当前位置: 仪器信息网 > 行业主题 > >

合成生物学

仪器信息网合成生物学专题为您整合合成生物学相关的最新文章,在合成生物学专题,您不仅可以免费浏览合成生物学的资讯, 同时您还可以浏览合成生物学的相关资料、解决方案,参与社区合成生物学话题讨论。

合成生物学相关的资讯

  • 从合成化学走向合成生物学
    “如果把海南岛上所有的天然橡胶都收割来用于做鞋,全中国每人一只都不够,没有合成橡胶技术,我们连鞋都不够穿。”人类今天的衣食住行能够得到满足,合成化学功不可没。   合成生物学中更多地是在使用已有的或改造过的基因模块通过工程学手段拼装、搭建一个自然界中本没有的生命体系。   合成化学功不可没   合成化学,这一概念大家也许并不陌生。早在1902年,第二届诺贝尔化学奖颁发给合成化学大师、生物化学之父——Emil Fischer 1905年诺贝尔化学奖则颁发给Fischer的导师、化学染料合成大师——Adolf von Baeyer,这两位合成先驱的高超合成技法至今看来仍然精彩至极。   此后又有多位合成化学家陆续斩获诺贝尔化学奖。可以说在百年诺奖历史上,合成化学家的名字举不胜举,合成化学在人类发展过程中的重要地位也可见一斑。   所谓合成化学,就是使用简单、易得、廉价的化学原料通过一系列的化学反应最终得到目标产物。合成化学并不狭义地仅限于有机合成化学,无机合成化学、纳米化学都是典型的合成化学,因成功制备单质F2而获得诺贝尔化学奖的药剂师Moissan以及因为发明合成氨方法而获得诺贝尔奖的Fritz Haber也是著名的合成化学家。   我的一位化学启蒙老师曾说:“如果把海南岛上所有的天然橡胶都收割来用于做鞋,全中国每人一只都不够,没有合成橡胶技术,我们连鞋都不够穿。”人类今天的衣食住行能够得到满足,合成化学功不可没。   合成化学的局限   然而,随着工业化的发展,越来越多的问题也开始浮出水面。上个世纪,《寂静的春天》一书犀利地指出了人类化学工业发展给自然带来的巨大问题,其中充满讽刺意味的是引起严重污染的DDT分子。其作用发现者和推广者Paul Hermann Müller却在1948年获得诺贝尔生理学或医学奖。DDT此后一度被禁止使用并且引发了科学家们对于合成化学危害性的进一步讨论。   但是故事远没有结束,由于暂时还未能找到一种更经济有效、对环境危害又小且能代替DDT的杀虫剂,世界卫生组织于2002年宣布,将重新启用DDT用于控制蚊子的繁殖以预防疟疾、登革热、黄热病等在世界范围的卷土重来。   随着地球上石油储备的日渐减少,合成化学面临着新的挑战,目前以石油工业为基础的化学合成工业未来将何去何从引人深思。悲观者认为,随着石油的耗尽,人类将逐渐倒退回石器时代 乐观者认为,聪明的合成化学家一定能开发出新的廉价原料以替代石油化工原料。   斯坦福大学化学系主任、著名化学家B.M.Trost提出了他的解决方法:化学反应的“原子经济性”(Atom economy),即在化学品合成过程中,合成方法和工艺应被设计成能把反应过程中所用的所有原材料尽可能多地转化到最终产物中。   如果原料能百分之百地转化为产物,那是令人满意的,因为这样可以尽可能减少副产物对于环境的污染和对于资源的浪费。但是这仅仅是一个退守的方案,而并不是一个最终的解决办法。现有的常见原料迟早都会耗尽、大量低沸点有机溶剂的使用始终难以避免、重金属催化的反应越来越多……如果没有革命性的新理念,恐怕多年后合成化学将面临更大的危机。   “年轻”的合成生物学   近年来,“合成生物学”的概念开始进入我们的视野。   ACS(美国化学学会)在2012年推出关于合成生物学的杂志ACS Synthetic Biology 我国天津大学、中科院植生所、武汉大学药学院、中科院生物物理所纷纷成立合成生物学及相关平台 清华大学生命科学院教授陈国强、戴俊彪都无私提供自己的科研实验室支持本科生进行合成生物学研究探索。   那么,何谓“合成生物学”呢?   2000年E. Kool将之定义为基于系统生物学的遗传工程,从基因片段、人工碱基DNA、基因调控网络与信号传导路径到细胞的人工设计与合成,类似于现代集成型建筑工程,将工程学原理与方法应用于遗传工程与细胞工程的生物技术新领域。   很多人狭义地认为合成生物学就是“全合成生命”,即利用化学合成的方法从头合成一个具有生命活力的细胞或病毒。而实际上,合成生物学中更多地是在使用已有的或改造过的基因模块通过工程学手段拼装、搭建一个自然界中本没有的生命体系。   助解多种难题   那么,合成生物学有望解决哪些问题呢?   首先是能源问题。   石油、煤、天然气都来自于古代植物对于太阳能的积累,是将太阳能转化为化学能储存的反应过程。严格地说这些都应该是可再生资源,但是亿万年的形成周期实在让人类无法等待,因此这些资源成为了“非再生资源”。   那么是否能够加速这一过程?是否可以通过合成生物学构建新的生命反应体系快速有效地固定太阳能并转化成更够为人类利用的化学形式?   某些经过合成生物学方法改造过的光合藻类富含大量的脂质,被人们称为“生物柴油”,目前已经有一些使用“生物柴油”的热机问世。但是此项研究问题不少,远远不足以解决日益严峻的能源危机问题,这需要更多代的科学家不懈努力。   其次是化工原料问题。   我们的祖先早已开发出了酿酒、酿醋等微生物发酵技术,除了食用,乙醇和乙酸都是重要的工业原料。除此之外,微生物还能通过糖酵解等过程为我们提供丁醇、乳酸、甲烷等工业原料。通过其他方法,还可以从中获取甘油、丙酮酸、氨基酸等具有潜在工业价值的原料。   或许很多年后,工业上不再使用乙烯生产量来衡量化工生产能力,而开始利用全新的模块、原料来构建新的工业大厦,这些原料不再来源于石油,而是从发酵罐中源源不断取来。   第三,则是医药健康问题。   真菌、放线菌、植物能够产生结构新颖、生物活性多样的次级代谢产物,大部分临床抗生素来源于这些次级代谢产物。其中很多药物分子由于天然含量低、提取困难等因素,目前还是通过全合成或半合成为主要方式得到,因此价格昂贵。   通过合成生物学手段,将产生这些代谢产物的基因簇进行异缘表达并利用发酵工程进行大规模制备,将可能是一个解决药品供应和价格昂贵问题的方法。但是这一过程并不容易实现,需要涉及到很多代谢途径改造、密码子优化、瓶颈效应避免等问题。绝不是说只要发现的天然产物就可以立刻大规模发酵得到,每一个化合物的工业化生产都是一个巨大的挑战。   此外,合成生物学还有助于解决环境问题。   “白色污染”成为上个世纪人类最为头疼的环境问题之一,可降解塑料的研究也成了科学界的热点问题。“生物塑料”是一个比较新的概念,目前发现60个属以上的细菌能够合成并贮藏聚β-羟基丁酸(PHB)的颗粒。PHB无毒、可塑、易降解,可用于制作医用塑料器皿和外科手术线等。   通过合成生物学手段有望得到更高产、更多样性的生物塑料生产菌株。取之于自然、用之于自然,人与其他生物和谐相处,这将是解决环境问题的必由之路。   (作者单位系中科院上海有机化学研究所)
  • 川宁生物:合成生物学管线稳定推进
    川宁生物(301301) 2023 上半年实现营收24.2 亿元(+21.8%,括号内为同比数据,下同);归母净利润3.91 亿元(+64.8%);扣非归母净利润3.93 亿元(+65.5%),经营性现金流净额10.4 亿元(+1636%),业绩略超预期。Q2 业绩环比再加速,盈利能力加强:单季度看,公司Q2 实现营收11.5亿元(+16.3%),归母净利润2.15 亿元(+57.8%),归母净利润环比+22.8%。业绩快速增长主要因为疫情放开后需求端的快速恢复。盈利能力方面,由于规模效应的体现叠加原材料成本下降,公司Q2 毛利率环比提升4.7pct 至30.9%。期间费用率随着收入增长而下滑,其中管理费用率同比下滑4.3pct 至3.0%,财务费用率同比下滑2.0pct 至1.2%。综合来看,2023 上半年销售净利率同比提升4.2pct 至16.2%,盈利能力不断加强。抗生素中间体疫后恢复良好:分品种看,公司2023 上半年硫红收入7.3亿元(-2.4%);头孢中间体收入5.3 亿元(+16.3%),青霉素类中间体9.8亿元(+54.7%);疫情放开后,头孢和青霉素类中间体需求恢复良好;其中,6-APA 平均价格同比涨价6.7%,销售量同比增加50.8%,青霉素G 钾盐平均价格同比涨价3.4%,销售量同比增加16.4%。合成生物学研发管线丰富,产能丰富,项目落地在即:公司在上海建立合成生物学研究院,依托强大的研发团队、4 大底盘菌研发平台等,已有十数个项目管线,且部分管线有望短期落地。川宁生物首个合成生物学产品红没药醇预计在下半年形成收入。随着下半年公司全资子公司疆宁生物绿色循环经济产业园一期投产,公司将完成合成生物学从选品—研发—大生产的全产业链布局。红没药醇、5-羟色氨酸、依克多因、红景天苷等合成生物学系列产品的商业化生产将标志着公司从资源要素驱动向技术创新驱动的成功转变,从而实现公司效益的稳步提升。合成生物学巩留新基地一期有望在2023 年年底前建成,新基地设计产能包括红没药醇 300吨、5-羟基色氨酸 300 吨、麦角硫因 0.5 吨、依克多因 10 吨、红景天苷 5 吨、诺卡酮 10 吨、褪黑素 50 吨、植物鞘氨醇 500 吨及其他原料的柔性生产车间;其中红没药醇已进入动销;5-羟基色氨酸通过合成生物学技术来生产,其工艺达到业内最高的发酵水平和提取收率,该产品通过微生物发酵法生产,故产品天然度为100%,且生产成本低于植物提取,目前该产品仍在中试验证;麦角硫因公司利用合成生物学技术来进行生产,该技术和用蘑菇菌丝体发酵相比具有工艺简单、发酵周期短、产物浓度和糖转化率高等特点,具有显著的竞争优势,目前该产品也在中试验证。两项产品均在中试阶段,即将为公司提供业绩。
  • 国内合成生物学研究阵地,看看你知道几个?
    合成生物学是生物科学在二十一世纪新兴的一个分支学科,本质是构建一个区别于自然生命的人造生命。通过规模化的改造细胞,使其生产出人们需要的物质,如同建立了一个高效的细胞工厂。合成生物学的发展历程1911年,“Synthetic biology”一词最早由法国物理化学家Stephane Leduc在其所著的《生命的机理》(The Mechanism of Life)一书中提出,并归纳为“合成生物学是对形状和结构的合成”,但受制于当时的科学技术水平,“合成生物学”并未得到真正的发展。随着20世纪70年代和80年代分子克隆和PCR技术的发明,为基因设计调控提供了技术手段。到20世纪90年代中期,基因测序技术兴起,这种分子生物学的“放大”产生了系统生物学领域,生物学家和计算机科学家开始将实验和计算结合起来,对细胞网络进行反向工程。2000年,Eric Kool重新定义了“合成生物学”:是基于系统生物学的遗传工程。这标志着这一学科的真正形成。但合成生物学真正受到关注却是在21世纪,一系列颠覆性成就均是在此阶段发布。2000年-2003年是合成生物学的“创建时期”,产生了许多具备领域特征的研究手段和理论,特别是基因线路工程的建立及其在代谢工程中的成功运用,这一时期的典型成果是青蒿素前体在大肠杆菌中的合成;2004年-2007年是合成生物学的“扩张和发展时期”,工程化理念日渐深入、使能技术平台得到重视、工程方法和工具不断积淀,领域有扩大趋势;2008年-2013年是合成生物学的“快速创新和应用转化期”,涌现出的新技术和工程手段使合成生物学研究与应用领域大为拓展;2014年以后进入到了合成生物学的发展新阶段,“DBTL”循环被提出,生物技术与信息技术融合发展的特点愈加明显,2014年6月,世界经合组织(OECD):发表了题为“Emerging Policy Issues in Synthetic Biology”的报告。该篇报告从合成生物学前景说起,并认为该领域前景广阔,建议各国政府把握好机遇,大约20个国家纷纷出台相关政策。今年七月份,由工业和信息化部、国家发展改革委、商务部发布 《三部委关于印发轻工业稳增长工作方案(2023—2024 年)的通知》中也将生物制造作为着重培育壮大的新增长点。由中国科学技术信息研究所、上海市科学研究所联合编撰的《未来产业创新的前沿领域》也将合成生物学列为了未来产业创新的五大前沿领域之一。有数据显示,合成生物学将在未来5-10年呈现高速增长,合成生物学将成为千亿赛道。国内合成生物学主要研究阵地当前我国的合成生物学尚处于起步阶段,除了国家层面的顶层设计,地方各地也在加紧布局合成生物新赛道,北京、深圳、上海、天津等地现已经成为国内合成生物学研究的主要阵地。北京:作为全球科研城市榜首的北京,日渐成为国际前沿科技的重要策源地和全球产业变革的重要驱动地。其中在合成生物学方向,北京化工大学作为北京市内合成生物学重点落地研究团队,承担了北京市合成生物学重大专项。该校的生命科学与技术学院科研实力雄厚,尤其是在绿色生物制造、合成生物学、生物安全和生物医药等研究领域拥有国内领先水平。曾任生命科学与技术学院院长,现任北京化工大学校长的中国工程院院士谭天伟在合成生物学领域贡献颇多。此外,北京化工大学于2020年成功举办了合成生物学前沿论坛。仪器信息网特别邀请当次论坛的主持人——袁其朋老师将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《高效细胞工厂构建及产业应用》的报告分享。(点击报名参会)袁其朋作为当次论坛的主持人,也是教育部长江学者特聘教授,第十一届中国青年科技奖获得者,北京市百名领军人才,化工资源有效利用国家重点实验室副主任。他的主要研究领域为合成生物学及代谢工程、高纯天然产物规模制备及活性研究。近年来承担了科技部重点研发任务、国家自然科学基金重点、面上项目、企业合作等项目。中国工业生化与分子生物学分会副主任委员、中国药学会制药工程专业委员会副主任委员、中国纺织工程学会化纤专业委员会副主任委员、中国生物发酵产业协会微生物育种工程与应用评价分会副理事长等。《合成生物学》副主编,Synthetic Biology and Engineering,Bioresource and Bioprocessing,Advanced Biosystems News、Bioprocess、《食品科学》、《生物工程学报》、《食品安全质量检测学报》等刊物编委。除此之外,田平芳教授也受仪器信息网邀请,将于10月10 日在“合成生物学技术及应用进展”网络会议上进行名为《优化“启动子-RNA聚合酶”以实现目标产物的高产》的报告分享。(点击报名参会)田平芳教授:美国加州大学圣地亚哥分校(UCSD)访问学者,美国佐治亚大学(UGA)高级研究学者。他的研究方向为微生物代谢工程和合成生物学;主持国家自然科学基金面上项目5项,863课题2项,国家重点研发计划课题1项,其他省市和企业课题10多项,参与课题多项;发表SCI和核心刊物文章150多篇,授权专利16项;开展基因组编辑及3-羟基丙酸、1,3-丙二醇、吡咯喹啉醌、阿克拉霉素等化学品的生物合成和代谢调控研究;已培养博士和硕士研究生70多名;研发的生物农药已在全国范围推广;担任Nature Comm, Metab Eng, Appl Envir Microbiol, Biotechnol Adv, Appl Microb Biotechnol等30多个SCI刊物审稿人,以及国家自然科学基金、国家重点研发计划和国际合作项目评审专家。深圳:在政府层面,深圳市是目前国内发布合成生物学相关政策最多的地区,其中《光明区关于支持合成生物学创新链产业链融合发展的若干措施》是国家首个完全针对合成生物学的政策。深圳合成生物学科研实力雄厚,相关合成生物学研究院所共四所, 2017年深圳先进技术研究院成立国内首个合成生物学研究所,以青年“海归”为主,全球聚焦合成生物学领域最大规模的前沿多学科交叉团队,其中,刘陈立任深圳先进技术研究院合成生物学研究所所长。2019 年,深圳先进技术研究院牵头建设成立了深圳合成生物学创新研究院(深圳合成院),聚焦人工生命体系的理解,致力于重塑与扩展这一重大科学挑战,开展合成生物学基本原理、共性方法和医学转化应用研究。仪器信息网特别邀请深圳先进技术研究院合成生物学研究所合成生物化学研究中心执行主任罗小舟,他将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《利用合成生物学方法增加小分子结构多样性》的报告分享。(点击报名参会)罗小舟作为中国科学院深圳先进技术研究院研究员、合成生物学研究所合成生物化学研究中心执行主任,森瑞斯生物科技(深圳)有限公司创始人。同时,也是深圳市微生物药物智能制造重点实验室副主任,深圳市优青,广东省杰青,科技部重点研发计划课题负责人,国家重大人才工程(青年)专家,任《合成生物学》 编委。他主要聚焦于合成生物学领域中生命体内生物化学过程相关研究,主要结合遗传密码扩充技术,酶的定向进化,基因挖掘和代谢工程等多种化学生物学方法,基于大数据机器学习及高通量自动化,深入研究多种不同类别的天然产物及其衍生物的生物全合成的方法,并利用合成生物学方法,将研究成果转化至制药、个性化治疗、新材料等领域。上海:作为国内合成生物学的发源地,上海市产业优势及产学研协同优势较为明显。上海合成生物学科研院所共 3个,以 2008 年成立的中科院合成生物学重点实验室为代表。中科院合成生物学重点实验室是国内第一个合成生物学实验室,依托单位为中国科学院分子植物科学卓越创新中心。