当前位置: 仪器信息网 > 行业主题 > >

化学迁移量

仪器信息网化学迁移量专题为您整合化学迁移量相关的最新文章,在化学迁移量专题,您不仅可以免费浏览化学迁移量的资讯, 同时您还可以浏览化学迁移量的相关资料、解决方案,参与社区化学迁移量话题讨论。

化学迁移量相关的资讯

  • 各国食品包装材料化学迁移量检测标准及注意事项
    p   食品包装材料指包装、盛放食品或者食品添加剂用的纸、竹、木、金属、搪瓷、陶瓷、塑料、橡胶、天然纤维、化学纤维、玻璃等制品和直接接触食品或者食品添加剂的涂料。由于食品包装材料直接与食品接触,《食品安全法》第三十三条规定:“(七)直接入口的食品应当使用无毒、清洁的包装材料、餐具、饮具和容器。”因此,必须保证包装材料自身的安全无毒和无挥发性物质产生,同时,在包装工艺的实施过程中,也不会产生与食物成分发生化学反应的物质和化学成分。 /p p    span style=" color: rgb(0, 112, 192) " strong 一、食品包装材料的风险 /strong /span /p p   由于包装材料组成的复杂性, 食品包装材料中的物质析出,出现于食品中, 可能是由于这些物质向食品的迁移, 或由于意外萃取而出现于食品中。这样造成食品包装的化学迁移也给食品带来负面的影响。主要表现为两个方面: /p p   一方面合成包装材料中的有害物质迁移到食品中导致对人身健康造成损害, /p p   另一方面迁移物质可能造成食品感官状态的劣变, 如产生异味、色变和有污点出现等。 /p p   现代食品包装采用大量的化学合成物质,总体而言可以分为两大类: 即已知成分和未知成分。这些物质主要包括: /p p   合成材料的单体和其他合成材料物质、催化剂、溶剂和悬浮介质、包装材料添加剂(包括抗氧化剂、抗静电剂、抗雾剂、增塑剂、热稳定剂、成核剂以及染料和色素)。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong 食品中主要包装材料及其存在的风险 /strong /span /p table width=" 599" tbody style=" margin: 0px padding: 0px font-size: 16px " tr style=" margin: 0px padding: 0px font-size: 16px " class=" firstRow" td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 材料 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 潜在风险 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 塑料 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " ul style=" margin: 26px 0px 0px 30px padding: 0px border: 0px currentColor font-size: 16px " class=" list-paddingleft-2" li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 树脂本身有毒 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 树脂中残留的有毒单体、裂解物及老化产生的有毒物质 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 制品在制造过程中添加的稳定剂、增塑剂、着色剂等 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 包装容器表面的微生物及微尘杂质污染 /span /p /li li p style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 塑料回收料再利用时附着的一些污染物和添加的色素 /span /p /li /ul /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 橡胶 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " ul style=" margin: 26px 0px 0px 30px padding: 0px border: 0px currentColor font-size: 16px " class=" list-paddingleft-2" li p style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 天然橡胶中助剂如: 促进剂、防老剂、填充剂等合成橡胶中的单体及助剂 /span /p /li /ul /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 纸 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " ul style=" margin: 26px 0px 0px 30px padding: 0px border: 0px currentColor font-size: 16px " class=" list-paddingleft-2" li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 造纸原料中的污染物 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 造纸过程中添加的助剂残留 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 包装纸在涂腊、荧光增白处理过程中的化学污染 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 彩色颜料污染 /span /p /li li p style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 成品纸表面的微生物及微尘污染 /span /p /li /ul /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 无机包装材料 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " ul style=" margin: 26px 0px 0px 30px padding: 0px border: 0px currentColor font-size: 16px " class=" list-paddingleft-2" li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 金属包装材料中重金属的污染, 特别是铅 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 回收铝制品中锌、砷、镉等金属的溶出 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 玻璃制品中可溶出金属 /span /p /li li p style=" margin: 0px padding: 0px 0px 8px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 高档玻璃器皿中添加物 /span /p /li li p style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 搪瓷、陶瓷制作过程中的瓷釉、陶釉和彩釉中的金属氧化物 /span /p /li /ul /td /tr /tbody /table p    span style=" color: rgb(0, 112, 192) " strong 二、各国食品包装材料有害物质的标准要求 /strong /span /p p   为了有效控制食品包装材料中的有害物质,许多国家制定了食品包装材料中有害物质的限制标准。 /p p   欧盟食品接触材料法规包括框架法规、专项指令和单独指令3个层次。其中,框架法规规定了对食品接触材料管理的一般原则,专项指令规定了框架法规中列举的每一类材料的系列要求,单独指令是针对单独的某一具体有害物质所做的特殊规定。 /p p style=" text-align: center " img title=" 1.jpeg" src=" http://img1.17img.cn/17img/images/201706/noimg/153f7f73-c625-461c-a6fa-e9ec8cba8ff5.jpg" / /p p   美国对食品包装材料的管理主要通过联邦法规CFR来进行规范。美国联邦法规CFR第21部分主要规范食品和药品的管理,其中第170-186节规范了食品包装材料的管理要求。21 CFR 174(间接使用的食品添加剂-总论)规定了食品包装材料的通用要求和用于与食品接触的物质的法定限量。其中对与食品接触材料的通用要求为:材料需要按照GMP要求生产 材料需要使用符合21 CFR 170-189法规中批准的物质 新材料必须经过FDA审核和认可才可进入市场。 /p p   21 CFR 170-189对于食品接触材料有非常详尽的管控要求。除通用要求之外,针对纸张、木材、塑料、涂层、橡胶、胶黏剂等均有相应规定,如图2所示。在不同材料的相应要求章节,既包含该材料生产所允许使用的单体、添加剂、助剂,同时涵盖其纯度、用量等要求,也有对成品的溶出物、特定物质的溶出等测试要求,某些塑料材料还有物理性能(如密度、熔点、分子量、溶解度等)的要求。 /p p style=" text-align: center " img title=" 2.jpeg" src=" http://img1.17img.cn/17img/images/201706/noimg/6541e286-af8b-48e4-b777-f89e5d60dcb5.jpg" /    /p p   《食品安全法》实施后,我国食品包装材料安全标准体系正在逐步构建和完善中。 /p p   GB 31603.1-2015《食品接触材料及制品迁移试验通则》规定了食品模拟物、特殊迁移及总迁移测试条件的选择。食品接触材料添加剂标准(GB 9685-XXXX)与GB 9685-2008相比更为合理,主要变化是调整了附录化学物质清单的结构(对塑料、涂料涂层、橡胶、油墨、粘合剂、纸、硅橡胶中的添加剂分别说明),将添加剂名单及其使用要求按照使用范围进行分类,同时添加剂品种由959种扩充到1297种。 /p p style=" text-align: center "   img title=" 3.jpeg" src=" http://img1.17img.cn/17img/images/201706/noimg/85e93181-0482-40dd-bc77-b31f438339db.jpg" /   /p p   (2)有关迁移物测试的国家标准(GB) /p p & nbsp /p table width=" 599" tbody style=" margin: 0px padding: 0px font-size: 16px " tr style=" margin: 0px padding: 0px font-size: 16px " class=" firstRow" td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "   strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 5009.156-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GBT 23296.1-2009 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品接触材料 塑料中受限物质 塑料中物质向食品及食品模拟物特定迁移试验和含量测定方法以及食品模拟物暴露条件选择的指南 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GBT 20499-2006 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品包装用聚氯乙烯膜中己二酸二(2-乙基)己酯迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.1-2015 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品迁移试验通则 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.8-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 总迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.10-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 2,2-二(4-羟基苯基)丙烷(双酚A)迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.11-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 1,3-苯二甲胺迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.12-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 1,3-丁二烯的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.13-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 11-氨基十一酸迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.14-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 1-辛烯和四氢呋喃迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px " strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.15-2016 span class=" Apple-converted-space" & nbsp /span /span /strong /span span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 2,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.17-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 丙烯腈的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.18-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 丙烯酰胺迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.19-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 己内酰胺的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.20-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 醋酸乙烯酯迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.21-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 对苯二甲酸迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.24-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 镉迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.25-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 铬迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.26-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 环氧氯丙烷的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.28-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 己二酸二(2-乙基)己酯的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.29-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 甲基丙烯酸甲酯迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.30-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 邻苯二甲酸酯的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.31-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 氯乙烯的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.33-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 镍迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.34-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 铅的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.38-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.40-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 顺丁烯二酸及其酸酐迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.41-2016 span class=" Apple-converted-space" & nbsp /span /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 锑迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.42-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 锌迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.43-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 乙二胺和己二胺迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.44-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 乙二醇和二甘醇迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.46-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 游离酚的测定和迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.48-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 甲醛迁移量的测定 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor font-size: 16px "    strong style=" margin: 0px padding: 0px border: 0px currentColor font-size: 16px font-weight: 700 " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " GB 31604.49-2016 /span /strong span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品安全国家标准 食品接触材料及制品 砷、镉、铬、铅的测定和砷、镉、铬、镍、铅、锑、锌迁移量的测定 /span /p /td /tr /tbody /table p    strong span style=" color: rgb(0, 112, 192) " 三、食品包装材料中化学迁移物质一般检测方法 /span /strong /p p   无论是那种包装材料一旦应用食品包装都需要进行卫生检测,检测的的方式一般采用食品模型的方法。大致分为以下几步: /p p   (1)选取典型样品 /p p   (2)选择适当的食品模型 /p p   (3)选择合适的条件, 主要是选择合适的温度和接触时间 /p p   (4)选择合适的暴露 /p p   (5)监测暴露量 /p p   (6)分析包装的安全性。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、食品包装材料中化学迁移物质检测的注意事项 /span /strong /p p   (1)样品的确定及其食品模型的选择 /p p   直接在食品中对迁移物进行检测分析。虽然直观,但成本昂贵, 且灵敏度比较低。一般采用食品模型进行实验,即为了解决迁移物难于从食品分离而采用特殊的溶剂作为食品模拟剂来替代食品进行分析。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong 常见食品模型(源于82/572/EEC) /strong /span /p table width=" 599" tbody style=" margin: 0px padding: 0px font-size: 16px " tr style=" margin: 0px padding: 0px font-size: 16px " class=" firstRow" td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 食品模型 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 适用范围 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 蒸馏水 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 中性离子型食品 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 3%醋酸水溶液 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 酸性食品 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 10%或15%的乙醇水溶液 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 含有醇类的食品 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 橄榄油(如果由于测定技术上无法利用橄榄作为食品模拟剂可以采用异辛烷、95%乙醇代替) /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 脂肪类食品 /span /p /td /tr /tbody /table p   (2)监测条件的确定 /p p   在确定了合适的食品模拟剂, 为了保证真实的反应包装材料的安全性, 一般采用在迁移物最大迁移极限条件进行, 温度和时间的选择入表3所示。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong 迁移物测定的时间选择 (源于82/711/ECC) /strong /span /p table width=" 599" tbody style=" margin: 0px padding: 0px font-size: 16px " tr style=" margin: 0px padding: 0px font-size: 16px " class=" firstRow" td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 实际接触条件 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " br/ /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " ≤0.5 h /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 0.5 h /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 0.5 h& lt t≤1 h /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 1h /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 1 h& lt t≤2 h /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 2h /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 2 h& lt t≤24 h /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 24h /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " & gt 24h /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 10d /span /p /td /tr /tbody /table p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong 迁移物测定的温度选择 (源于82/711/ECC) /strong /span /p table width=" 599" tbody style=" margin: 0px padding: 0px font-size: 16px " tr style=" margin: 0px padding: 0px font-size: 16px " class=" firstRow" td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 实际接触条件 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 测定条件 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " ≤5 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 5 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 5& lt T≤20 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 20 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 20& lt T≤40 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 40 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 40& lt T≤70 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 70 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 70& lt T≤100 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 100 或者回流温度 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 100& lt T≤121 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 121 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 121& lt T≤130 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 130 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 130& lt T≤150 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 150 /span /p /td /tr tr style=" margin: 0px padding: 0px font-size: 16px " td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 150& lt T≤175 /span /p /td td style=" margin: 0px padding: 5px border: 1px solid rgb(51, 51, 51) font-size: 16px " p style=" margin: 0px padding: 10px 0px 20px border: 0px currentColor text-align: center font-size: 16px " span style=" margin: 0px padding: 0px border: 0px currentColor font-size: 14px " 175 /span /p /td /tr /tbody /table p & nbsp /p
  • 新品速递 | 新款化学迁移测试池,速看!!
