当前位置: 仪器信息网 > 行业主题 > >

高性能电池

仪器信息网高性能电池专题为您整合高性能电池相关的最新文章,在高性能电池专题,您不仅可以免费浏览高性能电池的资讯, 同时您还可以浏览高性能电池的相关资料、解决方案,参与社区高性能电池话题讨论。

高性能电池相关的论坛

  • 【讨论】电池的前途!

    我以前在电池厂工作过,对电池多少了解一些,我觉得随着环保意识和要求的加强,普通锌锰干电池的市场会逐渐萎缩,甚至完全被新式电池所取代。高性能,低污染的新式电池有很好的发展潜力,锂离子电池,镍氢电池燃烧电池等市场前景广阔!不知大家如何看呢?一起讨论一下啊!说说你的高见!

  • 【原创大赛】温度对锂离子电池性能的影响

    【原创大赛】温度对锂离子电池性能的影响

    温度对锂离子电池性能的影响一 实验设备及方法1.1 实验设备表1-1 实验仪器和设备http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669046_3137340_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910172496_01_3137340_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910181286_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910181791_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910182313_01_3137340_3.png 高低温交变湿热试验箱(湿热试验箱):高低温交变湿热试验箱可以设定一定的温度和湿度进行研究样品的性能,也可以研究按设定好的程序进行不同温度和湿度的改变下样品的性能,还可以设定温度变化范围,用以检测一定温度范围内样品的性能。它还能够按照设定定时开关机,并且高低温交变湿热试验箱还有记忆数据的功能,记忆时间能够长达6个月以上,另外还具有保持、跳段、待机以及两组时间信号同时输出的功能。 电池测试系统:电池测试系统是研究电池的重要仪器,它可以用以测试电池的电流、容量、电压、内阻、充放电效率、温度以及循环寿命等性能。它可以同时测试多组电池,这使它的测试效率大大提高。 真空干燥箱:真空干燥箱广泛用于医药、食品、轻工、化工、农业科研、环境保护等实验领域作粉末干燥,烘焙以及各类玻璃容器的消毒和灭菌之用。真空干燥箱具有干燥物品速度快、污染小、不对被干燥物品的内在质量造成破坏的优点。真空干燥箱专为干燥热敏性、易分解、易氧化物质而设计,能够向内部充入惰性气体,特别是一些成分复杂的物品也能进行快速干燥。1.2 实验操作方法样品:钴酸锂锂离子电池(φ6.8mm,容量约120~150mAh,电压3.0~4.2V)参数设定:充电电流-----0.15A 充电截止电压-----4.2V放电电流-----0.15A 放电截止电压-----3.0V 先将样品电池接入电池测试系统,然后使其放在在设定温度状态下的真空干燥或箱高低温交变湿热试验箱中,最后按照一定程序进行充放电循环。首先对电池以0.15A进行恒流充电,当电压达到4.2V时,保持电压恒定进行恒压充电,充电电流会随着时间不断变小,当充电电流为0.01A我们认为充电过程完成;然后将电池搁置一分钟,接着以0.15A的恒定电流放电,这时电池电压会不断减小,当电压小于3V时我们认为放电过程完成。下图1.5为充放循环曲线.http://ng1.17img.cn/bbsfiles/images/2017/10/2016082910194943_01_3137340_3.png二 结果与讨论2.1 不同温度下电池的容量和内阻 将电池放入真空干燥或箱高低温交变湿热试验箱中进行充放电循环,循环次数为5次,计算其平均容量(图2.1)和内阻(图2.2)。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291020_607203_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608291020_607204_2984502_3.png 由图2.1可以看出,在温度低于25℃时,电池容量随温度的升高逐渐增大,在高于25℃时,电池容量随温度的升高逐渐减小,但电池在低于25℃时容量的变化更快。由图2.2可以看出,在-20℃到60℃温度范围内,电池的内阻随温度的升高而逐渐降低。产生这个现象的原因是由于在高低温条件下,一方面是电池的电极材料及结构发生了部分不可逆的变化,一方面是电解液中的锂离子浓度及传导性发生了的变化。在低于25℃时,锂离子的迁移速率随温度的降低迅速下降,从而使电池的内阻迅速增加,再加上电极材料及结构部分不可逆的变化,并且电解液中的锂离子浓度下降,导致电池低温时的容量迅速下降。在高于25℃时,锂离子的迁移速率随温度的升高迅速上升,从而使电池的内阻下降,但由于电极材料及结构发生了部分不可逆的变化,并且由于温度的升高使电池负极和电解液的反应加速生成SEI膜,进一步消耗了电池中的锂离子,综合影响下,电池的容量下降,但没有低温时下降的那么快。2.2 不同温度下电池的循环 在室温下,将电池接入电池测试系统,按上述步骤设定循环次数为200次,进行充放电循环,得到如下图2.3电池的容量衰减。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291021_607205_2984502_3.png 当电池循环到200次时,其放电容量为124mAh,约为初始容量138mAh的89.86%。 将电池接入电池测试系统,然后放入真空干燥箱,设定温度为60℃,待干燥箱温度稳定后,按上述步骤设定循环次数为200次,进行充放电循环,得到如下图2.4电池的容量衰减。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291022_607206_2984502_3.png 当电池循环到第75次时,其放电容量为101mAh,约为初始容量126mAh的80%,达到了其寿命。 将电池接入电池测试系统,然后放入高低温交变湿热试验箱,设定温度为-20℃,待高低温交变湿热试验箱温度稳定后,按上述步骤设定循环次数为200次,进行充放电循环,得到如图2.5电池的容量衰减。 当电池循环到第55次时,其放电容量为57mAh,约为初始容量71.1mAh的80%,达到了其寿命。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291023_607207_2984502_3.png 由图2.6可知,电池的内阻随循环次数的增加持续增加。 综上所述,温度对锂离子电池寿命的影响很大。在室温下电池循环200次后,容量依然可以达到初始容量的89.86%,而电池在高温下循环75次后,容量便降到了初始容量的80%;在低温时容量的下降速度更快,循环55次后容量便降到了初始容量的80%。 上述结果表明,温度对锂离子电池性能的影响很大。高低温下电池循环性能的影响因素主要有电极材料及结构和Lihttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif的传输性发生了部分不可逆的变化、电池内阻随循环次数的增加持续增大。另外电解液低温时导电性能的迅速下降,引起电池内阻的迅速增加,导致电池在低温时的输出性能变差,高温下电池正极和电解液的反应加速生成更多的SEI膜,使电池中的锂离子含量下降,导致电池循环性能变差。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291023_607209_2984502_3.png由图可以看出电池在不同温度下的充放电效率都很高,基本上都接近于1。[/colo

