当前位置: 仪器信息网 > 行业主题 > >

干细胞研究

仪器信息网干细胞研究专题为您整合干细胞研究相关的最新文章,在干细胞研究专题,您不仅可以免费浏览干细胞研究的资讯, 同时您还可以浏览干细胞研究的相关资料、解决方案,参与社区干细胞研究话题讨论。

干细胞研究相关的论坛

  • 【转帖】干细胞研究,没白花钱

    在日前举行的第二次中国科协论坛“2009年中国干细胞研究高层战略研讨会”上,同济大学校长裴刚这样评价近10年来,国家对干细胞投入得到的回报,并没有白花钱。对于关注我国科研成果和科技进步的人来说,这句话对科研投入来说,应该是一个再好不过的答案。  文章、实验室、重大项目、人才队伍,这些往往是衡量某项学科的科研水平在国际上所处位置的重要指标。从1999年12月,干细胞研究被评为世界十大科学研究之首,到今年,我国的干细胞研究已经走过了整整10年的历程。  按照裴刚的统计,生命科学是国家重点支持的领域之一,支持的重大项目比例很高,在国际上发表文章的数量接近10%。我国干细胞领域实验室数量大约是50个,有超过一半的人员和经费用于干细胞研究,这50个实验室均在国际顶级杂志上发表过两篇以上的干细胞研究论文。裴刚说:“中国和美国的实验室数量跟中国和美国发表文章的数量比,还是好一些,我告诉大家我们没白花钱。”  干细胞研究的重要性不言而喻。如果说21世纪是生物学的世纪,那么生物学中最前沿、最热门的一个研究领域应当是干细胞的研究。“干细胞是一类具有自我更新和分化潜能的细胞,包括胚胎干细胞和成体干细胞。”因为干细胞的这种特性,所以对很多疾病,如神经退行性疾病、各种血液干细胞疾病等都有很重要的治疗意义。然而,干细胞的来源却一直是难以解决的问题。  在这个聚集了南开大学校长饶子和,北京大学生命科学学院教授、长江学者特聘教授邓宏魁,中国科学院动物研究所所长孟安明等20多位学者的研讨会上,加快建设大动物实验平台成为多位专家的共识。中国研究干细胞的动物模型,不能仅停留在小鼠等小动物上,今后要举全国之力试验大动物——猪、猴子干细胞。由于大动物在生物学的许多方面和人类更为相近,所以在临床应用上更加关键。从小动物模型到大动物模型,再到临床应用,这是一个发展的过程。中国科学院动物研究所研究员、国家杰出青年科学基金获得者周琪在讨论时说:“无论是技术研究还是产业化应用,建立大动物实验基地、建立中国特色的模式动物都是十分必要的,这是我们进行干细胞研究的基础。”  抓住人才、机制创新,似乎每一个学科在谈到发展战略时,都要说这样的两点,干细胞领域亦不例外。对于国家实验室的模式,专家们也有着更高的期许:开放性的招聘,长期稳定的择优支持,国有评估,开放流动。如何把国家的需求、科研水平的提升、人才的培养和投入经费以及科研机制更好地融合,最终达到发展科技的目的,这并不是一件容易的事情,也是每个科研领域应该深入解决的问题。希望等到下一个十年,回顾干细胞领域的研究成果时,“我们没白花钱”这句话,能以更高的国际地位得到诠释。

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 【转帖】综述:国际干细胞研究竞争加剧

    11月下旬,美日两个研究小组几乎同时宣布成功地将人体皮肤细胞改造成了几乎可以和胚胎干细胞相媲美的干细胞——“iPS细胞”,它也被通俗地称为“皮肤干细胞” 。它的诞生仿佛给沉寂一时的国际干细胞研究打入了一剂强心剂。 诞生仅一月有余,“iPS细胞”相关科研成果和技术革新就屡见报端,一些国家及科学界对这种细胞表现出强烈的关注,纷纷制订相关的研究计划。 “iPS细胞”到底有什么神奇之处,使国际干细胞研究出现了如此热闹的景象? 科学家让普通体细胞“初始化”,使其具备干细胞功能,这就是“iPS细胞”。“iPS细胞”具有和胚胎干细胞类似的功能,却绕开了胚胎干细胞研究一直面临的伦理和法律等诸多障碍,因此在医疗领域的应用前景非常广阔。这一新技术也被权威科学杂志《自然》、《科学》分别评为今年第一大和第二大科学进展。

  • 【转帖】史上最大规模干细胞基因研究

    史上最大规模干细胞基因研究来自新加坡基因组研究所(GIS)和细胞和分子生物学研究所(IMCB)的科学家发现了人类干细胞“百变”的秘密,而且只要启动这个被称为PRDM14的基因,任何普通细胞都有可能“变身”为干细胞,成功率比现有技术高三倍。该研究发表于10月17日的Nature杂志上。拥有多能性(pluripotency)的胚胎干细胞(embryonic stem cell),能变成人体里200多种细胞中的任何一种,自我“繁殖”能力也强,因此一直被视为各种绝症的希望。不过,由于牵涉道德问题,胚胎干细胞研究一再受阻,科学家只好另觅良方。科学人员近年就开始钻研“培育”多能性干细胞的可能性,通过重编程(re-programme)改变细胞基因,让普通细胞也具多能性。由19名本地科学家组成的研究小组就花了三年,从2万1000组基因中,找到了干细胞“多能性”的重要钥匙。据称这是有史至今,最大规模的干细胞基因研究。

