当前位置: 仪器信息网 > 行业主题 > >

分子库技术

仪器信息网分子库技术专题为您整合分子库技术相关的最新文章,在分子库技术专题,您不仅可以免费浏览分子库技术的资讯, 同时您还可以浏览分子库技术的相关资料、解决方案,参与社区分子库技术话题讨论。

分子库技术相关的资讯

  • 重庆大学DNA编码分子库技术获重大进展
    p   癌症、心血管疾病、慢性肠炎、流感……这些疾病都是人类健康的敌人。如何高效地研制出相关治疗药物,是科学家们一直在探索的问题。3月24日,重庆日报记者从重庆大学获悉,该校药学院和瑞士苏黎世联邦理工学院合作采用的DNA编码分子库技术,将有望快速找到针对这些疾病靶点的活性化合物,从而提升相关药品研制的速度和质量。日前,这一研究成果发表在《自然· 化学》杂志上。 /p p   “如果把分子库中的化合物比喻成无数把钥匙,那么医治某种疾病的靶点就是需要打开的锁。”该成果论文的第一作者、重庆大学药学院研究员李亦舟介绍说,新药的研制就是在无数把钥匙中找到能打开某一把锁的钥匙,而传统筛选钥匙的方式很慢,即目前跨国药企通常采用的高通量药物筛选技术。“其采用大批量配对筛选的方式,效率较低,合成、筛选500至600万个分子就需要大约20年时间,研发周期长,资金投入大。这样即使研发出新药,价格也很昂贵。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/12f074f0-09fa-4ba4-ba7c-cab943c486bf.jpg" title=" NewsDataAction-2.jpeg" / /p p   重庆大学药学院和瑞士苏黎世联邦理工学院Dario Neri教授实验室合作采用的DNA编码分子库技术,耗时3年多时间,人工合成了3500万个不同的化合物,然后运用编码技术,为每一个化合物都贴上独一无二的DNA条形码。 /p p   这3500万个不同的化合物,被装在一支小小的试管里。然后,与装在另一支试管里的疾病靶点迅速进行匹配,从而找出针对疾病靶点的活性化合物。找到这些化合物之后,再对它们进行基因组测序,便可以有针对性地研发出相关药物。 /p p   “目前很多疾病都使用抗体药物进行治疗,相对于化学小分子药物来说,抗体药物制造成本高,且抗体药通常需要注射,不如像片剂等的化学小分子药物方便服用、保存与携带。”李亦舟说,因此,如果使用DNA编码分子库技术,不仅可以极大地加快研发新药的时间进度,也有利于减轻患者痛苦。 /p
  • 成都先导:构筑底层万亿分子库平台 加速新药研发(上篇)
    不久前的热播剧《功勋》中,再现了屠呦呦在筛选治疟新药青蒿素过程中历经的艰辛。新药研发是从底层巨量级的化合物筛选开始的,药物研发人员总是期望更快的筛选,这其中需要先进的方法和设备。成立于2012年的成都先导,在全球第一家实现了DNA编码小分子库万亿分子的实体规模,于去年4月成功登陆科创板,并与默克、白云山、国为医药等多家企业签约,通过发挥DEL/FBDD/SBDD核心技术平台的整合效应,加速新药研发。 今年5月,成都先导药物开发股份有限公司(以下简称“成都先导”)携手岛津企业管理(中国)有限公司(以下简称“岛津”)共建创新药物开发平台联合实验室,标志着成都先导和岛津的合作迈入新征程,共同推动和加速新药研发。近日,分析测试百科网采访了成都先导董事长兼CEO李进博士,他分享了成都先导的发展历程和核心研发平台,以及与岛津合作实现企业技术的优势互补,共同推动前沿研究的深化与应用。 本期人物介绍李进 博士成都先导药物开发股份有限公司董事长兼首席执行官 以下文字根据对成都先导董事长兼CEO李进博士的个人专访整理而成。 上篇:DEL/FBDD/SBDD核心技术协同构建新药发现底层能力 两大领先平台支持同行 开发自主新药成立于2012 年的成都先导,2020 年 4 月成为 “科创板西南第一股”,从早期的CRO,到今日新药研发的全国前50强,这同成都先导创始人、董事长兼CEO李进博士密不可分。他曾在世界 500 强企业阿斯利康担任高管 11 年,具有分子设计、分子合成与分子筛选 20 余年的专长和工作经验,拥有海外近 30 年新药研发及管理经验。