  • Bi2S3@ CNT:一种高性能的电化学储锂材料

    Bi2S3@ CNT:一种高性能的电化学储锂材料

    [color=#333333]锂离子电池具有高能量密度、长循环寿命和宽工作温度区间等性能优势,因此在众多储能器件中占有重要位置。近年来,为了提高锂离子电池的能量密度,研究者们开发了一系列的基于转换反应和合金化反应的高容量负极材料。其中,层状结构的硫化铋(Bi[sub]2[/sub]S[sub]3[/sub])是一种潜在的高性能储锂材料。硫化铋具有625 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]和4250 mAh cm[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]3[/color][/sup][color=#333333]的理论容量,比石墨高出70%和420%,而且由于Bi、S之间的化学键比较弱,因此材料的储锂可逆性比较高。然而,由于本身晶格、电子结构和电学性能的限制,硫化铋在储锂循环稳定性和倍率性能方面还远不能满足实用的需求。[/color][color=#333333]为了解决这一问题,苏州大学物理与光电能源学部的倪江锋博士与合作者发展了一种与纳米碳材料强耦合的技术,来制备高性能的硫化铋复合电极材料。他们在功能化的碳纳米管(CNT)表面负载硫代乙酰胺(TAA),然后加入硝酸铋溶液;通过控制 TAA的水解来调控Bi[sub]2[/sub]S[sub]3[/sub]在CNT表面的存在形式和沉积厚度。Raman光谱和X射线吸收近边结构(XANES)证明Bi[sub]2[/sub]S[sub]3[/sub]和CNT存在着电荷转移(耦合作用)。复合的Bi[sub]2[/sub]S[sub]3[/sub]@CNT材料的表现出优异的储锂稳定性和强劲的倍率性能。在0.2 A g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的电流密度下经过100次循环, Bi[sub]2[/sub]S[sub]3[/sub]@ CNT材料保持了494 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量,而单独的Bi[sub]2[/sub]S[sub]3[/sub]材料只保持了129 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]。在2 和5 A g[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的倍率下,该杂化材料仍然具有429和376 mAh g[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量。更为重要的是,当测试电流密度降低时,高于500mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量仍然可以恢复。他们进一步通过循环伏安和电化学阻抗谱分析了材料的高倍率性能的原因,发现其储锂行为类似于一个赝电容。显然这种赝电容的行为与高导电的CNT与Bi[sub]2[/sub]S[sub]3[/sub]之间的强耦合作用是分不开的。该研究工作为硫化物和相关储锂材料的进一步发展提供了一条可行的思路。相关结果发表在[/color]Advanced Energy Materials[color=#333333]杂志上。[/color][color=#333333]全国纳米技术标准化技术委员会低维纳米结构与性能工作组的专家介绍,层状结构的硫化铋(Bi2S3)是一种潜在的高性能储锂材料。CNT与Bi2S3这些材料的结合,是一种很好的探索思路。[/color][color=#2B2B2B]据低维材料在线91cailiao.cn的技术工程师Ronnie介[/color][color=#333333]绍,他们提供的硫化铋Bi2S3材料具有环境友好、光电导和非线性光学响应等优点,广泛应用于太阳能电池、光电二级管阵列以及红外光谱学等,也可以应用于制其它铋合物、易切削钢添加剂、微电子工业。[/color][img=,690,627]http://ng1.17img.cn/bbsfiles/images/2017/07/201707251452_01_2047_3.png[/img]

  • 【求助】请教如何使用极化曲线法测量电池的性能

    【求助】请教如何使用极化曲线法测量电池的性能

    请教:燃料电池的开路电压太低了,只有0.2V该怎么去提高这个开路电压呢?测试燃料电池性能,如何得到E-I极化曲线?文章中的这个图是用CHI中的LSV方法测得的图呢还是用手动绘制的呢?[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904220936_145956_1753903_3.jpg[/img]

  • 新能源电池包综合性能测试系统压缩机安全保护说明

    新能源电池包综合性能测试系统中每个配件都是比较重要的,其中,压缩机是比较主要的配件,一般在选择新能源电池包综合性能测试系统压缩机的时候,需要注意其安全保护,这一点也是很重要的。  一般新能源电池包综合性能测试系统的过载保护器都具有启动和运行2个方面的保护功能。当压缩机启动时,由于机械故障使转子轧煞,电流迅速上升,当电流超过启动电流额定值时,保护器接点跳开,切断电流,避免了电动机启动绕组的烧毁。在压缩机正常运行时,由于外界原因造成温升过高或电流允许值时,保护器接点也会跳开,切断电源,避免了电动机运行绕组的烧毁。  过载保护器是新能源电池包综合性能测试系统压缩机电动机的过电流和过热保护,过载保护器的外壳与压缩机壳体表面紧贴,用于单相压缩机电动机时,保护器应串接在全电流通过的共用线上;用于三相压缩机电动机时,保护器应串接在三相线中的两条线路上。内部保护器是用于新能源电池包综合性能测试系统压缩机电动机上,串接在压缩机内部电动机的绕组共同线上,对压缩机电动机进行过电流保护。  热继电器新能源电池包综合性能测试系统三相压缩机电动机的线路过电流保护,其两组线圈串接在三相线路中的两相上。当过载电流流过时并达到一定的时间后,其保护开关断开。反相防止器用于新能源电池包综合性能测试系统三相旋转式压缩机电动机,保护三相供电电源的相序,以防止压缩机旋转方向反相。此外,还具有缺相保护功能。  新能源电池包综合性能测试系统的压缩机保护是由各个保护装置一起保护的,所以一定需要向可靠厂家进行购买。

  • 【投票】环保电池——你会选择购买吗?(投票进行中....)

    【投票】环保电池——你会选择购买吗?(投票进行中....)

    电池,实验室里不可缺少的东西,很多便携式的仪器都需要电池(如声级计、 便携式pH计、照度计等)。选择环保电池可以防止汞镉污染,但环保电池价格相对较高。 日常使用的电池有大量的重金属污染物——镉、汞、锰等。废弃在自然界时,这些有毒物质便慢慢从电池中溢出,进入土壤或水源,再通过农作物进入人的食物链进入人的食物链。这些有毒物质在人体内会长期积蓄难以排除,损害神经系统、造血功能、肾脏和骨骼,有的还能致癌。 环保电池,是指近年来已投入使用或正在研制、开发的一类高性能、无污染电池。目前已经大量使用的金属氢化物镍蓄电池、锂离子蓄电池和正在推广使用的无汞碱性锌锰原电池和可充电电池以及正在研制、开发的锂或锂离子塑料蓄电池和燃料电池等都属于这一范畴。此外,目前已广泛应用并利用太阳能进行光电转换的太阳电池(又称光伏发电),也可列入这一范畴。 环保电池通常价格昂贵,作为采购人员的你,会优先选择采购环保电池么?http://ng1.17img.cn/bbsfiles/images/2010/10/201010191604_252231_1617423_3.jpg