    各位朋友好久不见,十佳今天给大家带来了两款迁移测试方面的新产品——专用材料迁移测试池&体积减半的不锈钢中心环,这两个新产品相较于先前型号有哪些升级呢?让我们来快速了解一下。专用材料迁移测试池// 耐腐蚀性优越 //// 避免干扰重金属迁移测试 //新款专用材料迁移测试池,历时一年半研发,意在解决不锈钢和玻璃对重金属迁移检测造成的干扰,主要由专用材料固定板和中心环组成,使用专用材料中心环+不锈钢支架测试时,可以将上下都夹上样品,最后得到的结果除以2。体积减半不锈钢中心环 新款原款 // 降本增效——检测效率更高、成本更低//// 升级新工艺,细节出色、强度更高 //// 不锈钢材质强度高、检测位置平坦 //新款体积减半不锈钢中心环,采用了DN80和DN120两种常用规格,在原有中心环接触面积不变的基础上,所需测试液体体积仅是原来的一半。并且这样还可以更快的检出迁移析出,提升检测效率,减少溶剂使用,降低使用成本。同时,新款半体积中心环升级了焊接加工工艺,相较于原款内圈更光滑平整,强度更高;值得注意的是其他的框架、密封盖等均为通用,现在购买半体积中心环会一并赠送配套的固定螺丝。LABC迁移测试池BeiJing ShiJia WanLian Scientific Co.Ltd北京仕家万联科技有限责任公司迁移测试池 Migration CellLABC迁移测试池,全球用户多年使用认可:01优越的试验精度与数据的可靠、一致性02 符合欧盟EN 1186-1等多项标准03多样化的材质、尺寸可供选择 04耐-15°C低温至180°C高温05O型圈密封,更好的密封性 感兴趣的朋友欢迎与我们交流~Migration Cell●●●//性能 质量 服务//编辑:十佳同学声明:本图文内容来源于公开资料或者互联网,转载的目的在于传递更多信息及用于网络分享,若您发现图文内容(包含文字、图片、表格等)等对您的知识产权或者其他合法权益造成侵犯,请及时与我们取得联系。
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 奶瓶中化学物迁移的阶梯检测法
    p span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-FAMILY: times new roman" 科学家正在开发一种新的质谱方法用以检测从塑料奶瓶迁移到奶液中的未知物质。 /span /p p span style=" FONT-FAMILY: times new roman"   尽管全世界有不计其数的塑料奶瓶在使用中,但对从奶瓶迁移至婴儿食品中化学物质的研究非常有限。从双酚A被禁用后,聚碳酸酯瓶销量出现下降。这些塑料奶瓶中的有害物质有可能诱发人体的一系列疾病,特别是可能带来生殖系统不调或基因毒性。 /span /p p span style=" FONT-FAMILY: times new roman"   这种塑料奶瓶的代替品是用聚丙烯和聚酰胺制造而成的奶瓶。但是,欧洲科学家认为并没有充分的调查结果说明新奶瓶的潜在化学物质迁移情况。也许这种奶瓶中的其它有害物质会造成健康影响,特别是对小宝宝。 /span /p p span style=" FONT-FAMILY: times new roman"   新的方法发表在Journal of Mass Spectrometry(质谱杂志),这种阶梯式的步骤也适用于其它食物容器。这种方法非常实用,用六个市售婴儿奶瓶的案例试验来阐释,不依赖于之前的化学物相关知识。方法中食物模拟物是乙醇溶液。 /span /p p span style=" FONT-FAMILY: times new roman"   .第一个步骤是GC/MS,首先用四极杆质谱和离子库来查找配对质量。如果有的峰不能确定,那么再使用更高分辨率的质谱来得到碎片离子的精确值,并从其它的数据库来查找化学元素组成。然后用软电离和飞行时间质谱来测定分子离子。 /span /p p span style=" FONT-FAMILY: times new roman"   当然,并不是所有的潜在迁移物质都具有挥发性的或者都适合使用GC/MS。所以,在待测物不适合GC/MS时可以使用LC/MS Q-TOF检测。这些检测发现将用以建立塑料生产中化学物和添加剂的数据库。 /span /p p span style=" FONT-FAMILY: times new roman"   这个方法可以检测出很多潜在迁移物,如二环戊基二甲氧基硅烷、十二内酰胺二聚体、棕榈酸酯和十八碳烯酸等。 /span /p p span style=" FONT-FAMILY: times new roman"   虽然研究人员在方法研究上取得了一定的成功,但他们强调这个试验“需要具有一定的分析经验和洞察力,是一个具有挑战而又相当单调的工作。” /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 编译:郭浩楠 /span /p
  • 岛津推出双酚A(BPA)含量及迁移量测定应对方案
    双酚A(BPA)是世界上使用最广泛的工业化合物之一,主要用于生产聚碳酸酯、环氧树脂、聚砜树脂、聚苯醚树脂、不饱和聚酯树脂等多种高分子材料。在塑料制品的制造过程中,添加双酚A可以使其具有无色透明、耐用、轻巧和突出的防冲击性等特性,尤其能防止酸性蔬菜和水果从内部侵蚀金属容器,因此广泛用于罐头食品和饮料的包装、奶瓶、水瓶以及其他数百种日用品的制造过程中。可以说BPA的身影无处不在。 全世界每年生产2700万吨含有BPA的塑料。BPA能导致内分泌失调,威胁着胎儿和儿童的健康。癌症和新陈代谢紊乱导致的肥胖也被认为与此有关。极低剂量的双酚A也会对健康产生影响,尤其对胎儿和新生儿来说,其&ldquo 外成的影响&rdquo 可能通过产生变异而造成危害。因此,双酚A的安全性问题成为了公众关注的焦点。 欧盟从2011年3月2日起,禁止生产含化学物质双酚A(BPA)的婴儿奶瓶。我国自2011年6月1日起,禁止生产聚碳酸酯婴幼儿奶瓶和其他含双酚A的婴幼儿奶瓶;自2011年9月1日起,禁止进口和销售聚碳酸酯婴幼儿奶瓶和其他含双酚A的婴幼儿奶瓶,由生产企业或进口商负责召回。随着相关国家政策法规和我国卫生部发布公告,涉及双酚A的行业将全面开展检测业务,尤其是商检,质检,CDC等以及生产企业将对此加大检测力度。 近日,长期关注商品安全并以全面先进的检测综合解决方案致力于保障商品安全的岛津公司,推出了LCMS法测定消费品中BPA的总含量及儿童饮用器具、餐具和喂养器具中BPA迁移量的解决方案。使用岛津LCMS-2020对消费品中BPA的总含量及儿童饮用器具、餐具和喂养器具中BPA迁移量进行分析。结果表明,双酚A在0.01~0.5 mg/L浓度范围内标准曲线线性良好,相关系数达0.9999;消费品中BPA的总含量及儿童饮用器具、餐具和喂养器具中BPA迁移量的方法检出限分别为1.0mg/kg和0.01 mg/kg,0.02, 0.05, 0.1 mg/L 3个加标浓度的平均加标回收率分别为93%和92%,方法的重现性良好。如需了解详情,请点击下载最新应用数据集:《双酚A含量及迁移量的测定》。岛津LCMS-2020采用独特设计的离子源和离子光学系统,具有超快速扫描、高速正负极性切换功能,实现高灵敏度、高稳定性。操作和维护简单方便。更具备独有的多顺序测定方式,一次进样可测得多种分析条件下的数据,大幅提高分析效率。除LCMS-2020之外,岛津公司的LC-20A、LCMS-8030可用于分析双酚A项目。 【参考:双酚A相关法规及政策】 1.挪威:最早将双酚A纳入受限物质的应是原定于2008年1月1日生效,后因许多议题尚未达成共识而延期的挪威PoHS指令,在其对消费性产品中的禁止使用的10种物质中就包括双酚A(BPA)。 2.加拿大:2008年10月18日,加拿大宣布双酚A为有毒化学物质,由此成为世界上第一个将双酚A列为有毒化学物质的国家,并禁止在婴儿奶瓶的制作过程中使用双酚A。 3.美国 1)联邦:2009年3月份提案禁止在&ldquo 可重复使用的食品容器&rdquo 和&ldquo 其他食品容器&rdquo 中使用(BPA)。这一禁令在正式通过180天后开始生效。 2).纽约州萨福克县:2009年4月2日公布的决议将于90天后开始生效。根据此法律,在萨福克县任何人不得销售或为销售提供含有BPA供3岁以下儿童使用的婴儿奶瓶和儿童饮料容器。 3).伊利诺斯州:2010年7月1日起,任何人不得销售、为销售提供、分销或为分销提供含有双酚A的运动水瓶,或适用于3岁或以下儿童的儿童食品容器,不论该容器是否装有食品或饮料。 4).马里兰州:规定儿童护理品不得含有双酚A或其他任何致癌或对生殖系统有毒害的物质,同时生产商须在产品上标注不含双酚A。违反上述规定每项可被处以最高1万美元的罚款。 4.欧盟食品接触塑料和塑料制品的新条例(EU)No.10/2011规定从2011年3月1日禁止生产含双酚A的塑料奶瓶,6月起禁止任何双酚A塑料奶瓶进口到成员国。 5.我国于2009年3月对食物接触材料中双酚A 的迁移量做了限量标准(GB/T 23296.16-2009),规定水基食品模拟物中双酚A的测定低限为0.3 mg/L。 6.欧盟2002/72/EC法则规定双酚A在塑料食品接触材料中的迁移限量为3 mg/kg。欧盟采用液相色谱对双酚A的迁移量进行检测(检出限为0.2~0.7 mg/kg)。 7.美国食品与药品管理局(FDA)规定双酚A 可作为食品接触材料的原料使用。EPA(1993)规定最大可接受剂量或者参考剂量是0.05 mg/kg bw/day。 8.日本《食品卫生法》规定聚碳酸酯食品容器中的双酚A溶出限量为2.5 mg/kg。 9.我国卫生部等六部门于2011年5月30日联合发布公告,从6月1日起,禁止生产聚碳酸酯婴幼儿奶瓶和其他含双酚A的婴幼儿奶瓶。自2011年9月1日起,禁止进口和销售聚碳酸酯婴幼儿奶瓶和其他含双酚A的婴幼儿奶瓶,由生产企业或进口商负责召回。 关于岛津   岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。   目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心 覆盖全国30个省的销售代理商网络 60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。   岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。   更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 公安部一所基于拉曼/离子迁移谱的易制毒化学品核查仪通过验收
    “十二五”国家科技支撑计划“查缉、管控毒品违法犯罪核心技术与装备研究”项目“易制毒化学品运输管控检验技术与装备研究”课题顺利通过验收  2月28日,公安部科技信息化局在北京公安部第一研究所组织专家对“十二五”国家科技支撑计划“查缉、管控毒品违法犯罪核心技术与装备研究”项目“易制毒化学品运输管控检验技术与装备研究”课题进行验收,验收专家组由来自公安部物证鉴定中心、北京理工大学、公安部第三研究所、浙江警察学院、北京工业大学等11名专家组成,浙江大学周建光教授担任组长。公安部科技信息化局、公安部禁毒局和来自内蒙、河南、天津、浙江的一线专家、课题承担单位公安部第一研究所和课题参与单位中科软科技股份有限公司科研、财务审计相关人员共40余人出席了会议。会议现场  课题承担单位公安部第一研究所陈学亮副所长在致辞中对近三年来各位专家从立项开始到立项的研制过程到现在的项目验收,辛勤付出表示感谢,对公安部科技信息化局、公安部禁毒局对项目、对团队的信任、支持和帮助表示感谢,他表示整个课题按照“十二五”国家科技支撑计划的要求,很好的完成课题任务,尤其是课题成果的应用和使用情况,部分超过了课题要求。公安部第一研究所 陈学亮副所长致辞  公安部禁毒局办公室副主任刘铭介绍了当前全国制毒违法犯罪情况,制毒物品非法加工制造注入制毒渠道问题屡禁不止,易制毒化学品非法流向境外制成毒品后贩运回境内的犯罪活动日益猖獗,对此国家禁毒委高度关注,将五省10个县(区)列入制毒物品犯罪警示地区,积极部署开展为期半年的专项打击行动,有效防止易制毒化学品流入非法渠道,破获了一大批制毒物品犯罪案件,缴获易制毒化学品1000余吨。对该课题成果紧扣实战需求,迫切解决基层缺少毒品和易制毒化学品的查缉管控技术和装备表示感谢,他希望课题成果加速推广,更广泛的应用于禁毒实战,早日发挥威力。公安部禁毒局办公室副主任 刘铭讲话  验收专家组听取了公安部第一研究所王青研究员、李彬副研究员对项目执行情况的汇报,观看了课题成果应用视频,与会专家现场观看了本课题研制的基于拉曼光谱技术研发的易制毒化学品核查仪现场演示,审阅了相关技术及财务材料,并经过质询与认真讨论,专家组按照《国家科技支撑计划管理办法》和《“十二五”国家科技支撑计划公安项目验收工作实施细则》的要求,一致通过验收。专家组认为该课题研制了基于陶瓷材料一体化双模式漂移管的离子迁移谱易制毒化学品检测仪器,提出了基于聚类柱状计算法对离子迁移谱峰识别方法,具有原创性。融合了自主开发的现场拉曼光谱∕离子迁移谱分析检测技术、隐形矩阵复合码防伪技术和信息管理平台技术,实现了易制毒化学品人、车、物、证全方位的精准管控与轨迹溯源,创新了易制毒化学品管控综合管理模式。课题成果已转化为产品,在国内外获得推广应用,为打击毒品、易制毒化学品违法犯罪发挥了重要作用。中科软科技股份有限公司科研人员现场演示易制毒化学品核查仪使用情况  据了解,该课题旨在通过易制毒化学品现场快速查验、电子证书机读防伪识别等多项技术研究,研制开发易制毒化学品的轨迹综合查验设备与运输查询管控平台,实现对易制毒化学品的现场检验与化学成份分析、对易制毒化学品的携带排查与整车排查以及进行易制毒化学品电子证书信息与实物、车辆的比对。该课题研究成果将有效解决易制毒化学品在申报、运输、使用中与实际情况不符而无法查验的问题,有效杜绝易制毒化学品在运输、使用过程中被掉包或非法流失等问题。同时轨迹综合查验设备与物联网应用技术的结合还可实现对易制毒化学品轨迹的实时查询与监管,并建立易制毒化学品轨迹综合信息的获取与管控查询平台。基于该智能平台可实现对企业生产、销售、购买、运输、使用、仓储、进口、出口等环节的有效监督管理,除此之外,还可实现各类许可、备案等办理流程的自动化,对易制毒化学品的流向动态进行历史记录和监督管控。从而有效遏制易制毒化学品流入非法渠道。  据悉,该课题成果检测仪器可以检测种类包括20种易制毒化学品及15种毒品,对易制毒化学品电子证书的检测时间小于3秒,对易制毒化学品检测时间小于10秒,已经在江苏、甘肃、河南和内蒙古自治区等多个省份示范应用,在网企业19700家,共办理购买许可证620000张,运输证300000张,培训公安民警2600余人,培训企业22000余家,全面提升了应用省份易制毒化学品管理工作的制度化、规范化和信息化水平,在有效监管的同时也提高了企业和单位的办事效率,有效遏制了易制毒化学品非法流失。