同时,他也是四川大学特聘教授、英国皇家化学协会会士、荣誉科学博士。1988 年取得英国阿斯顿大学博士学位之后,他又于英国曼彻斯特大学医学院完成了博士后研究。 李进表示:经过8年多时间,成都先导打造了小分子药物核心技术平台——DNA编码化合物库(DEL),另外不仅有DNA编码库,还把DEL筛选结果进行优化产生新型临床前候选物以及IND申报的临床候选物。 自2020年4月登陆资本市场以来,成都先导进一步强化公司的核心技术平台,为新药的发现与优化领域提供更强劲的技术平台。比如去年10月在英国剑桥并购了Vernalis公司。Vernalis 是一家基于分子片段(FBDD)和三维信息结构(SBDD)技术的药物发现和新药项目开发的生物技术公司。该公司正基于分子片段、结构生物学、测定技术等方法针对肿瘤、神经退行性疾病、抗感染剂和炎症的靶点产生先导化合物和临床阶段候选物。 收购后,成都先导拥有两大技术平台:DNA编码化合物库(DEL)和FBDD/SBDD;除此之外还有优化的分子技术和研发能力。整体而言,成都先导打造了小分子药物、核酸药物的分子发现与分子优化技术平台。 李进表示:建立强劲的技术平台后,成都先导同广泛的伙伴合作,来推动和支持他们的新药研发。同时,成都先导也有一些自己的新药研发项目,包括临床前、进入临床阶段的20多个项目,其中有4个项目在临床阶段。 总体而言,成都先导是一个有底层新药发现技术平台的公司,通过不断完善技术平台来参与、支持合作伙伴的新药发现与研发,同时亦开发自己的新药项目。 深耕DNA编码化合物库 积累四大技术优势近几年,DNA编码化合物库技术(DEL)逐渐获得高度重视,而成都先导自创立之初就致力于DNA编码化合物库(DEL)设计及技术筛选平台,其首席科学家Barry A. Morgan更是DEL工业化技术的主要发明人。2021年10月15日,成都先导登上全国工商联医药业商会颁布的2020年度中国医药研发50强榜单。 图1:成都先导荣登2020年度中国医药研发50强榜单 李进表示:DNA编码化合物库(DEL)近几年得到工业领域的高度重视,相对其它公司,成都先导具有如下优势: 这些在DNA编码化合物库(DEL)技术领域的深耕,都是成都先导不断积累的丰厚的经验和优势,主要体现在以下4个方面。 第一,源于技术聚焦和巨大投资,成都先导是第一家实现DNA编码小分子实体库达到万亿级规模的业内领先公司。 第二,丰富DNA编码化合物库的内容,具有设计新颖、多样性、成药性高等优势。除了传统杂环小分子化合物之外,成都先导利用该技术建立蛋白降解库、共价键化合物库、大环化合物库,编码分子片段等应用在不同领域。 第三,大规模分子库涉及合成、试剂、流程等多方面,如何保证合成化合物库的质量是非常关键的因素。因此,成都先导通过高通量自动化的系统建设和应用确保分子库的整个流程的质量和效率的控制。 第四,成都先导建立了广泛的全球用户,将分子库用于诸多靶点的筛选,并获得了相当高的成功率,比如从靶点筛选到找到活性化合物的成功率达到70%-80%。成都先导在此过程中亦获得了大量反馈,这种实际应用反馈积累了一定的先发优势,使得成都先导的筛选技术,筛选结果数据分析等不断叠加,并在该领域中保持领先。 携手岛津优势互补 实现合作共赢2021年5月25日,成都先导携手岛津共建创新药物开发平台联合实验室,双方将按照研发需求、协同攻关、市场验证的理念,在新药技术开发、研究平台共建、人才培养交流和成果转化等各方面开展深入合作,打造技术协同、价值交互、合作共赢的创新性新药研发合作平台。图2:成都先导-岛津联合实验室揭牌 成都先导-岛津联合实验室致力于打造国内创新药物合作研发平台新典范,通过对精密分析仪器、前沿应用研发方案等系统化运用,提升创新药物研发能力与效率。 “岛津在高端仪器、精密分析仪器中有着非常悠久的历史,在行业里也有巨大的影响力,不论在科学技术的创新和新产品方面都是大家有目共睹的。成都先导早在创业初期就已经与岛津开展合作了,合作时间非常悠久,也有着深厚的合作关系。通过多年来同岛津在高精尖分析仪器方面的合作,我们了解到在整个公司的发展技术平台建设上,上述仪器能够发挥重大的作用。”