当前位置: 仪器信息网 > 行业主题 > >

高温超导体

仪器信息网高温超导体专题为您整合高温超导体相关的最新文章,在高温超导体专题,您不仅可以免费浏览高温超导体的资讯, 同时您还可以浏览高温超导体的相关资料、解决方案,参与社区高温超导体话题讨论。

高温超导体相关的资讯

  • 物理所铁基高温超导体超导能隙对称性和轨道相关性研究取得新进展
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室丁洪研究组与日本东北大学高桥隆教授小组合作,在铁基高温超导体超导能隙对称性和轨道相关性研究的中取得新进展。   高温超导电性一直是一个热门的研究课题。最近发现的铁砷化合物超导体的超导转变温度达到55K,从而结束了铜氧化合物在高温超导领域内的统治地位,更是将这一课题的研究推向了一个新的高潮。和铜氧化合物超导体的情况一样,揭示出这种新型超导体的物理性质,特别是超导能隙对称性和轨道相关性成为理解这种高温超导机理和相关物理特性的最关键的问题。   丁洪及其合作者利用高分辨角分辨光电子能谱仪,对新发现的超导体Ba0.6K0.4Fe2As2 (Tc = 37 K)进行了研究。他们观察该材料具有两不同值的超导能隙:较大的能隙(Δ~12meV)处在两个小的类空穴和类电子费米面上 较小的能隙(~6meV)处在一个大的类空穴费米面上。两个能隙都在体转变温度(Tc)处同时闭合,在其各自的费米面附近无节点且几乎各项同性。随着在不同能带上耦合系数2Δ/KBTc从弱耦合变化到强耦合,各向同性的配对相互作用表现出强烈的轨道依赖性。这种相同且相当大的超导能隙归因于两个小费米面上的强配对作用,而这两费米面通过母系统(parent compound)中反铁磁自旋密度波矢量联系。这就表明配对机制源于两个相互嵌套费米面的带间相互作用(inter-band interactions)。   该项工作以发表在 Europhys. Lett 83 (2008) 47001。美国阿贡国家实验室的Michael Norman最近为美国物理学会今年创刊的Physics杂志中“trends”栏目撰写了关于铁基超导体物理研究的短评文章,重点介绍了此项工作。同时 EuroPhysics News以 Pairing symmetry of iron-based superconductors为题目选作研究亮点进行报道。2008年8月1号日本《科学新闻》以“铁系高温超导体的超导电子对对称性的成功确定对于物质结构的解析带来很大进步 ”为标题对这项工作进行了报道。   此外,他们还对多种铁基超导体进行了一系列深入的研究,其中包括母体材料、空穴型和电子型掺杂材料、欠掺杂和过掺杂材料。主要成果包括:观察到了一种可能是电子配对媒介的反铁磁性玻色子模式,同时对电子结构进行了完整描述,并发现了超导能隙和费米面随掺杂浓度变化的演变。这些成果已被写成6篇论文,即将发表在Physical Review Letters等刊物上。   以上研究工作得到中国科学院、国家自然科学基金委和科技部相关项目的资助。
  • 采用非常规磁测量方法,科学家成功探测富氢高温超导体中的捕获磁通量
    德国马克斯普朗克化学研究所、美国爱荷华州立大学、俄罗斯乌拉尔联邦大学研究人员合作探测了富氢高温超导体中的捕获磁通量。相关研究近日发表于《自然-物理学》。该研究团队在SQUID磁强计中采用了非常规的磁测量方法,并探测了高压下两种接近室温超导体H3S和LaH10中的捕获磁通量。与传统磁化率测量不同,由于无外部磁场,捕获磁场的响应几乎不受金刚石压砧背景信号影响。在零场冷却和施加磁场冷却条件下,捕获磁场的行为证实了这些材料的超导性。研究人员发现明显缺乏的迈斯纳效应与样品内涡旋强钉扎效应有关。该方法还可用于研究多相样品或在常压下具有低超导分数的样品。通过高压下对氢化物中捕获磁场的测量,进一步证实了这些材料在高温下具有超导性。研究发现,在高压条件下,多种氢化物表现出超导现象,其超导临界温度可接近室温。然而,由于高压条件限制,实验研究存在一定困难,电输运测量一直是检测氢化物超导性的主要技术手段。相关论文信息:https://doi.org/10.1038/s41567-023-02089-1
  • 中国科大在笼目结构超导体研究中获进展
    中国科学技术大学合肥微尺度物质科学国家研究中心、物理学院、中科院强耦合量子材料物理重点实验室陈仙辉、吴涛和王震宇等组成的研究团队,在笼目结构(kagome)超导体研究中取得重要进展。科研团队在笼目超导体CsV3Sb5中观测到电荷密度波序在低温下演化为由three state Potts模型所描述的电子向列相。该向列相的发现为理解笼目结构超导体中电荷密度波与超导电性之间的反常竞争提供了重要实验证据,并为进一步研究关联电子体系中与非常规超导电性密切相关的交织序(intertwined orders)提供了新的研究方向。2月9日,相关研究成果以Charge-density-wave-driven electronic nematicity in a kagome superconductor为题,以Accelerated Article Preview形式,在线发表在《自然》(Nature)上 。   电子向列相是一种由电子自由度旋转对称性的自发破缺而产生的电子有序态,广泛存在于高温超导体、量子霍尔绝缘体等电子体系。电子向列相与高温超导电性之间存在紧密联系,被认为是一种与高温超导相关联的交织序,是高温超导的理论研究中重要的科学问题和研究热点。探索具有新结构的超导材料体系,从而进一步探究超导与各种交织序的关联是当前领域的重要研究方向,其中一类备受关注的体系为二维笼目结构。理论预测在范霍夫奇点(van Hove singularities)掺杂附近,二维笼目体系可呈现出新奇的超导电性和丰富的电子有序态,但长期以来缺乏合适的材料体系来实现其关联物理。近年来,笼目超导体CsV3Sb5的发现为该方向的探索提供了新的研究体系。中国科大超导研究团队前期研究揭示了该体系中面内三重调制(triple-Q)的电荷密度波态【Physical Review X, 11, 031026 (2021)】以及电荷密度波与超导电性在压力下的反常竞争关系【Nature Communications, 12, 3645 (2021)】。   在上述研究的基础上,科研团队充分结合扫描隧道显微镜、核磁共振以及弹性电阻三种实验技术,针对CsV3Sb5中的电荷密度波态的演化展开了细致研究。研究显示,体系在进入超导态之前,三重调制电荷密度波态会进一步地演化为一种热力学稳定的电子向列相,并确定转变温度在35开尔文左右。该电子向列相与之前在高温超导体中观测到的电子向列不同:高温超导体中的电子向列相是Ising类型的向列相,具有Z2对称性;而在笼目超导CsV3Sb5中发现的电子向列相具有Z3对称性,在理论上被three state Potts模型所描述,因而也被称为“Potts”向列相。有趣的是,这种新型的电子向列相最近在双层转角石墨烯体系中也被观察到。   这些发现在笼目结构超导体中揭示了一种新型的电子向列相,并为理解这类体系中超导与电荷密度波之间的竞争提供了实验证据。之前的扫描隧道谱研究表明,CsV3Sb5体系中可能存在超导电性与电荷密度波序相互交织而形成的配对密度波态(Pair density wave state,PDW)。在超导转变温度之上发现的电子向列序,可以被理解成一种与PDW相关的交织序,该研究为理解高温超导体中的PDW提供了重要的线索和思路。如何理解笼目结构超导体中超导电性及其交织序的形成机制仍需要进一步的实验与理论研究。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省及中国科大创新团队项目的支持。      论文链接
  • 室温超导体“突破”遭质疑
    LK-99材料有一个边缘呈悬浮状态。图片来源:Hyun-Tak Kim et al. (2023)一个研究小组声称已经创造出第一种在室温和环境压力下完美导电的材料,但许多物理学家对此持高度怀疑态度。美国威廉与玛丽学院的Hyun-Tak Kim表示,他将支持任何试图复制其团队工作的人。超导体是一种可以使电流在没有任何阻力的情况下移动的材料,因此可以显著降低电子设备的能源成本。但一个多世纪以来,研究人员一直无法让它们在极端条件下工作,比如极低的温度和极高的压力。现在,Kim和同事声称已经制造出一种在室温和压力下具有超导性的材料。为了制造这种被称为LK-99的新材料,Kim和同事制造出混合了铅、氧、硫、磷的粉末状化合物,然后将其在高温下加热几个小时。这使得粉末发生化学反应,变成深灰色固体。研究人员随后测量了一毫米大小的LK-99样品在不同温度下的电阻,发现其电阻率从105℃的相当大的正值急剧下降到30℃的接近零。超导体会驱逐磁场是迈斯纳效应现象的一部分,为此,研究人员还测试了这种材料在一定温度下对磁场的反应。结果显示,在电阻接近于零的温度范围内,它确实表现出这种效应。由于迈斯纳效应,超导体放置在传统磁体上时会呈漂浮状态,研究人员也记录了这种悬浮的测试。在他们的视频中,他们将一块LK-99放在磁铁上方,磁铁表面明显升起。然而,这种扁平的硬币状的材料只有一个边缘完全悬浮,另一边似乎与磁铁保持接触。Kim说,这是由于样品还不完美,意味着只有部分样品具有超导性,并表现出迈斯纳效应。目前,两篇关于k -99的论文已在预印本服务arXiv上公布,但不进行同行评审,相关研究已在4月份发表于《韩国晶体生长与晶体技术杂志》。Kim只是其中一篇论文的合著者,另一篇论文则是由他在韩国量子能量研究中心的同事撰写,他们中的一些人也在2022年8月申请了LK-99的专利。这两篇论文都提出了类似的测量方法,但Kim说第二篇论文存在“许多缺陷”,并且未经他的许可就被上传到arXiv。在那篇论文中,这项工作被描述为开启了“人类的新时代”。社交媒体上的一些评论员称赞这一发现是一代人的突破,但超导专业研究人员在很大程度上持怀疑态度。英国牛津大学的Susannah Speller和Chris Grovenor说,当一种材料成为超导材料时,在许多测量中应该有明确的特征。Speller说,对于其中两个,即对磁场的响应和一个称为热容的量,数据中都没有给予证明。“因此,现在说我们已经在这些样品中获得了令人信服的超导性证据还为时过早。”Kim已经意识到这种怀疑,但他认为其他研究人员应该尝试复制他团队的工作来解决这个问题。一旦研究结果发表在同行评议的期刊上,他将支持任何想要自己创造和测试LK-99的人。与此同时,他和同事还将继续完善奇迹超导体样品,并向大规模生产迈进。
  • 研究发现铁基超导体中超导与奇异金属态在压力下的共存共灭现象
    低温下电阻随温度的线性变化是奇异金属态的重要特征,在非常规超导材料中常被发现。高温超导电性对这种奇异金属态的依赖关系一直是高温超导机理研究中备受关注的问题,可能隐含了破解高温超导机理的“密码”。一般情况下,高温超导体的电阻随温度的变化既包含线性项,又包含温度的平方项,近似可用一个温度的幂律函数即R(T) = R0 + ATα, 或是R (T) = R0+ AT + BT2 来描述。幂指数α=1是奇异金属态,系数A的值为零则表明奇异金属态消失。 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员孙力玲小组与研究员邱祥冈等,联合美国普林斯顿大学教授R. Cava、美国加利福尼亚大学洛杉矶分校教授N. Ni, 对具有奇异金属态的铁基超导体Ca10(Pt4As8)((Fe0.97Pt0.03)2As2)5(简称为1048 超导体)中奇异金属态和超导态的压力响应行为进行了系统研究,发现了随着压力的增加,其超导转变温度(Tc)连续下降,同时幂指数由常压下的 α=1 逐渐增加,而系数A随着压力逐渐减小。在量子相变临界压力处,超导转变温度Tc和A系数同时趋于零,转变成具有非超导费米液体态的高压相。 这是首次在高温超导体中通过压力调控观察到奇异金属与超导态的共存共灭现象,揭示了这类超导体的超导电性对奇异金属态的依赖关系。研究通过对实验结果的进一步分析发现,1048超导体的Tc与A系数之间服从与其他高温超导体类似的经验关系(Tc~ A0.5)。 相关研究成果发表在《自然-通讯》(Nature Communications)上。研究工作得到科学技术部、国家自然科学基金委员会、中科院战略性先导科技专项(B类)和松山湖材料实验室的支持。图1. 压力下超导转变温度对幂指数α和A系数的依赖关系。图2. (a)压力下1048超导体超导转变温度与系数A的变化关系;(b)不同的非常规超导体在压力下及常压掺杂得到Tc与A系数归一化后的关系,包括1048超导体和Sr0.74Na0.26Fe2As2超导体以及常压下掺杂的铜氧化物超导体及有机超导体。
  • 《自然》发表陈仙辉铁基超导体最新科研成果
