当前位置: 仪器信息网 > 行业主题 > >

高分辨成像

仪器信息网高分辨成像专题为您整合高分辨成像相关的最新文章,在高分辨成像专题,您不仅可以免费浏览高分辨成像的资讯, 同时您还可以浏览高分辨成像的相关资料、解决方案,参与社区高分辨成像话题讨论。

高分辨成像相关的仪器

  • Gatan Mono CL4高分辨成像与光谱分析阴极发光成像系统 品牌: GATAN名称型号:MonoCL4新一代阴极发光系统制造商: GATAN公司经销商:欧波同有限公司 产品综合介绍:产品功能介绍MonoCL4是Gatan公司生产的世界领先的阴极发光(CL)系统中的最新一代。MonoCL成为高分辨阴极发光成像及光谱分析的代名词己经超过15年,已成功安装在成百上千的扫描电镜、透射电镜和电子探针上。MonoCL4在性能和功能上的最新进展使其继续站在CL领域的最前沿。Gatan阴极荧光谱仪MonoCL4是目前用于扫描电镜中,深入研究光电子学、半导体材料学以及地质勘探学材料发光成像方面最先进的仪器设备。品牌介绍美国Gatan公司成立于1964年并于70年代末进入中国市场。Gatan公司以其产品的高性能及技术的先进性在全球电镜界享有极高声誉。作为世界领先的设计和制造用于增强和拓展电子显微镜功能的附件厂商,其产品涵盖了从样品制备到成像、分析等所有步骤的需求。产品应用范围包括材料科学、生命科学、地球物理学、电子学,能源科学等领域, 客户范围涵盖全球的科研院所,高校,各类检测机构及大型工业企业实验室,并且在国际科学研究领域得到了广泛认同。经销商介绍欧波同有限公司是中国领先的微纳米技术服务供应商,是一家以外资企业作为投资背景的高新技术企业,总部位于香港,分别在北京、上海、辽宁、山东等地设有分公司和办事处。作为蔡司电子显微镜、Gatan扫描电子显微镜制样设备及附属分析设备在中国地区最重要的战略合作伙伴,公司秉承“打造国内最具影响力的仪器销售品牌”的经营理念,与蔡司,Gatan品牌强强联合,正在为数以万计的中国用户提供高品质的产品与国际尖端技术服务。产品主要技术特点:MonoCL4的设计使用直接耦合腔式单色器与高效率探测器。该设计的最大优势在于使阴极发光的采集效率达到最大化。这种方式的光损失最低,并在很宽的光谱范围内获得最大的灵敏度,从而使MonoCL4拥有无与伦比的灵敏度。因而可实现:低注入量,获得高空间分辨率,避免非平衡状态的产生及最小化光诱导假象;窄带宽操作,获得高光谱分辨率及单色成像;缩短采集时间,提高使用效率;为更多的样品提供CL应用.甚至可应用在某些束流有限的SEM;为产生阴极发光体积元有限的样品提供CL分析。比如薄膜、纳米线、纳米颗粒和TEM样品等。 产品主要技术参数:采集镜1、可伸缩、可拆卸、金刚石加工的抛物面形CL采集镜,标准伸缩距离为75mm2、具有LED采集镜位置指示器。*3、采集镜厚度为8.75 mm光谱仪4、直接耦合腔式单色器与高效率探测器,与腔式单色仪直接光学耦合,达到阴极发光的采集效率达到最大化。5、高效消色差光学。6、马达驱动的反射镜,用于切换全色模式与单色模式。7、配备分光器:1200 l/mm 500nm闪耀波长的光栅,可对任一波长进行单光成像并可结合全光光谱图8、千分尺狭缝,用于控制光谱分辨率和带通。9、直列4位置过滤架,包括可移动的RGB过滤片。10、内置ITSL光谱校正灯。11、对应于每个探测器与衍射光栅组合的系统响应曲线(350nm到探测器的极限)。12、自动控制全光分光调节装置,可得全光影像,单光影像及谱图探测器13、内置前置放大器的PMT探测器,波长范围185nm~ 850nm控制器14、PA4控制器,用于控制单色仪和探测器。15、手动远程控制器,用于成像控制和PMT高压的数字读出。软件:*16、配置 Digital Micrograph软件,用于系统控制,数据记录、存档、展示与输出。MonoCL4软件插件,用于控制单色器、探测器和光谱的串行采集。启动仪器时将自动运行光谱校准程序,以及多个高斯曲线拟合的脉冲计数光谱程序。电脑:17、带Windows系统的计算机与22英寸的宽屏显示器。4.8、主流PC,Window 7 32位和22”纯平显示器产品主要应用领域:地质矿物学: 地层学, 断裂与成岩学, 锆石, 宝玉石陶瓷: 微观结构, 相组织, 烧结, 摩擦学研究新材料: 金刚石, 碳化硅光电材料:氮化物半导体薄膜,磷化锢和稀有掺杂材料应用举例地质学MonoCL4能够用来确定物源及成岩作用,提供一种简单的方法用来区别矿物,观察愈合裂纹、化学过增长和鉴定精细的振荡环带,因而CL在地质学中发挥着极其重要的作用。新材料MonoCL4的应用促进了导体材料和光电材料的理解和认识,这包括氮化物半导体薄膜、纳米结构和异质结及纳米结构氧化物(ZnO1 ZrO2和Y3Al5O12)、磷化锢和稀有掺杂材料。尽管硅是一种弱的发光体.但是MonoCL的高效收集效率、色散性能及探测能力使其成为硅基光伏材料和发光材料的一种重要的表征工具。医药工业MonoCL4可用来大量地筛选活性药物的成分,并提供光谱指纹图谱。在司法鉴定和食品科学中也具有重要的应用价值。生命科学结合荧光显微分析的优点和电子显微镜的高空间分辨能力,使CL能够作为发光标记使用。图A.石英晶体次生变化规律以及晶体内部织构图B. InGaN 多量子阱结构H:断裂与愈合的石英晶体,Dr R,Reed,Bureau of Economic Geology,University of Texas. J:GaN的平面图,显示出螺位错和杂质偏析
    留言咨询
  • 国内首推科学级制冷型高分辨率ICCD 相机,在像增强器与科研制冷型的CCD相机之间,采用高分辨率的镜头耦合方式耦合成像, 获得60lp/mm 空间高分辨率,实现对高分辨率成像或高分辨瞬态光谱采集。 ● 科学级制冷型ICCD● 18mm口径二代高效像增强器● 宽光谱响应范围:S20:200-850nm & S25R:400-1100nm● 光学快门: 3ns● 延迟与门控调节精度:10ps● 阴极门控*高外同步频率 300KHZ ● 内置时序控制器DDG● 高空间分辨率:Std 50lp/mm,Option :60lp/mm● CCD芯片: 高分辨2750*2200像素阵列● 位深: 16bit● 制冷温度: -10℃ @ 风冷● 配合高分辨光谱仪实现瞬态光谱采集● 专业化数据采集控制软件独特亮点制冷型ICCD-10度芯片制冷温度,有效减低芯片暗噪声,安静读出超快光学门宽3ns 阴极光学门宽,实现**测量内置DDG内置精度10ps 门控与延迟控制发射器,方便随心控制自动步进STEP延迟和门控自动Step 步进功能,一键完成时间分辨光谱采集高空间分辨率高空间分辨率像增强器及镜头耦合,获得60lp/mm 空间分辨IOC 模式300kHZ阴极快门外同步频率,IOC 芯片累积模式提升信噪比Binning and ROI实现芯片FVB Binning以及 多通道光谱同时采集专业化软件采集控制&光谱仪控制,数据处理专业化界面,简单快捷ICCD像增强型高分辨率相机技术参数 CCD相机像素阵列2750*2200阵面尺寸12.48*9.98mm (15.972 mm Diag.)像素大小4.54um*4.54um传感器类型CCD Sensor读出噪声5e-暗电流0.02e- / pixel / s @-10℃位深16bitBining& ROIFVB: 垂直方向全Binning光谱模式& 多通道 ROI及FVB数字接口UBS2.0像增强器MCP光阴极S20BS25R有效口径18mm18mm光谱范围200-850nm400-1100nm峰值量子效率20% @440nm22%@720nm等效噪声(EBI) 2 x 10-7 lux @ 20 °C ± 2 °C 5 x 10-7 Lux光子增益1*1041.4*104荧光屏P20 /P43P43空间分辨率标准:50lp/mm ; 高分辨率选项: 60lp/mm光学门控宽度3ns (Mesh)Fast10ns, Slow 100ns内部DDG 控制延迟和门宽调节范围0-10s延迟和门宽调节精度10ps同步接口外触发输入,触发输出,直接触发输入(Direct gate)触发信号触发阈值 1-5V, 阻抗50欧姆,抖动100ps触发固有延迟40ns @ Direct gate , 120ns@ Ext外触发*增强器光阴极量子效率曲线型号选择SIC: Scientific Intensified Camera● 18/25 18或25m 口径增强器● U/F/S Ultrfast gate =3ns , Fast gate 10ns, Slow gate: 100ns● UV/VN:UV-VIS 200-900nm;VIS-NIR : 400-1100nm● 6M/4M : 600万像素 CCD 2750*2200 400万像素sCMOS 2048*2048● L/F: L高分辨镜头耦合 F 高通量光纤面板耦合 ICCD像增强型高分辨率相机常见型号列表
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。 LabRAM Soleil™ 只需较少的人工干预即可one day工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能:占用面积1m21级激光安全大样品室反射/透射照明明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜ViewSharpTM 超快速三维表面形貌技术QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描)标配低波数拉曼散射(30 cm-1)光致发光(PL)、电致发光、光电流、上转换发光纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光 专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它较大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: 真正的自动操作系统EasyImage™ :有操作向导,简单快速自动校准:根据环境条件在几秒钟内自动检查并重新校准SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上:SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟TurboDrive™ :光栅快速驱动,快至400nm/s4种SWIFT™ 功能:SWIFT™ :普通超快速成像SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强)SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。可配置4个内置激光器和6块不同的滤光片1分钟内可快速切换4块光栅标准低波数:低至30cm-1大样品室: 444(H) x 509 (L) x 337 (W) mm具有很高的稳定性,维护操作简单 LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像
    留言咨询
  • 产品介绍:LSI BFI PLUS活体激光血流成像系统激光微循环血流显像系统采用新一代HR-LSCI技术设计,以独有的非接触、高分辨、全视场快速成像的技术优势,为临床医疗及生命科学基础研究提供了一种全新有效的微循环血流灌注成像的手段。实时观察微血管的血流分布状态及血流数值相对变化。功能拓展:可升级血氧测量模块等多功能模块,同时获取血流灌注值、血氧饱和度、血管形态、血管密度、血管角度等多种血流动力学参数。该系统在生命学科基础研究、疾病的临床诊疗和药物筛选评价以及药物研发中占有非常重要的地位。 产品参数:LSI BFI PLUS激光血流成像系统技术优势核心优势:1、基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态;2、自带运动校正图像算法,可采集心脏、肝肾胃等器官的高频动态数据;3、支持LSI活体光透明成像,包括活体颅骨和皮肤光透明处理,提升成像质量;4、软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出。(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。局部脑缺血的血管血流成像下肢股动脉及毛细血管血流成像(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。下肢股动脉及毛细血管血流成像(二)自带运动校正图像算法,可采集心脏等器官高频动态数据运用LSI HMC超高频运动校正还原算法,对呼吸抖动、高频运动的信号,如心脏跳动、胃蠕动及脑、肝、肾等器官随呼吸抖动造成的伪影进行校正和还原,无需任何处理,可直接采集超高频运动图像。LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。(三)支持LSI VSC活体光透明成像,提升成像质量和成像深度成像系统很好兼容LSI VSC活体光透明成像方法,设备可对成像深度、成像分辨率和成像质量进行大幅提升。