实验室以发展合成生物学理论和创新合成生物学技术为主导,建立合成生物学关键工程平台;针对我国在能源、环境、健康等方面的需求及面临的挑战,聚焦若干重要生物学体系,在分子、细胞和微生物菌群等层次上,实施合成生物学创制;并通过转化研究,推动科研成果产业化。现任实验室主任为覃重军研究员,副主任为王勇研究员、杨琛研究员,学术委员会主任为杨胜利院士。其中,副主任王勇受仪器信息网邀请将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《植物二萜的合成生物学研究》的报告分享。(点击报名参会)王勇博士作为中国科学院合成生物学重点实验室副主任,中科院分子植物科学卓越创新中心特聘研究员、博士生导师。科技部十三五重点研发计划“合成生物学”重大专项项目负责人,首席科学家。入选“中科院百人计划”、“国家万人计划科技创新领军人才”、“上海市优秀学术带头人计划”。现任上海市生物工程学会秘书长、副理事长;中国生物工程学会理事。他所在的课题组主要研究方向为天然产物的合成生物学:通过解析天然产物的生物合成途径,基于工程化的设计和建构,改进复杂天然产物的生物合成效率和其生产方式,开发天然的或非天然的复杂天然产物活性成分。作为项目负责人,先后主持完成了国家科技支撑计划、国家重点研发计划、国家重大新药创制专项、自然科学基金等多项国家或省部级科研项目。近年,申请的专利多项基于合成生物技术的天然产物产品实现了产业化推广,推动了行业进步。天津:在合成生物学领域设有总投资近20个亿的国家合成生物技术创新中心,还对标国家实验室建设了天津合成生物学海河实验室。除了上述提到的科研院所之外,中国农业科学院深圳农业基因组研究所农业合成生物学中心、上海交通大学生命科学院合成生物学实验室、上海农业科学院合成生物学实验室等也具备良好的研究和发展基础。合成生物学正被广泛应用于各种产业,合成生物学技术应用涵盖平台开发、医药、化工、能源、食品和农业等重点领域。在推动科学革命的同时,合成生物学技术正快速向实用化、产业化方向发展。~~~~~"合成生物学技术及应用进展"网络会议开讲啦!~~~~~2023年10月10-11日,由仪器信息网举办的第一届合成生物学技术及应用进展网络会议将在线开播。本次会议聚焦到合成生物学的上、中游技术,众多行业专家将在线分享先进、前沿的使能技术,以及菌株改造、筛选等生物合成技术和工艺开发方案,会议日程详情请点击下方链接,快来报名吧!立即报名 https://www.instrument.com.cn/webinar/meetings/syntheticbiology231010.html 扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助联系:仪器信息网 陈编辑:13171925519,chensh@instrument.com.cn
  • 镁伽:抢占合成生物学自动化领域先机
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大用户及时了解合成生物学的市场概况、解决方案及相关活动,仪器信息网本次特别邀请了苏州镁伽科技有限公司(以下简称“镁伽”)谈一谈他们的看法:仪器信息网:您如何看待当前合成生物学产业及市场发展现状?镁伽:合成生物学,重新定义生物制造。合成生物学是继“DNA双螺旋结构的发现”和“人类基因组计划”之后,以工程化的手段设计合成基因组为标志的第三次生物技术革命。作为一门交叉学科,促进了生命科学从基于观测、描述及经验的科学跃升为可预测、可定量及可工程化的科学,并在医疗、能源、工业、农业、环境、信息等领域的应用日益广泛。合成生物学作为一个战略性新兴产业技术,其本质指人们将“基因”连接成网络,让细胞来完成设计人员设想的各种任务,该领域近年来得益于合成生物技术突破、政策支持等因素取得了快速发展。同时,合成生物学是近年来很热门的一个研究方向,全球范围内,合成生物学受到不同国家的关注和政策支持。2022年,美国发布《国家生物技术和生物制造计划》;同年,中国发改委明确将合成生物学列入《“十四五”生物经济发展规划》;欧盟在《面向生物经济的欧洲化学工业路线图》中,提出在 2030年将生物基产品或可再生原料替代份额增加到25%的发展目标。日、韩、以色列等国家也出台了相关政府报告或指导,推动合成生物学技术及应用快速发展。仪器信息网:合成生物学产业将给科学仪器行业带来哪些市场机会? 镁伽:在高通量和规模化的发展中,合成生物学的未来势必离不开自动化的设备和整体解决方案。如果将合成生物学的产业链按照上、中、下游分类,上游则包含可以驱动产业发展的技术生态系统,如DNA/RNA合成、测序及编辑,以及相关自动化企业的产品与服务;中游产业涉及对生物系统和生物体进行设计、开发的技术平台;下游产业则是涉及多个行业的应用开发和产品落地。如果上中游产业通过不断地技术革新、提高生产效率及构建解决方案,在未来可能会占据产业链的核心位置。合成生物学、人工智能/机器学习和自动化的结合将释放生物科技的力量,帮助解决健康、能源、可持续发展等全球性的挑战,而镁伽科技正是这个新趋势的领导者之一。在合成生物学自动化领域镁伽已嗅到先机,开始利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。仪器信息网:贵单位针对合成生物学领域推出了(或将要推出)哪些解决方案?可以应用到哪些环节?解决了什么样的痛点? 镁伽:镁伽合成生物学方案,通过DBTL(Design-Build-Test-Learn)这一闭环,深入掌握基因线路的设计原理,构建集成的自动化分子克隆工作流程,利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。镁伽全自动质粒构建系统在合成生物学领域,主要针对质粒构建这一实验流程,我们将其中最基础但又非常繁琐的质粒构建工作在我们的自动化系统中去实现全流程自动化操作,提高通量的同时标准化整个流程,为合成生物学领域的前进贡献力量。同时这套系统的落地稳定运行,也很好的代表了镁伽在生命科学自动化方面的能力与经验。仪器信息网:如何看待合成生物学的未来发展前景? 镁伽:随着合成生物技术的快速发展,不断催生出位于产业上、中、下游的工具型、平台型和产品型公司。镁伽依靠鲲鹏实验室的科研能力,持续助力为行业带来高附加值的生产力工具和服务,提供一站式智能化合成生物学解决方案。可根据客户需求搭建高通量、自动化、信息化的合成生物学实验室,包括整体设备、试剂配套方案,及数据验证参数建议等。
  • 专家呼吁:应加强我国合成生物学研究力度
    “合成生物学是21世纪初新兴的生物学研究领域,是在阐明并模拟生物合成的基本规律之上,达到人工设计并构建新的、具有特定生理功能的生物系统,从而建立药物、功能材料或能源替代品等的生物制造途径,我国必须重视和加强这一领域的研究与开发。”近日,在以“合成生物学基础前沿问题”为主题的第144期东方科技论坛上,来自全国各地60多位两院院士和专家学者发出呼吁。   大会执行主席邓子新院士认为:“在合成生物学在全世界蓬勃发展的历史性机遇面前,探讨在我国开展合成生物学的研究对象与最佳切入点,发展和建立合成生物学新理论、新方法及相应的技术支撑体系,这对提升我国现代化生物技术水平、抢占合成生物学研究制高点有极大的意义。”与会专家结合国际合成生物学发展动态及我国相关领域的研究基础,探讨我国开展合成生物学的可行性、现阶段的主要目标和任务,就合成生物学中核心元件(如基因线路、酶、代谢途径等)的标准化以及合理组装方式,建立具有可预测性和调控性的代谢途径,构建具有特定功能的新生物体等进行了深入研讨。   自2000年《自然》(Nature)杂志报道了人工合成基因线路研究成果以来,合成生物学研究在全世界范围引起了广泛的关注与重视,被公认为在医学、制药、化工、能源、材料、农业等领域都有广阔的应用前景。国际上的合成生物学研究发展飞速,在短短几年内就已经设计了多种基因控制模块,包括开关、脉冲发生器、振荡器等,可以有效调节基因表达、蛋白质功能、细胞代谢或细胞间相互作用。2003年在美国麻省理工学院成立了标准生物部件登记处,目前已经收集了大约3200个BioBrick标准化生物学部件,供全世界科学家索取,以便在现有部件的基础上组装具有更复杂功能的生物系统。   大会执行主席杨胜利院士在报告中指出,2006年以来,合成生物学发展又进入了新阶段,研究主流从单一生物部件的设计,快速发展到对多种基本部件和模块进行整合。通过设计多部件之间的协调运作建立复杂的系统,并对代谢网络流量进行精细调控,从而构建人工细胞行为来实现药物、功能材料与能源替代品的大规模生产。   2008年,美国Smith等人报道了世界上第一个完全由人工化学合成、组装的细菌基因组。今年8月份,他们又成功地将该基因组转入到Mycoplasma genitalium宿主细胞中,获得了具有生存能力的新菌株。该研究使人工合成生命这一合成生物学终极目标取得了历史性突破,为创造可用于生产药物、生物燃料、清理毒性废物等方面的人工基因组奠定了基础。   “与国际上合成生物学的飞速发展相比,我国在此领域的研究还处于起步阶段。在国际上有影响的相关重大成果仍不多见。但是,我国在合成生物学所需的相关支撑技术研究方面并不落后于国际主流水平,如大规模测序、代谢工程技术、微生物学、酶学、生物信息学等方面均有良好的基础。”杨胜利认为,“如何对现有研究力量进行整合,充分发挥在相关领域已有的良好研究基础,从医药、能源和环境等产业重大产品入手,抓住合成生物学的核心科学问题,创建可控合成、功能导向的新代谢网络和新生物体,引领我国合成生物学的原创研究和自主创新,是目前亟待解决的问题。”   大会执行主席赵国屏院士在以《合成生物学——从科学内涵到工程实践》为题的报告中提出,合成生物学是继系统生物学之后,生物学研究思想在从“分析”趋于“综合”、从“局部”走向“整体”的认识基础上,上升至复杂生命体系“合成、构建”的更高层次 也是继以“原位改造与优化”为目的的基因工程技术和以“数据获取与分析”为基础的基因组技术之后,生物技术上升至以工程化“模型设计与模块制造”为导向的更高台阶。   “利用合成生物学实现‘人造生命’,是通过学科交叉,进一步发展系统生物学的一次科学思维革命,将为生物学基础研究提供崭新的思想武器。”赵国屏反复强调这样的观点,利用合成生物学方法和理论,对生命过程或生物体进行有目标的设计、改造乃至重新合成,创造解决生物医药、环境能源、生物材料等问题的微生物、细胞和蛋白(酶)等新“生命”,可能带来新一轮技术革命的浪潮,对于解决与国计民生相关的重大生物技术问题有着长远的战略意义和现实的策略意义。“它有助于人类应对社会发展中面临的严峻挑战,从而从根本上改变经济发展模式,在带来巨大社会财富的同时,促进社会的稳定、和谐发展。”赵国屏说。   中国科学院微生物所研究员马延和、清华大学教授林章凛、南开大学教授王磊、山东大学教授祁庆生和复旦大学/西藏大学教授钟扬等专家建议,针对我国在能源、环境、健康等方面的需求与挑战,要聚焦若干重要的生物学体系,实施面向生物医药、生物能源和生物基产品等重要生物产品的合成生物学理论与技术的基础研究,设计并合成相关的细胞工厂和分子机器。“在具体实施中,一方面要建立合成生物学工程技术平台和研究实验体系,实现关键工程科学问题的重大突破,另一方面要揭示细胞工厂和分子机器的运行机理和构造原理,实现优化设计,提高元件、网络的合成能力和调控能力,尽早拿出实在的成果来。”赵国屏强调。
  • 实验室自动化为合成生物学研究装上“加速器”
    合成生物学是指将工程科学的“设计—合成—测试—学习”(dbtl)理念引入生命科学,完成具有特定功能的人工生命系统的构建。合成生命体有高度复杂性,目前缺乏可预测性设计(或理性设计)的指导。这决定了其需要海量的工程化试错性实验,即需要快速、低成本、多循环地完成dbtl这一闭环。dbtl循环part1合成生物学困境缺乏理性设计和优质元件比如,利用分子元件创建基因线路时,因对基因线路核心设计原理理解有限,且目前仍缺乏优质元件,人工设计的线路很难达到预期,往往需要数周或数月进行反复调整。应对这一难题的最有效手段,是工程化、大批量测试多种元件及多种线路组合,获取海量实验数据并分析改进,以深入掌握基因线路的设计原理,同时积累大批优质元件,让线路的设计变得更加直接和可预测,提高研究效率。但是,海量的工程化试错实验将远远超出传统的人工操作实验范畴,因而亟需一种变革性的工程化研究平台。part2生物铸造厂提高理性设计合成生命系统的能力合成生物学是指将工程科学的“设计—合成—测试—学习”(dbtl)理念引入生命科学,完成具有特定功能的人工生命系统的构建。类似于工业的智能制造,在合成生物学中,也可采用实验室自动化的解决方案,完成生命体的工程化大批量合成,像该类用于合成生物学研究的自动化基础设施,是上述工程化研究平台的核心,常被称为生物铸造厂。合成生物学产业层级结构生物铸造厂在合成生物学产业结构里,属于软件/硬件层,它能提升合成生物实验对象、方法、技术的标准化和模块化水平,实现自动化的dbtl闭环运行与海量工程试错,从而不断提高理性设计合成生命系统的能力。part3需求实例合成生物学自动化合成生物学是指将工程科学的“设计—合成—测试—学习”(dbtl)理念引入生命科学,完成具有特定功能的人工生命系统的构建。近年来,合成生物学行业对自动化的需求与日俱增。各政府早在四年前就纷纷布局生物铸造厂,学术界和工业界也表达了对自动化的诉求,不少领域内的相关研究结果更是佐证了这点。2018年数据:国内国外布局生物铸造厂学术界观点:建设理论 (理性设计)、技术 (合成能力)、工程 (自动化平台) 三者相辅相成的合成生物学体系,以推动合成生物学研究的定量化变革工业界观点:生物技术和数据科学,创造生物细胞执行各类目标功能研究结果:通过构建和测试合成生物学的自动化加速生物燃料研究中的菌株工程part 4合成生物学赛道汇像有助力的实力汇像目前的自动化水平正逐步从单机自动化向智能实验室转变。此前已积累多个标准化流程落地的案例,为多位生物领域的客户做过定制的自动化解决方案,还完成了国内多个个智能实验室的搭建。实验室自动化整体解决方案而在生物铸造厂,构建合成生物学智能化实验室,将有诸多优势:自动化、高通量的设备平台,提高研发效率
  • 【大咖对话】合成生物学创新与发展技术
    合成生物学被誉为第三次生物技术革命,在医药、能源、材料、农业等多学科中都有巨大应用潜力。在短短十几年的发展过程中,中国合成生物学的创新探索更是步履不停,愈发多元化。和经典的合成生物技术需要反复实验相比,合成生物学将生物学、工程学、数学等紧密结合在一起,通过涉及和改造生物系统获得人们所需要的生物功能。为满足广大合成生物学工作者对于相关学科发展和经验分享的渴求,仪器信息网携手Eppendorf特邀三位业内资深专家为大家带来合成生物学领域前沿科研进展和技术应用解决方案。会议日程14:00 乔建军(天津大学化工学院 教授)倍半萜植物天然产物的合成途径解析及异源高效生产基于多组学联合分析挖掘合成元件,解析合成途径运用人工智能和量子化学计算等理性提升酶活开发基因组精准编辑技术构建高效微生物底盘好的实验建立微生物细胞工厂,运用菌群合成生物学实现高效生产14:45 陈振娅(北京理工大学生命学院 副研究员)转录因子驱动的高级醇生物传感系统的构建、改造与应用转录因子驱动的新型生物传感器的挖掘与构建高灵敏及宽域生物传感器的性能改造新型生物传感器的合成生物学应用15:35 宋明敏 (Eppendorf市场经理)浅谈合成生物学:工程化的机遇与挑战合成生物学概述和底层逻辑合成生物学未来发展趋势和挑战Eppendorf合成生物学解决方案
  • “人工淀粉”火爆全网 合成生物学开启 “造物”时代
