要地区,涉及人群除汉族外,还将选择人口数量在500万以上的壮族、回族等9个少数民族。 /p p   基因是DNA上有遗传效应的片断,人类的生、老、病、死等都与基因有关。而基因组和基因是整体与部分的关系,人类基因约有25000个,基因组研究的目的就是要把人体内这25000个基因的密码解开,从而破译人类的遗传信息。此次基因组计划,就是要绘制我们民族的基因图谱。 /p p   项目首席科学家 王亚东教授:主要目标是研究中国人从健康到疾病是怎么转化的,为中国的医学研究或者是临床诊断、治疗疾病提供参考。 /p p style=" text-align: center " img width=" 500" height=" 352" title=" 002.png" style=" width: 500px height: 352px " src=" http://img1.17img.cn/17img/images/201712/insimg/779230ba-5597-4007-94f3-8ae2367a7247.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   中科院院士 国家人类基因组南方研究中心主任赵国屏:那么这一点做下来以后,实际上是为我们中国人,包括汉族和各个少数民族在内,今后做中国人的疾病健康相关的遗传背景的认识,会有极大的好处。 /p p   按照计划,整个项目将在四年内完成全部的测序与分析任务,这也将是当前世界上推进速度最快的基因组工程。 /p p /p
  • 趋势:未来癌症研究将走向全基因组测序
    癌症是由遗传因素、环境因素等多因素导致的复杂疾病。因其个性化的特点-每个人/甚至不同细胞都具有独特的遗传突变,从而加大了癌症治疗及监测的难度。而高通量测序技术的发展为我们带来了契机,不仅可以加速揭开癌症的病因及机制,更进一步使个性化医疗成为现实。   2014年之前由于全基因组重测序价格仍然高昂,科研人员不得不舍弃部分遗传信息(如基因融合、染色体重排等),而选择外显子组测序&mdash &mdash 仅针对编码区的SNP/InDel进行检测。随着全基因组测序成本不断下降,尤其是诺禾致源公司引进的X-Ten平台,率先推出&ldquo 万元基因组&rdquo 测序活动,使得国内的全基因组测序变得更便宜更快捷,因此,全基因组重测序已成为癌症研究的最佳选择。   全基因组重测序的必要性   2011年,Chapman等人在Nature上利用多发性骨髓瘤样本对全基因组与全外显子组测序进行了比较,结果表明多发性骨髓瘤中一半的蛋白质编码突变都是通过染色体畸变(如易位)发生的,故大部分突变都无法通过外显子组测序发现。相对于全外显子组测序,人类基因组重测序已在检测基因融合,基因组突变,染色体碎裂和染色体重排等研究中屡建奇功。   癌症研究中重要的遗传信息   基因组突变   所有癌症在发展过程中都会积累大量体细胞突变,其中司机突变(Driver mutations)是对癌症发展很关键的体细胞突变,而剩下的就被称为乘客突变(Passenger mutations)。2011年Berger等人在Nature上发表了原发性人类前列腺癌及其配对正常组织的完整基因组序列研究。一些肿瘤包含复杂的平衡重排链(拷贝数中性),它们通常发生在已知癌症基因中或附近。而一些断裂点发生在基因间区域,可能会因外显子组测序错过,因此,这篇文章例证了有些突变(如文章中类似于基因间区域的非编码区)只有也只能通过全基因组测序才能检测出来。   基因融合   基因融合在基因组中非常普遍,也是一些类型癌症的标志。基因融合是由两个不相关的基因发生融合形成的一种基因产物,该产物具有全新的功能或与两个融合基因不同的功能。配合末端配对(Paired end, PE)测序技术使用的全基因组测序是目前检测所有基因融合的最准确、最全面的工具,对这些基因融合的检测包括了重复、倒位、覆盖和单碱基插入缺失各种类型。2014年,癌症基因组图谱(TCGA)联盟采用全基因组重测序和全外显子组测序结合的方式对131例膀胱泌尿上皮癌进行了研究,研究者发现了FGFR3与TACC3的融合现象,7例肿瘤样本中检测到病毒整合位点,相关研究结果发表在Nature上。而类似这样的基因融合和病毒整合位点是全外显子组测序做不到的,仍然只能通过全基因组测序的方式进行研究。   染色体碎裂   该现象是一个一次性的细胞危机,该过程中成百上千个基因组重排在单次事件中发生。这种灾难性事件的后果是复杂的局部重排和拷贝数变异,其范围限制在0-2个拷贝。