  • 全国食品直接接触材料及制品标准化技术委员会发布《食品金属容器 双酚A迁移量的电化学测定法》行业标准(征求意见稿)
    附件:1-食品金属容器 双酚A迁移量的电化学测定法( 征求意见稿)2-《食品金属容器 双酚A迁移量的电化学测定法》行业标准编制说明(征求意见稿)3-行业标准(征求意见稿)意见反馈表
  • 大连化物所利用离子迁移谱首次实现痕量无机炸药的快速检测
    近日,中国科学院大连化学物理研究所快速分离与检测组李海洋研究团队在无机炸药现场快速检测方面取得新进展:基于原位酸化增强技术,利用离子迁移谱首次实现了快速检测痕量无机炸药,测量周期小于5秒,检测灵敏度达到100皮克,该成果已经发表在Nature 子刊Scientific Reports 上。   无机炸药在我国是一类非常重要的炸药,由于其原料易得、制造方法简单且成本低廉,监管极其困难,每年由于非法制造、运输及使用,经常导致财产损失和人身伤亡事件。目前缺乏适合现场检测无机炸药的仪器和方法,离子迁移谱虽然已经成为爆炸物检测的主要手段,但由于无机炸药中含有难挥发性的无机盐成分,其检测效果并不理想,长期以来一直是国际难题。李海洋创新性地提出了通过在采样片上添加磷酸对无机炸药进行原位酸化,利用热解析进样,实现离子迁移谱快速、高灵敏地检测无机炸药中难挥发性无机盐(硝酸钾、氯酸钾和高氯酸钾)。通过采样片上原位酸化无机炸药,5秒内实现10-12克级别无机炸药(如鞭炮、黑火药和火柴头)的快速痕量检测,将检测灵敏度提高了3000多倍以上 同时该技术保持了对传统有机炸药(硝基爆炸物如硝铵、梯恩梯和太安等)的高灵敏检测性能。   该新型无机炸药和有机炸药检测新技术和新仪器非常适合爆炸物的现场快速高灵敏检测,在机场、车站等重要场所的安检领域具有广阔的应用前景。    大连化物所实现快速检测痕量无机炸药
  • 聊一聊离子迁移谱技术
    离子迁移谱(Ion mobility spectrometry, IMS)是一种在电场作用下通过离子在中性气体中迁移从而实现离子分离与检测的技术。IMS发展至今已具有三大技术优势:首先,IMS 可与电离效率较高的大气压化学电离源联用,获得 ppt 量级的检测限;其次,IMS 分析可在 ms 量级完成,且与色谱、质谱分离相正交;再次,离子迁移率 K 与离子形状、尺寸等结构信息直接相关。基于前两种优势,IMS 被广泛用于化学战剂、爆炸物、毒品及危化品的现场快速检测中,并发展成为一种主流核心技术。然而,离子迁移谱技术研究领域一直面临着如何实现离子迁移谱分辨能力提高的同时,不损失其对不同离子检测灵敏度的这一重要挑战。为此,金铠仪器(大连)股份有限公司与中国科学院大连化学物理研究所长期开展合作,成立质谱发展事业部,开展离子迁移谱研发工作,先后攻克了非放射性电离源,无离子歧视的TPG构型离子门等全自主技术。基于TPG构型离子门,通过提高离子迁移谱内部迁移电场的强度并降低离子门开门时间,将离子迁移谱的分辨能力提高到超过100,同时保持了不同离子的灵敏度。该技术成功解决了不同溶剂对TATP识别的干扰问题,提高商品化离子迁移谱仪器识别TATP的准确性,降低仪器的误报率。金铠仪器 高精度连续在线测NH3仪金铠仪器基于离子迁移谱技术研制的高精度在线测NH3仪,具有灵敏度高、检测快速、结构简单、操作方便等特点,可用于大气环境、工业污染源、高纯气体以及材料释放NH3的高精度在线监测。中科院大气物理所应用场景大气环境联合观测实验青岛联合观测站氢燃料电池汽车是氢能应用的主要途径,作为燃料的氢气,其纯度和所含杂质的含量,对氢燃料电池的放电性能和寿命具有重大影响。将其分为有毒性杂质(总硫、CO、HCHO、HCOOH、总卤化物、NH3)和其他杂质(O2、He、N2、Ar、总烃、CO2、H2O、颗粒物)。离子迁移谱也可用于同时检测氢气中的硫化物,甲醛,甲酸,NH3杂质。离子迁移谱技术展望:(1)离子迁移谱高频测量应用离子迁移谱的测量速度极高,可在 10 ms 内完成一个测量周期,最高测量频率可达 100 Hz,在需要高频测量的应用中具有良好的发展前景。例如,大气环境中,涡传输的时间尺度范围较大,可从 0.1 秒到数小时, 只有使用测量频率在 10 Hz 以上的仪器才能捕集大气中绝大多数的涡,并监测其中的化合物。离子迁移谱技术的测量频率远高于 10 Hz,因此,在大气涡相关计算污染物通量方面具有广阔的发展前景。(2)多种化合物同时精确定量离子迁移谱同时测量多种化合物时,因其反应不为一级动力学反应,谱峰的强度不与化合物的浓度呈正比例关系,使其定量应用受限。因此,发展离子迁移谱测量多种化合物的精准定量为离子迁移谱发展的一个方向。(3)固定点危化物泄露预警应用离子迁移谱对化合物的测量速度较快、灵敏度高,可对极低剂量危化物的泄露快速测量,可用于固定点危化物泄露预警。(4)离子迁移谱技术与其它技术联用离子迁移谱技术与其它快速分析手段联用,例如质谱,可以保留高分析速度的能力下,极大提高分析方法的峰容量,提高仪器的定性识别能力;降低化学背景,提升灵敏度和定量范围。并且可利用离子迁移率与离子结构信息之间(m/z)的关系区分同分异构体等。 本文来源:金铠仪器(大连)股份有限公司
  • 气相离子迁移谱(GC-IMS)技术在粮食霉变早期筛查中的应用
    霉菌是真菌的一种,有的能使食品转变为有毒物质,有的可能在食品中产生毒素,即霉菌毒素 。自从发现黄曲霉毒素 以来,霉菌与霉菌毒素对食品的污染日益引起重视。主要表现为慢性中毒、致癌、致畸、致突变作用 。比如,在1993年被世界卫生组织(WHO)癌症研究机构划定为一类天然存在的致癌物的黄曲霉毒素,是毒性极强的剧毒物质,对人体健康造成的危害极大。霉菌毒素对粮油及其制品、各种植物性与动物性食品、水分含量较高的禾谷类作物都能造成污染。人或动物特别容易通过误食这些食品或其加工副产品,又经消化道吸收毒素进去人体。进而在肝、肾、肌肉、血、奶及蛋中可测出毒素,所以霉菌毒素的检测工作尤为很重要。霉菌及其毒素的产生也是渐变的,从无到有,从少到多。我们常说,抛开剂量谈毒性是耍流氓。霉菌毒素亦是如此,所以在关于食品霉菌毒素的检测工作中,霉菌毒素的检测限越低,霉菌毒素发现的越早,对我们的食品安全检测工作就越有利。比如,花生作为我国主要的油料经济作物之一,在加工贮藏等环节极易受到黄曲霉菌的侵染而失去使用价值。挖掘黄曲霉菌污染发生早期预警标识分子对于花生霉变的早期监测预警具有重要意义。在近期的研究中,科研人员将气相离子迁移谱(GC-IMS)技术用于食品相关样品的霉菌检测研究,相对于传统的液相色谱法、荧光光度法具有检测限更低、速度更快的特点。气相离子迁移谱(GC-IMS)技术结合了气相色谱的高分离度与离子迁移谱的高灵敏度,固体/液体样品无需固相微萃取,直接顶空进样分析,检出限可达到ppbv级别,典型分析时间5-15min,结果以直观可视的指纹图谱形式将样品中风味物质的差异呈现出来,可对单一/标记物进行定性、定量分析,也可对样品中所有挥发性有机物进行非靶向分析。气相离子迁移谱采用气相离子迁移谱(GC-IMS)技术对花生中黄曲霉侵染过程中挥发性有机化合物进行分析,通过挥发性物质的指纹谱图观察侵染过程中各阶段挥发性物质的变化规律和相对含量的变化,根据特征峰图片库结果结合化学计量学方法可以对花生的早期霉变程度进行有效的区分。热图聚类分析和主成分分析比较不同化合物之间的差异性和相似性,结果表明不同侵染阶段挥发性有机化合物差异明显,具有明显区分度,如己酸、2,3-丁二酮、2-己烯-1-醇-M、 戊-1-醇-M 和己醛可作为花生早期霉变的潜在生物标志物。该结果为仓储条件下花生霉变程度的早期预警监测体系开发提供了有效的标识分子。江苏大学食品与生物工程学院陈斌教授课题组基于GC-IMS联用技术在大米霉变早期监测做了相关研究,使用GC-IMS对分离的单一霉菌的mVOCs进行分析,发现菌种不同代谢产生的挥发性有机物不同,借助指纹图谱找到6种霉菌共性的挥发性有机物,根据挥发性有机物含量的变化用于大米霉变的早期筛查研究。以下为GC-IMS技术在粮食霉变早期筛查中的应用,欢迎查阅:1. Targeted versus Nontargeted Green Strategies Based on Headspace-Gas Chromatography−Ion Mobility Spectrometry Combined with Chemometrics for Rapid Detection of Fungal Contamination on Wheat Kernels. J. Agric. Food Chem 2020, 68, 12719−12728. 2. Rapid determination of potential aflatoxigenic fungi contamination on peanut kernels during storage by data fusion of HS-GC-IMS and fluorescence spectroscopy. Postharvest Biology and Technology 171 (2021) 111361.3. Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT - Food Science and Technology 132 (2020) 109758.4. Early detection and monitoring for Aspergillus flavus contamination in maize kernels. Food Control 121(2021)107636.5. A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chemistry 2020 00:1–9.6. Determination of volatile organic compounds by HS-GC-IMS to detect different stages of Aspergillus flavus infection in Xiang Ling walnut. Food Sci Nutr DOI: 10.1002/fsn3.2229.7. GC-IMS联用技术在大米霉变早期监测中的研究应用.江苏大学. 2019.8. 气相离子迁移谱联用技术评定大米霉变程度的研究应用. 中国粮油学报. 2019.9.高效识别黄变与正常稻谷中差异小分子物质的检测方法.申请公布号:CN109324124 A.天津科技大学. 2019.10.一种玉米花生核桃黄曲霉侵染霉变的特定分子标记物及利用其进行早期霉变检测的方法. 申请公布号: CN 111521708 A. 陕西科技大学. 2020.11.基于离子迁移谱的玉米霉变早期预警标示分子研究.中国食品科学技术学会第十七届年会摘要集.2020.
  • 上海矽感推出离子迁移谱仪
    一台代表食品安全快速检测技术先进水平的离子迁移谱仪,在12月2日到4日上海举行的《2012第六届中国国际食品安全控制及检测仪器设备展览会》上亮相展出。   产品的现场演示尽显神奇:操作人员无论从待测的动物毛发、肌肉组织,还是从新鲜奶制品和蔬菜等农副产品中摄取微量样品,通过直接进样送进这台复印机大小的离子迁移谱仪,不到两分钟,机器就准确给出了所测物质中是否存在三聚氰胺、瘦肉精、农药残留等多种国家禁止使用的农药残留、非法添加和生物毒素等有害物质。   现场专业人士深入浅出的介绍,解开了离子迁移谱仪的神奇之谜。这种技术和设备的基本原理是:通过化学电离的不同物质,其所形成的离子的迁移率不同,根据不同的离子迁移率就能区分出不同的物质,从而完成对于不同有机化合物的测量。   离子迁移技术发明至今虽然已有将近30年的时间,但只是在最近几年才取得真正的进展并进入实用阶段,而上海矽感信息科技有限公司将离子迁移谱技术用于食品安全领域的快速检测和化学分析,在国内外尚属首例。近年来我国各地频发的食品安全事故严重危及广大人民群众的身体健康和生命安全,已引起党和政府高度重视,正在大力采取措施保障食品安全,而建立方便快捷、准确可靠的检测体系是其中基础一环。离子迁移谱技术产品的应用推广,将形成对现有监管手段和技术的有效补充,极大改善当今中国社会食品安全的监管状况,尤其是对县一级农产品风险评估和环境监测,对农产品生产的源头控制,大型农产品集散、批发和消费场所的食品安全监管有着广泛的市场应用前景。   据食品安全检测专家介绍,由于技术环境和产品条件的约束,我国现有的食品安全检测体系和技术手段呈现两极分化的态势:一是在快速检测领域,我们至今还在采用欧美发达国家60、70年代发明并且已经淘汰的快速检测卡、酶抑制免疫法等落后的检测技术,这些技术虽然价格较低,但检测精度也低 二是在计量检测领域,目前大部分设备都是属于实验室应用级的,日常运行和维护都需要特定的实验室,并且几乎所有的待检物品都需要对样品进行几小时至几十小时的预处理,检测费用也很高昂。   相比之下,离子迁移谱仪的优势尽显:可在生产现场实施检测,不需要对送检样品进行预处理,能对待测物质做到精确定性和相对定量,而全部检测时间缩短为分钟级。这些优势使得生产企业对食品安全的源头控制和消费者在购买安全食品时的现场筛选成为可能。与此同时,再配合现代二维码信息识别技术、互联网和数据库技术,对从“农田到餐桌”的整个食品供应链,包括原产地环节、食品加工环节、流通环节和销售终端环节进行全过程动态检测记录、标识和追溯,都具有了实际可操作性。   据了解,重庆、武汉等城市的企业或超市已开始试用离子迁移谱仪检测食品安全。
  • Excellims携高效离子迁移谱新品MC3100亮相Pittcon 2017