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • Strauer干细胞治疗心脏病研究存在学术不端证据

    作者:孙 学军字体大小: http://img.dxycdn.com/cms/upload/userfiles/image/2014/02/26/A1393332106_small.jpgBodo-Eckehard Strauer 教授出生于1943年1月16日,是德国杜塞尔多夫大学心脏病学家,他最著名的学术成就是关于干细胞治疗心脏病。在研究中,他采集患者自体骨髓干细胞,然后注射到患者冠状动脉,这种治疗可以改善心脏病患者的心功能。2001年他最早发表了该类文章,奠定了在这一领域的地位和影响力。这一贡献开创了自体干细胞治疗心脏病的新领域,先后有数10家大学和医院迅速跟进这一研究领域,许多相关商业产品相继问世。他的实验室也先后报道干细胞可以各种心脏疾病都具有理想治疗效果,发表了大量相关学术论文,一直在这个领域领跑,极大地推动了干细胞治疗心脏病的快速发展。不过,德国学术界一直对Strauer教授干细胞的研究表示怀疑。最典型是《国际心脏病学杂志》上一篇文章,文章详细分析了Strauer团队的 48 篇论文,提出了系列疑问,包括统计学错误以及论文中描述不同数量的患者却得出相同答案等问题。文章还系统地罗列了这些论文中众多自相矛盾的信息,文章说在一组组的自相矛盾的结果中,肯定存在不真实的。例如有些论文中,有的论文说这些病人是随机选择,然而在另一批患者不是随机分组,却也得出完全相同治疗效果的结论。英国伦敦帝国学院的心脏病专家 Darrel Francis告诉《自然》杂志:“分析这些对照组实验结果时,发现存在显著性差异”。Francis在一次新闻发布会上说,这些表面上全面而确定的证据逐渐露出破绽,对这一研究了解越多,越觉得不可思议。对这些研究是否遵循随机对照的原则,甚至患者的具体数量都表示怀疑。2009年Strauer从杜塞尔多夫大学退休,针对学术界对Strauer研究的质疑,2012年杜塞尔多夫大学成立的专门的调查委员会。根据《自然》杂志最近报道,经过历时将近2年的调查,该委员会2014年2月24日提交了调查报告,据透漏调查发现Strauer在他发表的众多临床研究论文中,存在学术不端行为的证据,但目前仍没有公开详细信息,对参与该研究的537名患者是否经过药物临床试验质量管理规范,德国药品法的规定伦理审查等相关质疑也无法了解。杜塞尔多夫大学医院CEO Benedikt Pannen说,临床研究调查报告已上交给城市公共检察官。

  • 11月06日:ImageXpress高内涵成像分析系统在干细胞研究中的应用

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gifImageXpress高内涵成像分析系统在干细胞研究中的应用讲座时间:2014年11月06日 14:00 主讲人:郭海利美谷分子仪器(上海)有限公司http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】 干细胞是一类具有自我更新、高度增殖和多向分化潜能的细胞。随着其在临床治疗中的潜力越来越明显,围绕干细胞的科学研究热度不断升高干细胞的研究与其他细胞生物学的研究虽有相似之处,但更强调对分化过程的研究。同时又由于干细胞数量少,难以纯化和大批量培养,同时与周边环境的相互关系密切,使得干细胞相关实验比传统的单线性/单参数的实验需要更多的检测指标,对动态、长时程的观察提出了新的要求。 ImageXpress高内涵成像分析系统具有图像采集方式灵活,成像质量高。同时具有丰富的分析参数,智能化,可拓展的分析软件。满足了干细胞研究的需求。而高内涵成像系统的自动化特点,又为海量信息的采集和分析,提供了细胞信息学研究的坚实基础。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年11月06日 13:30 4、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/12195、报名及参会咨询:QQ群—231246773

  • 【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【专家讲座】:显微成像与显微切割在干细胞研究领域应用实例分享【讲座时间】:2016年03月31日 10:00【主讲人】:张坤 徕卡显微系统生命科学部应用专家。【会议简介】干细胞涉及到个体发育、器官移植、延缓衰老、癌症治疗等方方面面。单个的干细胞是如何分裂、分化成新的细胞、组织或器官呢?在成体中,干细胞又是如何完成细胞修复更新的使命呢?如果要将特定的干细胞从复杂的组织器官中分离出来,分析其特异的遗传、代谢性质,该采用什么样的手段呢?在这次Webinar中,我们将介绍如何借助共聚焦、双光子、超高分辨率显微镜及激光显微切割等先进的显微成像分析技术一一解决在干细胞研究中的这些问题。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月31日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/18985、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667315_2507958_3.jpg

  • CDE发布人源干细胞产品非临床研究技术原则!

    为规范和指导人源干细胞产品的非临床研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《人源干细胞产品非临床研究技术指导原则》(见附件)。根据《国家药监局综合司关于印发药品技术指导原则发布程序的通知》(药监综药管〔2020〕9号)要求,经国家药品监督管理局审查同意,现予发布,自发布之日起施行。特此通告。附件:人源干细胞产品非临床研究技术指导原则国家药监局药审中心2024年1月12日[img=image.png]https://img1.17img.cn/17img/images/202401/uepic/a610bf49-b82c-4320-873c-6c1274fee8d6.jpg[/img][img=image.png]https://img1.17img.cn/17img/images/202401/uepic/ccf3627b-39a8-486c-bf29-43f6161c0e82.jpg[/img][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 胎盘干细胞