李进博士回顾双方的合作时讲到。 对于成都先导和岛津建立联合实验室,李进表示:“这是双方长久合作的结晶。我们将继续通过尖端的分析仪器、分析技能、专业知识,结合岛津和先导在实际应用中积累的观察和经验,用新的技术解决前沿问题。联合实验室的成立将进一步提升DNA编码化合物(DEL)库的质量以及核酸药物研发相关的分析工作,促使我们研发产出更高质量的产品。” 岛津中国副董事长井上统雄表示,“成都先导-岛津联合实验室”的成立,是成都先导、岛津双方合作多年的期盼,标志着岛津和成都先导的合作进入了一个全新里程。岛津将用先进的技术能力、稳定的售后支持服务于联合实验室,为双方的进一步合作科研提供助力。 谈到对合作实验室未来的期望李进表示:分析团队、化学团队和岛津的相关团队将保持密切沟通,聚焦双方关心的问题,针对问题制定比较清晰的研究计划。有效地结合双方的科学知识、实验观察,真正地解决问题,从而有助于新方法的开发,产生新的结果,共助于双方的未来发展,实现合作共赢。
  • 成都先导:构筑底层万亿分子库平台 加速新药研发(下篇)
    进军核酸药领域今年7月16日,成都先导与成都国为生物医药有限公司 (以下简称“国为医药”)共同签署新药研发合作协议,以期针对国为医药关注的靶点发现一种全新的干扰核酸疗法。成都先导将利用其核酸药物开发平台为国为医药开发靶向特定致病基因的mRNA的小核酸新药分子。成都先导与国为医药在核酸药物发现领域的合作,这一合作印证了成都先导核酸药物研发平台的不断完善和走向转化。图3:成都先导与国为医药在签署新药研发合作协议 对于成都先导进军核酸药物领域,李进博士表示:我们观察到,特别是新冠疫情期间,核酸药和以核酸作为分子形态为基础的疫苗开发、新药开发甚至其它领域的应用,带来明显的治疗效果,核酸药物开发的效率非常高。因此对整个制药业来说,核酸药物不仅作为治疗手段,并且作为治疗靶点受到了非常多的关注。作为在这个领域不断探索新分子空间、新治疗手段的生命技术公司,成都先导自然要关注如何将我们构建的平台和研究基础,更有效地在核酸药物领域里应用起来。 成都先导的技术基础来自于DNA编码化合物库(DEL)技术,已经实现一万亿的DNA编码化合物库,除了一万多亿的小分子库,我们在试剂合成、质控、表征方面也积累超一万亿的小核酸分子库,核酸分子库此前是为了做标志的,但亦可以转过来应用于核酸药物,成为分子的试剂合成、优化的能力。所以成都先导积累了很好的基础。 除此之外,在核酸药研发的其它领域,成都先导的技术基础也可以得到有效的应用。因此,我们希望通过这种方式围绕我们的核心技术,不仅仅是在小分子应用方面,在得到快速发展的核酸药领域也能够做出新药研发的推进工作。这样不仅为我们的合作伙伴,也为我们自己未来的新药研发管线提供创造价值的机会。 对中国创新药的几点认识“十四五”开局之年,结合目前国内创新药快速发展的大环境,李进博士分享了对新药研发的认识以及未来趋势的看法:“最近几年中国医药行业经历着非常大的变化,这种变化与国家的政策导向相关。以前我们是仿制药大国,很多药物公司主要做仿制药。近年来国家提出科技强国、科技创新以及企业转型升级,这一系列的政策变化对生物药行业的影响非常明显。” 第一,总的趋势是围绕国家政策导向,在整个医药行业更强调创新,创造更有价值的创新药,向高质量发展的方向推进。 第二,由于国家政策导向,引起资本的大规模介入,使得早期生物医药的创新创业态势火热。另外,国家也建立了各种资本市场的通道,使生物医药公司能够在更大的资本平台上获得支持,支持自有产品和技术开发。最终,更多的创新平台、创新技术进入市场创造价值。在这样的环境下,主要是围绕如何快速地创造医疗领域需要的创新产品,给患者带来显著治疗效果、安全效果甚至治疗的可持续性等,这是结果导向。 第三,创新层次和范围是多元化的,那么药物的形态也越来越多。早期的重点是化学药,近几年除了小分子化学药物以外,各种各样的生物制药、单抗、双抗、细胞治疗、基因治疗、疫苗等,药物创新的方向变得越来越多。尤其是健康中国2030等大的指导方针和原则下,整个领域创新团队的组建可能从疾病治疗转向疾病防御,这方面也需更多同仁的努力。 