当前位置: 仪器信息网 > 行业主题 > >

高分辨成像

仪器信息网高分辨成像专题为您整合高分辨成像相关的最新文章,在高分辨成像专题,您不仅可以免费浏览高分辨成像的资讯, 同时您还可以浏览高分辨成像的相关资料、解决方案,参与社区高分辨成像话题讨论。

高分辨成像相关的资讯

  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。   研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。   &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。   物理放大   衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。   然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。   为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。   研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。   人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。   大样本   MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。   &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • 中国科大实现界面化学动态过程的原位高分辨成像分析
    中国科学技术大学环境科学与工程系刘贤伟课题组在界面化学过程的原位高分辨成像方面取得进展,相关研究成果以“Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry”为题近日发表于Nature Communications。污染物的催化转化是水污染控制技术的重要方法,解析环境催化材料在污染物转化过程中活性位点的动态变化,对理解材料的构效关系,解析催化机理,设计并研发新的环境催化材料具有重要意义。尽管目前研究人员对分析纳米材料的活性位点有浓厚的兴趣,但在温和的水溶液环境中,对单个纳米材料界面反应的动态演绎过程研究仍然存在挑战。 图1高分辨表面等离子体散射相干成像示意图   针对上述挑战,研究团队研发了高分辨等离子体散射干涉成像技术,通过调制入射光有效消除了反射光的干扰,实现了具有高空间分辨率和高抗干扰能力的表面等离子体散射干涉成像。以银的表面化学反应为例,研究团队原位追踪了溶液中单根银纳米线的动态电化学转化过程,在空间上刻画了纳米线反应动力学分布,为建立纳米线表面缺陷、重构与反应活性的关系提供了关键证据。该免标记成像分析方法,可以与电子显微镜等技术耦合表征纳米材料的结构和化学组成,为高分辨原位成像分析污染物的催化转化动态过程和解析其构效关系提供了有效的分析方法与技术平台。 图2 单根纳米线表界面动态反应过程的成像分析   该研究工作得到了国家自然科学基金等项目的支持。
  • 高分辨光电压力传感成像芯片系统问世
    日前,中科院外籍院士、美国佐治亚理工学院和中科院北京纳米能源与系统研究所王中林研究小组,利用垂直生长的纳米压电材料阵列,研制出大规模发光二极管阵列,并且利用压电光电子学效应,首次实现利用外界应力/应变改变纳米压电发光二极管发光强度的过程 首次研制出主动自适应式的、高分辨率的、以光电信号为媒介、并行处理的压力传感成像芯片系统。相关论文于8月11日在线发表于《自然&mdash 光子学》杂志。   用电信号或光电信号成功实现对高分辨率触觉的模拟,将对新型机器人、人机互动界面等领域有着重大意义。相比于其他感知器官(如视觉、听觉、嗅觉、味觉等)的研究,触觉的仿生研究目前还很少。现有的压力传感研究的分辨率多为毫米或厘米量级,而且受制于多种因素,难以实现大面积、高分辨的应力分布快速成像。   当器件表面受到外力作用时,受压的纳米线所在的发光二极管光强比没有受压的纳米线所在的光强显著增强,而且增强程度与器件局域所受的外加应力成正比。通过对整个器件的发光二极管阵列发光强度变化的监控,就可以很容易得知器件表面的受力情况。该研究组创新性地采用光信号(而非传统的电信号)来作为表征信号,CCD相机采得的发光二极管阵列图像为载体,这就使得该器件在光传输、数字化处理、光通信等方面有很好的应用前景。   该研究首次实现了大规模基于单根纳米线阵列的纳米器件制造、表征和系统集成 首次奠定了压电光电子学效应及其在大规模传感成像中的应用 首次在高于人皮肤分辨率的情况下实现了大尺度应力应变成像及记录。   据介绍,该研究应用范围涵盖生物医疗、人工智能、人机交互、能源和通信等领域,通过封装和填充材料还可起到增强器件机械强度和延长器件工作寿命的作用。在未来可被进一步发展成多维度压力传感、智能自适应触摸成像和自驱动传感等。
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 深圳先进院高分辨率超声成像研究获系列进展
    p   近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。 /p p   高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。 /p p   邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。 /p p   以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。 /p p   论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity /p p style=" text-align: center " img title=" 01.png" src=" http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg" / /p p style=" text-align: center " strong 图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图 /strong /p p style=" text-align: center " img title=" 02.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg" / /p p style=" text-align: center " strong 图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度 /strong /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg" / /p p style=" text-align: center " strong 图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg" / /p p style=" text-align: center " strong 图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图 /strong /p p & nbsp /p