    胎盘亚全能干细胞定义:   亚全能干细胞自胚胎形成的第5到7天开始出现,能分化形成200 多种人体组织器官细胞,但不能形成一个完整的人体。胎盘亚全能干细胞是来源于新生儿胎盘组织的一族亚全能干细胞,其在发育阶段与胚胎干细胞接近,具备分化形成三个胚层的组织细胞的能力,但不会形成畸胎瘤。   胎盘亚全能干细胞的主要特性与功能:   胎盘亚全能干细胞是取自胎盘组织的一类亚全能干细胞,胎盘亚全能干细胞具有以下特性:   1. 具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下具有分化为间充质干细胞,上皮干细胞、神经干细胞、肝干细胞,肌细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。可以用来修复受损或病变的组织器官,治疗心、脑血管疾病、神经系统疾病、肝脏疾病、骨组织病、角膜损伤、烧伤烫伤、肌病等多种疾病。   2.具有免疫调节作用,通过负性免疫调节功能,抑制机体亢进的免疫反应,使机体免疫功能恢复平衡,从而可以用来治疗造血干细胞移植之后的免疫排斥反应以及克隆氏病、红斑狼疮,硬皮病等自身免疫系统疾病。   3.胎盘亚全能干细胞定向培养的间充质干细胞是人体微环境的重要组成部分,移植间充质干细胞可以改变造血微环境,重建免疫系统,促进造血功能恢复,与造血干细胞共移植能显著提高白血病和难治性贫血等的治疗效果。   4.具有来源方便,细胞数量充足,易于分离、培养、扩增和纯化,传代扩增30多代后仍具有干细胞特性。   胎盘亚全能干细胞的用途:   胎盘作为理想的亚全能干细胞来源,在抗衰老及疾病治疗领域显示了其独特的功能,治疗疾病种类如下:   心脑血管系统疾病   糖尿病   肝肾损伤   脑及脊髓神经损伤   自身免疫性疾病   移植物抗宿主病   与造血干细胞共移植治疗血液病   缺血性血管病   肺及其它组织器官纤维化   抗衰老,恢复健康体态   胎盘亚全能干细胞的储存流程:   在新生儿娩出、胎盘剥离子宫排出后,由接生的医生尽快按照干细胞库胎盘标准采集规程进行胎盘的采集,然后放置在干细胞库特定的装置工具中,在限定时限内运送到干细胞库,由专业的技术人员进行亚全能干细胞的分离、提取、培养、检测等技术流程,直到根据最终检测结果来确认所获得的干细胞是否具有长期保存的价值。   保存和期限   目前国际上通用的干细胞保存技术是将获得的干细胞储存在-196℃深低温状态,医学研究与临床实践证明保存一百多年的细胞仍然具有活性。干细胞保存已有几十年的历史,胎盘干细胞库在与客户签订的合同期限内对干细胞库中所保管的胎盘亚全能干细胞活性负责。   安全性   胎盘的采集简便易行,不会引起母亲和新生儿任何不适的感觉或产生任何不良的影响。过去胎盘通常作为废物丢弃,而从胎盘中提取亚全能干细胞进行保存,是宝贵的生命资源再生。   而干细胞行业数据显示,胎盘亚全能干细胞基因稳定、不易突变,动物实验证明无致瘤性,使用安全可靠,对适应症范围疾病治疗效果好,优于传统医疗手段。   胎盘亚全能干细胞的优势   1.取材方便,原料来源充足,是生命资源的再生。   2.分化能力强可以定向诱导分化为间充质干细胞、血管干细胞、上皮干细胞、神经干细胞和肝干细胞等多种干细胞。   3.数量充足,使用方便,增殖能力强,培养后数目可达10亿,可以供多人多次使用。   4.在人群中使用不需要配型,不会产生免疫排斥反应,同时,血缘关系越亲近,生物利用度会越高,使用的效果越好。   5.治疗疾病范围广,抗衰老,恢复健康体态,心脑血管系统疾病,糖尿病,肝肾损伤,脑及脊髓神经损伤,自身免疫性疾病,移植物抗宿主病等多种疾病。

  • 重磅!STAP干细胞根本不存在

    日本理化学研究所(REKIN)的小保方晴子等人 2014 年年初在《自然》上发表了两篇干细胞研究领域的重磅论文,但很快被质疑其研究存在学术不端。日本理化学研究所和《自然》(Nature)随后分别展开调查。日本理化学研究所在 4 月 1 日认定小保方晴子篡改及捏造实验数据。但目前对于该研究的争议还有一个关键性的问题尚未解决:小保方晴子等人在研究中观察到的现象究竟存在吗?或者说 STAP 真的存在吗?日本媒体 6 月 3 日发表的报道称,在对 STAP 实验中用到的细胞进行了基因检测后,结果显示,不存在。根据小保方晴子等人的研究结果,对体细胞进行简单的酸浴刺激,或者施加物理应激,就可以得到 STAP 细胞。这些细胞具有和胚胎干细胞相同的特性。对这些细胞进行进一步操作后,它们也可以形成可自我更新的干细胞系,这就是 STAP 干细胞,它们具有和胚胎干细胞系几乎相同的特性。之前《自然》上发表的论文中报告称,小保方晴子所在的实验室共创建了 8 个 STAP 干细胞系。今年3月,论文合作者之一、山梨大学的若山照彦曾要求文章的第一作者向其提供用某一品系的小鼠细胞制备的 STAP 细胞,但当若山照彦对细胞进行了简单的遗传分析后发现,文章的第一作者小保方晴子给他的干细胞,是由其他品系的小鼠细胞制备的。这表明这些细胞可能受到了污染。但是若山照彦并没有发现《自然》发表的论文中提到的 STAP 干细胞系存在问题。为了验证他的结论,若山照彦将 20 个干细胞系(包括论文中提到的 8 个),寄送给了一家匿名的独立遗传分析小组进行检测。根据日媒援引多方信源的报道,这次检测的结果已经送回理研。检测结果显示,所有 STAP 干细胞系都与论文声称的小鼠品系不符,这一结果对 STAP 现象是否存在提出了质疑。若山照彦表示,他将尽快召开媒体发布会公布相关检测细节。另据报道,日本理化所将有可能支持小保方晴子继续研究工作,设法重演STAP结果。

  • 干细胞科研领域的牛人们

    榜样的力量是无穷的。每个领域都有取得杰出成就的成功人士,他们也是后生崇拜学习的偶像。科研领域也不例外。作为目前最热门的研究领域--干细胞,该领域的大牛都有谁?他们都在做什么?笔者总结了一下这个领域的牛人,分为国际篇、华人篇和国内篇三部分介绍。本文仅代表笔者的个人观点,欢迎补充。一 、国际篇http://www.bioon.com/biology/UploadFiles/201103/2011030320555014.jpg山中伸弥 (Shinya Yamanaka)http://www.gladstone.ucsf.edu/gladstone/site/yamanaka/5年前,提起Shinya Yamanaka,可能只有做胚胎干细胞的人略有耳闻,而现在他的名字在科研领域可谓是家喻户晓。虽然在iPS之前,他也做出了一些重要的工作,如发现Nanog和Eras在小鼠胚胎干细胞中的作用(2003,Cell;2003,Nature),但这些跟iPS相比,再好的工作光芒都会被掩盖,即使是CNS(Cell,Nature,Science)级别的工作。传统的观点认为核移植是获得个体特异的多能干细胞的主要途径,但该方法技术难度高,成功率低,至今没有获得人的核移植胚胎干细胞。笔者至今仍记得2007年初(刚进实验室)看到Shinya Yamanaka于2006年发表在Cell上关于iPS的论文时的兴奋心情。我立刻意识到这项工作的重要性,虽然他们最初的结果并不完美,当时获得的iPS细胞按现在的标准只能算是半成品,因此部分人对这项工作的看法是半信半疑。直到一年后,Shinya Yamanaka和Rudolf Jaenisch同时在Nature上报道获得可以生殖系传递的iPS细胞,基本上打消了人们对这个发现的质疑,而随后越来越多的工作进一步证实这个发现。虽然这两年内他的产出不多(2010年有分量的工作只有一篇PNAS),但仅凭2006年那篇论文已经使他成为诺贝尔奖最热门的候选人。http://www.bioon.com/biology/UploadFiles/201103/2011030320561312.jpgRudolf Jaenischhttp://www.wi.mit.edu/research/faculty/jaenisch.html提到Rudolf Jaenisch,在干细胞领域可谓是人尽皆知。1967年从德国慕尼黑大学获得博士学位,现就职于美国麻省理工学院(MIT)的whitehead 研究所,他是该研究所的创始人之一。Rudolf Jaenisch在一系列领域都做出了有影响的工作,包括基因敲除小鼠、表观遗传学研究、核移植、iPS等,并将这些领域的几乎所有的重要问题都解决,唯一的遗憾是自己开创的领域不多。笔者有幸听过一次他的讲座,也同他有过简短的交谈,给人总体印象是一个典型的德国人,比较严肃。他曾经担任过国际干细胞学会的主席。http://www.bioon.com/biology/UploadFiles/201103/2011030320570463.jpg他的许多学生都成为优秀的科学家,如诺华(中国)生物医学研究有限公司的副总裁李恩;近年内的学生有哈佛大学的Konrad Hochedlinger、Alex Meissner 和Kevin Eggan、斯坦福大学的Marius Wernig以及即将去以色列任职的Jacob Hanna等。他的学生无疑是最成功的"牛二代"。http://www.bioon.com/biology/cell/476456.shtml