    近期,“人工淀粉”的新闻火爆全网。中科院天津工业生物技术研究所经过6年技术攻关,在国际上首次实现了二氧化碳到淀粉的从头合成。不依赖植物光合作用,设计人工生物系统固定二氧化碳,合成淀粉,“喝西北风”从一句笑谈变成了现实,这一成果被国际学术界认为将是影响世界的重大颠覆性技术。人工合成淀粉火爆全网的背后是合成生物技术的强力支持,可以称得上是合成生物学巨大的进步,也是人类开启“造物”时代的一个标志性事件。  01 合成生物学开启“造物”时代  合成生物学也被称为“工程生物学”,旨在阐明并模拟生物合成的基本规律,设计并构建新的、具有特定生理功能的生物系统,从而建立药物、功能材料、能源替代品等的生物制造途径。合成生物学的主要研究内容分为三个层次:一是利用现有的天然生物模块构建新的调控网络并表现出新功能 二是采用从头合成方法人工合成基因组DNA 三是人工创建全新的生物系统乃至生命体。合成生物学是生命科学在21 世纪新的分支学科,打开了从非生命的化学物质向人造生命转化的大门,为探索生命起源与进化开辟了崭新的途径。作为科学界的新生力量,合成生物学进展迅速,并已在化工、能源、材料、农业、医药、环境和健康等领域展现出广阔的应用前景。  举例来看,合成生物学能利用大肠杆菌生产大宗化工材料,摆脱石油原料的束缚 利用酵母菌生产青蒿酸和稀有人参皂苷,降低成本,促进新药研发 工程菌不“误伤”正常细胞,专一攻击癌细胞 创制载有人工基因组的“人造细胞”,探究生命进化之路 利用DNA储存数据信息并开发生物计算机… …   在我国,2006年合成生物技术的研究就被列入了国家863计划,在“十三五”期间也将合成生物技术列为“构建具有国际竞争力的现代产业技术体系”所需的“发展引领产业变革的颠覆性技术”之一 麦肯锡咨询公司将合成生物技术评价为未来的十二大颠覆性技术之一 2014年,美国国防部将其列为21世纪优先发展的六大颠覆性技术之一 英国商业创新技能部将合成生物技术列为未来的八大技术之一。  2021 年上半年,合成生物学领域融资达到 120 亿美元,同比增长 4 倍。医疗保健领域吸引了合成生物学最大份额的投资,承担了合成生物学的大部分转化和商业化。一方面扩大了治疗药物的制造能力,另一方面也为更多患者带来了治愈的希望。  ●合成生物学彻底改变了一些高需求小分子药物的生产,例如微生物生产青蒿素和大麻素,以取代传统的植物来源。美国科学家曾成功构建人工细胞工厂生产青蒿素,100立方米工业发酵罐的产能就相当于5万亩的农业种植,大幅降低了生产成本和对自然资源的依赖。  ●使用冷冻干燥的无细胞系统以便携式、按需的方式生产治疗分子:从小分子、短肽到抗体结合物和疫苗。  ●促进了一类新的基于细胞的疗法和基因疗法的发展。除了基因替代疗法之外,CRISPR-Cas系统可以对遗传病进行精确的基因编辑。  ●改造免疫细胞的能力也正在扩大到T细胞以外,包括NK细胞和巨噬细胞。  ●为肠道微生物的改造提供了工具:一方面,可以设计改造对人体有益的细菌,让它们生产人体自身不能合成的维生素等营养物质 另一方面,可以设计出感知肠道环境变化的“智能微生物”,对人体内的健康状态进行检测和诊断。  ●抗击新冠肺炎疫情中,合成生物学技术发挥了重要作用,利用DNA条形码技术改进测序流程、利用基因编辑技术开发核酸诊断试剂,提高诊断的准确性和灵敏度。  ●利用合成生物学技术还可以寻找潜在的小分子药物、开发疫苗,以及通过调节人体微生物组来激活人体免疫系统,提高人体抗病毒能力。  ●基于合成生物学的智能细胞疗法,利用合成生物学的控制技术,做智能化、可控化的细胞疗法或基因疗法。”  02 从追赶到引领 国内企业加速布局  从产业链布局的角度来看,合成生物学的公司可以分为两类:一类是实现从基因编辑到产品落地的全产业链公司,既有合成生物学技术储备,又有市场化产品落地 另一类是以服务为主,提供基因编辑和细胞工厂的研发型公司,业务以提供合成生物学技术支持为主,产品以代工厂生产为主。从盈利模式来看,全产业链布局的公司中短期内有望通过替代化学法更快实现盈利 而以服务为主的研发型公司将在合成生物学行业生态建立起来后,通过更高效专业地为大量代工企业服务获利。截止目前,国外从事合成生物学领域的公司已经近 500 家,国内相关领域的公司也多达数十家。  凯赛生物  2020年8月12日,凯赛生物在科创板上市,成为国内合成生物第一股。凯赛生物着重于新型生物基材料的研发、生产与销售,主要产品为生物法长链二元酸系列。凯赛生物在此次公开发行中合计募资55.6亿元,所募资金将用于提升公司生物法长链二元酸、生物基聚酰胺产品的品类和产能,完善公司在聚酰胺产业链的布局。  博雅辑因  博雅辑因成立于2015年,司是一家以基因组编辑技术为基础,为多种遗传疾病和癌症加速药物研究以及开发创新疗法的生物医药企业。博雅辑因拥有以基因编辑技术为中心的四大平台,正致力于推动针对遗传疾病和肿瘤的研发项目进入临床。四大平台包括针对造血干细胞和T细胞的体外细胞基因编辑治疗平台,基于RNA单碱基编辑技术的体内基因编辑治疗平台和致力于靶向药物研发的高通量基因组编辑筛选平台。同时,博雅辑因于2018年在广州南沙区建立了符合GMP标准的临床转化应用基地。  蓝晶微生物  蓝晶微生物基于合成生物技术进行分子与材料创新,致力于设计、开发、制造和销售新型生物基分子和材料,包括在所有自然环境中均可自发完全降解的生物材料PHA、可有效缓解焦虑的功能饮料成分、补偿人体常见代谢缺陷的新型功能益生菌、医美及美妆赛道的功能成分等。蓝晶微生物前不久完成了4.3亿元人民币B2轮融资。6个月内,蓝晶微生物B系列的融资总额已超过6亿元人民币。  传奇生物  传奇生物于2020年6月5日正式在美国纳斯达克上市,本次上市发行定价为23美元/ADS(美国存托股份,每份ADS代表8股A类普通股),总计发行1842.5万ADS,总募资金额超4亿美元。传奇生物是一家肿瘤细胞免疫疗法研发商,研发了CD38和BCMA靶点治疗多发性骨髓瘤的CAR-T疗法,利用自身免疫细胞,经体外基因改造后重新注射回病人体内,并利用这种强化过的免疫细胞精准靶向,杀死肿瘤细胞,主要用于治疗血癌和淋巴癌。  百葵锐生物  百葵锐生物成立于2019年,致力于合成生物学技术在医药高效生物合成。公司基于蛋白精准设计和蛋白分子机器技术的全态链合成生物学平台,以实现生物医药、生物材料的创新、高效、绿色制造。百葵锐生物团队通过搭建蛋白精准设计和蛋白分子机器技术平台,专注于皮肤功效护肤,罕见代谢病,宠物肠道健康治疗等领域,用基因编辑等合成生物学技术手段,针对影响人类身体健康的有害细菌或有害毒素进行靶向性治疗。
  • 合成生物学国际论坛会议第二轮通知
    合成生物学是21世纪生物学领域新兴的一门学科,是分子和细胞生物学,进化系统学,生物化学,信息学,数学,计算机和工程学等多学科交叉的产物。该学科研究目标、对象和使用的工具及潜在的应用范围还没有完全定义。合成生物学已经进入&ldquo 第二次浪潮&rdquo :即通过生物探索的本质与工程构建的特性相结合,从改造细胞内网络结构来模仿一些工程系统所具有的功能以进行学科的概念实现以及应用示范,到将细胞作为&ldquo 底盘&rdquo 及&ldquo 可编程&rdquo 整体,开发有效组装策略,测试外源元件和模块加载后的适配性,组成精细,可定制化的生物应用系统。   本次会议已获中国教育部批准,将为来自世界各地的从不同方面进行合成生物学研究的专家学者提供了一个深入交流讨论的平台。来自海外和中国的研究人员将被邀请到此会议报告他们在合成生物学领域取得的最新成就,交流合成生物学新趋势及工作中遇到的挑战,实事求是地评估合成生物学潜在的问题和陷阱,为合成生物学未来发展和宏伟目标的实现提供技术储备。会议将择优选用稿件在合成生物学专业期刊FRONTIERS IN SYNTHETIC BIOLOGY发表。   本论坛涉及合成生物学各个方面,例如:元件,模块与底盘的设计与构建 合成细胞网络 计算生物学的合成生物学应用 合成生物技术 大数据与合成生物学等。以此增强我们以系统论,信息论和控制论为指导对复杂的生物系统进行微观设计改造,而取得宏观代谢表型更新的能力。会议既有正式的讨论会,也提供在下午和晚上轻松聚会的机会,让来自不同学科的科学家,能够相互认识,拓展人脉,促进合成生物学跨学科跨地区合作。本会议鼓励青年合成生物学家与国际著名专家沟通交流合成生物学进展,得到研究生涯指导。也为中外学者通过会议开展跨领域知识互补和长期合作建立一个通畅管道。   会议主办单位:北京化工大学   专家主席团:谭天伟院士(北京化工大学),Sang Yup Lee院士(韩国科学技术院),Jens Nielsen教授(瑞典Chalmers理工大学),Peter Lindblad教授(瑞典Uppsala大学),Dan Luo教授(美国Cornell大学),David Schwartz教授(美国威斯康辛大学Madison)   组委会:袁其朋教授,喻长远教授,甘志华教授,傅鹏程教授,田平芳教授   组委会秘书长:傅鹏程教授   会议主题包括但不限于:   1、 合成生物学组件与系统的设计及装配   2、 系统生物学与合成生物学、   3、 合成生物学使能技术,   4、 合成生物学应用。   会议时间:2014年10月26-27日   地点:北京市朝阳区北三环东路15号北京化工大学   规模:200人左右   已确认参会国外嘉宾:   Sang Yup Lee院士(韩国科学技术院),Jens Nielsen教授(瑞典Chalmers理工大学),Peter Lindblad教授(瑞典Uppsala大学),Dan Luo教授(美国康奈尔大学),David Schwartz教授(美国威斯康辛大学Madison分校),Jean Marie FRANCOIS教授(法国Toulouse大学),Jason Micklefield(英国曼彻斯特大学),Igor Broun教授(美国俄克拉荷马州立大学),Shota Atsumi教授(美国加州大学Davis分校)   会议日程:   2014年10月25日 全天报到。   2014年10月26日上午 大会开幕式以及大会报告。   2014年10月26日下午-27日 分会场报告。   2014年10月27日下午参观北京化工大学合成生物学平台   会议注册费:(进行大会或分会场报告者免注册费) 外币 2014年9月15日前注册 $250 2014年9月15日后或现场注册 $300 学生(提供证明) $100 人民币 2014年9月15日前注册 1200元 2014年9月15日后或现场注册 1500元 学生(提供证明) 800元   注:1、登录ISSA2014网站http://ISSA2014.buct.edu.cn/,查看会议相关信息。   2、支付方式:现场以现金支付。报名注册请用注册交费账户:北京银行樱花支行 申晓林 6029 6930 1596 8791。届时将开具北京化工大学的报销发票。   会议重要时间点:   1、2014年6月1日发布第一轮通知, 征集论文摘要,通过电子邮件报名。   2、摘要提交截止期9月15日,录用进行大会或分会场报告者免注册费。   3、8月20日发布第二轮通知,通报会议详细安排。   4、报名截止日期为9月30日。其后报名将不能保证参会食宿安排。   5、10月5日发布第三轮通知,通知论文发表安排,分发会议邀请函。国外参会者提前发放会议邀请函,以便签证的办理   会议网页: http://ISSA2014.buct.edu.cn/   联系人邮箱: 傅鹏程教授 fupc@mail.buct.edu.cn 电话:(010)6443-8058   申晓林博士 shenxl@mail.buct.edu.cn
  • 2014合成生物学国际论坛第一轮通知
    合成生物学是21世纪生物学领域新兴的一门学科,是分子和细胞生物学,进化系统学,生物化学,信息学,数学,计算机和工程学等多学科交叉的产物。该学科研究目标、对象和使用的工具及潜在的应用范围还没有完全定义。合成生物学已经进入&ldquo 第二次浪潮&rdquo :即通过生物探索的本质与工程构建的特性相结合,从改造细胞内网络结构来模仿一些工程系统所具有的功能以进行学科的概念实现以及应用示范,到将细胞作为&ldquo 底盘&rdquo 及&ldquo 可编程&rdquo 整体,开发有效组装策略,测试外源元件和模块加载后的适配性,组成精细,可定制化的生物应用系统。   本次会议已获中国教育部批准,将为来自世界各地的从不同方面进行合成生物学研究的专家学者提供了一个深入交流讨论的平台。来自海外和中国的研究人员将被邀请到此会议报告他们在合成生物学领域取得的最新成就,交流合成生物学新趋势及工作中遇到的挑战,实事求是地评估合成生物学潜在的问题和陷阱,为合成生物学未来发展和宏伟目标的实现提供技术储备。会议将择优选用稿件在合成生物学专业期刊FRONTIERS IN SYNTHETIC BIOLOGY发表。   本论坛涉及合成生物学各个方面,例如:元件,模块与底盘的设计与构建 合成细胞网络 计算生物学的合成生物学应用 合成生物技术 大数据与合成生物学等。以此增强我们以系统论,信息论和控制论为指导对复杂的生物系统进行微观设计改造,而取得宏观代谢表型更新的能力。会议既有正式的讨论会,也提供在下午和晚上轻松聚会的机会,让来自不同学科的科学家,能够相互认识,拓展人脉,促进合成生物学跨学科跨地区合作。本会议鼓励青年合成生物学家与国际著名专家沟通交流合成生物学进展,得到研究生涯指导。也为中外学者通过会议开展跨领域知识互补和长期合作建立一个通畅管道。   会议主办单位:北京化工大学   专家主席团:谭天伟院士(北京化工大学),Jens Nielsen教授(瑞典Chalmers理工大学),Peter Lindblad教授(瑞典Uppsala大学),Dan Luo教授(美国Cornell大学),David Schwartz教授(美国威斯康辛大学Madison)   组委会:袁其朋教授,喻长远教授,甘志华教授,傅鹏程教授,田平芳教授   组委会秘书长:傅鹏程教授   会议主题包括但不限于:   1、 合成生物学组件与系统的设计及装配   2、 系统生物学与合成生物学、   3、 合成生物学使能技术,   4、 合成生物学应用。   会议时间:2014年10月26-27日   地点:北京市朝阳区北三环东路15号北京化工大学   规模:200人左右   已确认参会国外嘉宾:   Jens Nielsen教授(瑞典Chalmers理工大学),Peter Lindblad教授(瑞典Uppsala大学),Dan Luo教授(美国康奈尔大学),David Schwartz教授(美国威斯康辛大学Madison),Louis Sherman教授(美国普渡大学),Jason Micklefield(英国曼彻斯特大学),Igor Broun教授(美国俄克拉荷马州立大学)   会议日程:   2014年10月25日 全天报到。20:00召开理事会会议。   2014年10月26日上午 大会开幕式以及大会报告。   2014年10月26日下午-27日 分会场报告。   2014年10月27日下午参观北京化工大学合成生物学平台   会议注册费:   外币   2014年8月15日前注册 $250   2014年8月15日后或现场注册$300   学生(提供证明) $100   人民币   2014年8月15日前注册 1200元   2014年8月15日后或现场注册1500元   学生(提供证明) 800元   注:1、登录ISSA2014网站http://ISSA2014.buct.edu.cn/,查看会议相关信息。   2、支付方式:现场以现金支付。报名截止期前未注册者统一按非会员标准收费。   会议重要时间点:   1、2014年6月1日发布第一轮通知, 征集论文摘要,通过电子邮件报名。   2、摘要提交截止期8月15日。   3、9月1日发布第二轮通知,通报会议详细安排。   4、报名截止日期为9月30日。其后报名将不能享受优惠,并不能保证参会食宿安排。   5、10月5日发布第三轮通知,通知论文发表安排,分发会议邀请函。国外参会者提前发放会议邀请函,以便签证的办理   会议网页: http://ISSA2014.buct.edu.cn/   联系人邮箱: 傅鹏程教授 fupc@mail.buct.edu.cn   申晓琳博士 shenxl@mail.buct.edu.cn
  • “合成生物学技术及应用进展”嘉宾报告大放送