  • 350万!清华大学高稳定超高分辨显微成像系统采购项目
    项目编号:清设招第2022118号项目名称:清华大学高稳定超高分辨显微成像系统采购项目预算金额:350.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高稳定超高分辨显微成像系统1套是设备用途介绍:观察固定/活细胞或组织内部超微结构和形态变化(包括但不限于各种细胞的亚细胞器、分泌囊泡、突触、染色体以及包括蛋白质在内的大分子等)的超高分辨率水平(≤50nm)图像;研究亚细胞和分子水平定性,定量和定位分布检测;并在细胞及分子生物学,神经科学,组织及病理学、病毒及微生物学,免疫及肿瘤学等领域具有广泛用途。简要技术指标:1)高稳定超高分辨显微成像模块,生物分子可实现XY方向分辨率≤50nm;2)点扫描激光共聚焦显微成像模块,生物分子可实现XY方向分辨率≤200nm;3)科研级全电动倒置荧光显微镜,超高分辨专用100X油镜,数值孔径NA≥1.45。合同履行期限:合同签订后90日内交货本项目( 不接受 )联合体投标。
  • 网络研讨会:高分辨率CT成像技术与应用
    网络研讨会:高分辨率CT成像技术与应用时间:2016-09-08 14:00 注册方式打开以下链接并报名http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2104 讲座内容概要在过去的几十年中,显微成像技术取得了令人瞩目的发展,涌现出众多新的技术和设备,如光学显微镜,SEM/TEM, AFM等,将显微成像技术的分辨能力不断推向新的高度,从微米到纳米甚至是原子尺度。但是,所有这些技术都只是对样品表面形貌进行观测,对样品制备有严格的要求。而高分辨率CT成功的弥补了这一不足,可在无损的情况下对样品内部组分及三维结构进行精确表征。“高分辨CT技术及其应用”介绍了最新的x射线三维显微成像检测技术及其产品,该技术可对样品内部不同吸收系数的组分及微观结构进行三维高分辨率无损成像,在科研及工业领域有着广泛的应用,如石油地质,材料科学,先进制造等。欢迎各行各业对CT感兴趣的用户参与。
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。   记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。   这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。   微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。   &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 我国学者实现活细胞的高分辨低功耗快速拉曼成像
    记者从中国科学技术大学了解到,该校工程科学学院Zachary J. Smith教授团队与合作者一起,提出了一种基于线扫描拉曼成像系统和偶氮增强拉曼探针相结合的快速生物成像方法,实现了对细胞器动态过程的高分辨率、低功耗的影像。相关研究成果日前在线发表于学术期刊《美国化学学会杂志》。拉曼成像是一种无标记的单细胞分析技术,能够从分子水平获得细胞的结构和组成信息,广泛应用于生物医药研究领域。然而,拉曼散射截面十分微小,通常需要在高激光照度下历经数小时才能获得一帧细胞拉曼图像,无法捕捉到细胞器的时空演变信息。拉曼探针作为另一种拉曼信号增强方法,具有细胞可透过性、靶向性、低毒性等特点,但是常见的炔烃标记的拉曼探针还无法满足高分辨率的快速细胞动态成像。为此,研究人员设计了一种动态偶氮增强拉曼成像系统,能够实现对细胞器动态过程的高分辨低功耗快速拉曼成像。研究人员采用了一种新型的超灵敏共振拉曼探针,即偶氮增强拉曼散射探针,在极大提高拉曼信号的同时,能够抑制荧光背景,相对拉曼强度提高了3-4个数量级。结合自主设计的线扫描自发拉曼成像系统,实现对偶氮增强拉曼探针标记后的活细胞中多种细胞器的快速拉曼成像,并且能够获得全拉曼光谱信息。
  • 加速赋能您的组织成像研究 THUNDER 3D Tissue高分辨组织成像系统
    一更高的分辨率更细节的细胞生物学信息THUNDER技术采用硬件加软件的整体解决方案,在宽场成像原理下,通过计算清除(Computational Clearing)和自适应反卷积(Adaptive Deconvolution)的专利方法,有效的减少离焦信号的干扰,保留焦平面的信号,从而提高对比度,改善图像质量并提供更多细节信息供进一步分析。XY轴分辨率能达到136nm,Z轴分辨率能达到264nm,是一种广泛受到学术界认可的宽场高分辨率成像技术。(小鼠肾脏组织切片)通过THUNDER技术,排除模糊离焦信号的干扰,将原本“深藏于”模糊离焦信号之中的、微小的细节信息暴露出来,为进一步破解细胞生命动态变化的规律提供了新的思路。(视网膜切片,普通宽场成像,左;THUNDER成像,右)技术详情请点击点击下载THUNDER的工作原理:如何赋能细胞生物学研究新一代Live THUNDER,通过实时THUNDER技术,在预览的模式下,实现高分辨率条件下的视野寻找,提高实验工作效率。(脑组织切片成像的预览模式)二 更深的成像深度更完整的细胞生物学信息(脑组织切片 成像深度达150um)在上图中,用于厚样本成像(如脑组织成像,通常为了尽可能保留神经元的完整性,而制备较厚的组织样本;如类器官成像),通过Large Volume Computational Clearing(LVCC),一种匹配大体积的、厚的样品的THUNDER技术。在样本的上层,甚至最微小的细节都能被THUNDER解析。(神经元深度成像)三 更多的颜色(生物标记物)更丰富的空间信息(癌症组织6色成像)THUNDER结合上游的多色荧光染色技术,如TSA技术,突破常规荧光标记方法因为种属限制和特异性限制,可以实现超过4色的细胞生物学研究。