未处理活体光透明处理 (四)软硬件操作简洁 “傻瓜式”操作和一键式分析结果导出软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出LSI BFI PLUS直接自动统计数据数据软件自动统计:数据采集的同时得到原始数据、详细数据和图标数据等所有数据,无需任何其他操作数据软件自动统计:数据采集的同时得到原始数据、详细数据(上图为采集的每1帧原始数据)和图标数据等所有数据,无需任何其他操作LSI BFI PLUS直接自动统计数据软件自动生成分析报告(五)功能拓展1、升级血管形态分析功能:血管管径、密度、分支、角度等多种微循环形态参数连续时间序列的血管长度、血管分支系数、血管空隙值、血管密度、血管管径等。2、升级血氧监测功能:氧合血红蛋白浓度、脱氧血红蛋白浓度、氧代谢率等功能参数(以上功能升级计划2023年第四季度上市)。LSI BFI PLUS活体激光血流成像系统应用场景功能描述:活体激光血流功能成像系统无需造影剂和荧光标记,可实时成像血流灌注功能变化。在基础医学研究中,该系统实时监测脑血管阻塞、脑部中风、脑缺血等病理模型过程中的血流变化;科研工作者通过监测得到微循环血管血流参数以评估血管的结构、微循环功能以及代谢活动,可以研究脑、皮肤与微循环器官的缺血、缺氧、中风、炎症、水肿、出血、过敏、休克、肿瘤、烧伤、冻伤、放射损伤等病理过程中微循环改变的规律及其病理机制。活体激光血流成像的应用——脑缺血模型脑缺血模型大脑皮层血流分布的时空变化活体激光血流成像的应用——小鼠下肢血流测量小鼠下肢股动脉血流灌注成像毛细血管级成像分辨率:基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um,比同类分辨率高3-10倍!活体激光血流成像的应用——小鼠分支动脉激光散斑血流成像的应用——大鼠股动脉激光散斑血流成像的应用——肠管&肠系膜激光散斑血流成像的应用——大鼠胃内壁温度降低观察常温状态下大鼠胃内壁 -5℃3分钟大鼠胃内壁-5℃ 10分钟大鼠胃内壁本实验主要研究大鼠胃内壁及其黏膜结构,在温度逐渐降低过程中的血流灌注变化,同1只鼠自身对照,常温状态下胃内壁血流灌注量均值180PF,低温环境下3分钟后血流灌注量均值120PF,低温环境下10分钟后血流灌注量均值50PF。LSI BFI PLUS系统监测大鼠胃内壁血流灌注量同时,还可对其黏膜结构进行精细血流功能成像和结构成像,并可定量分析。激光散斑血流成像的应用——心梗&心肌缺血研究LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。激光散斑血流成像的应用——大鼠输精管连续观察大鼠输精管病理模型连续观察激光散斑血流成像的应用——大鼠睾丸生长发育大鼠睾丸生长发育连续观察活体激光血流成像的应用——胚胎生长发育研究活体激光血流成像的应用——纳米药物治疗肿瘤纳米药物作用于低剂量放射治疗和协同免疫治疗的肿瘤血流灌注成像如果以上信息对您有帮助,请联系罗辑科学罗 辑 技 术 有 限 公 司
    留言咨询
  • 产品介绍:LSI BFI PLUS活体激光血流成像系统激光微循环血流显像系统采用新一代HR-LSCI技术设计,以独有的非接触、高分辨、全视场快速成像的技术优势,为临床医疗及生命科学基础研究提供了一种全新有效的微循环血流灌注成像的手段。实时观察微血管的血流分布状态及血流数值相对变化。功能拓展:可升级血氧测量模块等多功能模块,同时获取血流灌注值、血氧饱和度、血管形态、血管密度、血管角度等多种血流动力学参数。该系统在生命学科基础研究、疾病的临床诊疗和药物筛选评价以及药物研发中占有非常重要的地位。 产品参数:LSI BFI PLUS激光血流成像系统技术优势核心优势:1、基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态;2、自带运动校正图像算法,可采集心脏、肝肾胃等器官的高频动态数据;3、支持LSI活体光透明成像,包括活体颅骨和皮肤光透明处理,提升成像质量;4、软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出。(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。局部脑缺血的血管血流成像下肢股动脉及毛细血管血流成像(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。下肢股动脉及毛细血管血流成像(二)自带运动校正图像算法,可采集心脏等器官高频动态数据运用LSI HMC超高频运动校正还原算法,对呼吸抖动、高频运动的信号,如心脏跳动、胃蠕动及脑、肝、肾等器官随呼吸抖动造成的伪影进行校正和还原,无需任何处理,可直接采集超高频运动图像。LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。(三)支持LSI VSC活体光透明成像,提升成像质量和成像深度成像系统很好兼容LSI VSC活体光透明成像方法,设备可对成像深度、成像分辨率和成像质量进行大幅提升。未处理活体光透明处理 (四)软硬件操作简洁 “傻瓜式”操作和一键式分析结果导出软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出LSI BFI PLUS直接自动统计数据数据软件自动统计:数据采集的同时得到原始数据、详细数据和图标数据等所有数据,无需任何其他操作数据软件自动统计:数据采集的同时得到原始数据、详细数据(上图为采集的每1帧原始数据)和图标数据等所有数据,无需任何其他操作LSI BFI PLUS直接自动统计数据软件自动生成分析报告(五)功能拓展1、升级血管形态分析功能:血管管径、密度、分支、角度等多种微循环形态参数连续时间序列的血管长度、血管分支系数、血管空隙值、血管密度、血管管径等。2、升级血氧监测功能:氧合血红蛋白浓度、脱氧血红蛋白浓度、氧代谢率等功能参数(以上功能升级计划2023年第四季度上市)。LSI BFI PLUS活体激光血流成像系统应用场景功能描述:活体激光血流功能成像系统无需造影剂和荧光标记,可实时成像血流灌注功能变化。在基础医学研究中,该系统实时监测脑血管阻塞、脑部中风、脑缺血等病理模型过程中的血流变化;科研工作者通过监测得到微循环血管血流参数以评估血管的结构、微循环功能以及代谢活动,可以研究脑、皮肤与微循环器官的缺血、缺氧、中风、炎症、水肿、出血、过敏、休克、肿瘤、烧伤、冻伤、放射损伤等病理过程中微循环改变的规律及其病理机制。活体激光血流成像的应用——脑缺血模型脑缺血模型大脑皮层血流分布的时空变化活体激光血流成像的应用——小鼠下肢血流测量小鼠下肢股动脉血流灌注成像毛细血管级成像分辨率:基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um,比同类分辨率高3-10倍!活体激光血流成像的应用——小鼠分支动脉激光散斑血流成像的应用——大鼠股动脉激光散斑血流成像的应用——肠管&肠系膜激光散斑血流成像的应用——大鼠胃内壁温度降低观察常温状态下大鼠胃内壁 -5℃3分钟大鼠胃内壁-5℃ 10分钟大鼠胃内壁本实验主要研究大鼠胃内壁及其黏膜结构,在温度逐渐降低过程中的血流灌注变化,同1只鼠自身对照,常温状态下胃内壁血流灌注量均值180PF,低温环境下3分钟后血流灌注量均值120PF,低温环境下10分钟后血流灌注量均值50PF。LSI BFI PLUS系统监测大鼠胃内壁血流灌注量同时,还可对其黏膜结构进行精细血流功能成像和结构成像,并可定量分析。激光散斑血流成像的应用——心梗&心肌缺血研究LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。激光散斑血流成像的应用——大鼠输精管连续观察大鼠输精管病理模型连续观察激光散斑血流成像的应用——大鼠睾丸生长发育大鼠睾丸生长发育连续观察活体激光血流成像的应用——胚胎生长发育研究活体激光血流成像的应用——纳米药物治疗肿瘤纳米药物作用于低剂量放射治疗和协同免疫治疗的肿瘤血流灌注成像如果以上信息对您有帮助,请联系罗辑科学罗 辑 技 术 有 限 公 司
    留言咨询
  • 产品介绍:LSI BFI PLUS活体激光血流成像系统激光微循环血流显像系统采用新一代HR-LSCI技术设计,以独有的非接触、高分辨、全视场快速成像的技术优势,为临床医疗及生命科学基础研究提供了一种全新有效的微循环血流灌注成像的手段。实时观察微血管的血流分布状态及血流数值相对变化。功能拓展:可升级血氧测量模块等多功能模块,同时获取血流灌注值、血氧饱和度、血管形态、血管密度、血管角度等多种血流动力学参数。该系统在生命学科基础研究、疾病的临床诊疗和药物筛选评价以及药物研发中占有非常重要的地位。 产品参数:LSI BFI PLUS激光血流成像系统技术优势核心优势:1、基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态;2、自带运动校正图像算法,可采集心脏、肝肾胃等器官的高频动态数据;3、支持LSI活体光透明成像,包括活体颅骨和皮肤光透明处理,提升成像质量;4、软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出。(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。局部脑缺血的血管血流成像下肢股动脉及毛细血管血流成像(一)光学分辨率达3um以内 毛细血管血流灌注和血管形态分析运用新一代HR-LSCI无标记的激光活体血流成像技术显影,光学分辨率达3um以内,可观测毛细血管的血流灌注及血管形态。下肢股动脉及毛细血管血流成像(二)自带运动校正图像算法,可采集心脏等器官高频动态数据运用LSI HMC超高频运动校正还原算法,对呼吸抖动、高频运动的信号,如心脏跳动、胃蠕动及脑、肝、肾等器官随呼吸抖动造成的伪影进行校正和还原,无需任何处理,可直接采集超高频运动图像。LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。(三)支持LSI VSC活体光透明成像,提升成像质量和成像深度成像系统很好兼容LSI VSC活体光透明成像方法,设备可对成像深度、成像分辨率和成像质量进行大幅提升。未处理活体光透明处理 (四)软硬件操作简洁 “傻瓜式”操作和一键式分析结果导出软硬件操作非常简洁;分析软件可一键获得分析结果、表格形式导出LSI BFI PLUS直接自动统计数据数据软件自动统计:数据采集的同时得到原始数据、详细数据和图标数据等所有数据,无需任何其他操作数据软件自动统计:数据采集的同时得到原始数据、详细数据(上图为采集的每1帧原始数据)和图标数据等所有数据,无需任何其他操作LSI BFI PLUS直接自动统计数据软件自动生成分析报告(五)功能拓展1、升级血管形态分析功能:血管管径、密度、分支、角度等多种微循环形态参数连续时间序列的血管长度、血管分支系数、血管空隙值、血管密度、血管管径等。2、升级血氧监测功能:氧合血红蛋白浓度、脱氧血红蛋白浓度、氧代谢率等功能参数(以上功能升级计划2023年第四季度上市)。LSI BFI PLUS活体激光血流成像系统应用场景功能描述:活体激光血流功能成像系统无需造影剂和荧光标记,可实时成像血流灌注功能变化。在基础医学研究中,该系统实时监测脑血管阻塞、脑部中风、脑缺血等病理模型过程中的血流变化;科研工作者通过监测得到微循环血管血流参数以评估血管的结构、微循环功能以及代谢活动,可以研究脑、皮肤与微循环器官的缺血、缺氧、中风、炎症、水肿、出血、过敏、休克、肿瘤、烧伤、冻伤、放射损伤等病理过程中微循环改变的规律及其病理机制。活体激光血流成像的应用——脑缺血模型脑缺血模型大脑皮层血流分布的时空变化活体激光血流成像的应用——小鼠下肢血流测量小鼠下肢股动脉血流灌注成像毛细血管级成像分辨率:基于罗辑科学最新一代HR-LSCI成像技术开发,光学分辨率达3um,比同类分辨率高3-10倍!活体激光血流成像的应用——小鼠分支动脉激光散斑血流成像的应用——大鼠股动脉激光散斑血流成像的应用——肠管&肠系膜激光散斑血流成像的应用——大鼠胃内壁温度降低观察常温状态下大鼠胃内壁 -5℃3分钟大鼠胃内壁-5℃ 10分钟大鼠胃内壁本实验主要研究大鼠胃内壁及其黏膜结构,在温度逐渐降低过程中的血流灌注变化,同1只鼠自身对照,常温状态下胃内壁血流灌注量均值180PF,低温环境下3分钟后血流灌注量均值120PF,低温环境下10分钟后血流灌注量均值50PF。LSI BFI PLUS系统监测大鼠胃内壁血流灌注量同时,还可对其黏膜结构进行精细血流功能成像和结构成像,并可定量分析。激光散斑血流成像的应用——心梗&心肌缺血研究LSI HMC超高频运动校正还原算法,可直接采集心脏、胃、肝脏和肾脏等高频跳动&抖动器官的图像,无需任何额外处理。激光散斑血流成像的应用——大鼠输精管连续观察大鼠输精管病理模型连续观察激光散斑血流成像的应用——大鼠睾丸生长发育大鼠睾丸生长发育连续观察活体激光血流成像的应用——胚胎生长发育研究活体激光血流成像的应用——纳米药物治疗肿瘤纳米药物作用于低剂量放射治疗和协同免疫治疗的肿瘤血流灌注成像
    留言咨询