  • 新能源电池包综合性能测试中压缩机说明

    新能源电池包综合性能测试性能好坏是离不开各个部件的支持,其中,压缩机作为无锡冠亚新能源电池包综合性能测试的主要配件,一旦发生故障的话,就需要及时解决。  新能源电池包综合性能测试压缩机失去工作能力的判断,是指压缩机能正常运转,但已失去吸、排气的功能。先将压缩机加液工艺管用剪刀剪断,如有大量R22喷出,可以判断不是由于泄漏制冷剂不制冷。这时,可将压缩机吸、排气管用焊枪熔脱,取下压缩机,单独启动压缩机,待压缩机运转后,用手感试压缩机的吸、排气压力。应先试吸气口有无吸气,然后,试排气口有无排气,用手堵住排气口,如感到压力不是很大,甚至没有排气,则可认为压缩机失去工作能力。因为在正常工作时,压缩机排气口用手指是堵不住的。  新能源电池包综合性能测试压缩机电动机为何电流过大?这是指压缩机匝间短路,但又未达到烧断保险丝的程度。压缩机的磨擦破坏了磨擦表面的光洁度,致使压缩机的功率和电流增大,但尚未达到抱轴或卡缸使压缩机不能转动的程度。可以用万用表检查压缩机电动机的对地绝缘电阻,正常情况下如显著变小或接近于零时,说明已短路。如对地绝缘电阻正常,查启动和运行绕组的电阻值。如匝间短路,则运行电流增大。  如何排除新能源电池包综合性能测试三相压缩机电动机在运转中速度变慢、一相保险丝熔断、一相电流增大的故障,这是由于压缩机电动机绕组有一相碰壳通地造成的。拆下接地线后,可用试电笔测机壳是否带电。如机壳带电,再将电源插头拔下,用手摸压缩机机壳,在机壳局部应有发烫感觉。请重绕压缩机电动机绕组或更换压缩机。如何排除新能源电池包综合性能测试三相压缩机电动机在运行中发出吭吭声,三相压缩机电动机在运行中发出吭吭,是由于三相严重不平衡产生的,肯定有一相电源缺相。请用万用表电压档进行检查,恢复三相即可。  新能源电池包综合性能测试的故障是可能导致整个新能源电池包综合性能测试不能有效运行,所以,以上这些故障我们都需要尽量避免。

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 什么是仪器的高性能?

    厂商总是宣传自己的仪器是什么什么高性能仪器,那应该怎样去理解所谓的高性能呢?什么是仪器的高性能?

  • 半固体流"电池相当给力,储电量巨大

    全球面临能源危机的威胁,很多国家盯上了电动汽车,而电动汽车的关键是电池技术。令人欣慰的是,目前世界上很多知名的实验室都在研发高性能电池,这与9伏电池夹的应用也是有很大关系的,现在人们最关注的是一种“半固体流”电池。使用这种电池就像带着油箱一样,它将能量输送与能源存储分开,储电量是以前版本的30倍。据一些公司研究显示,2011年中国国内智能手机市场有望取得创纪录的增长,预计出货量增长53%,从去年的3500万部上升到5410万部。其中,超过1000万部智能手机将来自中兴通讯和华为。预计未来几年中国国内智能手机总体出货量将继续增长。IHS公司预测,2015年中国厂商的智能手机出货量将达到1.11亿部,其中不包括走私到中国的苹果iphone和销往中国的HTC手机2010年这两类手机约为700万部。 在中国白牌和灰市智能手机市场,2011年中国本土供应商将主要专注于基于Android操作系统的EDGE2012年开始也重视3G平板电脑、香蕉插座等其它消费电子领域寻找更好的机会。 诸多因素导致中国灰市智能手机出货量下降。另外,新兴市场中的厂商向自身所在市场供应手机,夺走了灰市手机供应商的份额。土豆:感谢分享知识,拒绝链接广告。

  • 【原创大赛】便携式气质电池的性能检验

    【原创大赛】便携式气质电池的性能检验

    英福康公司HAPSITE便携式[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url],用于应急监测。因为监测任务量不大,仪器平时基本就是半月开机一次,运行一下survey和GCMS方法,然后关机。仪器自带了两块便携式镍氢电池(NiMH),可以为仪器提供2-3小时的使用时间。按照培训工程师的要求,电池每两个月需要充放电一次,因此会交替使用电池启动机器和运行方法,待电量耗尽后,用充电器充满后放置。 3月份,因为有事请了长假,所以假前便把两块电池充满电后放在实验室,假期回来后按了电池上面的TEST键检查电量,发现两个电池的剩余电量有较大的差别,想想自己之前的维护保养也是按照工程师的吩咐做的,应该不会损伤电池,查看了电池的生产批次,也是同批次的(1017),质量差别不应该这么大。[align=center][img=,690,398]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030856042991_3003_2478053_3.png!w690x398.jpg[/img][/align][align=center][img=,690,382]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030854577987_3371_2478053_3.jpg!w690x382.jpg[/img][img=,690,363]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030854596747_5297_2478053_3.jpg!w690x363.jpg[/img][/align] 电话工程师,有可能是电池上的电量测试电路不准确,建议用仪器查看余电,用仪器查看后发现电池自带的测试电路没问题,显示是准确的。再次确认一遍损耗,将两块电池用充电器充满电,仪器接市电启动好后放入电池查看电量情况,确认都是100%后拔出放置,每隔一周用仪器查看一次剩余电量,检查结果如下。日期 显示电量 亏电量 1# 2# 1# 2#2019-4-15 100% 100% —— ——2019-4-22 第一周 90% 72% 10% 28%2019-4-29 第二周 81% 47% 9% 25%2019-5-5 第三周 74% 28% 7% 19% 合计 —— —— 26% 72%1#电池的测试结果[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030941295286_2664_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030940473694_5652_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030941565126_6783_2478053_3.jpg!w690x517.jpg[/img]2#电池测试结果[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030944354762_5155_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030945022666_5120_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030945241551_79_2478053_3.jpg!w690x517.jpg[/img] 如此看来,2# 电池自身的损耗量确实比1#大很多,约是1#的2.8倍,再电话工程师反映,工程师建议以实际的使用时长来检验电池性能是不是真的下降了,将电池放入用市电稳定好的仪器待机,测试结果如下。时间 1# 2# 消耗量2019-5-8 14:33 100% 17:04 32% 68%2019-5-9 9:20 99% 11:53 31% 68% [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030946342201_5843_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907030947045216_6966_2478053_3.jpg!w690x517.jpg[/img] 待机测试过程中还各运行了一次survey和GCMS方法,从结果看,两块电池在仪器上的实际表现基本无差别,2.5小时的待机过程均消耗了68%的电量,那就是说两块电池的性能是一样的。之前的现象怎么解释呢?电池自身也是有内阻,在长期放置的过程中自身也在消耗电量,而每块电池的内阻又存在差别,也就导致了亏电量的不同。[b][color=#3333ff] 在使用中有一点是需要特别注意的,装卸电池的操作:因为电池电量测试电路布置在其表面,日常安装电池时用双手大拇指按住电池对角线的两个角(第一幅图中黑色圈),不要按电池表面的其他部位,避免损坏电量测试电路。[/color][/b]

