当前位置: 仪器信息网 > 行业主题 > >

高酸性气体

仪器信息网高酸性气体专题为您整合高酸性气体相关的最新文章,在高酸性气体专题,您不仅可以免费浏览高酸性气体的资讯, 同时您还可以浏览高酸性气体的相关资料、解决方案,参与社区高酸性气体话题讨论。

高酸性气体相关的资讯

  • 国内首座高酸性气体现场实验室 在普光气田投入使用
    “酸气已倒入实验室撬块,投运一次成功!”7月24日上午9时,在普光3011集气站高酸性气体现场实验室,已经熬了一夜的技术人员仍然精力充沛,击掌庆祝。从前一日晚上8点多,普光3011—1井开井后,他们严格按实验室投运方案操作。至此,国内首座高酸性气体现场实验室成功投入使用。  据悉,高酸性气体现场实验是国家重大专项课题研究内容,普光3011集气站高酸性气体现场实验室是国内第一个专用于高含硫气田腐蚀研究的大型现场实验室。普光气田根据气田井场实际,选择最有代表性的集气站,统筹利用国内现有科技资源,自主设计实验装备,经过多年的论证和摸索,建成了该实验室。  利用该实验室,技术人员可以人为调节采气井内喷出的天然气的压力、温度和流速,从而在撬装设备上复现多种特殊工况,为深入开展涉硫科研提供技术条件。该实验室可以为抗腐蚀材料评价、缓蚀剂现场评价及优化、溶硫剂等入井药剂性能的工业测试提供研究条件,帮助技术人员整体测试和评估井下工具及仪器,为管材研究及入井仪器的研发提供技术先进、数据可靠的实验基础平台。根据实验室条件,技术人员可以完成5项高含硫气田井筒试验管试验、4项集输试验管试验共计9个大类的研究。
  • 中科院649万元采购激光多接收惰性气体质谱仪
    招标编号:OITC-G13032318   采购人名称:中国科学院地质与地球物理研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院地质与地球物理研究所激光多接收惰性气体质谱仪采购项目   定标日期:2013年9月3日   招标公告日期:2013年7月31日   公告信息如下:   第1包 激光多接收惰性气体质谱仪 1套   中标供应商:Nu Instruments Ltd   中标价格:£ 680,000.00   评标委员会成员名单:姚青芳、李文军、蒋秀高、郝秀云、桑海清   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获成交的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2013年9月3日
  • 化学实验室惰性气体保护解决方案 -- 手套箱及可选功能
    实验室化学是现代科学研究和工业生产中至关重要的一环。在许多化学实验中,特别是处理对人体有害或容易受到外部污染的材料时,采取必要的安全措施至关重要。手套箱是一种重要的装置,它提供了一个无水无氧的惰性气体保护环境,既保护了对空气中反应成分高度敏感的材料,又允许研究人员在不接触有害物质的情况下进行实验操作。自从1976年布劳恩研发出世界上第一台手套箱,就定义了行业标准——水、氧含量小于1ppm,为对空气中反应成分高度敏感的材料和工艺研究奠定了基础。对于对环境要求苛刻的应用,氮气也需要被去除,布劳恩是目前市场上唯一一家能够提供主动脱氮平台的手套箱制造商。自公司成立以来,高校、研究所一直是我们成功的基石,凭借过去几十年在实验室化学等各种应用领域中获得的丰富经验,布劳恩不断创新,开发出一整套模块化产品,这些产品可以与标准手套箱灵活组合升级,并根据客户的需求和应用精确定制,量身打造出最适合客户的手套箱系统。体视显微镜01如图为集成在布劳恩手套箱/前窗中的体视显微镜,具有以下特点:&bull 目镜10x/23&bull 9:1 变倍比,6.1x-55x 放大倍率&bull 视场直径 37.7 mm&bull 照明:LED,80流明,色温5.600K&bull 工作距离122 mm&bull 瞳距可调范围 50-76 mm快开前窗02快开前窗,顾名思义就是可以快速拆除前窗,方便维护内部设备或者清理手套箱。试剂瓶存储仓03试剂瓶存储仓内安装有旋转存储架,最多可容纳7个试剂瓶,试剂瓶开口位于手套箱底部,并配有盖子。并且试剂瓶存储仓内安装有溶剂蒸汽排除管路,以避免交叉污染。冰箱04布劳恩低温冰箱可分别安装于手套箱侧板或背部。温度控制集成于手套箱,可在手套箱触摸屏上进行温度设定。有两种型号可选:容量分别为18L和27L,温度范围分别为: +10°C ... -35°C和+10°C ... -40°C。减震台05布劳恩可提供的三种形式的减震台:分别为大理石减震台、集成于手套箱底板的大理石减震台以及气浮减震台 。冷阱06&bull 冷井内部直径: 150 mm&bull 冷井内部高度:180 mm&bull 包含杜瓦瓶及其升降台&bull 包含盖子热板07布劳恩热板用于加热固化沉积在刚性基片上的有机薄膜,或用于在特定温度环境下对特殊敏感材料进行干燥处理。其紧凑的设计便于操作且节约手套箱内空间。适用于固化温度在25°C到300°C的薄膜材料。真空烘箱08一些对空气敏感、热稳定性较差的材料需要在真空、纯净的箱体环境中进行干燥处理,布劳恩真空烘箱是最为经济有效的一款产品,最高温度可实现 200°C过渡舱烘箱09布劳恩所有的烘箱都是经过特殊设计的,可在惰性气体环境中使用或者单独使用,用于去除基板表面的水或溶剂,或在特定温度条件下对敏感材料进行干燥/固化。加热温度从150°C到600°C可选。溶剂净化系统10布劳恩的溶剂净化系统可以直接独立使用,也可以与布劳恩手套箱集成使用。&bull 最多可净化7种不同溶剂&bull CE认证的安全防火柜用于存储易燃溶剂&bull 每路净化柱最多可净化800L溶剂在线清洗(WIP)11当手套箱内有危险化学品泄漏时,该选项可用于安全清洗手套箱内部,同时防止操作人员接触危险化学品。可选配适用于液体或气体的管路和喷枪。搁物架和储物柜12在手套箱内配置合适的搁物架和储物柜,可保证安全的存储环境,有助于优化工作空间,保护敏感材料和设备不受污染,并通过降低泄漏和交叉污染的可能性以提高安全性。布劳恩的存储方案可在保证轻松取放的同时确保工作空间安全、有序、可控。如果您想了解更多产品详情,欢迎致电我们!