通过多个荧光探针(或多个荧光蛋白)对不同的生物分子或细胞结构进行标记,可以同时观察多个目标,并了解它们之间的相互关系和空间分布,揭示细胞内的亚细胞结构、细胞类型、代谢状态、信号通路活性等多个方面的信息。四从高分辨率成像到样品捕获 更有效率的组织学研究方式(激光显微切割工作原理)THUNDER系统可以与激光显微切割(LMD)升级成为一体机。连接从高分辨率成像到精准的单个细胞或组织区域捕获,不再需要通过两种不同的系统进行组织和数据的转移。通过显微切割重力收集作用将其收集到下方的收集管中,以便进行下游处理。从高分辨率成像到精准的单个细胞或组织区域捕获,再到下游精确定量的分析技术,如 RNAseq、NGS、MS、qPCR、微阵列等,加速与赋能您的组织学研究。五应用案例【THUNDER小课堂】感觉神经元的高对比度快速三维成像【THUNDER小课堂】血管疾病的分子机制六申请样机徕卡显微咨询电话:400-630-7761关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 重大仪器研制项目“高分辨多功能化学成像系统”顺利验收
    p   6月20日至21日,国家自然科学基金委员会在京对中国科学院化学研究所承担的重大仪器研制项目“高分辨多功能化学成像系统”进行了结题验收。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、化学所相关人员、项目组全体成员等70余人参加了项目验收会。项目验收专家组由包括仪器测试组、财务验收组、档案验收组等在内的18位专家组成,中科院院士柴之芳担任验收专家组组长。结题验收会由国家自然科学基金委员会化学学部常务副主任陈拥军主持。 /p p   国家自然科学基金委员会副主任姚建年在发言中指出,重大仪器研制项目的设立符合国家创新驱动发展战略的需求,仪器创新是科研创新的源头。陈拥军介绍了“高分辨多功能化学成像系统”项目的立项过程,并对验收工作提出了具体要求。中科院条件保障与财务局副局长曹凝介绍了中科院的监理制度和监理情况,对基金委长期以来对中科院仪器创新工作的支持表示感谢。 /p p   项目负责人、中科院院士万立骏对“高分辨多功能化学成像系统”项目的完成情况进行了详细汇报。该系统包括超分辨光学STED成像模块、CARS成像模块、AFM成像模块、共聚焦激发的MALDI-MS成像模块、SIMS质谱成像模块等,能够在各模块单独工作的基础上,实现各模块之间的联用成像,在纳米尺度和分子水平对复杂体系界面结构进行形貌和化学组成表征。仪器测试专家组在验收会前对仪器进行了现场严格测试,全部技术指标达到或优于任务书预定的要求。利用研制的化学成像系统,项目组在能源材料和生物体系的表界面结构与功能等领域取得了系列研究成果,申请国际国内发明专利40余件,授权国际专利4件,国内专利14件,发表了一批高水平论文。在项目执行过程中,项目组在技术人才培养方面探索出了新的机制,形成了一支有特色的多学科交叉的科学仪器研制团队。 /p p   验收专家组现场查看了研制系统的运行情况,并对财务和档案进行了验收。验收专家组听取了监理报告、仪器测试报告、档案验收报告和财务验收报告。通过现场考察和听取汇报,验收专家组认为,该项目完成了实施方案规定的研制任务,达到了项目预期目标,一致同意项目通过验收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d317e9ca-86a6-4da7-9af0-f79f022f8745.jpg" title=" iVGd-fyhskrp7666782.jpg" /    /p p style=" text-align: center " 验收会主会场 br/ /p p br/ /p
  • 重大仪器专项“高分辨多功能化学成像系统”顺利通过验收
    p   6月20日至21日,国家自然科学基金委员会在京对中国科学院化学研究所承担的重大仪器研制项目“高分辨多功能化学成像系统”进行了结题验收。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、化学所相关人员、项目组全体成员等70余人参加了项目验收会。项目验收专家组由包括仪器测试组、财务验收组、档案验收组等在内的18位专家组成,中科院院士柴之芳担任验收专家组组长。结题验收会由国家自然科学基金委员会化学学部常务副主任陈拥军主持。 /p p   国家自然科学基金委员会副主任姚建年在发言中指出,重大仪器研制项目的设立符合国家创新驱动发展战略的需求,仪器创新是科研创新的源头。陈拥军介绍了“高分辨多功能化学成像系统”项目的立项过程,并对验收工作提出了具体要求。中科院条件保障与财务局副局长曹凝介绍了中科院的监理制度和监理情况,对基金委长期以来对中科院仪器创新工作的支持表示感谢。 /p p   项目负责人、中科院院士万立骏对“高分辨多功能化学成像系统”项目的完成情况进行了详细汇报。该系统包括超分辨光学STED成像模块、CARS成像模块、AFM成像模块、共聚焦激发的MALDI-MS成像模块、SIMS质谱成像模块等,能够在各模块单独工作的基础上,实现各模块之间的联用成像,在纳米尺度和分子水平对复杂体系界面结构进行形貌和化学组成表征。仪器测试专家组在验收会前对仪器进行了现场严格测试,全部技术指标达到或优于任务书预定的要求。利用研制的化学成像系统,项目组在能源材料和生物体系的表界面结构与功能等领域取得了系列研究成果,申请国际国内发明专利40余件,授权国际专利4件,国内专利14件,发表了一批高水平论文。在项目执行过程中,项目组在技术人才培养方面探索出了新的机制,形成了一支有特色的多学科交叉的科学仪器研制团队。 /p p   验收专家组现场查看了研制系统的运行情况,并对财务和档案进行了验收。验收专家组听取了监理报告、仪器测试报告、档案验收报告和财务验收报告。通过现场考察和听取汇报,验收专家组认为,该项目完成了实施方案规定的研制任务,达到了项目预期目标,一致同意项目通过验收。 /p
  • 199万!四川大学高分辨拉曼成像光谱仪采购项目
    项目编号:SCIT-ZG(Z)-2022100004项目名称:四川大学高分辨拉曼成像光谱仪采购项目预算金额:199.0000000 万元(人民币)最高限价(如有):199.0000000 万元(人民币)采购需求:本项目共1个包,采购高分辨拉曼成像光谱仪1套,允许采购进口产品。合同履行期限:合同签订后180日内交货并安装调试完毕。本项目( 不接受 )联合体投标。
  • 国产超分辨iSTORM新品!力显智能于清华发布新品活细胞超高分辨率显微成像系统!