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 【转帖】前景广阔的锂离子二次电池

    锂二次电池是本世纪90年代新发展起来的绿色能源。也是我国能源领域重点支持的高新技术产业,以其高可逆容量、高电压、高循环性能和高能量密度等优异性能而备受世人青睐,被称为20世纪的主导电源,其应用领域不断扩大,目前已由3C市场(Consullle,COpe。d Communicabo扩大至4THC CORDLESST00LS,无绳工具)市场。迅速对电池市场发起冲击,大有独瞩天下之势,产值也多达30多亿美元。因此,作为键二次电池负极材料的中间相沥青炭微球(Mesocalbon Micmbeads.MC皿B)必将随着理二次电池业的兴旺而更具光明的前景。  所谓中间相沥青炭微球,就是沥青类有机化合物经液相热缩聚反应形成的一种微米级的各向异性球状炭物质,具有密度高、强度大、表面光滑和结构上呈层状有序排列等特点.是银离子二次电池鱼极的首选材料。  另外,这种中间相炭微球由于其自身烧结性,因而可不加任何填料而直接制造高密高强的各向同性炭块,其力学性能、抗摩擦性能及各向异性指标均优于普通炭块;同时可将多种有机官能团引人球体表面而作为离子交换或高效液相色谱往的填充材料;还有炭微球经过适当的活化处理后,可容易地制得比表面积达协4000M/&的超级活性炭材料(其比表面积和吸附能力远远超过现有任何活性炭物质,如活性炭纤维和球状活性炭等),而且这种活性炭材料具有某些分子筛的性质(发达的微孔结构),既具有可控制的粒径分布,又具有高孔隙体积和高吸附容量,不但可以作为催化剂的载体材料及高级吸附材料,而且还可在临床医学上用作血液过的剂及天然气汽车的储藏甲烷材料等,应用领域极为广阔。  尽管日本已于80年代末就实现了中间相沥青炭微球的产业化生产,但仍存在着收率低、球形度差、制备工艺复杂等缺陷,尤其是目前将中间相沥青炭微球作为理二次电池电极材料使用时,都要进行2800℃石墨化处理,这无疑大大提高了中间相沥青 炭微球的制备成本,极不利于广泛的使用。因此,如何改进工艺、降低制造成本和提高性能,成了当今中间相沥青炭微球研究的主要发展趋势。  针对目前国内外中间相沥青炭微球制备中普遍存在的问题,北京化工大学以独到的、具有创仍胜的技术,以精制石油渣 油为原料合成及它集提取工艺获得的球形度好、收率高达22—45%)的中间相沥青炭微球,后经低温炭化(600-1000℃)和表 面改性处理,得到适于睡离子二次电池使用的负极材料,其出电 容量可达到300-400MAH/&吨,首次循环效率高达90—95%以上, 优于国外石墨化产品性能,低温炭化及表面改性方法处于国内外领先地位。日前已通过国家石油和化学工业局的技术鉴定,形成了自己的独立知识产权,为理离子二次电池应用中间相沥青炭微球在我国的大规模廉价生产奠定了良好的技术基础。

  • 高性能空心阴极灯的使用

    普通空心阴极灯(2电极)作为[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的光源,虽优于其他光源,但存在发射强度较弱和存在“自吸变宽”的缺点,国际上曾有一些试图改善空心阴极灯性能的尝试。 1.高强度空心阴极灯(Walsh) 辅助电流用电子管采用的:“氧化物热阴极”由交流低电压产生热,同时施加较高电压,所产生的电子流激发主阴极口外[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的原子,增加发射强度,也提高灵敏度,邻近的离子线减弱或消失,工作曲线线性范围扩大。 典型元素Ni灯 由于供电复杂(空心阴极,灯丝,辅助电流三组),灯壳结构也较难加工,在商品仪器中几乎从未采用过。 2.ΦOTO(澳大利亚)高强度灯 主阴极为管状(无底),辅助电流仍由“热阴极”供给,加适当屏蔽使辅电流从主阴极中穿过,使溅射产生的原子受到二次激发。曾有20多种这种灯投入市场,但已多年不见。缺点:灯壳发热大(温度较高也不利于主阴极发射) 3.高性能空心阴极灯(三电极)。 (第一发明人吴廷照,职务发明,中国、美国专利)不同于ΦOtO灯。辅助电流由“冷阴极”供给(另一只空心阴极),阳极公用,共有三电极加适当屏蔽, 使辅阴极电流只经过主阴极腔内到达阳极。特点(与普通灯相比): ① 发射强度大; ②测定灵敏度高; 检出限较低; ③稳定性较好; ④邻近线光谱干扰消失,可以使用较大光谱通带(进一步提高能量); ⑤使用寿命长。 ⑥铅和锡可以使用较弱的灵敏线217.00nm(普通灯只宜使用发射较强的次灵敏线) ⑦工作曲线线性范围扩大。 基本特点是:自吸小;激发能量较低,主要激发原子线,不是以激发离子线,其他特点都是由此衍生。 不是所有元素都有高性能灯,碱金属和高温元素,稀土金属没有,强度提高愈大,高性能特点愈强。(主要是前三项)。现有20余种元素高性能灯。 应用户要求,试制一些未列入高性能灯的元素灯,也有特点,列如铁灯,强度只提高一倍多,但稳定性改善,普通铜灯发射已经很强,但用高性能铜灯稳定性更好,钙灯也改善稳定性(强度只提高一倍)。 典型元素 1.砷—强度提高约5倍(不算光谱通带增加提高的强度,可以使用2nm通带而灵敏度下降很小)2.硒—为了得到足够能量,普通灯不得不加大电流,而大电流产生的热可使硒升华,此时稳定性变坏,高性能灯无此缺点,可以用较小电流。砷与硒,PE公司使用费用很高的高频灯,都可用高性能灯代替。3.镍—高性能灯没有与测定线232.0nm邻近的231.6线所产生的光谱干扰,可以使用较大通常宽度,线性范围扩大。对AAS测定,只要有高性能灯的元素就不宜用普通灯。特殊的汞“普通”二电极灯(发明人吴廷照) 它不是普通二电极灯,也不是高性能灯,但发射强度却是所有元素灯中最强的,它是从灯中心的阳极采光(阴极在侧位)而且这个阳极靠近光窗(减小“自吸”),这是利用汞在室温下已有一定的蒸汽压,在阳极附近[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中已有足够的汞原子,这是能从阳极采光的唯一元素,这也是原子荧光法测汞有远强于其他元素的荧光强度,可使测定达到PPT级。高性能灯的供电 仍由主机供电,但占用2个灯位,高性能灯的灯头与普通灯相同,也使用“大8脚”管头。主阴极接1号脚,阳极接3号脚,不同的是灯的辅助阴极的接线从灯头开孔引出接另一个灯头(只有插头,没有灯)的5号脚,高性能灯直接插主机A灯灯座,外接的灯头插B灯灯座。这种接线方法对主机旋转式或水平拉动的灯架都适用。 PE公司的灯使用小9脚插头插座,也是将辅阴极接线引出接另一插头,连在灯上的小9脚插头插A灯插座,外接插头插B灯插座。瀚时制作所生产CAAM-2001型多功能[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],带有3电极高性能灯插座,不但使用方便也改善一些元素的分析性能。 使用方法 先选定高性能灯主阴极的灯电流(如砷灯用5-7mA,铅灯用4-6mA,暂不开辅阴极,此时已有发射强度(但较弱),可用来寻找波长位置,有能量显示后再开辅阴极,逐渐增加辅阴极电流到最大能量(T),为止(超过此电流能量反而下降),辅阴极电流约为主阴极电流的1/2至2倍,随元素不同而不同。

  • 便携式仪器锂电池使用寿命和性能

    请问有没有老师用过[url=https://www.hach.com.cn/product/DRB100]便携式消解仪[/url],不用插电,带着锂电池的那种?在外面用的话,这个会像电动车一样不同环境温度续航时间不一样吗?使用久了之后性能保持的如何?

  • 面对动力电池测试压缩机回油怎么处理?

    面对动力电池测试压缩机回油怎么处理?