  • 英国肖氏露点仪公司关于玻璃制造过程保护性气体露点测量
    ?英国肖氏shaw露点仪公司关于玻璃制造过程保护性气体露点测量 在平板玻璃制造过程中,熔融玻璃对水分很敏感。一般而言玻璃在保护性气层下成形,而气层中的含水量得到严格的监测。玻璃质量要求越高,监测湿度就变得越重要。 主要产品:SADP露点仪|在线露点仪| 肖氏露点传感器|肖氏露点仪|顶空分析仪|药品残氧仪|压缩空气露点仪|Mocon透氧仪|膜康透湿仪|露点测量通常是在高温和有挥发性化学物质蒸汽等苛刻的工况条件下进行。由于肖氏露点仪的露点传感器设计独特,因此它不会受到在该过程中产生的绝大多数化学污染物和废气的影响英国肖氏露点仪公司关于玻璃制造过程保护性气体露点测量。英国肖氏在线露点仪SUPER-DEW3专门为玻璃露点而生 SUPER-DEW3超级露点仪结构紧凑, 适合于台式或面板安装, 用于干燥空气、煤气或O.E.M.干燥设备及其它气体的湿度检测。英国肖氏SADP露点仪是全球露点仪占有率较高的生产厂家,英肖仪器仪表(上海)有限公司是英国SHAW露点仪总代理SUPER-DEW3在线露点仪的详细介绍SUPER-DEW31. 量程可选如下:` SUPER-DEW3 -R 红点(R): -80~-20℃。英国肖氏露点仪公司关于玻璃制造过程保护性气体露点测量 SUPER-DEW3 -P 紫点(P): -100~0℃ SUPER-DEW3 -G 灰点(G): -80~0℃ SUPER-DEW3 -Y 黄点(Y): -60~0℃SUPER-DEW3 -RS 银点(S): -110~-20℃2、特性: ★ 在线测定各种气体的露点温度★ 干燥气体时的保证精度为1PPM★ 室内空气中一分钟自动校准★ 大型背光式液晶数字显示★ 标准的4~20MA或0~1V信号输出技术参数二次表:(SuperDew)★ 显示精度:1%★ 安装类型:面板安装, 开口尺寸:135mmx66mmx175mm(深)★ 显示:3 1/2位带背光的数字显示★ 供电:220V AC @50Hz★ 输出:4-20mA标准信号输出, 两路继电器高低报警输出240V @3A★ 校准:在空气中自动校准★ 可任意调节的高低报警输出英国肖氏露点仪公司关于玻璃制造过程保护性气体露点测量★ 传感器到仪表之间的距离可达1千米★ ISO 9002质量控制★ 可选量程:-100℃~0℃/-80℃~0℃3.测量精度:+/-3℃4.样气压力:1~30psi,本传感器可耐压到200Bar5.样气流量:1~5升/分钟,建议1升/分钟6.气路连接:1/4”或 1/8”卡套接头7.防 爆:传感器本安防爆,增加隔离栅选件可组成防爆检测系统
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™
    纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。 随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等能源在人类的智慧中应运而生。从资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。 现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。 产品介绍 CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,ZUI大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。图1 赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™ 工作流程 利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图2 惰性气体保护下将样品转移至赛默飞扫描电子显微镜 此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图3 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析 产品优势 CleanConnect的使用给电子显微镜用户带来了全新的体验,产品具有如下优势:1 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。2 CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。3 CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。4 模块化的设计,符合人体工程学,可实现更便捷的样品转移。5 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。 产品应用 部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图4 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右) 图5 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右) 如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。图6是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图7TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。 图6 利用Cryo-PFIB进行TEM样品制备过程 图7 利用TEM进行明场像(中)及原子尺度的观察(右) CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。 虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!8月23日 下午2:00-3:00观看直播,扫码预约
  • 康塔仪器竞争性气体吸附分析仪荣获创新产品奖
    2015年10月,全球粉体及多孔材料分析检测仪器领导者,美国康塔仪器正式发布dynaSorb BT系列竞争性气体吸附分析仪。这款开创性的仪器一经推出,就凭借其独特的安全性设计和卓越的性能而赢得客户青睐。它可以便捷地研究任意复杂的吸附过程;可以在宽泛的温度和压力范围内,调节气体流速并很好地定义气体组分;从而可以调查或研究在真实工艺条件下的吸附剂技术状况。其卓越的性能和创新设计,使其赢得《2015年仪器行业优秀新品奖》。dynaSorb BT系列竞争性气体吸附分析仪可广泛应用于:穿透曲线的测定、对吸附剂的动力学性能研究、在水或其他蒸汽存在下的吸附测量、共吸附和位移现象的调查、选择性吸附测定、技术分离工艺的合理比例缩小、动态吸附和解吸实验、单一和多组分吸附数据的测定、沿吸附床层的温度分布曲线调查等。 完整地理解发生在固定床反应器的复杂过程是获得最佳分离性能的关键,穿透曲线的预测是固定床吸附过程设计与操作的基础。 dynaSorb BT系列动态吸附穿透分析仪具备强实的吸附器设计,防护门,工作区照明和结构清晰的PC控制界面,确保安全和方便的仪器操作。吸附器压力是永久性测量的,即使仪器关机,压力也会显示在仪器的前面板上。当加热包温度超过用户设定值时,信号灯将亮起。在所有dynaSorb BT仪器上,检测可燃气体的安全保护传感器是标准配置。在气体泄漏的情况下,仪器会跳回到空闲状态,并自动关闭。除卓越的安全设计外,dynaSorb BT系列还具备诸多无与伦比的优点: 穿透(突破)曲线测定, 单和多组分吸附数据测定 顺序吸附与解吸实验的自动化流程, 逆向气流能力 自动吸附器压力调控可高达10bar, 沿吸附器轴向监测压降 自动内置气体混合,可配置最多4个高精度质量流量控制器 入口和出口气体组分测量, 入口气体温度监测 用于导入水或其他蒸汽的蒸发器选项 吸附床内的热谱测定(用四个温度传感器) 沿吸附器轴向监测压降 美国康塔仪器 美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 康创尼克发布外夹式气体超声波流量计KATflow180新品
    可测气体范围广:从氨到氙 Katronic超声波流量计不仅可以很好地测量液体介质的流量,还可以非接触测量气体介质的流量。Katronic气体超声波流量计不仅可以测量高压气体,还可以测量常压气体,包括钢管内的气体,而这在此前是世界性的技术难题。这一独特的创新是通过结合先进的传感器技术、强大的精密电子设备、自适应滤波技术和使用数字信号处理器(DSP)的创新信号处理算法实现的。 技术参数 管径范围:25~1500 mm安全区域温度范围: -20 °C ~ +135 °C防爆换能器: -40 °C ~ +80 °C防护等级:IP66,带OLED显示器和操作按键,玻璃防护罩压力范围:>1 bar (绝.对压力)流速范围:0.1 m/s~75 m/s管道材质:所有常规材质 特 性 即可安装于安全区域,也可安装于危险区域;剪切波和蓝姆波不锈钢换能器,IP 68;过程输出:电流、集电极开路、继电器触点;通讯方式:Modbus RTU、Modbus TCP/IP;可输入温度、压力和气体压缩系数;支持联网数据评估,可通过有线、无线和GSM等方式连接; 应 用 测量天然气输气管道天然气存储装置增压站过程控制测量酸性气体合成气体流量测量压缩空气流量测量 测量介质 空气、氩气、一氧化碳、乙烷、乙烯、氦气、氢气、天然气、氮气、一氧化二氮、氧气、过程气体、丙烷、饱和水蒸气、酸性气体等。创新点: 采用外夹式超声波换能器测量气体流量一直是一个世界性的技术难题,主要原因是气体对超声波信号的衰减作用较液体介质更大,所以该测量方式一直局限于液体介质流量的测量。 英国康创尼克(Katronic)公司是一家致力于超声波流量测量的世界知名公司。近些年,其在采用外夹式超声波传感器测量气体流量方面取得了质的飞越。Katronic结合先进的传感器技术、强大的精密电子设备、自适应滤波技术和创新的信号处理算法,实现了非接触测量气体流量的技术突破,成功推出了KATFlow180流量计。 KATFlow180,简称KF180,是一款在线式流量计,产品成熟,性能可靠,具有超高的灵敏度和测量精度,不仅可以测量高压气体,还可以测量常压气体。此外,KATFlow180还具防爆型和非防爆型两种型号,其中防爆型KF180具有很高的防爆等级,可以完美满足1区和2区危险区域的测量需求。 KATFlow180的应用范围十分广泛,可应用于各种常规材质管道,可测介质包括空气、天然气、过程气体、焦炉煤气、一氧化碳、乙烷、乙烯、氦气、氢气、氮气、一氧化二氮、氧气、氩气、丙烷、饱和水蒸气、酸性气体等等。 外夹式气体超声波流量计KATflow180
  • 美国麦克公司仪器在CO2温室气体贮存中的应用
    能源的需求导致矿物燃料的消耗大大增加了大气中的温室气体浓度。排放气体的主要成分是二氧化碳。二氧化碳收集不仅仅对大气中存在二氧化碳的采集和安全存储,也包括排放的二氧化碳。自从京都议定书签署以来,对燃烧气体排放问题已经得到了极大关注. 许多与能源相关的二氧化碳管理办法,包括低碳能源(例如核能,太阳能,风能,地热能,和生物质能)。科学家们也开始寻求提高能源转换效率的方法,这样使用较少的矿物燃料就可满足相同能量输出需要。然而,尽管有希望,目前这些选择对矿物燃料的需求和使用影响相对较小。矿物燃料继续提供世界大部分能源消耗。日益增长的能源需求,选择替代能源的落后,全球经济仍然依赖矿物燃料且其相对较低的成本和高获得性,意味着矿物燃料的使用将可能持续数十年。因此,目前有很多科研力量致力于寻找有效的方法,降低大气中和工业排放的二氧化碳量。 一些研究人员认为,将二氧化碳收集在地表深处,可成为安全存储二氧化碳的长期解决方案。该方法基本思路为将捕获的二氧化碳压缩成液态灌注到多孔的深地质层,将二氧化碳液体密封在非渗透性的封盖层下。美国天然气多年存储经验,通过灌注二氧化碳,原油采收率的提高 (EOR),煤层气回收率的提高(ECBM),和向盐水地质构造层注入酸性气体为支持了这种想法。 尽管在理论上这些地层在存储人类产生的二氧化碳有潜应用,但据估计,若要有显著减少,每年必须收集超过1亿公吨二氧化碳。很多影响因素,在决定和全面实施合适存储位置之前,必须仔细研究。例如适当的工程设计和监测,地质力学过程需要仔细考虑。科学家们需要合适的研究表征方法,以帮助确定作为贮存地点的地质资料 自从1962年以来,美国麦克仪器公司的表面积和孔隙度分析仪,成为潜在的二氧化碳封存地点研究所需要的关键测量分析工具。表面积分析仪和压汞仪被用来作为必要的工具,来表征地质二氧化碳的压力和温度条件下的细粒度沉积岩的密封和流体传输性质空体积测量有助于预测地层的容量。美国麦克仪器公司的 AutoPore 压汞仪可用来测量储层岩内部样品的密封能力和孔吼比。 美国麦克仪器公司的ASAP2020比表面和孔隙度分析仪以及压汞仪的数据结合,可以完善流体传输实验。这些实验有助于揭示样品传输性质和密封效率中的显著变化同样也是测量煤的微孔和介孔分布的理想工具,因此也为ECBM研究的提供有效信息。 美国麦克仪器公司的ASAP 2050 扩展压力吸附仪 和Particulate Systems旗下HPVA-100 高压容量法物理吸附仪是研究高压下二氧化碳存储能力的理想工具。 ASAP 2050可测量从真空至10 bar的吸附量。HPVA 可达到100 or 200 bar。 ASAP 2050 和 HPVA 可在真实条件下评价材料。 国际政府在科学界的帮助下,必须找到一个方法来消除大气层中由于矿物燃料炭烧产生的过多的二氧化碳。初步数据表明,在地质结构封存二氧化碳是一种有前途的解决办法。存储大量的二氧化碳目标部分依赖于每个地层的物理特性的研究数据。美国麦克仪器公司的创新的技术和材料的表征仪器已经成为二氧化碳存储研究重要测量工具。 如需了解更多信息,请登录www.micromeritics.com.cn或者拨打咨询电话400-630-2202.