    2023年8月6日至12日,由清华大学蛋白质研究技术中心、生物医学测试中心、中国细胞生物学学会细胞器生物学分会联合主办的第四届活细胞与超高分辨成像高级研讨会在清华大学成功举办。众多领域专家学者、行业头部翘楚齐聚一堂,和来自全国各地的100余位青年学者一起见证了这场学术盛宴。研讨会邀请了北京大学席鹏教授、陈良怡教授、孙育杰教授,中科院生物物理所李栋研究员,中国科技大学唐爱辉教授,西湖大学章永登研究员、清华大学陈春来副教授等十数位在活细胞、超分辨、单分子成像等领域的知名专家进行报告,还邀请了尼康、徕卡、蔡司等公司就超分辨成像、一体化活细胞成像等仪器进行了专业介绍和体验展示。在本次研讨会上,力显智能科技联合创始人兼COO张猛博士就《单分子定位超高分辨率显微镜iSTORM在生物医学领域的应用》进行了相关报告分享。会议期间,力显智能科技研发的新品活细胞超高分辨率显微成像系统iSTORM VIVO在清华大学正式发布,更是为这场精彩盛宴增添了一抹亮色。现场,清华大学高级工程师王文娟老师与力显智能科技联合创始人兼COO张猛博士共同为活细胞超高分辨率显微成像系统iSTORM VIVO揭幕。揭幕仪式力显智能科技联合创始人兼COO张猛博士表示:非常感谢一路支持力显的各位朋友和老师,是大家的支持和帮助,促成了这次活细胞超分辨新品在清华大学的圆满发布,这是广大用户对力显超分辨的再一次肯定,也是力显智能科技自研国产超分辨之路的又一个重要里程碑。活细胞超高分辨率显微成像系统iSTORM VIVO作为目前国内唯一的商业化单分子超分辨显微系统,iSTORM成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实。在原先标准版iSTORM的基础上,经光机系统、染料、算法协同开发,iSTORM VIVO在活细胞超分辨成像领域获得极大技术提高,提升原始图像拍摄速度,搭配高密度快速荧光定位算法,可以在维生条件下进行快速活细胞超高成像,以高精密度的成像能力解析活细胞的各种生命生理过程,极大弥补了传统STORM技术在活细胞超分辨成像领域的短板,给生命科学、医学等领域带来重大突破。
  • 上海药物所等在超高分辨光学成像研究中取得进展
    p style=" text-align: justify text-indent: 2em " 基于单分子定位的超高分辨率显微成像技术(例如PALM、STORM、directSTORM等)已达10 nm左右的光学分辨率。然而,要获得超高分辨率图像,需要较长的采集时间(1-30分钟),而样品漂移(通常1 nm/s)会对此产生影响。目前,加入外源标准参照物(荧光小球、金属纳米颗粒等),引入基于额外近红外监测轴向焦平面变化的商用漂移校正系统,或使用基于互相关方法的图像后处理算法等策略,已被应用于样品漂移校正。但是,外源物的引入及光漂白效应等导致三维尺度漂移校正的精度不佳。 /p p style=" text-align: justify text-indent: 2em " 10月15日,中国科学院上海药物研究所研究员黄锐敏团队在Optics Express上,发表题为Three dimensional drift control at nano-scale in single molecule localization microscopy的研究论文,报道一种利用明场照明模式下细胞内囊泡的衍射信息作为内源参考物来补偿样品三维漂移的新策略。 /p p style=" text-align: justify text-indent: 2em " 研究人员通过光路改造,增加一个近红外CCD用于囊泡位置检测。根据其xyz三维位置信息,通过算法对三维压电陶瓷样品台进行漂移校正,获得xy向& lt 1.0 nm,z向& lt 6.0 nm的定位精度。将该方法应用于F-actin的超分辨率显微成像中,并与商用的漂移校正系统及互相关图像后处理算法进行漂移校正比较,结果表明,重建的超分辨率图像的图像质量显著提高,可更好地显示肌动蛋白微丝的细节(图1)。 /p p style=" text-align: justify text-indent: 2em " 该样品漂移校正方法的优势在于:(1)使用生物样品自身结构作为基准,不需引入外源参照物,从而简化样品的制备过程;(2)不需对显微镜系统做较大改造,费用低廉,普适性较强;(3)校正是基于明场图像,不依赖于荧光,可避免光漂白效应导致的定位精度下降问题。 /p p style=" text-align: justify text-indent: 2em " 上海药物所公共技术服务中心分子影像技术服务部博士范晓明为论文第一作者,黄锐敏为论文通讯作者。参与该研究的有德国于利希研究中心博士Thomas Gensch、教授Georg Bü ldt,上海药物所研究生张元亨、祖里帕力· 木沙、张文渊以及上海药物所神经药理学研究国际科学家工作站博士Renza Roncarati。研究工作获得国家自然科学基金委员会、国家卫生健康委员会新药创制科技重大专项、中科院的资助以及国家蛋白质科学中心(上海)的技术支持。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-22-32750& id=441680" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 112, 192) " 论文链接 /span /a /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 112, 192) " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/74b57170-3475-4f34-b184-6022752b7cb4.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /span /p p style=" text-align: justify text-indent: 2em " (A)实验光学成像原理图;(B)A549细胞内囊泡在不同z向深度的明场信息;(C)不引入位移校正和引入位移校正以及在两种情况下分别加入和不加入互相关图像后处理算法校正的肌动蛋白微丝的超高分辨率图像比较 /p
  • 蔡司推出新一代超高分辨率显微成像系统