    p   日前,Excellims携新型高效离子迁移谱仪MC3100亮相Pittcon 2017。 /p p   基于高效离子迁移谱和小型化离子阱质谱仪原理,MC3100是一款崭新的小型(15x16x24 英寸)离子迁移质谱系统。这个集成于一体的台式化学分析/鉴定系统,可在一分钟内对离子迁移率和分子质量进行测量以实现二维化学物质鉴定。此外,MC3100也可以用来测量离子的碰撞界面积以表征分子的大小和形状及分子空间构象。 /p p   据介绍,MC3100 首创小型化离子迁移质谱仪,离子迁移质谱仪现在终于可以放在狭窄的实验室工作台上和移动实验室内,它为化合物的现场鉴别提供了强有力分析手段。 /p p style=" TEXT-ALIGN: center" img title=" New Picture (41).jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/9f05b1c8-a450-4a18-807f-f61911a53170.jpg" / /p p style=" TEXT-ALIGN: center" strong 高效离子迁移谱仪MC3100 /strong /p p   strong  仪器特点: /strong /p p   基于离子迁移率和质荷比的二维化学鉴定系统; /p p   经过离子迁移谱分离的离子进入到质谱分析器,整个过程只需一分钟分析时间; /p p   分析异构体的强力工具; /p p   多操作模式用户自定义实验设计; /p p   提供便捷更换各种不同的离子源而不需要卸载真空。包括Excellims提供的ESI直接进样源/ESI连续进样源/热脱附离子源。 /p p style=" TEXT-ALIGN: center" img title=" DSC009331.jpg" style=" HEIGHT: 333px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201703/insimg/3564052b-34a2-4d3a-ad73-727af3be80bc.jpg" width=" 500" height=" 333" / /p p style=" TEXT-ALIGN: center" strong Excellims展位 /strong /p
  • 俞书宏院士:ChemTEM实时可视化观察固相离子迁移
    p   离子迁移被认为是决定化学、生物和材料科学中许多器件性能的关键步骤。然而,对各向异性纳米结构间固相离子迁移的直接可视化和定量研究一直是一个具有挑战性的课题。 /p p   中科大俞书宏院士、上海交大邬剑波等人在Journal of the American Chemical Society上发表了题为& quot Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer& quot 的文章,报道了用原位ChemTEM方法定量研究共组装纳米线(NWs)之间的固相离子迁移过程。 /p p style=" text-align: center " img width=" 600" height=" 130" title=" Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer.png" style=" width: 600px height: 130px max-height: 100% max-width: 100% " alt=" Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer.png" src=" https://img1.17img.cn/17img/images/202004/uepic/d0253ed1-e8e6-446a-a240-7ab7c2de9b93.jpg" border=" 0" vspace=" 0" / /p p   化学透射电子显微镜(ChemTEM)是一种新兴技术,可以使电子束在成像过程中触发化学反应。通过调节电子束剂量率,可以很好地控制化学反应的类型和速率以及键解离。 /p p   报道中利用原位ChemTEM方法定量研究共组装纳米线(NWs)间固相离子迁移过程。 /p p   研究人员以在Te纳米线上的Ag离子作为研究模型,通过原位ChemTEM技术揭示了Ag在单层TeNWs阵列上的各向异性迁移行为。此外,ChemTEM表征技术也观察到了Ag在Se@ Te NWs上的迁移和Cu在Te NWs上的迁移,进一步证实了固相离子迁移机制。 /p p style=" text-align: center " img width=" 500" height=" 495" title=" 图.png" style=" width: 500px height: 495px max-height: 100% max-width: 100% " alt=" 图.png" src=" https://img1.17img.cn/17img/images/202004/uepic/8babed45-b6d1-443e-b74c-4229a8b6b9ca.jpg" border=" 0" vspace=" 0" / /p p   这些发现提供了对纳米系统中普遍存在的固相离子迁移动力学的重要见解,并为探索其他离子迁移过程提供了一个有效的工具,有助于将来制备定制的和新的异质纳米结构。 /p p br/ /p
  • 大连化物所超高分辨离子迁移谱研究取得进展
    p   近日,中国科学院大连化学物理研究所快速分离与检测研究组研究员李海洋,利用一种TPG构型离子门,在不损失离子灵敏度的前提下,研制出一种分辨能力(R)超过100的离子迁移谱技术。该技术有望提高商品化离子迁移谱仪器对爆炸物及化学战剂识别的准确性,降低仪器的误报率。相关研究结果被Analytical Chemistry收录。 /p p   离子迁移谱技术研究领域面临着如何实现离子迁移谱分辨能力提高的同时,不损失其对不同离子的检测灵敏度这一挑战。为解决这一问题,该研究组2012年曾提出一种解释BNG构型离子门关门电场特性的“三区理论”。在该理论指导下,通过提高离子门关门电压,可以在一定范围内实现分辨能力和检测灵敏度的同步提高。但过高的关门电压会造成离子灵敏度的损失,且迁移率越大,离子灵敏度损失越明显。 /p p   在最近的研究中,李海洋团队研制出一种无离子歧视的TPG构型离子门。基于该离子门,通过提高离子迁移谱内部迁移电场的强度并降低离子门开门时间,将离子迁移谱的分辨能力提高到超过100,同时保持不同离子的灵敏度。该技术解决了不同溶剂对TATP识别的干扰问题,提高商品化离子迁移谱仪器识别TATP的准确性,降低仪器的误报率。 /p p   该研究是李海洋团队研制超高灵敏离子迁移谱技术后,在离子迁移谱领域的又一技术突破。研究工作得到了国家自然科学基金项目的资助。 /p p style=" TEXT-ALIGN: center" img title=" W020171206361680662218.jpg" src=" http://img1.17img.cn/17img/images/201712/noimg/4f51739f-7d4c-455a-ad72-bc4c93760636.jpg" / /p p style=" TEXT-ALIGN: center" 大连化物所超高分辨离子迁移谱研究取得进展 /p p /p p /p
  • 欧盟玩具特定元素迁移新规即将实施
    欧盟全体成员国将自2013年7月20日起实施严格的化学物质新限制。多年来,欧盟根据旧有玩具安全指令88/378/EEC监管玩具中的化学物质,但自采纳第2009/48/EC号指令后,针对多种重金属及化学物质的新增上限及管制已陆续生效。   从2013年7月20日起,但凡在欧盟市场出售的玩具,必须符合玩具安全指令(第2009/48/EC号指令)附件二第三部分的新化学物质规定。新规定对多种物质实施管制,包括铝、硼、六价铬、钴、铜、锰、镍、锶、锡、有机锡及锌。   欧洲标准委员会(CEN)负责制订一套涵盖规定及检测方法的新标准,以便业者遵守化学物质限制。这套新欧洲标准名为「玩具安全—第三部分:若干元素的迁移」(Safety of toys – Part 3: Migration of certain elements) ,已于2013年6月出台,将取代第EN 71-3:1994号标准。业者可向欧洲标准委员会的成员国机构购买新标准文本。   欧盟成员国须于2013年12月前,以刊登相同文本或认可的方式,采纳上述欧洲标准为国家标准。若国家原有标准与新欧洲标准互相抵触,该成员国须于2013年12月前撤销原有国家标准。   第2009/48/EC号指令列明3类玩具物料的最高迁移限值,分别是:    第一类:干、粉状或柔软的玩具物料。例子有颜色笔笔芯、粉笔、蜡笔、胶泥等。    第二类:液体或黏性玩具物料。例子有手指油彩、清漆、笔具墨水、泡泡溶液等。    第三类:可被刮掉的玩具物料。例子有油彩及清漆涂层、纸板、纺织品、玻璃、陶瓷及金属物料、木、皮革等。   假如玩具或玩具部件由于某些原因,包括可接触性、功能、体积或质量,在正常或可预见的使用情况下显然不会因为被吸啜、舔、吞咽或长期接触皮肤而构成风险,将不受新标准的规定约束。下列是被视为很有可能被吸啜、舔或吞咽的玩具及玩具部件:    所有拟供儿童置于口内或接触口部的玩具、化妆品玩具、归入玩具类别的书写工具    拟供年龄最大至6岁儿童使用的玩具中,所有触摸得到的零部件。   有害化学物质(元素)的迁移限值以每公斤多少毫克计算,详情载于新标准附表2。业者须按照新标准第7条及第8条的规定,检测玩具所含化学物质的迁移状况,迁移值不得超过附表2列出的上限。第7条详述抽样及准备样本的要求,第8条说明分析方法,第9条说明如何计算结果。   玩具生产商可向欧洲标准委员会的成员国机构购买新标准EN 71-3的文本。这些机构的联络资料载于以下网址:   http://www.cen.eu/cen/Members/Pages/default.aspx   【原标题】新玩具安全标准列明规定及检测方法确保符合限制
  • 离子迁移谱首次成功用于三聚氰胺检测
    中国首台用于食品安全现场快速检测的离子迁移谱仪28日在重庆食品节上亮相。据介绍,这台只有复印机大小的仪器,可以在两分钟内检测出三聚氰胺等20多种国家规定严禁人为在蔬果、肉类等食品中添加的物质。   在食品节现场,离子迁移谱仪的研发负责人马军向记者演示了该仪器如何使用,他随手从售货柜台上取过一小块生鲜牛肉,摄取其中一点投入机器的进物仓,机器界面上显示出该块牛肉的离子迁移谱谱图,几乎同时,也显示出已由计算机自动完成与标准图谱比对后得出的结果:“您所检测的商品符合送检标准及农业部相关标准”。   该仪器由武汉矽感科技有限公司研制生产,将化学物质气化和电离后得出一张离子迁移谱,然后将该迁移谱与农业部门所确定的标准图谱相比对,迅速检测出送检食品中的农药残留、兽药残留、瘦肉精、三聚氰胺等的存在。   据了解,目前中国大部分食品安全检测设备都是实验室应用级的,不仅价格昂贵,而且对几乎所有送检物品都需要进行以小时计,甚至十几小时计的预处理。这决定其难以在食品生产、流通、销售现场广泛使用。检测手段的缺失成为食品安全事故频发的重要原因之一。   武汉矽感科技有限公司董事长张伟表示,离子迁移谱仪在这方面优势尽显:体积小,重量轻,可使用普通电源在大气环境气压下工作,不需要对送检物品进行预处理,而全部检测时间缩短为不到两分钟。   另外,离子迁移谱仪的现场快速检测功能,使食品企业对生产的全过程实施全程监控成为可能。重庆牧牛源牛肉制品有限公司是离子迁移谱仪的第一个企业用户。牧牛源总经理熊德明说,“从牧草、饲料、屠宰分割、深加工到终端销售,我们用离子迁移谱仪层层监控,消除各种可能导致的食品安全隐患,因此我们可以向全社会公开承诺牧牛源牛肉制品的安全性。”   在张伟看来,实现全过程监控对于促进食品安全还有另一重大意义。他表示,离子迁移谱仪辅以二维条码自动识别技术和云计算技术,构建一个覆盖全社会的食品安全全程监控与实时追溯体系,以寻求从根本上解决食品安全问题。
  • 光电离源离子迁移谱仪成功通过公安部检测
    6月4日,由中科院大连化学物理研究所快速分离与检测研究组李海洋研究员所带领研究团队,研制的国际首款可同时检测爆炸物和毒品的非放射性光电离源离子迁移谱仪一次性顺利通过公安部国家安全防范报警系统产品质量监督检验中心的31项检测。   按照中华人民共和国公安部发布的《GA/T 841&ndash 2009基于离子迁移谱技术的痕量毒品/炸药探测仪通用技术要求》标准,针对仪器的冷启动时间、误报率、探测限及过负荷恢复时间等性能要求 采样方式、打印功能、软件功能等功能要求 六项抗扰度试验的电磁兼容性要求 高温、低温和恒定湿热的工作环境以及振动、冲击、跌落等环境适应性要求 辐射和电气安全性能要求等31项指标,检验中心进行了全面严格的测试和评价。检测结果表明,该仪器对大部分爆炸物和毒品检测种类的检测能力优于标准的指标要求,其冷启动时间、过负荷恢复时间等远远小于标准的指标要求,仪器整体性能稳定、功能完备   据了解,李海洋研究团队在光电离源离子迁移谱仪方面已申请专利20余项,相关创新性研究已在Analytical Chemistry杂志上发表文章6篇。此次仪器成功通过公安部检测,表明其已获取光电离离子迁移谱仪器推向市场的资质,已具备为公共安全现场快速分析提供有力保障的能力。同时基于102组工程化团队的通力合作,该仪器已建立了模块化设计、加工、调试、评价等一系列标准生产流程,为规模化生产奠定了坚实的基础。
  • 北大电镜室:原位电子显微学法研究锂电池离子迁移