  • 上海交通大学:研发纸基MXene全柔性高灵敏室温气体传感器
    随着物联网的快速发展,开发高灵敏柔性化学阻敏型气体传感器对有毒有害气体的实时监测和安全预警具有重要研究意义。对于传统的硅基气体传感器而言,其高功函数金属叉指电极与半导体敏感材料之间能垒不匹配的问题限制了电荷有效传递及传感性能提升。该工作设计了Ti3C2TxMXene非金属电极(ME)和Ti3C2Tx/WS2气敏材料集成的全柔性纸基传感器,通过同质导电电极和敏感材料的创新设计有效解决能垒不匹配的难题。Ti3C2Tx/WS2纳米片敏感材料具有高导电性、快速电荷转移和丰富的活性位点等优势,与MXene同质导电电极在单一传感通道中形成欧姆接触和肖特基异质结,其异质结调节效应、功函数匹配设计和金属诱导间隙态(MIGS)抑制效应等能有效提升气体传感性能。实验结果表明,柔性纸基ME+Ti3C2Tx/WS2对1 ppm NO2的气体传感响应值(15.2%)是传统金叉指电极Au+Ti3C2Tx/WS2传感响应值(4.8%)的3.2倍,最低理论检测极限为11.0 ppb,同时具备出色的抗湿度稳定性。该工作为基于MXene同质导电电极和气体传感材料集成的全柔性气体传感器设计提供了一种新的思路。研究亮点1.采用激光雕刻辅助压印技术制备柔性纸基Ti3C2TxMXene低功函数非金属材料电极,降低传统高功函数金属电极和半导体电子亲和力之间的能量差,抑制金属诱导间隙态的形成,有效提高金-半界面处的载流子迁移速率。2.构建基于柔性纸基同质Ti3C2TxMXene电极(ME)集成Ti3C2Tx/WS2气敏材料的全柔性气体传感器,实现了室温下对NO2气体的高灵敏度和高选择性传感,其气体传感性能优于传统金叉指电极(AuE)集成的传感器。3. Ti3C2Tx/WS2异质结调节效应促进界面处的电荷载流子传输效率,协同增强了对NO2的吸附性能和传感响应值。调节肖特基势垒高度(SBH)、抑制金属诱导间隙态形成能有效避免费米能级钉扎效应,实现了电荷载流子的自由转移。
  • 央视:现场氰化钠和有毒气体指标达仪器测量最高值
    p   【财新网】据央视网8月18日“焦点访谈”栏目报道,在天津港“8· 12”火灾爆炸事故现场的核心区,官方检测到氰化钠和有毒气体都达到了仪器测量的最高值。 /p p   央视报道称,北京消防总队的生化侦检队伍,配备了先进的检测设备,负责探测爆炸区域内的有毒有害气体。北京公安消防总队参谋吕峥介绍:“这个是我们北京总队核生化侦检车,这个车功能就是能进入现场边缘地带,能测定有毒有害的范围。”那它都能检测到什么物质呢?吕峥说:“检测到化学有害物或者生物的一些比如说病毒、病菌这些都可以。” /p p   爆炸发生后,事故区域的空气就处于严密的监测中,每天都会有多支小分队对空气进行监测。而8月16日上午,这些侦检队员们的任务是对爆炸核心区域的空气进行采样。为了保证安全,进入核心区域前,所有队员、包括记者在内都必须穿着防护服、佩戴空气呼吸器。由于空气呼吸器的供氧时间只有半个小时,侦检队员们必须迅速完成计划区域的检测工作。 /p p   做好防护工作后,央视记者跟随侦检队员,来到了距离爆炸核心区500米的集结地。由于前方已经没有道路,所有人员必须在这里下车。而就在此时,车载监测系统和手持监测仪同时发出了警报声,提示空气中的有害气体已经超过了仪器能够测量的最高值。 /p p   侦检队伍继续徒步向爆炸核心区方向前进。沿途记者看到,在爆炸核心区的外围,为了防止降雨后污水外溢,已经垒起了一道一米多高的防护堤。前进过程中,侦检队员手持的报警器依然在提示有害气体爆表。 /p p   北京公安消防总队副参谋长李兴华介绍:“今天上午这趟去采集的结果,侦测的结果跟昨天几乎一样,还是氰化钠和神经性毒气这两种有毒的气体。这两项指标都达到最高值。” /p p   央视记者进而采访了北京化工大学国家新危险化学品评估及事故鉴定实验室博士门宝,他表示:“氰化钠固体毒性非常大,只要碰到皮肤破伤处或者吸入或者误食大概有几十毫克可以致死。” /p p   门博士介绍,氰化钠是一种白色粉末状的剧毒物质。由于毒性很大,不方便用来试验,但可以用化学性质与之相似的无毒物质碳酸氢钠来演示它的一些特性。门博士将碳酸氢钠放入蒸馏水中,可以看到它能够很快溶解,并且没有气体产生,而与酸性液体接触后则迅速产生大量气泡。 /p p   门博士告诉记者,氰化钠遇到酸性物质会产生大量剧毒的氢氰酸,但在碱性环境下比较稳定。现场如果有散落的量比较大的氰化钠应进行清理或者掩埋,对于空气中漂浮的和地面散落的氰化钠颗粒,可以通过喷洒低浓度的碱性双氧水来消除毒性。目前,事故现场已经开始了这项工作。如果处理及时,即便降雨,也不会造成太大影响。 /p p   在对爆炸核心区的空气进行监测时,除了氰化钠,还发现了一种物质就是神经性毒气,门博士介绍,爆炸区域的多种危化品都可能产生这类物质。他说:“这些物质遇水或者遇碱能产生气体然后产生神经性毒气,比如氰化钠还有一些硫化碱,另外一些物质在高温爆炸过程中会发生化学反应,产生有毒性气体,比如二甲基二硫。神经性毒气一旦人吸入,可以与神经细胞作用,使酶失活,另外可以导致呼吸系统心脏等骤停进而导致人死亡。” /p p   门博士建议,如果神经性毒气密度较高,应尽快撤离,如果超标不严重,也应做好防护措施,避免与人体接触。事实上,本次爆炸现场的危险远不止这些。现场危化品的种类和数量,超乎想象。 /p p   公安部消防局副局长牛跃光表示:“40多种危化品,目前了解到的情况有硝铵、硝酸钾这些硝类的应该是炸药类的,这个量是非常大的,像硝酸铵目前我们了解到可能在800吨左右,还有硝酸钾500吨,加上氰化钠这类物品,要超过2000吨。” /p p   牛跃光告诉记者,由于瑞海公司办公楼已经被毁,货物记录不清,所以爆炸现场具体的危化品数量有待最终确认,但现在能够确认的危化品数量在3000吨左右。 /p p   瑞海公司仓库示意图显示,凡是能够堆放物品的地方,全部放满了危化品。牛跃光说:“我干消防40多年了,像此类的危险品仓库,这还是历经最复杂的一次灾害事故。” /p p   由于情况复杂,危化品的生产厂家,氰化钠所属的河北诚信有限责任公司相关人员也赶到现场,参与处置。河北诚信有限责任公司总经理智群申介绍,现场核实有700来吨氰化钠:“当地按照应急指挥中心,他们在当地有运输车辆,帮助我们把东西运回去。” /p p   核心区包装完好的氰化钠将运回企业,而爆炸发生时,还有氰化钠颗粒散落到外围。在今天上午的发布会中,天津市副市长何树山介绍说,对外围氰化钠的清理搜寻分成了三个区域,分别为离核心爆炸点一公里半径范围、两公里半径范围、三公里半径范围:“我们从13号开始这几天已经把一公里半径搜寻完了,两公里半径搜寻完了,今天傍晚可以把三公里半径搜集完。” /p
  • 瑞士万通MARGA在线气体组分及气溶胶监测系统通过美国环保署(EPA)ETV认证
    ETV ( Environmental Technology Verification,环境技术认证)计划是由美国环境保护署( EPA )创建的一套程序和方法,用于评估创新技术解决威胁人类健康和环境问题的能力。ETV是对特定技术性能的定量评价,EPA的全体质量管理成员参与检测的整个过程,以确保检测数据的质量。 ETV计划进行技术认证的重点是已经全面市场化或准备好市场化的技术,不评估那些处在实验阶段的技术。 MARGA在线气体组分及气溶胶监测系统是由荷兰能源研究所(Energy research Centre of the Netherlands, ECN)与Metrohm及Applikon共同研制的,MARGA为大气研究提供了一种全新的、在线大气污染监测及研究手段。它采用独特的取样装置把颗粒污染物和酸性气体直接吸收到水相中,再使用离子色谱监测其成分,整个过程全自动进行。近年来已在美国及欧洲多个地方投入使用。 日前,MARGA在线气体组分及气溶胶监测系统顺利通过美国环保署(EPA)的ETV认证。 EPA官网认证报告下载:http://www.epa.gov/nrmrl/pubs/600r11106/600r11106vs.pdf MARGA资料下载:http://www.metrohm.com.cn/product/product_view.aspx?product_id=231 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。 1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。 1956年,瑞士万通开发出第一支活塞型滴定管。 1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。 &hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。 2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 中关村材料试验技术联盟发布《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》等3项CSTM标准