  • KUBTEC高分辨小动物数字X 光机 Kubtec高分辨数字x射线系统专为科学研究、法医分析等实验室而设计。在保持高分辨同时快速的图像采集和强大的综合图像分析软件带来细节和效率提升。 KUBTEC高分辨小动物数字X 光机 原理X线之所以能使样本组织在荧屏上或胶片上形成影像,需具备3个条件:一是基于X线的穿透性、荧光效应和感光效应;二是基于样本组织之间必须有密度差异。当X线透过不同样本组织时,因密度差异造成X线吸收的程度不同,最终到达检测器或胶片上的X线密度即有差异。这样就形成明暗或黑白对比不同的影像。 KUBTEC高分辨小动物数字X 光机特点1. 高分辨率:提供10LP/mm的高分辨率同时高速成像,动物接收剂量率低,将对实验造成影响降至最低。2. 高度比度:通过较低管电压达到较高的对比度,超过65000级灰度对比3. 高速成像:19秒内从KUBTEC 高分辨率图像中获得实验动物骨密度及身体成分4. 低剂量:在最高分辨率拍摄时曝光剂量业界Z低,KUBTEC在保证高分辨率同时保证动物接收最低剂量,保证动物可以在一段时间内多次扫描,动态分析评估身体成份。5. 大成像视野:扫描范围(基本:120mm×150mm,可选:240mm×300mm)可以分析小动物如小鼠,大鼠和中型动物如狗、猫、兔子及豚鼠的骨密度和骨矿含量、脂肪和瘦肉,大视野配合锥形Xray扫描对动物体重无限制。6. 白光成像:采用HD CCD 采集同时拍摄全彩白光成像,方便叠合比对定位7. 锥形扫描: 保证检测范围内对动物样本摆放位置无要求,位置变化不影响分辨率的效果。8. 多重安全保障系统:KUBTEC多重连锁技术可以有效阻隔辐射,保证设备表面剂量低于环境本底,保护研究者。如一旦任何连锁检测有异常,立即停止X线输出。9. 软件功能强大: l 分析软件功能强大,多种数据保存格式(如CSV/Excel格式)方便调用。l 样本遗忘提醒功能:样本长时间放置于仓室内而无操作,系统会自动警告提醒及时取出样品。l 数据结果可以直接输入Solidworks,形成工程图直接3D打印输出。l 局部放大自动比对功能l 6位置ROI 画中画局部放大分析功能l Blender 功能,全彩图片与x ray 图片可调任意透明度,完成准确定位分析l AEC(全自动曝光控制)以及手动控制两种模式l 软件功能与Leica 等病理软件完全融合,可以自由调用l 软件功能允许动物佩戴金属耳钉以及其他标签情况下准确进行骨密度及身体成分测量 KUBTEC高分辨小动物数字X 光机测量指标骨骼研究、关节炎症、癌症、骨质疏松、脂肪比、骨密度测定,动物分类学研究,动物代谢研究等。 适用标本:大鼠、小鼠、家兔、小鸡、鱼等动物以及其他组织样本,测量区域面积内无重量限制。 KUBTEC高分辨小动物数字X 光机产品规格检测方式:低电压高对比度密度测定法发射模式:单能和双能 可切换X射线成像模式采集模式:全自动AEC 采集或手动采集扫描方式:锥形光束影像分辨率:10.0LP/MM(48um pixels size)扫描区域: 最大230 mm x 300 mm扫描时间:全身扫描时间19秒ROI区域:6个ROI区域数值分析,ROI 部分自动放大形成画中画方便分析成分分布:可以直接身体各成分分布图可测目标:大鼠、小鼠、家兔、小鸡、鱼等动物活体及组织样本,测量区域面积内无重量限制数据输出:结果数值及影像转换存储校准功能:全自动校准, 零预热时间安全防护:全封闭式铅箱防护,无需房间做任何额外防护。安全认证:符合美国及加拿大,中国等全球主要国家安全标准,获得Healthy Environments and Consumer Safety Branon 认证以及CSA International实验室安全认证。FDA认证: 具备FDA 备案号0610044-00网络远程连接访问 n KUBTEC 简介美国KUBTEC公司是世界知名医疗及实验室X光设备生产商,KUBTEC在面向样本X光成像、低剂量成像、科学研究、法医分析、无损检测和X线辐照等领域的数字X射线设备上面提供最具创新性的工具。KUBTEC的产品使医疗专业人员能够为患者提供良好的护理质量,同时也为实验室科研人员提供了高性能的实验室X射线设备支持科学研究。 l KUBTEC为全球乳腺放射科医生、乳腺外科医生、临床医生和病理学家以及科学家、实验室提供了一整套成像解决方案。KUBTEC 的MOZART 系列提供了当前唯一利用3D层析X射线摄影断层技术的术中乳腺样本成像,帮助最大限度地保留乳房,同时保正完整地切除乳房肿瘤,使乳腺癌切除术后再次手术的概率减少超50%。 l KUBTEC公司是全球领先的低剂量数字x射线照相(DR)系统的主要开发商, KUB 250是第一款真正便携式的,获得FDA批准用于新生儿重症监护病房(NICU)的低剂量数字x射线系统,在为世界上为新生儿提供的分辨率最高的低剂量成像系统同时减少40%以上的辐照剂量。 l KUBTEC的XPERT实时样本X光成像系统提供清晰成像效果,通过缩短处理时间来让病人感到更加舒适,且支持开展床旁手术。 l XPERT/PARAMETER系列数字化X光放射系统(DR)可以提供最高分辨率、切合实际应用的成像系统,提升实验室的科研及工作效率。广泛应用在标本X光成像、科学研究、法医分析、无损检测、辐照生物学等领域。 l XCELL 系列生物学辐照仪在全球大型实验室广泛应用,且可提供定制服务满足不同研究需要。 l KUBTEC 已通过ISO 9001和ISO 13485认证,设计制造符合美国、加拿大和欧洲中国等全球主要国家的辐射安全标准的设备,在全球范围内提供系统制造、培训支持。 n 产品线n 数字化X光机1. 高分辨小动物数字X 光机2. 动物骨密度及身体成分分析系统-SXA&DXA3. 植物学专用数字化X光分析系统4. 数字放射自显影成像系统5. 3D X射线数字成像系统6. X射线病理分析系统7. X射线法医鉴定系统8. X光无损检测系统 n X射线辐照仪1. 桌面式小样本生物学X线辐照仪XCELL 502. 桌面式生物学X线辐照仪 XCELL 1403. 生物学X射线辐照仪 XCELL 1604. 生物学X射线辐照仪 XCELL 2255. 生物学X射线辐照仪 XCELL 3206. 生物学X射线辐照仪 XCELL 3507. X射线诊疗系统 n Kubtec 软件包1. Kubtec DIGICOM通用分析软件包2. Kubtec 种质资源研究专用软件包3. Assistant 成像软件包4. Kubtec DIGIMUS 动物身体成份分析软件包
    留言咨询
  • 8秒高速成像*约8秒钟可完成三维CT图像扫描:512张断层图像 超高速重构*约10秒钟可完成图像重构 →CT扫描开始后,在8秒+10秒=18秒后可观察三维CT图像 高分辨率*搭载微焦点X射线源*CT图像像素尺寸:通过PostRecon功能实现0.5um(FOV36扫描时)*高像素显示:通过SliceRecon功能扫描最大8000x8000像素的CT图像 样品固定放置只需放置样品到样品台即可开始扫描,无需固定样品 *软性材料和流体等也可清晰扫描
    留言咨询
  • 高分辨微焦点X射线成像分析仪一、概述X-viewer 作为平生公司一款科研级微焦点X射线数字成像产品,以其优异的硬件性能精湛的图像算法和成熟的处理软件,满足了各个高端科研领域用户对于非破坏结构成像的多样化需求,丰富的档位兼顾了空间分辨率和更宽广的观测视野需求。设备融入了公司十余年来在分子影像设备研发和应用上的宝贵经验,面世以来收获了广泛的认可和高度评价。X-viewer 具有快速成像特点,分辨率高、信息量大、目标辐射损伤小、运行及维护成本低、安全性高等一系列优点。在生命科学领域,可以快速观察动植物体内的组织和结构,快速诊断或评价;也可作为Micro CT预实验、快速筛查等的补充设备,可列装于各大高分辨无损结构成像的实验室。全屏蔽设计的机身已通过出厂安规检测,搭配可移动承重平台,使用更安全,操作更简便。二、应用领域• 小动物活体成像:大小鼠/啮齿类小动物研究(骨骼、骨质、钙化点、关节炎症、肺部病变、肿瘤、心脑组织及血管的造影)。• 离体组织成像:颅脑、口腔、齿科研究,离体骨骼或组织造影观测。• 水生生物(包括海洋生物)的研究:鱼类、两栖类水生生物表型研究,水产养殖过程中的个体差异性研究等• 植物及农业学:种子筛选及评估,研究病虫害或其他外力损伤对种子萌发的影响;提供中草药品质品性的图像甄别依据;为部分研究农业昆虫的用户提供高分辨昆虫内部结构图像。• 验室无损检测:在体生物材料成像、珠宝杂质测、医疗器械检测、PCB失效性检测等。• 已装有Micro-CT的用户,可搭配X-viewer使用,为Micro-CT提供预实验,提高效率。三、产品特点• 2-15秒,实现快速拍摄、即时出图极短的拍摄时间,尽量降低对实验动物的曝光剂量,实现真正无损、快速成像。• 超高分辨,展现更多结构细节采用微焦点X射线源,搭配高清平板探测器,1-40倍多级放大设计,实现微米级的图像分辨率,展现更加丰富的细节。• 更大的成像视野选用大尺寸平板探测器,可以对兔子、猫等活体小动物全身成像。• 强大便利的图像软件自识别目标档位,测量参数自动匹配,多种测量、标注、图像处理功能,应用于不同目标物体(如小动物、离体标本、水生生物、植物农业、珠宝、电子器件等)的多种场景拍摄。提供多种图像处理效果,操作结果可实时保存并导出,保障数据可靠性。• 使用安全和便利性设备曝光工作时,任意表面辐射剂量1μSv/h——达到本底辐射水平。操作人员无需专业的X射线知识,简单培训即可使用设备。• 产品稳定、维护简单产品设计优良、性能稳定,维护成本低;同时,厂家具备完善的售后服务体系。?四、图像案例1.小动物活体成像 2.组织与离体标本 ?3.水生生物学研究 4.农业与植物学 5.其他无损检测五、售服平生医疗科技(昆山)有限公司(简称“平生”)是国内临床前分子影像科研设备的领航开发制造商,也是国内在生命科学领域生产并推广高分辨全景X射线成像分析仪的厂家。平生旗下的临床前分子影像产品自推出市场以来,已有诸多成功装机客户,设备的性能和可靠性得到了客户的认可。同时,平生总部在昆山、子公司在上海,全国七大中心城市设有办事处,拥有自己的售服工程师团队,能为客户提供及时有效的售后响应。高效的售服保障、良好的性价比以及产品的性能可满足客户实验要求:• 重要指标如空间分辨率达到国际同类产品的前沿水准• 与进口同类产品相比,售服响应更有保障、服务质量更有优势• 厂商可提供定制化服务,发挥了国产制造商的优势• 售价合理,并能公开透明设备的维修零部件价
    留言咨询
  • LABOMED-LABORMAI SCIENTIFIC RESEARCH AND MEDICAL MICROSCOPE PRODUCTS高分辨率专业显微成像相机(ATLAS)采用高性能高分辨率彩色CMOS芯片(分辨率4608x3542),该芯片中内置了ISP(图像信号处理器),对前端CMOS芯片输出的信号进行快速后处理,如降噪和HDR(高动态范围)补充校正。在图像传输工作中,由于具有FPGA(电场可编程逻辑闸阵列)以及DDR(双倍速率同步动态随机存储器)的优化和加速,使相机即使在极高的分辨率运行状态下,也能获得高速的图像输出性能。同时,相机具备以下突出性能:l高分辨率1600万像素(4608x3542)成像;l24 Bit RGB的A/D转换性能;l色温可调动态范围:1800-8000;l硬件式3维降噪;l高速USB3.0数据接口描述 美国LABOMED-莱博迈科研及医用显微镜系列产品
    留言咨询
  • AMS使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,AMS还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。技术指标AMS高分辨率10/14通道多光谱成像仪 规格型号 AMS-10 AMS-14 探测器面阵 6000万像素 6000万像素 光谱通道数 10个 14个 光谱波段(nm) 405、430、450、550、560 570、650、685、710、850 405、430、450、490、525、550、560 570、630、650、685、710、735、850 图像分辨率 /单通道 1200万像素 750万像素 GSD@100m1.5cm 1.72cm 视频 可录制4K视频数据3840 x 2160,1.65 MP per band 软件功能 自动裁切、计算植被指数、格式转换、自动校准、数据批处理