    中国科大微尺度物质科学国家实验室的陈仙辉课题组近日在铁基超导体研究领域又取得重要进展。研究表明,探寻晶格与自旋自由度之间的相互作用对理解高温超导电性机理是非常重要的。该成果发表在5月7日出版的《自然》杂志上(Nature 459,64(2009).)。上述研究工作是与中国科大国家同步辐射国家实验室的吴自玉合作完成的。   最近,在铁基磷族化合物中发现的超导电性由于其超导临界温度突破了传统BCS理论预言的麦克米兰极限(39K),掀起了又一次的高温超导研究热潮。理论研究表明,该体系的电-声子相互作用并不能解释如此高的超导临界温度,并且提出强的铁磁/反铁磁涨落机制。但是,实验显示,铁基超导体的超导电性与磁性对晶体结构非常敏感,这表明体系可能存在非传统的电-声子相互作用。   陈仙辉课题组通过氧和铁同位素交换,研究SmFeAsO1-xFx和Ba1-xKxFe2As2两个体系中超导临界温度(Tc)和自旋密度波转变温度(TSDW)的变化,发现Tc的氧同位素效应非常小,但是铁同位素效应非常大。令人惊奇的是,该体系铁同位素交换对Tc和TSDW具有相同的效应。这表明在该体系中,电-声子相互作用对超导机制起到了一定的作用,但是并不是简单的电-声子相互作用机理,可能还存在自旋与声子的耦合。铁基超导体中,Tc以及SDW的铁同位素效应都要大于氧的同位素效应。这可能是由于铁砷面是导电面,因而其对超导电性有很大的影响,并且自旋密度波有序也是来自于铁的磁矩。在铜氧化合物高温超导体中,超导临界温度的同位素效应随掺杂非常敏感。在最佳掺杂,同位素效应几乎消失,而随着降低掺杂逐级增大并在超导与反铁磁态的边界上达到最大值。这表明在铜氧高温超导体中同位素效应与磁性涨落也有着密切联系。这种反常的同位素效应表明电-声子相互作用在铜氧化合物中也同样非常重要。因而,陈仙辉教授的发现表明,探寻晶格与自旋自由度之间的相互作用对理解高温超导电性机理是非常重要的。   陈仙辉课题组从2008年发现高温铁基超导体SmFeAs(O,F)体系后,在铁基高温超导体的研究中取得了一系列的重要进展:在国际上首创了自助溶剂法制备铁基122结构的单晶 系统研究了铁基1111以及122结构的铁基超导体电子相图,并研究了随掺杂体系的物理性质的变化,提出了在铁基超导体中存在SDW与超导共存的实验现象。同时, 陈仙辉教授与国内外著名研究组进行了广泛的合作,取得了系列成果:通过研究Andreev反射发现铁基超大体具有s波的超导能隙,并且具有传统BCS超导体的行为 通过μ介子自旋证实了SmFeAsO1-xFx体系中存在磁涨落与超导共存 并且通过APRES实验证实在122体系存在SDW与超导共存 通过中子散射研究了122体系以及1111体系的磁结构 通过STM直接观察铁基超导体超导态磁通点阵。   截至目前,陈仙辉教授课题组在铁基超导体研究中,在《自然》上发表论文3篇,Nature Materials发表论文1篇,Physical Review Letters发表论文9篇,J. Am. Chem. Soc. 发表论文1篇。其中,去年发表的一篇论文(Nature 453,761 (2008))为当年发表论文引用次数最多的五篇论文之一。
  • 中国科学家发现液氮温区镍氧化物超导体
    中山大学13日向媒体介绍,《自然》杂志(Nature)7月12日刊登该校王猛教授团队与其他单位合作的成果:首次发现液氮温区镍氧化物超导体。  据介绍,超导材料具有绝对零电阻、完全抗磁性和宏观量子隧穿效应的特殊性质,因此具有重要的科学和应用价值,在该领域已产生了5个诺贝尔奖。1986年,科学家首次发现铜氧化物超导材料,随后多国科学家将其超导温度提升到了液氮温区,即超过77K(开尔文)。液氮的廉价和易得,推动了铜氧化物高温超导材料的规模化应用。然而,高温超导的机理至今未知,成为近40年来物理学中最重要的科学问题之一。  王猛教授团队耗时三年半,依托中山大学物理学院公共科研平台,通过不断努力成功生长了镍氧化物La3Ni2O7单晶,随后在中山大学高压实验研究平台以及华南理工大学、中国科学院物理研究所、北京同步辐射装置开展实验研究,很快在实验上确定了此单晶材料能够在压力下实现超导,转变温度达到液氮温区,高达80K。据悉,这是继铜氧化物高温超导体后,另一个完全不同体系的高温超导体。  “本次发现高温超导的镍氧化物,镍的价态为+2.5价,远离人们此前认为容易出现超导电性的正1价,超出此前理论预期。其电子结构、磁性与铜氧化物完全不同,通过比较研究,有可能推动科学家破解高温超导机理。”王猛表示,“根据机理,有望与计算机、AI技术等学科交叉后,设计、合成新的更多的更容易应用的高温超导材料,实现更加广泛的应用。”  据悉,这是由中国科学家首次率先独立发现的全新高温超导体系,是人类目前发现的第二种液氮温区非常规超导材料,是基础研究领域“从0到1”的重要突破,将有望推动破解高温超导机理,使设计和预测高温超导材料成为可能,在信息技术、工业加工技术、超导电力、生物医学和交通运输等领域,实现更广泛的应用。
  • 中国科大超导研究团队发现最高超导转变温度的元素超导体
    近日,中国科学技术大学物理学院、中科院强耦合量子材料物理重点实验室陈仙辉教授团队的应剑俊特任研究员等人与南京大学孙建教授课题组合作在高压元素超导领域取得重要进展。通过超高压技术手段,研究团队发现元素钪在高压下具有高达36 K的超导转变温度,刷新了元素超导最高转变温度的记录。相关研究成果于6月22日以“Record High 36 K Transition Temperature to the Superconducting State of Elemental Scandium at a Pressure of 260 GPa”为题在线发表在《物理评论快报》上(Phys. Rev. Lett. 130, 256002 (2023))。   元素超导体为研究超导电性提供了一个最简单、最干净的材料平台。自从1911年荷兰科学家昂尼斯在元素汞中发现超导电性以来,越来越多的元素被发现具有超导电性。目前,共有50多种元素在常压或高压环境下被发现具有超导电性。然而,大多数元素的超导转变温度都较低,之前最高的元素超导转变温度为26 K,是由元素钛在高压下所实现。   早期研究发现,元素钪在压力下会经历四个结构相变。在23 GPa以上,Sc-I相会转变为Sc-II相,并且Sc-II相的超导转变温度在100 GPa左右达到最高近20 K,其相对较高的超导转变温度被认为是来源于电子逐渐从4s轨道向3d轨道转移所导致。由于早期高压实验技术的限制,元素钪在更高压力下的超导电性研究仍然十分缺乏。 图示:元素钪的超导转变温度随压力的演化相图。   针对这一问题,我校陈仙辉教授研究团队的应剑俊特任研究员等人对元素钪进行了超高压下的输运研究,确定了其高压下的超导相图。通过高压电输运测量发现在Sc-II相,超导转变温度(Tc)随压力增加而迅速增加,与早期的报道一致。而在进入Sc-III相后,Tc随压力几乎保持不变。当进入Sc-IV相后,Tc随压力的增加又继续增加,最高达到28 K。当体系最终在高压下进入Sc-V相后,其超导转变温度突然提升到36 K,并且随压力几乎保持变化。随后,研究团队通过第一性原理计算探索了高压下超导转变温度大幅提升的物理来源。计算结果表明:Sc-V相中d电子与中等频率声子之间的强耦合是导致其高Tc的最主要的原因。这些结果表明元素钪在压力下的超导转变温度与结构密切相关,在Sc-V相中发现的36 K超导转变温度不但刷新了元素超导转变温度的记录,而且也为在简单体系中寻找高温超导材料提供了一个新的思路。   中科大物理学院应剑俊特任研究员为相关文章的第一作者和共同通讯作者,陈仙辉教授和南京大学孙建教授为上述文章的共同通讯作者。相关工作得到了科技部、国家自然科学基金委、中科院以及安徽省引导项目的相关基金资助。
  • 韩国超导和低温学会称没有足够证据证明“LK-99”是室温超导体
    近期韩国一研究团队声称成功合成室温超导材料“LK-99”。但据韩联社3日报道,韩国超导和低温学会“LK-99”验证委员会表示,与“LK-99”相关的影像和论文中展示的这一材料的特征并不符合迈斯纳效应,不足以证明“LK-99”是室温超导体。  迈斯纳效应是超导体从一般状态相变至超导态的过程中对磁场的排斥现象,它可以用来判别物质是否具有超导特性。  韩国超导和低温学会“LK-99”验证委员会当天对韩联社表示,学会已要求合成该物质的韩国量子能源研究所提供进行验证的样本,但得到的答复是,此前发布的论文仍在接受评议,2至4周后才可提供样本。  韩国超导和低温学会2日发布新闻公报表示,将组建一个专家验证委员会,对近期韩国一研究团队声称成功合成的室温超导材料“LK-99”进行科学研判。新闻公报说,现阶段基于两篇存档论文和公开的影像,很难得出结论说“LK-99”是室温超导体,仍需开展进一步的科学验证,因此该学会决定成立一个专家验证委员会进行相关的实验及理论研讨。验证委员会成员来自该学会的物理、材料、电气和机械领域的会员。  韩国量子能源研究所等机构的研究人员7月22日在预印本网站arXiv上发布论文说,他们研发的一种被命名为“LK-99”的材料具备超导性,超导临界温度在127摄氏度左右,而且在常压下就具备超导性。韩国团队的研究成果引起大量关注的同时,也受到不少学者的质疑。
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 创造性突破!哈佛大学开发出一种超导体性能精准检测技术
    氢在高压下的性质表现出了奇异的特性。理论预测,在 100 多万个大气压的压力下,这种通常是气态的元素会变成金属甚至超导体。然而,目前存在的研究手段很难对这些氢化物进行准确测量和研究超导材料的特性。近日,据《自然》杂志最新一期论文,美国哈佛大学开发了一种精准测量超导体的基础工具。他们创造性地将量子传感器集成到标准的压力感应设备中,从而直接读出加压材料的电和磁性质。这款新工具不仅能测量氢化物超导体在高压下的行为,还能对其成像。在极端压力下研究氢化物的标准方法是使用金刚石压砧仪器,它可在两个明亮式切割金刚石界面之间挤压少量材料。为了检测样品何时被挤压到足以超导,通常要寻找两个特征:电阻降至零,以及对附近任何磁场的排斥作用(又名迈斯纳效应)。想要施加必要的压力,研究人员必须用一个垫圈将样品固定住,使挤压均匀分布,然后将样品封闭在一个腔室中。但这很难真正观察到超导电性的双重特征。为了解决这个问题,研究人员设计并测试了一种巧妙的改造方式:他们将一层薄薄的传感器直接集成到金刚石压砧的表面上。该传感器是由金刚石原子晶格中自然产生的缺陷制成的。他们使用这些被称为氮空位中心的有效量子传感器,在样品被加压并进入超导区域时,对腔内的区域进行了成像。为证明他们的概念,研究人员使用了氢化铈,这种材料已知在大约 100 万个大气压下会成为超导体。图源:美国科学促进会网站技术价值观察新工具不仅可帮助科学家发现新的超导氢化物,还可更容易地研究现有超导材料。新工具处于智能传感器产业链中游环节。智能传感器在工业 4.0 时代扮演着十分重要的角色。随着物联网在工业领域的应用推广,智能传感器在其中的应用越来越广泛。智能传感器是物联网技术的最底层和最前沿,对物联网产业发展有着十分重要的意义。从产业链来看,智能传感器上游主要为设计、原材料以生产设备供应 中游为智能传感器器件加工制造与封装测试 下游是终端产品制造,其中以消费电子、工业控制、汽车电子、医疗电子等应用领域为主。宏观市场观察全国智能传感器产业市场规模中国的传感器项目兴起于上个世纪七八十年代,彼时传感器多为固定性传感器。2000 年以来,中国传感器的技术逐渐取得突破,随着计算机技术、通信技术和大规模的集成电路制造技术在传感器领域的应用,智能传感器出现。2018 年,中国的智能传感器市场规模约为 800 亿元。2022 年,中国智能传感器市场规模突破 1200 亿元,年均复合增长率达 8.2%。根据中国信通院数据,预计到 2023 年中国智能传感器行业市场规模将达 1308.3 亿元。智能传感器在智能汽车、工业监测、民用建筑等领域的需求潜力较大智能传感器作为现代信息产业的重要神经触角,是新技术革命和信息社会的重要技术基础,广泛应用于工业控制、汽车、医疗、物联网等行业。从我国智能传感器行业代表性企业产品应用领域来看,目前,智能传感器在汽车、工业监测、民用建筑、消费电子、智能物联网等领域的市场需求潜力较大。预计需求大幅增长,至 2026 年市场规模近 800 亿美元根据 Allied Market Research 的预测,2020-2027 年,全球智能传感器市场规模年均增速为 14.3%,预计至 2026 年,全球智能传感器市场规模接近 800 亿美元。中国智能传感器技术赛道热力图从我国智能传感器企业注册省市分布区域来看,智能传感器行业企业主要分布在广东地区,其次是在江苏、浙江以及湖南地区,尤其是深圳市成为重点发展区域。这些城市群已投入大量政策、资金、环境和人才资源用于智能传感器研发,成为潜在的智能传感器技术发展中心。重点关注广东省深圳市、湖南省长沙市等地的相关企业,以及这些地方对智能传感器产业发展的投资环境和潜力市场。
  • 高压下的奇迹!美伯克利大学Nature:利用干式低温光学恒温器揭秘氢化物超导体中的迈斯纳效应