    动力电池测试是目前市场上新能源汽车电池专用的电池测试系统,为了保证新能源汽车电池的有效运行,所以对动力电池测试的性能有一定的要求,压缩机作为其核心配件,一旦发生回油故障就要及时解决。[img=,400,400]https://ng1.17img.cn/bbsfiles/images/2018/09/201809181539552442_4888_3445897_3.jpg!w400x400.jpg[/img]  动力电池测试制冷系统运行的过程中,润滑油是随着冷媒一起排出压缩机,经过循环又回到压缩机,那么在有冷媒出入的地方就有润滑油的出入。冷媒性能和润滑油性能有着本质的区别,冷媒在制冷系统循环过程中存在两相,即液态冷媒和汽态冷媒,而润滑油基本上处于液态,当动力电池测试冷媒从液态转变为汽态,润滑油会从冷媒中析出,在诸多因素的影响下,它们很可能在某个零部件或某个结构点储存,导致润滑油无法顺利回流到压缩机,造成涡旋压缩机缺油,如果缺油长时间得不到解决,会导致压缩机内部运动零件润滑不足,出现干烧等故障,大大加速冷水机压缩机的损坏。  动力电池测试的压缩机在排出冷媒时,也会排出微量的冷冻机油。即使只有0.5%的上油率,如果油不能通过系统循环回到压缩机中,因此为了确保压缩机运行不缺油,应该确保排出压缩机的冷冻机油回到压缩机,减少压缩机的上油率。  动力电池测试需确保吸气管冷媒的流速,才能使油回到压缩机,但流速应小于15m/s,以减小压降与流动噪音,对水平管还应沿冷媒流动方向有向下的坡度。需要防止冷冻机油滞留在蒸发器内,确保适当的气液分离器的回油孔,过大会造成湿压缩,过小则会回油不足,滞流油在气液分离器中。动力电池测试系统中不应存在使油滞留的部位,确保在长配管高落差的情况下有足够的冷冻机油在压缩机里,通常用带油面镜的压缩机确认压缩机频繁启动不利于回油。  新能源动力电池测试是目前比较新兴的设备,无锡冠亚在这一领域不断创新不断开发,争取为大众提高性能更加优良的动力电池测试。