据估计,染色体碎裂发生在2-3%的癌症的多个亚型中,以及约25%的骨髓中。染色体重排需借助DNA双链断裂和一定方式的排列连接,这种重排破坏了基因组的完整性,继而参与形成白血病、淋巴瘤和肉瘤。它的复杂性和随机性使得它成为一种很难研究的现象,目前的解决策略是使用末端配对和长距离末端配对(mate-pair)技术建库的全基因组深度测序方法进行研究。   基因组改变和拷贝数变异(CNV)   目前的研究结果告诉我们,若分析中只关注SNP势必将错过大部分重要的基因组重排。据估计,每个人类基因组中&ldquo 非SNP变异&rdquo 总共约有50Mb。Morrison等人选用膀胱移行细胞癌(TCC-UB)的5例样本进行全基因组重测序,结果发现,其中3例样本具有较多SNP和SV变异,并且都具有P53基因的突变 在另外2例肿瘤样本中,研究者发现谷氨酸受体N-methyl-D-aspertate receptor基因发生易位和扩增,该研究结果对后期的肿瘤药物靶点鉴定与疾病治疗具有重要作用。由于覆盖深度变化太大,导致对原拷贝数的变异不敏感,全外显子组测序不容易检测到CNV,对于大片段的基因组改变更是无能为力。   全基因组测序与全外显子组测序比较   正是基于以上的优势,近年来采用全基因组重测序作为研究手段发表的高水平文章越来越多,这也会是将来人类基因组学研究的趋势,预测相关科研成果将呈现井喷式增长。
  • 人的一生,全基因组测序引发的4个需求
    2014年年初Illumina公司推出的HiSeq X Ten 测序平台,实现了&ldquo 人类基因组测序成本降低至1000美元&rdquo 的设想。该测序平台测序成本为当前其他测序平台成本的20%。换句话说,Illunima公司在引领二代测序市场的发展,促使测序成本呈跳水式骤降。    全基因组测序成本随时间变化图(不包含Illumina的最新平台)   在三代测序平台方面,太平洋生物科技公司的 PacBio RS II测序平台能更好的满足多种特殊区域的准确测序与组装。 PacBio 与X-Ten测序平台经常被联合使用,以获取高质量全基因组数据。科研人员和制药公司对高质量大数据的渴望,以及消费者对低成本测序的需求都将得到实现。   如果,测序成本在未来五年内降到几百美元甚至更低,人们的生活或许因此而改变。当低成本测序普及开来,一个人从出生到死亡,对基因组测序将有4个方面的需求。   1、新生儿全基因组筛查的需求   在美国,尽管各个州的基因检测条件略有不同,但新生儿在出院前都会采集外周血进行各种疾病的筛查。因为即便是全球公认的最好的新生儿基因筛查芯片,也只是筛查健康相关的部分基因。全基因组测序将突破当前血液检测的屏障,并扩大新生儿基因检测的实用性。通过新生儿全基因组测序,医生可以监控个体患病风险,并及时进行预防或早期治疗。《Genetics in Medicine》近期发表了一项调查研究,研究人员对514位新生儿父母进行全基因组测序在健康方面的科普,并征询是否期望给自己的孩子做全基因组检测,83%的父母表示愿意。   2、常规测序检查的需求   即便新生儿出院后,测序的需求也不会停止。虽然检测结果显示你没有影响健康的特殊基因,但是环境作为基因表达和沉默的重要决定因素,影响着你的健康。例如营养、压力、特殊化学试剂、机体锻炼等情况,都会对基因表达进行调控。如果基因测序成本足够低,你或许会每隔几年做一次基因检测,或者在生病时,做基因组测序以探寻基因组上是否有改变。与新生儿基因筛查一样,常规的基因组检查可以在疾病早期阶段进行诊断,进而提前做好预防措施。   3、根据测序信息引导购物的需求   相信阅读自己的基因组会是一件很有趣的事情,有些基因检测结果并不一定会影响你的生活,有些检测结果却可能影响你的购物习惯哦。大多数消费者并不知道,日用消费品巨头宝洁公司,将自己定位为基因组学的引导者。宝洁公司通过对引起人类头皮屑的真菌进行测序,以开发更有效的去屑洗发水,应用到旗下海飞丝品牌洗发水。一些公司也被允许利用基因组测序开发适合各个年龄段的护肤品,甚至还有不引起湿疹的高价尿不湿。   4、探索个性化癌症药物的需求   如果你选用个性化护肤品,又怎么会不选择个性化医疗呢?媒体经常报道个性化医疗,高效经济的测序前景将使个性化医疗成为现实,尽管还有很多需要克服的障碍。以癌症为例,医生可以通过测序癌组织样品,确定癌症的原发位置,以及特异突变。根据这些信息进行个性化的治疗。   也许未来的某一天,你的家中可能会拥有一个设备:当你的家庭成员生病了,这个设备可以将他的基因信息和疾病症状发送到疾病控制中心,之后将会收到更好的治疗方案,病人足不出户便可接受治疗。听上去是不是很不可思议?