    文章名称:Imaging the Meissner effect in hydride superconductors using quantum sensors期刊:Nature IF 64.8文章链接:https://www.nature.com/articles/s41586-024-07026-7 压力的存在能够直接改变微观相互作用,为凝聚相和地球物理现象的探索提供一个强大的调谐旋钮。兆巴(1 Mbar=100 GPa)压力区域的研究极具前沿代表,科学家们可在该压力区域研究高温超导材料的结构与相变。然而,在该高压环境中,许多传统的测量技术都失败了。针对此问题,美伯克利大学的N.Y.Yao教授团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)突破性的在兆巴压力下以亚微米空间分辨率对金刚石砧单元内局部实现磁力测量的能力。相关研究内容以《Imaging the Meissner effect in hydride superconductors using quantum sensors》为题,在国际SCI期刊《Nature》上发表。该课题组将浅层氮空位色心直接植入铁砧中(见图1),选择与氮空位色心固有对称性相兼容的晶体切割,以实现在兆巴压力下的功能。文章中对最近发现的氢化物超导体CeH9进行了表征。通过同时进行磁学测量和电输运测量,观察到超导性的双重特征:迈斯纳效应的抗磁特性和电阻急剧下降到接近于零。通过局部映射抗磁响应和通量捕获,直接对超导区域的几何形状进行成像,在微米尺度上显示出明显的不均匀性(见图2d)。图1:兆巴压力下的NV色心传感测量。1a为样品加载示意图显示CeH9在两个相对的砧之间压缩。图2:CeH9的局部抗磁性。2a,2b: 同一个样品中两个不同位置处,在零场冷却到温度T 值得指出的是,该团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)搭载实验所需的共聚焦荧光显微镜对NV色心进行了测量,见图3。该研究工作将量子传感带到兆巴边界,并使超氢化物材料合成的闭环优化成为可能。 图3:本实验的设备硬件与校正。3a: 用于产生磁场的设备包括一个定制的电磁铁,位于低温恒温器的电磁屏蔽外。3b:在样品S1的四个位置的不同冷却条件下的校准。3c: 样品S1的共聚焦荧光图像。3d: 在桌面式光学低温恒温器attoDRY800真空罩内部的图像显示DAC,冷指和热连接。 attoDRY800桌面式光学低温恒温器(见图4)是由德国attocube公司研发的一款干式闭循环低温恒温器,光学平台与系统冷头高度耦合,系统可提供4K到室温的变温环境。设备具有极低的震动噪音,已在国内外课题组广泛应用于量子通信、量子点发光、半导体材料、二维材料等研究领域。根据典型实验所需,该产品设计了几种标准真空罩方便用户进行拉曼、荧光等常见的测量手段对材料进行光-电-磁物理性质的变温测量。图4. attoDRY800桌面式光学低温恒温器- 可以选配低温物镜,低温位移台以及其他定制配置。 attoDRY800桌面式光学低温恒温器已经在北京大学,半导体所,国家纳米科学中心等单位顺利运行,持续助力各个课题组的科研工作。图5为常见的的低温物镜兼容真空罩,该真空罩内可配置attocube特有的低温消色差物镜以及纳米精度位移台。如果实验(例如光纤量子通信与open cavity等实验)需要更复杂的实验设计,我们可以根据用户的技术要求和偏好定制桌面上的真空罩。图5:常见配置-低温物镜兼容真空罩。 attoDRY800主要技术特点:☛ 光学平台和闭式循环低温恒温器完美地结合在一起☛ 提供无光学平台配置:全新一代独立光学低温恒温器attoDRY800xs☛ 宽温度范围(3.8 K…300 K),自动温度控制☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容,数值孔径大于0.8☛ 可定制真空罩,标准样品空间:75mm直径。☛ 与典型光学桌的高度相同☛ 包含36根直流电线图6:全新一代独立光学低温恒温器attoDRY800xs- 冷头与光学面包板高度集成。 attoDRY800桌面式光学低温恒温器 部分发表文献:[1]. N.Y.Yao et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024)[2]. Liying Jiao et al. 2D Air-Stable Nonlayered Ferrimagnetic FeCr2S4 Crystals Synthesized via Chemical Vapor Deposition. Advanced Materials 2024[3]. Yohannes Abate et al. Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Adv. Optical Mater. 2024, 2302326[4]. Pablo P. Boix et al. Perovskite Thin Single Crystal for a High Performance and Long Endurance Memristor. Adv. Electron. Mater. 2024, 2300475[5]. Mauro Valeri et al. Generation and characterization of polarization-entangled states using quantum dot single-photon sources. 2024 Quantum Sci. Technol. 9 025002[6]. Ajit Srivastava, et al Quadrupolar–dipolar excitonic transition in a tunnel-coupled van der Waals heterotrilayer. Nature Materials 22, 1478–1484 (2023)[7]. Hanlin Fang et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nature Communications 14 : 6910 (2023) [8]. S. Kolkowitz et al. Temperature-Dependent Spin-Lattice Relaxation of the Nitrogen-Vacancy Spin Triplet in Diamond, Phys. Rev. Lett. 130, 256903,2023[9]. Yunan GAO, et al. Bright and Dark Quadrupolar Excitons in the WSe2/MoSe2/WSe2 Heterotrilayer. Phys. Rev. Lett. 131, 186901,2023[10]. Tim Schrö der, et al. Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures. Phys. Rev. X 13, 011042 , 2023 attoDRY800桌面式光学低温恒温器 部分国内用户单位:相关产品1、低震动无液氦磁体与恒温器-attoDRYhttps://www.instrument.com.cn/netshow/SH100980/C377018.htm
  • 中国铁基高温超导研究团队:比拿奖更重要的是贡献
    &ldquo 拿奖既是荣誉,也是负担。拿了奖很不好意思,那么多人做了贡献,我只是替大家拿奖杯&rdquo ,73岁的中国科学院院士赵忠贤说着,看了看围坐在身边的同伴。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中科大&rdquo )研究团队,因在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面有突出贡献,10日在北京获得2013年度国家自然科学一等奖。在此之前,该奖已连续空缺3年。   通过国家科学技术奖励工作办公室了解到,超导是21世纪能源领域战略性的技术储备之一。物理所和中科大研究团队经过长期积累与合作,首次突破麦克米兰极限温度(40K),确定铁基超导体为新一类高温超导体,为促进凝聚态物理学科发展和超导应用的实现做出了先驱性和开创性的贡献。   然而在受访时提起学科贡献,研究团队便有挥之不去的遗憾。他们说,日本化学家细野秀雄在2008年2月报道临界温度26K的LaFeAsO1-xFx超导体,从时间节点来看确实比中国先行一步。   &ldquo 当时我们也在进行制备工作,由于种种限制,没能冲上去&rdquo ,贡献代表之一、常年从事相关工作的超导国家重点实验室SC10研究组组长陈根富懊恼地说,他曾在2007年尝试制备高品质的超导单晶样品。   赵忠贤亦透露,团队早于1994年就开始着手研究类似于铁基超导体的结构,但因未能大胆尝试铁金属而错失良机。&ldquo 所以当日本学者有所发现时,我们不会再丢失机会,就毫不犹豫地继续做&rdquo ,他说。   受此精神鼓舞,同时基于20多年的积累,中国铁基超导研究成果逐渐形成&ldquo 井喷&rdquo ,其中包括此次得奖的中科大陈仙辉研究组和物理所王楠林研究组&mdash &mdash 他们同时独立观测到43K和41K的超导转变温度,证明铁基超导体是高温超导体。国际刊物《Science》(科学)撰文称&ldquo 在凝聚态物理领域,中国已成为一个强国&rdquo 。   &ldquo 现在但凡有关铁基超导体的国际会议必有我们团队的人参与,我们每隔几天就会有崭新的成果呈现给学术界&rdquo ,赵忠贤自豪地说,他们也与美国普林斯顿大学等国外机构开展合作。   此外,铜氧化物高温超导体本已应用于科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学及航空航天等领域,但它们是陶瓷性材料,复杂的制作工艺使其大规模应用受到限制。赵忠贤表示,在工业上更易于制造的铁基超导体势必在上述领域发挥功效,比如改善通话质量、制造计算机芯片、改进磁悬浮列车等。   值得一提的是,物理所早在1989年就曾以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖,赵忠贤也是其中一员。回忆往昔,他感慨因该学科一度遇到瓶颈,致使一批优秀人才无奈离开,&ldquo 真想让每一位曾从事超导研究的贡献者都得到一枚勋章&rdquo 。   &ldquo 如今超导研究重掀热潮,又有一批优秀的年轻人加入科研队伍&rdquo ,赵忠贤寄语他们能扎扎实实做好本职工作,&ldquo 安得下心、沉得住气、耐得住寂寞&rdquo ,让超导研究牢牢扎根中国。   追溯超导研究历史,已有10人获得了5次诺贝尔奖,中新社记者顺势将&ldquo 诺贝尔奖情结&rdquo 的话题抛给研究团队。   &ldquo 我不愿谈这件事&rdquo ,赵忠贤低声说,他不想基于诺贝尔奖评判工作,&ldquo 能否拿诺贝尔奖,应该是水到渠成、水涨船高&rdquo ,更重要的是不断拿出原创高质量工作,不再出现遗憾。   坐在他旁边的获奖者代表之一、物理所研究员方忠也补充道,&ldquo 科学研究有时跳跃,有时曲折,很难想象一步到位&rdquo 。他说,团队基于兴趣,为科学发展和社会进步而埋头科研,&ldquo 拿奖是后期的认可,有了积累自然会得到国际认可&rdquo 。
  • 铁基高温超导材料研究取得重要进展
    近日,中国科学技术大学合肥微尺度物质科学国家实验室王征飞教授与美国犹他大学刘锋教授,清华大学薛其坤院士、马旭村研究员,中科院物理所周兴江研究员合作,首次发现了铁基高温超导材料中的一种新型一维拓扑边界态,该成果在线发表于《自然—材料》杂志。  自然界中至今还没有发现拓扑超导材料,如何设计寻找拓扑超导材料已成为研究人员关注的焦点。以往的研究思路是借助外延生长将拓扑材料放置在超导材料上或将超导材料放置在拓扑材料上,通过邻近效应实现拓扑超导体。但这种复合材料对于生长工艺的要求十分苛刻,阻碍了拓扑超导材料研究的发展。  研究人员以新型高温超导材料FeSe/SrTiO3为研究对象,结合理论计算、扫描隧道显微镜和角分辨光电子能谱,系统地研究了其反铁磁电子构型,并在实空间观测到自旋—轨道耦合所打开的拓扑能隙中一种新型一维拓扑边界态的存在。该研究工作揭示了FeSe/SrTiO3中同时存在的超导与拓扑两种特性,为探索单一材料高温拓扑超导体和马约拉纳费米子开辟了新途径。同时该工作也有助于进一步理解FeSe/SrTiO3的高温超导机制,对于推动铁基高温超导材料的机理研究具有重要意义。