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil&trade 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。LabRAM Soleil&trade 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling&trade 和QScan&trade 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil&trade 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan&trade 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman&trade (TERS)、纳米PL和阴发光专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil&trade 提供先进的自动化功能,结合EasyImage&trade 易成像工作流技术,它大大减少了参数设置上花费的时间,并且大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage&trade :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID&trade : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling&trade :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive&trade :光栅快速驱动,快至400nm/s √ 4种SWIFT&trade 功能 SWIFT&trade :普通超快速成像 SWIFT&trade XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT&trade XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT&trade :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus&trade :轻松分析百万条光谱,即使是“困难”的样品,也能大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder&trade 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage&trade 自动化的工作流程使得用户只需一键点击即可获得拉曼成像技术指标光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线
    留言咨询
  • RAMAN-11是由日本Nanophoton公司推出的新一代快速、高精度、面扫描激光拉曼彩色成像系统。作为三代Raman系统的RAMAN-11,则具备的快速、高分辨率成像的特点。相对于原来的传统而言,RAMAN-11的成像速度是其他常规Raman系统的300-600倍,一般在几分钟之内即可获取样品高分率的拉曼图像.是一款具有高速、高分辨率成像功能的拉曼显微镜。创新性技术--实现高速、高分辨率拉曼成像激光束扫描 &bull 高速扫描成为可能 &bull 利用光束扫描的无震动和无漂移特点,成像更为清晰多光谱同步测量 &bull 高速、高分辨率拉曼成像通过采用线形拉曼散射光获得, 每一条扫描线都含有400个立的光谱线形照明 &bull RAMAN-11采用线性照明,产生线形RAMAN散射光 &bull Nanophoton发展了一套特殊的光学系统,确保光强的均匀分布狭缝聚焦 &bull 共聚焦光学系统实现高分辨率拉曼成像 &bull 同一共聚焦光学系统用于快速拉曼成像 RAMAN-11系统应用案例快速区分单层与多层石墨烯激光源:532nm,物镜:100X,NA=0.9,光谱数:67,600(400*169),测量时间:5分30秒通过RAMAN-11可以对不同层数的石墨烯快速成像。以350纳米的高空间分辨率,仅用5分钟的测量时间即可识别从单层到四层的石墨烯及其分布。更多信息......高灵敏度:Si四峰的测量 良好的共聚焦光学设计保证了对焦 外空气信号的高效抑制,并使弱的 硅四峰信号也能被探测到。 高分辨率:传统拉曼系统的5.7倍在100X物镜下,RAMAN-11 的激光斑点尺寸为:350nm*500nm,是传统拉曼的1/5.7,因此在同样的样品上可以得到更加详细的信息,能够为纳米尺寸下的物质鉴别、分布等分析提供更加准确的结果材料应力分布图像分辨率:320(x)× 400(y)=128,000 Spectra,成像时间:16分钟。通过RAMAN-11可以探测到晶体结构的扭曲,如硅材料等。硅的Raman峰位于520cm-1。硅单晶中由于应力的作用,会造成晶格结构的偏离与扭曲。左图通过测量Raman峰的偏离,进而给出了硅单晶表面应力的分布。更多信息......无损伤材料组分剖面分析图像分辨率:300(x)× 120(z)=36,000 Spectra,成像时间:8 分钟上图是通过RAMAN-11的无损探测技术,对多层膜进行的深度剖析。通过联用共聚焦光学系统与面扫描技术,可以成功地探测到深度图像。更多信息......超导材料中组分分布图像分辨率:265(x)× 400(y)=106,000 Spectra,成像时间:120分钟 左图是RAMAN-11探测到的超导样品中各种材料的分布:R: Gd123/a/b oriented;G: CeO2;B: Gd123;C: Gd123/underdoped;Y: NiFe2O4 更多信息......结晶度分析图像分辨率:320(x)× 400(y)=128,000 Spectra,成像时间:27分钟。上图表示由于离子的注入而导致的结晶度的变化。结晶度可以通过Raman峰宽来进行衡量,这是由于二者之间存在一定的关联。结晶度好的样品,其Raman峰比较细窄。更多信息......材料表面各种组分的分布图像分辨率:150(x)× 400(y)=60,000 Spectra;成像时间:5分钟。左图是Raman-11给出的皮肤上某种有机物质的分布图像;相比而言,常规的光学显微镜则没有这种能力(右图)。更多信息......药品组分分析图像分辨率:400(x)× 220(y)=88,000 Spectra,成像时间:11分钟。RAMAN-11以给出药品中,不同组分的分布图像。这些组分通常是以多晶的形式存在,通过RAMAN-11的无损探测技术,可以将这些组分和每种颗粒的大小确定下来。更多信息......
    留言咨询
  • 超高分辨率组织质谱成像系统-MIBIscope System多重离子束成像平台(MIBI)技术 1、颠覆性的超高分辨率组织质谱成像平台,提供可操作的信息多重离子束组织质谱成像仪器应用于高精度空间蛋白质组学,基于多重离子束成像(MIBI)技术,MIBIscope系统可以在单次扫描中可视化40+蛋白标记物,并提供组织样本微环境的相关信息. 2、高精度空间蛋白质组学的标准 3、强劲的性能,可重复的结果,操作方便• 遵循标准的病理工作流程• 光学和SED图像引导ROI选项• 有限的实用需求和利用率• 大于104动态范围• 操作简单 不需要特别的专业知识 4、技术参数:获取时间:低分辨率 (1 μm):9-35分钟高分辨率 (500 nm):17-68分钟超高分辨率(350 nm):35-139分钟用的生物标志物通道:40ROI区域:400x400 – 800x800 μm2抗体检测下限:1 (113In) - 16 (166Er)动态范围:5 log文件类型:TIFF链接:
    留言咨询
  • 固定式高分辨率热成像相机(310万像素) 昊量光电为您提供各种固定使用的热像仪,例如工业厂房或移动系统。蕞高可提供 310万像素(2048x1536)的热红外相机,在市场上很少有如此高分辨率的热红外相机。这些热像仪使您能够以蕞高的精度测量表面上的温度分布。数据实时传输到外部计算机进行详细显示和分析。WLAN、DVI-D 或 GigE-Vision 等标准接口可确保您可以轻松地将红外摄像机集成到自己的系统中。例如,在太阳能发电厂中使用相机来测量吸收器的温度,以防止其过热。测量方法是非接触式的,非常精确:动态分辨率增强,空间分辨率高,可确保精确的结果。该过程提高了分辨率,甚至使蕞小的细节可见。基于辐射测量的红外热像仪的高分辨率方法方面拥有广泛的专业知识,并不断完善该技术。所有热像仪都安装在坚固的外壳中,即使在恶劣的操作条件下也能有效保护它们免受损坏。由于非制冷型热成像技术维护成本特别低,因此几乎没有任何后续成本。固定式高分辨率热成像仪(310万像素)优势&bull 精确:通过高空间分辨率实现蕞大测量精度&bull 高效:以高分辨率记录大测量范围&bull 耐用:非制冷热像仪技术外壳坚固,维护蕞少&bull 灵活:多功能连接选项允许将热像仪集成到定制系统中&bull 快速:实时辐射成像&bull 模块化:从各种高质量红外光学器件中进行选择 固定式高分辨率热成像仪(310万像素)应用&bull 电子工业和汽车:质量控制和保证、过程控制、优化和控制&bull 研发:材料和部件的无损检测&bull 可再生能源:太阳能发电厂、航拍、环境监测&bull 自动化技术:热测试台。过程监控、过程优化、过程控制&bull 原材料行业的过程监控:系统监控和系统安全&bull 安全技术:物业监控、消防&bull 地质与环境测量技术:航空热成像灵敏的热传感器技术检测微弱的热异常蕞高温度成像:高达3.1 IR百万像素即使是蕞小的温差也能可靠地可视化 主要提供如下几款热成像相机产品基础款IR-TCM HD Basic分辨率:640x480速率:30Hz测温范围:-40°C to +600°C热灵敏度:≤ 40 mK测温精度:± 2.0 K or ± 2.0% 标准款IR-TCM HD 640分辨率:640x480速率:60Hz测温范围:-40°C to +1200°C,高温选型可达+2000°C热灵敏度:≤ 30 mK测温精度:± 1.5 K or ± 1.5% 标准款升级版IR-TCM HD 640 RE分辨率:1280x960(分辨率增强技术)速率:60Hz测温范围:-40°C to +1200°C,高温选型可达+2000°C热灵敏度:≤ 30 mK测温精度:± 1.5 K or ± 1.5% 高及款IR-TCM HD 1024分辨率:1024x768速率:30Hz测温范围:-40°C to +1200°C,高温选型可达+2000°C热灵敏度:≤ 40 mK测温精度:± 1.5 K or ± 1.5% 高及款升级版IR-TCM HD 1024 RE分辨率:2048x1536(分辨率增强技术)速率:30Hz测温范围:-40°C to +1200°C,高温选型可达+2000°C热灵敏度:≤ 40 mK测温精度:± 1.5 K or ± 1.5% 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 简介质谱成像(Mass Spectrometry Imaging)是一种新型的表面原位分析技术,它揭示了样品真正表面或近表面的化学组成,其信息量远远超过了简单的化学成分分析,可以用于表征、鉴定待测样品表面的化学成分。较之其他成像技术,如显微镜成像,基于质谱的成像方法不局限于特异的一种或者几种分子,分析物可以以其最初的形态被检测,不需要对待测物进行标记,大大节省了标记所带来的技术和时间成本。目前主要有三种离子化技术用于质谱成像:基质辅助激光解吸电离(MALDI)质谱、电喷雾解吸电离(Desorption Electrospray Ionization)质谱和二次离子质谱(Secondary Ion Mass Spectrometry)技术,其中MALDI是应用最为广泛的离子化技术。MALDI通过引入基质分子,使分子与基质形成共结晶,当用一定强度的激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量而使分子解吸/电离。MALDI是一种软电离技术,待测分子不易产生碎片,解决了非挥发性和热不稳定性生物大分子解吸离子化的问题,是分析难挥发的有机物质的重要手段之一。在1994年,德国吉森大学(Justus Liebig University Giessen)的Bernhard Spengler教授首次将MALDI MS与成像方法结合用于分析多肽,此后质谱成像技术便受到了广泛的关注,不断的在疾病诊断,病理组织特征,药物代谢和植物代谢等研究中发挥着越来越重要的角色。一、仪器设备概况德国TransMIT AP-SMALDI 10是由世界知名质谱学家Bernhard Spengler教授研制成功并商品化的常压基质辅助激光解吸电离离子源,是目前MALDI质谱成像中分辨率很高的离子源(分辨率高达到1微米),突破了MALDI质谱成像空间分辨有效成像像素限制在50微米的瓶颈。与其他MALDI产品相比,该离子源在提高空间分辨率的同时保证了质谱信号的灵敏度,是检测生物样品中微量以及痕量成分的重要保障。TransMIT AP-SMALDI 10可与超高分辨质谱Orbitrap(Thermo Fisher Scientific)兼容,可同时获得高空间分辨率和高质量准确度和分辨率的二维离子密度图,实现了真正意义上的高分辨质谱成像。TransMIT AP-SMALDI 10与同领域其他设备,其具体优势体现在以下几个方面:1. 常压到中压的操作环境,大大简化了样品制备的方法,节约了成本。传统的MALDI样品分析是在真空条件下进行,操作要求高,且随着分析时间的延长,会导致基质在真空条件下挥发损失,造成分子离子峰的信号衰减和成像误差;2. 小于5微米的高空间分辨率,能够可视化生物组织内化合物在细胞水平上的空间分布,并且可用于单细胞质谱成像分析;3. 