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。~~~~~报告嘉宾~~~~~报告题目:《高效细胞工厂构建及产业应用》【摘要】 化学品绿色生物制造是实现人类社会可持续发展的重要路径,人工高效细胞工厂构建是实现绿色生物制造的核心。本报告介绍了现阶段细胞工厂构建存在的科学、技术问题及挑战,从新生化反应发现、非天然途径设计构建、稳定自调控共培养系统建立及群体感应调控原理及应用等角度阐述了高效细胞工厂构建的新技术及策略,为化学品的绿色生物制造提供了参考。报告题目:《HMOs的生物“智”造以及产业化》【摘要】 人乳寡糖(HMO)对婴幼儿消化系统、肠道健康及免疫系统完善具有不可替代的作用。因此,生物合成HMOs,形成规模化生产被市场所期待。 本项目中,我们通过“HLBrain”的计算云平台,形成了自主技术路线,实现了产业化,产品纯度达到了98%以上,实现了我国在HMOs领域的突破。报告题目:《赛默飞合成生物学中的高分辨质谱策略》【摘要】 合成生物学是近年来迅速发展的一门综合性交叉学科,涉及了生物工程、制药工程、食品工程、生物学、化学等多领域多学科内容。在合成生物学中核心内容即构建DBTL循环,赛默飞Orbitrap高分辨质谱仪是将扫描速度,高分辨率,高灵敏度,谱图质量,质量精度完美融合,将高性能定性和定量能力有机的统一,助力合成生物学难题攻克!报告题目:《利用合成生物学方法增加小分子结构多样性》【摘要】 天然产物长期以来一直是小分子药物的宝贵来源,但它们在自然来源中的含量通常很低,且其化学结构复杂,这使得它们的提取或化学合成变得十分困难和成本高昂。异源生物合成复杂天然产物已成为一种有吸引力的方法,因为它们成本低且供应稳定。我们已经建立了几种不同的方法,用于在细菌和酵母中异源生物合成各种天然产物,包括抗生素和抗癌药物。更重要的是,我们通过理性设计或定向进化及高通量筛选,成功的改造了途径中的酶,以实现天然产物类似物的生产,这显著扩展了当前天然产物的化学空间。我们还开发了自动化系统来辅助酶进化和菌株构建,这将有助于发现具有多种结构、靶向选择性和药代动力学特性的天然产物或其类似物。报告题目:《优化“启动子-RNA聚合酶”以实现目标产物的高产》【摘要】 启动子及RNA聚合酶是转录水平的两个关键调控元件,控制细胞内代谢流量的分配。目标产物的合成与宿主细胞的生长竞争利用有限的RNA聚合酶。启动子招募过多或过少RNA聚合酶都不利于高产目标产物。研究发现,适度串联的启动子能明显提高3-羟基丙酸和吡咯喹啉醌的产量,而过度消耗RNA聚合酶导致宿主细胞生长变慢,从而阻碍目标产物3-羟基丙酸的生成。此外,受诱导的CRISPRi可协调和切换细胞生长和产物合成,从而高产目标产物。报告题目:《岛津最新色谱质谱技术在合成生物学中的应用》【摘要】 主要介绍岛津分析方法包及LCMSMS、LCMS-QTOF、MALDI-TOF等仪器在合成生物学质量控制中的应用。报告题目:《人工智能驱动的合成生物制造创新模式》【摘要】 当前合成生物制造产业发展瓶颈是如何从无到有构建生物合成途径,我们开发了全球最大的生物合成反应/途径数据库,进而构建了全球领先的合成生物设计技术体系,创建了人工智能驱动的合成生物制造研发链条,正在打造人工智能驱动的合成生物制造创新模式。报告题目:《基于DNA纳米框架结构的仿病毒分子工具》【摘要】 利用DNA折纸技术构建框架核酸纳米结构,可以指导各类分子在纳米尺度的精确空间排布和组装,构建纳米器件并实现功能化,为合成生物学提供了全新的研究工具和应用平台。受到病毒启发设计的三维框架核酸被用于组装具有明确尺寸形状的磷脂膜囊泡;组装仿病毒被动侵染颗粒和抑制侵染颗粒等。报告题目:《基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究》【摘要】 液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴微流控高通量筛选氧化还原酶,获取高性能突变体,为生物医药酶定向进化及合成生物学代谢途径关键酶性能优化提供了技术平台。报告题目:《安捷伦高通量自动化流程在合成生物学领域的创新应用》【摘要】 安捷伦高通量自动化流程在合成生物学领域的创新应用。报告题目:《Hamilton自动化移液工作站在合成生物学领域的应用和卓越技术》【摘要】 合成生物学领域需要严谨准确无交叉污染的DNA基因合成、基因克隆、微生物或细胞的克隆挑选与培养、发酵培养以及产物纯化鉴定等步骤,且往往需要较高的通量。Hamilton以其卓越的自动化移液技术及先进的台面内设备,为合成生物学领域的各个步骤均提供了优秀的硬件和自动化解决方案,其中多种设备和技术是业内独有,且对合成生物学关键步骤的长时间稳定准确运行至关重要。本报告将通过合成生物学的各种实验需求介绍Hamilton公司的解决方案和技术优势,为科学家和企业研发人员的相关研发工作提供助力。报告题目:《创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶》【摘要】 酶作为生物合成中的催化剂,其活性高低决定了目标产物能否高产。蛋白质工程介导的酶改造需快速简易的筛选方法。由此,以高值化合物没食子酸合成途径中羟化酶PobA为例,基于催化产物的独有特性,建立了一种肉眼可视化筛选方法,并从突变库中筛选到高活性突变体。高活性突变体的引入实现了没食子酸从葡萄糖起始的高效生物合成。报告题目:《植物二萜的合成生物学研究》【摘要】 二萜类化合物广泛存在于自然界,因其化学结构的多样性和良好的生物活性,在工业、医疗等领域具有广阔的应用前景。二萜合酶以及糖基化酶、羟基化酶等后修饰酶是二萜化合物生物合成过程中影响其化学结构多样性的主要因素。在过去几年,本课题组针对三尖杉烷二萜、贝壳杉烷二萜为代表的二萜化合物的合成过程进行了深入的研究。如通过对柱冠粗榧(Cephalotaxus harringtonia)转录组基因的挖掘,报道了三尖杉属植物二萜生物合成途径的关键萜类环化酶,揭示了三尖杉烷型二萜前体骨架三尖杉-12-烯的生物合成过程,为裸子植物二萜代谢多样性的起源和演化提供了深入见解;通过对冬凌草(Isodon rubescens (Hemsl.)Hara)基因组学的研究,揭示了贝壳杉烷二萜冬凌草甲素的氧化修饰机制;通过对甜叶菊等转录组学的挖掘,揭示了贝壳杉烷二萜糖基化修饰过程中底物识别专一性和产物生成特异性的分子机制。基于这些研究,本课题组以大肠杆菌为底盘高效地实现了11种不同氧化形式的对映-贝壳杉烷类二萜化合物的从头生物合成,实现了多种稀有二萜糖苷的高效合成,并实现了产业化推广。报告题目:《技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化》【摘要】 1.合成生物学科研与产业化流程与技术痛点 2.技术瓶颈的突破性新技术 3.应用案例介绍。报告题目:《过程数据驱动下的精准高通量筛选技术》【摘要】 合成生物学的DBTL研究循环中,T环节急需要开发高通量、自动化和在线多参数测控技术的新型生物反应器,规避过去基于三角瓶培养方式测试菌种和工艺的结果误判和漏选现象。建立基于过程多尺度参数相关分析方法的高通量菌种筛选和工艺开发平台,形成过程数据驱动的理性决策方法。报告题目:《翻译机制启发的氨基酸高产菌株筛选策略》【摘要】 氨基酸是构成蛋白质的基本单元,也是动物生长和生产所需的大量营养素之一,全球市场总量已接近300亿美元。商业化的氨基酸主要由微生物发酵法制成,然而,除了谷氨酸、赖氨酸等少数大宗氨基酸品类,大多数氨基酸的发酵产量仍处于较低水平,部分氨基酸生产菌株与国外存在代差,因此,选育优良的生产菌株已成为填补氨基酸产能与需求差距的关键。基于自然界普遍存在的“密码子偏好性”规律及氨酰化反应的动力学特征,报告人开发了基于稀有密码子和人造tRNACUA的氨基酸高产菌株筛选策略,实现了对20种标准氨基酸乃至非蛋白质类氨基酸的快速指征,解决了长期困扰氨基酸生物制造的菌株选育难题,促进了氨基酸高产新机制的发现。扫码报名~~~~~赞助单位~~~~也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 日程曝光 | 2023合成生物学产业嘉年华
    合成生物学是继“DNA双螺旋发现”和“人类基因组计划”两次生物科技革命之后,引领世界的“第三次生物科技革命”。“DNA双螺旋发现”和“人类基因组计划”,使人类实现了从认知生命走向解读生命。合成生物学作为21世纪生命科学领域的颠覆性技术,推动了人类由解读生命到编写生命、创造生命的跨越。同步,合成生物学的产业化已经到来。工业化应用实现了从无到有,从稀到多,从贵到廉的突破,由此催生新市场,如保健食品,医美等新应用,另一方面凭借低成本,高质量,绿色环保等优势,替代传统高耗能、高污染工艺,革新原有的产业格局。由“科创中国”生物医药产业科技服务团、中国微生物学会、山东大学、山东大学微生物技术国家重点实验室、生物经纬、佰傲谷BioValley联合主办的2023合成生物学产业嘉年华(Synthetic Biology Carnival简称:SBC2023)将于4月21-22日在江苏南京举办,本次产业嘉年华将聚焦前沿合成生物技术的运用,聚焦新势力的崛起,关注行业政策导向和未来发展趋势,共同促进合成生物学技术在我国各领域的全方位发展。大会信息会议主题 | 合成新势合成未来会议时间 | 2023年4月21-22日会议地点 | 江苏南京朗昇希尔顿酒店会议规模 | 800人指导单位 | 南京江北新区管理委员会主办单位 |“科创中国”生物医药产业科技服务团、中国微生物学会、山东大学、山东大学微生物技术国家重点实验室、生物经纬、佰傲谷BioValley支持单位 | 华东理工大学国家生化工程技术研究中心(上海)、北京软物质科学与工程高精尖中心、中国科学院合成 生物学重点实验室、上海市微生物学会、上海市生物工程学会、华东理工大学、美国华人生物医药科技协会(CBA) 、南京生物工程学会、华东师范大学医学合成生物学研究中心战略合作媒体 | 转化子Transformants、万物合成已确定嘉宾阵容日程安排论坛议程参会报名▍如果您是❖ 合成生物生产相关产品在生物化工材料、生物医药、医美及营养品、生物能源、农业和新型食品等领域的应用企业管理层及项目负责人❖ 合成生物学相关科研院校和研究所专家学者❖ 生物医药临床研究中心、医院医生❖ 蛋白药物、细胞药物研发企业高管❖ 企业管理层及项目负责人基因编辑工具,核酸合成、测序,DNA元件服务企业; 底层细胞、模式生物研究机构及企业; 高通量筛选系统、智能自动化设备解决方案公司;DNA平台、酶制剂、菌种设计与生产等平台类公司;为合成生物领域提供工艺放大和装备制造的企业。❖ 投融资机构❖ 其它人员▍参会报名免费参会,需要审核(人数限制,先注册先得)本次报名为预登记报名,组委会审核通过后,您将收到邮件通知!扫码报名(限时免费)▽组委会联系方式:SBC合成生物学产业嘉年华招商已经启动,以生物造万物,开启未来无限可能。媒体合作/参会报名/赞助咨询/学术报告请联系SBC2023组委会 Abby 18217659261(微信同号)【备注:SBC2023,进入合成生物大会群聊】合作媒体
  • 合成生物学有望在未来5-10年保持高速增长
    国信证券 (002736 )发布研究报告称,“双碳”背景下合成生物学有望在未来5-10年保持高速增长,看好合成生物学在低成本替代现有材料及制备新材料的潜力,具备技术及成本优势的合成生物学企业竞争优势明显。合成生物学是一门发展迅速的前沿交叉学科,被誉为第三次生物技术革命,其下游应用广泛,需求正在不断扩张。合成生物学是一门融合了生物学、信息学、基因组学、 化学等多学科的交叉学科,在学习自然生命系统的基础上建立出人工生物,并制造出满足人类需求产品。合成生物学通过设计和构建细胞工厂,能够使细胞以淀粉、纤维素、CO2等可再生碳为原料,生产重要的化工产品、天然药物、食品、生物能源等产品,合成生物学相可以实现更高的转化效率、更低的成本,更友好的路线。我国大品种氨基酸产能充沛,小品种氨基酸如丙氨酸、缬氨酸、异亮氨酸、等亟需扩大产能、降低成本,通过合成生物学的手段,可有效降低小品种氨基酸生产成本。丙氨酸在食品、医药日化等领域具有广泛应用,丙氨酸生产的化工流程温度高、压力大、酸碱强,环境污染严重。目前,工业化生产丙氨酸采用发酵法和微生物酶法代替了原有的化学合成法丙氨酸,华恒生物利用合成生物方法改造微生物突破厌氧发酵技术,使丙氨酸的生产成本较酶法降低50% 缬氨酸可以改善母猪生产性能,提高动物免疫力,在饲料行业的需求快速增长,由于缬氨酸的合成途径属于丙氨酸衍生物类型,华恒生物在具备丙氨酸厌氧发酵技术后又突破了低成本缬氨酸生物发酵技术 通过人工合成酶对丙烯酸定向加氨形成了β-丙氨酸,较传统天冬氨酸脱羧法极大的降低了产品成本。全球丙氨酸市场自2016年3.5万吨增长至2019年5万吨,年化复合增长率为13%,预计丙氨酸市场在未来四年内继续保持稳定增长,在2023年将达到8万吨,同比2019年5.1万吨增长57% 近年来全球缬氨酸市场规模保持着迅猛增长态势,全球需求量从2016年的0.73万吨增长到2019年的3.25万吨,年复合增长率高达65%。尼龙66重要上游原材料己二腈等目前国内化率仍在提升中,生物基戊二胺可实现替代法生产,长链尼龙作为具有优异的耐磨性和耐低温性,其重要的上游原材长链二元酸(DC12及DC10)可通过合成生物学实现低成本制备。PA66主要应用领域为工程塑料和工业纤维,在汽车轻量化的趋势下其市场潜力较大,但PA66的上游原材料己二腈生产技术壁垒很高,差能由欧、美、日控制,国内仅能实现小部分生产,且成本高昂。合成生物学可通过利用赖氨酸脱羧的方式生产戊二胺,通过尼龙56对尼龙66实现替代。长链尼龙的重要原料长链双元脂肪酸传统合成方法为化学合成法或由蓖麻油分解制备,凯赛生物通过合成生物学利用简单的烷烃经过发酵即可廉价制备DC12及DC10,在全球市场占据了较高份额。营养素市场空间广阔,合成生物学大有可为。长链不饱和脂肪酸DHA及ARA对婴幼儿记忆力、思维能力及视网膜发育具有重要作用,广泛应用与婴幼儿配方奶粉及保健品,随着人们健康意识的提高,对DHA及ARA的需求不断增加。DHA的主要生产来源为深海鱼类,但随着海洋污染加剧,鱼油DHA存在食品安全风险,且鱼油含有大量EPA,限制了其使用范围,通过生物发酵法生产的DHA有效规避了这些分险,在DHA市场中的市占率不断提高。
  • 中科院合成生物学研究所揭牌
    p   日前,中国科学院深圳先进技术研究院合成生物学研究所正式揭牌。据悉,该研究所拥有3个中美院士实验室、12个海归PI实验室,汇聚合成生物学前沿力量的国际化团队,有望成长为具有世界影响力的研究机构。 /p p   合成生物学是近年来发展迅速的新兴前沿交叉学科,被认为是继“DNA双螺旋发现”和“人类基因组测序计划”之后的第三次生物技术革命。其研究的终极目标是:采用工程化的设计理念,对生物体遗传物质进行设计、改造乃至全新合成,打破物种界限,创建人工生命体。在研究所(筹)揭牌仪式上,该研究所筹建所长刘陈立表示,合成生物学作为新兴的交叉学科,不仅有潜力帮助解决人类社会面临的诸多挑战,还能让大家从“造物”这一全新视角来揭开基础生命科学的奥秘。 /p p   据了解,中科院深圳先进院合成生物学研究所在生物功能分子合成进化、基因线路设计原理、酵母染色体合成、人工改造细菌治疗肿瘤、人工改造噬菌体治疗超级耐药菌感染等前沿项目上已有积累,部分达到了与国际先进水平并跑的层次。未来,他们将专注于人造生命元件、基因线路、生物器件、多细胞体系等的合成再造研究,旨在揭示生命本质和探索生命活动基本规律。 /p p   据介绍,该研究所下设定量合成生物学、合成生物化学、合成基因组学三大研究中心。 /p p   目前,合成生物学研究设施建设已被列入《国家重大科技基础设施建设中长期规划(2012-2030年)》的总体部署。深圳在这一方面领先全国,并将建设世界一流的合成生物重大科技基础设施,建设合成生物学国际创新研究院。 /p p   刘陈立介绍,大型基础设施基于智能化、自动化及高通量设备,主要由“设计学习”及“合成测试”两大核心平台及辅助检测平台构成,将推动软件控制、硬件设备和合成生物学应用整合,形成大型规模化合成生命体制造系统,实现全流程的高度集成和流水线作业,对于执行国家重大研究计划与科研项目不可或缺。刘陈立表示,这不仅会降低生物产业进入门槛,吸引多学科领域人才,还会催生全新产业链,实现高端自动化生物仪器制造的国产化。大设施建成后,将成为生物技术与信息技术有机融合、科技与产业有机融合的具有国际水准和引领作用的生命科学研发中心、生物产业创新中心,为我国建成世界科技创新强国作出贡献。 /p
  • 合成生物学:未来农业的强大助推器
    受人口爆炸式增长、气候变化、战争以及疫情的影响,当前全球的粮食安全面临着严重的威胁。根据联合国粮农组织(FAO)最新发布的 2022《世界粮食安全和营养状况》报告:在 2021 年,全球约有 23 亿人处于中度或重度粮食不安全状态。而与粮食危机相对的,却是耕地有限地开发和增长,以及过去几年当中重要作物产量增率的停滞不前。因此,迫切需要找到一种快速、可持续的方式,来在有限的耕地当中生产更多的农产品和改良作物营养,以确保未来的粮食安全。而新兴的合成生物学,已经以其构建、控制和编程细胞行为的能力,展现出了其在农业领域应用当中的潜力。2022 年 9 月 5 日,在 Advanced Agrochem 期刊上在线发表了一篇 “合成生物学之于农业领域应用” 的综述文章,题为《合成生物学:未来农业的强大助推器》,文章的通讯作者为中科院深圳先进技术研究院合成生物学研究所的周佳海研究员。在该篇综述当中,研究人员一共从 3 个方面给我们介绍了 “合成生物学在农业领域” 当中的应用和发展趋势,其分别为:作物育种、植物在固碳(光合)和固氮上的改进,以及农业中微生物的改造与运用。“合成生物学在农业中的应用,体现其在作物改良中改变代谢途径、遗传回路和植物结构上的潜力。同时,合成生物学的工程微生物,也在可持续农业中发挥着作用,例如生物施肥、生物刺激和生物防治。” 在文章中,研究人员这样写道。合成生物学在农业中的应用(来源:Advanced Agrochem)作物驯化和育种 农作物的驯化,是指植物当中优良的突变性状以人类意愿不断积累留存的过程。在过去,这一过程通常需要经历很长时间才能够完成,有时甚至可能长达数千年。虽然现代育种技术已经极大加快了这一进程,但是缩短至几十年的速度仍然无法应对粮食供应所面临的严峻挑战。 随着基因组学技术的发展,通过对于植物基因组的操纵,作物驯化和作物育种的速度得到了更进一步的飞跃。基于对植物基因组的了解,作物育种工作可以分为 3 个过程:读取(Read)、理解(Interpret)以及书写(Write),而合成生物学,正是书写植物基因组的关键技术之一。 从基因组学到作物育种(来源:Nature Biotechnology) 植物基因组书写技术包括有基因组编辑和基因组设计。 基因组编辑,指的是对于基因组中特定位点的编辑与改造。在这一方向上,李家洋团队建立着有以其为基础的 “野生稻快速从头驯化技术体系”,该系统可以通过针对基因组中不同性状基因的编辑改造,来实现对于作物的快速驯化。 而基因组设计,则指的是对于一整个基因组上的精准设计。在这一块上,黄三文团队开展了马铃薯相关的设计育种工作:基于基因组大数据进行分析、设计和筛选,其最终选择了基因组互补性比较高的自交系进行杂交,成功掩盖杂交种中有害突变的效应,获得了优势显著的杂交种。 杂交马铃薯育种基因组设计示意图(来源:Cell) 此外,与植物基因组书写的工具和策略也在不断发展当中,比如在最近的许多工作中,研究人员利用 CRISPR/Cas 工具,成功在植物中实现在兆碱基范围内以受控方式(如倒位和易位)的可遗传染色体重排。