    附件:CSTM(M)0022-2023 关于发布《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》等3项CSTM标准的公告.pdf
  • “对症”施肥,可减少干旱地区温室气体排放
    记者3日从中科院昆明植物研究所获悉,该所科研人员近期研究发现,滥施化肥,有把全球旱地变为主要温室气体排放源的风险;而施用生物炭肥,则可以减少温室气体排放,并将全球变暖潜势最小化。这一研究,为不同旱地的施肥策略提供了科学指导。相关成果发表在环境科学与生态学领域期刊《清洁生产杂志》上。“在全球范围内,干旱生态系统拥有约三分之一的生物多样性保护热点区域,为28%的濒危物种提供栖息地,它们对气候变化和人类活动极其敏感。”论文共同通讯作者、昆明植物研究所研究员许建初介绍,旱地生态系统土壤有机质贫瘠,养分流失迅速,连续耕作,会导致作物大幅减产。因此,增施化肥成为提高旱地产量的选择。然而,农业旱作增大温室气体排放的问题,却一直被忽视。二氧化碳、氧化亚氮和甲烷是与农业旱作“土壤-营养-气候反馈循环”相关的三种温室气体。“因为化肥的施用,从耕地排放了全球一半以上的氧化亚氮。为应对粮食危机,农民又使用更多化肥来提高产量,导致排放量持续增加,但粮食产量不一定会增加。”论文第一作者、昆明植物研究所山地未来中心青年科学家伊克巴尔沙希德博士介绍,为促进生态环境保护与农业绿色发展,人们可把土地生态恢复目标与可持续农业生产相结合。施用生物炭或农家肥结合化肥,可抑制温室气体排放率,同时提高作物产量。研究人员与来自巴基斯坦、尼泊尔的同行开展合作,基于系统性审查和Meta分析的首选报告项目方法,评估化肥、生物炭的两种综合应用,以及无机肥料对温室气体排放的影响。结果表明,施用化肥或有机肥都会增加温室气体排放,而施用生物炭可减少温室气体排放,且施用量为每公顷50吨时效果最好。不同施肥策略对温室气体排放和全球变暖影响示意图“生物炭与释放二氧化碳、一氧化二氮的肥料结合使用,也可以降低全球变暖潜势,单独使用生物炭,可让全球变暖潜势降低144%。”许建初说,就土壤理化性质来看,施用生物炭后,中性和酸性土壤的二氧化碳和氧化亚氮排放量最高,碱性土壤的排放量最低。高土壤碳氮比的土壤应使用生物炭,避免使用化肥与农家肥;低土壤碳氮比的土壤,应避免生物炭和化肥混合使用;使用生物碳能够减缓旱地温室气体排放,减小全球变暖潜力,这才是上策。(昆明植物研究所山地未来中心供图)
  • 挪威教授利用机器人监测土壤气体排放
    田野机器人和配上基于平面的遥感传感器可以通过观测地球和大气层来监测影响气候变化的气体。  深入土壤的监测  这款拥有三个大轮子,不会陷入泥土里的Field Flux机器人可以将用放置在它的大臂上的采样器,监测土壤中少量的一氧化二氮(N2O)含量,完成监测环境污染的工作。  尽管人们更熟悉二氧化碳在气候变化中的影响,但其实N2O使全球变暖的潜力比二氧化碳高300倍。换句话说,一分子N2O的破坏能力与300分子的CO2相当。  来自挪威大学生命科学院的微生物生态学家Lars Bakken教授说:“对N2O排放的量化有一个巨大困难在于,其数值会因为时间和地点的不同而产生巨大变化。”目前,Bakken教授正在与挪威一家名叫Adigo的公司合作,为NORA项目尝试找到一个监测土壤中N2O排放量的方法,并降低其排放。  教授表示:“这也是我们为什么要做田野机器人的原因。如果你想要在一片试验田中量化N?O的排放量,你必须在一块地上反复不断地测量。”(图为Field Flux机器人样机,图片来源:NORA)  使用田野机器人可以大大提升工作效率,一个本来需要27个小时手工检测的土地只需要1小时就能完成测试。这种方法在控制 N2O 方面非常重要,因为它使得农民可以在必要时进行翻土工作。在土壤没有较好地暴露在空气中时(比如下大雨或者土壤非常紧实时),一些土壤中的微生物(多数是细菌)就会使用氮氧化物而不是氧化物来进行呼吸,从而产生 N2O。但是还有少量细菌可以进行 N2O 的呼吸作用来吸收掉,因为它们有一种特殊的酶——N2O还原酶。NORA 项目的研究员们发现,这种酶会因土壤的酸性过大或土壤中铜离子的不足而消失。  挪威大学生命学院的另一位教授,同时也是 Marie Sk?odowska -Curie Actions项目的合作者 Asa Frostegard 说道:“我们探究了这些微生物的生物活动,研究它们产生 N2O 的生化过程。结果表明,不同微生物之间的作用方式有着很大差别。”(图片来源:ADIGO)  这些研究结果或许可以帮助农民通过改变土壤酸性或土壤铜离子的含量来减少 N2O 污染。这就意味着,我们可以在耕作中使用富含铁镁的岩石或矿物质来中和土壤酸性,而不是使用传统的会导致 N2O 污染的撒石灰方法。
  • 中关村材料试验技术联盟《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》2项团体标准审查会成功召开
    4月11日,由中国材料与试验标准化委员会综合标准化领域委员会(FC99)对《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 惰气脉冲熔融质谱法》2项团体标准以线上+线下形式召开了标准审查会。会议由钢研纳克检测技术股份有限公司首席专家贾云海担任审查专家组长,来自钢铁研究总院有限公司、原武汉钢铁有限公司、中关村材料试验技术联盟、原宝钢股份有限公司、首钢京唐公司、国家钢铁产品质量检验检测中心7位审查专家出席了会议,标准起草单位广东省科学院工业分析检测中心、广东省科学院新材料研究所、广东省珠海市质量计量监督检测所、广州禾信仪器股份有限公司和钢研纳克检测技术股份有限公司代表以及中关村材料试验技术联盟秘书处等10余人参加了此次标准审查。会上,专家组听取了标准申报单位对申报标准的情况介绍,包括文本规范性,技术要素和指标的科学性、合理性及可操作性,与国内外先进标准的比对情况和征询意见汇总情况等方面进行了详细汇报。与会专家对标准的具体内容进行了质询,并提出了意见和建议。最后,两项标准一致通过了审查。《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》采用用直读光谱仪测定高速工具钢中C、Si、P、S、Mn、Cr、Ni、Mo、Al、Cu、W、V等元素含量。本标准的制定,检测机构、工厂企业、科研单位可采用此标准快速、准确地测定高速工具钢的化学成分,有利于提高工作效率,降低分析成本,具有广泛的市场应用价值。《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》采用目前广泛应用的惰气脉冲熔融技术,结合质谱分析技术,研究开发了脉冲加热惰性气体熔融-质谱法测定金属材料中氩元素含量,本标准的制定有利于满足新型材料的研究、生产与应用的迫切需要。
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • 案例分享 | 同时检测酸性成分与碱性成分
    酸碱共存的多种化合物的分离,在方法开发时,经常会出现酸保留峰型良好时,碱性成分峰型保留不理想,碱性成分保留峰型满意时,酸性成分的峰型与保留又不理想。在这种情况下,可以选择离子对试剂来增加其中酸或碱的保留,再选择合适的流动相pH值及有机相比例,使所有物质均能分离并都有良好的峰型。案例壬二酸、苦参碱的分离:色谱柱:UItimate Polar RP,4.6×250mm,5μm。检测波长:220nm;柱温: 40℃;流速: 1.0mL/min;进样量:20μL。在液相色谱中,pH值对酸碱成分的保留与峰型有很大的影响,pH降低,酸保留增强,碱保留减弱;反之,随着pH值增大,酸保留减弱,碱保留增强。因此对于酸碱样品,选择合适的pH值至关重要。在这个案例中,壬二酸为酸性成分,苦参碱为碱性成分,三氟乙酸具有弱离子对效果,可以适当增加苦参碱的保留。而0.1%三氟乙酸的pH在2.0-2.5之间,壬二酸在酸性条件下保留较强,采用梯度洗脱的方式,使两个成分的峰型和保留均能达比较满意的峰型与保留。
  • 高纯气体分析是色谱分析技术皇冠上一颗“明珠”