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。   这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。   物理学中的璀璨明珠,未来应用的希望之星   超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。   在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。   也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。   这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。   中国成果震动学术界   物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。   是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。   为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。   2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。   高温超导的研究基地   物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。   中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。   铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。   机遇和有准备的头脑   铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。   物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。   基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!   突破极限,勇攀新高   由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。   为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。   中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。   物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。   截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献   在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。   当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。   丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。   任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。   王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。   就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。   民生超导,强国超导   百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。   习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
  • 铁基高温超导成果终结自然科学一等奖3年空缺
    图为赵忠贤研究组。 赵忠贤院士的两位研究生正在讨论实验数据。   正在举行的2013年国家科学技术奖励大会上,中国科学院物理研究所/中国科技大学&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质的研究&rdquo 获2013年度国家自然科学一等奖。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。   自2000年起,国家自然科学一等奖13年里有9次空缺,目前已连续空缺3年。1989年,物理研究所&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 曾获当年国家自然科学一等奖。   ■ 事实+   什么是&ldquo 铁基高温超导&rdquo ?   超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。   物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。   中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。   在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。   物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。1989年,物理研究所&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 就曾获当年国家自然科学一等奖。   五位获奖科学家成果丰硕   上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈,国际上的相关研究也进入低谷。但超导研究所的研究人员们一直坚持在高温超导研究领域默默耕耘。   这些年来,铁基超导体系不断产出优秀论文,引起了强烈的国际反响。物理所的靳常青找到了第三种全新的以LiFeAs为代表的111体系超导体,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。   丁洪放弃了美国波士顿学院的终身教授职位,毅然回国后的第二天就投入到了铁基超导的研究当中。他首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。   任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。   王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。   在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们反复强调说,自己只是中国科研人员中一个最最普通的集体。   截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果被众多国际知名学术刊物专门评述或作为亮点跟踪报道。   著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo
  • 张定、薛其坤研究团队在高温超导机理研究中取得重大突破
    自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十五年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题,如配对对称性上也尚未达成共识。针对配对对称性这一核心科学问题,清华物理系张定副教授、薛其坤教授带领的研究团队与国内外同事合作,通过制备具有原子级平整界面的高质量约瑟夫森结,发现铜氧化物中s-波配对占主导地位。这个结果颠覆了铜基高温超导是d-波配对的主流认识。该工作不但是铜氧化物高温超导研究的一个重大进展,同时也为破解高温超导机理这一科学难题指明了正确方向。该研究成果以“转角超薄铋锶钙铜氧约瑟夫森结中的s波配对”(Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes)为题在线发表在7月15日的《物理评论X》(Physical Review X)上。超导作为一种宏观量子现象,其量子态的波函数在理论上可以分为s波、p波和d波等。与氢原子波函数的空间分布相似,s波超导各向同性,角动量量子数为0,而p波和d波的超导波函数具有空间各向异性。其中,d波的角动量量子数为2,其振幅的空间分布像四朵花瓣一样(以dx2-y2波为例),而且从一个花瓣转向近邻花瓣时会发生由相位引起的变号。相比于常规超导体的s波配对,多数人认为铜氧化物超导具有d波配对对称性。然而,这一观点也受到了一系列新的挑战。比如,薛其坤教授团队利用扫描隧道镜直接测量铜氧化物的超导层时发现其超导能隙符合s波超导的U型,而非d波的V型。不过,区分s波与d波的最关键信息来自于超导波函数的相位,即前述的变号行为。此前人们通过两个或三个超导体组成花瓣平面内的约瑟夫森耦合开展了相位测量。但是,将多个晶体进行横向的拼接,往往存在拼接处—晶界—的晶格畸变、多晶面交替出现、化学配比剧烈变化等问题,这都使得实验结果存在着不确定性。图1 高温超导转角约瑟夫森结原子结构示意图。图中蓝、绿、红、黄、黑色小球分别代表铋、锶、钙、铜、氧原子。上半部分半个原胞相对下半部分旋转45度。右侧插图表示s波配对中相位在空间中保持相同符号。相比于此,由于铜氧化物超导具有二维层状结构,将其沿纵向拼接而成的约瑟夫森结就有望形成原子级平整的界面。以最典型的铋锶钙铜氧高温超导体为例(图1),该铜氧化物具有层状结构,纵向由超导的铜氧层与不超导的铋氧/锶氧层交替堆叠而成。纵向拼接而成的约瑟夫森结是判定配对对称性中相位的一种理想结构。其原理是,如果将两个d波超导体沿垂直于其d波花瓣平面的方向即纵向进行约瑟夫森耦合时,其耦合强度将在两个超导体相对旋转45度时下降到零,而两个s波超导体在此情况下仍然存在约瑟夫森耦合。过去,人们曾构筑过这样的纵向约瑟夫森结对铜基高温超导的相位问题开展过研究,但没有得到一致的结果:有的实验支持s波,有的支持d波。造成这个结果的主要原因是两个超导体构成的约瑟夫森结的界面质量不够高,而且实验结果中混入了其它约瑟夫森耦合的信号—单边的超导体中也存在本征的纵向约瑟夫森耦合。因此,制备原子级平整、宏观均匀的单一约瑟夫森结是关键。张定副教授、薛其坤教授带领研究团队成功制备出了超薄的具有原子级平整界面的高质量约瑟夫森结,并且能将两边超导层的相对转角进行精确地控制。在这些高质量样品中,他们观察到参与隧穿过程的只有相对发生旋转的两个超导层,避免了本征约瑟夫森结造成的复杂性。通过这种高度精确人为可控的相位敏感测量,他们发现在相对角度旋转到45度时,两片铋锶钙铜氧超导在纵向仍然存在约瑟夫森耦合,而且耦合强度与转角为0度时可比拟,这说明配对对称性是s波。这个结果清楚表明,目前主流的d波配对理论并不适用铋锶钙铜氧高温超导体系。如果这一实验得到进一步验证,并且推广到其它铜氧化物高温超导体系,那么这将是三十多年高温超导机理研究的一个转折点,为最终解决高温超导机理走出了最关键的一步。为了最终确认s波配对对称性,研究团队目前正在瞄准原子极限下两个单层铜氧化物超导间的约瑟夫森耦合——进行强力攻关。这一突破的取得是团队成员潜心攻关和精诚合作的结果。北京量子信息科学研究院(量子院)助理研究员朱玉莹(清华大学物理系原博士后)作为文章的共同第一作者,在加入团队后的四年中未发表一篇作为主要作者的文章,心无旁骛、刻苦攻关。她与清华大学物理系博士生廖孟涵(共同第一作者),在开展该研究的五年内,利用美国布鲁克海文国家实验室Genda Gu教授研究组提供的最优质量的晶体,共尝试了近800多个薄膜样品,制备和测试了300多个具有不同转角的约瑟夫森结。为了验证人工约瑟夫森结的质量,需要获得原子结构的信息,这得到了中科院物理所谷林研究组的全力支持。物理所张庆华副研究员(共同第一作者)对数十个约瑟夫森结样品开展了精细的结构表征,证明了其具有宏观大范围原子级平整的晶界。参与该研究的合作者还包括清华物理系博士生刘耀伍与柏中华、季帅华教授、姜开利教授、马旭村教授,量子院解宏毅副研究员,物理所孟繁琦博士生,美国布鲁克海文国家实验室Ruidan Zhong和John Schneeloch等。该工作得到了国家科技部、自然科学基金委员会、清华大学低维量子物理国家重点实验室、北京未来芯片技术高精尖创新中心等的经费支持。论文链接:https://doi.org/10.1103/PhysRevX.11.031011
  • 世界首台兆瓦级高温超导感应加热装置!!!
    由我国研制的世界首台兆瓦级高温超导感应加热装置,日前在黑龙江正式投用。该装置可以利用加热新技术,对大尺寸金属工件快速高效加热,节能减排,带动企业高质量发展。这台兆瓦级高温超导感应加热装置正在处理一块重达500多公斤的铝锭。过去,温度从20℃加热到403℃,至少需要9个小时。现在,通过应用这个装置,只需十分钟就可以完成。据了解,高温超导感应加热装置是利用了超导体在低温下可实现稳定的零电阻超导态的特性,不仅可以用于铝、铜等非铁磁性有色金属型材挤压、锻压,还能用于熔炼、高端合金热处理等。与原来普遍采用的电阻炉相比,这套装置能将传统工频感应炉的能效转化率提升一倍,节能50%,碳排放减少一半以上。
  • 德国SciDre高温高压光学浮区法单晶生长系统助力超导材料探索及机理研究
    高温铜氧化物的超导电性是凝聚态物理中的一个重要问题。围绕该研究,目前国内外科学家在该领域已经做了大量工作,其中包括研究具有相似结构的替代过渡金属氧化物中的三维电子机制。遗憾的是,在这些类似的化合物中没有一种呈现超导性。 近期,美国阿贡实验室科研人员研究发现低价准二维三层化合物Pr4Ni3O8没有出现La4Ni3O8中的电荷条纹序,取而代之的是从而表现出金属性。X射线吸收光谱表明,金属Pr4Ni3O8在费米能之上的未被占据态具有低自旋构型,具有明显的轨道化和明显的dx2-y2特征,这正是铜氧化物超导体的重要特点。密度泛函理论计算也证实了这一结果,并表明dx2-y2轨道在近Ef能占据态中也占主导地位。因此,Pr4Ni3O8属于空穴掺杂铜氧化物的3d电子机制,它是迄今为止报道的接近铜氧化物超导的类似材料之一,如果可以实现电子掺杂则有望在该体系中实现高温超导性。相关结果发表在Nature Physics(Volume 13, pages 864–869 (2017), DOI: 10.1038/NPHYS4149)。 该项研究工作所用R4Ni3O10 (R=La,Pr)单晶样品由德国SciDre公司推出的HKZ系列高温高压光学浮区法单晶炉成功制备。其中,La4Ni3O10单晶生长采用20bar氧压条件,Pr4Ni3O10单晶生长采用140bar氧压条件,O2流速为0.1L/min;R4Ni3O8单晶样品由R4Ni3O10单晶样品去除O2获得。高温高压光学浮区炉垂直式双镜设计加热区原理图 德国SciDre公司推出的高温高压光学浮区法单晶炉高可实现高达3000℃高温,高压力可达300bar,多种规格可根据用户需求提供选择,该单晶生长系统一经推出便备受国内广大同行青睐!目前中国科学院物理研究所、中国科学院固体物理研究所、北京师范大学、复旦大学、上海大学、南昌大学以及中山大学等众多用户均选择了该设备!