  • 全球基因组投入哪最大?不是美国,是中国深圳
    【摘要】从癌症筛查到提供个体化治疗,从罕见病到首个基因筛查体外受精(IVF)婴儿诞生,中国在下一代基因测序技术日趋白热化的全球竞赛中表现非凡,大数据和基因组网络仅是其中之一,全球最大基因组机构&mdash &mdash 华大基因(BGI)CEO王俊如是说。   北京&mdash &mdash 2012年8月24日,当世界首例胚胎移植前接受全基因组筛查的试管婴儿(IVF)在中国湖南省诞生之时,喜悦之情洋溢在中国基因组学者和医学专家心中。   中国属于出生缺陷率较高的国家,高达5.6%,即100例新生儿中出生缺陷婴儿超过5例。总体上,约有8,000种单基因突变导致的缺陷疾病,这给家庭和社会带来巨大负担。   因此,产前基因检测在中国就显得非常重要,全球最大基因组机构华大基因的CEO王俊1月30日在北京召开的未来论坛上指出。   &ldquo 在1,500对进行基因检测的新婚夫妇中,我们发现85对夫妇具有生育出生缺陷婴儿的高风险。&rdquo   而在中国某些地区,这种风险更高,这也将改变生活在出生缺陷疾病高发地区人们的命运。这些地区包括中国南方省份广东和广西,一种罕见血液病地中海贫血在当地居民中发病率较高。   华大与湖南中信湘雅医院合作,应用下一代基因测序技术对IVF胚胎开展基因异常检测。通过胚胎植入前测序,该研究院从受精数日后形态学正常的胚胎中去除了7~12个受精卵。   自2010年以来,已有33对夫妇的胚胎经测序后植入,22对成功受孕,成功率为66.7%。截至目前,已诞生17个健康婴儿。   此外,唐氏综合症无创产前筛查越来越价廉,一次检测费用为1,000~2,000人民币元(160~320美元)。基因检测不仅可预防出生缺陷,还可发现出生后的潜在风险,如链霉素导致的耳聋,王俊说道。   对于携带遗传性基因异常但未出现疾病症状者来说,他们是真正的&ldquo 超级英雄&rdquo 。这些万幸中的幸运儿只占人群中的17/1000000,但他们可以提供破解这些疾病的宝贵线索。   基因检测, 免费?   王俊指出,基因组检测发展之迅速,费用下降之快,已远远超出了著名的摩尔定律。   由英特尔总裁Gordon Moore首次提出的这一定律认为,每隔18~24个月,半导体容量将翻番,而价格下降一半。   在人类基因测序检测之初,每个基因组检测费用约1亿美元,而现在的费用降为数千美元,相当于数千元人民币。   王俊预测,按照目前趋势发展,基因测序最终将会免费。再过4年,即到2019年将有可能变为现实。   如同计算机的演变,从个人计算机发展到互联网,基因组研究正从个体检测向&ldquo 基因组互联网&rdquo 发展。   这种基因组网络将分享相同疾病患者的经验,提供相互帮助。在美国, Patientslikeme 网站已经提供这类服务。   与此同时,获得基因组信息的医生,将能够提供更加快速和准确的诊断。实际上,未来医生的患者诊断工作甚至将会被完备的基因组网络所取代。   但其中的关键是如何把握好隐私保护与科学研究之间的平衡,王俊说道。   大数据,竞争炽烈   全球范围内基因组测序竞赛急剧升温。政府、研究机构以及研发合同组织CRO均试图建立大型基因库以解决日益昂贵的医疗问题。   王俊称,目前面临的挑战是解释输入与输出,即程序化工作程序。目前,华大已明确将大数据作为突破重点。   为此,BGI与研究组织全力合作,开展肿瘤转化研究及农作物和动物(如水稻和猪)基因检测。   BGI将关注点锁定在建立一个含有1亿人的DNA组合的数据库。目前全球3大基因组机构的基因测序能力仅为一年18,000份样本,因此这一目标显得颇具野心。   BGI的BGISEQ-1000测序仪已获得中国监管机构的首个批准,这是该公司收购美国Complete Genomics公司后得到的基因组测序平台。   中国最大的合同研究组织无锡药明康德也收购了美国NextCODE Health,整合至自己的基因组实验室,以提高其服务提供和数据分析能力。   世界各地纷纷开展基因组测序的浩大项目。在美国,此前领衔人类基因组计划的NIH院长Francis Collins已警告说,美国的领先地位正在遭受中国的快速侵蚀。   &ldquo 不过,如果你现在问我全球基因组投入最大的地方在哪儿,它不在美国,而是在中国的深圳,&rdquo Collins在去年9月的美国国会听证会上说道。   &ldquo 他们在研读我们的范本,他们寻找机会所在,他们在利用这个机会。&rdquo
  • 华大智造打造“大人群基因组学一站式解决方案”: 满足百万级高深度全基因组测序需求