  • 动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    [color=#993366]摘要:针对动力电池热管理系统用复合相变材料,对复合相变材料热性能测试中国内外普遍存在的大量错误现象进行了分析,列出了各种典型错误现象和错误案例,指出了产生这些错误的主要原因,明确了后续工作的方向和内容。[/color][align=center][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102575588_388_3384_3.png!w690x431.jpg[/img][/align][color=#ff0000]1. 引言[/color] 在动力电池热管理系统中,空冷、液冷和相变材料冷是较为常用的三种冷却方式。其中前两种是主动热管理,第三种是被动热管理。相变材料做为被动式热管理方式用于动力电池热管理系统是一个新兴的发展方向,与传统空冷、液冷等方式相比,具有高效、节能、温度波动小、防止热失效等优点。[color=#ff0000]2. 相变材料在动力电池中的应用结构形式[/color] 相变材料在电池包中的应用主要有两种结构形式: (1)电池单元直接置于相变材料中的包裹式形式,如图 2‑ 1和图 2‑ 2所示; (2)相变材料将电池单元夹在中间形成三明治夹层结构形式,如图 2‑ 2所示。[align=center][img=,690,335]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104045551_7090_3384_3.png!w690x335.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 1 相变材料包裹电池式结构[/color][/align][align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102422682_8708_3384_3.jpg!w690x517.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 2 相变材料包裹物及电池[/color][/align][align=center][color=#ff0000][/color][/align][align=center][img=,690,402]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104307481_9899_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 3 相变材料与电池三明治夹心结构[/color][/align] 以上相变材料在电池包中的三种结构形式,其中第一种结构虽然换热效率高,比较适合各种柱状和其它异形电池使用,但结构复杂,对制造工艺要求较高。第二种结构结构简单、易操作,比较适合板状和块状形式的各种电池。[color=#ff0000]3. 动力电池中复合相变材料类型[/color] 动力电池中复合相变材料的设计和制造主要考虑以下几方面因素:[quote][color=#993300] (1)适宜的相变温度和较大潜热;[/color][color=#993300] (2)其他热物理性能:导热系数高、热容大、密度高、体积变化率低、无相分离、低过冷度;[/color][color=#993300] (3)化学性质:无腐蚀、化学稳定性好、与容器相容、无毒、无易燃、无污染;[/color][color=#993300] (4)经济性要求:低成本、容易获得、可循环使用。[/color][/quote] 对于相变材料的研究已经相对比较成熟,但大多数固液相变材料,尤其是中低温相变材料具有较低的导热系数,这直接使得相变材料在动力电池热管理系统应用中存在的最大问题是导热系数偏低(0.2 W/mK左右),而在电池热热管理系统中则需要较快的吸收和放出热量,否则只有部分导热相变材料发生相变吸收或放出热量,将导致相变材料在热管理系统中的作用下降,在高温或大电流等极端条件下同样会发生电池热失控而造成安全问题。 如何克服上述缺点,改善导热能力成为近年来国内外在动力电池用相变材料中的一个研究热点,研究方向主要集中在采用多孔泡沫金属和泡沫碳作为导热增强介质,相变材料被分散成小颗粒储藏在泡沫介质孔隙中,泡沫介质骨架起到强化传热作用,由此来显著提高整体复合相变材料的导热系数,同时相变材料中的空穴也因为毛细作用分散在孔隙中,避免了因空穴集中而产生的局部热阻和热应力。[color=#ff0000]3.1. 泡沫金属复合相变材料[/color] 泡沫金属是指含有泡沫气孔的特种金属材料。图 3‑ 1的扫描电镜照片显示了典型泡沫金属材料的微观结构,可以看到相互连通的孔隙部分占到了泡沫金属材料的绝大部分空间,其间的金属基体材料呈立体骨架结构。不同孔隙单元的结构并不完全相同,但是从较大范围来看则具有相似特性,这说明泡沫金属材料微观结构的均匀性和各向同性使得其导热过程的各向同性。[align=center][img=,690,519]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105079861_3622_3384_3.jpg!w690x519.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 1 泡沫金属材料扫描电镜照片[/color][/align] 已实用并具有较大导热系数的泡沫金属主要有泡沫镍、泡沫铝和泡沫铜,如图 3‑ 2所示。[align=center][img=,690,200]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105542851_1607_3384_3.png!w690x200.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 2 各种泡沫金属[/color][/align][color=#ff0000]3.2. 泡沫碳复合相变材料[/color] 泡沫碳是碳元素的同素异形体之一,如图 3‑ 3所示,泡沫碳材料内部是中空的蜂窝状结构,其中70%~90% 为开口或相通的蜂窝状孔洞,微孔的平均直径为200~500 um,固体结构由相互交错的韧带支撑而成。如所示,泡沫碳的几何结构使其密度大幅度降低,比表面积极具增大,是一种具有低密度、高导热(导热系数高达200 W/mK)、耐高温、耐腐蚀等优点的新型材料。[align=center][img=05.泡沫碳材料的扫描电镜照片,443,333]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292107453445_4814_3384_3.png!w443x333.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 3 泡沫碳材料扫描电镜照片[/color][/align] 由此可见泡沫碳材料具有高的导热系数和稳定的化学性质,泡沫碳材料在石墨基材料中导热系数最高,并与相变材料具有良好的相容性,因此常用于相变材料的强化传热。相变材料渗入泡沫碳所构成的复合相变材料,其相变速率可大大提高,所以具有非常好的应用前景,已成为国内外研究的热点。[align=center][img=05.泡沫碳,690,222]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292108217452_8396_3384_3.jpg!w690x222.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 4 泡沫碳[/color][/align] 另外,泡沫碳是一种在石墨基体中均匀分布大量连通孔洞的新型高导热材料,相比于常见的膨胀石墨,泡沫碳有孔密度大、通孔率高、能够维持自身形状结构等特点,其导热系数要大于泡沫铜很多倍。与泡沫金属另外一个重要不同之处是因为泡沫碳材料内部气孔分布的不均匀性和孔径差异造成泡沫碳材料具有明显的各向异性,由此会造成泡沫碳复合相变材料的导热性能也具有明显的各向异性特征。[color=#ff0000]4. 国内外复合相变材料热性能测试中普遍存在的问题[/color] 由于复合相变材料呈现出多孔性、各向异性和多种成分复合性等多种特性,在进行复合相变材料导热系数测试中要十分小心的选择合适的测试方法,稍有不慎就会做出错误的选择,得出错误结果。纵观国内外在复合相变材料导热系数测试方面的文献报道,可以明显发现存在大量问题,主要表现出以下错误现象:[quote][color=#993300] (1)选择测试方法很随意,使得测试方法多种多样。[/color][color=#993300] (2)对所选测试方法的适用范围并不清楚,很多时候在测试过程中忽略了材料的各向异性特征。[/color][color=#993300] (3)对测试结果所包含的内容并不清楚,很多时候测试结果中包含了大量的测试误差,导致很多文献报道的性能测试结果和变化规律相互矛盾。[/color][color=#993300] (4)测试分析仪器厂商对测试技术的理解、研究和技术培训有限,误导了仪器使用人员在测试操作和试验参数设置上的不正确,从而得出误差较大结果。[/color][color=#993300] (5)各种测试方法还缺乏针对性和覆盖能力,针对或满足新材料性能测试,还缺乏相应的标准测试方法或具体条款。[/color][/quote] 造成复合相变材料热性能测试中普遍存在问题,科技文献中大量数据错误的主要原因是:[quote][color=#993300] (1)材料研究人员不懂测试技术,而测试人员对材料特征缺乏足够的了解。[/color][color=#993300] (2)有关复合相变材料研究报告和文献的审稿人一般都是搞材料的专业人员,他们对材料工艺非常熟悉和了解,对材料性能也只算是了解,也仅仅是数量级和大致范围的了解,但对材料性能的具体测试技术,特别是对测试方法的选择、测试仪器的操作细节等一系列保证准确测量的技术手段并不清楚。[/color][color=#993300] (3)材料研究人员和性能测试人员缺乏充分的技术交流。[/color][color=#993300] (4)测试人员针对复合相变材料热性能测试缺乏深入的测试方法研究。[/color][/quote][color=#ff0000]5. 典型错误案例[/color][color=#ff0000]5.1. 金属泡沫复合相变材料导热系数测试典型错误案例[/color] 上海交通大学肖鑫等人研究了不同孔隙率和孔径大小的泡沫铜和泡沫镍,其中导热系数测试则采用了瞬态平面热源法。对于泡沫铜材料,当孔隙率为89%和孔径为1.0 mm时测试结果显示具有的最高有效导热系数为16.01 W/mk;对于泡沫镍材料,当孔隙率为91%和孔径为1.0 mm时测试结果显示具有的最高有效导热率为2.33 W/mk。作者指出,复合相变材料的有效导热系数随孔隙率的增加而减小,且不受孔隙大小的影响。 日本北海道大学的Oya等人采用泡沫镍和熔融温度为118℃的赤藓糖醇相变材料制备了高温复合相变材料,并采用激光闪光法测量了导热系数和比热容。综合测试结果表明,孔隙大小对潜热和熔点几乎没有影响,采用0.5 mm孔径大小的金属泡沫所制成的复合相变材料的导热系数从纯赤藓糖醇相变材料0.733 W/mk显著提升到复合相变材料的11.6 W/mk。与上述肖鑫等人的研究结论相反,Oya等人认为孔径大小对导热系数有显著的影响,因为随孔隙大小的增加骨架的连通性从0.1 mm增加到0.5 mm,从而在较大孔径情况下导致更高的导热系数,这种结论意味着金属泡沫的质量非常重要,因为骨架的连通性保证了传热路径。 美国太平洋西北国家实验室的Hong和Herling 制作了石蜡/铝泡沫复合相变材料并测量它们的导热系数,所用泡沫铝的孔隙率为92~93%、孔径大小在0.5~2.0 mm范围内,导热系数测试采用了稳态恒定热流法。所报道的归一化有效导热系数,即复合相变材料有效导热系数与纯相变材料导热系数的比值,在20~44范围内。从测试结果可以看出, 随着 PCM 从固态到液态的变化,归一化有效导热系数增加。作者将这种增加归因于泡沫金属和液态PCM之间更好的热接触。不同于肖鑫等人和Oya等人得出的结论,测试结果清楚地显示有效导热系数随着泡沫铝孔径的减小而增加,特别是当孔径为0.5 mm时导热系数最大。 上述三篇研究文献非常典型,都是针对金属泡沫制成的复合相变材料进行了测试,测试方法分别采用了瞬态平面热源法(金属泡沫孔径范围1~5 mm)、激光闪光法(金属泡沫孔径范围0.1~0.5 mm)和稳态恒定热流法(金属泡沫孔径范围0.5~2 mm),但针对导热系数与金属泡沫孔隙率和孔径大小的关系,他们所得出的结论完全不同。[color=#ff0000]5.2. 泡沫碳复合相变材料导热系数测试典型错误案例[/color] 中科院山西煤化所钟雅娟等人用石蜡和中间相沥青基石墨泡沫制备复合相变材料,使用了四种不同孔径大小和体积密度的石墨泡沫做为样品,并用激光闪光法测量了石墨泡沫的导热系数。低容重的石墨泡沫具有较大的孔隙率,可容纳较多石蜡,测试结果显示热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度。 上述只是一篇典型的泡沫碳复合相变材料研究文献,在众多泡沫碳复合相变材料导热系数测试文献中多采用的是激光闪光法,很多得到的错误结论都是“热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度”。可以证明的是,对于泡沫碳这种高孔隙率、高导热和低密度材料,其热扩散系数取决于样品厚度的错误结论完全是对激光闪光法测试理论和测试仪器不了解造成,热扩散系数与样品厚度高度相关完全是因为测试误差所致。[color=#ff0000]5.3. 差热扫描量热仪测试典型错误案例[/color] 目前国内外针对复合相变材料的蓄热性能,全部采用的都是差示扫描量热仪(DSC)进行测试。我们调研了众多关于复合相变材料、特别是关于常温附近的相变材料和复合相变材料的文献报道,发现在所有文献中DSC测试相变材料的试验参数设置全是错误的,测试过程中的样品升降温速率几乎都在5℃/min以上,最大甚至达到了20℃/min,只有极个别的采用了0.5℃/min的低升降温速率。按照相关针对常温型相变材料DSC标准化测试方法研究成果,已经证明在升降温速率小于0.05℃/min时才能得到较准确的结果,升降温速率太快会给测量结果带来严重误差,如图 5‑ 1所示。[align=center][img=06.不同样品质量和不同加热速率效应,690,484]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109236481_5646_3384_3.png!w690x484.jpg[/img][/align][align=center][color=#ff0000]图 5‑ 1 样品不同质量和不同升降温速度时的DSC测试结果[/color][/align] 有关DSC测试过程中升降温速率对测量精度的影响,以及常温型相变材料DSC测试标准化研究成果,将在后续报告中进行详细描述[color=#ff0000]6. 结论[/color] 针对动力电池用复合相变材料,特别是通过对复合相变材料热性能测试中国内外普遍存在的错误现象进行了分析,列出了各种典型错误现象和错误案例,并指出了产生这些错误的主要原因。 我们将在随后的工作和研究报告中,特别针对动力电池用复合相变材料的热性能测试问题,详细描述如何选择合理的测试方法和测试仪器,详细描述测试过程中如何设置正确的试验参数,从而保证复合相变材料热性能测试的准确性和重复性。[color=#ff0000]7. 参考文献[/color] (1)Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 2014 81:94-105. (2)Oya T, Nomura T, Okinaka N, Akiyama T. Phase change composite based on porous nickel and erythritol. Appl Therm Eng 2012 40:373-7. (3)Hong ST, Herling DR. Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites. Adv Eng Mater 2007 9:554-7. (4) Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells 2010 94:1011-4. (5) Zhang, P., X. Xiao, and Z. W. Ma. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement." Applied Energy 165 (2016): 472-510.[align=center] [img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109565831_9881_3384_3.gif!w640x20.jpg[/img][/align]