采用激光束和离子流的同轴设计,大大提高了样品表面分子离子的产率;4. 采用激光器,即无害免控激光器,在使用过程中对人体无任何危险;5. 配有专用于高分辨质谱成像的数据分析软件;6. 可与Thermo Scientific Q Exactive系列质谱仪兼容,拆装灵活。二、仪器设备应用及性能说明高空间分辨率TransMIT AP-SMALDI 10离子源问世后,已经在生命科学领域展示了自己的优势,受到了国际专家和同行的一致认可,多项研究成果发表在Angewandte Chemie,The Plant Journal, Analytical Chemistry,Analytical and Bioanalytical Chemistry,Rapid Communications in Mass Spectrometry, International Journal of Mass Spectrometry等知名期刊上。在了解生物组织特征,病理组织特征,药物疗效及发现生物标志物等方面表现突出。现对TransMIT AP-SMALDI 10主要优势特色做简要综述:1、 高空间分辨率 高空间分辨率是准确判断生物组织内化学物质分布的前提条件。以大鼠脑组织中的磷脂分布为例,在100×100 μm2像素下,我们仅可以得到脑组织中磷脂的低分辨轮廓图。当分辨率提高到35 μm时,图像清晰度显著提高,可以准确识别脑组织切片中不同功能区内化合物的分布。再次聚焦TransMIT AP-SMALDI 10激光束到3 μm,则可以得到更加精细、无毛刺的磷脂二维离子密度图,这样可以清晰识别大鼠脑组织中微小部位中的代谢产物分布。3×3 μm2二维离子密度图中红、蓝、绿分别代表不同的化合物,红色代表背景离子,蓝色代表phosphatidylcholine(38:1),绿色代表phosphatidylcholine (38:1)。 2、高质量准确度和高质谱分辨率 TransMIT AP-SMALDI 10的另一个优势是其基于Orbitrap设计的一款离子源。Orbitrap无疑是近20年来高分辨质谱技术上最重要的突破,该质谱是目前体积最小的高分辨质谱仪。Orbitrap分辨率可高达140000 @ 200 Da,可同时进行定性和定量分析,尤其能够针对复杂基质中痕量组分的高灵敏度定量分析。集成了TransMIT AP-SMALDI 10的Orbitrap可以为研究者提供超高分辨的二维离子密度图,解决了质谱成像技术中原位鉴定化合物的难点,全面提高了鉴定分子离子的准确率和效率。可同时实现全扫描和MS/MS扫描,获得RMS 2ppm的高质量准确度的二维离子密度图。如图所示,基于Orbitrap的AP-MALDI质谱成像可以分辨质量差仅为0.1Da的两个化合物。如果使用低分辨质谱,将无法区分平均质量同为m/z 726的两个化合物,致使得到的二维离子密度图(图d)实际上是两种离子信号叠加的结果。由此可见,AP-MALDI-Orbitrap技术结合了高空间分辨率和高质谱分辨率,是一种具有优势的质谱成像技术。 3、单细胞质谱成像分析 目前单细胞分析大多依靠显微镜技术,因此需要标记细胞中的分析物,但是细胞中绝大多数分子没有荧光,这不利于细胞中未知分子的检测 其次常用的荧光探针具有一定的波长宽度,在有限光窗下只能检测3-4种分子。单细胞质谱分析因为具有无需标记、多组分同时分析、相对和jue对定量、适于代谢组学和蛋白组分析的特点而受到研究者的青睐。在此基础上单细胞质谱成像成为了近期新的研究热点,常用的单细胞质谱成像技术为二次离子质谱仪(SIMS),虽然SIMS的空间分辨率通常高于MALDI,但其质量检测范围较小,质荷比超过1000时灵敏度显著降低。TransMIT AP-SMALDI 10可以提供1-10 μm的高分辨率,同时弥补了SIMS质量检测范围窄和灵敏度低的缺点,成功应用于磷脂、多肽以及蛋白质等活性物质在单细胞中的空间分布研究。下图展示了首次采用TransMIT AP-SMALDI 10获得的单细胞中化学物质的二维离子密度图,使用 7 μm的激光束可以成功捕获单个HeLa细胞(图a)中荧光标记物(图b)和磷脂(图c和d)的二维空间分布信息。 综上所述,TransMIT AP-SMALDI 10是一款性能优异、实用价值高的质谱成像离子源。整合后的AP-MALDI-Orbitrap在成像空间分辨率、质量准确度及质谱采集时间等方面得到了全面提升,配合其自主研发的数据处理软件 MIRION,更加提高了图像处理的速度和质量。AP-MALDI-Orbitrap在质谱成像领域中具有许多独特优势,势必在多学科交叉领域研究中成为重要的研究工具。
    留言咨询
  • 近些年,高分辨率X射线三维成像系统开始广泛应用于土壤学和植物科学,研究土壤性质、土壤微生物对土壤性质的影响,植物根发育及四维结构,布鲁克Bruker台式x射线三维显微镜越来越多地用于植物地上结构的研究。主要特点及技术指标:最大程度上保护样品:无需制备样品,无损三维重现 对样品的细节检测能力(分辨率)最高可达:4μm最大扫描样品直径:96mm; 最大扫描样品长度:100mm超快的测量速度:通常3-8分钟测完一个样品,最快可达80秒独有的一键式操作模式:自动识别样品大小、自动调整放大倍数、自动快速扫描、自动重建以及自动体绘制得到样品的三维可视化图像高强度微焦斑X射线光源:20-100kV连续可调,完全免维护快速、无失真 CMOS探测器:1944 x 1536像素(300万像素),高达26帧/秒的读取速度基于细分驱动步进电机的四轴精密机械臂,用于样品的精准定位样品腔内置500万像素彩色光学相机可更方便地实时观察样品位置,并随时保存图像(BMP, JPG 或 PNG格式)二维/三维数据分析,面/体绘制软件实现三维可视化,最终结果可输出到手机或者平板电脑上(iOS and Android),并导出STL文件用于3D打印 植物学应用分享:▼三维成像后渲染过的玫瑰花▼油菜花的果荚1与果荚2正交三视图▼果荚(三维虚拟切割)果荚1与果荚2 了解更多应用方向,请致电束蕴仪器(上海)有限公司
    留言咨询
  • 多功能高分辨率磁光克尔显微成像系统——眼见为实:让磁学测试可视化!致真精密仪器(青岛)有限公司生产的多功能高分辨率磁光克尔显微成像系统,以自主设计的光路结构及奥林巴斯、索莱博光电元件为基础制造,适用于磁性材料/ 自旋电子器件的磁畴成像和动力学研究。★ 多功能探针台,能够提供面内、垂直磁场及多对直流/ 高频探针- 磁光成像与自旋输运测试结合!★ 高达1.8T 垂直磁场,1 T 面内磁场,4K-800K 变温,可用于硬磁材料成像研究。多功能控制系统测试信号控制- 垂直/ 面内磁场/ 电流/ 微波等多路信号 μs 别同步施加;- 各信号的波形、幅度、频率、相对延时等参数轻松调节。图像处理- 实时作差消背底噪声;- 自动纠正震动漂移等。信号解析- 电流、磁场测试信号的实时显示;- 基于克尔图像分析,对样品局域 (300 nm) 或全局做磁滞回线扫描。磁场探针台面内磁场★ 高达1 T,反应速度50 ms,度0.1 mT。三路垂直磁铁任意切换★ 磁场1:高达1.8 T,反应速度50 ms,度0.1 mT;★ 磁场2:高达30 mT,反应速度50 μs,度0.01 mT;★ 磁场3:高达50 mT,反应速度1 μs, 度0.01 mT;★ 可配置6 个直流/ 高频探针,配置10 V,20 MHz任意波形信号源。成像效果★ 克尔成像分辨率300 nm (100 倍物镜);★ 视野:1.2 mm×1 mm (5 倍物镜);★ 能检测2 个原子层薄膜的磁性变化。CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5) 薄膜中的迷宫畴图像处理★ 以任意图像为背底,实时作差消噪声;★ 图像漂移校正,自动添加比例尺等功能。CoFeB(20 nm) 薄膜中,[ 面内磁场20mT] 驱动磁畴翻转CoTb 亚铁磁微米线中SOT 驱动的磁性翻转CoFeB/W/CoFeB薄膜中的微米大小的磁泡200 nm 宽的Ta/CoFeB/MgO 线中,[120 mT, 5 μs] 磁场脉冲驱动畴壁移动其他功能★ 分析全局或者局部 (300 nm) 克尔图像,获得磁滞回线;★ 磁滞回线的横轴可以为面内、垂直磁场或者电流等任意激励信号;★ 可配置变温系统:4K-800K 温度可调;★ 搭配ST-FMR,二次谐波等测试系统和软件;★ 预留各种接口,可根据实验需求自主改装。应用案例■ 局部磁本征参数表征克尔显微镜有一套表征几乎所有磁学本征参数的方法。与其它表征方法相比,优势是可以进行微小区域内(300 nm) 的局部性质表征,为各种磁性调控实验 (如辐照、压控、光控磁)、以及性质不均一的材料表征提供了可能性。局部饱和磁化强度MS表征由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下畴壁的距离,可以提取局部区域的饱和磁化强度MS。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(本公司技术顾问)在2014 年先提出并验证。与VSM 测量结果得到良好吻合[1]。局部各向异性能 K 的表征通过分析局域克尔图像明暗变化,可以获得磁滞回线,从而提取局部区域等效各向异性场强度。海森堡交换作用常数Aex用我们的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度[2]。退磁状态下的薄膜材料的磁畴结构Dzyaloshinskii-Moriya 作用( DMI) 的表征利用面内磁场和垂直磁场共同作用下的磁畴壁非对称性扩张,能够测量薄膜材料的DMI 作用强度。基于此款设备的得到的成果发表在Nanoscale 杂志[3]。 参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).[2] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011). [3] Anni Cao et al., Nanoscale 10, 12062 (2018).■ 磁畴壁动力学研究磁场、电流或者其它激励下磁畴壁的移动速度测量方法:施加幅度为B, 宽度为t 的磁场/ 电流脉冲,在脉冲前后分别拍摄克尔图像并作差,获得畴壁移动距离d,则速度v=d/t。备注:有限视野范围内,超快畴壁运动的测量需要超短信号脉冲。本系统配置的 μs 反应速度的磁场可实现200m/s畴壁速度的测量。10ms 力波磁场脉冲4 μs 超快磁场脉冲磁畴壁张力效应的观测利用微秒别超快磁场脉冲,可在微小样品中创造出磁泡。利用此款高分辨率克尔显微镜,次观察到了磁畴壁在自身张力作用下的自发收缩过程[1-3]。磁畴壁Hall bar 处的钉扎作用利用磁场脉冲,我们控制磁畴壁在纳米线中的位置。观察磁畴壁的钉扎过程并测量解钉扎磁场[1]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 9, 024032 (2018).[2] Xueying Zhang et al. Nanotechnology 29, 365502 (2018).[3] Anni Cao et al., IEEE Magn. Lett. 9, 1 (2018).■ 自旋输运性质测试+成像STT 电流驱动的磁畴壁运动通过配备的探针和主控系统的任意波形发生器,可向样品施加50 ns–s 别的方波,观察磁畴壁运动并测量速度。STT 电流与垂直磁场共同作用下的磁畴壁运动在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用此设备μs 别的超快磁场脉冲与电流同步,观测垂直磁场+ 电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应[1]。微秒同步的磁场和电流方波脉冲电流与面内磁场共同作用下的磁畴壁运动Hall 自旋流与面内磁场共同作用,诱导磁矩翻转,即所谓的SOT 翻转。本设备配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态[2]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 11, 054041 (2019). [2] Xiaoxuan Zhao et al., Nanotechnology 30, 335707 (2019).测试数据1. 检测磁性材料质量MgO/Co/Pt 样品:MgO 晶格错位导致的Co 薄膜缺陷。在微小磁场作用下,缺陷周围即出现磁性翻转。质量不好磁性薄膜,磁性翻转过程中出现雪花状磁畴。质量优良的磁性薄膜,磁畴结构均匀,边缘光滑。2. 检测缺陷位置缺陷处,磁畴壁运动变形,形成钉扎效。利用高分辨率物镜,可以直接观察缺陷位置(红圈)。3. 自旋电子器件损伤检测自旋电子器件中,在微加工过程中,样品边缘出现损伤,导致在磁场作用下稳定性下降,边缘先出现翻转[1]。4. 解析磁滞回线结果磁光克尔显微镜由于具有空间分辨优势,可以解析磁滞回线对应的磁畴状态。如右图,由于偶作用比各向异性占优势,样品出现自发退磁。参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).