这些策略可能会被应用到作物育种当中。 光合作用与固氮作用• 改造光合作用系统 光合作用是作物的能量来源,也是作物产量的主要决定因素。 一种光合系统的改造策略,在于寻找光合系统中的高效酶并引入替代。比如 Prins 团队在核酮糖 - 1,5 - 二磷酸羧化酶(Rubisco)在上的工作:其在研究小麦族 25 种基因型的 Rubisco 后,发现将普通小麦野生近缘种的 Rubisco 替代进农用小麦后,可以将碳吸收率提高 20%。 替代后更高的同化率(来源:Journal of Experimental Botany) 不过,无论如何提高 Rubisco 的酶活,整体的固碳效率,也仍然是受到天然代谢途径本身的限制。因此,要在更大程度上去提高光合效率,可能需要设计一种新的固碳途径。 Tobias Erb 团队便报道了该策略上的第一个合成途径:用于体外二氧化碳固定的 CETCH 循环(见下图)。之后,研究人员进一步将 CETCH 循环封装在细胞大小的液滴中,使用微流体作为叶绿体模拟物来创建人工光合作用系统。而这种 “合成叶绿体”,将有可能超越自然光合作用。 CETCH 循环(来源:Science)• 引入碳浓缩机制(CCMs) 为了在低 CO2 浓度环境(如水体)中保持较高的光合速率,在蓝细菌等生物中进化出了一种能够在 Rubisco 周围积累 CO2 的机制,称为碳浓缩机制(CCMs)。因此,除了直接提高酶活性外,将 CCMs 引入植物,也被认为是一种潜在的提高植物光合作用效率和产量的方法。 羧酶体(Carboxysomes),是 CCMs 的重要组成部分,这便使得其成为该策略研究、改造和设计的一大对象。 Maureen Hanson 团队首先报道了该方向上的研究,其在替换烟草 Rubisco 的同时引入了羧酶体组装的相关蛋白,而 Cheryl Kerfeld 团队则在蓝细菌中对羧酶体进行了重新设计,得到的嵌合蛋白能够在结构和功能上取代羧酶体组装所需的 4 个基因组分。 天然 β- 羧酶体核心的组装和嵌合蛋白 CcmC(来源:The Plant Cell) 除了羧酶体外,还有着其它方向上关于引入 CCMs 策略的研究。比如 Stephen Long 团队的一项研究:其在大豆中插入了蓝细菌来源的无机碳转运蛋白 B(IctB)基因,最终使得改造后植物的光合 CO2 吸收量和干重都得到了显著增加。• 固氮作用的改进 改进生物固氮途径,提高作物对氮源的利用率,也是合成生物学在农业中应用的重要领域。与光合作用改进类似,将异源固氮基因簇 nif 转移到植物中,是设计与改造的最直接选择。 一直以来,研究人员都在植物不同的区室中尝试着异源固氮基因的设计和表达,比如 Elena Caro 团队的研究:其重新设计了葡萄曲霉(Azotobacter vinelandii)来源的固氮基因 nifH、M、U 和 S,同时利用合成生物学工具最终实现烟草叶绿体中 NifH 的产生。 微生物在农业中的利用• 植物微生物组和微生物肥料微生物是合成生物学中最常用的工具,因此,相较于改变植物本身的固氮能力,建立固氮植物微生物群落可能是一种更加有效且便捷的策略。在这一方向上,天然植物根际促生菌(PGPRs)的发现是研究最为集中的领域。 天然 PGPRs 运用的局限性(来源:The ISME Journal) 目前,有些天然 PGPRs 的研究已经取得了不错的进展,可以显着提高作物产量,并且正在走向商业化。但是,许多的 PGPR 田间研究显示出了参差不一的性能,研究人员推测这可能是由于外加的 PGPRs 破坏土壤环境中原本的微生物群落所导致的。 微生物群落内复杂的相互作用阻碍了 PGPRs 的进一步拓展应用。针对这一问题,合成生物学可以从新的角度带来解决方案:利用移动遗传元件(MGE),将目标性状(比如固氮、耐铵能力)转移到选定的根际细菌或整个群落中,用于定制具有理想性状的 PGPRs。 这一策略不仅仅局限于固氮,比如农作物还需要磷等其他化学元素,便可以以微生物磷肥形式进行提供:通过引入重构的植酸酶基因改造了一组根系细菌,这些菌株产生的植酸盐可以为植物提供磷酸盐的供应来源。 工程根系细菌提供微生物磷肥(来源:Applied and Environmental Microbiology)• 土壤修复潜力 目前,全球 1/3 的地表出现了不同程度的退化,每年流失肥沃土壤 240 亿吨,已经对生态系统和农业生产构成重大威胁。而土壤微生物,可以恢复退化土地、改善土壤水力特性同时降低土壤疏水性。 现有的合成生物学研究表明,由多个相互作用的微生物种群所组成的工程微生物联合体,能够执行复杂的任务并承受多变的环境影响。合成微生物群落通过重塑土壤微生物群落结构,为利用微生物修复土壤、提高微生物存活率提供了解决方案,而这,也是未来的一个应用方向。• 农药生物制造 合成生物学中的生物制造方法,是利用细菌、酵母等生物体进行原料的加工和合成。这种绿色生产技术可以替代传统的化学合成,改变农药等农用化学品的生产方式。此外,生物制造还可以减少工业过程中对于能源和资源的消耗,并减少空气、水和土壤的污染和生产成本。 合成生物学之于生物制造(来源:Nature Biotechnology) 在农药的生物制造研究上,有如高江涛团队的研究:其发现了除草剂草甘膦的前体氨基甲基膦酸酯(AMP)的生物合成途径,并进一步地运用合成生物学策略提高了 Streptomyces lividans 中 AMP 的产量,较原始菌株提高了 500 倍。 展望虽然合成生物学已经在农业的各个方面都显示出了巨大的潜力,但目前能够实现或接近商业化的应用仅集中在作物育种、微生物固氮、生物制造等方面。相比之下,固碳、固氮和代谢途径的改造仍处于概念阶段。 部分涉及农业合成生物学的公司名单(来源:Advanced Agrochem) 作为微生物肥料的固氮微生物,是合成生物学目前在农业中较为成熟的应用场景。 比如全球农业领域的龙头企业的先正达集团,其正在制定生物制剂的全面战略:推出了农用微生物肥料新产品,推进生物科技产品的研发进入合成生物学时代。另一巨头,拜耳作物科学,也与合成生物学平台公司 Ginkgo Bioworks 联手成立子公司 Joyn Bio,专注于工程固氮微生物。 此外,拜耳作物科学和先正达集团也在作物生物育种方面进行布局,这其中就包括了 CRISPR 等技术的运用。 合成生物学在农业中的应用(来源:Advanced Agrochem) 在农药的生物制造方面,目前世界上主要的传统农用化学品生产企业仍然主要采用化学合成路线,不过,一些新兴的合成生物学公司,如 Zymergen 和 Provivi,正致力于开发天然农药。而实现生物制造农药的绿色生产,还有着很大的发展空间。参考链接(上滑查看):[1] https://www.sciencedirect.com/science/article/pii/S2773237122000065[2] https://www.fao.org/3/cc0640zh/cc0640zh.pdf[3] https://www.nature.com/articles/s41587-019-0152-9[4] http://www.qibebt.cas.cn/xwzx/kydt/201409/t20140919_4210504.html[5] https://www.nature.com/articles/s41396-020-00835-4
  • 中科院合成生物学重点实验室成立
    中国科学院合成生物学重点实验室日前正式获批在上海成立。据该实验室主任、中国科学院院士赵国屏介绍,实验室将瞄准现代生物科学与技术的前沿,引领我国合成生物学的原创研究和自主创新,建立合成生物学的关键技术平台,重点针对能源、医药和环境等国家重大需求问题,进行生物学元件、反应系统乃至生物个体的设计、改造和重建的研究与技术开发。实验室的研究方向包括生物质合成的分子设计、能源植物改造、能源和医药化工产品的高效生物合成,近期将重点开展能源生物和生产重要次生代谢物“超级链霉菌”的设计与构建的研究。   合成生物学重点实验室的前身是分子微生物学开放实验室,现有高级职称研究人员12名,其中中科院院士1名、国家杰出青年基金获得者3名、“百人计划”入选者5名 硕士和博士研究生近70名。实验室已在钩端螺旋体的基因组学研究、SARS冠状病毒的进化基因组、线型质粒的功能及发展特殊遗传操作体系、放线菌代谢途径及其调控机理的解析、丙酮丁醇梭菌的选育和遗传改造及应用、酶的结构与功能关系研究和改造与工业化应用等方面取得了一系列突出成果。   中科院合成生物学重点实验室将成为我国第一个专门从事合成生物学工作的研究基地。以该实验室为技术依托,上海生科院已成立了工业生物技术研发中心,从事相关技术开发和产业化工作。
  • 美国院士合成生物学实验室落户深圳先进院
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/90979882-3fbc-463f-beda-16df1b6b1695.jpg" / /p p style=" text-align: center " 杰· 基斯林实验室揭牌 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/37a32389-f255-4f80-a126-3bb53e8f241a.jpg" / /p p style=" text-align: center " 与会人员见证了先进院院长樊建平与基斯林院士的签约 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/ea232840-2220-4d07-a172-ab2ade3a0432.jpg" / /p p style=" text-align: center " 先进院合成生物中心主任刘陈立(左)介绍实验室情况 /p p   9月27日,由国际合成生物学产业化先驱,美国工程院院士杰· 基斯林(Jay D. Keasling)领衔的杰· 基斯林实验室在中国科学院深圳先进技术研究院成立。该实验室的成立,将促进中药资源的合成生物学创新开发与商业化。 /p p    strong 美国院士领衔 创新利用传统中药有效成分 /strong /p p   樊建平在致辞中表示,基斯林院士对于青蒿素的研发,变革了中药提取青蒿素的传统手段,是全球合成生物学产业化的最重要案例。此次基斯林实验室的成立,结合深圳先进院团队的已有积累,将有力促进中药资源的合成生物学创新开发与商业化,是先进院朝着世界一流研究机构迈进的又一重要里程碑。 /p p   基斯林院士指出,铁皮石斛、天山雪莲、人参、何首乌、茯苓、灵芝、珍珠、冬虫夏草、苁蓉等传统中药蕴藏的活性分子都具有成为创新药物的巨大潜力。以抗疟疾药青蒿素、抗癌药紫杉醇、抗艾滋病毒药蔓生素、止痛药萨尔维诺林等为代表。中药材植物的天然活性分子含量低,难以分离提取 且结构复杂,难以化学合成。该实验室成立,将尝试突破以上困境,通过改造微生物或植物细胞,以生物合成手段生产植物药活性分子。这一研究方向,需要对大量植物及微生物的代谢通路进行解析、设计、重构,对于高通量自动化的实验条件需求强烈。 /p p   合成生物学学科集成性及其研究对象的高度复杂性,决定了其需要大量的工程化试错性实验,即需要快速、高效、低成本地完成“设计-合成-测试-学习”这一循环研发过程。通过合作生物学技术,将创新利用传统中药有效成分。 /p p    strong 深圳科研环境受国际青睐 先进院平台有吸引力 /strong /p p   深圳市科技创新委员会书记邱宣表示,深圳市十分重视合成生物学相关的科研和产业发展,正积极推动相关计划,希望这支有活力的科研队伍,站在世界科技的前沿,解决重大科学问题,为国家做出更多贡献。 /p p   据悉,深圳正在推进的“十大行动计划”也将合成生物学重大科学基础设施列入其中。基斯林院士对深圳市政府正在规划的“合成生物研究重大科技基础设施”表示赞赏,他认为:“如果可以建成全球最大的合成生物学自动化设施平台,将会对世界做出重要贡献,对深圳乃至中国经济也将有巨大的促进作用。听到这个消息,我非常振奋!” /p p   基斯林院士还介绍了他将聚酮合成酶杂合改造,并用于染料、香料、新抗生素等化学品合成的成果,并探讨了该成果在深圳市转化落地的可能性。 /p p   合成生物学是本世纪发展起来的崭新的交叉学科领域,它汇聚生命科学、工程学和信息科学,在认识生命和生物制造方面显示了强大的生命力。达沃斯世界经济论坛与麦肯锡全球研究所发布的报告都将合成生物学评价为改变未来人类社会的颠覆性技术。 /p p   深圳是全球独特的、年轻、开放、创新城市,充满活力,每年对于研发投入超百亿元 而合成生物学正处在生机勃勃的发展初期,很适合在深圳这片创新的土地上植根,带动和引领生物技术快步发展。作为地处深圳的唯一的科研院所,中科院深圳先进院作为纽带,将促进基斯林院士与中科院的广泛合作,带来一大批高水平优秀人才与前沿项目,助力深圳的生命科学研究实现跨越式发展,并率先形成合成生物学新兴产业。 /p p   据悉,先进院成立十年来,已从全球范围内吸引了众多杰出学者,组建有7个国家级创新载体,19个中科院/省级载体。先进院合成生物中心目前已全职引进了来自哈佛大学、耶鲁大学、纽约大学、杜克大学等国际著名学府学成归国的科学家,形成了国内合成生物学的青千、杰青等青年中坚力量逐步汇聚于此的态势,组成了一支多学科交叉的前沿创新队伍。中心还成立了3个企业联合实验室,团队成员在人造生命设计原理、人工合成酵母染色体、人工改造细菌治疗肿瘤等前沿项目上领跑全国,部分达到了与国际先进水平并跑的层次。 /p p   樊建平期待双方不断提升合作层次,取得更多实质性合作成果。双方的合作可以依托于深圳先进院的平台,充分利用先进院的人才、平台等资源,承载基斯林实验室的研发需求。 /p p /p
  • 【瑞士步琦】合成生物学整体解决方案
    瑞士步琦合成生物学整体解决方案合成生物学”合成生物学是在工程学思想指导下,按照特定目标理性设计、改造乃至从头重新合成生物体系,其本质是让细胞为人类工作生产想要的物质,用以解决人类食品缺乏、能源紧缺、环境污染、医疗健康等各方面的问题。它把“自下而上”的“建造”理念与系统生物学“自上而下”的“分析”理念相结合,利用自然界中已有物质的多样性,构建具有可预测和可控制特性的遗传、代谢或信号网络的合成成分,是现代生物学最具发展潜力的领域之一。其具体流程大致如下:▲ 合成生物学整体解决方案流程步琦公司作为先进的仪器设备供应商,拥有丰富的产品线,在合成生物学方面也为用户在发酵产物的后处理提供完善的解决方案。其中包括: 菌株/底盘细胞的保存合成生物学中常常需要保存和运输各种微生物菌种或底盘细胞,而冷冻干燥可以有效地保持微生物的活性和稳定性,延长其保存时间,并且便于长途运输。步琦公司在冷冻干燥领域拥有性能卓越的冷冻干燥仪 L-200/L-300▲ L-200产品特点:冷凝器温度 -55°C or -105℃捕冰能力:6kg or 无极限无需待机等待除冰灵活搭配组合,经久耐用 发酵过程的监控与调控通过将近红外光谱与计算模型相结合,可以实时监测反应过程中的代谢产物积累和底物消耗情况,优化如 pH 值、温度和氧气浓度等参数。通过实时监测这些参数,并对发酵系统进行反馈控制,可以提高生产过程的稳定性和产物质量。步琦公司在发酵监控领域拥有精准稳定的旁线近红外和在线近红外系统。▲ 在线近红外产品特点:多探头系统串联并联并行,灵活布局,节约光纤双灯源设计 发酵产物的浓缩处理发酵产物的浓缩对于后端的研究至关重要,通过旋转蒸发仪可以快速、高效地去除溶剂,使得样品浓缩,有利于后续的实验操作。此外,旋转蒸发仪还可以用于制备生物活性物质的溶液,如药物、酶等,以便进行生物学实验或应用。作为世界上第一台商用旋转蒸发仪的发明者,步琦公司在样品浓缩领域有着非常丰富和领先的经验。▲ R-300产品特点:防爆沸/自动蒸馏功能全自动操系统220℃ 加热 / 5L 水浴锅隔膜变频泵,节能安静浓缩样品的分离纯化合成生物学中合成的化合物往往需要进行分离和纯化,以获取目标产物。通过先进的色谱分离技术,可帮助用户更加快速的提纯合成产物,帮助去除杂质,得到纯净的目标物质。步琦公司拥有智能且卓越的中高压制备液相色谱 Pure 系列以及更加快速高效且绿色环保的超临界流体色谱。▲ Pure产品特点:中高压一体色谱封闭式馏分收集器双检测器系统智能化方法开发功能▲ SFC产品特点:高效快速的叠加进样功能封闭式馏分收集器独立的 GLS 气液分离器环保且经济的使用成本 极具创意的工艺开发根据生产数据和产物质量,不断优化工艺参数,提高生产效率和回收率,为后续大规模商业化生产做准备是必不可少的,而通过喷雾干燥的形式被广泛的应用于产物的连续生产与保存,并且与传统的离心或过滤方法相比,喷雾干燥通常能更有效地回收溶剂,降低能耗。而目标产物的微胶囊化的工艺模式也为未来的商业化提供灵感。步琦公司在这两方面也具备相当闻名且优异的喷雾干燥仪 S-300 以及微胶囊造粒仪 B-395。▲ S-300产品特点:智能自动化功能多参数严格控制高样品回收率防静电涂层设计▲ B-395产品特点:全自动样品微球化无菌卫生环境我想大家不难发现,在合成生物学整体流程中,步琦公司能够在多数阶段为科研人员提供强有力的设备,助力实验过程“万无一失”!