    对于锂离子电池,锂离子在电极材料中迁移的动力学过程决定了电池的宏观性能。比如,离子迁移的快慢决定了充电放电的速率,离子迁移的数量对应了电池的容量,离子迁移引起的结构恶化是电池寿命变短的根本原因。因此研究锂离子在电极材料中的迁移过程是我们了解电池工作原理、失效原理等的关键。透射电子显微镜是研究材料结构的利器,结合原位局域场探测的手段,则能在原子尺度下实时监控外场下的结构演化。这种表征手段很适合于研究锂电池中电化学势驱动的离子迁移。北大电镜室俞大鹏院士团队的高鹏研究员在过去几年在一直从事原位电镜局域场探测固态离子迁移的研究。他们与合作者曾成功地观察到离子导体中氧空位的迁移(JACS 132, 4197,2010),阻变存取器件中的Ag、Ni、Cu、Pt等金属离子的迁移行为(Nat.Commun. 3, 732 ,2012) Nat.Commun. 5, 4232,2014))等。  最近,高鹏研究员课题组研究了Li和Na离子在二维材料中的迁移行为,取得了系列进展, 包括Li离子在SnS2中的迁移(Nano Lett 16, 5582,2016,作者:Peng Gao*, Liping Wang, Yu-Yang Zhang*, Yuan Huang, Lei Liao, Peter Sutter, Kaihui Liu, Dapeng Yu, En-Ge Wang),Na离子在SnS2中的迁移(Nano Energy 32, 302,2017),Na离子在MoS2中的迁移(ACS Nano 9, 11296,2015)。这些具有van der Waals相互作用的二维材料,不仅仅展现出了优异电学、力学、光学性能,也是重要的能源存储材料。作为电池电极材料,van der Waals相互作用系统的最主要特征就是层间相互作用很弱,碱金属离子能够比较容易地在其中发生迁移。他们的研究发现,在二维材料中离子插入和拔出的反应路径是不对称的,这种不对称的反应路径对应着充放电过程中不对称电压平台。该研究揭示了这些层状锂电池电极材料中低能量效率的一个根源。高鹏研究员为这些论文第一作者和通讯作者。  另外,他们与东南大学合作研究了Na离子在尖晶石NiCo2O4纳米结构的迁移行为(Adv. Fun. Mater., DOI: 10.1002/adfm.201606163,2017),也发现了类似的非对称反应路径。高鹏研究员为论文共同通讯作者。  原子尺度上实时跟踪锂电池电极材料SnS2中的离子迁移过程电子束诱导的spinel -rocksalt的核壳结构。Rocksalt 核的直径约3 nm,相界宽度约1~2nm。  此外,他们和日本东京大学的合作者用电子束激发的方法,发现LiMn2O4中的Li和Mn离子都会发生迁移,发生从尖晶石到岩盐的结构相变(Chem. Mater. 29,1006,2017)。一般认为,这种结构相变会导致LiMn2O4电池的容量损失和电压降低。他们利用球差矫正透射电子显微镜,跟踪了Li和Mn 在氧四面体和氧八面体之间的迁移过程,揭示了离子迁移过程中的中间相、迁移路径、相界的原子结构、以及阳离子迁移伴随着的氧原子位置的自我调整,据此提出了一些可能的提高电极材料稳定性和电池寿命的方法。高鹏研究员为论文第一作者和共同通讯作者。  由俞大鹏院士领导的北京大学“电子光学与电子显微镜实验室”-校级大型公共仪器平台在2015年底増置了两台国际上迄今最先进的球差矫正透射电镜: Nion公司的配置单色仪的U-HERMES200(能量分辨率8 meV)和FEI公司的双球差矫正的Titan Cubed Themis G2 300 (空间分辨率60 pm)。与此同时,俞大鹏院士也积极在国际上积极招募青年才俊,重点发展电子显微学新技术在材料科学方面的应用,进一步提高大型高端仪器的管理水平、提升电镜平台服务效率和质量。目前,FEI双球差矫正电镜正在调试当中。  该研究工作得到了国家自然科学基金委、科技部、量子物质科学协同创新中心、千人计划和电子显微镜实验室等的大力支持。  论文链接:  http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02136  http://pubs.acs.org/doi/full/10.1021/acsnano.5b04950  http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b03659  http://www.sciencedirect.com/science/article/pii/S2211285516306176
  • 大连化物所超高灵敏离子迁移谱研究取得新进展
    近日,中国科学院大连化学物理研究所快速分离与检测研究组(102组)陈创、李海洋等人利用脉冲离子富集技术,成功研制了一种超高灵敏离子迁移谱。相关结果发表在美国化学会Analytical Chemistry上(doi: 10.1021/acs.analchem.5b01737)。  离子迁移谱作为一种高灵敏快速分离检测技术,在炸药探测、化学战剂预警等领域发挥着非常重要的作用。然而,为了保证可以接受的分辨能力,离子迁移谱通常使用每20 ms周期内开启200 μs的离子门向离子迁移管中注入离子用于分离和检测。这种工作模式对离子源所产生离子的利用效率极低,仅为1%,不利于离子迁移谱灵敏度的进一步提高。  为了提高对离子源中离子的利用效率,研究人员在离子源和离子门之间的电极上施加一个与离子门开门脉冲同步的高压脉冲。在离子门开启的时间间隔内,该高压脉冲将电离区的电场强度快速提高10到20倍,驱动其间的离子全部通过离子门进入到离子迁移管中。实验结果显示,该技术可以在保证离子迁移谱原有分辨能力的前提下,将离子源中离子的利用效率由原来的1%提高到20%左右,极大地提高灵敏度。例如,对Sarin毒剂模拟剂DMMP的检测限由原来的5 ppbv降低到200 pptv,灵敏度提高了25倍。该技术实施简单,无需对已有离子迁移管进行任何硬件改进。  本次研究是继早期研制开发负离子光电离源(Anal. Chem., 2010, 82, 4151)后的又一次新进展。以上研究工作得到了国家自然科学基金项目的资助。大连化物所超高灵敏离子迁移谱研究取得新进展
  • 德国格林德离子迁移谱、便携式气相色谱仪技术交流会顺利举行
    仪器信息网讯 在第十四届北京分析测试学术报告会及展览会(BCEIA 2011)召开期间,德国格林德公司召开技术交流会,向用户呈现了两款德国最新的仪器:德国G.A.S.公司的离子迁移谱仪,Inrag AG公司开发的I-Graph-X系列便携式、在线气相色谱仪。30余名业内用户参加了此次交流会。 交流会现场   德国I-GRAPH气相色谱仪工程师Andi Wyss先生在“微技术气相色谱”报告中介绍说:“I-Graph-X系列便携式、在线气相色谱仪由Inrag AG公司开发并申请专利,融合了气相色谱和世界领先的微流量技术,获得了2008和2009年度德国工业产品奖,并获得了ATEX,GOST等质量认证,达工业6防等级IP65和防暴Ex。”   “I-Graph X色谱仪的优势在:(1)针对不同的市场和应用有三种型号:I-Graph XC便携式气相色谱仪、I-Graph XS便携/车载气相色谱仪、I-Graph XP/XPX普通在线和防暴在线式气相色谱仪;(2)结构紧凑轻便,小巧灵活,更易于使用;(3)GCM管理软件,设置参数后可连续测量,软件图像化,灵活简单,操作易学;(4)采用独特的微技术缩短分析周期,分析周期一般在30-180s;(5)可编程的柱加热温度:0°C 到350°C,最快升温速度达8℃/s;(6)有7根不同型号的色谱柱可选,包括六个不同的“包装柱”和一个“薄膜柱”;(7)低气体消耗,配备100mL气体罐;(8)检测限达1ppm;(9)液晶触摸屏和接口,如USB/RS232等。”   最后,Andi Wyss先生介绍说:“I-Graph X是一个强大的在线快速气体分析工具,可以方便的在现场对排放的气体进行检测和警报。I-Graph X系列色谱仪主要应用领域包括天然气组分分析、石化气体组分便携/在线分析、生物沼气检测、核安全监测、石化动火安全检测、煤矿安全检测。此外,在化学,制药,颜料和色料行业,还有精炼厂和污水处理厂等,I-Graph X可用于监测爆炸性的气体混合物,也可用于其他需要监测气体成分的行业。”   德国GAS公司气相离子迁移谱应用工程师 bolan cao-lao曹女士在“快速检测分析技术离子迁移谱及其应用”报告中  曹女士首先介绍说:“德国G.A.S.公司成立于1997年,总部位于Dortmund TechnologyCentre。公司由20多名电气工程师、软件工程师、化学专家、物理学家及技术人员组成。公司主要从事离子迁移谱仪的开发生产和销售。其主要应用领域包括:天然气气味分析、过程控制、气味鉴定、产品鉴别、呼吸分析过程中的痕量气体检测等。”   “德国G.A.S.公司生产的离子迁移谱(IMS)的主要特点是:(1)高灵敏度:对VOCs具有低至几个ppb (μg/L)级别的检出限;(2)快速:利用IMS分析一个样品时间为 3-10秒;利用GC-IMS分析样品的时间为 3-10分钟;(3)高选择性:可利用GC预分离;(4)使用简单:无需样品前处理;(5)定性分析:根据IMS图谱定性分析物质;利用指纹鉴别确定产品质量(好,坏,是否新鲜等)。”   对于离子迁移谱仪的应用,曹女士介绍说:“离子迁移谱特别适用于检测挥发性有机物。此外在食品行业,尤其是食品安全领域,离子迁移谱具有越来越重要的作用,它可以应用于饮料工业及食品工业的质量控制,可用于原材料和产品的检测和实时过程监控等。离子迁移谱可以用区别不同可乐品牌、鉴别咖啡的新鲜度,进行不同品牌大米的分析、不同品牌酱油的分析、不同葡萄酒的分析。”   此外,在交流会中,曹女士为现场用户详细介绍了离子迁移谱的工作原理、GC-IMS的结构,核心组件、离子迁移谱图分析、应用软件、FlavourSpec® 气相离子迁移谱的特点等内容。用户对于该技术十分关心,在现场纷纷向专家提问了解详细信息。
  • 合肥研究院发展出基于光电离的负离子俘获迁移谱技术
    近期,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室发展的基于光电离的负离子俘获迁移谱技术,实现了对多种有机酸的检测。此项工作发表在英国《皇家化学学会进展》(RSC Advances, DOI: 10.1039/C4RA10763B)上。该项技术既为离子迁移谱仪器新增了一种非放射性离子源,也为大气压下离子化学反应的掌控提供了成功的案例。   离子迁移谱仪器常被用于痕量毒害危险品的现场快速检测,发展新的非放射性离子源是迁移谱技术研究的一个重要方向。以往真空紫外光常被用作离子迁移谱的电离源:在紫外光的电离作用下,待测物质分子被转化为正离子,根据正离子迁移谱的特征,可对待测物质分子进行分辨和探测。而对于离能小于紫外光能量或者光电离效率差的待测物质而言,这种方法在检测紫外光电离形成的正离子方面就显得无能为力。   为此,光谱质谱研究室科研人员在紫外光电离电子俘获离子迁移谱PI-EA-IMS研究基础上,发展了负离子俘获迁移谱技术:第一步,紫外光电离产生电子 第二步,电子俘获产生反应离子 第三步,反应离子俘获将待测物质分子转化为负离子 第四步,通过负离子的迁移谱特征实现对待测物质的分辨测量。利用新发展的氯离子俘获离子迁移谱技术,成功地检测了多种有机酸以及五种品牌食用醋中的乙酸。   在此之前,光谱质谱研究室还发明了非放射性等离子体源离子迁移谱技术,研制了离子迁移谱检测仪样机,并通过了第三方组织的高低温、高温高湿、震动冲击、电磁干扰、软件测评以及性能测试,结果表明:在探测物质种类、灵敏度、分析时间、准确性等方面,达到了国际同类产品先进水平。   文章详见:Hui Gao, Wenqi Niu, Yan Hong, Beibei Xu, Chengyin Shen, Chaoqun Huang, Haihe Jiang Yannan Chu, Negative photoionization chloride ion attachment ion mobility spectrometry for detection of organic acids, RSC Advances, 4(109) (2014), 63977. 离子俘获迁移谱检测混合酸以及各种品牌食用醋中乙酸的谱图
  • 超显微镜观察到锂离子在双层石墨烯中迁移
    p   德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。研究成果发表在最新一期的《自然》杂志上。 /p p   斯图加特马普固态研究所物理学家于尔根· 斯迈特介绍说,研究显示“纯碳化合物最适合用于锂基电化学存储系统,在此系统中,锂暂时储存在碳主体中”。 /p p   这一项目由巴符州基金会资助,目的是研究锂在二维碳化合物(如原子水平的石墨烯)中的储存和扩散。为此,斯迈特和他的博士生开发了一种由双层石墨烯组成的“微型电池”。石墨烯属于二维材料,由单个碳原子层组成。在只有0.3纳米薄的细长电化学微电池的一端,研究人员在顶部施加了溶解有锂盐的电解质液滴。为使电解质不干扰电子显微照片,实验必须精确定位和机械稳定,他们采用了一种技巧,即添加了在紫外线下固化的聚合物,使液滴成为凝胶状固体留在原处。 /p p   实验显示,当电压施加到纳米电池时,锂离子从电解质液滴迁移到石墨烯双层的间隙中,并在那里积聚 去除电位差时,累积储存的锂又溶解并迁移回到电解质液滴中。 /p p   在原子水平上,这种过程很难被“原位”观察。乌尔姆大学乌特· 凯瑟教授领导的团队利用超显微镜首次证明了石墨烯在原子水平上的嵌入。 /p p   实验结果让研究人员感到吃惊,传统的石墨基电池只有少数紧密堆积的锂在两层碳层之间,而在石墨烯纳米电池里发现非常密集的锂层。凯瑟教授称,超显微镜为理解纳米电池提供了独特的途径,能在石墨烯夹层中观察锂等轻元素的扩散是一项巨大的科学挑战,传统的透射电子显微镜(TEM)做不到。 /p
  • 高分辨离子迁移谱仪(IMS)进入临床示范应用
    p   近日,中国科学院大连化学物理研究所快速分离与检测研究组(102组)李海洋研究团队成功研发了简单快速分析一滴血中麻醉剂血药浓度的检测新方法和新设备。此方法没有复杂的样品预处理过程,一滴血直接滴在分析器表面,通过分层热解析和快速高分辨离子迁移谱联用,直接获得丙泊酚麻醉剂的血药浓度,相关研究成果发表在Nature旗下科学期刊Scientific Reports上(DOI: 10.1038/srep37525)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201611/insimg/49223d24-05a9-43e1-a6b4-4dc91952651f.jpg" title=" 1.jpg" / /p p   丙泊酚是目前医学界常用的静脉麻醉药,临床麻醉多凭经验通过靶控输注给药模型完成麻醉过程,无法满足个性化医疗 目前常用的检测方法因其前处理复杂、费时,响应时间滞后,难于指导临床。因此,迫切需要动态在线监护仪实时掌握患者的麻醉深度,对麻醉药物的输注量进行精确调控,最终实现精准麻醉。 /p p   近年来,李海洋研究团队始终致力于高分辨离子迁移谱(IMS)的创新和应用。随着IMS仪器分辨率和选择性以及仪器自动化程度的不断提升,推进了其在临床实践的应用。通过与哈尔滨医科大学第一附属医院三年来的合作,成功实现了通过一滴血对人体血液中麻醉剂的快速分析检测。该研究方法的血浆样本没有复杂的预处理过程,1分钟内实现一个样本的分析 将低成本的医用滤纸与IMS梯度热解析技术结合,实现了血药复杂混合物的分层动态热解析。研究还发现临床浓度范围内其他联合用药无交叉信号干扰 该方法在丙泊酚临床血药浓度1-12μg/mL范围内可实现准确定量分析,分析灵敏度为0.1μg/mL。该研究成果为临床医师调整麻醉剂用量、制定合理的麻醉给药方案提供了一定的科学依据,可有效减少麻醉过浅或麻醉过深导致的术中知晓或发生意外医疗事故。 /p p   目前,该研究方法已在医院开展临床示范应用,相关研究成果的理论和技术装置有望应用于麻醉监测设备领域,具有广泛的市场应用前景。 /p p br/ /p
  • 强化自主研发掌握核心技术 促进离子迁移谱技术成果转化