    留言咨询
  • 特点介绍SkyScan 1275高分辨三维X射线显微成像系统是一款非常适合于快速测定样品的X射线三维成像系统,在不降低图像质量的情况下,可以在几分钟之内完成一个样品的扫描。图形处理技术的革新更进一步提升了图像重建的质量和速度。通过体绘制可以快速、逼真地重建样品的三维可视化图像,极高质量的三维图像揭示了样品内部的微观结构,利用软件中的虚拟切割和虚拟巡视工具可以完美地展现样品内部的全部细节。工业制成品应用分享了解更多应用方向,请致电束蕴仪器(上海)有限公司
    留言咨询
  • 超高分辨活细胞荧光红外显微成像系统 【 产品简介 】荧光作为生物学特异性识别的主要手段,一直以来在生命科学中发挥着重要作用。但是这需要被分析的物质具有荧光或者可以被荧光所标记。振动光谱(IR & Raman)是成熟无标记的技术,能够直接提供物质本身的结构信息,能够为生命科学提供广泛的大分子、药物、材料、脂质体等无标记物质的表征能力,在生命科学研究中具备重大潜力。具有亚微米和同步拉曼能力的O-PTIR克服了传统红外显微镜分辨率不足和在不平整表面米氏散射严重的问题,使得这种广泛的大分子表征现在可以在500 nm的生物相关空间尺度上进行,实现红外与拉曼和荧光成像分辨率相匹配,具备真正意义上的共定位能力。 现在,mIRage-LS将这些技术完全集成到一个系统上,仅需一台设备即可实现样品的全面红外、拉曼、荧光信号分析,获得任意一种单一技术本身都无法获得的额外信息和见解。【产品特点】  ☆ 荧光红外共定位成像分析  ☆ 亚微米尺度红外拉曼分辨率  ☆ 红外拉曼同步测量  ☆ 非接触式测量,同时支持透射、反射模式并且无米氏散射问题  ☆ 可测试活细胞(液体环境)【优势领域】单细胞分析:  ☆ 正常/患病细胞分化  ☆ 药物-细胞相互作用  ☆ 细胞内(脂滴) 成像研究组织分析:  ☆ 细胞分型  ☆ 钙化、疾病状态区分  ☆ 胶原蛋白取向细菌观测:  ☆ 单细菌鉴定  ☆ 细菌代谢研究光学光热红外O-PTIR在生命科学领域应用的显著优势  ☆ 亚微米级的空间分辨率;  ☆ 可直接获取液体中活细胞的红外成像;  ☆ 灵敏度高,可直接观测单细胞 (如细菌、哺乳动物细胞等);  ☆ 无米氏散射干扰,即使在细胞边缘也不受影响;  ☆ 超高光谱分辨率;  ☆ 无需直接接触即可测量软组织的红外光谱;  ☆ 可实现红外和拉曼同步测量;  ☆ 可实现超过10 μm厚的样品测试,直接置于载玻片上观察分析;  ☆ 可配置极化的红外光源超分辨红外技术O-PTIR理想空间分辨率横向对比 (FTIR, QCL and O-PTIR microscopes)专为生物样本设计的新型“双区(C-H/FP)”QCL新型“双区(C-H/FP)”QCL能够在在一台设备中同时涵盖了C-H拉伸和指纹区 (3000-2700、1800-950cm-1) 反射模式下收集的O-PTIR光谱在数据库(Wiley KnowItAll)搜索结果,匹配率超过95%。【应用案例】1. 荧光成像与O-PTIR联合表征  荧光成像对于分子生物学机制的研究具有十分重要的意义,而传统红外很难原位测量细胞的红外图谱,因此无法将蛋白定位与原位细胞的红外图谱进行原位叠合,这对于红外在生物学的机制研究中的应用十分不利。而O-PTIR能够直接在不损伤细胞的情况下测量不同区域的红外图谱,与荧光图像相结合探究蛋白结构与分布上的变化。图1. 阿尔兹海默症脑组织切片样品,左侧白光图,中间荧光图,右侧O-PTIR在中图中的红色与蓝色区域的采集的红外图谱2. 感染疟原虫的红细胞表征  疟原虫属寄生虫引起的疟疾是威胁生命的主要疾病之一,而疟原虫引发的感染周期十分复杂,因此在细胞和分子水平观察疟原虫的变化对于研究疟原虫的致病有着重要意义。Agnieszka M. Banas等人通过使用O-PTIR对疟原虫感染的红细胞在亚微米尺度的分子特征变化进行了表征,结果显示正常红细胞的蛋白呈现环状分布,而感染后的红细胞蛋白质则呈现无规则分布。通过对比传统FTIR与基于O-PTIR技术能够发现,O-PTIR能够提供更为详细的图像分辨率并且能够测量红细胞不同位置的光谱信息。而传统FTIR受制于米氏散射限制,效果较差。图2. 对比FTIR与O-PTIR对红细胞成像的结果:(a)红细胞的白光图;(b)图a中红色方块放大的区域;(c,e)FTIR的蛋白/脂质空间分布的红外成像;(d,f)O-PTIR的蛋白/脂质空间分布的红外成像;(g)红细胞的FTIR红外光谱;(h)红细胞的O-PTIR红外光谱 (g,i)疟原虫感染红细胞和正常红细胞的PCA(PC1&PC2,PC1&PC3)得分;(h,j)疟原虫感染红细胞和正常红细胞的PCA(PC1&PC2,PC1&PC3)得分  参考文献:B. [Malaria] “Comparing infrared spectroscopic methods for the characterization of Plasmodium falciparum-infected human erythrocytes” (Nature Communication Chemistry). Advantages: 1, 3, 4, 5, 63. 单个病毒的红外成像  受制于红外极限分辨率的限制,单个病毒的红外光谱成像一直以来都是十分困难的,对于只有100 nm左右的病毒进行红外光谱成像显得十分无力。Yi Zhang等人使用O-PTIR技术成功实现对单个痘病毒进行了检测,并成功观测到了病毒的外形,同时对病毒表面的蛋白的光谱进行了表征。图3. 单个痘病毒的光谱和成像表征。(a)痘病毒的干涉散射图像;(b)痘病毒1550cm-1波数下的MIP图像;(c)痘病毒1650cm-1波数下的MIP图像;(d)随机选取病毒上4个点的光谱  参考文献:“Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy” (Analytical Chemistry). Advantages: 1, 3, 4, 5, 64. 光学光热红外O-PTIR与Raman光谱协同分析固定或活的单细胞  英国曼彻斯特大学的Peter Gardner教授近期发表了他们关于活(和固定)细胞振动光谱分析的研究结果。作者使用光学光热红外O-PTIR与Raman光谱,并借助于两个激发源(QCL和OPO激光器),对细胞进行了宽光谱范围的覆盖,从而使所有与生物学相关的分子振动都能被检测到,且保持一致的亚微米的空间分辨率。此外,红外光谱采集与拉曼光谱有效的结合起来,在相同的激发位置,形成振动互补,得到一套完整的振动光谱信息。如下图所示,该红外和拉曼的组合方式可以用来分析液体环境中固定或活细胞的亚细胞结构,其中的蛋白质二次结构及富脂体均可以在亚微米尺度上被有效地识别出来。图4. O-PTIR观测固定未染色MIA PaCa-2细胞成像。(a)固定的未染色的MIA PaCa-2细胞的光学图像;(b)红色方块区域的放大图像;(c)OPO波束段的O-PTIR红外光谱;(d)QCL波束段O-PTIR的红外光谱;(e)黑色区域的拉曼和红外光谱  参考文献:D. [Mammalian cancer cell] “Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy” (Analytical Chemistry). Advantages: 1, 2, 3, 4, 5, 6, 75. O-PTIR与S-XRF联用探究阿尔兹海默症  阿尔兹海默症(AD)是老年痴呆症常见的病症之一,而淀粉样β蛋白沉淀是引发AD的重要病因之一,因此对于淀粉样β蛋白分布的研究就显得十分重要。Nadja Gustavsson等人通过O-PTIR成功观测到了神经中的淀粉样β蛋白分布,并且结合S-XRF分析发现铁簇与淀粉样β-折叠结构和氧化的脂质存在共定位关系。这项研究充分预示了O-PTIR/S-XRF联合技术可在AD疾病的研究中发挥重要作用。图5. 单个神经元的O-PTIR与X光荧光成像。(a)单个神经元的光学(左)与O-PTIR图像(中和右);(b)神经元上铜、铁的分布;(c)铁与蛋白叠合图;(d)铁与脂质的叠合图【测试数据】单细胞分析  ☆ 正常/患病细胞分化  ☆ 药物-细胞相互作用  ☆ 细胞内(脂滴) 成像研究细胞内的荧光+红外共定位分析  利用荧光同时观测细胞结构和细胞中的脂滴分布,研究脂滴在细胞中的共定位分析,提供潜在活体无标记相互作用分析数据。磷脂成像 (2856cm-1(CH2) / 2874cm-1(CH3) 100 nm pixel size. ~5 mins. 荧光染色细胞核(蓝色),蛋白(红色))活体细胞的组分分布分析磷脂成像,可观测活细胞内的脂滴的分布并且基本不会受到水的干扰,这是传统红外所难以达到的。 (2856cm-1(CH2)/ 2874cm-1(CH3) 100 nm pixel size. ~5 mins.)固定细胞的组分分布分析磷脂成像没可观测到细胞内的脂滴分布情况。 (2856cm-1(CH2)/ 2874cm-1(CH3) 100 nm pixel size. ~5 mins.)组织分析  ☆ 细胞分型  ☆ 钙化、疾病状态区分  ☆ 胶原蛋白取向组织切片分析观测肿瘤组织钙化分析1050cm-1,传统的FTIR只有大约12微米的空间分辨率,这往往比实际特征大得多,这就是为什么以前没有看到如此小的局部钙化。细菌观测  ☆ 单细菌鉴定  ☆ 细菌代谢研究红外拉曼联合细菌表征,可以同时观测到细菌的红外和拉曼图谱
    留言咨询
  • Skyscan1275-高分辨三维X射线显微成像系统,应用于地球科学、油气勘探领域,可以对岩心、岩石矿石、微体化石、古生物等进行快速扫描三维容积成像,实现低渗透岩石孔隙结构参数进行定量分析,三维重构技术能够对岩心内部孔隙结构进行无损研究。岩心中微孔隙的空间分布,连通和渗透性分析、各类粘土矿物空间分布,混层粘土矿物混层比计算以及自生矿物空间分布与分析。 ▼特点介绍: ●最大程度上保护样品:无需制备样品,无损三维重现 ●对样品的细节检测能力(分辨率)最高可达:4μm ●最大扫描样品直径:96mm; 最大扫描样品长度:100mm ●超快的测量速度:通常3-8分钟测完一个样品,最快可达80秒 ●独有的一键式操作模式:自动识别样品大小、自动调整放大倍数、自动快速扫描、自动重建以及自动体绘制得到样品的三维可视化图像 ●高强度微焦斑X射线光源:20-100kV连续可调,完全免维护 ●快速、无失真 CMOS探测器:1944 x 1536像素(300万像素),高达26帧/秒的读取速度 ●基于细分驱动步进电机的四轴精密机械臂,用于样品的精准定位 ●样品腔内置500万像素彩色光学相机可更方便地实时观察样品位置,并随时保存图像(BMP, JPG 或PNG格式) ●二维/三维数据分析,面/体绘制软件实现三维可视化,最终结果可输出到手机或者平板电脑上(iOS and Android),并导出STL文件用于3D打印 ▼地质样品 了解更多应用方向,请致电束蕴仪器(上海)有限公司
    留言咨询
  • 多模态超分辨显微成像系统MS4000提供出色的STED超高分辨率和共聚焦成像品质,还可实现FED、NFOMM等点扫描成像方法;在探测路采用多通道并行探测,可进行airysplit成像、VIKMOM成像。可实现横向分辨率1/2到1/30波长的多色超分辨三维成像。满足不同的应用需求。 主要特点:l 集成多种成像模式:共聚焦、FED、FLIM 、STED、NFOMM 探测路增加并行探测,可进行airysplit成像、VIKMOM成像l 成像分辨率:通过选择不同的模式,可以覆盖1/2到1/30波长 STED模式:X,Y横向分辨率(XY):~20nm,Z轴轴向分辨率(Z):~50nml 成像软件:包括控制、检测、分析功能,支持多种成像模式 多模:用户可在共聚焦、FED、FLIM 、STED、NFOMM之间轻松切换 主要技术参数:MS4000多模态超分辨显微成像系统光源超连续白光光源STED抑制光波长775nm脉冲激光器,相较于连续光抑制,可减少对样品的光漂白效应光强调节AOM调节声光调制器(AOTF)激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度可调。空间光调制器2个,用于实现不同成像模式下的光斑调制,软件控制实现相位图加载STED模式空间分辨率横向:1/8λ-1/30λ成像速度1fps @ 512×512 pixels图像尺寸8192×8192 pixels,94μm×94μm @ 100X 物镜共聚焦模式空间分辨率横向:1/2λ-1/3λ成像速度4fps @ 512×512 pixels图像尺寸8192 x 8192 pixelsFED模式空间分辨率横向:1/3λ-1/4λ图像尺寸8192 x 8192 pixels
    留言咨询