  • 干细胞药物研发成为我国支持对象

    日前,由天津市申报的《子宫内膜再生细胞治疗卵巢早衰临床前及临床研究》项目成功入选国家重大科技专项2014新药创制项目。这标志着国家重大科技专项首次将干细胞药物研发作为支持对象,也是我国今年正式启动的首个国家级干细胞临床研究课题。  这一项目是由天津滨海新区科技创新型企业顺昊细胞生物技术(天津)有限公司牵头,与天津市药物研究院、北京协和医院、天津医科大学总医院、天津市中心妇产医院共同研发,经市科委筛选申报,经科技部、财政部、国家发改委5轮评审,以其独创性和成果的临床效果,从全国40余个干细胞项目中脱颖而出。  子宫内膜再生细胞作为近年来国际干系细胞领域的最新技术成果之一,对卵巢组织具有重建和修复功能,并可形成局部免疫抑制微环境,是一种无毒、非依赖性的组织修复和免疫调节疗法,实现卵巢早衰病症的缓解,乃至治愈。  目前,天津顺昊细胞已研发出从胎盘组织分离扩增造血干细胞和间充质干细胞的有效方法,全面掌握从胎盘及宫内膜中分离、扩增、冻存各类型干细胞的技术,并针对各类适应者研发出干细胞个性化制剂,为恶性贫血,白血病等危害人类健康的重大疾病的造血干细胞移植治疗带来希望。同时可针对心脑血管疾病,肝硬化、骨和肌肉衰退性疾病、脑和脊髓神经损伤、老年痴呆及红斑狼疮和硬皮病等自身免疫性疾病进行治疗。顺昊细胞的子宫内膜再生细胞项目此次获批不仅是一项干细胞药物治疗重大疾病的临床研究,更重要的是干细胞制药的标准化研究,为今后出台国家级标准提供依据。  顺昊细胞生物技术(天津)有限公司是滨海新区科技创新型企业,成立仅两年,却汇聚了以天津生物医药创业领军人物周泽奇博士和哈佛大学医学院细胞和分子生理学博士后朱彦、瑞士联邦理工学院分子生物学博士张磊等一大批国内外干细胞研究精英人才。目前已通过了国家高新技术企业认定,成为天津国际生物医药联合研究院干细胞研发中心项目承建单位。

  • Nature:终于逮到你了!肿瘤干细胞

    http://www.bioon.com/biology/UploadFiles/201208/2012080216013081.jpg癌症研究人员可以测定肿瘤细胞基因组的序列,扫描其异常的基因活性,剖析其突变的蛋白质和研究它们在实验室培养皿中的生长,但研究者一直无法跟踪细胞形成肿瘤的过程。现在三个独立研究小组在小鼠体内做到了这一点。他们的研究结果支持这样的观点:一小部分细胞驱动肿瘤的生长,而想要治愈癌症可能需要将这些所谓肿瘤干细胞清除。目前还无法确认,这些从脑瘤,肠癌和皮肤癌研究的结论是否适用于其他类型肿瘤,但是得克萨斯大学西南医学中心的路易斯·帕拉达认为,如果它们适用于其他肿瘤,"将深刻地改变目前的化疗疗效评价和临床疗法的制定标准"。 不仅是看某种疗法是否缩小肿瘤,研究人员将更关注是否杀死了正确的细胞。帕拉达和他的同事们想检测是否特异性标识健康成人神经干细胞的一个遗传标记,也可标识神经母细胞瘤中的癌症干细胞。他们发现,所有神经母细胞瘤样本中至少有几个标记细胞 - 大概是干细胞。未标记细胞可被标准化疗杀死,但肿瘤可迅速恢复。进一步的实验表明,未标记细胞起源于标记的细胞祖先。当研究者把化疗与抑制标记细胞的遗传手段相结合进行治疗时,帕拉达说,肿瘤显著缩小到"残留遗迹"的水平。在另一项研究中,荷兰乌得勒支Hubrecht研究所的干细胞生物学家们把注意力瞄着了肠道。利用药物驱动的荧光素标志物表达系统,他们在小鼠体内证实,多种不同类型的肿瘤细胞,其实是来源于同一干细胞的。而且,这些干细胞是肿瘤发展的驱动力。对皮肤癌的研究,Blanpain和他的小组标记单个肿瘤细胞,而不是特异地标记干细胞。他们发现,细胞表现出两种不同的分工模式:它们要么在慢慢耗尽前分裂出少数细胞,或者产生许多细胞。这再次证实,一类独特的细胞亚群是肿瘤生长的驱动力。研究者说,下一步的研究计划将是,搞清楚这些实验所跟踪的细胞如何与通过多年移植实验所确定的,假定的癌症干细胞相联系的。研究人员已经紧锣密鼓地在寻找杀死这些细胞的方法;现在他们有更多的工具来测试这样的策略是否会奏效。