  • 美创造石墨烯太阳能电池能量转化率纪录

    中国科技网华盛顿5月24日电 在工业界看来,石墨烯太阳能电池是未来获得廉价且耐用太阳能电池的最佳途径之一,但是过去的试验发现,石墨烯太阳能电池的能量转换效率仅约为2.9%。美国佛罗里达大学物理学研究人员24日表示,他们通过对石墨烯材料进行掺杂处理,获得了具有能量转化率高的掺杂石墨烯太阳能电池。 据研究人员介绍,石墨烯材料掺杂处理所用的物质为三氟甲基磺酰胺(简称TFSA),掺杂后的石墨烯太阳能电池的能量转化率高达8.6%,创造了石墨烯太阳能电池能量转换的纪录。他们的研究成果刊登在《纳米通信》网站上。 研究生缪晓常(英译)在分析能量转化率提高的原因时表示,掺杂导致石墨烯薄膜导电能力更强同时提高了电池内的电位,这让石墨烯太阳能电池的光电转换效率更高。同过去人们尝试的掺杂物相比,新的掺杂物TFSA性能稳定,即作用持续时间长。缪晓常和同事在实验室研发的掺杂石墨烯太阳能电池为镶有金边的5毫米见方的小窗,小窗由硅材料表面镀单层石墨烯组成。 石墨烯和硅结合时形成了电子单向导通的肖特基结,在光照时,它是石墨烯太阳能电池中实现光电转换的区域。肖特基结通常由半导体表面镀金属而成,但是佛罗里达大学生物和工程纳米学研究所2011年发现,石墨烯材料能够代替金属与半导体形成肖特基结。 佛罗里达大学著名物理学教授亚瑟·赫巴德说,与普通金属不同,石墨烯是透明和柔性材料,它具有极大的潜力成为太阳能电池的重要组成部分。人们希望在未来,太阳能电池能够用于建筑外部和其他产品中。他同时认为,石墨烯太阳能电池的能量转化率能够通过如此简单且廉价的处理方法得以提高,展现了其光明前景。 研究人员表示,如果石墨烯太阳能电池的能量转化率达到10%,且保持生产成本足够低,那么它们将成为市场上有力的竞争者。 佛罗里达大学目前研发的石墨烯太阳能电池样品的基底是硅半导体材料,用于大规模产品生产并不经济。不过,赫巴德表示,他看好将掺杂石墨烯与更廉价、更具有柔性的基底材料相结合,这些基底材料包括全球众多实验室正在开发的高分子膜。(记者 毛黎) 总编辑圈点 石墨烯及其衍生物的研究已广为人知。本研究通过新的技术工艺,不仅造就了迄今最高效的石墨烯基太阳能电池,也指出了一个重要的研究方向,并描绘了一幅非常诱人的应用前景。我们相信,这只是一个起点,石墨烯很快会成为一种充满无限可能的革命性材料:除了已经在研究中的太阳能电池、超薄防弹衣、天文望远镜、高强度航空材料、高性能储能和传感器材料等,还有更富想象力的太空电梯。当然,前提还是基础研究的进一步深入。 《科技日报》(2012-05-26 一版)

  • 手套箱---锂离子电池生产行业中的应用

    一、在锂离子电池试验、生产、运输、使用过程中存在的安全问题以及比较关心的几种人:① 安全就是要了解材料(纯净物)或其成份(混合物)是否易燃、是否易爆、是否易反应、是否致病、是否剧毒、是否放射性、是否腐蚀性、是否易污染环境等等。② 运输者(可能泄漏),操作工人(可能接触),最终产品用户(使用安全),当然还有环保方面二、安全问题的解决办法 ① 锂离子电池的安全问题的解决,主要在试验和生产过程中。② 由于锂金属对水气及氧气具有极高的氧化性,因此,对于发展锂离子高分子电池基本条件、设备的要.求非常严格,不论在先前测试或组装,都必须在水、氧值浓度极低的环境下进行,例如手套箱(glove box)-----水、氧值浓度在1PPM左右。在锂电池的制造过程中,水是最大的敌人。水可能会使电解液发生分解,影响电池的性能。水还会和正负极材料发生反应,所以在电池注液时要求在水分含量很低的手套箱中进行,注液完毕封口后才能从手套箱内取出。三、相关安全措施------试验设备(操作环境) 手套箱(glovebox)又称超级净化手套箱、手套箱设计性能为将环境控制在含氧量1ppm,含水量1ppm。这一过程通过装有自动阀门的,安装方便的空气净化系统实现。性能与规格①有三种宽度:1200mm (47"), 1800mm (71"), 和2400mm (94")。 ②特别为手套箱设计的双重微处理器控制器,所有重要信息显示在同一个屏幕上,方便操作(如果有触摸屏,也可由微机控制)。 ③转速为0-60cfm的不锈钢风机控制循环。 ④手套箱设计性能为将环境控制在含氧量1ppm,含水量1ppm。这一过程通过装有自动阀门的,安装方便的空气净化系统实现。 ⑤安装一个大的过渡舱,可选择自动控制装置。也可以安装快速转移仓。 ⑥真空泵。 ⑦0.3 微米的进口和出口过滤器。 ⑧标准的或定制的手套箱支架。 ⑨系统交货时已经充有氮气、氦气或者氩气,可随时可用。四、公司介绍 ① 伊特克斯惰性气体系统(北京)有限公司成立于2004年2月,在清华大学留美归国博士Willian Li的支持下,引进吸收欧美技术,研制开发惰性气体保护设备,并于同年推出高性能手套箱走向市场,用于科技教育,大学科研、锂电行业、激光等行业用的手套箱,填补了国内长期依赖进口的历史,大大降低了采购成本,深受用户的信赖。   经过近两年的发展,于2006年4月成立伊特克斯惰性气体系统(北京)有限公司,专门从事惰性气体系统保护手套箱的研发、生产、销售与服务。  公司现有员工23人,本科及本科以上学历约占80%,其中专职技术开发人员12人。伊特克斯惰性气体系统(北京)有限公司与国内外多家著名的公司和科研院所建立了长期、友好的合作关系,技术实力不断壮大,产品不断推陈出新,并建立了长期稳定的技术互访、信息交流和人员培训等合作关系,为产品的先进性和企业的持续发展提供了强有力的技术支撑。   公司所生产的各类产品如:生化实验手套箱、锂电手套箱、特种灯生产用手套箱、溶剂过滤系统、溶剂纯化系统、气体净化系统等。已被航空航天、兵器、军工、电源、生化、物理、冶金、电子、材料等领域的50多家客户所采用,近年来60多台各类设备不但覆盖了国内大多数省份和地区,其市场服务网络已经覆盖了国内二十余个大中城市,并很快设有销售和售后服务的办事机构。  伊特克斯惰性气体系统(北京)有限公司,志存远大,伊特克斯人以无比的热情,永远不待的精神,始终秉承“为用户创造价值”的理念,通过不断创新,推动国家的实验环境设备、特殊行业的环节生产设备的制造水平而努力奋斗。五、联系方式 公司名称:伊特克斯惰性气体系统(北京)有限公司联系人:郭运国 联系电话:86-10-62718129 (0)13701251980 邮箱:hr@gloveboxes.com.cn 网址:http://www.etelux.com.cn http://www.gloveboxes.com.cn 联系地址:北京市昌平区回龙观邮编:100092