  • 美国Spectroglyph LLC公司的MALDI/ESIInjector采用新型双离子漏斗接口,实现MALDI/ESI双离子源结合,在生物样本中可实现组织成像与结构鉴定,通过配置t-MALDI、MALDI-2等技术并搭载Thermo Scientific&trade QExactive"/Orbitrap Exploris"系列超高分辨率质谱检测仪,使成像系统兼具高灵敏度、高空间分辨率、高质量分辨率和高质量精度的特性,操作简单,适用范围广。该系统能够快速有效的进行生物组织样本的成像检测,可实现单细胞或亚细胞分辨率下的成像检测,将会助您探索更多的科学奥秘。1、质谱成像技术优势::(1)无标记检测技术,无需放射性同位素或荧光标记,无需染色 (2)待检测物质多样,不局限于特异的一种或几种分子,可以对非目标性物质同时进行成像分析 (3)既可获得分子的空间分布信息,还能够提供目标物质的分子结构信息 (4)可直接分析组织切片或细胞,样本兼容性高。2、独特的Dual lon Funnel设计,实现MALDI与ESI源之间快速转换DPSS固态激光器,搭载可视化光学系统 同时搭载MALDI与ESI离子源,可进行质谱成像与结构鉴定 双离子漏斗结构,可以进行快速离子源切换 MALDI-2激光诱导后电离技术,提高检测灵敏度 采用Transmission透射模式,提高空间分辨率 序列编辑器,可依次对靶板上的不同组织区域进行分析。3、样本类型各种组织:植物器官,动物新鲜组织、冷冻组织,培养细胞,类器官等各类分子:脂类 (磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物数百种分子同时成像:筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构非靶向性检测,无需任何标记4、MALDI ESI INJECTOR 透射式超高分辨质谱成像系统特点:1um高空间分辨率,可实现单细胞及亚细胞水平成像分析;DDAlmagingMode质谱成像数据采集模式;高分辨质谱成像专用数据分析软件;高空间分辨率和高质量分辨率保证分子化合物的最佳成像效果;搭载Thermo Scientific&trade QExactive&trade /Orbitrap Exploris&trade 等多个系列质谱仪,提供高质量精度和分辨率(1ppm RMS)。性能参数:应用方向:一、单细胞高分辨成像 细胞是组成生命体的基本单元,了解特定细胞的生物分子组成是了解潜在生物和生化过程的关键因素。由于细胞的异质性,在群体细胞乃至组织水平上的采样可能使得一些重要的分子信息淹没在大量的正常细胞中而被忽略。Spectro-glyph LLC t-MALDI-2-MSI成像系统,采用激光透射模式将空间分辨率提升至1um以内,并且应用MALDI-2激光后电离技术提高了检测灵敏度,对于单细胞成像提供了丰富的表型特征信息,为单细胞研究提供了坚实的技术支持。通过t-MALDI-2在单细胞和细胞培养物中进行成像分析,以Vero B4细胞作为研究对象,通过比较明场图像与MSI成像发现t-MALDI-2可获得亚细胞级的分辨率,并且在负离子模式下获得了和正离子模式测量中相似的高质量图像。图1 a ITO载玻片上生长的Vero B4细胞明场显微图像;b来自基质的特征性背景离子(m/z=633.042)图像;c-e 代表性t-MALD1-2-MS离子图像,,像素大小为1.0um;f a图明场显微镜图像中红色轮廓区域放大图;g三个物质的叠加图像,分别来自背景离子(b;蓝色);PE(40:6),[M+H](c绿色);PC(34:1),[M+K,(d,橙色);h基质涂覆细胞培养物的显微明场图像,区域为f中的轮廓区域。参考文献:Transmission-mode MALDl-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods, 16,925-931 (2019).二、脂类研究 脂质具有区分和识别不同组织和细胞类型的可能性,脂质的重要生物功能与机体的生理、病理过程有着紧密的联系。脂质的变化对疾病背后的相关生化途径提供着重要的价值意义,并且脂类代谢异常也是引发多种疾病的重要原因,研究脂类分子的组织空间特异性分布对阐明脂代谢异常疾病的相关机制也有着重要的意义。MALDI-2激光诱导后电离技术能够对传统MALDI检测中生成的中性脂质分子再次进行电离,提升了脂质分子的检测灵敏度。图2所示为应用Spectroglyph LLC MALDI Injector的MALDI-2 技术在大鼠的脑组织切片中对130mDa m/z质量窗口下的脂质分子进行成像。传统的MALDI下只检测到一种脂质分子,使用MALD1-2额外检测到三种脂质分子,大大提升检测的灵敏度。脂类分子大鼠脑组织中的空间分布图2 大鼠脑组织切片 MALDI(底部)和MALDI-2(顶部)质谱图的放大截面和对应离子图像。除MALD1-2中[PC(34:1)+Na]+(3.4 ppm)和MALDI中[PC(36:4)+H]+ (-2.7 ppm),其他质量误差均小于2 ppm。 参考文献:Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging olipids.Chem.Commun,53,7246-7249 (2017).
    留言咨询
  • 基于结构光照明的超分辨显微成像系统,具备300Hz超分辨成像能力、“所见即所得”的实时超分辨成像能力、86nm的光学超分辨能力和60nm的计算超分辨能力。可以让您对苛刻实验条件下培养的活细胞进行实时超分辨图像重构,满足低光毒性的要求。主要特点:超高分辨率:X,Y横向分辨率(XY):86nm,计算分辨率达60nm。Z轴轴向分辨率(Z):270nm。超低光毒性:长时长活细胞连续拍摄,更低的激光功率获得更高的图像信噪比高速实时:实时超分辨,所见即所得多种成像模式:荧光宽场、TIRF宽场、2D SIM/2D SIM Stack、TIRF SIM、3D SIM/3D SIM Stack、上述模式多角度控制、实时SIM拍摄 超强适配性 :采用了标准显微镜镜体,并支持已有显微镜的升级 主要参数:G-SIM结构光超分辨显微成像系统激光器激光405nm(50mW)、488 nm(50mW)、561 nm(50mW)、640nm(50mW)可选白激光的激发光波长从440纳米到790纳米声光调制器(AOTF)每个激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度调节范围为0.01%-100%,最小调节步进精度为0.01%。超分辨模块SIM照明器SIM专用结构光照明器,通过条纹照明,获取两倍于传统显微镜的光学分辨率光学分辨率XY方向86nm,计算分辨率60nm,Z方向270nmSIM拍摄速度120 fps @512×512 pixels(2D-SIM & TIRF-SIM)208 fps @512×200 pixels(2D-SIM & TIRF-SIM)72 fps @512×512(3D-SIM)SIM成像视野1536×1536 pixels,94μm×94μm @ 100X 物镜SIM成像模式TIRF-SIM、2D-SIM、3D-SIM,多角度控制实时超分辨功能可单通道成像可四通道高速分时成像sCMOS相机Hamamatsu ORCA Flash 4.0分辨率:2304×2304,单像素大小:≥6.5×6.5μm,帧速≥89frame/s,峰值QE≥95% @ 550nm共聚焦模块1标准探测器波长:400-750nm,探测器:4个高灵敏度PMT透射探测器1个PMT图像尺寸8192 x 8192pixels扫描模式X-Y,X-Z ,Y-Z, X-Y-Z,X-Y-Z-T扫描速度4fps@512 x 512 pixels1. 共聚焦模块为选配项。
    留言咨询
  • 微视超高分辨率显微镜成像试剂盒MFkits-01用途:本试剂盒提供超分辨荧光成像所需的全套成像缓冲体系 规格:包含可进行50次独立实验的用量,每次实验可检测10个样品 1.试剂成分和pH稳定,能保证长时间的成像效果,且对样品无损伤2.试剂盒内所有内容物均采用灭菌处理,无污染,且不产生背景荧光3.方便快捷,用户只需提供样品,加入本品即可进行超分辨荧光成像4.操作简单,即开即用,无需复杂配制过程,无需专业人员即可完成。
    留言咨询
  • 失效分析检测公司推荐的设备,功能多多,科研利器!显微红外热分布测试系统金鉴显微红外热分布测试系统(GMATG-G5)由金鉴实验室和英国GMATG公司联合推出,采用法国的非晶硅红外ULIS探测器,通过算法、芯片和图像传感技术的改进,打造出一套高精智能化的显微红外热分布测试体系。这套测试体系专为微观热成像设计,价格远低于国外同类产品,除传统红外热成像的优势外,还具有更高精度的成像系统、更高的温度灵敏度,更便捷的操作体系,并为微观热成像研究添加诸多实用和创新的功能,是关注微观热分布的科研和生产必不可少工具。金鉴显微红外热分布测试系统已演化到第五代:配备20um的微距镜,可用于观察微米级别芯片的红外热分布;通过软件算法处理,图像的分辨率高达5μm,能看清芯片金道;高低温数显精密控温体系,可以模拟芯片工作温度;区域发射率校准软件设置,根据被测物上的不同材质,设置不同发射率,才能得到最真实的温度值;具备人工智能触发记录和大数据存储功能,适合电子行业相关的来料检验、研发检测和客诉处理,以达到企业节省研发和品质支出的目的。金鉴实验室联合英国GMATG公司设立仪器研发中心,自主研发的主要设备有显微红外热分布测试系统、显微红外定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉,性能卓著,值得信赖。与传统红外热像仪相比,金鉴显微红外热分布测试系统优点显著:应用领域:适用于LED、半导体器件、电子器件、激光器件、功率器件、MEMS、传感器等样品的研发设计、来料检验、失效分析、热分布测量、升温热分布动态采集。金鉴显微热分布与传统设备大PK:金鉴显微热分布测试系统特点:1. 20μm微距镜,通过软件强化像素功能将画质清晰度提高4倍,图像分辨率提高至5μm,可用于观察芯片微米级别的红外热分布。 LED芯片热分布图 2. 模拟器件实际工作温度进行测试,测试数据更真实有效。电子元器件性能受温度的影响较大,金鉴显微热分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,模拟器件实际工作温度进行测试,提供更为真实有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题 3. 1TB超大视频录制支持老化测试等长期实时在线监测。金鉴显微热分布测试系统的全辐射视频录像可保存每一帧画面所有像素的温度数据,支持逐帧分析热过程和变化,可全面的观测分析温度与时间的关系、温度与空间的关系,更容易发现和确认真实的温度值,以及需要进一步检查的位置。灯具温升变化图 灯珠芯片温升变化图4. 热灵敏度和分辨率高,便于分辨更小温差和更小目标,提供更清晰的热像。 专业测温,-20℃~650℃宽温度量程,测温误差±2℃或±2%。热灵敏度0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。红外分辨率640x480,若使用算法改进的像素增强功能,可有4倍图像清晰度,画质提升为1280x960。5. 定制化的热像分析软件,为科研和分析提供专业化的数据支持。金鉴定制PC端、APP分析软件: IR pro、JinJian IR,针对不同测试样品开发的特殊应用功能,人性化的操作界面,纠正多种错误测温方式,具备强大的热像图片分析和报告功能,方便做各个维度的温度数据分析和图像效果处理。(1) PC和手机触屏操作界面,简单易学,即开即用。 手机软件主界面 PC软件主界面(2)支持高低温自动捕捉,多个点、线、面的实时温度显示、分析功能,可导出时间温度曲线、三维温度图等测试数据。 (3)多达15种调色板,适用于不用的测试样品和场景需求,显示颜色的变化不影响温度的测试。(4) 微小器件由不同材质组成,不同材质、不同粗糙度等都影响发射率,图像上大部分对比度通常是由于发射率变化而不是温度变化引起的,因此发射率校正显得尤为重要。金鉴显微热分布测试系统可灵活设置不同区域的发射率,实现不同材质单独测量,温度测试更加准确。 (5)视频录制触发与自由定义帧频,最快25帧/秒,可精准捕捉有效的温度数据和视频图像。 (6)切换图像模式,可实现热像图和可见光图融合,可查看画面中高温区域或温度变化较大区域。 图像模式热成像-可见光融合图(7)导出热像图全部像素点温度数据值,为专业仿真软件建立温度云图等分析提供原始建模数据。 (8)温差模式,可直观获取任意两张热像图的温度差异,分析更快速精准。测试案例:案例一:不同环境温度下热分布测试金鉴显微热分布测试系统配备高精度控温体系,可实现器件在不同温度下的热分布测试。本案例模拟灯具芯片在不同环境温度下的结温及热分布状态,测试结果表明,控制环境温度达到80℃时,芯片结温122℃,继续升高环境温度可能导致芯片发光效率低下甚至芯片受损。案例二:不同厂家芯片光热分布差异以下案例中A款芯片发光最强,发热量最小,光热分布最均匀,量子效率最高。强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据!做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。 案例三:多芯片封装,电流密度均匀性需把控某款灯珠采用两颗芯片并联的方式封装,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 案例四:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,金鉴显微热分布测试分析显示,芯片负极焊盘区域温度比正极焊盘区域温度高约15℃。因此,推断该芯片电流密度均匀性较差,导致正负极焊盘位置光热分布差异较大,局部热膨胀差异过大从而引起芯片上方封装胶开裂异常。 案例五:显示屏模组热分布监测PCB板大屏显示模组存在过热区,过热区亮度会偏低,高温还会加速LED光源的老化,热分布不均势必会造成发光不均,影响显示模组清晰度。在显示屏分辨率快速提升的当下,光热分布不均已成为制约LED显示屏清晰度的最大因素。因此,提升LED显示屏光热分布均匀性对提高当下LED显示屏清晰度,意义重大! 案例六:IC器件热分布测试未开封的IC器件也可观察到表面热分布图。无需化学或激光开封,金鉴的红外热分布测试系统使用更高灵敏度的探头以及更先进的图像优化技术,即可了解器件内部热分布高点和低点的区域,真正实现无损检测。案例七:LED灯具热分布测试日常使用的灯具过热容易引起电子器件故障,缩短产品使用寿命,严重甚至造成安全隐患,检测LED灯具发热均匀情况能帮助设计产品,合理布置发热部件,有效防止过热。LED灯具热分布 案例八:定位电源失效区域电源失效案例中,金鉴使用红外热分布测试系统对电源进行测试,发现电源结构中的R5电阻在使用时发热严重,温度高达90℃。厂家建议碳膜电阻在满载功率时最佳工作温度在70℃以下,而该电源中R5碳膜电阻在90℃温度下满载工作,长期使用过程中导致R5电阻失效。 电源热分布图及热点定位 案例九:OLED热分布测试OLED发光材料像素在不同温度下表现出不同的发光特性,温度的分布不均会使得OLED显示面板中各处的薄膜晶体管的阈值电压和迁移率的变化也分布不均,进而导致整个显示面板出现发光亮度不均。 案例十:集成电路芯片温度测试通过金鉴显微红外热分布测试系统可测试封装后集成电路芯片工作时的温度及温度场分布,也可以直接测试芯片微米大小区域的温度数据,观察芯片的温度场分布,轻松发现温度聚集点,并且能够测试芯片开启后的温升曲线,判断芯片达到热稳定的时间。 集成电路芯片工作时的热分布及局部放大热分布图 集成电路芯片通电开启后的温升曲线 集成电路芯片通电开启热分布瞬态图案例十一:热分布测试应用于PCB领域红外热分布测试用于PCB板的检测,可直观显示电路板各区域和元件的温度分布,设计阶段可用于分析电路板布局设计是否合理,最大限度地减少故障排查和维修带来的高成本。生产阶段也可及时发现可靠性隐患,因为异常组件的升温速度通常比正常的要快,通过热分布测试,许多缺陷在出厂前就能被发现。案例十二:热分布系统全辐射视频录像功能应用于GaN器件领域 电子元器件器件实际应用过程中,进行单一热像图的分析往往是不够的,例如某GaN器件,其工作时的各项性能参数受温度影响较大,因此需要监控器件开始工作瞬间直至稳定的整个温度变化过程,这就涉及到金鉴显微热分布测试系统的全辐射视频录像功能。金鉴显微红外热分布测试系统全辐射视频录像功能采样速率可达到25帧/秒,可实现1TB单个视频录制,轻松捕捉器件通电瞬间温升变化。通过逐帧分析器件的升温过程全辐射视频录像可以看出,器件通电瞬间开始升温,这个瞬间时长仅有几十个毫秒左右,并在开始通电后2分钟左右达到温度稳定,同时各项电性参数也达到稳定。GaN器件工作过程温升变化曲线 GaN器件工作过程电流变化曲线案例十三:电器开关柜红外热分布测试电气设备在生产中已广泛采用,而电气故障是不可避免的,如何排查电气故障是面临的一大问题。电气设备的初期异常通常伴随温度的变化迹象,采用红外热分布测试可在不断电状态下进行检测工作,及时发现和诊断问题。