    “100家国产仪器厂商”专题:访上海华爱色谱分析技术有限公司   为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了气相色谱分析整体解决方案(特别是气体分析的应用研究)供应商——上海华爱色谱分析技术有限公司(以下简称“华爱色谱”),华爱色谱公司总经理方华先生、市场部经理李聪先生热情接待了仪器信息网到访人员。   专注于行业专用的气相色谱仪,侧重于高纯气体的分析方法研究和开发   方华总经理介绍说:“华爱色谱公司于2004年注册成立,目前侧重于高纯气体分析方法的研究,专注于行业专用气相色谱仪的开发,是国内第一家专业从事气相色谱分析方法研究和开发的企业。” 上海华爱色谱分析技术有限公司方华总经理   华爱色谱致力于产品的创新,拥有多项国家专利技术,并有多个产品荣获上海市高新技术成果转化认证、上海市重点新产品等称号,部分产品已经获得上海市创新资金和国家创新基金立项扶持;尤其,作为全国气体标准化技术委员会优秀委员单位,华爱色谱先后负责起草了多项国家标准工作。   “公司的产品涵盖了实验室色谱、便携式色谱等整个气体行业所需10余款色谱分析产品,如适用于高纯和超纯气体分析的GC-9560-HG氦离子化气相色谱仪,以及GC-9560-HC高灵敏度热导气相色谱仪、GC-9560-HZ氧化锆气相色谱仪、GC-9560-HQ天然气分析专用色谱仪、GC-9560-HD变压器油专用色谱仪等,开发的分析方法已经覆盖香料、酿造、农药、环保、冶金、石化、化工等行业,截止目前已开发40多套色谱工作站系统,均可加入‘个性化’管理系统、相关行业标准等。” 华爱色谱公司研发与测试车间掠影   “3-3-3模式”,华爱色谱公司成功研发出GC-9560-HG氦离子色谱仪,积极抢占高纯气体分析高端市场   方华总经理谈到,“高纯气体的分析市场,一直是国外仪器的‘领地’;但从2008年开始客户听到更多的可能就是华爱的‘氦离子色谱仪’;我们的GC-9560-HG氦离子色谱仪研制过程可以用‘3-3-3模式’来概括:3位资深工程师,用了3年时间,投入300万才研制成功。”   高纯气体中微量杂质的分析一直是色谱分析的难点,华爱的高纯气体分析系统,很好地完成了气体中微量杂质(特别是ppb级杂质)的分析工作。“也有个别厂家简单认为买一个氦离子检测器装在色谱仪上就可以分析高纯气体了,而我们认为,高纯气体分析是色谱分析技术皇冠上的‘明珠’:和高纯气体的分析比较,其他领域的色谱分析方法,如石化上的模拟蒸馏、碳分布、炼厂气、汽油中的氧化物和芳烃等分析,不过都是入门级的水平。” 华爱色谱公司的GC-9560-HG氦离子色谱仪   华爱色谱公司的GC-9560-HG氦离子色谱仪的技术研发过程:   2006年研发了四阀五柱分离系统、常温下的氧氩分离技术,完成了对高纯氮的分析;   2007年研发了无阀流量控制技术、自动压力校正技术、氢气的钯管分离技术、氧吸附与还原技术,完成了对高纯氧、高纯氢的分析;   2008年研发了多柱箱温控技术、样品除空吹扫技术,完成了对高纯氩的分析;   2009年完成了氦离子检测器的改性,实现了对氖气的分析,掌握了载气99.999999%纯化技术,完成了对高纯氦的分析。   “和国外同类仪器比较,我们的GC-9560-HG氦离子色谱仪在价格和售后上的优势是显而易见的;2009年实现几十台销量 目前,全球最大的气体公司林德、国内气体研究的权威单位光明化工研究院等都已经成为我们的仪器用户。” 知名气体公司AP访问华爱色谱公司   “争取18个月内建立起所有高纯气体的检测规范;占领国内高纯气体领域50%市场”   方华总经理谈到:“在完成了所有通用高纯气体的解决方案后,2010年我们将工作重点转移到电子气体等特种气体的分析上来 第一季度已解决氟气转换技术、硅烷真空取样系统、六氟化硫中痕量杂质分析的多次切割技术,争取18个月内建立起所有高纯气体的检测规范。另外,由华爱色谱主持的国家标准《气体分析 氦离子气相色谱法》也将于今年颁布。”   “2010年华爱预计完成3000万元销售额,将占领国内高纯气体领域50%市场 同时,完成对所有气体检测器的开发,如氩离子检测器、氧化锆检测器、离子迁移检测器、气体密度天平检测器等。” 合影留念(方华总经理,左3)   关于华爱色谱公司的中长期发展规划,方华总经理表示:“便携式色谱仪和在线色谱仪,终将和实验室色谱仪‘三分天下’,而这两个领域也是华爱‘看好’的市场;今年公司将加大对于便携式色谱仪的研发力度,并为在线色谱仪做好技术储备。”   附录1:上海华爱色谱分析技术有限公司   http://www.huaaisepu.com/index.asp   http://huaai.instrument.com.cn   附录2:华爱色谱公司重大事件   2004年03月24日:上海华爱色谱分析技术有限公司注册成立。   2006年11月01日:荣获《单柱分析电力用油气相色谱仪》专利证书(专利号: ZL2005 20042753.5)   2006年12月06日:荣获《一种在高温高压下可以进行在线分析的气相色谱仪》 专利证书(专利号:ZL2005 2 0044846.1)   2007年01月03日:荣获《一种用于汽车尾气分析气相色谱仪》专利证书(专利号:ZL2005 20044945.X)   2007年02月28日:荣获《自清洗型热解析装置》专利证书(专利号:ZL2005 20044576.4)   2007年04月04日:荣获《用于气体全分析的气相色谱仪》专利证书(专利号:ZL2005 2 0044845.7)   2008年05月08日:全面通过ISO9001:2000国际质量管理体系认证   2008年11月:新产品GC-9760变压器油专用微型色谱仪,荣获上海市高新技术成果转化认证   2008年12月:公司入围上海市第二届最具活力企业评选,被评为上海市最具活力高科技企业   2009年04月:GC-9760变压器油专用微型色谱仪,荣获上海市重点新产品证书   2009年06月:为表彰公司在国家标准起草工作的突出贡献,全国气体标准化技术委员会授予我公司优秀委员单位称号   2009年08月:新产品GC-9560-HG氦离子化气相色谱仪,荣获上海市高新技术成果转化A级项目证书   2009年11月:GC-9560-HD变压器油专用色谱仪,荣获上海市高新技术成果转化认证   2009年12月09日:荣获《一种氦离子化检测器》专利证书(专利号:ZL2009 20073624.0)   2009年12月29日:荣获高新技术企业证书(编号:GR200931000979)   2010年04月09日:新产品GC-9560-HG氦离子化气相色谱仪,荣获“2009年度科学仪器优秀新产品”奖   2010年04月14日: GC-9560-HG氦离子化气相色谱仪,荣获“上海市重点新产品”   2010年04月15日:公司总经理方华出任气标委“第一届气体分析分技术委员会委员”
  • 黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放
    黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放背景图片背景介绍:几十年来,像黄石国家公园这样的热液环境中气体的释放一直是热门研究方向。先前在黄石公园进行的研究量化了火山口和大气之间交换的二氧化碳量,强调了黄石公园如何通过火山口每年排放约4.4×107公斤的二氧化碳。诺里斯间歇泉盆地(Norris Geyser Basin, NGB)位于黄石公园的西北部,是蒸汽船间歇泉的所在地。蒸汽船间歇泉在公园的数百个间歇泉中脱颖而出,是因为它向空气中喷射的流体-气体混合物可以超过115米的高度,使其成为世界上最高的喷发活跃间歇泉。气体主要由可冷凝蒸汽和不可冷凝CO2组成,还有少量其它不可冷凝气体,如CH4。虽然蒸汽船并不定期喷发,但间歇泉最近变得非常活跃。2000年至2017年期间,发生了11次火山喷发;然而,在2018年3月至2021年2月24日期间,蒸汽船喷发了129次。为了研究气体排放的变化是否可以作为间歇泉喷发的前兆,2019年6月12日,我们连续测量了间歇泉在一次喷发事件前后30米处甲烷和二氧化碳的扩散排放。实验方法:本研究使用了两台仪器来测量地表通量。Eosense自动呼吸室(AC)被安装在距离间歇泉约30米的地面上,在间歇泉和蓄水池泉之间。AC被编程为关闭15分钟,允许气体从地下逸出积聚,打开5分钟冲洗一次,完成一个周期,期间共进行17次测试,其中喷发前完成了7次测量(包括前兆测量),喷发后进行了10次测量。自动呼吸室(AC)通过管路连接到Picarro G2201-i CO2、CH4浓度及同位素分析仪,组成CRDS-AC通量及同位素观测系统,该系统可以测量CH4和CO2的浓度及其碳同位素组成,δ13C-CH4和δ13C-CO2大约每4s测量一次。在浓度-时间曲线稳定1 - 2分钟后的前3 - 4分钟,用斜率乘以自动呼吸室(AC)内部体积和底座横截面积的商来估算通量。CRDS仪器放置在多功能车(GorrillaCarts® GORMP-12)上。