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 离子迁移谱(Ion Mobility Spectrometry,IMS)技术主要是通过气态离子的迁移率来表征各种不同的化学物质,以实现对各种物质分离检测的目的。因此,离子迁移谱在出现的初期还被称气相电泳和等离子体色谱。该技术特别适合于一些挥发性有机物的痕量探测,如化学战剂、毒品、爆炸物和大气污染物等。现在,该技术已经广泛应用于公安侦察、公共场所(如机场、火车站、海关)安检、反恐、缉毒、国防、环境检测、工业生产中有害气体监测等。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 公安部第三研究所关于离子迁移谱技术的研究历史近20年,2002年时三所申请了第一个关于离子迁移谱技术的国家课题,并开始了该技术的引进消化吸收,逐步将该技术产品化,并广泛应用于毒品、炸药的现场痕量检测。而过去的十几年里,伴随着迁移谱分析仪器的样式、几何形状和尺寸的发展变化,迁移谱分析方法也在不断推陈出新。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 那么, span style=" text-indent: 2em " 离子迁移谱技术与质谱仪器的联用,对质谱应用的发展起到多大的推动作用? /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 公安部第三研究所研制的离子迁移谱产品有何独特的技术优势?将在哪些领域得到广泛应用?考量科研成果是否适合产业化的标准是什么? /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从技术发展的角度,目前国产仪器的研制存在哪些技术瓶颈?未来国产仪器研发的技术发展呈现哪些趋势? /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对以上问题,仪器信息网特别采访了公安部第三研究所的研发工程师金洁,请她就以上问题分享了其观点想法。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp span style=" text-indent: 2em " 以下是采访详细视频: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " br/ /span /p script src=" https://p.bokecc.com/player?vid=978DE21C7BEDB5BC9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p br/ /p
  • 岛津发布应对欧盟玩具最新指令有关可迁移元素检测的解决方案
    中国是世界玩具的最大生产地,占据欧美玩具市场60%以上,但是受国际金融危机和玩具召回事件等影响,我国玩具行业的出口遭受了重大打击。此外,国外关于玩具的技术性贸易措施不断提高,如美国《2008 消费品安全改进法案》已于2008 年8 月14 日颁布,欧盟玩具新指令2009/48/EC 也于2009 年6 月30 日发布,大大提高了玩具的安全性要求,进一步增加玩具产品的出口难度。 2011年7月20日,迄今为止史上最严格的《欧盟玩具安全指令》(2009/48/EC) 正式生效。至此,运行了二十多年的《欧盟玩具安全指令》 (88/378/EEC)将被取代。玩具市场的技术进步,玩具生产地的变更,这两大因素是促使新指令出台的重要原因。与旧指令相比,新指令在多方面提出了更高的要求, 面向欧盟市场的玩具制造商,进口商以及经销商也将面临巨大的考验。新指令制定19种特定重金属更严格的限制,列明了55种禁用香料和11种需要贴警示标签香料的名称等。首次禁用致癌、致基因突变、影响生育(CMR)物质;禁止生产和销售若干类不符合其他法例(包括化妆品指令和有关与食品接触物料的指令)的玩具。此外,欧盟玩具新安全指令还明确玩具产品应满足包括REACH指令在内的欧盟通用化学品法规要求。 针对玩具中可迁移元素的检测,岛津分析中心依据欧盟2009/48/EC指令,参考GB 6675-2003《国家玩具安全技术规范》,EN 71-3:2000 Migration of certain elements 某些元素的迁移和ISO 8124-3:1997 Part 3: Migration of certain elements 玩具安全第3部分 某些元素的转移等法规,开发了 《欧盟玩具最新指令(2009/48/EC)可迁移元素的检测》方案。检测的目标可迁移元素包括 Al,As,B,Cu,Pb,Sb, Se,Sn,Zn ,Ba,Ni,Co,Sr,Hg,Cd,Cr和Mn 等17个元素。已经完成的岛津公司应对《欧盟玩具最新指令(2009/48/EC)可迁移元素的检测》整体解决方案包含: 1. 欧盟2009/48/EC指令背景介绍 2. 国际、国内相关玩具法规与标准 3. 分析检测国内外标准方法 4. 玩具中可迁移元素分析检测简介 5. 实际玩具样品检测 欲了解详情,请点击下载最新解决方案: http://www.instrument.com.cn/netshow/SH100277/down_196256.htm# 参考资料 【相关法规及政策】 1、中国:中国对玩具产品安全监管所依据的法律主要是《产品质量法》和《进出口商品检验法》,并根据这两个法律制定了一系列的法规(实施规则)和标准。 相关标准如下:《玩具产品强制性认证实施规则(六项)》 GB 6675-2003《国家玩具安全技术规范》规定了玩具的机械性能、燃烧安全性能和化学安全性能要求; GB 19865-2005《电玩具的安全》规定了电动玩具的安全要求; GB 4343.1和GB 4343.2《电磁兼容家用电器、电动工具和类似器具的要求》系列和GB 17625《电磁兼容限值》系列标准规定了电动玩具的EMC要求; GB 5296.5-2006《消费品使用说明 第5部分:玩具》规定了玩具产品的使用说明; GB 14747-2006《儿童三轮车安全要求》、GB 14748-2006《儿童推车安全要求》和GB 14749-2006《婴儿学步车安全要求》这四个标准规定了儿童车的安全要求。 2、欧盟:欧盟玩具指令(88/378/EEC)于1988年推出,已实行了二十多年。为适应快速发展中的玩具产业,欧洲议会于2008年提出新玩具指令草案,并于2008年12月18日投票通过。 2009年6月18日正式文本通过,并最终于2009年6月30日在OJ上刊登,新指令的编号为2009/48/EC。新指令设定了2年的过渡期,即符合旧指令要求的产品于2011年7月20日之前可以继续投放市场;而其中化学要求条款的过渡期则是4年,即符合旧指令中化学要求、而不符合新指令中化学要求的产品,可以于2013年7月20日之前继续投放市场。 EN 71-1:2011 Mechanical and physical properties物理和机械性 EN 71-2:2011 Flammability易燃性 EN 71-3:2000 Migration of certain elements 某些元素的迁移EN 71-4:1998 Experimental sets for chemistry and related activities 化学及相关使用的实验装置 EN 71-5:1993 Chemical toys (sets) other than experimental sets 化学玩具(装置)而非化学实验装置 EN 71-6:1995 Graphical symbol for age warning labeling 年龄警告标志的图示符号 EN 71-7:2002 Finger paints- Requirements and test methods 手指彩油的要求与测试方法 EN 71-8:2011 Activity toys for domestic use供家庭室内外使用的活动玩具 EN 71-9: 2005 Organic chemical compounds - requirements有机化合物的要求 EN 71-10:2005 Organic chemical compounds &ndash sample preparation and extraction有机化合物 样品前处理及提出 EN 71-11:2005 Organic chemical compounds &ndash test methods有机化合物 分析方法 3、美国:1996年,美国材料测试学会对PC72-76标准进行修改并发布为ASTM F 963标准《关于玩具的消费品安全规格标准》,目前该标准的最新版本为ASTM F963-11。新版玩具标准充分参考了标准EN 71与ISO 8142的安全参数,同时结合了一些伤害及招回事件的实际案例来制定新的标准,如溜溜水球(Water Yo-Yo)的勒杀风险与磁铁的吞食隐患等。 4、日本:日本玩具协会(The Japan Toy Association)为针对14岁及14岁以下儿童使用的玩具制定了&rdquo 玩具安全标准(ST)&rdquo ,其中S代表Safety,T代表Toy。该标准为自愿性,符合该标准的产品才被允许在产品本身打上ST标志。 日本对玩具的要求主要包括一些针对特殊玩具制定的法规,以及日本玩具协会的《玩具安全标准ST 2002》。在法规方面,《食品卫生法》针对直接接触幼儿(六岁及六岁以下儿童)嘴部并会造成伤害的玩具,规定了其使用的重金属、玩具原料和玩具的生产标准。对《食品卫生法》所管制幼儿玩具之外的玩具产品。 5、加拿大:玩具产品在加拿大境内进行广告宣传、销售都必须满足加拿大健康产品安全局制定的《危险产品(玩具)规则》C.R.C., c. 931的要求。该法规对玩具重金属元素铅、汞、锑、砷、钡、镉与硒都有限制要求,此外对四氯化碳、甲醇、石油馏出物、苯、松脂、乙醚等有规定。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 大连化物所提出优化光电离离子迁移谱技术性能的新方法
    近日,大连化物所仪器分析化学研究室质谱与快速检测研究中心(102组群)李海洋研究员团队基于自主研发的光电离迁移时间离子迁移谱(PI-IMS),通过理论建模研究了PI-IMS在不同气压条件下的响应特性,定量分析了离子复合过程和空间电荷对目标分析物甲苯信号强度的影响,提升了PI-IMS的检测灵敏度和线性动态范围。此外,理论建模研究揭示了光电离源分析性能的影响因素,从而深化对光电离源分析性能的认识,有利于优化高灵敏离子迁移谱的设计,并促进其在在线分析领域中的应用。光电离源作为一种高效电离技术,与离子迁移谱或质谱结合已广泛应用于临床诊断、食品控制、环境污染物监测和国家安全等各种现场分析领域。然而,在常压条件下,光电离源中的离子复合过程造成的离子损失会减小IMS检测的灵敏度及线性动态范围。本工作中,该团队开发了一种气压可变的PI-IMS,以甲苯作为模型分子,研究了在1至0.1bar的气压范围内降低气压对甲苯信号响应的影响。在理论模型的辅助下,团队确认了离子复合和空间电荷分别是高压和低压条件下离子损失的主要因素。此外,仅考虑离子复合过程的影响时,团队通过理论模型,建立了最佳灵敏度对应的气压条件与样品浓度和电离区电场强度条件之间的关系式,为不同实验条件下确定最优气压的大致范围提供参考,实现PI-IMS检测性能的快速优化。研究发现,相对于大气压,气压条件为0.4bar时,PI-IMS对0.716ppmv的甲苯样品检测灵敏度可提升四倍左右,同时其线性动态范围也扩大了两倍以上。相关研究以 “Improving the Sensitivity and Linear Range of Photoionization Ion Mobility Spectrometry via Confining the Ion Recombination and Space Charge Effects Assisted by Theoretical Modeling” 为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是我所博士研究生徐一仟。该工作得到了国家重点研发计划、国家自然科学基金、我所创新基金等项目的支持。文章链接:https://pubs.acs.org/doi/full/10.1021/acs.analchem.4c00605
  • 国产快速在线质谱仪、离子迁移谱仪产业化进程——访中科院大连化物所青年科学家李海洋研究员
    前言   飞行时间质谱仪(Time-of-flight Mass Spectrometer, TOF-MS),时至今日已有60年的研究历史,其中,1998年A.F.Dodonov等设计的一台垂直引入反射式TOF-MS,其质量分辨率达到20000以上,才使TOF-MS进入一个前所未有的发展阶段 而把小型化TOF-MS应用于环境领域进行快速检测的研究始于本世纪初,2000年,美国TSI公司结合美国加州河边分校新开发的质谱检测技术,推出了世界首台商品化的气溶胶飞行时间质谱仪。   我国首台“激光气溶胶双级飞行时间质谱仪”于2005年“横空出世”,第二代气溶胶双级飞行时间质谱仪——“纳米气溶胶在线质谱仪”已于2008年6月通过了项目验收 同时,“MS-500有机物在线监测质谱仪”,隶属李海洋研究员课题组(大连化物所102组)的第三代小型化TOF-MS也研制成功 就目前的市场情况来看,这几款国产“快速在线质谱仪”已经彰显出较为广阔的市场前景…   离子迁移谱仪(Ion Mobility Spectrometer, IMS),是在大气压或近大气压下,根据样品分子离子在漂移管的特征迁移时间,对微量气体进行快速检测的一种仪器,于20世纪60-70年代开始发展,目前已应用于爆炸物、毒品、化学毒剂的检测,环境监测以及生物分子分析等领域 根据《简氏核生化防护年鉴》2001年版提供的资料显示,离子迁移谱(IMS)技术已经跃升至“快速检测有毒有害物的十大技术”之首。   离子迁移谱(IMS)技术国外一直对我国禁运,为打破这种技术封锁以及国家安全、生态环境等领域的战略需要,李海洋研究员领导“大连化物所102组”,经过几年时间的潜心研究,成功开发出拥有自主知识产权的离子迁移谱(IMS)全套技术 目前,这批拥有自主知识产权的商品化离子迁移谱(IMS)仪器(T30系列爆炸物检测仪,T31系列毒品/易制毒化学品检测仪等),已经投放市场,其产业化进程正顺利进行…   中科院大连化物所 青年科学家 李海洋研究员   2008年7月27日晚8:00,时逢李海洋研究员来京参加中科院某科研项目评审之际,在其下榻宾馆处,仪器信息网工作人员就“国产快速在线质谱仪、离子迁移谱仪产业化进程”等问题采访了仪器研制者李海洋研究员… 战略指导 选题明确 领导“大连化物所102组”跨越式发展   李海洋研究员领导的“中国科学院大连化学物理所快速分离和检测研究组(简称:大连化物所102组)”研究方向主要涉及了两大技术领域:快速在线质谱、离子迁移谱 在采访过程中,李海洋研究员亦称“快速在线质谱、离子迁移谱”是目前自己研究组的“左右手”。   