  • 【分享】新型电池---“病毒电池”

    美国麻省理工学院科学家利用病毒制造了一种环境友好型高功率锂离子电池,这种电池将来可望用于便携式电子装置和混合动力汽车中。 科学家在4月2日的《科学》在线发表文章介绍说,他们首先将长条状的M13病毒进行基因编程,使其表面可以生长出作为电极的无定形磷酸铁。无定形磷酸铁一般来说并非良好的导体,但它在纳米尺度下则成为一种有用的电池材料。这些病毒的末端被设计成与碳纳米管连接,从而形成一种可在电池内增进导电性能的网络结构。 科学家们利用显微镜对数以百万计的病毒DNA进行扫描后,选定了M13病毒。这种病毒长度为880纳米,是一种非常简单且容易操控的病毒,对人体无害。 研究人员发现,这种与碳纳米管“绑定”的转基因病毒可以使磷酸铁电极的充放电率与目前最尖端的结晶状磷酸锂铁电极相媲美。这种“病毒电池”可以充放电至少100次而不损失电容,尽管与磷酸锂铁电池仍有差距,但后者价格昂贵而且有毒,而“病毒电池”的优点显而易见:可以在室温或室温以下制备,不需要有害的有机溶剂,电池内部的物质也无毒。 领导这项研究的安杰拉贝尔彻说,他们下一步计划利用可产生更高电容、电压的物质如磷酸锰、磷酸镍等,开发性能更好的电池,并期待相关技术可以尽早进入商业应用阶段。(来源科学网)附英文全文:[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=142392]Fabricating Genetically Engineered High-Power Lithium Ion Batteries Using Multiple Virus Genes[/url]

  • 中国产电池召回事件频发 电池安全备受关注

    2011年10月20日,美国消费品安全委员会和加拿大卫生部与Horizon Hobby Inc.联合宣布对中国产Losi镍氢电池启动充电器实施自愿性召回,召回原因为,该款镍氢电池和充电器可释放过多热量,导致烧伤和火灾。2011年10月21日,美国消费品安全委员会与Electric Motion Systems LLC联合宣布对中国产可充电锂电池实施自愿性召回,召回原因为,该款电池易过热起火。在此之前,IECEE-CMC刚刚决议了新的电池符合性标准发展。决议提出,资讯科技与影音产品用电池原有三项标准IEC 60065、IEC 60950-1、IEC 62368-1将参考新版的IEC 62133,纳入相关的电池标准。新标准预计在2012/2013年前出版。持续发生的电池召回事件,和不断更新的电池标准,造成了公众对电池性能安全的加倍关注。为了获得更多信息,笔者向电池检测领域具有丰富经验的第三方检测机构PONY谱尼测试进行了咨询。PONY谱尼测试专家告诉笔者,发展电池技术,尤其是锂电池等新型高能化学电源,必须首先解决安全性问题。以锂离子蓄电池为例,锂电池在正常使用条件下通常是安全的,行业关注的主要是在误用或滥用条件下如何保证安全。电池在滥用的过程中由于电池内的热反应不能及时扩散而导致热失控,会发生漏气、破裂、着火等现象。随着国际国内电池安全标准的不断出台和更新,通过标准体系的检测认证是保证电池企业产品安全使用和运输的有效屏障。PONY谱尼测试专家在此建议广大电池生产厂家,为切实保证电池产品的性能安全,排查不合格产品,避免安全事故的发生,可依托第三方检测机构强大的科研技术实力,严格执行UN38.3等电池安全标准,借此全面保障产品质量,有效规避风险,顺利出口海外市场。[/co

  • 动力电池测试系统研究说明

    新能源汽车动力电池测试其目的是为了新能源汽车电池系统的合理使用,提高新能源汽车产业的经济运行效益,实现新能源汽车电池的稳定发展。  在以往动力电池执行标准构建的过程中,所使用的对象相对单一,而且没有全面反映出电池的综合使用性能所以无法满足新能源汽车动力电池系统的设计需求。伴随我国新能源以及新材料的发展,在产业运行中,为了实现高新技术的综合性运用,需要结合动力电池材料的产业发展状况,进行资源的合理使用,并充分展现材料使用的优势性,进行动力电池测试,促进新能源动力产业的稳定发展。  电芯系统测试  对于电芯而言,作为电池系统中很重要的组成部分,是电池的储能单元。研究中发现,电芯性能的稳定性在某种程度上决定了电池系统的动力性能使用期限以及安全能力等。所以,在检测的过程中,应该针对电芯层面的实验进行电化学性能、使用寿命以及安全性能的分析,并结合测试实验的温度因素,进行电芯能力的确定,以保障电芯测试的稳定性,提高电芯使用寿命。  电池系统测试  在电池模块设计的过程中,电池模块作为构成电池系统的重要组成部分,通常是由电芯、电池管理单元以及冷却装置共同组成。通过电池系统的使用,应该充分满足安全性、机械性以及环境的基本需求。通常状况下,在电池系统测试严重的过程中,不仅会对电池模块层面的电池管理模块进行控制,而且也会对电池自身设计结构具有一定要求,通过这些要求的设计,可以充分保障电池系统运行的安全性。因此,在电池模块安全性能检测的过程中,应该将安全问题作为重点,充分保证电池系统运行的有效性。  测试研究结果分析  通过对新能源汽车动力电池系统检测状况的分析,在电池模板、电芯检测的过程中,应该按照整车开发性能进行检测标准的确定。所以,在电池系统的整车开发中,应该结合整车的性能汽车零部件测试要求以及电池自身特点等,进行检测方法的完善,以保障检测方案的合理性。  所以,在新能源汽车动力电池测试中,需要结合无锡冠亚新能源汽车电池系统的整体状况,提高新能源汽车电池的整体质量,促进汽车产业的绿色发展。

  • 【资料】锂电池知多少

    【资料】锂电池知多少

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908301013_168389_1610969_3.jpg[/img]锂电池[color=#DC143C]目录[/color]锂电池的概述 锂电池的特点 锂电池的结构 锂电池的应用 锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 锂电池的概述锂电池的特点锂电池的结构锂电池的应用锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景• 电池的基本性能• 锂离子电池的特征• 锂电池的保护电路• 简易充电电路• 单节锂电池的应用举例• 锂电池的保存• 注意事项• “超级”锂电池

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制