在车上,由两节12V直流深循环船用电池并联连接,通过直流-交流电源逆变器为分析仪供电。期间还使用了仅测量CO2通量的单个便携式呼吸室(PAC)。该PAC是一个闭路EGM-5便携式CO2气体分析仪(PP Systems, Amesbury, MA),腔室直接连接到分析仪,提供二氧化碳浓度的高频繁测量(10赫兹)。使用线性模型计算CO2通量。PAC系统在另外三个标有标记的位置进行移动测量,这增加了本研究期间测量的空间足迹。图1所示:诺里斯间歇泉盆地东南部的地图。蒸汽船间歇泉(六边形)位于酸性到中性的地热区域。地图上还标注了20世纪初钻探的三口井。气体通量测量结果:在单次蒸汽船间歇泉喷发前~3 h、喷发中和喷发后~ 2 h测量了地表CO2和CH4通量以及其碳同位素组成。以观察扩散排放活动的变化是否与喷发的特定阶段有关,从而揭示诺里斯间歇泉盆地中地下气体的运移机制。在喷发之前和整个喷发过程中,我们使用Picarro CRDS分析仪测量弥漫性气体排放,我们将其报告为地表通量。对于CH4,喷发前后的通量在误差范围内相同,平均值分别为42.3±1.3和42.3±1.6 mg m&minus 2 day&minus 1。同样,CO2在喷发前(50.3±1.8 g m&minus 2 day&minus 1)和喷发后(52.3±2.2 g m&minus 2 day&minus 1)表现出相似的通量。然而,在喷发之前(不到25分钟),与之前6次Picarro CRDS分析仪测量的平均值有偏差。这第七组测量发生在从静息期阶段到预演期阶段的过渡期间,显示CH4和CO2的通量分别下降了58%和50%。这种偏离发生在静息期(a)的结束和预演期(b)的开始,在绘制的时间序列中清晰地说明了这一点,该阶段称为前体测量(图2)。图2所示:测量期间CH4和CO2通量的时间序列(左y轴)和平滑的1分钟平均连续浓度测量值(右y轴)。当气体室关闭时,气体浓度开始增加,然后在通量测量结束时打开,气体浓度恢复到环境浓度,形成锯齿状图案。浅阴影区域表示喷发前(b)和小喷发(c)阶段。较暗的阴影区域描绘了主要的喷发,倒数第二个区域突出了液体主导阶段(d),最暗的阴影区域显示了主要喷发的蒸汽主导阶段(e)。稳定碳同位素测量结果连续的CRDS-AC δ13C测量表明,重同位素在每个腔体中都有富集。在每个气室围封期间最后10次δ13C测量值的平均值作为δ13C源值。结果得出δ13C-CH4 = - 27.5±0.3‰,δ13C-CO2 = - 3.9±0.1‰(图4a)。这些源组成比各自的大气端元(CH4≈&minus 47‰和CO2≈&minus 8‰)的同位素重。唯一的例外是一组前体测量,其中δ13C-CH4为&minus 35.7±2.1‰,δ13C-CO2为&minus 6.2±0.4‰(图4b)。前驱体测量值明显比非前驱体测量值轻,并且更接近大气成分。将测量到的通量和气源同位素组成结合在一个图中(图3b),突出了前驱体测量的异常性质。图左下角的基准面表示在图2所示的时间序列中也可以观察到的前兆信号。图3所示:(a)测量期间的碳同位素值。阴影区域表示喷发开始后的时期。两幅图中黑色的水平虚线表示大气的碳同位素组成,而浅灰色的虚线表示地幔源。(b)配对δ13C和通量测量。δ13C数据(左图为δ13C- CH4,右图为δ13C- CO2)利用近10次测量的平均值估算了气源气体的稳定碳同位素组成。图4所示:二氧化碳(δ13C-CO2)和甲烷(δ13C-CH4)的碳同位素比较。每个圈地都用观测到的喷发时间序列的阶段(a-e)来标记,在同一阶段出现的测量顺序是连续的数字(参见图2,以获得阶段名称的完整解释)。“前兆”测量被清楚地指出。颜色方案表示在15分钟的腔室封闭期间记录基准的相对时间,其中深色出现在开始,浅色出现在结束。每个图中的黑色菱形代表大气同位素组成的近似端元。气体扩散途径模型:虽然蒸汽船喷发的具体机制不能仅由气体测量来支持,但通过整合收集的数据和先前发布的信息,这里共享了该系统的概念模型(图5)。大量证据表明,温泉水起源于渗入并流经流纹岩的大气水,以补给NGB和公园其他地方的间歇泉。从热成因δ13C-CH4特征和地幔样δ13C-CO2组成来看,系统中大部分气体来源于深部。在两次喷发之间,我们认为存在地幔气体从深层源向上的稳态输送(图5a)。这些气体溶解在水中,在含水层顶部溶解,向地表迁移,与浅层气体混合,然后以恒定的速率从地表排出。图5所示:说明地下管道和扩散气体到地面的途径的概念模型。注意深层烃源岩和补给储层之间的区别。(A)突出显示间歇泉在喷发之间的状态,(B)展示了前兆窗口(喷发的~ 10-25分钟)。结论:在距离蒸汽船间歇泉开口30 m处进行的光腔摔荡光谱测量显示,在2020年6月12日观测到的一次喷发开始前约10-25分钟,CH4和CO2的通量分别急剧下降58%和50%。这一证据表明,就在这次喷发之前,充满气体的水向间歇泉管道流动。同样,CH4 (δ13C-CH4)和CO2 (δ13C-CO2)的前体碳同位素测量值(分别为- 35.7±2.1‰和- 6.2±0.4‰)明显轻于非前体碳同位素测量值(- 27.5±0.3‰ &minus 3.9±0.1‰),δ13C在喷发开始后立即恢复到稳态值。热水和天然气的高估计平衡温度表明,至少在470米深处有一个深源。之前的研究呼吁监测黄石间歇泉的气体排放率,而这项研究为如何有效地进行弥漫气体测量和研究提供了一个模型。原文链接:https://doi.org/10.1016/j.jvolgeores.2021.107233研究应用相关仪器:
  • 大连化物所利用固体核磁共振精确表征分子筛中半交联骨架铝物种的辨识、演化和酸性
    近日,大连化物所催化基础国家重点实验室固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队与低碳催化与工程研究部催化基础与催化新反应探索研究组(DNL1201组)徐舒涛研究员合作,利用固体核磁共振(ssNMR)及红外技术,精确表征了分子筛中部分骨架配位铝物种的辨识、演化和酸性。分子筛催化剂由于具有良好的微观孔拓扑结构和固有的酸位点,在现代工业过程中发挥着至关重要的作用,但其活性位点结构及其实际的催化性能仍存在不确定性。陈魁智等在前期工作中,利用超高场核磁共振发现了一种新型骨架部分键联的活性位点,即(SiO)4-n-Al(OH)n(简称Al(IV)-2)。该位点在C-H键活化及烷烃裂解等经典反应中发挥着独特而重要的作用,这使其结构的详细阐明变得十分重要。 本工作中,合作团队进一步以三甲基膦(TMP)作为探针分子,通过对MFI分子筛的全面NMR表征,提出31P化学位移约-58 ppm处的TMP吸附物种,实际上是TMP结合到重要的催化位点上的信号,但此前通常归属为TMP物理吸附在非活性物种上。NMR辅助的31P-27Al核间距测量和全面的二维异核相关(1H-31P, 31P-27Al和27Al-1H)核磁共振实验表明,该TMP结合位点(δ31P = -58 ppm)源于部分骨架配位的Al(IV)-2物种中的Al-OH基团,即Al-OHP(CH3)3。31P-31P同核相关实验证明,BAS与Al(IV)-2的空间距离比BAS与 LAS更近,这有助于揭示催化反应的构效关系。此外,不同合成后处理样品的FT-IR和1H NMR结果对Al(IV)-2和骨架配位Lewis位点提供了新的见解。该工作实现了对TMP-Al(IV)-2物种的全面表征,为阐明分子筛中复杂的BAS-LAS-硅羟基—铝羟基网络结构提供了依据。相关研究成果以“Identity, Evolution and Acidity of Partially Framework Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR”为题,于近日发表在ACS Catalysis上。该工作的第一作者是大连化物所510组博士研究生王志利。上述工作得到国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、大连化物所创新基金等项目的资助。
  • 日本团队研发新型石墨烯电极——能在酸性条件下产生氢气