  • 焦点 | IKA HABITAT 助力合成生物学研究
    /// HABITAT 生物反应器,是合成生物学进行发酵研究的好帮手!合成生物学是继“DNA双螺旋”和“人类基因组计划”之后的第三次生物技术revolution。未来60% 的产品有望都可通过合成生物学方法进行生产制造,其在变革传统生产方式上的潜力备受关注。目前,合成生物学应用已经覆盖了化工、能源、医药、农业、食品、化妆品、材料合成、泛健康等诸多领域。 与传统发酵相比,合成生物学可以按照特定目标理性设计、改造乃至重设合成生物体系,进而定向操作获取人类需要的物质,解决医药、能源、原材料、食品稀缺等问题。发酵常以微生物作为生物工厂,通过发酵获得高纯度目标产物,比如利用基因工程改造微生物来生产人类胰岛素、生长激素、酶,以及维生素和部分营养补充剂等;利用微生物细胞工厂生产化学品、材料、燃料、植物天然成分和替代蛋白;通过细菌、细胞来治疗疾病和帮助作物增产等。IKA HABITAT 生物反应器! 合成生物学发酵研究的好拍档德国IKA HABITAT 生物反应器,是合成生物学进行发酵研究的好帮手。HABITAT 发酵罐的如何助力: HABITAT ferment 罐盖支架 直观的软件操作 0.5~10L罐体,单壁或夹套HABITAT 生物反应器集成搅拌、温控、pH监测、DO监测、补料、取样、进气、尾气冷凝、液位监测、消泡监测等全部功能,并可对实验数据进行实时图谱展示,具备警报功能、pH/DO自动控制和内置电极校准程序,并可在断电后自动重启,实时保存数据和导出数据。罐体多规格可选,500ml~10L,有单壁和夹套罐体形式,满足不同应用需求罐体及传感器(消泡电极除外)可置于高压灭菌器内进行灭菌,可重复使用可选配罐盖安装支架,用于2L以上罐盖配件的安装和拆卸控制塔前端有状态指示灯,可辅助监控搅拌、pH、DO、温度、消泡和液位等参数的变化情况,有异常会出现红色警示独有的新型chaotic mixing混沌混合方式,可加速底物的混合效率集成的4个Watson Marlow 泵,方向和速度可调,方便泵入和泵出不同的液体(如酸,碱,消泡剂,补料试剂)关于 IKA IKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 核污水排海,合成生物学能做什么?
    在“双碳”、“日本核污水排海”的背景下,以低成本代替现有材料及制备新材料能力的合成生物学极具发展优势,具备技术及成本优势的合成生物学企业也将有望充分获得更多竞争力。合成生物学有望在未来5-10年保持高速增长。随着基因测序、基因合成和基因编辑的技术突破,合成生物学被称为 “第三次生物科学革命”。合成生物学是在现代生物学和系统科学以及合成科学基础上发展起来、融入工程学思想和策略的新兴交叉学科,通过将自然界存在的生物元件标准化、去耦合和模块化来设计新的生物系统或改造已有的生物系统。简言之,其本质在于通过改写细胞 DNA,生产出人类所需的物质。海洋鱼类食品富含优质蛋白质、多不饱和脂肪酸及多种微量营养素和功能因子,约占全球人口所需动物蛋白的20%左右,预计2050年需求增量将达到亿吨级。为减小海水污染加剧和海洋资源掠夺性开发等多重因素对优质鱼类供应造成的影响,建立高通量、低成本、可再生鱼肉细胞工厂及规模化生产模式至关重要,是缓解我国优质海洋鱼类蛋白资源短缺及营养保障的重要途径与策略之一。浙江大学细胞培养鱼肉团队联合大连工业大学朱蓓薇院士团队也成功实现了生物合成细胞培养鱼肉。通过动物干细胞在体外进行细胞增殖和分化成功合成国内首例厘米级细胞培养鱼肉产品,生产的培养肉组织具有与真实鱼片、鱼块类似的质构与口感。在营养素市场中,长链不饱和脂肪酸DHA及ARA对婴幼儿记忆力、思维能力及视网膜发育具有重要作用,广泛应用与婴幼儿配方奶粉及保健品,随着人们健康意识的提高,对DHA及ARA的需求不断增加,DHA的主要生产来源为深海鱼类,但随着“日本核污水排海”海洋污染加剧,鱼油DHA存在食品安全风险,且鱼油含有大量EPA,限制了其使用范围,而通过生物发酵法生产的DHA能有效规避以上风险,在DHA市场中的市占率不断提高。
  • 张学礼:合成生物学促进微生物细胞工厂构建
    细胞工厂操作系统 图片来源:百度图片   自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   生物制造瓶颈   石油资源是目前运输燃料和整个化工产业的基础。然而,石油资源是不可再生的,并且以其为基础的化工炼制是一个高能耗、高污染的过程。   而从另一个角度看,天然产物在药物开发方面有着广泛的应用,很多产物具有抗肿瘤、消炎、抗寄生虫、抗氧化防衰老等功效,一直是新药来源的重要组成部分。   天然产物的生产目前主要从药用植物中直接提取分离。然而,植物生长周期长、产物含量低,导致这种生产方式对野生植物资源造成严重破坏。   如何以一种可持续、绿色清洁的方式生产燃料、大宗化学品和天然产物,对于保障社会经济可持续发展至关重要。   生物质是一种可再生的清洁资源。通过生物制造技术,生物质可以被转化为燃料、大宗化学品和天然产物,从而替代石油化工炼制和植物资源提取。生物制造的核心技术是构建高效的微生物细胞工厂,将生物质原材料转化为各种终端产品。   然而,自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   合成生物学助力   合成生物学技术的发展极大地提升了细胞工厂的构建能力。通过以下四个方面的改造,可以快速构建出生产各种化学品的高效细胞工厂:   最优合成途径的设计:生产目标化学品的合成途径可能不存在于单一生物中,通过计算机模拟设计,可以将不同的生化反应组装到一个细胞中,形成一条完整的合成途径。在此基础上,根据基因组代谢网络和调控网络模型,设计出目标化学品的最优合成途径,使其合成过程中能量供给充足、氧化还原平衡,碳代谢流最大程度地流入产品合成。另一方面,自然界中可能不存在某步关键的生化反应,导致合成途径不能被打通。通过计算机模拟设计,可以人工合成出一个全新的蛋白,使其催化该步生化反应,从而进一步拓展化学品的合成种类。   合成途径的创建:目标产品合成途径由一系列生化反应及相关的编码基因组成,其中某些基因是外源生物的。传统的PCR(聚合酶链式反应)扩增方法周期长,而且很多外源基因在宿主细胞中的表达及翻译效率很低。DNA合成技术的发展很好地解决了这一问题。基于芯片的高通量、高保真DNA合成技术显著降低了合成时间、合成成本和错误率 单个酶的大量合成和高通量筛选相结合,能有效解决外源基因的表达和翻译问题。另外,标准化的结构元件和调控元件文库,如启动子、核糖体结合位点和信使RNA稳定区文库,为合成途径的创建提供了坚实的物质基础。多片段DNA组装技术,如酵母体内同源重组技术,则能快速高效地实现功能模块组装和合成途径创建   合成途径的优化:合成途径创建完之后,通常效率都很低,远远达不到产业化生产的要求,因此需要对合成途径进行优化,提高其效率。高效的合成途径很多时候不仅仅只受限于某个单一的限速反应步骤,而且需要多个酶的协同平衡。基于标准化调控元件文库,可以对合成途径各个基因的表达进行精确调控,从而获得多个基因协调表达的状态。多重基因组自动改造技术则可以同时对染色体上的多个基因进行改造,结合高通量筛选技术,可以快速高效地鉴定出最优的调控组合。另外,通过人工合成的蛋白骨架,既可以使合成途径相邻的两个酶聚集在物理空间比较近的区域,提高两个生化反应的速率,也可以获得这些酶的最优组合比例。   细胞生产性能的优化:合成途径优化完之后,可以获得一个初步的人工细胞。需要进一步提高人工细胞的生理性能和生产环境适应能力,才能将其转变为实际生产可用的细胞工厂。进化代谢和全局扰动等技术的发展可以有效地提高细胞的生产性能。在此基础上,使用各种高通量组学分析技术可以解析细胞性能提升的遗传机制,并可用于新一轮细胞工厂的构建。   产业化初见成效   使用上述的合成生物学技术,科学家们成功构建出一系列高效的细胞工厂。在燃料化学品方面,生产长链醇(丙醇、异丁醇、异戊醇)、脂肪酸酯、脂肪醇、烷烃、烯烃等燃料的细胞工厂相继面世。   另外,利用二氧化碳和钢厂废气为原料生产乙醇、脂肪醇等燃料的细胞工厂也被成功开发。在大宗化学品方面,科学家们成功开发出生产C3(乳酸、聚乳酸、1,3-丙二醇、1,2-丙二醇、3-羟基丙酸、丙烯酸、丙氨酸)、C4(丁二酸、苹果酸、富马酸、1,4-丁二醇、异丁烯、丁二烯)、C5(异戊二烯、戊二胺、戊醇、木糖醇)和C6(己二酸、葡萄糖酸、甘露醇)等化学品的细胞工厂,其中很多已实现产业化生产,并被进一步用于塑料、纤维、尼龙、橡胶等一系列终端产品的生产。   在天然产物方面,生产青蒿素、紫杉醇、银杏内酯、丹参酮、吗啡、白藜芦醇、莽草酸、番茄红素、虾青素、辅酶Q10等产物及其关键前体化合物的细胞工厂也被成功开发。   随着合成生物学各种新技术的不断发展,微生物细胞工厂的构建技术也将越发完善。其必将极大地推动石油化工制造和药物生产的产业升级,为人类社会的可持续发展作出巨大的贡献。
  • 多地区、多部门支持推动,合成生物学热度不减
    这个夏季的 7 月、8 月,整个上海的最高温度达 40.9℃,追平有气象记录以来(1873 年以来)最高气温纪录,与气温同时居高不下的还有合成生物学的热度。7 月初,工业和信息化部、国家发展改革委、商务部发布《 “生物制造” 将是 2023-2024 年的工作举措中着重培育壮大的新增长点》。紧接着沧州市政府、深圳光明区分别发文支持生物制造产业,深圳光明区科技创新局更是发布了 13 项合成生物产业申请指南,其中涉及资金扶助、厂房建设、资质认定、研发创新、赛事峰会等多方面的政策。8 月中旬,上海市委副书记、市长龚正主持召开市政府常务会议,研究加快合成生物、基因治疗创新,推动产业发展等工作,各地纷纷布局加速合成生物学产业发展。8 月末,工业和信息化部、国家发展改革委、财政部、生态环境部、商务部、应急管理部、中华全国供销合作总社等七部门发布《石化化工行业稳增长工作方案》。《方案》支持非粮生物基材料产业化,更是将合成生物学产业在这个夏季推到热度最高点。以下是为大家整理的近期合成生物学相关政策摘要:● 三部委发布:“生物制造” 将是2023-2024年的工作举措中着重培育壮大的新增长点7 月 19 日,工业和信息化部、国家发展改革委、商务部发布 “三部委关于印发轻工业稳增长工作方案(2023—2024 年)的通知”,在工作举措中提及 “培育壮大新增长点” 中,生物制造产业位列其中:生物制造:加快生物制造产业发展顶层设计,加大各类创新资源投入力度,提升产品附加值和市场竞争力。加快非粮原料应用,大力拓展秸秆等大宗农林废弃物原料资源,提升非粮生物质低成本糖化技术工艺水平,促进生物制造可持续发展。支持有条件的地区开展生物基材料、非粮食原料生物能源等产品应用试点,促进优质产品推广应用。加强特色植物原料开发创新,推动活性原料生物制造规模化生产,加大在食品、化妆品等行业的应用。原文链接:https://www.gov.cn/zhengce/zhengceku/202307/content_6895224.htm● 沧州市政府发文支持生物制造产业7 月 21 日,沧州市人民政府办公室印发《河北省支持生物制造产业发展若干措施》鼓励支持生物制造产业,对生物制造产业符合要求的企业予以奖励、补助等举措。《措施》指出要:• 加大招商引资力度,推动企业扩规提质;• 聚焦技术创新,强化成果补助力度;• 强化品牌培育,推动市场应用;• 发挥多方作用,打造良好产业生态;• 聚集发展要素,支持生物制造产业发展;• 强化组织保障,营造产业良好环境。原文链接:https://www.cangzhou.gov.cn/cangzhou/c100570/202307/e4e1accd298b452ba717cc4812feeef5.shtml● 深圳光明区科技创新局:发布13项合成生物产业申请指南8 月 10 日,深圳市光明区科技创新局发布了光明区合成生物产业政策 13 项申请指南,涉及资金扶助、厂房建设、资质认定、研发创新、赛事峰会等多方面的政策。原文链接:http://www.szgm.gov.cn/xxgk/xqgwhxxgkml/gzgg/content/post_10778980.html● 上海市政府常务会议:加快合成生物创新策源、打造高端生物制造产业集群8 月 16 日,上海市委副书记、市长龚正主持召开市政府常务会议,传达学习习近平总书记和李强总理有关防汛救灾工作重要指示批示精神,要求按照市委部署,守牢防汛安全底线;研究加快合成生物、基因治疗创新,推动产业发展等工作;研究推进上海国际航空货运枢纽建设。合成生物学相关:会议原则同意加快合成生物创新策源、打造高端生物制造产业集群,以及促进基因治疗科技创新和产业发展相关行动方案。会议指出,要紧盯科技前沿、强化战略布局,着力打造具有全球影响力的产业高地。要增强优势领域竞争力,强化顶层设计,突出重点靶向攻坚,攻关高精尖关键技术,打造产业发展 “核爆点”。要激发科研主体创新力,统筹科研资源,聚珠成链、拓链成群,大力引进综合性、高层次、领军型人才,建设高水平新型研发机构,培育高增长科技企业,加强源头创新至产业落地的全链条衔接。要提升发展环境软实力,做好前瞻性政策研究,加速产品研发上市和产业化应用,同时完善监管制度规则,构建高质量规范体系。原文链接:https://export.shobserver.com/baijiahao/html/643510.html● 七部委:支持非粮生物基材料产业化8 月 26 日,工业和信息化部、国家发展改革委、财政部、生态环境部、商务部、应急管理部、中华全国供销合作总社等七部门发布《石化化工行业稳增长工作方案》。《方案》提到支持开展非粮生物质生产生物基材料等产业化示范。建设世界级盐湖产业基地,提升钾、锂、硼等资源综合利用效率。鼓励地方结合区域资源、技术、产业优势,打造化工新材料、非粮生物基材料等细分领域中小企业特色产业集群。深入实施产业基础再造工程,聚焦航空航天、电子信息、新能源、节能环保、氢能以及医疗健康等重点产业链需求,支持催化剂、特种聚酯、膜材料等专用化学品、化工新材料及关键单体原料产业化。
  • 中国科学家提出“定量合成生物学”新范式