    双倍提升结构光照明显微技术分辨率蔡司新一代超高分辨率显微成像系统Elyra 7 with Lattice SIM2蔡司推出了具有开创性的Lattice SIM²,可提高结构照明显微镜(SIM)的分辨率和光切质量。使用显微镜系统蔡司 Elyra 7上的Lattice SIM²,将传统的SIM分辨率提高一倍,生命科学研究人员现在可以以60nm分辨率区分出活的和固定的样品的最佳亚细胞结构。SIM是一种基于栅格的照明技术,可以以超出光学显微镜衍射极限的分辨率进行成像。两年前,随着蔡司Lattice SIM的推出,SIM成像技术迈入新的时代,蔡司将SIM的分辨率优势与成像速度和检测灵敏度的大幅提高相结合,使超高分辨率显微镜蔡司 Elyra 7成为活细胞成像的理想选择。借助Lattice SIM²,蔡司通过不懈努力将超高分辨率成像技术又向前推进一大步,使研究人员能够突破以往超高分辨率成像技术在分辨率,成像速度和光毒性等方面的限制。Lattice SIM2同时提升分辨率、光切性能和样品适用性Lattice SIM²在分辨率,光切性能和样品适用性方面均优于传统的SIM,而无需特殊的染色方案或复杂的显微镜技术的专业知识。Lattice SIM²不仅可以解析低至60 nm的结构,还可以同时进行超高分辨率和高动态成像——这是观察活细胞或生物体中快速生物过程的必要条件。以远低于100 nm分辨率进行活体生物样品成像借助Lattice SIM²,研究人员现在可以同时以低于100 nm的分辨率和高达255fps速度进行活体生物样品的细节成像。这种简单易用又能达到高时空分辨率的成像方式,将使发现新的亚细胞功能原理成为可能,并有助于更好地了解细胞器的分布和结构。发育生物学,神经科学,植物科学和相关学科的研究人员将通过揭示快速的细胞过程,以更深的成像深度解析3D结构并研究分子水平的结构变化,来获得对模式生物和标本的更多见解。参与产品测试的用户立即意识到Elyra 7 with Lattice SIM²的研究潜力,并对新的可能性表示了热情。约克大学影像与细胞计量学负责人Peter O’Toole:“我记得最初看到结果时,我惊讶的大笑。我的下一个反应是向可以立即受益的一些关键用户发送电子邮件。从组织神经生物学家到细胞和分子免疫学家,再到从事酵母和细菌研究的科学家,他们都已经从Lattice SIM²中受益。”随着Lattice SIM²的推出,蔡司Elyra 7将不断发展成为兼容活细胞的超高分辨率显微成像的主要平台。蔡司有着强大的动力,想为科学界提供可轻松使用先进的成像技术
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • Nature子刊:香港科技大学瞿佳男团队开发活体高分辨大脑成像新技术
    大脑是高等生命体最复杂的器官。在其自然状态下实现对神经元、神经胶质细胞和微血管系统的非侵入式活体高分辨成像对于促进理解大脑生理机能和疾病至关重要。为了实现这一目标,研究人员一直致力于研发能穿过颅骨的大脑活体成像技术。虽然超声成像、正电子发射断层扫描、磁共振成像等技术都能对大脑进行无损成像,但却无法提供足够的空间分辨率来解析亚细胞水平的生物结构和功能。光学显微镜的独到之处在于能够以高空间分辨率提供活体样本的结构和功能信息。然而,当光波在不均匀生物组织(例如哺乳动物颅骨和大脑组织)中传输时就会遇到组织产生的光学像差和散射,从而限制了光学成像的分辨率和深度。近年发展的三光子显微镜(3PM)技术是一种使用长激发波长和高阶非线性激发的光学成像方法。与其他光学成像技术相比,3PM有效地减少了散射和背景荧光,在对哺乳动物大脑成像方面已经显示出巨大的潜力。然而,不透明的颅骨和脑组织仍然会严重衰减激发和发射光子并产生光学像差和散射,从而降低成像质量和深度。自适应光学(AO)是一种校正光波波前畸变的方法,最早用于大型天文望远镜排除大气产生的像差实现高分辨成像。近10多年 AO 已被应用于光学显微镜领域,通过校正组织像差来提高成像分辨率。然而,传统 AO 技术的波前测量精度和像差矫正准确性都随着成像深度的增加迅速下降。因此,如何在弱信号和大散射情况下准确测量并矫正像差对于在组织深层实现高分辨成像是一个巨大的挑战。近日,香港科技大学瞿佳男/叶玉如研究组在 Nature Biotechnology 期刊上在线发表了题为:Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping 的研究论文研究团队在近年发展了多项 AO 显微成像技术的基础上,开发了一种新型活体自适应光学三光子显微成像(AO-3PM)系统。该系统结合全新自适应光学技术和三光子显微成像,实现了穿过活体小鼠完整头骨在大脑深层的高分辨率大视场成像。AO-3PM 大幅提升了非侵入式活体成像的图像质量,为无损研究大脑结构和功能提供了又一强有力的工具。在这项工作中,研究团队发明了一种称为 analog lock-in phase-detection for focus sensing and shaping(ALPHA-FSS 或 -FSS)的 AO 技术,对激发光的相位进行特定调制,再利用相敏探测方法对生物组织引入的低阶和高阶像差进行快速精确测量及矫正(图1)。实验证明-FSS 技术能够在大背景噪声情况下显著提高测量的信噪比,直接得到激发光在显微镜焦面的电场幅值和相位,并用于准确校正小鼠头骨及大脑组织产生的像差和部分散射。不仅如此,AO-3PM 系统还包括另一套共轭自适应光学技术,用于克服矫正波前和生物组织像差随着扫描角度变大迅速解耦的问题,显著扩大了-FSS 的矫正有效范围和高分辨成像的视场。图1:-FSS-3PM系统及对100um厚小鼠头骨引起的像差矫正。(A) AO-3PM系统结构图。(B) 100um厚的头骨下300um深处荧光珠在X-Y平面和X-Z平面的图像,未矫正组织像差(左),-FSS矫正组织像差(右)。(C) 空间光调制器上的矫正图案。(D) B图中沿虚线荧光信号轮廓。比例尺:(B) 2um。研究人员使用1300nm波长的飞秒脉冲激光作为激发光验证了 AO-3PM 的成像性能,展示了穿过小鼠完整头骨的体内和体外成像。与传统的三光子显微成像相比, AO-3PM 能够获得更高的空间分辨率,并提升在小鼠大脑深层荧光信号强度最高达数百倍。凭借对低阶和高阶像差的矫正能力,AO-3PM 可以在保留完整头骨的情况下能够清晰分辨深皮质区的神经元胞体和树突以及微血管的精细结构,实现了穿过小鼠完整头骨在软脑膜下方750 µm深处的无损高分辨率成像(图2)。研究团队还发现 AO-3PM 在大幅提升神经元胞体钙离子信号的同时,更能清晰提取出单独树突钙离子信号,从而可以同步记录神经元胞体树突间的电信号关联。在去除头骨后 AO-3PM 还可获得在软脑膜下方达1.1 mm 深度的海马体高分辨率结构图像。图2:AO-3PM实现活体穿过头骨对大脑皮质的大范围高分辨成像。(A) Thy1-YFP转基因小鼠大脑内150X150X780um^3范围内对黄色荧光蛋白(YFP)标记的神经元(橙色)和Texas Red Dextran标记的微血管(红色)的高分辨成像。(B) 椎体神经元的最大强度投影(脑膜下方545-555um),未矫正组织像差(上),-FSS矫正组织像差(下)。比例尺:(B) 大图20um,小图5um最后,研究人员利用 AO-3PM 在保留完整头骨情况下实现了精密激光损伤,并以此研究了微小损伤后大脑皮质内小胶质细胞的响应过程(图3)。结果显示 AO-3PM 成像可清晰分辨小胶质细胞突起向微米级激光损伤点伸张和包裹的完整过程,有助于研究活体状况下免疫细胞对大脑环境变化的动态反应。同时,研究还表明 AO-3 PM产生的精密微小激光损伤只引起局部免疫细胞的迅速反应,而100微米外相邻大脑皮质的小胶质细胞并不会发生形态和位置的变化。为了验证在更大像差和散射情况下 AO-3PM 的性能,研究人员进一步对老年阿兹海默症老鼠大脑的小胶质细胞和淀粉样斑块进行活体成像。结果显示穿过其140um 厚的完整头骨,AO-3PM 仍然能清晰分辨胶质细胞的精细形态和与淀粉样斑块的相互作用。图3:AO-3PM实现活体穿过头骨精确激光手术以及老年阿兹海默症老鼠大脑内对小胶质细胞高分辨成像。(A) 激光手术后对Cx3Cr1-GFP转基因老鼠内被绿色荧光蛋白标记的小胶质细胞间隔时间成像。(B) 空间光调制器上的矫正图案。(C) A图中沿虚线荧光信号轮廓。(D) 在12个月大的老年阿兹海默症老鼠大脑对小胶质细胞和淀粉样斑块的双色成像。比例尺:(A) 20um;(D) 10um。总体而言,这项研究结果表明,AO-3PM 技术在促进活体生物高分辨成像特别是在活体大脑无创成像研究方面具有巨大潜力。