    p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2020年10月26日,第十五届国际基因组学大会(ICG-15)在武汉拉开帷幕。深圳华大智造科技股份有限公司(下称“华大智造”)在学术报告中分享了“大人群基因组学一站式解决方案”。该方案集样本前处理、文库制备、高通量测序、基因数据管理等模块为一体,从样本到报告全程自动化,目前可满足每年五万到百万级规模高深度全基因组测序需求,全流程均可按需定制。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   华大智造高级副总裁倪鸣表示:“可以看到,近年来大人群基因组测序和分析渐成趋势,国家级别的基因组测序项目不断涌现。全球范围内大人群基因组计划的实施,对高通量基因测序平台技术的水平,对基因测序方案的通量、成本、精准度、智能化等提出了更高要求,华大智造也希望为此贡献己力。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/202010/uepic/9b327086-c705-4c70-a688-d724a3567919.jpg" title=" 倪鸣博士.jpg" alt=" 倪鸣博士.jpg" width=" 600" vspace=" 0" height=" 450" border=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 华大智造高级副总裁倪鸣在ICG-15分享解决方案 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "    span style=" color: rgb(255, 0, 0) " strong 华大智造大人群基因组学一站式解决方案:四大模块, 测序系统超强定制 /strong /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   华大智造在大会上分享的“大人群基因组学一站式解决方案”由生物样本库、建库中心、测序中心和数据中心四大核心模块构成。其中,生物样本库主要功能是将全血分离为血浆和白膜层,完成gDNA提取 建库中心则分为文库制备和DNB制备两部分,用于测序文库制备。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 408px " src=" https://img1.17img.cn/17img/images/202010/uepic/0fda5a10-f7e1-4498-8f8c-60f8c0c55f48.jpg" title=" 3.png" alt=" 3.png" width=" 600" vspace=" 0" height=" 408" border=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 大人群基因组学一站式解决方案布局 br/ /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   而该方案的测序中心采用了超强定制的测序系统——DNBSEQ-T10× 4RS,这是基于华大智造独有DNBSEQ测序技术打造的超高通量测序仪,以满足超高通量测序需求。该测序系统的创新突破点在于,不同于以往华大智造测序平台采用的流道式芯片和封闭式反应系统,DNBSEQ-T10× 4RS运用了浸没式生化方案和开放式反应体系,实现了测序读长、测序质量以及成本投入之间的最佳平衡。一台DNBSEQ-T10× 4RS测序系统支持8张测序载片同时运行,每天可产出最高达20Tb(约200个高深度人类全基因组)的测序数据,单套测序系统可年产超过5万个高深度个人全基因组测序。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   采用该解决方案的前期测试数据显示, DNBSEQ-T10× 4RS测序系统检测SNP的准确度和灵敏度都超过99%,检测Indel的准确度和灵敏度超过98%,均已达到业内领先水平。