    p style=" text-indent: 2em " 日本筑波大学的研究人员研制出一种石墨烯电极,能在酸性条件下产生氢气。在绿色经济中,电解水产生氢气对于储能至关重要。然而,主要的障碍之一是贵金属电极的成本太高。廉价的金属电极在驱动析氢反应(HER)中起着很好的作用,但主要是在碱性条件下,反应是弱电性的。更有效的酸相反应需要贵金属例如铂。但问题是,酸性电解液具有腐蚀性,会侵蚀核心金属。 /p p style=" text-indent: 2em " 研究人员发现多孔石墨烯可以解决这个问题。他们使用氮掺杂石墨烯片来封装镍-钼(NiMo)电极合金,石墨烯含有大量纳米级的孔。研究人员表明,在酸性条件下的HER中多孔石墨烯明显优于无孔石墨烯。石墨烯在HER电极中的使用并不新鲜,这种柔性导电碳片是包裹核心金属的理想材料,不过石墨烯虽然能保护金属免受腐蚀,同时也抑制了它的化学活性。在筑波大学的研究中石墨烯的孔以两种方式促进反应,与此同时完整的石墨烯可以保护金属。 /p p style=" text-indent: 2em " “我们通过用纳米二氧化硅修饰NiMo表面的方法创造了孔,”研究者之一的筑波大学胡凯龙博士解释说。“当我们沉积石墨烯层时,在纳米颗粒的位置留下了空白,就像浮雕艺术品。事实上,这些孔不仅仅是缝隙,而是“条纹”(fringes)。从技术上讲,这些条纹是结构缺陷,但它们可以促进电极的化学反应。 /p p style=" text-indent: 2em " 研究小组解释说,与普通的石墨烯相比,条纹更亲水。可以吸引在酸溶液中的水合氢(H3O+),H3O+在两种HER机制之一中起着至关重要的作用。这些条纹在吸附单个氢原子方面也很好,也为其他重要的HER过程提供了表面积。结果表明与这种电极与常规电极产生H2的效果一样。同时石墨烯的非多孔部分延缓了金属催化剂在酸中的溶解。“这是氢析出电极的一个多用途的新概念,”筑波大学的副教授Yoshikazu Ito说,他是这项研究的主要作者。“我们的目标是最小化反应所需的过电位,因此不限于一种特定的催化剂。我们通过优化孔的大小和数量来调整我们的多孔石墨烯层,特别是对NiMo。令人惊讶的是,尽管有很多孔,催化剂在酸性条件下仍然能保持稳定。在未来,很多金属都可以定制多孔石墨烯,推动氢生产的全面应用。 /p
  • 高麦——助力2022年绿色冬奥
    清洁能源,绿色未来在“碳达峰”、“碳中和”的目标下,能源结构的转型和替代发挥着至关重要的作用。氢气作为清洁能源,具有储量丰富、热值高、零污染、可存储、来源广泛等优点,有望在推动能源转型及提高能源系统灵活性方面发挥关键作用。作为世界第一产氢大国,中国正在大力推动氢能开发应用的进程。为助力绿色冬奥,据张家口市交通运输局相关负责人介绍,北京2022年冬奥会和冬残奥会举行期间,张家口赛区将投入655辆氢燃料电池公交车,而北京高麦则与全球知名能源供应商签订了氢燃料电池公交车检测项目,为冬奥赛事提供交通保障服务。张家口氢燃料电池公交车运营数量全国领先,离不开加氢站等基础设施的保障。特别是加氢站需要保证氢气不被污染,氢气中的杂质分析是氢燃料电池用氢品质控制的重要部分。加氢站对氢气纯度的要求如果其中某项参数过高,会对燃料电池寿命造成致命影响 : 硫化物和卤化物在生成酸性物质后会对燃料电池内部结构产生腐蚀导致氢燃料电池不可逆的结构损坏硫和一氧化碳由于与催化剂铂的亲和力比氢更强,其占据催化剂的活性位点后不易移除,导致催化剂铂没有足够的活性位点将氢催化分解为质子和电子,去完成氢燃料电池后续的反应,使氢燃料电池的输出功率下降且难以恢复有试验资料显示,氢气中总硫含量超过10ppb,一氧化碳含量超过0.5ppm,氢燃料电池的性能就会受到不可逆的显著影响高麦在线氢气纯度分析解决方案高麦为国家“双碳”目标落地提供全方位多维度技术支撑,提供完善的气体分析解决方案,携手各方共促绿色高质量发展。01gm 5900 did 气相色谱仪用于检测氢气中的氧、氩、氮、一氧化碳、二氧化碳、甲烷、乙炔等杂质痕量检测仪器性能:氦放电离子化检测器(did),无选择性、无辐射、用途广检测器灵敏度高:<5 ppb(ch4)检测器线性好:>106快捷操作:人机交互界面,可通过彩色触摸屏直接控制仪器的运行如上图:实际数据结果,did对于甲烷在3个不同范围的线性表现02gm-210 在线总硫分析仪仪器性能:检测限<5ppb线性>103自动校验、结果分析、信号输出等功能可实现无人值守,连续分析03midac i-系列ftir光谱仪--在线实时测定甲酸 、甲醛及氨含量仪器性能:配置midac的专利“干涉仪”可同时分析多种化合物组分,从ppb级别到百分比水平带有通讯自动预警和自动化多点采样系统高麦除提供以上在线实时监测仪器外,为增进加氢站的安全,可提供防爆分析小屋,将仪器集成化到一个系统内,方便操作人员工作以外,同时为工作人员的安全提供了保障。04高麦防爆分析小屋--为您全程提供安全保障性能参数:防爆等级:隔爆型exdⅱb t1~exdⅱc t6,制作等级根据用户要求而定分析室内浓度超标时声光报警防护等级:≥ip56内部管线均采用ep级不锈钢洁净管焊接或者vcr连接出厂前严格进行五项测试(保压、测漏、水分、氧分、颗粒)高麦 成立于1935年,在中国、美国、日本、韩国等多个国家设有技术、研发中心,生产、组装工厂、客户运营中心,逐步形成以北京为总部,在武汉、杭州,日照,台湾等地分别设立技术研发和客户运营中心的生态网络,全方位的为中国乃至全球客户 打造专属的气体行业解决方案。
  • 高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择
    高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择近20年来,随着更复杂、更密集的大规模和超大规模集成电路的生产,对高纯气体洁净度的要求,已不亚于对纯度和干燥度的要求,凡工艺气体,无一不对其中的粒子提出限制。因此,对于高纯气体,纯度、干燥度、洁净度是三项重要的标度。由于高纯度气体的使用地点、性质、工况(如温度、压力等)都不完全一致,所以,如何确定高纯气体的“三度”(纯度、干燥度、洁净度),还没有一个严格而明确的概念。 高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择 主要产品:SADP露点仪|在线露点仪| 肖氏露点传感器|肖氏露点仪|顶空分析仪|药品残氧仪|压缩空气露点仪|Mocon透氧仪|膜康透湿仪|PBI顶空分析仪|露点仪品牌|露点仪价格|露点仪批发|Hitech氧气分析仪|Hitech热导气体分析仪|Hitech氢气分析仪|露点仪厂家 对于纯度和干燥度的控制,我国CBJ73—84《洁净厂房设计规范》中指出,“高纯气体系指纯度大于或等于99.9995%,含水量小于5ppm气体。”日本把微电子生产中所采用的气体,按其不同的品位,具体分为下列几个不同的档次: 1.超高纯气体 气体中杂质总含量控制在1ppm以下,水份含量控制在0.2~1ppm。2.高纯气体 气体中杂质总含量控制在5ppm以下,水份含量控制在3 ppm以内。3.洁净气体 气体中杂质总含量控制在10 ppm以下,对水份含量未作严格规定。 高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择 上述规定,都未涉及洁净度。我们知道集成电路的生产,几乎都是在洁净环境中进行,是防止尘埃粒子污染微电子产品所必需的。所以,对洁净的生产环境绝不允许采用不洁净的气体来破坏,必须使气体的洁净度与洁净环境保持一致,根据相关资料以及近些年公司相关工程的经验进行了一些归纳。 英国SHAW在线露点仪Superdew3 1. 量程可选如下:` SUPER-DEW3 -R 红点(R): -80~-20℃ SUPER-DEW3 -P 紫点(P): -100~0℃ SUPER-DEW3 -G 灰点(G): -80~0℃ SUPER-DEW3 -Y 黄点(Y): -60~0℃高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择 SUPER-DEW3 -RS 银点(S): -110~-20℃ 2、英国SHAW在线露点仪Superdew3特性: ★ 在线测定各种气体的露点温度 ★ 干燥气体时的保证精度为1PPM ★ 室内空气中一分钟自动校准 ★ 大型背光式液晶数字显示 ★ 标准的4~20MA或0~1号输出 技术参数 二次表:(SuperDew) ★ 显示精度:1% ★ 安装类型:面板安装, 开口尺寸:135mmx66mmx175mm(深) ★ 显示:3 1/2位带背光的数字显示 ★ 供电:220V AC @50Hz ★ 输出:4-20mA标准信号输出, 两路继电器高低报警输出240V @3A ★ 校准:在空气中自动校准 ★ 可任意调节的高低报警输出 ★ 传感器到仪表之间的距离可达1千米 ★ ISO 9002质量控制高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择 ★ 可选量程:-100℃~0℃/-80℃~0℃ 3.测量精度:+/-3℃ 4.样气压力:1~30psi,本传感器可耐压到200Bar 5.样气流量:1~5升/分钟,建议1升/分钟 6.气路连接:1/4”或 1/8”卡套接头 7.防爆:传感器本安防爆,增加隔离栅选件可组成防爆检测系统 更多高纯/特种气体的概念及供气系统及进口便携式露点仪品牌的选择信息请致电英肖仪器上海021-66015906