  • 近3000万!复旦大学拟采购高分辨液质、质谱成像等7套质谱仪
    近政策利好消息推动国内高校、科研院所纷纷启动仪器设备更新改造工作,我国科学仪器行业迎来一波仪器采购大潮。仪器信息网观察发现,高校拟采购的分析仪器中质谱仪器广受关注。  复旦大学近日发布了12月的仪器采购意向,预算近3000万元,拟采购大气常压化学电离高分辨率长飞行时间质谱仪、电喷雾解吸电离-高分辨质谱成像系统、MALDI-高分辨飞行时间高分辨质谱成像仪、超高分辨率液质联用、高性能单颗粒气溶胶质谱仪、环境健康多组学高分辨质谱系统、全二维气相色谱-飞行时间质谱联用仪等7套质谱仪器。本网特别摘录质谱仪相关的采购意向,以飨读者。序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1大气常压化学电离高分辨率长飞行时间质谱仪440复旦大学2022/11/1 11:36Nov-22意向原文2电喷雾解吸电离-高分辨质谱成像系统471复旦大学2022/11/1 11:36Dec-22意向原文3MALDI-高分辨飞行时间高分辨质谱成像仪500复旦大学2022/11/1 11:34Nov-22意向原文4超高分辨率液质联用仪390复旦大学2022/11/1 11:34Dec-22意向原文5高性能单颗粒气溶胶质谱仪320复旦大学2022/11/1 11:34Nov-22意向原文6环境健康多组学高分辨质谱系统549复旦大学2022/11/1 11:34Nov-22意向原文7全二维气相色谱-飞行时间质谱联用仪170复旦大学2022/11/1 10:46Dec-22意向原文
  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能[6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 中科院微观磁共振重点实验室成功实现高分辨电阻抗医学成像
    p   记者从中国科学技术大学获悉:该校杜江峰院士领导的中科院微观磁共振重点实验室在医学电阻抗成像方面取得重要进展,他们利用参数化水平集方法实现了高分辨的电阻抗图像重建。该成果发表在医学成像领域国际顶级期刊《医学影像》上。 /p p   电阻抗成像技术是根据生物体内不同组织在不同功能状态下具有不同电阻抗的原理,通过在生物体体表注入安全激励电流,测量体表响应电压,重建生物体内部的电阻抗分布,从而反映体内结构及功能的新型医学成像技术。由于电阻抗成像具有功能成像的特点,而且对人体无害、使用方便、设备价格相对低廉,成为近年来国内外研究的热点。但电阻抗重建图像通常分辨率较低且对模型误差极为敏感,因此开发高效、稳定且具有高分辨能力的成像算法是电阻抗技术的关键和难点。 /p p   杜江峰院士团队通过利用近年来发展起来的参数化水平集方法及临床医学上现有信息,设计了新的电阻抗成像算法,成功实现高分辨的电阻抗图像重建,并通过大量仿真实验验证了算法的有效性和可行性,结果表明该算法不仅具有高分辨图像重建能力,而且对医学电阻抗成像中普遍存在的模型误差、参数优化设置方式等具有很好的稳定性。 /p p   据介绍,该研究成果有望推动电阻抗成像技术向更为实用的应用方向发展,例如肺部临床电阻抗成像等。 /p
  • 清华大学第四届活细胞成像与超高分辨成像高级研讨会|活动回顾
    2023年8月12日,由清华大学蛋白质研究技术中心、生物医学测试中心和中国细胞生物学学会细胞器生物学分会共同举办的为期6天的【第四届活细胞与超高分辨成像高级研讨会】在清华大学生物医学馆圆满结束。参会人员合影8月7-9日的理论研讨部分,来自清华大学、北京大学、中国科学院、中国科学技术大学、北京脑科学与类脑研究中心、西湖大学的十位专家就他们在活细胞、超分辨、单分子成像、透明化、光片成像和图像处理领域的研究和应用做了深入详尽的报告,为参会者带来一场视听盛宴。报告嘉宾及主题除此之外,清华大学也邀请了当前热门技术如空间组学、全息断层、高内涵、荧光寿命等厂家代表进行了成像技术原理和应用的介绍,并围绕超分辨成像、高内涵与活细胞、光片与光声、扫描与转盘共聚焦、图像处理等模块开展了上机操作培训,让参会人员可以实现活细胞与超分辨成像领域的跨越式成长。安捷伦作为清华大学的设备供应商和中国细胞学学会企业会员,深度参与了本届高级研讨会。安捷伦细胞分析事业部产品应用经理王慧,以【活细胞与高内涵成像领域的闪耀新星——CytationC10Technology】为主题介绍了集成化活细胞转盘共聚焦成像系统的原理与应用,通过1活细胞成像过程中如何降低光猝灭/光毒性?2样本量大,筛选速度慢怎么办?3动力学实验,是不是需要熬夜做实验?三个问题,将CytationC10+BioSpa8自动化共聚焦活细胞成像系统的特点、应用和给用户带来的便利性娓娓道来。安捷伦细胞分析产品应用经理王慧做会议报告CytationC10的技术特点吸引了众多参会者到蛋白质研究技术中心影像平台观摩仪器,其中不乏带着样本的老师来体验CytationC10的灵活应用。CytationC10+BioSpa8智能化共聚焦活细胞成像分析系统CytationC10+BioSpa8,能够在一个实验周期内对8块孔板样本相同或者不同实验条件的动力学成像与分析。CytationC10上机实操培训王慧带领上机操作培训的老师们体验了明场观察,Beacon定位,激光聚焦以及共聚焦多色荧光多视野图像拍摄,老师对图像质量和多视野图像拼接结果非常满意,随后,王慧又向老师们演示了图像分析功能,老师们对Gen5软件的直观性、易用性和灵活性给与很高的评价。上机操作的过程中,王慧与老师们还深入探讨了关于活细胞成像标记方法、荧光探针设计和药物筛选等话题。如果您对CytationC10共聚焦细胞成像分析系统和BioSpa自动化孵育器感兴趣,请您扫描下方二维码留下您的联系方式。
  • 全新高通量光片显微镜,帮您实现活细胞长时间多样品高分辨成像!