  • 【资料】美国科学家解开胚胎干细胞信号通道之谜

    美国南加州大学科学家表示,他们新发现的名为IQ-1的小分子在防止胞胎干细胞分化成一种或多种特殊细胞方面具有决定性作用,该研究成果有望帮助人们开发出无污染大规模培养胚胎干细胞的方法。有关研究刊登在美国《国家科学院院报》网站上。  干细胞疗法是许多科学家研究的热门项目,大规模培养胚胎干细胞是干细胞疗法成功发展的前提。目前,实验鼠纤维原细胞饲养层是唯一被证明为能够培养胚胎干细胞的方法。在此方法中,必要的化学信号能促使胚胎干细胞不断分裂而不分化。然而,南加州大学凯克医学院医学和药学教授迈克尔卡恩博士表示,人体胚胎干细胞用饲养层培养会遭受实验鼠糖蛋白标识的污染,如果将培养的干细胞用于人体,或许出现可怕的免疫反应。  作为发现IQ-1小分子的研究小组主要研究人员,卡恩表示,他们发现的小分子帮助人们向实现无实验鼠纤维原细胞饲养层培养胚胎干细胞的方法往前迈进了一步。对于IQ-1的工作原理,卡恩解释说,Wnt通道(也就是细胞信号通道)对干细胞具有分叉效应(dichotomouseffects),IQ-1能够在阻断Wnt通道一个分叉的同时,增强来自Wnt通道另分叉的信号。这样,人们可以从根本上维持干细胞的生长和所需的力量。  卡恩认为,如果人们能够创造出一个化学物质环境的系统来培养人体胚胎干细胞,那么就可以避免干细胞受污染的危险,它将让科学家的工作更加容易,这是研究小组的奋斗目标。凯克医学院干细胞和再生医学中心主任马丁佩拉博士表示,卡恩他们的研究让人们能够观察胚胎干细胞内部分子控制机制,其新发现有望帮助人们开发出大规模繁殖纯胚胎干细胞的技术。

  • 【转帖】干细胞使与衰老有关的肌无力的速度放缓

    干细胞使与衰老有关的肌无力的速度放缓 在小鼠中的一则新的研究报告指出,用干细胞来增加年轻的肌肉可减缓与年龄老化相关的肌无力的进程。 这些发现可能会导致再生性肌肉疗法的出现,这种疗法也许会对罹患肌营养不良症的病人或是那些虚弱的老年人有帮助。 文章的作者提出,如果科学家们能够发现可刺激肌肉中干细胞的小分子或分子组合(这可能会比将干细胞移植到人体内要更容易些),那么这些分子可被用于增进肌肉修复或减少肌肉丧失。 在成年期,损伤后或疾病后肌肉再生主要是靠卫星细胞,这是一种会分裂并参与修复、重新恢复活力和控制骨骼肌组织的干细胞,它可通过发育成为肌肉细胞而令肌肉生长。 Bradley Olwin及其同事在这里利用了干细胞的能力并防止了在幼小的小鼠中某一单一肌肉的与年龄老化有关的消瘦。 在该研究中,研究人员将少数的干细胞移植到肌肉受伤的幼小小鼠体内。 该研究小组在两年后对这些小鼠进行检查时发现,这种手术永久性地改变了移植的细胞,使得它们能够抵抗肌肉中的老化过程。 明确地说,这些移植的细胞能够控制它们所在的肌肉并与肌肉融合以形成新的肌肉纤维。 尽管人们对这一过程的机制还不了解,但这些发现提示,通过模仿这些移植的干细胞的功效,科学家们也许能够防止肌肉功能和重量的丧失,而这些通常是在人类老化时出现的情况。

  • 介入再生医学中干细胞治疗研究进展

    【序号】:3【作者】: 关斯文1刘旋2刘刚【题名】:介入再生医学中干细胞治疗研究进展【期刊】:中国生物医学工程学报. 【年、卷、期、起止页码】:2022,41(02)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XbJaW5XOc7objxNoWCOljUhXk73cAneOJ09tqO5rJudT&uniplatform=NZKPT

  • 三维培养人多能干细胞的研究与进展

    【序号】:1【作者】:秦丽颖1张瑞1任晓琳【题名】:三维培养人多能干细胞的研究与进展【期刊】:中国组织工程研究. 【年、卷、期、起止页码】:2019,23(17)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=-93ivAxQXRqW5VWnhmO0D6oeMnd87lquAv56bm_P7lPF82pRmaZ9nZqFmqH5dwnjPR1aqQoUlyDadIsFeJjZhSmtsSfvjIiT5p4AfIaM33OONTztfCgvQ6m_uJvINP07Jez8bU8P-1bvWdtKN7jZUA==&uniplatform=NZKPT&language=CHS

  • 干细胞治疗中重度宫腔粘连的临床研究进展

    【序号】:4【作者】: 段璇李维宏【题名】:干细胞治疗中重度宫腔粘连的临床研究进展【期刊】:现代医药卫生. 【年、卷、期、起止页码】:2021,37(13)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHQcmWIEaxGrrR4J_qEN_4j6CT17uJKJVrOcpPwPFtY8J&uniplatform=NZKPT