第四,走向国际化。中国早期好多年都主要做仿制药,随着近几年创新药的投入和积极参与,不仅仅是创业者,包括高校和学术机构也逐渐参与进来,将他们的基础研究产业化,形成了庞大的创新浪潮,这些创新不仅走向中国,还将走向全球。 紧抓机遇:围绕两大核心 发展横向技术在中国创新药发展的大背景下,成都先导未来的发展也将以上述四大方向发展:主要围绕国家政策导向、从患者的切实需求出发,提升创新能力不断推陈出新,打造国际化能力。 李进博士强调:“对于成都先导而言,我们在未来的发展围绕以底层基础驱动来推动小分子核酸药物的创新,注重临床前发现或优化。” 第一,强化夯实提升两大主要核心技术平台,即DNA编码小分子化合物库的设计和筛选和Vernalis公司的分子片段和三维结构信息的药物设计(FBDD/SBDD),通过不断强化两大领先技术平台,夯实成都先导的领先地位。 第二,扩大应用技术,将应用于更多的合作伙伴的新药研发项目,不断完善自有的新药项目,包括临床前项目和推动临床阶段的项目。 第三,继续扩大已经建立的全球和中国的合作伙伴,将上述几点结合不断发展。 李进博士总结道:“未来3-5年,除了围绕核心技术之外,不断注重横向技术的发展空间,例如开发蛋白降解技术,强化和优化小分子核酸药等,围绕这个平台提升竞争力。最近几年基于IT领域的AI、机器学习等也不断应用于药物发现与优化,我们也会不断吸收新的发展方向,结合我们的内部能力,把这些新技术融合在我们的分子发现、分子优化等整个技术平台上。” 最后,李进博士展望了成都先导未来3-5年的发展规划: 第一,继续夯实、完善、提升、强化新药发现与优化平台,不断深化和提升两大基础平台;同时横向发展开发一些新的技术应用,比如强化蛋白质降解、小分子核酸药技术,围绕上述平台提升竞争力、有效率。 第二,建立越来越完善的质量价值观和自主研发药物的管线,包括临床前、临床后、临床阶段。 第三,不断扩大全球合作伙伴。成都先导现有200余家合作伙伴,希望未来3-5年能够翻翻甚至更多,构建覆盖面更宽、更深厚的业务合作伙伴基础。 第四,作为上市公司,成都先导要加强资本对接能力,把资本用好,来促进企业更快更高效的发展。 参考知识:DEL+ FBDD+ SBDD2013 年,葛兰素史克开启可溶性环氧化物水解酶抑制剂 GSK2256294 首次临床试验研究,这也是首个由DNA编码化合物技术发现并进入临床试验的小分子化合物。随后,DNA 编码化合物技术逐渐成为新药筛选的焦点之一。 图4:DNA 编码化合物技术筛选原理 DNA 编码化合物技术筛选的原理和优势是什么?“很多疾病的靶点是蛋白,我们要做的是针对这个靶点找到一个新的分子来和它产生作用。假设一个化合物分子有 A、B、C 三个部分,这三个部分形成一个三维结构。用 DNA 序列将不同的分子打上‘标签’,再把这些标记后的分子与靶点进行混合,能与靶点匹配的分子就是我们要筛选的分子,通过读取 DNA 序列信息就能找到它们,这就是DNA 编码化合物技术的筛选方式。DNA 编码化合物技术在分子的设计上是一般没有目的性的,所以可以进行大规模的化合物筛选。相较于传统高通量筛选技术是从几百万种不同的分子形状和属性中进行筛选,DNA 编码化合物技术可以从几千亿甚至上万亿的分子中进行筛选。选择范围变宽,但筛选成本和时间并没有增加,这本身就是一种进步。” DEL筛选技术有两个优势:第一,把以前难成药的靶点变成可成药的靶点,这意味着一些以前没有办法治疗的疾病可能有新的治疗机会。 第二,对于传统成药的靶点,这项技术可能会在更短的时间内更高效的找到新的分子,推动新药进入临床。我们 3-6 个月就能完成筛选,而传统筛选技术可能需要 9-18 个月。” 此外,DNA 编码化合物库技术还可以做一定程度的分子优化。 基于分子片段和结构的筛选方法(FBDD/SBDD)与 DNA 编码化合物技术 (DEL) 原理恰恰相反。DNA 编码化合物技术筛选的是一个完整的分子,但基于分子片段或结构的筛选方式利用的是分子的某一个片段或结构来进行筛选。靶点上有‘结合口袋’,空间上是一个凹凸的形状,像一个一个洞。