  • 电阻为零的超导微处理器问世 能效高出半导体同类产品八十倍
    根据最近的一项估计,目前数据中心的耗能已高达全球电力的2%,这一数字在10年内有望攀升到8%。为逆转这种趋势,科学家们正考虑以全新的方式简化数据中心的微处理器。日本研究人员将这一想法发挥到了极致,创建了一种电阻为零的超导微处理器。基于AQFP的MANA微处理器。图片来源:IEEE频谱网站《IEEE固态电路》杂志报道,这种超导微处理器可为更高能效的计算能力提供潜在的解决方案,但新设计目前需要低于10开尔文(或—263℃)的超冷温度。研究人员创建的这种绝热超导微处理器,从原理上讲,在计算过程中不会从系统中获得或损失能量。这个新的微处理器原型称为MANA(单绝热集成体系结构),是世界上第一个绝热超导体微处理器。它由超导铌组成,并依赖于称为绝热量子通量参量电子(AQFP)的硬件组件。每个AQFP由几个快速作用的约瑟夫森结开关组成,这些结开关只需很少的能量即可支持超导体电子设备。MANA微处理器总共由2万多个约瑟夫森结(或1万多个AQFP)组成。研究人员解释说,用于构建微处理器的AQFP已经过优化,可以绝热运行,从而可在相对低的时钟频率(高达10GHz左右)下恢复从电源中汲取的能量。与传统超导电子产品数百吉赫兹的运行频率相比,这个数字要低得多。但这并不意味着MANA达到了10GHz的速度。实验显示,MANA的数据处理部分可在高达2.5GHz的时钟频率下运行,这使其与当今的计算技术相当。这种铌基微处理器的入门价格取决于低温和将系统冷却至超导温度的能源成本。不过,即使将冷却成本计算在内,与最先进的半导体电子设备(如7纳米鳍式场效应晶体管)相比,AQFP的能源效率仍然高出约80倍。由于MANA微处理器需要液氦水平的低温,因此它更适合于使用低温冷却系统的大规模计算基础架构,例如数据中心和超级计算机。
  • 中美科学家实现“可定制化裁剪”单壁碳纳米管,或催生室温下的超导体,为量子计算机和量子通信带来广阔前景
    在北京化工大学、和美国阿克伦大学读完本硕博之后,林志伟历经三站博士后研究。除第一站过渡性博士后仍在阿克伦大学,其余两站分别在美国哥伦比亚大学、美国国家标准与技术研究院(NIST,National Institute of Standards and Technology)完成。2022 年 1 月,林志伟回国加入华南理工大学前沿软物质学院担任教授。▲图 | 林志伟(来源:林志伟)时隔数月,其担任第一兼通讯作者的论文,发表在 Science 上。研究中,他利用 DNA 首次实现了单壁碳纳米管的可控有序修饰。对于发展超导材料和量子材料,将起到重要的推进作用。据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。正如美国马里兰大学化学与生物化学系教授 YuHuang Wang教授在同期 Science 评论文章所指出的:美国物理学家威廉雷透(William A. Little)在 50 年前提出了经典的室温超导材料的分子模型(即 Little 模型)。然而,经过几十年的努力,人们一直无法在实验上设计出符合 Little 模型的超导分子。而该成果为实现 Little 模型迈出了重要一步,是里程碑式的发现。量子材料,是指由于其自身电子的量子力学特征,而产生奇异物理特性的材料。在发展变革性的数据存储、数据处理、通讯、以及计算机相关技术上具备巨大潜力,并可能产生惊人的经济效益。2016 年,美国能源部确立以量子材料为优先发展方向的变革性能源相关技术。由于具有独特性能,单壁碳纳米管可用于构建一维量子材料,但其缺点是量子产率较低。通过化学修饰,在sp2结构的单壁碳纳米管中引入缺陷构筑量子缺陷,可大大提高量子产率,这让单壁碳纳米管成为很好量子发光材料。可以预见,其将在量子计算机、量子通信等领域拥有广阔的应用前景。像服装设计师一样,"裁剪"单壁碳纳米管的化学结构超导材料,是指电阻为零的材料。在传输电流的时候,既不损失能量也不会产生热量。目前的超导材料都需要在很低的温度下(-100℃ 以下)才能产生超导性能。若发展出室温的超导材料,则有望用于制备超快计算机、超小的电子设备、高速磁悬浮列车等。如前所述,威廉雷透(William A. Little)曾首次提出室温超导体的分子模型——Little 模型。过去 50 年,学界已开展大量实验,但一直未能设计出其设想的超导分子。直到 2016 年,科学家提出碳纳米管或有望实现 Little 室温超导材料,但是得对碳纳米管的结构进行精确可控的化学修饰。可以说,这又是一项难于逾越的重大难题。碳纳米管(Carbon Nanotubes,CNTs),于 1991 年由日本物理学家饭岛澄男(Sumio Iijima)发现。据维基百科介绍,"碳纳米管是一种管状的碳分子,管上每个碳原子采取 sp2杂化,相互之间以碳-碳 σ 键结合起来,形成由六边形组成的蜂窝状结构,以作为纳米碳管的骨架。"按照管子的层数不同,碳纳米管可分为单壁碳纳米管(SWCNT,Single-walled carbon nanotubes)和多壁碳纳米管(MWCNTs,Multi-walled carbon nanotubes)。单壁碳纳米管的结构简单,均匀一致性好,而且缺陷少、 性质稳定,受到的关注更多。鉴于此,自碳纳米管被发现以来,一直是热点研究材料。▲图 1 | 单壁碳纳米管(来源林志伟)凭借优异的光学、电学、力学、热学等性能,单壁碳纳米管已被广泛用于电子器件、光学仪器、锂离子电池、航空航天材料、疾病检测等领域。对单壁碳纳米管进行化学修饰,可以改变它的晶格结构电学性能和光学性能也会随之改变。这一手段对于发展有机超导材料、量子材料等新型材料具有重大意义。然而,在单壁碳纳米管中,所有碳原子的化学环境均为一致,存在着 sp2 杂化(sp2hybridization),即"一个原子同一电子层内由一个 n s 轨道和两个 n p 轨道发生杂化的过程"。因此,对单壁碳纳米管实现可控化学修饰,是领域内长期存在的一项重大挑战。针对此,林志伟与 NIST 的 Ming Zheng研究员,借助 DNA 让单壁碳纳米管,得以实现可控的有序修饰(图 2)。林志伟指出:"精确可控的修饰方法,让科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计单壁碳纳米管化学结构,以实现特殊的性能(例如超导性能和量子性能等),进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。"▲图 2 | 有序可控修饰的单壁碳纳米管(来源:林志伟)近日,相关论文以《DNA 指导的碳纳米管晶格重构》(DNA-guided lattice remodeling of carbon nanotubes)为题,发表在 Science 上。林志伟兼任第一和通讯作者,Ming Zheng 研究员为共同通讯作者。(来源:Science)其中一位审稿人认为,该工作实现了一个宏大目标。此前,很多学者反复尝试却无功而返。因此,此次成果是领域内的重大进展。另一位审稿人指出,常温超导材料是无数科学家长期追寻的远大目标。该论文提出了有序可控地修饰单壁碳纳米管的方法,为制备常温超导材料提供了一种潜在解决方案。心情"忐忑"地给美国科学院院士发邮件据介绍,参与此次合作的 Ming Zheng 团队,长期致力于 DNA-碳纳米管复合材料方面的研究,尤其在 DNA 分离高纯度碳纳米管方面有着深厚积累。但是对于碳纳米管的化学修饰,团队的经验稍有不足。在加入 NIST 之前,林志伟本人并没有碳纳米管领域的工作经验,但在大分子精确合成、特别是在富勒烯(英文名为 Fullerene,又名C60)的精确修饰上,已经积累多年经验。C60是一种由 60 个碳原子组成的球型分子,它和碳纳米管同属于碳纳米材料的同素异形体。两者在结构和性能上,有一定的相似性。当有学科背景互补的人在一起讨论,很容易碰出"火花"。结合 NIST 团队在 DNA-碳纳米管复合材料、以及林志伟 C60 精确合成方面的背景,他们很快在科研想法上达成共识,提出了利用 DNA 来调控碳纳米管化学修饰的思路,并借此解决碳纳米管有序可控修饰的艰巨任务。接下来便是正式立项和开展实验。确定研究思路之后,如何选择 DNA 的序列、碳纳米管的种类,以及如何发展高效的化学修饰方法,成为新的工作重点。基于前期积累,该团队选取含有鸟嘌呤碱基(Guanine,G)的DNA 序列,将其缠绕到多种单手性单壁碳纳米管的表面,通过调控单壁碳纳米管种类、DNA 序列和构象,实现了预先定制的反应位点。在 525nm 光照下,名为玫瑰红(Rose Bengal)的光敏剂得以激发,借此产生了单线态氧,进而引发鸟嘌呤碱基与单壁碳纳米管发生反应。之后,课题组利用吸收光谱、光致发光光谱、拉曼光谱,对产物结构进行表征(图 3)。▲图 3 | 单壁碳纳米管与 DNA 的反应示意图和光谱表征(来源:Science)为了研究反应机理,以及反应之后单壁碳纳米管晶格中的反应位点的空间分布,该团队设计出一系列鸟嘌呤碱基含量相同、鸟嘌呤碱基相对位置不同的 DNA(2G-n)。结果发现,在拉曼、荧光光谱中与单壁碳纳米管晶格缺陷相关的峰强里,C3GC7GC3(2G-7)和(8,3)单壁碳纳米管的反应产物出现了极小值。这表明,单壁碳纳米管中形成了有序排列的晶格缺陷,即有序排列的反应位点(图 4)。▲图 4 | 筛选 DNA 序列并在单壁碳纳米管中构筑有序的反应位点(来源:Science)紧接着便是寻求合作和交叉验证。虽然通过上述光谱分析,该团队首次证实了有序可控修饰的单壁碳纳米管结构。但是这一结论太过重要,他们反复告诫自己必须非常谨慎对待,在论文发表前务必借助多渠道,对结论进行交叉验证。因此,课题组怀着"忐忑"的心情给美国科学院院士、弗吉尼亚大学哈里森生物化学和分子遗传学系的爱德华H埃格尔曼(Edward H. Egelman)教授写信,以寻求合作。埃格尔曼教授是冷冻电镜方面(cryo-EM,Cryogenic electron microscopy)的顶尖学者,在利用冷冻电镜解析 DNA-蛋白质等复杂生物分子结构方面有着深入研究。之所以怀着"忐忑"心情,是因为该团队之前和埃格尔曼教授并未有交集,而且后者的主要研究兴趣在生物学,很少涉及材料科学。那么,对方是否愿意合作?课题组表示比较担心。不过,令人激动的是埃格尔曼教授表现出极大的兴趣。双方很快就定下合作方式和目标,即利用冷冻电镜进一步验证有序可控的碳纳米管的结构。有了冷冻电镜的结果之后(图 5),课题组满怀信心地把论文投到 Science,并获得期刊主编和审稿人的高度赞赏。论文接收后,埃格尔曼教授接受 Science Daily 的采访时表示:"虽然我们经常使用物理学中的工具和技术来研究生物学,但是我们这次的工作表明,生物学中开发的方法实际上也可以用于解决物理学和工程学中的问题。科学研究常常会产生预料之外的结果,这正是科学令人着迷的原因所在。"▲图 5 | 冷冻电镜重构有序修饰的单壁碳纳米管结构及反应机理示意图(来源:Science)力争在有机超导和新型量子材料上,实现相关应用和很多在新冠大流行中完成的科研成果一样,如果没有疫情,论文或将更早面世。2019 年 9 月,研究正式启动。2020 年 1 月的一天,林志伟正在做实验,被临时要求必须马上离开实验室,整个马里兰州(NIST 所在的州)进入紧急隔离状态。临走时他和同事聊天,以为最多两个星期。两周很快过去,实验室并未解除隔离。之后进入漫长的等待。1 个月、2 个月、6 个月...... 幸运的是,实验室重新开放后,课题进展得很快。尽管此次研究诞生了符合 Little 模型的超导分子。但是,其超导方面的性能尚未得到真正的验证。针对这些新型单壁碳纳米管材料的性能表征,并揭示材料结构与性能关系,是该团队的后续重点。另一方面,他们还计划将含有不同结构和功能的化学官能团,通过有序可有的修饰方法,引入到单壁碳纳米管中,从而设计出结构更精确、性能更多样的单壁碳纳米管,力争在有机超导和新型量子材料上实现相关应用。目前,林志伟课题组主要围绕高分子、DNA、碳纳米管,致力于新型复合与杂化功能材料的精确设计、精准组装和先进应用等方面的研究。课题组常年招募博士后、博士和硕士研究生。
  • 氢我一下就超导
    本文由知社学术圈(zhishexueshuquan)授权转载 【摘 要】近日,中国人民大学于伟强教授研究组和清华大学于浦教授(Quantum Design产品用户)研究组与国内同行合作,利用离子液体栅技术实现了铁基超导材料的氢化,并成功获得非易失性电子掺杂下的超导电性。该工作次将FeS材料的超导转变温度由5K提高到18K,突破了铁基超导核磁共振实验长久以来的困境,开辟了超导电性探索的新途径。 相关成果以题为“Protonation induced high-Tc phases in iron-based superconductors evidenced by NMR and magnetization measurements”发表在了2018年1月1日出版的Science Bulletin上 (Science Bulletin 63, 11-16(2018))[1]。为什么氢化能够实现超导?该研究方法的出现意味着什么? 罗会仟 | 中国科学院物理研究所 副研究员 科普作家【1、氢与超导结亲情】氢,是自然界轻的元素,仅含有一个质子和一个电子。氢是自然界重要的元素之一,因为氢和氧构成了水,才孕育了万物生灵。氢也是科学研究重要的起点,量子力学的成功,正是从氢原子起步的。超导,是一种神奇的宏观量子凝聚现象,在一定温度以下,某些材料电阻会降为零,同时出现完全抗磁性。超导的本质来源于材料中电子的两两配对,正所谓“男女搭配、干活不累”,配对的电子能够实现无阻碍的导电。只是,对于大部分超导材料,都要降到足够低的温度之下才能超导,称之为超导临界温度。如何提高超导临界温度,以及如何理解超导微观机理,成为超导研究的核心目标[2]。长久以来,科学家执着地认为氢单质就有希望实现室温下的超导电性,但条件是其苛刻的——需要在超高压力下将其金属化,这个压力约等于地球内部压力,在百万个大气压之上!实现如此高的静止压力只有一个办法,就是冒着爆炸的危险,用两块金刚石对可劲儿压。虽然有科学家宣称找到了金属氢,然而却在测定其超导电性过程中不慎失手打碎了金刚石[3]。德国科学家也在氢的硫化物中找到了203K的超导电性,但需要在200万个大气压下[4]!如此大得不得了的压力,谈应用前景是几乎不可能的了。氢与超导之间千丝万缕的联系,始终萦绕在科学家的脑海。 图1. 超高压下的金属氢[3] 【2、中式炒菜下的高温超导】超导材料的探索,被科学家戏称为“中式炒菜”——把几类元素单质或化合物经过一定的配比混合,经过高温烧结等工序,就能得到超导体。