  • 【资源整理汇总】干细胞原理与技术

    ###一部汇总,大家伙先看着,未完待续###原理与技术干细胞:成体干细胞、胚胎干细胞、诱导多能干细胞(ips)、肿瘤干细胞、分离、培养、鉴定、建系、分选、信号通路、起源、组织工程干细胞的培养《干细胞原理、技术与临床》核心章节131页/赵春华/ http://bbs.bioon.net/bbs/thread-358972-1-1.html分享一本最新出版的肿瘤干细胞的书http://bbs.bioon.net/bbs/thread-299056-1-1.html强烈推荐:一个关于干细胞的powerpoint http://bbs.bioon.net/bbs/thread-296701-1-1.html干细胞电子书免费下载http://bbs.bioon.net/bbs/thread-264289-1-1.html干细胞研究进展消息 http://bbs.bioon.net/bbs/thread-360149-1-1.html干细胞教师用ppt http://bbs.bioon.net/bbs/thread-362296-1-1.html英文版干细胞ppt集锦(很不错的) http://bbs.bioon.net/bbs/thread-272416-1-1.html干细胞从科研走向临床推广http://bbs.bioon.net/bbs/thread-353817-1-1.html干细胞可用于治疗脊髓损伤http://bbs.bioon.net/bbs/thread-353818-1-1.html老外是如何学习做干细胞的--干细胞课程http://bbs.bioon.net/bbs/thread-57973-1-1.html上传几篇大牛写的干细胞综述 http://bbs.bioon.net/bbs/thread-341447-1-1.html一篇干细胞的NICHE的年度综述!http://bbs.bioon.net/bbs/thread-287579-1-1.html上传几篇大牛写的干细胞综述4 http://bbs.bioon.net/bbs/thread-341451-1-1.html关于干细胞的PPT http://bbs.bioon.net/bbs/thread-259255-1-1.html【免费下载】肿瘤干细胞起源及其生物学特性/陈晶等/http://bbs.bioon.net/bbs/thread-358973-1-1.htmlhttp://www.nature.com/sc/journal/v45/n1/full/3101943a.htmlhttp://www.springerprotocols.com/Full/doi/10.1007/978-1-59745-060-7_10?encCode=QkVDOjAxXzctMDYwLTU0Nzk1LTEtODc5&tokenString=lSYIGGltPLruD0lr0AWrWg==&access=deniedhttp://onlinelibrary.wiley.com/doi/10.1002/jnr.20317/fullhttp://www.transplantation-proceedings.org/article/S0041-1345(08)00008-0/abstracthttp://www.nature.com/nprot/journal/v3/n12/full/nprot.2008.194.htmlNature实验方法-大鼠/小鼠少突胶质前体细胞培养 http://bbs.bioon.net/bbs/thread-358977-1-1.html成人胰腺多能干细胞生成与胰腺癌和非胰腺癌后代 http://bbs.bioon.net/bbs/thread-358980-1-1.htmlBMC Neurosci:电针治疗可以促进移植干细胞的存活和分化 http://bbs.bioon.net/bbs/thread-358982-1-1.htmlstem cells:揭示骨髓干细胞和AMSCs相当 http://bbs.bioon.net/bbs/thread-358984-1-1.html【免费下载】Nature Pro:鼠胚胎干细胞的分化 http://bbs.bioon.net/bbs/thread-358985-1-1.htmlStem Cells:Mesenchymal stem cells instruct oligodendrogenic fate decision onhttp://bbs.bioon.net/bbs/thread-358986-1-1.html胚胎干细胞培养标准化操作规程.dochttp://bbs.bioon.net/bbs/thread-311031-1-1.html干细胞的培养方法(图片)http://bbs.bioon.net/bbs/thread-264491-1-1.html人表皮干细胞的培养技术http://bbs.bioon.net/bbs/thread-323841-1-1.html用sphere法培养肿瘤干细胞的protocol http://bbs.bioon.net/bbs/thread-289291-1-1.html日本科学家关于脂肪干细胞的研究http://bbs.bioon.net/bbs/thread-328832-1-1.html

  • 【转帖】动物肝脏作“支架” 人类干细胞当填充

    动物肝脏作“支架” 人类干细胞当填充    据英国《每日电讯报》11月1日(北京时间)报道,在波士顿举行的美国肝脏疾病研究大会上,美国维克森林大学浸会医学中心的研究人员表示,他们使用人体干细胞首次在实验室培育出微缩版人体肝脏,新的实验结果有助于在将来制造出全功能的人造肝脏,造福广大肝病患者。  人们对于移植肝脏的需求远远超过了可以获取的数量。最近几年,研究人员一直在想方设法使用细胞技术支撑人体内随着年龄增长不断衰弱的器官正常运转,甚至希望某一天可以用人造器官取而代之。  维克森林大学医学院主管兼教授谢伊·索科尔团队使用人体干细胞制造出该微型肝脏,在一个“支架”上形成新的肝脏组织,而这个“支架”由一个动物肝脏制造而成。  研究人员首先将动物肝脏中的细胞除去,仅仅留下支持细胞生长的胶原蛋白框架以及一个细小的血管网络。接着将新的干细胞,也就是不成熟的人类肝脏细胞和内皮细胞(主要用于形成血管的内壁)逐渐填入“支架”中。随后,再将整个框架移入一个生物反应器中,并使用营养物质和氧气的混合物来培养这些细胞。一周后的观察发现,细胞的生长状况非常好,甚至表现出了很多真正人体肝脏的功能。  索科尔表示,新研究成果令人兴奋,但目前还处于初级阶段,仍有很多技术障碍需要克服。比如,研究人员不仅需要知道如何同时培育出数十亿肝脏细胞,以获得足够大的肝脏供病人使用,同时也必须弄清楚这些器官是否安全。

  • 【转帖】用干细胞在实验室造出小型人类肝脏

    科学家们设法利用干细胞在实验室制造出小型人类肝脏。这一成功增加了制造出可用于移植的新肝脏的希望,尽管专家们说这还需要很多年时间。来自美国韦克福雷斯特大学巴普蒂斯特医疗中心的研究小组在波士顿的一个会议上展示了他们的研究成果。英国专家们说,这是“激动人心的进展”,但目前还不确定是否有可能培养出功能健全的肝脏。对可供移植肝脏的需求远超过所能供应的数量。近年来,研究工作的重点一直放在寻找用细胞技术维持或终有一天替代人体衰退器官的方法上。这些器官的基本构件是干细胞,一种在特定条件下分裂,形成各种人体组织的重要细胞。然而,用干细胞构建一个三维器官是一件困难的工作。韦克福雷斯特大学的研究人员以及世界上其他研究小组所使用的方法是,以现有肝脏结构为平台,生成新的肝脏组织。按照这种方法,研究人员利用一种洗涤剂剥离肝脏细胞,只留下支撑肝脏细胞的胶原框架和毛细血管网络。然后,新的干细胞——发育不完全的肝脏细胞以及用于生成新血管内壁的内皮细胞——被逐渐填入。将这些放入用各种营养物和氧气培养细胞的生物反应器中,一周后,科学家们观察到肝脏结构中出现普遍的细胞发育现象,并且这个小型器官甚至出现一些正常工作的迹象。领导这项研究的谢伊·瑟凯尔教授说:“我们为这项研究展现的可能性感到激动,但必须强调的是,我们还处于初级阶段,还必须克服许多技术障碍才能让病人受益于这项研究。”他说:“我们不仅需要弄清如何一次性培养大量肝细胞,以便为病人制造足够大的肝脏,我们还必须确定使用这些器官是否安全。”英国研究人员认为这项研究成果是可喜的。英国帝国理工学院教授马克·瑟斯说,这些研究成果“鼓舞人心”。他说:“报告显示,这些研究人员攻克了制造人造肝脏的主要障碍之一,即在‘自然生成的’肝脏结构中培养出正常工作的人类肝脏细胞。”他说:“很明显,这些细胞发育良好,但下一步是要证明它们能够像人类正常肝脏组织那样工作。”