1、研究方向的转变:由“分子反应动力学领域”到“在线分析和检测方法方面”   通过笔者的了解,李海洋研究员在上世纪九十年代主要进行分子反应动力学领域的研究,后来为什么转到在线分析和检测方法方面的研究工作呢?   李海洋研究员向笔者解释到:“现场快速分析仪器具有体积小、重量轻、性能可靠、使用简单维护方便、附属设备少、价格低廉等突出特点,在大面积的环境普查和应用中越来越受到人们的青睐,尤其是在国土安全、食品卫生、环境保护和突发事件等的检测应用中显示出特殊地位。”   早在1997年,在美国召开的“21世纪环境实验室”(Environmental Laboratory Moving for the 21 Century)研讨会上,明确提出对现场监测设备和可移动实验室的设计与研究,确立了分析仪器的一个新的发展方向。   “正是看到这种契机以后,我才感觉在线分析将来有很大的发展前途,当时分子反应动力学的分析手段也发展到一个瓶颈阶段、大家也都在找新的技术或出路,因此回国之后我就着重在这个领域开始相关的探索研究。我原来做分子反应动力学也是采用光谱学,包括飞行时间质谱(TOF-MS)都是经常用到的工具。”  2、研究对象的确定:选择“质谱(MS)和离子迁移谱(IMS)”   在线分析方法有很多,像快速色谱与微型色谱、电子鼻、近红外光谱等,这些技术现在均有商品化的仪器,李海洋研究员在谈到“为什么选择质谱(MS)和离子迁移谱(IMS)作为在线分析仪器的研究对象”时表示:“每一种技术都有其自身的优越性和局限性,就像刚才所提到的近红外光谱仪,虽然其分析速度快,测量效率高,但是其分析灵敏度低,因为近红外光谱作为分子振动的非谐振吸收跃迁几率较低,就组分的分析而言,其含量一般应大于0.1% 另外,近红外光谱是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析,该方法所依赖的模型必须事先用标准方法或参考方法对一定范围内的样品测定出组成或性质数据,因此模型的建立需要一定的化学计量学知识、费用和时间。”   “就高端分析检测领域而言,技术本身无外乎是质谱、光谱,当然光谱最有前景的是核磁,而质谱作为分析领域中‘最精密的天平’,针对化学复杂组分分析,质谱的确是最好的分析手段之一、也势必成为21世纪分析学科的主流手段 目前在国外,质谱已经被广泛采用,国内也有这个趋势,开始由‘实验室教授’用到‘诸如省级环保站专业人士’用,一些药厂原来使用的光度计、色谱也开始逐渐采用质谱或色-质联用。目前,‘很好用’的质谱,主要问题就是价格太贵,但通过国内我们大家的研制,就能把其价格降下来。”   论及飞行时间质谱(TOF-MS)和离子迁移谱(IMS)的独特技术优势,李海洋研究员向笔者进一步谈到:“飞行时间质谱(TOF-MS)分析速度快,在微秒级就可以实现全谱分析,这也是其他质谱仪器所不具备的优势,而且其结构比较简单,容易实现国产化。离子迁移谱(IMS)测量速度微秒级,气相离子在大气压下的电场中得到分离,比色谱分离速度快,不需要真空,该方法对于爆炸物和毒品检测具有独特的优势。”   “尤其,突发性的事故往往在分析速度上要求比较高,飞行时间质谱(TOF-MS)和离子迁移谱(IMS)在速度和灵敏度上应该说都能够满足快速检测的需求,因此我就选择了这两种技术作为实验室以后发展的重点方向。” 李海洋研究员领导的大连化物所102组实验室   3、创制高端分析仪器 用高水平研究引领应用市场   关于自己领导的大连化物所102组总体情况,李海洋研究员向笔者谈到:“我们的研究组,在总体战略上是以市场需求作为牵引,我们的使命围绕着‘国家安全、生态环境和生命健康’对分析科学的需求,去创制用于现场快速检测的高端分析仪器,在‘国家安全、生态环境’侧面我们已经涉及到了,同时,我们希望用高水平研究和应用示范引领应用市场。”   可挥发性有机物在线测量新技术和新仪器的研究(软电离-微型飞行时间质谱技术及其应用,石英晶体微天平QCM的电子鼻技术及其应用)、离子迁移谱新技术的研究及其在快速监测中的应用、气溶胶粒谱与化学组分在线测量新技术和新仪器的研究是李海洋研究员的三大研究方向。   “围绕我们的使命,课题组的研究方向就定位在以质谱与迁移谱为主的核心技术研究 这就涉及到如何‘离子化’问题,因此我们的基础研究就紧紧围绕‘离子化’的新方法:团簇、气溶胶、大分子的电离新方法,如何实现软电离、硬电离、软硬电离切换,以及相关新型电离源的研究等 技术侧面主要是飞行时间质谱(TOF-MS)和离子迁移谱(IMS)中的核心技术,涉及质谱中直接进样技术、多维质谱技术、质谱成像技术、质谱微型化关键技术、高分辨迁移谱技术、高灵敏度迁移谱技术、离子迁移谱微型化关键技术、色谱-离子迁移谱联用技术等。”   “具体应用到国家安全、生态环境中,我们主要在气溶胶测量新方法,QCM、SAW化学传感器,炸药、毒品快速稽查技术和仪器,化学毒剂和危险品的快速测量技术等方面做一些应用示范,希望把我们研究新技术和新仪器应用到一些重要的科学研究中去。”   潜心研究 不拘一格 突破“TOF-MS与IMS”核心技术   正如李海洋研究员强调的那样:“正是从‘离子化’新方法等源头方面做了一系列基础研究,我们的飞行时间质谱(TOF-MS)和离子迁移谱(IMS)有自己的东西。”接下来,李海洋研究员就“TOF-MS与IMS”核心技术突破向笔者作了提纲挈领的介绍。   1、小型化TOF-MS在环境领域的快速检测应用   目前,商品化飞行时间质谱仪(TOF-MS)几乎完全由国外厂家垄断,针对这种情况,李海洋研究员所研制的小型化TOF-MS和国外这些产品相比有什么优势和特色?   “国外的公司在TOFMS技术方面做得的确已经是比较成功,特别是在生物大分子这一领域,目前为止我们还没有足够的能力去尝试。” 李海洋研究员坦言。   “但是,我们把它应用于环境中的快速领域中就不需要那么高的指标,比如分辨率和检测质量数,我们现在做的分辨率600左右,质量数大概500,这些指标完全可以满足空气中挥发性有机物的检测。”   “在环境科学领域中,跟传统的化学分析模式还是有些区别的,更关注于快速实时监测,这样对环境治理等才更有意义,从这种程度上说,我们当时在2000年左右就开始着手把小型化TOF-MS在环境领域进行快速检测应用研究应该说是一种很大的创新。”   2、自主研发的小型化TOF-MS技术特色   关于自主研发小型化TOF-MS的技术特色,李海洋研究员向笔者谈论到:“我们的特色主要是在TOF-MS的电离方式和样品前处理方法这两个方面。”   “在电离方式方面,我们采用了一个真空紫外光单光子电离方法,使用真空紫外灯发射真空紫外光10.6eV,只要电离能低于该能量,那么该化合物都可以被电离。空气中的氮气、氧气等由于电离能高于10.6 eV,均不能够被电离,这样可以除去部分的背景气体干扰,简化实验谱图,而且SPI(Special Position Identification,特殊位置标识)电离是软电离仅产生分析样品的分子离子,由于光子的能量超出样品分子的电离能很小,所以不能产生碎片离子,所得的谱图简单,这样更加有利于样品的识别。”   “在样品前处理方面,我们采用了在线的膜进样设计,在膜两侧气体压力差的推动力下,被分离的混合气体中由于样品气体分子的形状、大小以及在膜中溶解度不同从而在膜中渗透速率产生差异,渗透率大的组分在高真空侧得到富集,从而达到分离与富集的目的。可挥发性有机污染物能够快速透过硅橡胶膜,然而空气中主要成分例如氮气、氧气和二氧化碳等气体很少能够透过。因此当气体样品经过此膜时,其中痕量的可挥发性有机污染物就会被富集。样品的富集倍数可以达到几百倍,完全可以保证我们在线分析的灵敏度。膜进样具有一定的相应时间,我们设计了新型的进样系统,分析时间可以控制在10秒,还可以根据灵敏度适当调整分析时间。”   李海洋研究员表示:“总体来说,我们的小型化TOF-MS产品特点具体体现在:采用了膜富集和直接进样技术,复杂样品无需前处理 软电离无碎片,利用分子量快速定性 响应时间短,数秒内即可得到分析结果等。”   3、IMS技术独特之处   TOF-MS在在线分析方面确实显示出诸多优点,但是要进一步实现仪器的小型化甚至微型化是很困难,主要是其真空系统受制于目前国内真空器件发展的约束。   李海洋研究员说:“而相比较而言,离子迁移谱(IMS)是大气压下的质谱,IMS技术在小型化以及微型化方面则具有其独特之处:第一,不需要真空系统,整个装置可以做得很小。第二,其灵敏度极高,而质谱一般是微克(ug)量级,在不加任何富集的情况下,IMS就可以达到皮克(pg)量级,这些特点使得其很适合于现场在线快速分析 加上近几年出现的更新探测器技术,又可能达到飞克(fg)量级 如果再加上新的手段,其在灵敏度上的前景就不可限量。第三,具有很好的结构区分性,能对同分异构体等实现很好的区分。”   IMS技术在国内曾一度不被看好,近些年来,IMS在国家安全方面有广泛的应用,它能够实现pg级的爆炸物和毒品的快速测量 同时,IMS在环境、生物医学、食品等方面也展示出其无限的潜力。IMS的研究在国内也起步较晚,李海洋研究员是2002年开始从事IMS的研究的。   4、自主知识产权的IMS全套技术  “前段时间,我有个朋友在国外参加了一次质谱前沿技术研讨会,给我带回一个信息:离子迁移谱(IMS)技术在国外的研究越来越热 目前,美国有五个国家实验室在研究迁移谱的新技术,均是美国国防的支持,主要都是应用在航天、反恐等方面 之前有关离子迁移谱技术国外一直对我们国家禁运。”   关于离子迁移谱(IMS)的核心技术,李海洋研究员称:“现在我们有自主知识产权的IMS全套技术,包括迁移管、放大器、数据接收与采集系统、进样器、气路系统等。我们最主要的突破是在非放射性电离源的研制、阵列式迁移管的研制等方面,这些技术的突破,能够很好地促进IMS的发展。”   在谈到一些技术细节突破所面临的困难和艰辛时,李海洋研究员为笔者举了一个“迁移谱中的微电流放大器研制”的例子:“放大器是市场上很常见的,但满足我们需求、被应用到‘迁移谱中的微电流放大器’,在市场上是没有的 要完全满足一定带宽、高灵敏度、高放大率、低噪音、又要价格便宜的‘微电流放大器’的研制就有些困难,前后有2个学生专职做这个事情,前后开发了十几款这种‘微电流放大器’,耗费3年时间才完全解决这个问题。” 致力前沿 着眼应用 实现“快速在线质谱仪、离子迁移谱仪”产业化   关于“快速在线质谱仪、离子迁移谱仪”系列仪器的产业化进程问题,应笔者的请求,李海洋研究员先从“首台激光气溶胶双级飞行时间质谱仪问世”谈起。   1、我国首台激光气溶胶双级飞行时间质谱仪问世   李海洋研究员告诉笔者:“气溶胶广泛存在于环境当中,与人们的生活和健康息息相关。目前使用的气溶胶测量装置主要是一些离线的测量技术,国外从20世纪70年代开始发展在线气溶胶测量技术,直到2000年TSI公司才推出世界首台商品化的气溶胶飞行时间质谱仪。”   我国首台“激光气溶胶双级飞行时间质谱仪”是在2005年由李海洋研究员主持研制成功,作为国家863课题“大气细粒子连续监测技术与设备”项目的核心仪器,该仪器研制成功的非凡意义在于:掌握了该领域内的核心技术,打破了国外对该类仪器的技术垄断,具有自主知识产权,价格远远低于国外同类仪器 在2006年国家科技创新重大成就展(共展出480余项重大科技成果和800余件实物、模型)上,该仪器被遴选为“100个亮点”项目之一。   笔者了解到:该仪器主要用于空气质量实时监测和环境污染过程动态分析以及实时分析等领域 可以实时监测大气中0.5-10μm的气溶胶粒子的粒径分布,并同时测量细粒子中的硝酸盐、硫酸盐、铵盐、地壳元素、重金属粒子等基本化学组分。同时,该仪器克服了离线技术测量过程中分析时间长、在分析过程中粒子会发生物理化学性质变化的局限,具有分析速度快、可以进行现场实时多组分同时分析、揭示气溶胶的瞬间变化等优点。   在谈到与国外产品的性能比较时,李海洋研究员表示:“在气溶胶粒子粒径范围等任一项技术参数,我们的仪器不输于TSI公司的气溶胶质谱仪 至于整机的稳定性,这需要时间的长期检验,我们不能说一定比他们强,截止目前为止,我们的气溶胶质谱仪运行稳定。”   2、快速在线质谱仪产业化进程 气溶胶粒谱与化学组分在线测量新技术和新仪器的研究   关于我们快速在线质谱仪系列产品的应用领域方面,李海洋研究员说:“我们的小型化TOF-MS应用范围也是很广泛的,现在主要是把其应用于VOCs 的分析,比如香烟烟气的分析、汽车尾气的分析、垃圾焚烧烟气的分析等,可以开拓的领域其实很多。”   “目前,我们的小型化TOF-MS已经发展到了第三代,最近还在开发新的电离方法,争取在以后的TOF-MS版本中,体积更小,灵敏度更高。” 可挥发性有机物在线测量新技术和新仪器的研究   论及其产业化情况时,李海洋研究员说:“前一段时间我们给浙江大学做了一台,他们主要是应用于二噁英前驱物的检测。另外,我们还与沈阳环境科学院签订了合作的意向,准备在环境检测车上安装我们的TOF-MS用于VOCs的检测和二噁英前驱物的在线监测。最近,我们还将给中国计量科学研究院做一台。这里,当然不包括之前给北大直接订制的一台。”   “其实,我们的第一代产品‘激光气溶胶双级飞行时间质谱仪’在05年研制出来一直没有找到合适的用户。但是,第二代‘纳米气溶胶在线质谱仪’已经有两个用户:国家海洋局,用于海洋气溶胶的测量 另一个是国家环境科学研究院。目前,还有2-3家倾向性用户,还在具体谈。”   这几款“快速在线质谱仪”的基本报价在100-200万人民币,像气溶胶双级飞行时间质谱仪的用户主要分布在高校、研究所等科研单位,正如李海洋研究员所说:   “快速在线质谱这一块,我们主要是通过我们开发的新技术和新仪器做一些示范应用来引领市场 因为大家没有用过这种仪器做相关评价分析,不知道如何‘好用、实用’,我们是要做一些具体的推广、引导工作 前段时间,我们利用自己的仪器做了‘烟草方面的分析评价’,结果很理想 最近,我们在着手找1-2个‘汽车尾气的分析评价’的示范用户。”   3、离子迁移谱仪产业化进程 离子迁移谱新技术的研究及其在快速监测中的应用   “因为我们拥有自主知识产权的IMS全套技术,自主知识产权的商品化IMS仪器也比较成熟,已经受过相当数量的市场用户的实践检验 现在我们主要是把IMS应用到以下几个方面:(1)易制毒化学品及毒品的检测 (2)爆炸物的检测 (3)环境污染物的在线检测 (4)食品安全的监测等。” 李海洋研究员说。   “目前,这批商品化离子迁移谱(IMS)仪器,已经销售出十几台,仪器单价是30-40万,准备成立大连金瑞恒达科技公司在旅顺产业化园(中科院大连科技创新园)进行产业化合作生产,其前期筹备工作已经完成。”   