    近日,中国科学院深圳先进技术研究院研究员刘陈立与中国科学院院士、中国科学院分子植物科学卓越创新中心赵国屏在《自然综述:生物工程》(Nature Reviews Bioengineering)上发表评述文章,提出了开拓“定量合成生物学”这一新范式,将解决合成生物学“理性设计”的瓶颈问题。该文章通过总结三种合成生物学的设计范式,强调建立可定量预测生物系统的数理或AI模型,以推动合成生物学从“反复试错”迈向精准预测,提高生物系统理性设计能力,加速生物制造与生物经济发展。“反复试错”的旧范式亟待新突破合成生物学正成为推动下一代生物制造和生物经济发展的强大引擎。二十多年来,随着DNA合成、基因编辑等技术的不断革新,人们对于合成生物系统的构建能力迅速提升,但设计能力仍然十分有限。由于生物系统的复杂性,即使科学家们已经了解各个生物元件的功能,但将其组合在一起所产生的生物系统,却不一定会表现出预期的功能。据了解,目前大部分合成生物系统的构建主要依靠人工反复试错,这种方法速度慢、效率低,极大地限制了合成生物学的发展。因此,合成生物学目前面临的最大挑战之一,就是如何提高理性设计的能力。要理性设计具备特定功能的合成系统,关键在于深刻理解生物系统功能产生的原理,而这正是当前合成生物学研究极少触及的深层次问题。为此,文章作者呼吁,合成生物学必须向新的高度上升,开启理性设计的新篇章。“定量+合成”,解决“理性设计”难题作者提出,所谓理性设计,就是基于“预测”的设计。当把生物分子、基因、线路组合为合成生物系统时,如果能对其行为进行精确预测,就能预知如何构建系统以获得预期的功能,从而避免反复试错。对此,作者总结出定量合成生物学三种理性设计的范式:一是基于原理的设计。将生物系统抽象为数理模型,揭示生命功能产生的原理,然后根据原理设计合成生物系统。对于较为简单的生物功能,科学家们已经建立了成熟的理论模型,因此合成生物学早期的很多经典工作便是采用这一范式。二是“自下而上”的设计。对于更复杂的生命功能,往往难以建立理论模型。很多研究采用了“自下而上”的方式,通过“碰运气”的方式,尝试将元件用不同方式组装,以期获得生物学功能。在过去的合成生物学研究中,一旦得到有趣或者有用的功能,研究就算成功了。然而,进入定量合成生物学范式,研究才刚刚开始,当得到了具有特定功能的系统,研究者就能利用它来理解背后的原理,从而用来指导设计新的系统。三是人工智能辅助的设计。人工智能算法不需要理解生物系统内部的工作原理,而是基于大数据,寻找元件与功能之间的隐藏规律,从而预测应该如何设计元件以产生特定功能。这一范式依赖于海量的高质量、标准化数据,因此,未来的合成生物学迫切需要自动化、高通量的设备平台和标准化的实验方法。这三种设计范式都强调与定量分析方法的紧密结合,利用数理逻辑与定量关系对生物系统作出定量预测,为合成生物系统的理性设计提供依据。基于此,作者提出“定量合成生物学”作为合成生物学未来的发展方向。定量合成生物学吸纳了定量生物学与系统生物学的思维与方法,通过建立可定量预测生物系统的数理或AI模型,能够有效指导合成生物系统的设计与构建,从而解决“理性设计”这一合成生物学的瓶颈问题。 三种理性设计范式“定量”热潮掀起 推动领域发展当前,生物制造正成为全球新一轮科技革命和产业变革的战略制高点之一,而合成生物学的发展为生物制造提供了最底层的技术支撑。《“十四五”生物经济发展规划》中,明确将生物制造作为生物经济战略性新兴产业发展方向。预计到2035年,合成生物学赋能应用将占全球制造业产出的1/3以上,价值近30万亿美元。尽管我国合成生物产业起步相对较晚,但发展速度惊人,相关合成生物学市场估值已超百亿。“合成生物学产业虽然展现出巨大发展潜力,吸引了资本的关注,但整体发展还处在一个早期阶段。提升理性设计能力是当务之急,也是国际共识。”论文第一作者、深圳先进院罗楠副研究员表示。2017年,深圳先进院设立了定量合成生物学研究中心,在国际上首次提出定量合成生物学这一交叉学科概念,该中心于2020年获批中国科学院定量工程生物学创新交叉团队和重点实验室。2021年,我国召开定量合成生物学香山科学会议。2023年6月,深圳先进院获批建设定量合成生物学重点实验室(中国科学院)。在这个过程中,定量合成生物学这一新方向已逐步获得国际同行的认可和关注。ACS Synthetic Biology、Quantitative Biology、《科学通报》《合成生物学》等国内外学术期刊相继出版“定量合成生物学”专辑;在2024年最新召开的合成生物学国际会议——合成、工程、进化和设计(SEED)会议上,特别设立了“建模和定量合成生物学”专题研讨会;美国杜克大学和意大利TIGEM研究所等国际科研机构也开始布局“定量合成生物学”方向。此次评述文章的发表表明,由我国科学家提出的“定量合成生物学”学科方向已经逐渐成为国际共识,展现出了蓬勃的生命力与广阔的发展前景。刘陈立表示,发展定量合成生物学,将推动合成生物学从定性、描述性、局部性的研究,向定量、理论化和系统化的变革,从而使合成生物学不再仅仅作为一门工程技术性的学科,而是成为推动基础生物科学的重要力量。该研究中,刘陈立研究员和赵国屏院士为共同通讯作者,深圳先进院刘陈立课题组副研究员罗楠为论文第一作者。深圳先进院为该研究的第一单位。
  • 合成生物学的下一个十年:“智能”助推产业化
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大用户及时了解合成生物学的市场概况、解决方案及相关活动,仪器信息网本次特别邀请了上海汉赞迪生命科技有限公司(以下简称“汉赞迪”)谈一谈他们的看法:合成生物学是一门关于设计、改造和重新合成生命的交叉融合性学科。它以工程化理念对生物体进行有目标的设计、改造,使其拥有满足人类需求的生物功能,甚至创造新的“人造生命”。由于生命体的高度复杂性,为达预定目标往往需要进行大量人工试错性实验,导致研究成本高、进展缓慢。自动化合成生物技术的发展结合标准化实验策略,高通量、低成本、多循环地完成“设计-构建-测试-学习(DBTL)”闭环,将有助于大幅度提高合成生物学的研究效率。图1. 合成生物学DBTL工程化研究范式-“筛选,试错,迭代”的研究路径我国合成生物学企业的产业链分布较完整,上、中、下游都已有企业布局。产业链上游企业主要提供合成生物学底层技术。产业链中游企业借鉴国外的模式,通过整合科研院所以及社会各界的学术资源,通过自动化、机器学习以及大量生物数据的汇聚来提高研究的发现、通量和产量,从而构建技术研发平台,为下游企业提供基于合成生物学的解决方案。产业链下游企业专注于产品,在产品生产过程中采用先进的生物工程技术,探索高效的生物合成方法,将合成生物制造应用于生物医药、农业、食品、化工、材料等领域。高通量筛选,特别是超高通量筛选工具箱,对于充分发挥合成生物学定向进化的潜力至关重要。与奥林匹克格言“更高、更快、更强”类似,在速度、灵敏度、范围、广谱和效率等方面,筛选技术仍有很大的进步空间。多学科和跨学科的互补可能会加速方向演变的过程。例如,自动化和模块化集成系统显著降低了劳动力成本并提高了效率。更重要的是,随着人工智能的出现,计算机和实验筛选的结合将使筛选比传统策略“更智能”,是未来十年合成生物发展趋势。图2. 机器学习和自动化以不同的方式改进基本的合成生物学DBTL循环在合成生物学研究中,海量的工程化试错实验所需的样本数量远远超出依赖人工的研究范式能力范畴。传统利用移液器进行手动或者半自动的人工移液操作成为了快速高精度样品处理的瓶颈,难以满足科学研究以及市场的需求。因此,液体处理的全自动化操作代替繁琐的人工劳动,已成为高通量样本处理的趋势。而且通过自动化移液减小环境影响和人为操作误差是进一步提高移液精度、准确度和重复性的一种有效解决方案。自动化移液工作站是精密微量移液技术与工业自动化控制技术相结合的产物,是现代生物技术中完成高通量实验过程的必备工具之一。它是将移液器、机械臂、容器、耗材等组件集成在一个自动化的工作平台上,通过软件控制实现全自动化批量移液处理,以实现高通量移液处理的各种应用需求。相比于手动或半自动移液器,自动化移液工作站大大提高了移液操作的效率和重复性。当前基于多通道移液模块的自动化移液工作站以速度快、精准度高、智能化程度高、容量大、持续工作时间长等特性,得到了全世界相关领域的青睐,成为了高通量移液的主流操作范式。汉赞迪形成了CANTUS系列和NEMO系列两大单机产品系列矩阵,并率先发布了技术难度高且一直为国外品牌垄断的独立8通道液体处理系统-CANTUS FLEX,成为少数成功挑战该关键技术领域的国内企业之一。独立8道在液体工作站领域是一个开发难度极高的产品。独立8道的每个泵头都是由单独的电机独立控制,在Y、Z轴均可独立运动,每个泵头单独吸液排液,并实现不等间距的劈针,实现应用场景的最大包容性,特别适用于合成生物学的复杂移液场景。图3. 汉赞迪核心单机之一:CANTUS FLEX独立8通道液体处理系统在合成生物学全流程整合部分,汉赞迪开发了高通量合成生物学自动化筛选和检测平台,该平台以自动化移液工作站为核心,并整合在线外围设备共同组成。外围设备种类繁多,主要包括存储、传送、仪器三大类。存储类包括耗材堆栈、孵育器、培养箱等;传送类包括直线导轨、直角坐标式机械臂、圆柱坐标式机械臂、关节式机械臂等;仪器类包括离心机、酶标仪、PCR仪、克隆挑选系统、平板涂布系统、洗板机、在线破碎系统等。该平台结合标准化的实验流程,在合成生物学的自动化构建和测试方面具有广泛的应用,提高合成生物学研发的效率、通量和规模。图4. 高通量合成生物学自动化筛选和检测平台目前,合成生物学已进入全球共识、合作与竞争的快速发展时期,欧盟、美国、中国等国家/地区从学科发展、政策制定和战略布局等多维度促进合成生物学发展。中国合成生物学虽起步较晚,但发展迅速,具备产业优势。我国在合成生物学关键核心技术领域论文发表和专利申请数量位居全球第二,尤其是下游应用端已处于领先位置。从产品优势看,与欧美等国家相比,国内发展合成生物学具备制造应用优势与成本优势,不少产品已占据全球原料市场排行榜前列。目前,国内最多的合成生物学企业汇聚长三角、京津冀、粤港澳,不少企业已经发展成为细分领域行业龙头。合成生物学的技术难题不断突破,应用范围持续拓展。预期未来10年将是合成生物研究落地的10年。图5. 汉赞迪生命科学全流程智能化加速合成生物学DBTL循环汉赞迪产品营销高级经理 刘晶晶刘晶晶:安徽农业大学生物化学与分子生物学博士,研究领域涉及基因工程、合成生物学、高通量多组学等方向,相关论文发表于Plant Cell Environ等专业杂志,并获批专利一项。拥有6年生命科学行业产品应用和市场营销相关经验。如有技术干货、科研成果、合成生物学解决方案、市场看法等内容,欢迎投稿,投稿文章将在《聚焦合成生物学研究:先进工具与解决方案》专题展示并在仪器信息网相关渠道推广。投稿邮箱:chensh@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13171925519(同微信)。
  • “聚焦合成生物学新技术新方法”主题约稿函
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物学技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨。合成生物学采用“DBTL”的理念,多领域学科交叉合作。当前合成生物学领域尚处于发展初期,亟需先进的技术解决方案推动合成生物学产业快速发展。为了帮助广大用户了解合成生物学相关最新技术及解决方案,促进学习交流,仪器信息网特别策划《聚焦合成生物学研究:先进工具与解决方案》专题,现向贵单位征集“聚焦合成生物学新技术新方法”主题稿件。采编稿件将收录到《聚焦合成生物学研究:先进工具与解决方案》专题内,并在仪器信息网平台全渠道推送。一、主办单位:仪器信息网二、厂商约稿提纲1. 您如何看待当前合成生物学产业及市场发展现状?2.合成生物学产业将给科学仪器行业带来哪些市场机会?3.贵单位针对合成生物学领域推出了(或将要推出)哪些解决方案?可以应用到哪些环节?解决什么样的痛点?4.如何看待合成生物学的未来发展前景?三、回稿要求您可以根据上述问题进行稿件撰写,也可以由此展开相关话题。1、 约稿主题: 聚焦合成生物学新技术新方法 ;2、稿件字符数不少于800字,如有图片,图片像素应不低于300DPI;3、稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;4、投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明;5、供稿人请提供姓名、单位、个人简介、照片等信息。四、投稿邮箱:chensh@instrument.com.cn五、截至时间:2023年11月22日
  • 首届“合成生物学技术及应用进展”网络会议第一轮通知
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。点击进入报名~~~~~~~~~~会议日程(更新中)~~~~~~~~~~合成生物系统设计及构建(10月10日)上午高效细胞工厂构建及产业应用袁其朋北京化工大学 教授HMOs的生物“智”造以及产业化方诩山东大学 教授赛默飞合成生物学中的高分辨质谱策略郭傲玮赛默飞世尔科技(中国)有限公司 市场拓展经理利用合成生物学方法增加小分子结构多样性罗小舟中国科学院深圳先进技术研究院 研究员下午优化“启动子-RNA聚合酶”以实现目标产物的高产田平芳北京化工大学 教授岛津最新色谱质谱技术在合成生物学中的应用郑嘉岛津企业管理(中国)有限公司 应用工程师人工智能驱动的合成生物制造创新模式胡黔楠中国科学院上海营养与健康研究所 教授基于DNA纳米框架结构的仿病毒分子工具杨洋上海交通大学 教授高通量筛选及检测(10月11日)上午基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究江晶洁中国科学院苏州生物医学工程技术研究所医药酶工程中心 副主任安捷伦高通量自动化流程在合成生物学领域的创新应用黄岱咏安捷伦 Application ScientistHamilton自动化移液工作站在合成生物学领域的应用和卓越技术张岩哈美顿(上海)实验器材有限公司 应用支持专家创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶陈振娅北京理工大学 副研究员下午植物二萜的合成生物学研究王勇中国科学院分子植物科学卓越创新中心 研究员技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化张强贝克曼库尔特 产品专家过程数据驱动下的精准高通量筛选技术郝玉有上海曼森生物科技有限公司 总经理翻译机制启发的氨基酸高产菌株筛选策略马晓焉北京理工大学 副研究员扫码报名~~~~~~~~~~赞助单位~~~~~~~~~~会议链接:https://www.instrument.com.cn/webinar/meetings/syntheticbiology231010.html也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 安捷伦组学技术赋能生物制造,高精技术推动合成生物学发展