  • Nature:科学家从人卵细胞培养出胚胎干细胞

    10月6日出版的新一期英国《自然》杂志刊登报告说,美国研究人员用人类卵细胞培养出了胚胎干细胞,虽然这项成果还存在一些缺陷,但已是“黄禹锡造假事件”后最接近培养出正常人类胚胎干细胞的成果。这一成果可能引起有关克隆问题的新一轮大争论。http://www.bioon.com/biology/UploadFiles/201110/2011100911202350.jpg(图片来自原文)将体细胞中的遗传物质植入卵细胞中,将其培育成为胚胎干细胞甚至最终培养出新的个体,就是常说的克隆技术,著名的克隆羊“多利”就是用这种技术得到的。2004年,韩国研究人员黄禹锡曾宣称用这种方法培育出了人类胚胎干细胞,引起一时轰动,但后来证明这是一起造假事件。此后,许多科研人员都进行了这方面的尝试,但一直没有成功。相关研究面临的障碍是,如果先将人类卵细胞中的遗传物质去掉,再植入另一个体细胞的遗传物质,这样得到的卵细胞分裂几次后就会停止发育。而美国纽约干细胞基金实验室等机构的研究人员报告说,如果留下一部分原有卵细胞中的遗传物质,再另外加上体细胞的部分遗传物质,这样得到的卵细胞可以发育到具有70至100个细胞的囊胚阶段,达到可以提取胚胎干细胞的阶段。胚胎干细胞具备发育成各种组织和器官的潜力,如果能够培育出人类胚胎干细胞,就意味着能够培育出属于某个人自己的组织和器官,可用于个性化的医疗。当然这也会引起有关克隆人的争议。本次研究虽然能够培育出人类胚胎干细胞,但也存在一些缺陷。最重要的是这些细胞中存在3组染色体,即卵细胞原有的1组染色体和来自体细胞的2组染色体,而正常的人类细胞只有2组染色体。因此,这种人类胚胎干细胞还不具备实用性。但是《自然》杂志同时发表的社论指出,这是自“黄禹锡造假事件”后最接近培养出可用人类胚胎干细胞的成果,在大方向上证明这仍然是一条可行的道路。社论认为,这将引起新一轮的有关克隆人的大争论,甚至提出联合国有必要开始考虑制订监管克隆的规章制度。

  • 抽丝剥茧,解析干细胞的命运

    在分子水平上到底发生了什么才会使得干细胞成为一种细胞类型而非另一种?在什么时间点它被注定了细胞命运?而它又是如何被注定命运的呢?直到现在这些问题仍是待解之谜。近日来自加州理工学院的一个研究团队在新研究追踪了确保干细胞分化成为免疫系统重要细胞T细胞的逐步发育过程,这一成果标志着我们在理解干细胞命运方面又向前迈出了重要的一步。相关研究论文在线发布在4月13日的《细胞》杂志上。该研究的首席研究员、加工理工学院生物学教授Ellen Rothenberg说:“这是第一次这样详细地,一步一步地解析自然发育的过程,检测了基因组中所有基因的活性。这意味着就基因而言,该系统中的所有的东西都无所遁形。“文章的第一作者是Rothenberg实验室的研究生Jingli A. Zhang,他现在是加州理工学院的博士后学者。在这篇文章中,研究人员针对多能造血前体细胞展开了研究。多能造血前体细胞是一类干细胞样细胞,表达各种各样的基因,并能够分化形成多种不同的血液细胞类型,包括免疫系统细胞。从整个小鼠基因组着手,实验室试剂研究人员精确筛查了这一前体细胞转变为命中注定的T细胞过程中所有发挥了作用的基因,并鉴别了在发育过程中这些基因各自开启的时间点。同时,研究人员还追踪了可引导前体细胞通往各种替代信号通路的基因。研究结果还揭示了T细胞发育过程促进其他命运的基因关闭的时间和方式。Rothenberg 解释说:“T细胞基因是否是在促进一些特异性替代的基因关闭之前开启的?或是以其他的顺序?哪些基因首先开启?哪些基因首先关闭?这些一直是我们过去想了解的问题。在大多数全基因组研究中,你很难有培养基能力了解发育进程中第一、第二、第三等等逐步发生的事件。而如果你想了解这样一个复杂的过程建立这些前后关系是绝对至关重要的。”在新研究中,研究人员对生成T细胞的一系列分子事件中的五个阶段进行了解析,包括细胞定型前两个阶段、定型阶段以及定型之后的两个阶段。他们鉴别了在所有这些阶段表达的基因,包括大量编码转录因子的基因,这些转录因子在开启或关闭特定基因中起重要作用。他们发现大部分调控转换发生在第二阶段和第三阶段之间,此时T细胞定型开启。大量激活未定型干细胞相关基因的转录因子基因关闭,而其他一些激活T细胞发育下一阶段所需基因的转录因子基因开启。研究人员不仅检测了在不同的阶段哪些基因获得了表达,还鉴别了有可能导致这些基因在特定时间表达的因素。转录因子自身的表达就是一个关键的调控元素。除此之外,研究人员还颇有兴趣地鉴别了基因的调控序列,基因上的这部分序列主要是充当转录因子的停泊位点。采用常规的分子生物学技术通常很难鉴别在小鼠和人类中的这些序列,研究人员耗费了10年的时间致力于构建出实验室仪器单个基因调控序列的综合图谱。为了构建出可能的调控序列图谱,Jingli A. Zhang对表观遗传学标记进行了研究。通过鉴别表观遗传学标记添加或清除的DNA区域,Rothenberg研究小组为研究人员鉴别T细胞发育过程中大量开启或关闭基因的调控序列铺平了道路。Rothenberg说从某种意义上说,她的团队采用的是一种反向的方法来解析这些对照序列的定位问题。“我们要说的是,如果我们能够根据生成的RNA推断出在某个时间点开启的基因,我们就应该能够观测这一基因周围的这些DNA序列,解析是否同时还有DNA序列添加或丢失了表观遗传学标记。如果我们能找到它,那将成为用于开启这一基因的真正的热点候选调控序列,”Rothenberg说。