    瑞士Viventis公司推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,该设备适用于活性光敏感样品(如卵子、胚胎、类器官等)的长期成像,具有低光毒性、高分辨率等特点。高通量活细胞高分辨光片显微镜是近些年来研发的创新技术,它的照明光是与一张与成像面平行的薄薄的光片,只有焦平面的样品被照亮,而光片上下的样品不受影响。该成像系统在细胞与组织层面的实时成像对于深入理解生物学行为至关重要。尤其适合于对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。Viventis提供细胞发育过程的环境并进行实时成像Viventis的主要特点——双侧照明光片显微镜双侧照明均可以通过软件进项控制,仅需要点击鼠标就可以控制光束的平移和旋转。光片厚度仅为1.5~6 μm,且厚度可调、位置可自动校准,以适应更多的样本尺寸。配合上高NA物镜,可以实现更好的穿深,更少的伪影。另外,系统配置可见激发激光器,让用户通过检测物镜,对自定义样品中感兴趣的区域进行快速定位成像操作。高通量,多样品同时成像Viventis光片显微镜可以快速对多个样品进行同时成像而无需更换样品,支持绝大多数胚胎样品并可并排摆放,方便添加培养基、加药等操作。Viventis的样本槽大于50 mm,对于并排的样本系统也可以连续采集成像。对于细胞球、类器官等本身较易漂浮的样本,Viventis也提供了较好的解决方案,采用人工基底膜/水凝胶嵌入式等方案,实现上述样本的稳定成像。软件界面简洁 易于上手Viventis系统对于光片成像的初学者来说操作简单,多种模式一键切换,软件界面简洁,可以帮助您快速的建立自己的光片成像之旅,打开lightsheet大门,助力科研之路。典型文章:[1] Science. Mechanism of spindle pole organization and instability in human oocytes.2022[2] Nature. Left–right symmetry of zebrafish embryos requires somite surface tension.2022[3] Nature cell biology. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. 2021[4] Cell Stem Cell. Capturing Cardiogenesis in Gastruloids. 2021[5] Science. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. 2019[6] Nature. Self-organization and symmetry breaking in intestinal organoid development. 2019典型国外用户:国内用户:相关产品1、高通量活细胞高分辨光片显微镜
  • 蔡司推出半导体封装失效分析高分辨3D X射线成像解决方案
    p   新型亚微米与纳米级XRM系统及新型microCT系统为失效分析提供了灵活选择,帮助客户加速技术发展,提高先进半导体封装的组装产量。 /p p    strong 加州普莱斯顿与德国上科亨,2019年3月12日 /strong --蔡司发布了一套新型高分辨率3D X射线成像解决方案,用于包括2.5/3D与扩散型晶圆级封装在内的先进半导体封装的失效分析(FA)。蔡司X射线显微系统包括:通过亚微米级和纳米级高分辨率成像对封装产品进行失效分析的 a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " Xradia 600 Versa系列 /span /strong /a 和 Xradia 800 Ultra X射线显微镜(XRM),以及Xradia Context microCT。随着在现有产品基础上新设备的研发推出,现如今,蔡司可以为半导体行业提供一系列3D X射线成像技术辅助生产。 /p p   蔡司制程控制解决方案(PCS)部门与蔡司SMT部门总裁Raj Jammy博士介绍说:“在170年的历史中,蔡司始终致力于拓展科学研究的疆域,推动成像技术的发展,以实现新的工业应用和技术创新。在今天的半导体行业,封装尺寸与器件尺寸越做越小,因此我们比以往任何时候都更需要新型成像解决方案,用于快速排除故障,实现更高的封装产量。蔡司很荣幸宣布推出这一新型先进半导体封装3D X射线成像解决方案,为客户提供强大的高分辨率成像分析设备,以提高失效分析准确率。” /p p    strong 先进封装技术需要新型缺陷检测与失效分析的方法 /strong /p p   随着半导体产业面临CMOS微缩极限的挑战,人们需要通过半导体封装技术弥合性能上的差距。为了继续生产更小巧、更快速、更低功耗的器件,半导体行业正在通过芯片的3D堆叠和其他新型封装方式尝试封装创新。这些创新催生了日益复杂的封装架构,带来了新的制造挑战,同时也增加了封装故障的风险。此外,由于发生故障的位置往往隐藏于复杂的三维结构之中,传统的故障位置确认方法难以满足高效分析的需求。行业需要新型技术来有效地筛选和确定产生故障的根本原因。 /p p   为满足这一需求,蔡司开发出全新3D X射线成像解决方案,提供亚微米与纳米级3D图像,显示出隐藏于完整的封装3D结构中的特性与缺陷。将样品置于系统,样品在光路中旋转,从不同角度捕捉一系列2D X射线投影图像,然后使用复杂的数学模型和算法重建3D模型。新型解决方案可以从任意角度观察3D模型虚拟切片,从而在进行物理失效分析(PFA)之前对缺陷进行三维可视化。蔡司亚微米和纳米级XRM解决方案相结合,为客户提供独特的故障分析工作流程,有助于显著提高失效分析成功率。蔡司的新型Xradia Context microCT采用基于投影的几何放大技术,在大视场中实现高衬度和高分辨率成像,而且也可以全面升级至Xradia Versa X射线显微镜。 /p p   strong  新型成像解决方案详解 /strong /p p    a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong Xradia 600 Versa /strong /span /a 系列是新一代3D XRM,能够在完整的已封装半导体器件中对已定位的缺陷进行无损成像。在结构化分析和失效分析应用中,新型解决方案在制程开发、良率提升和工艺分析等方面表现出色。Xradia 600 Versa系列以屡获殊荣且具有大工作距离高分辨率(RAAD)特性的Versa X射线显微镜为基础,提供优异的成像性能,实现大工作距离下的大样品的高分辨率成像,用于为封装、电路板和300毫米晶圆生产确定产生缺陷与故障的原因。利用该解决方案,可以轻松看到与封装级故障相关的缺陷,例如凸块或微型凸块中的裂纹、焊料润湿或硅通孔(TSV)空隙。在进行物理失效分析之前对缺陷进行3D可视化处理,有助于减少伪影,提供横纵方向的虚拟切片效果,从而提高失效分析成功率。新型解决方案的主要特性包括: /p p   ◆最高空间分辨率0.5微米,最小体素40纳米 /p p   ◆与Xradia 500 Versa系列相比, 工作效率提高了两倍,且在保证高分辨率的同时,在整个kV(电压)和功率范围内保持出色的X射线源焦点尺寸稳定性与热稳定性 /p p   ◆更加简便易用,包括快速激活源 /p p   ◆可靠性测试中可实现多个位点连续成像,并能观察封装结构内部亚微米结构变化 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/fcb3b14e-afb6-4859-b117-ade3ce9e1694.