针对笔者关于此项合作是否会有变故的疑问,李海洋研究员微笑地说到:“应该不会,中科院本身对这种产业化合作是要支持的,但这需要一个过程,比如涉及一些股权分配等问题讨论 最终审批只是时间问题,当然他们(合作者:大连中环)对这事是很期待的,合作资金在手里几个月了。”   4、水下质谱、MS与IMS联用技术的研制   李海洋研究员向笔者透露:“我们现在还在积极研制的水下质谱(Under-water MS),将直接用于水质(海洋中水质)的在线检测 关于水下质谱(Under-water MS),目前在美国有四所大学也在研究,都是美国军方在支持 在现有我们掌握的技术基础之上,水下质谱研制亟需解决难题不少,依据我们掌握的MS核心技术,相关的一些前沿技术探索我们已经在做 可能会跟国家海洋局、海军相关研究所等相关单位进行合作,这次来开会也是顺便来初步来谈这个项目 这个项目比较大,如果能够上马的话,将是我们未来一段时间工作的一个重点,当然,前期科研投入就会在千万级资金的投入。”   在谈到质谱(MS)和离子迁移谱(IMS)的联用技术研制方面,李海洋研究员说:“MS与IMS核心技术是我们的研究主体,利用它们可以搭建很多组合:如IMS做MS的前期,提高在样品引入技术、信号采集和数据处理等方面的性能 合适的分离能力与痕量水平的灵敏度相结合使IMS可以作为一种二维色谱检测器(IMD)等。例如,在美国空间站和航天飞机上,就带有GC-IMS去测空间残物。我们也一直在致力其联用技术研制,感觉真正的应用才刚刚开始,前景很广阔:我们掌握了这些核心技术,就有信心可以把价格做下去,实现这些仪器‘平民化’应用。”   在其他在线分析方法上,大连化物所102组还开展了石英晶体微天平(Quartz Crystal Microbalance, QCM)和表面声波器件(Surface Acoustic Wave, SAW)的检测器研究。李海洋研究员说,目前美国化学毒剂检测的核心技术就是离子迁移谱(IMS)和表面声波器件(SAW)。   同时,李海洋研究员简单地为笔者介绍了他们在QCM上最新研究进展:“QCM是一种质量敏感型压电晶体传感器件,其谐振频率随传感器表面质量增加而降低 我们发展了用QCM快速评价VOCs在离子液体等材料的溶解性的方法与装置 前段时间,我们筛选了乙醇、取代苯等重要有机物的敏感涂层材料进行试验,结果很理想 目前,我们研制出QCM传感器阵列与快速识别软件,能对复杂挥发性有机物进行有效识别。”   因材施教 润物无声 笃行“教书育人”之神圣职责   大连化物所102组成员人数不到30人,主要有:职工、学生,各13-14人 分为3个科研小组,一组主攻质谱(MS)、一组主攻离子迁移谱(IMS)、另一组做QCM检测器等其他方面。   李海洋研究员曾开玩笑地向笔者说到:“其实,课题组具体人数,一时我还真说不来 第一年硕士、博士生的基础课都去中国科大念,还有联合培养的学生、不定期的访问学者等 但说到具体每个学生工作的内容,我是非常清楚的。”   1、希望自己的科研生涯能为科学界留下一点东西   谈起所取得的科研成就时,李海洋研究员平静地说到:“我还是希望自己的科研生涯能为科学界留下一点东西。我想,作为一名科研工作者的最大价值应该体现在三个方面:(1)研制的仪器得到很好的应用 (2)发现的新方法或论文得到广泛的引用 (3)培养出一批出色的学生。”   “特别是第三条,对学生的培养问题,我非常看重这个方面。我认为,这是一种自己精神、文化内涵的一种延续 本身,教师就肩负着教育学生、培养学生的责任。我想,这也犹如我从我的恩师张存浩院士、沙国河院士那里继承和学习到的许多品质和能力一样。” 李海洋研究员指导学生调试研制的仪器   李海洋研究员继续说到:“我在大连化物所时间还不长,刚毕业的博士生我们留下了 在安徽光机所带的博士生有十几个,有些人出国了,有些在国内大学当教授,都还不错。03年,我离开安徽光机所,当时未毕业的学生都转给别的导师了,后来安徽光机所所长向我反映:我的那些学生都很不错,无论在发表文章、还是具体科研工作都表现的很优秀。对此,我很自豪。”   2、李海洋研究员培养与教育学生的若干新颖观点 大连化物所102组召开内部技术研讨会   最后,关于“我国科学仪器后备人才的培养与教育问题”,李海洋研究员谦逊地向笔者表示:大的方面不敢说,就谈谈自己学生这一块…   笔者有感于李海洋研究员的这些新颖、生动、务实的教育观点,简单择录如下,与各位读者共欣赏:   (1)集训基本技能:新学生都要进行AutoCAD、SolidWorks培训,让其掌握独立设计仪器或器件的技能。(2)“灌输”前沿问题:开始阶段从来不让学生查文献,相关文献资料为其准备好,并把相关前沿科学问题给学生讲清楚,让学生以最短的时间去进入课题。(3)历练基本素质:在做PPT报告、访客接待等小事情上,也是一种严谨、深刻的锻炼。(4)不用担心论文:踏踏实实地把工作做好,有创新成果后,写论文只是水到渠成的事情。(5)需要激励原则:学生也是需要激励的,不能把第一批做出科研贡献的学生给忘记了。(6)注重团队效应:让学生在团队中接受熏陶与锻炼,团队综合实力以及内部思想碰撞对一个学生的成长很重要。(7)重视师生交流:实验室专门 “开辟”出Meeting Room,并且创建了师生QQ群,就是能为了师生之间实时交流。(8)鼓励创新实践:宽容失败、鼓励创新是我们一贯的基本原则,新来的学生都让其设计、组装一套自己的装置(比如,离子迁移谱仪) 在实践中去锻炼自己的创新能力,不要说做的和别人一样好,而一定要做的比别人好。 编者手记
  • 迪马科技发布《塑料奶瓶中迁移双酚A检测》解决方案
    从2011年4月20日起,卫生部就《禁止双酚A用于婴幼儿食品容器公告事宜》向工业和信息化部、商务部等部门征求意见公开征求意见。拟自2011年6月1日起,禁止双酚A用于婴幼儿食品容器(如奶瓶)生产和进口。自2011年9月1日起,禁止销售含双酚A的婴幼儿食品容器。例如婴儿奶瓶等。但双酚A允许用于生产除婴幼儿奶瓶以外的其他食品包装材料、容器和涂料,迁移量应当符合相关食品安全国家标准规定的限量。 双酚A,也称BPA,是一种广泛应用于塑料制造的化学物质,被广泛用于化工产品和食品包装材料及容器,如婴儿奶瓶、餐具、微波炉器皿、食品包装容器的涂层、饮料瓶以及供水管道等。 科学研究表明,双酚A在加热时能析出到食物中,可能会扰乱人体代谢过程,对婴儿发育、免疫力有影响,甚至致癌。此外,双酚A有雌性荷尔蒙效果,可能会导致婴儿出现女性化变化。考虑到婴幼儿属于敏感人群,为防范食品安全风险,保护婴幼儿健康,因此决定禁止双酚A用于婴幼儿食品容器。 目前我国只有一份适用于所有PC瓶的现行国家标准,就是GB14942-1994《食品容器及包装材料用聚碳酸酯树脂卫生标准》,里面对双酚A用量规定:一升蒸馏水中所含的酚须&le 0.05mg,在GBT 23296.16-2009 食品接触材料 高分子材料 食品模拟物中2,2-二(4-羟基苯基)丙烷(双酚A)的测定-高效液相色谱法中对具体的检测方法进行了规定。 迪马科技在借鉴国标的基础上,建立了塑料奶瓶中迁移双酚A检测方案。 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 细胞迁移的背景与应用及实验方法!
    细胞迁移的背景与应用及实验方法! 一、背景 细胞迁移指即细胞划痕法,是测定细胞迁移运动与修复能力的方法,类似体外伤口愈合模型。在体外培养皿或平板培养的单层贴壁细胞上,用微量枪头或其他硬物在细胞生长的中央区域划线,去除中央部分的细胞,然后继续培养细胞至实验设定的时间,取出细胞培养板,观察周边细胞是否生长至中央划痕区,以此判断细胞的生长迁移能力,实验通常需设定正常对照组和实验组,实验组是加了某种处理因素或药物、外源性基因等组别,通过不同分组之间的细胞对于划痕区的修复能力,可以判断各组细胞的迁移与修复能力。 当细胞长到融合成单层状态时,在融合的单层细胞上人为制造一个空白区域,称为“划痕”。划痕边缘的细胞会逐渐进入空白区域使“划痕”愈合。 二、实验方法 1、培养板接种细胞之前先用marker笔在12孔板背面画横线标记(方便拍照时定位同一个视野)。 2、细胞消化后接入12孔板,数量以贴壁后铺满板底为宜(数量少时可培养一段时间至铺满板底)。 3、细胞铺满板底后,用1ml枪头垂直于孔板制造细胞划痕,尽量保证各个划痕宽度一致。(人工枪头制造划痕难以保证划痕宽度的一致性,影响实验结果,这也是该方法最大的缺陷)。 4、吸去细胞培养液,用PBS冲洗孔板三次,洗去划痕产生的细胞碎片。 5、加入无血清培养基,拍照记录。 6、将培养板放入培养箱培养,每隔4-6小时取出拍照。 7、根据收集图片数据分析实验结果。 三、应用 细胞迁移可以用于NFIC1抑制乳腺癌细胞迁移和侵袭的分子机制的研究: 探究了NFIC1对Luminal A型和三阴型乳腺癌转移的影响和相关机制。本研究将NFIC1的过表达质粒和si RNA分别转染入MCF7和MDA-MB-231细胞中,Wound healing和Transwell实验结果显示,过表达NFIC1能明显抑制MCF7和MDA-MB-231细胞的迁移和侵袭 敲低NFIC1能显著促进MCF7和MDA-MB-231细胞的迁移能力和对Matrigel胶的侵袭能力。 为了探究NFIC1抑制迁移和侵袭的分子机制,我们在MCF7和MDA-MB-231细胞中分别瞬时过表达NFIC1后,对NFIC1过表达及其对照细胞进行了RNA测序。对MCF7细胞测序结果的分析发现,对照组与过表达NFIC1组差异基因主要富集在由干扰素介导的Jak-STAT通路上。 随后,我们证实了过表达NFIC1能促进IFNL1、IFNL2/3和IFNB1的表达和分泌,同时也能激活Jak-STAT通路。接下来,我们在过表达NFIC1后使用Jak-STAT通路抑制剂Filgotinib和Ruxolitinib来阻断Jak-STAT通路,发现阻断Jak-STAT通路能逆转NFIC1抑制MCF7细胞迁移和侵袭的效果。 进一步根据测序结果,在过表达NFIC1的细胞中分别敲低Jak-STAT通路的下游靶基因MX1、MX2和RARRES3,发现敲低MX1和MX2能减弱NFIC1过表达对迁移和侵袭的抑制作用。最后,我们在过表达NFIC1同时分别敲低IFNL1、IFNL2/3和IFNB1,此时Jak-STAT通路受到明显抑制、MX1和MX2的表达显著降低、并且NFIC1抑制迁移和侵袭的作用也遭到削弱。 以上结果表明NFIC1在MCF7细胞中通过促进IFNL1、IFNL2、IFNL3和IFNB1的表达激活了Jak-STAT通路,活化的Jak-STAT通路通过上调MX1和MX2的表达来抑制MCF7细胞的迁移和侵袭。通过对MDA-MB-231细胞测序结果中差异表达基因的筛选及验证,我们发现NFIC1能直接结合在S100A2启动子区域从而上调S100A2的表达。 敲低S100A2能逆转NFIC1对MDA-MB-231细胞迁移和侵袭的抑制效果。随后我们发现过表达NFIC1后MEK和ERK的磷酸化水平受到明显的抑制,敲低S100A2能逆转NFIC1对MEK/ERK通路的抑制状态。进一步,在MDA-MB-231细胞中过表达NFIC1同时敲低S100A2后,使用U0126抑制MEK/ERK通路能解除敲低S100A2对迁移和侵袭的逆转效果。 同时,过表达NFIC1上调S100A2后能通过抑制MEK/ERK通路来抑制MDA-MB-231细胞的上皮间充质转化。以上结果表明NFIC1在MDA-MB-231细胞中通过上调S100A2的表达来抑制MEK/ERK通路,进而诱导MDA-MB-231细胞由间充质形态转化为上皮形态,最终抑制MDA-MB-231细胞的迁移和侵袭。 北京百欧博伟生物技术有限公司的微生物菌种查询网提供微生物菌种保藏、测序、购买等服务,是中国微生物菌种保藏中心的服务平台,并且是集微生物菌种、菌种,ATCC菌种、细胞、培养基为一体的大型微生物查询类网站,自设设备及技术的微生物菌种保藏中心!欢迎广大客户来询!
  • 海能技术参与起草的《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》公开征求意见!
    近日,国家粮食和物资储备局发布公开征求《青稞储存品质判定规则》等8项标准意见的通知,其中海能技术参与起草了《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》,并参与联合方法验证。我国植物食用油市场体量巨大, 植物食用油含有人体必需脂肪酸和丰富的油溶维生素, 是人体营养物质和能量的重要来源之一。随着经济水平的提高和饮食观念的改变, 食用油的品质安全和挥发性风味营养也越来越受到人们的重视。 油脂挥发性风味是植物油中的次生特异性标志物, 其很大程度上决定了植物油的品质、用途和市场的可接受程度, 是评价植物油质量的重要指标。相关研究表明,油脂风味并不是由一种或几种化合物来体现, 而是由多种成分协同作用的结果。挥发性风味物质相互间通过的累加、协同、抑制等途径, 导致植物油呈现风味特征的差异化和特异性。油脂的风味受原料的品种、成熟度、环境条件、生长 区域、储存和加工工艺的影响, 其中, 加工工艺的影响最大,不同工艺将直接影响油脂挥发性有机物(volatile organic compounds, VOCs)的种类、含量和感官阈值。 目前, 植物油脂挥发性风味成分检测方法中, 感官检验法、理化指标检验法、 色谱法、光谱法等较为普遍, 但感官检验法因个体差异使得方法准确性存在局限 常规理化检验只能测定油脂中物质的总量, 不能用于物质组成的定性和定量分析 光谱法检测过程尽管简单快速, 却很难实现对样品质量的完整表征 因此, 如何对油脂风味进行科学、快速、准确的品质判定, 受到科研人员的广泛关注。气相色谱-离子迁移谱(gas chromatography-ion mobility spectrometry, GC-IMS)最早应用于检测爆炸物和化学试剂, 是具有高分离能力的气相色谱和快速响应能力的离子迁移谱的有机结合。现已广泛应用于农业食品安全、质量控制、风味分析等领域, 在食用植物油的质量判定中, GC-IMS 结合化学分析检测大量应用于橄榄油、棕榈油、菜籽油等油脂的掺假测定, 为油脂的的掺假、掺杂辨别鉴定提供了新的解决方式。但在油脂风味品质判定、油脂产品风味稳定性监测等方面的研究较少。 本标准依托 GC-IMS 技术, 探究食用植物油脂风味品质判定的检测方法,对于进一步推测产品调配比例, 保证产品品质一致性和稳定性、优化产品生产工艺、实现油脂风味品质判定方法的标准化和适用性具有重要意义。文本-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf编制说明-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制