  • [资源集锦] 【汇总】干细胞网络资源

    #前言#干细胞研究和再生医学给治疗退行性疾病带来全新的手段和希望,引起各国ZF的重视和大众的关注,在全球掀起干细胞研究及应用的热潮。网路上存在大量干细胞相关资料,包括新闻资讯网站、专题网站、论坛社区、QQ群等全方位的网络资源。此帖目的就是将这些资源汇集,便于大家查询便利。欢迎谷友完善补充。我会不定期维护此列表,同时,对于优秀资源链接提供者谷友给予奖励!谢谢!# # #一 新闻资讯科学网http://www.sciencenet.cn/注:即时的新闻科学资讯更新,以中科院系统科学新闻为主科技网-科技日报http://www.stdaily.com/注:科技日报部分网络版文章,最前沿科技成果展示,报道深入生物谷http://www.bioon.com/注:医药生物中文媒体平台、汇集行业最新资讯。高度关注干细胞基础研究、临床应用最新进展。大量原创文章文章、学术会议、讲座、培训班全方位资源整合分享。新华网http://www.xinhuanet.cn注:国内外最新科技报道,为国内多数科技新闻的发源地新浪科技http://tech.sina.com.cn/注:汇集科技文章,少量原创编译文章,多为科普文章中科院上海生科院(SIBS)http://www.sibs.cas.cn/注:国内干细胞研究综合水平最高机构之一,其新闻动态原创SIBS研究新闻播报。中科院(CAS)http://www.cas.cn/注:中科院官方网站,其科技动态含各所中关于干细胞研究报道的新闻。腾讯科学频道--生命奥秘http://tech.qq.com/l/all/being/being.htm注:腾讯针对生命相关科技报道资源汇集,以少量原创编译文章,多为科普文章生物通http://www.ebiotrade.com/注:汇集生命科学文章,少量原创编译文章再生泉-中国干细胞网http://www.chinastemcell.org/注:由华东干细胞库和北京干细胞库牵头创办。部分原创编译新闻。eurekalert!http://eurekalert.org/注:科学新闻报道,综合新闻频道,部分干细胞相关新闻[/siz

  • 促干细胞定向分化的载药水凝胶的构建及其组织修复研究

    【序号】:5【作者】:刘雪敏【题名】:促干细胞定向分化的载药水凝胶的构建及其组织修复研究【期刊】:华南理工大学【年、卷、期、起止页码】:2021【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-i16_wNaYct1rCckkTLVqOrYuh3g20izR58JuhQuHhKoH5opoK4itAAgYVhHvAjuMk&uniplatform=NZKPT

  • 天士力干细胞创新药获批临床!为上海东方医院首个干细胞成药临床试验项目

    [color=#c00000][i]同济大学附属东方医院再生医学研究所何志颖研究员表示:项目研究从2018年开始,2021年4月Pre-IND,2024年1月18日IND获批!历时6年艰辛。[b]这是东方医院首个干细胞成药临床试验项目,希望能造福于心衰患者![/b][/i][/color]据报道1月18日,天士力公告其一款创新干细胞药物获得国家药监局批准进入临床试验,主治慢性心力衰竭。公告称,公司收到国家药监局核准签发关于[b]人脐带间充质干细胞注射液(B2278注射液)[/b]项目的《药物临床试验批准通知书》,同意开展伴冠状动脉旁路移植术指征的慢性缺血性心肌病导致的慢性心力衰竭的临床试验。[b]人脐带间充质干细胞注射液[b](B2278注射液)[/b]由上海市东方医院(同济大学附属东方医院)研发,2022年8月天士力与东方医院签署《技术转让(合作)合同》受让相关技术及成果,并在全球范围内,优先在中国开展药品注册申报及后续临床试验开发。[/b]临床前研究证明,B2278注射液可通过旁分泌作用调控心肌组织微环境,对于缺血性心肌病中的心肌细胞组织损伤有明显抑制作用,增加动物心功能,促进血管再生,减少心肌凋亡。心力衰竭是由于心脏结构和/或功能异常导致心室充盈和/或射血能力受损的一组临床综合征,是大部分心血管疾病发展的最终阶段,随着年龄增长,心衰患病率和发病率均明显增加。目前对于心力衰竭的治疗主要包括药物治疗、血运重建、细胞和基因治疗,其中冠状动脉旁路移植术(CABG)是常用的血运重建治疗方式,《2022年中国心血管外科手术和体外循环数据白皮书》显示,2022年CABG占心外科手术总量21.1%。上述治疗手段可以在一定程度上延缓心力衰竭的进展,但不能使死亡心肌再生。伴随CABG手术的心肌局部注射干细胞有望通过刺激心脏细胞的增殖和分化、抑制心肌细胞损伤及免疫调节等作用,修复心肌细胞使心肌收缩增强从而对心力衰竭发挥治疗作用。目前国际上获批的干细胞品种已达十余种,但是尚无治疗心衰的干细胞产品上市。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 干细胞治疗 型糖尿病及其并发症的研究进展

    【序号】:4【作者】: 李欣悦1李倩2石桂英【题名】:干细胞治疗 型糖尿病及其并发症的研究进展【期刊】:中国比较医学杂志. 【年、卷、期、起止页码】:2020,30(09)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7i8oRR1PAr7RxjuAJk4dHXornP_er_Kbuv7gOcNOPAsJdwttoAT_hT4lBgAn1-AeRe&uniplatform=NZKPT

  • Nature:酒精分解产物破坏造血干细胞(所以,少喝酒啊)

    2012年8月28日 英国医学研究理事会(MRC)分子生物学实验室的科学家们已经发现,人体内骨髓中的造血干细胞对酒精的主要分解产物是极为敏感的,这可能导致造血干细胞不可逆的DNA损害。相关研究在老鼠身上开展的,其结果发表于国际权威杂志Nature上,新的研究表明这种造血干细胞的DNA损害通常存在两个重要的控制机制:一种可以清除有毒分解产物(乙醛)的酶,一组能够识别和修复受损DNA的蛋白。缺乏这两种保护机制的小鼠由于血液干细胞闭塞导致骨髓造血功能衰竭。调查结果提供了一个解释,为什么有的人患有一种称为范可尼贫血(FA)的罕见遗传性疾病。患有这种疾病的人继承一个或多个FA基因突变,从而导致乙醛引起的DNA损伤得不到修复。因此,FA患者患发育缺陷、骨髓造血功能衰竭、血液和其他癌症的风险极高。这些人缺乏酶ALDH2来消除有毒的乙醛,因此可能对DNA的损伤异常敏感。作者认为,酒精消费量可能会导致造血干细胞永久性损坏,骨髓造血功能衰竭和加速老化,血癌风险增加。MRC分子生物学实验室KJ Patel博士说:造血干细胞是给我们的整个生命周期提供了源源不断的健康的血液细胞,随着年龄的增长,这些重要的干细胞变得不那么有效,因为其DNA受到损伤。我们的研究确定这种DNA损伤的一个重要来源,定义了干细胞用于对付这种威胁的两种保护机制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制