    继DNA双螺旋结构、基因组技术后,合成生物学被誉为第三次生物技术革命。麦肯锡预计,到2025年,合成生物学与生物制造的经济价值将达到1000亿美元,未来全球60%的物质生产可通过生物制造方式实现。我国对合成生物产业的发展高度重视,在《“十四五”生物经济发展规划》中,国家明确提出了合成生物学作为关键技术创新领域。除国家层面以外,各省、市也在积极出台合成生物学相关的政策,建设合成生物学研究中心。近期,由南京大学和无锡市政府合作共建的“无锡合成生物学和生物制造研究中心”举行了揭牌仪式,无锡市南京大学锡山应用生物技术研究所(以下简称“南大无锡研究所”)与安捷伦共建的“生物制造与组学技术联合实验室”同步签约落地,仪器信息网受邀参与活动,并在活动现场与南京大学生命科学学院副院长/无锡市南京大学锡山应用生物技术研究所所长董磊、安捷伦助理副总裁/大中华区生物制药业务及华东区整机销售总经理丁皓、安捷伦液质联用系统应用团队经理冉小蓉博士就合成生物学研究及技术进展进行了深入的交流。安捷伦与南大无锡研究所建立联合实验室南大无锡研究所与安捷伦合作共建联合实验室,双方合作的初衷是什么?董磊回答说:“安捷伦作为分析仪器领域的头部企业,其专业性不言而喻,而在生物医药领域,无论是开发过程还是实验过程,分析结果的准确性十分重要。在这方面,我十分认可安捷伦的技术水平,并且与之合作多年。本次与安捷伦共建的联合实验室,不仅可以展示、利用安捷伦最新的质谱技术,还为合成生物学领域研究提供了高水平的技术支持。”董磊说。南京大学生命科学学院副院长/无锡市南京大学锡山应用生物技术研究所所长董磊丁皓表示:“几年前,安捷伦与南京大学郭子建院士团队合作了生物制药技术。通过这次合作,我们发现郭院士特别注重产、学、研的结合,他的科研成果不仅限于发表学术文章,更多在于将科研成果进行产业化。因此,我们想通过建立联合实验室帮助郭院士团队加速科研成果的落地转化。同时,我们期待通过自身技术优势,不仅服务于无锡本地的企业,更期待在整个中国产生更强的影响力。”安捷伦助理副总裁/大中华区生物制药业务及华东区整机销售总经理丁皓据了解,无锡合成生物学和生物制造研究中心是由中国科学院院士、南京大学化学和生物医药创新研究院院长郭子建领衔的产业平台,团队成员共计13人,当前主要研究医用领域的大分子生物制造。据董磊介绍,目前,植入人体的医用材料主要以惰性材料为主,但因为具有准确生物活性的材料在体内整合等方面的性能更佳,因此临床对于活性材料仍有需求。然而,活性生物大分子的结构高度复杂,仅依靠传统的化学方式合成活性生物材料很难,相比之下,合成生物学是一个很好的方式。这也是未来很长一段时间内该研究团队研究的重点。“加之与小分子生物制造相比,生物大分子的前沿性更高、技术产量更大,同时也更能依托南京大学的技术优势。”董磊补充道。合成生物学:真核体系构建难、规模化生产难、“研、产”对接难合成生物学作为近年来在科学界受关注度不断上升的学科领域,在推动生物经济创新、生物医学发展等方面都展现出了巨大潜力,但由于合成生物学尚处于早期发展阶段,合成生物学的发展还面临着许多难点。据董磊描述,难点主要集中在三个方面:“第一,在底盘细胞设计方面,当前合成生物学使用的底盘细胞主要以原核细胞为主,无法合成复杂的生物分子,而这类复杂的生物分子通常需要真核体系,但真核体系尚未完善,实现底盘细胞从原核体系到真核体系的转变仍需进行大量工作。“第二,在规模化生产方面,实现实验室到工业化生产仍存在很多问题,比如生产效率较低,无法形成成本优势等。“第三,在合成生物学与医药行业的深入对接方面,很多生物功能是否可以通过合成生物学的方法真正实现在体内使用?关于这个命题,想做的团队很多,但有突破的很少,因为在基团逻辑的构建方面存在许多细节问题。”“针对上述难点,安捷伦可以在合成生物学‘设计-构建-测量-学习’工程循环的相关环节提供对应的产品及方案,并且不断地迭代、打磨,为产、学、研提供技术赋能。”冉小蓉博士认为,在底盘细胞构建涉及的相关测试中,合成途径的精确分析及底盘筛选的大样本高通量分析是两个比较关键的点。因为,当前底盘细胞的构建实验大部分还属于试错性实验,产生的样本量非常大,因此,合成生物学对于“高通量、自动化”仪器设备需求与其他领域相比显得尤为突出。“对此,安捷伦一直不断加深与用户在高通量、自动化整合方案开发方面的合作、真正帮助客户解决实际问题。同时,安捷伦早期在代谢通路分析、组学技术上的积累也可以很好的用在合成生物学领域,为研究团队在合成途径的设计上提供精确分析和验证,可以加速合成生物学高效底盘的构建。”安捷伦液质联用系统应用团队经理冉小蓉博士合成生物学已成为安捷伦业绩增长最快的领域之一受到美国合成生物学发展的影响,总部在美国西海岸的安捷伦在合成生物学领域也是早有布局。在国内合成生物学的概念尚未火起来、该技术还被普遍称作“生物工程”的时候,安捷伦就已经和上游科研端和客户构建了合作。同时,安捷伦在美国总部设立的大学关系事业部,一直在合成生物学领域致力于深化与学术界的紧密合作。通过思想领袖奖、安捷伦应用和核心技术大学研究项目(ACT-UR)等奖项,帮助安捷伦拓展合成生物学领域,了解合成生物学领域前沿进展与用户的痛点并加深与用户的合作,以此来优化、迭代原有技术,再服务更多的团队。如今合成生物学的热度逐渐上升,国家也在陆续提出“碳中和”、“生物经济”、“新质生产力”等概念,各个领域,尤其是大的科研机构在合成生物学方向的投入越来越大,得益于安捷伦早期在合成生物学领域的布局,安捷伦也贡献到了这些合成生物学大设施平台的建设。丁皓表示:“从整体来看,在四、五年前合成生物学就已经呈现了比较好的增长态势,如今该领域已经成为了我们业绩增长最快的板块之一。与制药、食品、化工、能源等其他行业不同,合成生物学是一个以科研为导向,强调产、学、研结合的行业。因此,得益于早期在头部科研院所、头部企业打下的基础,许多海外归国人才会主动向安捷伦寻求决方案。”深度布局合成生物学:迭代技术,客户为先在谈及安捷伦在合成生物学领域的整体规划时,冉小蓉博士首先从技术层面进行了解答:“首先,针对目前合成生物学领域用户提出的需求和挑战,我们会利用现有的技术方案迅速的响应,提供精准的支持;其次,我们也将持续保持与行业用户的紧密互动、合作,及时了解新需求并迭代新方案,为该领域赋能;最后,随着对整个行业和用户需求了解的不断加深,我们也将凭借跨行业经验为合成生物学实验室提供建议,帮助他们发现并利用尚未充分应用的分析方案,从而提升研发速度和成果转化效率。我们致力于以客户为中心,与合成生物学领域共同进步,推动行业发展。安捷伦作为一家科学仪器厂商,除技术层面外,丁皓还从用户的角度出发提出了一些新的见解。如今,在科学仪器行业,很多领域的用户已经从关注仪器本身转向了关注解决方案,对于用户来说,更想知道的是“我想要做这个,你怎么帮我做?” 因此,安捷伦这几年除了在产品上不断推陈出新以外,还对整个销售和应用团队进行了优化,丁皓表示:“这点很重要。如今,我们更加注重售前、售后人员综合应用能力的培训,或者是技能提升,使售前团队和售后团队到用户现场之后,能够与用户在应用层面展开沟通,而并非只对仪器本身做介绍。另外,安捷伦在与企业的合作中,更加关注合成生物学用户的使用体验,即技术支撑,帮助用户在整个生产制造环节做好前期发现,在检验环节做好产品品控,如今安捷伦的很多设备已经被许多合成生物学制造型企业用在最终的产品放行阶段,例如苹果酸、乳酸、糖类等物质。”对于合成生物学的未来发展,董磊认为生物医药行业是一个非常重要的发展方向,因为现在大多数药物来自于天然产物,产量少,成本高,但如果能通过合成生物学技术获取目标产物并破解发酵难题,药物的成本将大幅下降。并且,医药行业对成本的耐受度与其他行业相比相对较高,这也会在一定程度上促进新兴产业的发展。此外,合成生物学还可以应用到食品、环境等众多行业,可谓无所不包,未来,合成生物学有望成为各个行业的底层技术支撑。
  • 首届合成生物学技术及应用进展网络大会圆满落幕!
    仪器信息网讯 合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。2023年10月10日-11日,仪器信息网主办的“首届合成生物学技术及应用进展”网络会议成功召开!本次大会聚焦合成生物学中、上游技术,共邀请到16位来自科研院所、高校和仪器企业的专家分享了精彩内容。会议共吸引近700位行业从业人员参加,会议期间听众反响热烈。合成生物系统设计及构建(10月10日)高效细胞工厂构建及产业应用袁其朋北京化工大学 教授HMOs的生物“智”造以及产业化方诩山东大学 教授赛默飞合成生物学中的高分辨质谱策略郭傲玮赛默飞世尔科技(中国)有限公司 市场拓展经理利用合成生物学方法增加小分子结构多样性罗小舟中国科学院深圳先进技术研究院 研究员优化“启动子-RNA聚合酶”以实现目标产物的高产田平芳北京化工大学 教授岛津最新色谱质谱技术在合成生物学中的应用郑嘉岛津企业管理(中国)有限公司 应用工程师人工智能驱动的合成生物制造创新模式胡黔楠中国科学院上海营养与健康研究所 教授基于DNA纳米框架结构的仿病毒分子工具杨洋上海交通大学 教授高通量筛选及检测(10月11日)基于单细胞微反应器酶分子改造及应用江晶洁中国科学院苏州生物医学工程技术研究所医药酶工程中心 副主任安捷伦高通量自动化流程在合成生物学领域的创新应用黄岱咏安捷伦 Application ScientistHamilton自动化移液工作站在合成生物学领域的应用和卓越技术张岩哈美顿(上海)实验器材有限公司 应用支持专家创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶陈振娅北京理工大学副研究员植物二萜的合成生物学研究王勇中国科学院分子植物科学卓越创新中心 研究员技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化张强贝克曼库尔特 产品专家过程数据驱动下的精准高通量筛选技术郝玉有上海曼森生物科技有限公司 总经理翻译机制启发的氨基酸高产菌株筛选策略马晓焉北京理工大学 副研究员
  • "合成生物学"等五大领域将成为未来产业创新前沿
    近日,由中国科学技术信息研究所、上海市科学学研究所联合编撰的《未来产业创新的前沿领域》在浦江创新论坛成果发布会上正式发布。报告从政府关注重点、产业发展前景、对经济社会的全局带动和重大引领作用等方面,遴选出未来产业创新的五大前沿领域——类脑芯片、量子信息、合成生物学、绿色制氢和区块链。新一轮科技革命和产业加速变革,新的颠覆性技术不断涌现,未来产业成为重塑全球创新版图和经济格局的重要领域。该报告基于对各国和地区科技政策与研发投入、论文与专利、专家观点与学术会议资料等科技信息的多维度分析,探讨了五大前沿领域的发展态势、区域研发优势、技术研发方向和面临的挑战。报告研判了中国在五大前沿领域的全球技术定位,并就未来产业的发展提出了策略建议。同时,报告还分析了上海在上述领域的研发基础,并为上海更好推进未来产业发展提出了发展策略。其中,被评为五大前沿领域之一的“合成生物学”是生物科学新出现的一个分支学科,是基于系统生物学的遗传工程和工程方法的人工生物系统研究。报告指出,在合成生物学领域研究中,美国属于第一梯队,中国、日本、英国属于第二梯队。从全球来看,合成生物学的研究已形成比较固定的学术合作圈,在科技创新合作中地缘关系影响较大。中国科学技术信息研究所副所长刘琦岩介绍道,合成生物学的发展还处于早期阶段,需要政策持续支持。目前整个行业的发展仍缺乏中长期、明确的发展规划。细分来看,上游工具层是合成生物学技术体系的基础和关键,竞争壁垒较高,中游的数字化、人工智能化对于实现对生命系统的理性设计至关重要,技术创新难度均较大。解决规模化生产难题是合成生物学的产品实现商业化的必由之路。此外,合成生物学研究需要生命科学、工程学、信息学、物理和化学等学科融合交叉。但合成生物学的不确定性与不可控性的本质特征决定了它在带给人类变革性受益前景的同时,也存在诸多伦理争议如用于人类增强目的的“定制婴儿”,以及生物安全隐患。在刘琦岩看来,为了有效防范风险,全球各国政府应达成共识,更加关注合成生物学带来的生物安全隐患,共同建立一套针对合成生物学的生物安保风险的强效、可执行的监管办法。比如,按照风险的紧急和危害程度拟定评估框架,相关机构采取灵活的生物和化学防御战略,加强公共卫生基础设施建设以充分预防潜在的生物攻击。对于任何合成生物的研究必须满足规定的安全要求和遵守严格的安全程序。建立标准化合成生物元件库并实施严格管控,按生物元件功能,进行生物元件的安全性评级,对于具有安全风险的元件进行标签设计并限制其信息公开。"合成生物学技术及应用进展"网络会议开讲啦!2023年10月10-11日,由仪器信息网举办的第一届合成生物学技术及应用进展网络会议将在线开播,合成生物学专家,合成生物学技术应用专家,前沿科学研究PI等众多嘉宾将在3i讲堂分享精彩报告。立即报名》》》详细日程:https://www.instrument.com.cn/webinar/meetings/syntheticbiology231010.html扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议联系会议内容及报告赞助仪器信息网 陈编辑:13171925519,chensh@instrument.com.cn
  • 合成生物学是一座金矿,2022年该如何挖掘?
    全球合成生物学市场近年来呈高速增长态势,在 COVID-19 疫苗市场的影响下,上一年度全球合成生物学市场总规模突破 700 亿美元,同时该年度全球合成生物学方向总共获得近 180 亿美元投资,创历年最佳。2022 年新年伊始,市场对合成基因和合成细胞的需求继续增加,企业开始加速扩大其战略布局,而资本市场目前表现得对生物医药和食品领域更加青睐。科学研究方面:新的一年,合成生物学领域的科研势头十分强劲,全球多家科研机构纷纷在各类顶尖刊物上发表了一系列最新研究进展。图1:2022年初合成生物学领域最新科研进展企业战略方面:近日,Moderna 继公布打算在英国建造制造中心的计划几天后,宣布在马来西亚、新加坡、中国香港和中国台湾增设 4 家新的子公司,以扩大其 COVID-19 疫苗及未来其他 mRNA 疫苗的制造和分销规模,进一步拓展其全球布局。Moderna 在公告中指出,亚太地区是其总体业务战略的重要组成部分。该公司已经在日本和韩国设有办事处,且最近还达成了一项在澳大利亚开办制造工厂的协议。随着亚洲四家子公司的增加,Moderna 期待寻找新的机会,利用其 mRNA 平台帮助解决亚洲面临的健康挑战。资本市场方面:根据 CB Insights 数据库来源,截至2022年2月17日,本年初全球合成生物学初创公司累计获得投资近 10 亿美元,与 2021 年第四季度 28 亿美元单月换算相比,略有下降。融资事件达到 21 笔,平均每笔约 4300 万美元,仍处于正常波动范围。其中,A轮次融资事件占比14%,B轮次和C轮次融资事件数各占比33%,其余轮次占比20%。图2:2022年初合成生物学领域部分融资事件2022年初,合成生物学融资以生物医药为主。目前排名前 10 位的融资事件分别是:Metagenomi、蓝晶微生物、Kyverna Therapeutics、引航生物、Endless West、Cure Genetics、微构工场、DNA Script、熙宁生物、Ribbon Biolabs。其中,拥有下一代多功能基因编辑工具的组合基因药物公司 Metagenomi 完成了 1.75 亿美元的 B 轮融资,融资所得将用于推动 Metagenomi 领先的体内和体外基因编辑治疗项目;蓝晶微生物(Bluepha)完成 B3 轮融资,一年内蓝晶微生物 B 轮融资总额已达 15 亿元人民币;引航生物则跨年度连续完成 C 轮、C+ 轮超 4 亿元人民币融资。此外,还有诸如艾码生物、昌进生物、西湖欧米等生物技术公司相继完成了天使轮或Pre-A轮融资。图3:2022年初合成生物学领域融资TOP10从 2022 年年初合成生物学各应用行业的数据来看,不同于 2021 年第四季度 “食品营养” 领先其他行业的格局,2022 年年初“生物医药” 达 8 亿美元,遥遥领先于其他所有行业。而“食品营养”领域只有美国分子烈酒品牌 Endless West 一家企业上榜。图4:2022年初合成生物学应用行业分析在新年初筹集的近10 亿美元中,几乎全部集中于生物医药领域,总融资额占比超过90%,其中药物开发约占两成。但合成生物技术并不局限于医疗领域,在化工、材料、食品等方面也有大量应用,相信今年后续也一定会出现更多其他应用行业的投融资动态。总体来看,合成生物学2022年的发展动向:一方面技术研发势头强劲,另一方面企业也在加大全球布局,而资本市场目前主要还是看好「医药」「食品」两大类别。合成生物学是一座金矿,有无比巨大的潜力等待着市场挖掘。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制