    留言咨询
  • 产品简介 普识纳米RJ系列科研型显微成像(Mapping)拉曼光谱仪标配显微镜使用,通过智能的成像和数据采集方法,通过快速探查整个样品区域,准确找到需要找寻的目标,简便地呈现直观信息并获取高质量的化学成像,加速推进新老用户的科学研究。 普识纳米RJ系列具有高分辨率高深制冷高灵敏度的特性,在弱信号长时间积分探测具有绝佳效果,是针对科研应用开发的高分辨率实验室分析级拉曼光谱仪,主要适用于高校、科研单位、企业拉曼研发等场景 。不同的性能配置,模块化的设计,方便客户根据需要自由选择和迭代升级。 除满足高性能的常规拉曼分析外,PERS-RJ系列配套使用厦门大学研发的超高灵敏度的增强试剂,还可用于痕量甚至超痕量级拉曼增强(SERS)技术的开发和应用研究,拓宽拉曼光谱技术在实验检测中的应用产品优势外观简单,轻松便携: 整机一体化设计,美观、耐用,轻便、小巧,方便携带,适用于实验室,现场等多种场合。宽光谱范围: 光谱范围最高可覆盖至8000cm-1。光纤耦合,采样更方便: 灵活的光纤探头可在不同位置进行测量。制冷CCD,信噪比更佳: 高品质制冷CCD,灵敏度高,提供了系统所需的高信噪比。建模简单: 只需按照软件的日式逐步操作即可。PERS-SR530技术参数探头光纤配置 光谱范围 200cm-1-8000cm-1波长分辨率 2cm-1 波长稳定性 0.1nm/℃(标准)激发波长 532±0.5nm,线宽<0.08nm激光功率稳定性 ≤3% P-P(@2hrs)激光器使用寿命 10000.00hrs 或1年电源电压 100-240VAC@50/60Hz输出功率 0~500mW可调积分时间 4ms-20S工作/储存温度 0-45℃工作/储存湿度 5%-80%
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。 LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪 LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光 专注于您的工作,其它的交给仪器! 忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它大大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage™ :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护 超快速成像:拉曼成像从未有如此之快! LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive™ :光栅快速驱动,快至400nm/s √ 4种SWIFT™ 功能 SWIFT™ :普通超快速成像 SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比 解决各类分析问题 从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单 LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能! LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像 光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • Specim高分辨率cmos/scmos VNIR高光谱成像系统产品负责人:姓名:吴工(Pete)电话:(微信同号)邮箱:Spectral Camera PFD工作在VIS和VNIR 400-1000 nm范围。Spectral Camera PFD具有高分辨率、高成像速率、灵活的波长选择和坚固的结构,广泛应用于各类科研和工业领域。Spectral Camera PFD由一个分别用于400-1000 nm波长范围的ImSpector V10E和一个高速CMOS探测器组成。光谱仪中使用的透射衍射光栅和透镜光学提供了高质量,低失真的图像,旨在满足苛刻的规格。这种光谱相机提供了工业质量控制应用所需的灵活性和高速采集。多个兴趣区域和binning的结合为用户提供了优质系统设置和控制的可能性。采集速率可达100赫兹,空间分辨率高达1775像素。通过选择部分光谱范围,还可以达到1000 fps的采集速度。Spectral Camera sCMOS工作在VIS和VNIR 400-1 000 nm范围。Spectral Camera sCMOS具有极低的噪声、高分辨率、高成像速率和坚固的结构,是各种科学和商业应用的优异工具。Spectral Camera sCMOS由ImSpector V10E和高速sCMOS区域单色相机组成。该相机具有极低的噪声(几个电子)和高信噪比等优异性能。2184像素的空间分辨率,高达100张/秒的成像速率和可调的binning特性,使其成为一款可以满足更高 级别要求的高光谱成像系统。Spectral Camera PFD相机高光谱成像系统光谱范围:400-1000 nm光谱分辨率:3.0 nm 空间像素数:1775成像速度:100 Hz中高端VNIR高光谱相机,成像速度快optical characteristicsSpectral cameraPFD4K-65-V10ESpectral range400 - 1 000 nmSpectral resolution FWHM3.0 nm (30 μm slit)Spectral sampling0.78 - 6.27 nm / pixel *Spatial resolutionRMS spot size 9 μmF/#F/2.4Slit width30 μm (50 or 80 μm optional)Effective slit length14.2 mmTotal efficiency (typical) 50 % independent on polarizationStray light 0.5 % (halogen lamp, 590 nm LPF)electrical characteristicsDetectorCMOSSpatial pixels1 775Spectral bands768Pixel size8.0 x 8.0 μmCamera outputDigital 12 bitInterfaceBase CameraLinkCamera controlCameraLinkFrame rateup to 100 fpsAdditional featuresSpectral binning up to x 8Multiple Region-of-Interest either in spatial or spectral directionExposure time range0.1 - 100 msPower consumption 5 WInput voltage12 V (OEM), 24 V (cased)environmental characteristicsStorage-20... + 50 °COperating+5... + 40 °C non-condensingmechanical characteristicsOEMCASEDSize231 x 80.5 x 78 mm330 x 85 x 90 mmWeight1.8 kg2.7 kgBodyAnodized aluminium with mounting screw holesLens mountStandard C-mountUser adjustmentsNoneShutterOptionalYes, with USB controlSpectral Camera sCMOS相机高光谱成像系统光谱范围:400-1000 nm光谱分辨率:2.9 nm空间像素数:2184成像速度:100 Hz高端VNIR高光谱相机,高信噪比,高空间分辨率optical characteristicsCamera modelsCMOS-CL-50-V10ESpectral range400 - 1 000 nmSpectral resolution FWHM2.9 nm (30 μm slit)Spectral sampling0.63 - 5.07 nm*Spatial resolutionAverage rms spot radius 9 μmF/#F/2.4Slith width30 μm (18, 50, 80 or 150 μm optional)Effective slit length14.2 mmelectrical characteristicsSensorTemperature stabilized sCMOSSpatial pixels2 184Spectral pixels946Pixel pitch6.5 μmSignal-to-noise ratio (peak)170:1 (no binning) to 680:1 (with 8x2 binning)Camera output16 bit CameraLinkData cableLength 5mCamera controlCameraLinkFrame grabberBitFlow CarbonFrame rate100 fps (full frame)Additional featuresAsymmetric spatial and spectral binning (SW)Exposure time range8.1 - 100 msPower consumption60 WInput voltage110/230 V, 50/60 Hz or 24 VDCmechanical characteristicsSize (L x W x H)400 x 110 x 120 mmWeight2.0 kgLens mountC-mountShutterElectro-mechanicalenvironmental characteristicsStorage- 20 ... +50 oCOperating+ 5 ... +40 oC, non-condensing高光谱成像系统配置:提供多种附件供用户扩大应用领域前置物镜:为整个光谱范围提供极好质量的图像和光谱数据采集光纤:将相机转换成多点光谱仪,所有的点均在没有移动复用器的情况下同时测量镜像扫描器或旋转平台:用于扫描静态目标和户外场景,或结合X-stage sample mover用于桌面和显微镜应用LUMO软件:支持LUMO软件,用于采集数据、设置参数、影像实时可视化、ENVI兼容格式数据立方,支持多款通用软件进一步处理分析Specim高分辨率cmos/scmos VNIR高光谱成像系统应用领域质量控制、食物及植被研究、在线分类和质量监控、植物与植被研究、环境监测、防伪检测、颜色控制、果蔬检测、地质学、生命科学应用、艺术作品检测等
    留言咨询
  • 7R高分辨率多光谱相机 主要特点:▶ 所有光谱波段的连续数字对齐,无论飞行高度是多少▶ 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像▶ 能够进行人工智能分析、机器学习和分类▶ 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响▶ 拥有更广泛的动态范围,更多的波段和更高的分辨率▶ 克服了同步和视差等普通多光谱相机设计的典型问题▶ 传感器可拍摄4K级多光谱高清视频▶ 传感器带可根据客户需求定制(滤镜部分有起订量要求) 14个光谱通道:▶ 405nm、430nm、450nm、490nm、525nm、550nm、560nm、570nm、630nm、650nm、685nm、710nm、735nm、850nm▶ 每通道750万像素;各通道带宽25nm,透过率均>95%,各通道同步成像
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制