正如鲁、川、粤、苏、浙、闽、湘、徽等八大菜系一样,超导材料也因为炒菜原料和方式不同,有着不同的体系,包括金属单质、合金、氧化物、硫化物、有机物等多种形式的材料。这些“菜品”口味不一,物理性质千差万别,超导临界温度也各有千秋。上世纪80年代,一类新的铜氧化物超导体被发现,因为它们突破了当时理论预言的40K限,被称之为“高温超导体”[2][5]。历经30余年,许多铜氧化物高温超导体被发现,大地推进了超导研究的历史进程。到了2008年,新一类高温超导体再次被发现,它们是“铁基超导体”家族,以铁砷化物、铁硒化物和铁硫化物为主,块体临界温度可达55K,单原子层薄膜临界温度突破了65K,并且有可能走向更高[6]。高温超导貌似一个普遍物理现象,可人们却仍不知甚解。两类高温超导体都有一个共同特征,那就是需要高超的炒菜手艺。不仅仅是简单的原料混合,也需要把握火候(温度)和工艺。难之处在于,需要加一定的诸如糖、盐、醋、酱油、味精、花椒等调料,把口味调对了,才能出现的超导。这个调料,就是化学掺杂,通过元素替换或者原子缺陷,人为给增加电流的载体——电子或空穴,低温下的大量配对才会出现超导。铜氧化物高温超导体的母体本身是一个带有反铁磁性的缘体,然而掺杂可以将其调到金属导体状态,再降温后就成为超导体。如果炒得一手好菜,超导临界温度在常压下高能达到135K左右,离室温300K还有一定距离,然已经比单质金属要“有滋有味”多了(如金属铝为1.4K、金属汞为4.2K、金属铌为9K)[7]。调料加多了,也有烦恼。吃起来很香很美很有味儿,却难以搞明白是哪个调料起到了关键作用,或者调料复合下究竟是一个什么机制。因为载流子掺杂效应其复杂,比如改变材料的晶体结构、磁性、电性、热力学性质等等,许多现象已经超越了我们已有的理论框架体系。高温超导的微观机理问题,多年来也一直是个科学之谜,成为了凝聚态物理皇冠上的耀眼明珠。 图2. 铜基和铁基高温超导体的掺杂相图[2] 【3、喝水与酗酒的超导体】在其他科学家满头大汗忙着炒菜寻找超导体的时候,某些人也剑走偏锋,玩起了蒸包子超导体和酗酒超导体。例如一类钴氧化物本身难以超导,但是经过蒸笼里历练历练,把水分掺进去之后,它就超导了[8]!又如,一类铁硫化物材料超导性能往往很差,把它泡在各种酒里面喝高了之后,它就超导了!而且这家伙还酒品高雅,喜欢法国某酒庄某年份的某品牌红葡萄酒,光喝酒精反而不行[9]!无论是水还是酒,里面隐藏的奥秘,或许是传说中的氢?图3. 喝水的超导体NaxCoO2和喝酒的超导体FeTe0.8S0.2[8][9] 【4、洗澡蟹里出超导】 话说喝水和喝酒都能超导,给某些材料洗洗澡,是否也可以超导了呢?就像某湖水里的大闸蟹,洗洗涮涮再贴个标签,立马身价倍增,已是众所周知的秘密。给铁基超导材料洗洗澡,结果会怎么样?中国科学家还真就这么干了!确切地说,是给铁硫化物泡了个温泉。该泉水可不一般,是一堆“离子液体”,里面充满了多种带电离子。用铂丝做阳,要泡澡的材料做阴,加上栅电压。于是,离子液体里的氢离子,就在电作用下,呼啦啦涌到材料表层,甚至渗入内部。氢离子(质子)带正电,注入到材料中后为保持电中性,大量电子也就涌入到材料内部,从而使得材料实际上掺杂了更多的电子。电子掺杂让原本只有5K超导的FeS变成了18K超导,而FeSe0.97S0.03则出现了42.5K的超导,甚至完全不超导的BaFe2As2母体材料,也出现了20K的超导!原本需要进行元素替换的化学掺杂,这里通过“洗澡”方式注入氢离子,也同样实现掺杂后的超导,而且材料的晶体结构并未发生改变。真是“氢我一下就超导”! 【5、氢云之上有玄妙】 利用栅电压来改变材料中的载流子数量/浓度,并不是什么新的发明。实际上,半导体材料玩的就是这一套。在半导体PN结里,通过偏压控制电流通过或者不通过可以做逻辑电路元件,通过控制电子-空穴对湮灭可以实现LED光学元件[10]。必须注意的是,超导体中的载流子浓度,与半导体相比,可是天壤之别,前者要大7-8个数量。毫无疑问,载流子浓度越高,参与导电的粒子就越多,导电性才会越好。指挥一支敢死队的方法,不一定适用于千军万马对阵。利用离子液体或离子固体门电压调控,也是可以调节超导体表面的电子浓度的。中国科学家前几年就发现,FeSe薄层材料原本临界温度只有9K,在离子门调节载流子后,迅速提升到了46K[11]。这种技术靠的是在材料表面覆盖一层离子,通过偏置电压让离子聚集在表面,体内电荷就会重新分布,造成掺杂效应。产生的效应尺度有限,撤掉偏压会失去效应,调控掺杂浓度有限,是该方法的缺点。如果直接把离子打入材料内部呢?清华大学的于浦教授想到了电化学方法。干脆把材料当做电本身,在离子液体里加上电压,离子就会注入或离开材料,从而实现电子或空穴掺杂。经过摸索,他们先在氧化物材料实现了电化学离子注入。只要控制好温度和电压,就能无损害材料本身而调节其物性,并且过程是可逆的!中国人民大学的于伟强教授主要做核磁共振研究,多年以来的梦想就是实现高温超导体的注氢。因为核磁共振对同位素有大的选择性,高温超导体里面含有的元素要么不合适做实验,要么需要的同位素贵无比,注入核磁共振信号强的氢离子是合适不过了。于浦教授的方法和于伟强教授想法一拍即合,于是“二于配合”顺利把氢离子搞定进入超导体。图4. 注氢铁基超导实验原理、结果及主要研究人员:崔祎、于浦、于伟强等(于伟强提供)神奇的一幕就此揭开了,铁基超导的性能获得了大幅度的提升!同样“注氢超导”也是可逆的,且几乎不改变材料结构,同时可以撤离“洗澡水”依然保留超导。这意味着,该新型超导调控手段可以避免之前化学掺杂带来的麻烦,不仅为核磁共振,也为其他超导探测手段提供了连续可控的干净样品。无论是超导材料还是超导机理的研究,都将为此受益!目前,他们正在和国内的合作者一起,试图在更多的材料里面实现注氢超导,终将在攀登超导研究之峰上,开辟出一条崭新的道路! 【致谢】 感谢中国人民大学于伟强教授、清华大学于浦教授、Science Bulletin编辑邹文娟等人对此文的修改和帮助。 【参考文献】 [1]. Y. Cuiet al.,Science Bulletin 63, 11-16(2018) [2]. 罗会仟, 周兴江, 神奇的超导, 现代物理知识, 24(02), 30-39 (2012).[3]. R. P. Dias, I. F. Silvera, Science 355(6326), 715-718(2017).[4]. A. P. Drozdov et al., Nature 525, 73-76 (2015).[5]. J. G. Bednorz and K. A. Müller, Z. Phys. B. 64, 189 (1986).[6]. 罗会仟, 铁基超导的前世今生, 物理, 43(07), 430-438(2014).[7]. A. Schilling et al., Nature 363, 56-58(1993).[8]. K.Takada et al., Nature 422, 53-55(2003).[9] K.Deguchi et al.,Supercond. Sci. Technol. 24, 055008(2011).[10]. 黄昆, 谢希德, 《半导体物理学》, 科学出版社, 2012.[11]. B. Lei et al., Phys. Rev. Lett. 116, 077002 (2016).[12]. N. Lu et al.,Nature 546, 124–128 (2017). 【相关产品及链接】mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 中国科大成功实现超导体系“量子计算优越性”
    中国科学技术大学中科院量子信息与量子科技创新研究院潘建伟、朱晓波、彭承志等组成的研究团队与中科院上海技术物理研究所合作,构建了66比特可编程超导量子计算原型机“祖冲之二号”,实现了对“量子随机线路取样”任务的快速求解。根据现有理论,“祖冲之二号”处理的量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度比谷歌公开报道的53比特超导量子计算原型机“悬铃木”提高了6个数量级(“悬铃木”处理“量子随机线路取样”问题比经典超算快2个数量级),这一成果是我国继光量子计算原型机“九章”后在超导量子比特体系首次达到“量子计算优越性”里程碑,使得我国成为目前唯一同时在两种物理体系都达到这一里程碑的国家。相关论文发表在《物理评论快报》和《科学通报》上。图一:祖冲之二号量子处理器图量子计算机对特定问题的求解超越超级计算机,即量子计算优越性,是量子计算发展的第一个里程碑,达到该里程碑需要相干操纵50个以上量子比特。超导量子比特是国际公认的有望实现可扩展量子计算的物理体系之一。潘建伟、朱晓波、彭承志等长期瞄准超导量子计算领域,于2021年5月构建了当时国际上量子比特数目最多的62比特超导量子计算原型机“祖冲之号”,并实现了可编程的二维量子行走 [Science 372, 948 (2021)]。团队在“祖冲之号”的基础上,采用全新的倒装焊3D封装工艺,解决了大规模比特集成的问题,研制成功“祖冲之二号”,实现了66个数据比特、110个耦合比特、11路读取的高密度集成,最大态空间维度达到了1019。“祖冲之二号”采用可调耦合架构,实现了比特间耦合强度的快速、精确可调,显著提高了并行量子门操作的保真度。通过量子编程的方式,研究人员实现了对量子随机线路取样,演示了“祖冲之二号”可用于执行任意量子算法的编程能力。根据目前已公开的最优化经典算法,“祖冲之二号”处理量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度较谷歌“悬铃木”提高了6个数量级。量子计算优越性的成功演示标志着量子计算研究进入到发展的第二阶段,开始量子纠错和近期应用的探索。“祖冲之二号”采用二维网格比特排布芯片架构,直接兼容表面码量子纠错算法,为量子纠错并进一步实现通用量子计算奠定了基础。同时,“祖冲之二号”的并行高保真度量子门操控能力和完全可编程能力,有望在特定领域找到有实用价值的应用,预期应用包括量子机器学习、量子化学、量子近似优化等。图二:量子随机线路取样保真度随线路深度的变化及目前最快的超级计算机“富岳”完成相同任务需要的时间。上述项目受到了安徽省、上海市、科技部和中科院的支持。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501https://www.sciencedirect.com/science/article/abs/pii/S2095927321006733
  • 中美物理学家首次揭示铁基超导三维超导特性
    英国《自然》杂志发表中美物理学家联合研究的最新成果:在具有二维层状晶体结构的铁基超导体中发现超导态的“各向同性”。这是首次在二维层状的超导材料中报道三维的超导特性。该工作由浙江大学物理系长江特聘教授袁辉球利用美国洛斯阿拉莫斯国家实验室强磁场设备完成实验,铁基超导材料样品由中科院物理所王楠林小组提供,浙江大学物理系为论文第一作者单位。   高温超导形成机理是国际公认的一大挑战,科学家寄希望于寻找铜氧化合物超导材料以外的新型高温超导材料,进一步探索其形成机理。袁辉球在铁基超导材料发现后不久就开始关注这类新型超导材料的奇特物性。他通过采用脉冲强磁场等极端实验条件,极大地延伸了铁基超导材料的温度—磁场相图的研究范围,并发现了令人惊异的现象:铁基超导材料(Ba,K)Fe2As2在低温的上临界磁场几乎与外加磁场的方向无关,具有“各向同性”的特征。这是首次在二维层状的超导体中发现了超导态的各向同性,为揭示铁基超导材料的形成机理提供了重要的物理信息。铁基超导材料的这种奇特的超导特性是由其独特的电子结构所决定的。   袁辉球认为,这类铁基超导材料虽具有二维层状的晶体结构,但其电子结构可能更接近于三维,因此,维度的降低并不一定是形成高温超导的必备条件。此外,铁基超导材料也表现出许多与重费米子材料相类似的性质,特别是在磁与超导的相互作用方面,他还推测,铁基超导材料可能是连接低温的重费米子超导与高温铜氧化合物超导的一个重要桥梁。   《自然》杂志评审专家认为,这是超导研究领域一项非常独特而重要的发现,将对研究铁基高温超导形成机理具有重要意义。
  • 业界热议“室温超导”相关技术,未来几年国内超导产业有望迎来迅猛增长
    近日,“室温超导”热度持续走高。8月2日,天风国际证券分析师郭明錤表示,常温常压超导体的商业化尚无时间表,但是未来它将对消费电子领域的产品设计产生颠覆性影响,即便iPhone都能拥有匹敌量子计算机的运算能力。  从二级市场来看,超导相关概念股表现活跃。东方财富Choice数据显示,8月2日,超导概念股集体高开,中孚实业、百利电气等个股涨停,板块指数创今年以来新高。  “常温常压超导不需要特殊的温度和压力,是目前最有商用价值前景的超导体,如其落地则意味着可以为消费电子等更多产业带来巨大变革。”南京大学高性能计算中心高级工程师盛乐标在接受记者采访时表示,“常温常压超导材料将显著提升芯片的计算性能,促进量子计算、超导逻辑电路等发展,为计算机、手机等提供更高的电流密度和更低的能耗。”  如果常温常压超导材料取得突破,将在能源、计算等诸多领域产生变革,如可用于构建量子计算机等。  不过,目前室温超导体的相关研发工作仍在初期阶段。“从理论、实验,再到评审验证及量产,常温常压超导体的可行性落地仍有很长的路要走,同时其真正商业化还面临应用条件完善、技术路径变化、设计难度、成本等多重挑战。资本市场也要警惕过度炒作现象。”钧山董事总经理王浩宇对记者表示。  科技部国家科技专家周迪认为,超导体是一种比常规导体更为优越的无损耗导电材料。目前,常温常压超导体落地的主要难点在于超导材料和制备适配难度较大,多个机理的未知问题也有待解决。  对于“室温超导”的落地,相关上市公司虽集体持观望态度,但也将其视为重要的研发方向,并提前酝酿布局。  鑫宏业在投资者互动平台上表示,超导技术(高温、低温、常温)是未来电力输送的重要发展方向,是特种线缆未来的重点研发方向,公司会积极关注。九洲集团表示,超导技术可以提高电能传输的效率,降低能源损耗,因此可能会对电力设备制造业带来积极的影响。广电电气称,公司保持对重要新兴技术及领域的密切关注。永鼎股份则表示,公司在等待相关验证的过程。  根据贝哲斯咨询调研数据显示,2022年,全球超导体市场容量达405.93亿元,预测至2028年,全球超导体市场规模将会达到618.21亿元。  “重大装备、AI智造等领域急需的半导体材料、超导材料等是新材料产业重点发展方向。在自主化创新的推动下,未来几年国内超导产业有望迎来迅猛增长。”看懂经济研究院研究员袁博认为。
  • 21℃室温超导实现了?有它,你也能测!