  • 高麦应邀参加第二十三届中国国际气体设备、技术与应用展览会
    伴随我国经济的发展,气体则成为“工业血液” “电子粮食” “终极能源”等,其在国民经济中的重要地位和作用日益凸显。为充分展示我国气体行业发展的新技术、新成果,扩大国内外的产品和技术交流、合作,构建气体行业新发展格局,中国工业气体工业协会、中国电子气体生产与利用百人会将于2022年9月7-9日在江苏南京举办“2022第二十三届中国国际气体设备、技术与应用展览会”。此次展会更具权威性、专业性,无论从展商数量、专业观众人数、展示展品内容、科学技术含量、专业化程度以及展出效果,均堪称全球气体行业领先水平。届时,北京高麦克将携GOW-MAC 5900专用气相色谱仪、MIDAC I系列FTIR、GM 826系列气相色谱仪等仪器参与展出,并分享“高麦分析仪器在电子特气中的应用”主题报告,会议报告地点为南京新华传媒大酒店,展会地点为南京国际博览中心,展位号4T50,诚挚期待您的到来!2022中国电子气体发展高峰论坛 暨中国电子气体百人会年度论坛时间2022年9月6日09:00-18:00地点南京新华传媒大酒店报告高麦分析仪器在电子特气中的应用高麦分析仪器在电子特气中的应用2022第二十三届中国国际气体设备、技术与应用展览会时间2022年9月7-9日地点南京国际博览中心展位号4T50-北京高麦克北京高麦克展览位置图北京高麦克仪器介绍北京高麦克产品介绍高麦 成立于1935年,在中国、美国、日本、韩国等多个国家设有技术、研发中心,生产、组装工厂、客户运营中心,逐步形成以北京为总部,在武汉、杭州,日照,台湾等地分别设立技术研发和客户运营中心的生态网络,全方位的为中国乃至全球客户 打造专属的气体行业解决方案。The Cornerstone of Technology,Since 1935. 关注高麦,洞见真知。
  • AURA Controls 发布高纯气体自动切换装置EXD
    压力和过程控制技术的世界领导品牌AURA Controls于2015年5月18日发布了一套精确度高、稳定性强的气体转换系统AURA EXD series。此系统能实现两个高压气源之间的自动切换,在对供气要求严格的应用过程中保障不间断气体供应。   AURA EXD series自动压差转换系统设计用来实现为重要的应用过程和要求严格的过程环提供持续的高纯气体供应。EXD非常适合色谱应用、样品采集和实验室设备中载气和校准气的气体输送。   此经得起考验的转换技术能通过定压阀装置提供失效保护程序,使终端用户能在不终止系统工作的情况下更换储气装置,同时也能延长每罐气体的使用时间。这项专利转换技术还可实现最大化的使用钢瓶气体,在气体将用尽时装置通过从每个储气装置抽取更多气体来增加流速 ,也能保障两个储气装置不会同时用竭。   EXD的全套接口可以灵活的运用于特殊需要的装配、冲洗等应用过程,隔离阀入口压力最高达3000psig。AURA EXD调节阀在100%洁净室中装配,整个系统全部经过了氦气检漏,也为氧气服务做过了清洁。 AURA EXD series 编译:郭浩楠
  • 毕力同心,共克时艰!参与毕克气体抗疫手势舞接力,赢乐高、盲盒~
    近日,全国各地疫情四起,我们共同经历着这场“倒春寒”,也一起期盼着疫情的阴霾早日散尽,能够重新自由拥抱美好的春日。特殊时期,Peak气体发生器也在不分昼夜、高效稳定运转,为一些重要机构分析仪器提供气源。与此同时,Peak工程师团队全力以赴保障发生器的运行,助力疫情防控,守护从未间断。毕克气体响应@慕尼黑上海分析生化展号召,参与抗疫手势舞接力,致敬行业同仁。#毕克气体手势舞使命接力,同心抗疫凝心聚力,接力传递下一棒就交给你啦!@毕克气体公众号粉丝加入抗疫手势舞接力,Peak准备了乐高、POP MART盲盒等暖心奖品,欢迎你加入我们,传递正能量~也可邀请你家宝贝出镜哦!也可邀请你家宝贝出镜哦!也可邀请你家宝贝出镜哦!(重要的事情说三遍)活动说明录制抗疫手势舞视频(可用抖音、剪映等平台;配乐:燎原四方),并上传视频到指定链接,参与投票。我们将根据活动截止时的票数排名,送出相应奖品。奖品将于公布获奖名单后7个工作日发放。如物流受疫情影响,将延迟到快递恢复后发放奖品。*如发现故意刷票行为则票数作废,不参与发奖;每位自然人仅有一次获奖机会;本次活动最终解释权归毕克气体所有。参与方式第一步:使用抖音、剪映等短视频平台录制抗疫手势舞视频,配乐选用:燎原四方;第二步:扫描以下二维码,或点击链接进入活动页面;http://ka3ygra1.c787.hudongku.net/ 第三步:点击“我要报名”,填写相关信息,并上传视频封面、视频,点击提交;第四步:为自己投票、拉票吧~活动时间2022年4月12日-4月20日24:004月21日公布获奖名单。奖项设置
  • 上海科创推出网络化高纯气体分析气相色谱仪
    上海科创新推出网络化高纯气体分析气相色谱仪   一、*参数   1、检测器指标   氢火焰检测器(FID):   灵敏度(检测限) ≤5.0×10-12g/s(正十六烷)   基线噪音≤1×10-13A   基线漂移≤ 5×10-13A(30min)   线性范围:107   稳定时间≤1h   热导检测器(TCD):   灵敏度(检测限)≥3000-10000Mv.ml/mg(苯)   基线噪音≤0.01mv   基线漂移≤0.1mv(30min)   线性范围:105   稳定时间≤1.5h   *小检测浓度:(高纯氩中6组份)   H2≤0.5ppm,O2≤1.5ppm,N2≤2ppm,CO≤0.2ppm,CH4≤0.2ppm,CO2≤.5ppm   温度控制   温控范围:温度范围:室温以上8℃-400℃   温控精度:±0.5%   程序阶数:8阶   程升速率:0-39℃/min(调节增量0.1℃/min)   程序升温重复性:≤1%   二、网络化仪器特点:   1、全微机控制系统,电脑反控(一台电脑可控制N(N≦253)台色谱仪,具有六路温度控制系统 四路时间程序系统。   2、色谱仪采用**的10/100M以太网通讯接口,可以实现对仪器的远程监控和远程数据传输处理及监管。可连接到单位主管及上级主管,便于主管实行监管。还可以通过互联网连接到生产厂家,实现远程诊断、远程程序更新等。   3、数字信号输出(内置色谱工作站),信号网线直接输出。   4、可同时选配2种常用检测器。(FID、TCD、ECD、FPD中选1-2种)   5、大容量柱箱带自动后开门,可进行8阶程序升温 近室温控制功能(室温以上8℃)。   6、可配置填充柱进样器、毛细管柱进样器、气体进样器、转化炉、热解析装置、顶空进样器、热裂解装置、自动进样器等。   7、具有故障自我诊断功能,随时显示故障部位及性质 具有超温保护功能,*一路温度超过设定温度,均会自动停止加热。
  • 新型气体磁共振成像仪器“点亮”肺部
    我国科学家研制了一种新的气体磁共振成像仪器,不但能看清肺部的各种病灶,而且能清晰地看到肺部的吸氧能力和氧消耗等功能。这对于肿瘤发病率和死亡率均在我国排第一的肺癌的防治具有重要意义。  7日在中科院武汉物理数学所波谱与原子分子物理国家重点实验室,病人穿好人体“马甲式”高灵敏肺部成像探头,推入核磁共振谱仪,吸入惰性气体氙,摒住呼吸约6秒钟,同时启动谱仪,之后检查结束。从电脑屏幕上就看到病人的气体磁共振影像。显示病人的左肺叶下部有一块明显的通气缺陷,这与病人先期做的CT图像显示一致。但影像的右肺叶上还显示出一些小的病变组织,这在CT图像上是没有的。  在我国,临床上用于肺部疾病检测的影像学技术包括胸透(X光)、计算机断层扫描(CT)和正电子发射计算机断层扫描(PET)等。这些检查虽然能看到肺部的疾病情况,但不是很清晰,不能全面提供衡量肺部健康状态的重要指标,比如肺部气—气交换和气—血交换等功能指标。  要想“点亮”肺部,就必须增强气体信号。由周欣研究员领导的团队,使用级联激光光泵的核心技术,成功研制出了氙-129气体极化装置,从而获得了比原来气体信号增强了44000多倍的气体信号。他们研制的新型“马甲式”高灵敏肺部成像探头,提高了肺部气体磁共振信号的激发均匀性和接收效率,高效并定量获得肺部氧气—二氧化碳交换、氧气—血液交换的动力学和影像学信息,使大夫不仅能看到肺部的结构变化(如纤维化等),也能发现肺部的功能变化(如吸气能力的下降等)。  武汉大学中南医院医学影像中心吴光耀教授说,相比传统的CT检查,新技术可以无接触、无创伤、无放射性地使肺部功能可视化,增加了医生早期诊断的的可靠性,不必非得等到肺部出现病变才能确诊。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制