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 337px " src=" https://img1.17img.cn/17img/images/202010/uepic/b1cbd9a8-fdb6-4d01-a6aa-0b4a22c4183a.jpg" title=" T10× 4.jpg" alt=" T10× 4.jpg" width=" 600" vspace=" 0" height=" 337" border=" 0" / /p p style=" text-align: center " 运行中的DNBSEQ-T10 × 4RS /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   最后一个重要模块——数据中心则使用华大智造ZTRON基因数据中心一体机,可实现样本管理、实验室生产、生信分析及数据治理等全周期基因数据管理。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 277px " src=" https://img1.17img.cn/17img/images/202010/uepic/9d09841f-83dd-4db0-b6b8-be188225a664.jpg" title=" 2.png" alt=" 2.png" width=" 600" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " ZTRON基因数据中心一体机 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   据介绍,华大智造打造的“大人群基因组学一站式解决方案”拥有四大核心优势:第一,超高通量,单台测序仪年产高深度全基因组测序不低于5万人次 第二,超低成本,其所采用的新型测序方案可有效降低测序成本 第三,超强定制,能够实现全流程可定制化,满足五万到百万级基因组测序需求 第四,该方案从样本到报告全程实现自动化,使测序全流程操作更为便利。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   更进一步,通过其提供的基础版、扩容版方案,可根据客户需求设计设备数量与配置、场地、人员安排等,目前可实现测序深度30x、年产五万至百万的全基因组测序能力。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "    span style=" color: rgb(255, 0, 0) " strong 大人群基因组学项目成全球趋势:依托成熟技术,开启精准医疗新时代 /strong /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   近两年,华大智造凭借高通量测序整体解决方案及全流程运转能力,不断拓展高通量测序技术创新应用的想象空间。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   2019年9月,由华大智造自主研发的超高通量基因测序仪DNBSEQ-T7正式交付商用。作为全球日生产能力最强的基因测序仪,DNBSEQ-T7配备4联载片平台,四载片连载日产数据量高达6Tb,即一天最多可完成60例个人全基因组测序,是能够强有力推动测序产业跃迁的“超级生命计算机”。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   同年12月,阿联酋启动 “全民基因组计划”,其中华大智造负责建设高通量测序平台,为该计划提供了核心设备支撑,展示了我国基因测序设备制造领域的领先水平。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   当前,大规模人群基因组学研究项目成果正在全球范围内持续拓展,包括美国、新加坡、法国、阿联酋在内的多国政府先后启动国家级大人群基因组计划。不久前,英国政府颁布了全国性基因组学医疗保健战略——《基因组英国(Genome UK)》,将在未来持续利用基因组学对特定患者群体进行干预,以应对新的全球性流行病和公共卫生威胁,生命科学产业进入基因大数据时代。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   在此趋势下,市场亟需高质量的全面测序方案,华大智造“大人群基因组学一站式解决方案”此番推出,得益于其深厚的技术积淀、强大的自主研发能力及定制化整体解决方案能力,这将进一步推动基因检测技术普及惠民,推动精准医疗发展,加速推进“人人基因组时代”进程。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制