    近日火爆全网的室温超导论文,再次将低温物理科研推到了大众的视野里。自昂内斯1911年发现汞金属的超导电性之后,各种超导材料的研究进入了爆炸式增长,从金属到合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体以及其他氧化物超导体等,超导温度也在不断提升。然而即便是常见的高温超导材料仍要接近液氮温度才能够实现,使得超导材料距离人们生活中大规模应用仍然存有相当的距离。而近日在美国物理学会春季会议,罗彻斯特大学的兰加迪亚斯团队宣布在1GPa压强下,在镥-氮-氢体系中实现了室温超导,使整个物理学界沸腾了。这篇工作也刊登于Nature期刊,3月8日在线发表。图1. 兰加迪亚斯在美国物理学会春季会议的报告 相比于之前的氢化物超导,此次氮掺杂镥氢化物超导存在两个惊人的发现:一是该超导材料的临界超导温度达到了21度,二是压力仅需要1万个标准大气压(1Gpa)。这与之前动辄上百Gpa压力的极端高温超导条件天差地别,具有极高的应用潜力。 如此震惊世界的发现,作者在进行超导判定时也非常谨慎,分别从电、磁、热三个维度进行了超导转变实验验证。氮掺杂镥氢化物随着压力的增加,会发生两次明显的可视相变,起初样品无超导性,呈现蓝色(I相)。随着压力增加到3kbar,样品进入超导相(II相),颜色也转变为粉红色。进一步提升到32kbar以上,样品再次进入一个无超导金属相(III相),样品颜色此时也转变为鲜艳红色。图2:镥-氮-氢体系超导与可视相变 对不同压力下的超导相进行电输运测量,零外场条件下,温度依赖的电输运测量表明,随温度下降,电阻会存在一个陡然下降至零的行为,超导转变宽度与转变温度的比值ΔT/ΔTC在0.005至0.036范畴,可以在GL理论的脏极限范畴解释。零外场下,V-I特性曲线在超导转变温度上下明显不同:超导转变温度之上,材料具有线性V-I响应,符合欧姆定律;超导转变温度之下,电压几乎不可测量,并具有非线性响应。图3. 镥-氮-氢体系温度依赖的电输运测量和V-I特性曲线 对于超导转变判定,除零电阻行为外,更为关键的是迈斯纳现象的发现。本文磁学测量方面,温度依赖的磁化强度曲线和M-H曲线基于Quantum Design PPMS系统完成,并搭配了相应的磁测量高压包选件。在8kbar压强下,场冷、零场冷条件下磁化强度的测量表明了一个清晰明确的迈斯纳现象的存在,确定超导转变为277K。宽超导可能源于高压包不同压力梯度或者材料的不均匀性。磁测量获得的超导转变与电阻测量结果相吻合。除直流磁化率外,交流磁化率也明显观测到超导转变带来的抗磁性。图4. 镥-氮-氢体系直流与交流磁化率测量 而热输运方面,比热测量同样是验证超导转变的重要途径,根据BCS理论,超导转变伴随有能带打开能隙,会导致比热激增。本文采用了新型交流量热技术,获得了不同压力下,材料比热随温度的演变关系,可以看出,比热具有明显的不连续特征,由此获得的超导转变温度也与电、磁测量相吻合。图5. 镥-氮-氢体系的高压比热测量 本文通过电、磁、热三个维度的实验验证了镥-氮-氢体系在1GPa下接近室温的超导电性,但关于其内容见解,各路大神众说纷纭。此篇文章中,使用了PPMS磁测量高压腔组件,能够实现1.3GPa压力下的等静压磁学测量。相信在未来的超导探索工作中,PPMS的磁学测量和电学测量高压腔能够发挥更多更重要的贡献。图6:Quantum Design 高压磁学和电学测量功能组件
  • 电工研究所研制出27.2T世界第二高磁场超导磁体
    p   近日,中国科学院电工研究所超导磁体及强磁场应用研究部王秋良团队采用自主研发的高温内插磁体技术研制的超导磁体产生了27.2T的中心磁场,这是由全超导磁体产生的世界第二高磁场。第一高磁场由日本理化技术研究所于2016年1月创造,测试结果为27.6T。 /p p   与其它高温超导带材制作的内插超导磁体相比,REBCO超导体因其抗拉伸强度高和高磁场下优异的载流特性,使得它适宜于绕制极高场超导磁体,但ReBCO带材的结构是层状的,在极高场条件下由于应力集中可能会出现分层的现象,导致磁体损伤,不能稳定运行。 /p p   王秋良团队致力于研究极高场内插磁体技术研究。针对ReBCO极高场内插磁体的应力集中问题,相继采用特制的绑扎装置对磁体外层导线予以保护,调整内插磁体线圈的分层结构降低REBCO导线上的应力水平,并利用分级设计的方式提高内插磁体的安全裕度等技术方式,使内插磁体的运行裕度得以大幅提高。自2017年5月11日获得25.7T全超导磁体,使我国成为世界上第四个实现25T以上全超导磁体技术的国家后,此次研制的高磁场超导磁体经液氦条件测试,内插线圈运行电流达到169.2A时,在15T的超导背场中产生了12.2T的中心磁场,实现了27.2T全超导磁体的稳定运行。这也是目前超导磁体稳定运行的最高磁场。 /p p   27.2T极高场全超导磁场的实现,标志着我国高场内插磁体技术已处于世界一流水平,为后续研制30T高场科学装置和GHz级别的谱仪磁体奠定了基础。 /p p   此项目获得了中科院前沿科学重点研究项目“极端物理条件的超导强磁装备的基础研究”,以及国家自然科学基金面上项目“高磁场内插多场耦合与临界参量退化机理研究”和“极高场无绝缘内插REBCO线圈失超后性能退化及应力集中问题研究”的资助。 /p
  • 国家最高科技奖得主赵忠贤:一辈子都在寻找更好的超导材料
    2001年2月10日,“高温超导磁悬浮试验车”在四川成都西南交通大学正式通过国家级验收,该课题责任专家赵忠贤(前右)兴奋地登上实验车。  “中国‘高温超导’的年轻一代,不用像我一样坚持40年。给他们十几年时间,就能获得更有影响的成果。”1月9日,赵忠贤,这位在“高温超导”领域卓有成就的中国科学院院士获得了“国家最高科学技术奖”,这是我国科技界的最高荣誉。谈到中国超导的未来,他寄望很高。  过去百余年世界超导研究史中,在两次高温超导领域的研究取得重大突破的关键时刻,赵忠贤带领的团队都“跑”在前列,他们独立发现了“液氮温区高温超导体”以及“发现系列50K(开尔文,热力学温度单位)以上铁基高温超导体并创造55K纪录”。前者推动了国际相关研究的热潮,赵忠贤因此于1987年获得第三世界科学院TWAS物理奖,这是中国科学家首获此奖 后者被授予Matthias奖,这是国际超导领域重要奖项。  幸福不会从天而降。在数十年沉心高温超导研究的岁月里,赵忠贤的勤奋有目共睹——在67岁那年,他还曾带领年轻人通宵攻关。作为我国高温超导研究的奠基人之一,赵忠贤在科研上却很“抠门”——他的设备是用自己“淘”来的闲置品改造而成,他戏称为“土炮”,语气幽默,令人莞尔。  跌宕难阻守初心  赵忠贤1964年从中国科学技术大学技术物理系毕业,被分配到中国科学院物理研究所,除去搞国防任务的五年,一直从事超导研究,他所做的主要工作就是探索高温超导体。  超导现象最早由一位荷兰科学家于1911年发现,指某些材料在低于一定的临界温度下电阻为零的现象。“假如超导现象能在常温下实现,远程超高压输电将没有损耗,能节省很大电量。”中国科学院物理研究所所长王玉鹏说,医疗中常用的核磁共振仪器,其核心部件就用了超导磁体。  在探索十余年后,赵忠贤迎来了第一个科研高峰——1987年2月,他带领团队独立发现液氮温区高温超导体,并在国际上首次公布其元素组成为Ba-Y-Cu-O。国际上很多实验室验证了中国的工作,掀起了国际高温超导研究的热潮。  赵忠贤因此于1987年获得第三世界科学院TWAS物理奖,他也成为首次获此奖项的中国科学家,这一成果在1989年又获得了国家自然科学集体一等奖。  随后,低谷不期而至。20世纪90年代中后期,国际物理学界在通过铜氧化物超导体探索高温超导机理的研究上遇到了瓶颈。国内的研究也遇冷,有人转投其他领域,但赵忠贤却坚持要坐“冷板凳”。  “热的时候要坚持,冷的时候更要坚持。”忆及这段往事,他说,“我当时很正常,不痴迷也不呆傻。我认为超导还会有突破,所以才坚持。”  多年的坚守之后,赵忠贤科研人生的另一个高峰出现在了“大家想都不敢想”的方向上——赵忠贤与国内的同行分别打破了国际物理学界普遍认为的40K以上无铁基超导的“禁忌”。2008年,赵忠贤带领其团队不仅发现了系列50K以上铁基高温超导体,还创造了大块铁基超导体55K的纪录,这项研究又为他赢得了国家自然科学奖一等奖,而他本人则在2015年被授予国际超导领域的重要奖项——Matthias奖。  在跌宕起伏之间,赵忠贤对“初心”的追逐从未变过,用他的话说:“我这辈子只做一件事,那就是寻找更好的超导材料。”  攀登还靠勤为径  中国的一系列成果发布后,美国《科学》杂志曾发文盛赞:“如果以后再有更多的样品和数据诞生于中国,我们不必感到惊讶”,“如洪流般不断涌现的研究结果标志着在凝聚态物理领域,中国已经成为一个强国”。  然而,任何影响巨大的科研发现都不是随手捡得。两获世界赞誉的背后,是赵忠贤数十年高温超导研究中无数次制备、测试、分析、放弃、再重新开始的身影̷̷  根据赵忠贤的回忆,1986年4月,瑞士科学家穆勒和柏诺兹发现Ba-La-Cu-O材料在35K时开始出现超导现象。9月底,他看到这些论文后,马上与团队一道开始铜氧化物超导体研究。他们夜以继日奋战在实验室里,饿了就在实验室煮个白面条,累了就轮流在椅子上打个盹,废寝忘食工作最终换来了他科研人生的第一次突破。  在2008年,他的第二次重大进展出现前夕,日本科学家发现了在掺氟的镧氧铁砷材料中存在26K的超导性。随即,有中国科学家把超导临界温度提到略高于传统超导体的理论极限40K。赵忠贤则率领团队很快将超导临界温度提高到50K以上,并创造了大块铁基超导体55K的世界纪录,保持至今。当时已经67岁的他,在成果出现前夕还曾带领年轻人熬了三个通宵。“现在可不敢熬夜了,身体受不了。”谈及此事,赵忠贤并不当回事儿,“别把我报道成劳模,我就是在做本职工作。”  人生至此,本已可安享晚年,赵忠贤却依然坚持着他的高温超导研究,“我如今的工作重点有两个,一是凝练学科方向 二是尽我所能为大家营造良好的学术氛围。”在他衣兜里,还时常揣着一个小本,随时记录研究思路,“现在年纪大了,有什么想法得赶紧记下,怕忘记了。”  “抠门儿”有道暗得意  1987年的美国物理学年会,是赵忠贤一个难忘的记忆。当时只有5个人受邀做特约演讲,他是其中之一。向世界展示中国超导研究的重大突破,让赵忠贤“感到光荣与骄傲”。  实际上,赴美国做报告前,赵忠贤用的设备还是他自制的“土炉子”。据中国科学院院士陈仙辉回忆:“当时使用的是自己搭的设备,数量不够,5个教授只能共用一台设备轮流做研究。”但赵忠贤却觉得那是一段“激动人心的日子”,因为“艰苦又快乐,每两三天就有新成果出现”。而他并不介意跟别人共享实验设备,“大家轮流用,还能提高使用率,节省经费”。  后来,在科研方向遇冷时,赵忠贤越发“抠门儿”起来。20世纪90年代,在经费有限的情况下,赵忠贤认定,“有钱的时候坚持,没钱的时候更要坚持”。没有合用的设备,他淘来处理品,自己改装。有些设备老得连零件都买不到了,却还一直作为项目组的基础设备被使用。他说:“别小瞧我这‘土炮’,管用着呢!”  守心皆因乐其中  从事高温超导研究数十年,赵忠贤常被问:“一辈子就干了这么一件事,有时还很辛苦,不觉得枯燥吗?”  “这是我的兴趣所在,又能养家糊口,还有比这更理想的选择吗?”赵忠贤说,“就像有人爱打麻将,玩到半夜,是去睡觉,还是接着玩?肯定是接着玩嘛!”对他而言,做研究就像有些人爱玩麻将一样,十分有趣,并不觉得辛苦和枯燥,“我们做科研,每天总感觉更接近真理,一旦发现新现象、做出新材料、提出新问题,就像打麻将的和牌,也有大和、小和,多有意思。”  作为两次领导科研团队获得国家自然科学奖一等奖,发表论文400余篇,桃李满天下的著名科学家,赵忠贤仍有遗憾,这就是未领先于日本科学家发现铁基超导材料。实际上,他的团队在1993年就研究过和铁基超导体结构相同的材料,只不过用的是铜,而当时铁元素被公认为不利于超导。  “现在回过头来看,如果当时思想再解放一些就好了。”赵忠贤说,在他看来,搞科研最重要的一点是能够迅速抓住问题的本质,并驾驭自己的知识和能力去解决它,而不断创新,则是保持兴趣的重要因素。他时常勉励实验室里的年轻人“什么都可以做,不怕失败,要不断创新、不断尝试”。  如今已76岁的赵忠贤希望能尽己所能,呼吁建立合理的评价体系,来为年轻人营造轻松的研究氛围,“我也错过了好多机会,我希望将自己的这些经验教训分享给年轻科研工作者,让他们能少走些弯路”。