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong Xradia 800 Ultra /strong 将3D XRM提升至纳米级尺度,并在纳米尺寸下探索隐藏的特性,获得高空间分辨率图像的同时保持感兴趣区域的结构完整性。其应用包括超密间距覆晶与凸块连接的工艺分析、结构分析和缺陷分析,从而改进超密间距封装与后段制程(BEOL)互连的工艺改进。Xradia 800 Ultra能够对密间距铜柱微凸块中的金属间化合物所消耗焊料的结构和体积进行可视化。在成像过程中保留缺陷部位,有助于采用其他技术进行针对性的后期分析。还可以利用3D图像来表征盲孔组件(blind assemblies)的结构质量,例如晶圆对晶圆键合互连与直接混合键合等。该解决方案的主要特性包括: /p p   ◆空间分辨率150纳米与50纳米(需要制备样品) /p p   ◆选配皮秒激光样品制备工具,能够在一小时内提取完整体积(结构)样品(通常直径为100微米) /p p   ◆兼容多种后续分析方法,包括透射电子显微镜(TEM)、能量色散X射线谱(EDS)、原子力显微镜(AFM)、二次离子质谱(SIMS)和纳米探针 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/52ac92be-9189-4c80-bd09-b60d7bb9da1b.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong Xradia Context microCT /strong 是一种基于Versa平台的新型亚微米分辨率3D X射线microCT系统。该解决方案用于封装产品在小工作距离和高通量下进行高分辨率成像。主要特性包括: /p p   ◆在大视场下提供大样品的全视场成像(体积比Xradia Versa XRM系统大10倍) /p p   ◆小像素尺寸的高像素密度探测器(六百万像素)即使在观察视野较大的情况下也能确保较高分辨率 /p p   ◆X射线microCT拥有空间分辨率0.95微米,最小体素0.5微米 /p p   ◆出色的图像质量与衬度 /p p   ◆可升级为Xradia Versa,实现RaaD功能,对完整大样品进行高分辨率成像 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a444699e-2096-43cc-a3ed-3471855ecc79.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   上海新国际博览中心即将于3月20日至22日举办中国半导体展(SEMICON China),蔡司将在展会上展示最新显微镜产品和解决方案,包括新型Xradia 600 Versa系列、Xradia 800 Ultra和Xradia Context microCT系统。如有意了解详情,您可到N2展厅2619号展位参观蔡司展品。 /p p    strong 关于蔡司 /strong /p p   蔡司是全球光学和光电领域的先锋。上个财年度,蔡司集团旗下四个部门的总收入超过58亿欧元,包括工业质量与研究、医疗技术、消费市场,以及半导体制造技术(截止:2018年9月30日)。 /p p   蔡司为客户开发、生产和分销用于工业测量与质量控制的创新解决方案,用于生命科学和材料研究的显微镜解决方案,以及用于眼科和显微外科诊断与治疗的医疗技术解决方案。在半导体行业,“蔡司”已成为世界优秀的光学光刻技术的代名词,该技术被芯片行业用于制造半导体元件。眼镜镜片、照相机镜片和双筒望远镜等引领行业潮流的蔡司产品正在全球市场热销。 /p p   凭借与数字化、医疗保健和智能生产等未来增长领域相结合的投资组合,以及强大的品牌,蔡司正在塑造光学和光电行业以外的未来。该公司在研发方面的重大、可持续投资为蔡司技术和市场成功保持领先地位和持续扩张奠定了基础。 /p p   蔡司拥有约30,000名员工,活跃于全球近50个国家,拥有约60家自有销售和服务公司、30多家生产基地和约25家开发基地。公司于1846年创办于耶拿(Jena),总部位于德国上科亨。卡尔· 蔡司基金会(Carl Zeiss Foundation)是德国最大的基金会之一,致力于促进科学发展,是控股公司卡尔· 蔡司股份公司的唯一所有者。 /p
  • 长春光机所突破航天高分辨率高光谱成像关键技术
    日前,中国科学院长春光学精密机械与物理研究所突破了航天高分辨率高光谱成像关键技术。该技术利用离轴三反非球面光学系统、复合棱镜分光、推扫成像 和指向镜运动补偿技术,有效解决了航天高光谱遥感中高空间分辨率、高光谱分辨率与图像高信噪比之间的矛盾,突破了视场分离、光谱分光、在轨光谱辐射定标等 关键技术瓶颈,为我国航天高分辨率高光谱成像技术的工程化奠定了技术基础。   长春光机所研究员颜昌翔及其研究团队针对航天高光谱遥感领域的视场分离、光谱分光、图像信噪比、在轨光谱辐射定标等关键技术瓶颈提出了一系 列创新性的解决方法。研究团队采用离轴三反非球面光学系统、单晶硅无基底狭缝的视场分离器和复合棱镜分光加非球面准直成像光谱仪的技术方案,实现了全色、 可见近红外和短波红外三光路准确分离,保证了系统宽波长覆盖,并实现了高光谱和高空间分辨率、高信噪比,保证了光谱成像质量。该团队采用指向镜运动补偿方 案,建立了在轨实时计算指向镜运动补偿曲线的数学模型,实现了实时计算和控制,使探测器接收的光能量增加到4-6倍,显著提高了系统信噪比,解决了高光谱 和高空间分辨率成像的矛盾。同时,该研究团队还采用镀膜的钕镨玻璃加积分球的在轨定标技术,利用指向反射镜自准,实现了全光路光谱和辐射定标。该团队共发 表学术论文85篇,其中EI、SCI收录36篇,并有6项已授权国家发明专利。目前,该技术已获吉林省2013年度科技进步一等奖。   利用此项技术成果研制的天宫一号高光谱成像仪,为我国首次自主获取航天高分辨率高光谱图像数据提供了技术支撑,填补了国内空白。天宫一号高 光谱成像仪已在轨稳定运行两年半,获取了大量高光谱图像数据,并已应用于油气勘探、矿物探测、林业调查、土地利用/覆盖变化、海岸带资源调查等领域,为国 民经济可持续健康发展规划提供了科学决策依据。   据悉,此项技术已经在更高性能航天高光谱成像仪的研制工作中得到应用,必将在持续推进我国航天高光谱遥感技术的发展中起到其应有的作用。
  • 435万!山东大学超高分辨荧光共聚焦活体成像系统采购项目
    项目编号:SDQDHF20220129-H076项目名称:山东大学超高分辨荧光共聚焦活体成像系统采购项目预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高分辨荧光共聚焦活体成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学超高分辨荧光共聚焦活体成像系统采购项目公开招标公告.pdf
  • 330万!山东大学高分辨多模态近场纳米光学原子力成像系统采购项目
    项目编号:SDDX-SDLC-GK-2022025项目名称:山东大学高分辨多模态近场纳米光学原子力成像系统项目预算金额:330.0000000 万元(人民币)最高限价(如有):330.0000000 万元(人民币)采购需求:高分辨多模态近场纳米光学原子力成像系统,亟需购置。具体内容详见招标文件。标段划分:划分为1包。合同履行期限:质保期国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。5、(进口)20221226-025-山东大学高分辨多模态近场纳米光学原子力成像系统(发售稿).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制