  • 找到镍基超导“看不见的手”
    不久前,美国罗切斯特大学物理学家Ranga Dias宣称发现了室温条件下的超导新材料。此消息一度引发全球“震动”。毕竟,室温常压超导材料一直被众多物理学家视为“终极目标”,需历经一次又一次的验证和时间的考验。尽管实现“终极目标”举步维艰,但仍让众多物理学家为之着迷,电子科技大学物理学院教授、凝聚态物理研究所所长乔梁就是其中一名。近日,他和团队也在超导新材料研究领域取得突破,为镍基超导领域的发展提供了新思路。研究成果在线发表于《自然》。氢元素,被乔梁称为是一只“看不见的手”,它悄悄改变了制备出的材料的物理性能,是影响镍基超导电性关键而又隐秘的元素。此次研究中,乔梁和团队首次在实验中观察到了奇异电子态,即巡游的间隙位s轨道(IIS)。在别人忽视的角落,他们牵到了那只“看不见的手”。从镍入手1986年初,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,为寻找室温常压超导带来了希望。为何这种材料具有较高的超导临界温度?这一问题30多年来仍没有得到完美解答。“科学家一直在思考,能否从类铜材料入手,借助铜基的调控思路实现新的超导材料,再借此反过来研究铜基超导?这或许会加深我们对高温超导的理解。”乔梁说,元素周期表中与铜元素相邻,在结构和性质上与铜有很多相似之处的镍元素,成为物理学家心中理想的突破口。2019年8月,美国斯坦福大学教授Hwang课题组率先在基于无限层结构的镍氧化物外延薄膜中发现了超导电性。乔梁称该研究具有划时代的意义。但后续镍基超导的研究却遇到一系列困惑:为什么无限层镍基材料可以成为超导?为什么全世界只有少数几个团队可以做出镍基超导样品?“物理规律是客观存在的。当不同科学家的课题组制备的材料样品频繁出现‘性能不能重现’问题时,第一直觉就是材料内部可能存在不为人知的‘隐变量’,从而悄悄改变了材料的物理性能。”在研究成果发布时,乔梁附上了这段话。抱着试一试的心态,乔梁于2019年9月与学生一起开启了镍基超导的研究之旅。摸清“黑匣子”里氢的作用2021年4月,乔梁团队在制备的镍基超导外延薄膜中成功获得了0电阻的超导电性。当年7月,乔梁带着团队继续从事超导样品里氢的调控实验。“当时并不知道氢的作用,只是学生碰巧做了。”乔梁回忆那时有一点“鬼使神差”,但也并不是毫无缘由——在无限层结构镍基氧化外延单晶薄膜的制备过程中,他们利用氢化钙进行了还原。“我们通过调控还原条件发现,如果温度不变,逐步增加还原时间,结果就会发生‘弱绝缘→超导→弱绝缘’的变化。”表面上看,是不同制备工艺导致,但乔梁总觉得这是一个新的角度。“往深一步想,为什么调控时间会引起这样的差别?”乔梁注意到,以往没有任何课题组深究过氢化钙这种还原剂。“是不是氢元素在起作用?”但这是一个“黑匣子”。氢原子具有最小的原子半径和原子质量,与常规探测媒介相互作用弱、散射截面小,导致其很难被探测到。随即,乔梁寻求澳大利亚合作者Sean Li的帮助,利用极高元素敏感性的飞行时间二次离子质谱发现镍基超导外延薄膜中存在大量的氢元素,而且氢元素自始至终存在于薄膜晶格外延生长和拓扑化学还原的过程中,并进一步确定了氢元素在材料内部的原子占据位置。2021年11月,乔梁团队确定了调控还原时间的本质就是调控氢元素。时间延长,氢元素就多,反之亦然。在极低温强磁场输运性质研究中,乔梁发现,在锶含量不变的情况下,通过调控氢元素的含量,可以实现“弱绝缘→超导→弱绝缘”的连续相变,说明氢元素的确对超导电性的出现起到关键作用。但乔梁又提出了一个问题:为什么调控氢元素会对超导电性产生影响?氢元素到底产生了怎样的作用?纺锤形“小包”的发现在此之前,乔梁团队与英国钻石光源的周克瑾合作,通过基于同步辐射的共振X射线非弹性散射(RIXS)技术和电子结构计算,研究了镍基超导体费米面附近的电子结构。乔梁在超导样品的RIXS图中,观察到一个纺锤形的“小包”。他对比了其他几项类似研究,都没出现过这种电子轨道。乔梁起初怀疑是测定有失误,但不知如何解释。之后,团队又发现了氢的存在,才开始考虑是否可以找到氢存在的电子态证据。此时,乔梁又想起了那个悬而未决的“小包”之谜。乔梁再次仔细查阅和自己做了类似RIXS实验的其他已发表的文章,发现有的实验中其实隐约出现过类似的“小包”,只不过被研究人员忽略了。乔梁设想,假定“小包”就是理论预言的IIS轨道,从这个思路对实验结果进行反推看能否成立,说不定有助于解释氢元素与IIS轨道的关系,及其对超导的影响。“根据对铜基材料研究的经验,对超导起着决定性作用的是金属元素的3d轨道。”乔梁解释说,在镍基超导体中,其费米面附近的电子结构中,IIS、Ni3d、Nd5d等轨道之间存在较强的相互作用。因此,IIS轨道的强烈吸引导致费米面附近Ni3d轨道的有效占据减少,丧失了超导能力。“氢元素的加入,填满了轨道空隙,如一只无形的手,导致IIS轨道没法‘拖拽’Ni3d轨道,产生了类似于铜基超导的费米面电子结构,进而促进超导态的出现。”乔梁和理论合作者黄兵讨论后认为,如果氢元素超过一定数量,反而会进一步改变Ni3d轨道极化情况,也不利于实现超导。2022年3月,合作团队最终刻画出“轨道污染”和“轨道纯化”竞争的示意图,并于4月完成了文章初稿,交稿后,审稿人评价其“极具创新性”。回顾整个过程,乔梁认为,此次研究改变了科学家对镍基超导材料的基本认知,并提供了一个更为准确和合理的物理模型。研究结果可以解释为何仅有少数课题能成功制备零电阻镍基超导样品,因为多数研究忽视了氢元素对超导的影响,没有控制这个关键因素。“但提高对氢元素控制的精确度和可重复性还是比较难。我们的研究只是抛砖引玉,提供了一个方向。”乔梁说。 镍基超导中氢元素作用示意图
  • 世界精英聚京城,共话超导论“英雄”——第十二届国际超导材料与机理大会(M2S-2018)在京举办
    2018年8月20日至8月24日,来自全球超导界的科研工作者们齐聚北京参加了十二届国际超导材料与机理及高温超导体学术会议(M2S-2018)。自1997年北京举办了五届国际超导材料与机理大会以来,超导大会时隔二十年再次来到中国。回二十年,不变的是我们的科研热情,不同的是我们的科研成果。二十年间我们的科学家栉风沐雨不改初心,二十年间我国的科学研究硕果累累人才辈出!本次大会还举行了代表超导领域高荣誉的三大奖项颁奖仪式。卡末林昂内斯奖:日本京都大学的Yuji Matsuda和加拿大施尔布鲁克大学的Louis Taillefer凭借在非常规超导体超导性质研究方面的突出贡献而获此殊荣。马蒂亚斯奖:该奖项花落日本大阪大学Katsuya Shimizu,以表彰他在非超导元素中发现高压下29 K的超导电性。巴丁奖:由于在非常规和多带超导领域以及超导量子涨落方面持续做出的理论贡献,美国明尼苏达大学的Andrey V. Chubukov、美国海军实验室的Igor Mazin和美国斯坦福大学的Sebastian Doniach享了该奖项。无论功勋的科学大家,风华正茂的青年才俊,还是年轻有为的明日之星,一千三百余人齐聚一堂分享新的科研成果,探讨超导领域未来的发展方向。为期五天的学术会议共计数百场报告,让全球的科研人员享受了一场科研的饕餮盛宴。Quantum Design作为超导应用的典范、科研仪器的行业翘楚,在大会上展出了包括新产品OptiCool在内的几十种产品。Quantum Design的工程师在现场接受了各国参会人员的产品与技术咨询。Quantum Design工程师为参会代表介绍产品性能 Quantum Design全球销售总监Daniel Polancic先生发表讲话 赵忠贤院士(中)、董晓莉研究员(左)与Daniel Polancic先生亲切交谈 Quantum Design全球销售总监Daniel Polancic先生出席了本次会议并在大会晚宴上发表讲话,讲述了Quantum Design与超导领域的不解之缘和深厚感情。Quantum Design起源于超导,服务于科研。正如伟人所说,科学技术是生产力,自从台SQUID诞生以来Quantum Design的测量设备大的促进了全球科研的发展。无论是高精度测量还是智能化控制,科研工作者无不享受着先进科研仪器带来的便利。Quantum Design成立三十年来时刻保持着积进取的态度,不忘初心砥砺前行。从开始的兢兢业业到现在的精益求精,Quantum Design始终是全球科学家的科研伙伴。通过本次超导盛会,Quantum Design向广大科学家展示了在仪器领域取得的丰硕成果,也希望能够更好地服务于大家。这是一次超导的盛会,更是一次智慧的盛会。我们期待着这次超导大会的举行能够让更多的科研工作者迸发出智慧的火花,让我国的科研事业再上新台阶。在此,我们也感谢国内外超导科研工作者对Quantum Design的信任和支持。相关产品及链接:1、 超全开放强磁场低温光学研究平台—OptiCool:https://www.instrument.com.cn/netshow/C283786.htm2、 多功能振动样品磁强计—VersaLab :https://www.instrument.com.cn/netshow/C19330.htm3、 超精细多功能无液氦低温光学恒温器:https://www.instrument.com.cn/netshow/C122418.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制