利用 DNA 编码化合物技术筛选时,一整个分子与‘结合口袋’完全匹配才能结合在一起;而利用基于分子片段或结构的技术进行筛选时,只需要分子的一部分与‘结合口袋’能匹配就可以。当筛选出可以与靶点结合的分子片段时,可以在此片段基础上增加结构,一步一步延伸最终形成一个可以与靶点完全匹配的完整分子。” “DNA 编码化合物库是先把各种可以想象的形状都准备好,让这些不同形状一个个去匹配靶点,这样筛选出来的分子与靶点的亲和力会更高一些。但即使我们做到几千亿、上万亿的分子,它仍然代表不了所有可以穷尽的分子形状和空间形态。在这种情况下,从基础的小切块甚至是分子片段做起,再一步步累积成适合的分子,也是另一种方法。” “从药物发现角度来看,这三种技术都是互补的。针对一个靶点,如果通过 DNA 编码化合物技术筛选了整个库之后依旧没找到适合的分子,可以通过分子片段或结构再去寻找可以和这个靶点结合的片段或结构,在此基础上进行延伸,并重建一个库,快速找到更好的分子。” “从分子优化的角度来看,这三种技术也是互补的。基于分子片段和结构的筛选方式必须要获得结构化信息,就是这个分子片段是如何与靶点结合在一起的。这个信息对于下游的优化起到了非常强的指导作用,能帮助更好地设计下一代分子。” 岛津企业管理(中国)有限公司作为成都先导药物开发股份有限公司全方位的战略合作伙伴,目前已与成都先导在核酸化学合成的质量及表征方面开展了系列合作,我们期待在此基础上,不断巩固和完善双方的合作成果,让此技术服务于更广阔的客户。核酸药物研发平台(部分)
  • 分子细胞卓越中心等开发出首个DNA损伤修复测序数据资源库
    近日,《核酸研究》(Nucleic Acids Research)在线发表了中国科学院分子细胞科学卓越创新中心吴薇研究组与广州国家实验室完成的最新合作研究成果(DNA Damage Atlas:an atlas of DNA damage and repair)。该研究整合开发了首个DNA损伤修复高通量测序数据的数据资源库(DNA Damage Atlas,DDA)。DNA损伤在细胞正常生命代谢活动中时有发生,发生损伤后如不能及时修复或修复时发生错误,易形成体细胞突变和结构变异,引起肿瘤等重大疾病。为研究DNA损伤修复过程,科研人员开发了多项用于直接或间接检测DNA损伤和修复过程的高通量测序技术。然而,随着各种测序技术所产生数据的快速累积,如何进行统一的标准化分析并整合以供研究使用是亟需解决的问题。DDA收录了来自262个数据集的6030个样本数据,涵盖了针对不同DNA损伤类型的59种测序技术。基于对数据进行质控、回贴等标准化处理,DDA进一步鉴定了DNA损伤修复热点(hotspots),并其特征展开一系列下游分析。高度重复序列端粒和核糖体DNA(ribosomal DNA,rDNA)是DNA损伤的热点,但既往研究中,因分析困难而在测序数据分析中被忽视。因此,DDA专门构建了新的分析流程,挖掘端粒和rDNA区域的损伤修复信号。DDA作为大规模、高质量的DNA损伤修复数据库,为DNA损伤修复分子机制研究提供了资源平台,有助于剖析疾病中突变发生机理和挖掘治疗靶点。研究工作得到国家重点研发计划、上海市市级科技重大专项和广州国家实验室的支持。 DDA构建流程和功能展示
  • 贝克曼库尔特与美谷分子共同举办工业微生物高通量筛选用户研讨会
    p   工业微生物,是科学研究与工业生产之间的桥梁 高通量筛选技术则是快速建造这个桥梁的现代化技术,是科研成果转化的酶促剂。近年来, 随着工业微生物技术的爆炸式发展,生物制品的广泛应用,单克隆抗体研究的不断深入,高通量筛选技术的应用也越来越广泛,日益成为行业研发的好帮手。为向行业内众多高端用户提供相关的技术交流平台,6月29日下午,贝克曼库尔特联合美谷分子共同在京成功举办了“2017年第一届工业微生物高通量筛选VIP用户研讨会”,希望可以在工业微生物科学研究和工业生产之间搭建一个产业合作交流的平台,实现产、研一体发展。研讨会现场的参加人数大大超过预期,会议更是凡响热烈,让与会者留下深刻印象。 /p p   此次会议,我们特邀了多位工业微生物及相关应用领域的知名专家学者做了精彩的学术报告,与大家分享了最新的研究成果。 /p p   会议由中科院微生物所公共技术服务中心副主任罗元明博士主持,贝克曼库尔特公司中国区销售总监吴应光博士作了欢迎致辞。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/fbcd6f84-b30d-4eaf-94d1-e5b8cf5a6fb8.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/f435c6ff-8eed-4d8a-a752-12e6d4afe9b6.jpg" title=" 20170706_3_副本.jpg" / /p p   会上,著名的微生物研究领域专家,华东理工大学的张立新教授首先为大家做了题为“阿维菌素的高效中国智造”的报告,报告主要以高产量阿维菌素的筛选历程、方法和现实意义为例子,介绍了微生物筛选研究中微生物资源的选择、筛选路径和方法的优化,以及目的菌株的高产量改造方法等内容,为大家进行高效微生物筛选研究工作提供了新的研究思路。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/f8ed7033-59f3-4c7e-8755-32bc5b5630c0.jpg" title=" 20170706_4_副本.jpg" / /p p   随后,来自弘业新创抗体技术股份有限公司的副总经理兼技术总监王祥斌博士具体介绍了“QPix系统在噬菌体展示抗体库初级筛选的应用”。王博士结合自己多年的抗体研发经验,从抗体药物发现、抗体筛选、优化到分子转化等做了详细的分享。随后,王博士还结合真实案例,详细介绍了抗体库技术在抗体药物研发中的具体应用。王博士表示,弘业新创正是靠着“团结、拼搏、创新”的精神,立足抗体发现技术平台,开发治疗肿瘤抗体药物,并提供技术外包服务等。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/62251eec-381e-4db7-a1ac-cd154f0f96e4.jpg" title=" 20170706_5_副本.jpg" / /p p   工业微生物的应用是非常广泛的,前面张教授和王博士分别从抗生素药物和抗体药物方向与我们分享了相关经验。短暂休息过后,来自中粮营养健康研究院的陈博主任则从食品方向与我们共同探讨:高通量筛选技术在粮油食品研发中的应用。陈主任指出,中粮研究院秉承“立足生命科学、致力营养健康,服务产业链、研发好产品,提升人们的生活品质”的使命,于2014年建立生物技术中心高通量筛选平台以来,已经与多个科研机构、学校课题组合作,取得不错的成果。紧接着,陈主任详细介绍了他们是如何利用高通量筛选平台完成微生物组研究、替抗添加剂开发和菌株抗逆性改造。陈主任还专门展示出一张幻灯片指出,高通量筛选平台建立后,不论从实验准备、实验通量、时间、人力、物力等各方面,相比人工操作都有质的提高,大大加快了项目进程和质量。  /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/dd9c326a-7cb2-43b0-afe8-7132e58bfb05.jpg" style=" " title=" 20170706_6_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/63ac6913-fea5-4a65-920b-996439580897.jpg" title=" 20170706_7_副本.jpg" / /p p   最后,来自诺和诺德(中国)研究发展中心的应用科学家刘伟和大家分享“高通量克隆表达在蛋白药物研究中的应用”的经验和体会。刘伟不仅详细介绍了NNRCC蛋白库的构建:从基因表达、核酸提取、蛋白表达到筛选的全流程,还提到了样本的储藏、数据管理和报告等。另外,刘伟也表示,自从2015年使用自动化工作站Biomek FXp之后,蛋白生产力每年几乎成倍增长。同时,在应用过程中,自动化液体工作站Biomek与克隆挑选系统QPix完美搭配,使工作效率大大提高。 /p p    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/caad8ea8-0409-415f-ab5a-597d93ba33f0.jpg" title=" 20170706_8_副本.jpg" / /p p   整个会议期间,与会听众兴致勃勃,踊跃提问。演讲嘉宾一一做了解答,分享各自的经验体会,会议气氛热烈,互动频繁。 /p p   作为丹纳赫集团旗下的两家全球知名的生命科学仪器公司,贝克曼库尔特和美谷分子在工业微生物研发领域有着成熟互补的应用技术,为众多用户提供各类定制的解决方案,满足客户的各类需求。会后,应多位参会客户的强烈要求,次日主办方又安排了相关仪器参观介绍活动,近距离实地观看和体验了实验室自动化工作站的运行以及对实验流程的整合,为繁重和重复的实验工作带来的便利和高效。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/81253e9c-7c39-4a71-94fb-e00d2adcbb71.jpg" title=" 20170706_9_副本.jpg" / /p p br/ /p
  • 巡检用户超100家!丹纳赫集团携子品牌思拓凡、SCIEX、美谷分子、贝克曼库尔特生命科学等参与第四届客户关怀季
    2024年3月开始,仪器信息网品牌合作伙伴公益活动——第四届客户关怀季全面开启。27家品牌合作伙伴的厂商为近600家用户单位,提供免费的上门或线上巡检服务。本届客户关怀季,还组织了12场售后服务直播活动,28位品牌工程师与上万名仪器用户在线交流,梳理仪器故障排查方法,传授仪器维护保养技能( 点击回看 )。丹纳赫深知,在这个快速变化的时代,专业的售后服务是企业持续发展的生命线。本次活动,丹纳赫携旗下五大知名品牌思拓凡(Cytiva)、贝克曼库尔特生命科学、美谷分子、艾杰尔飞诺美、SCIEX积极响应号召,为100余家用户单位等派遣经过严格培训的工程师团队亲临客户现场,从精密的生命科学研究仪器到高效的临床诊断设备,进行全方位的维护与巡检。确保每一台仪器能发挥出最佳性能,为科研探索和临床实践提供最坚实的支持。这不仅仅是一场服务的盛宴,更是一次科技与温情的交响曲,通过专业、细致的上门巡检服务,为客户架起一座坚固的信任桥梁。SCIEX:内外兼“修”、成就你我,让质谱和CE改变每个人的生活客户关怀季巡检期间,SCIEX对25家客户的27台仪器进行了现场巡访,另外对6家客户进行了线上巡检。SCIEX不仅派出了经验丰富的工程师团队亲临用户现场,还充分利用这一机会,展开了全方位、深层次的客户关怀行动,包括主机销售,服务产品销售,售后服务经理等在内的34人参加了此次活动。工程师们从仪器使用环境、硬件系统、软件及数据系统、仪器性能等各个维度对质谱或毛细管电泳仪进行了全面的检查和维护。与此同时,他们与用户进行了深入沟通,详细了解每台仪器的应用场景,并给出相关建议,精准高效地服务于科研与生产一线,真正改变我们每个人的生活。SCIEX走进苏州博腾生物制药有限公司上门巡检SCIEX走进东南大学上门巡检SCIEX走进海南大学上门巡检SCIEX走进重庆仕益检测上门巡检思拓凡(Cytiva):加速生命科学创新思拓凡(Cytiva),作为生物工艺解决方案的领导者,在客户关怀季中通过细致的设备检查与维护,帮助客户减少仪器使用过程中的不确定因素,让科学家们能够更专注于创新突破,共同推进生物医药的前沿发展。本次客户关怀季活动中,思拓凡(Cytiva)有近10名资深工程师前往了客户现场19家,查看维护设备22台。在设备巡检过程中,工程师均按照标准服务流程,与客户联系沟通,预约上门,对设备进行基本状况检查,查看模块的关键数据指标,并根据设备检查的实际情况,写下专业和有针对性的工程师建议表交给客户,同时在现场也对客户进行了基本的设备维护培训,日常注意事项说明和产品服务介绍等工作,为客户能顺利高效进行研发生产工作提供了助力。思拓凡工程师巡检现场贝克曼库尔特生命科学:精准守护健康贝克曼库尔特生命科学的专业服务团队对研究所的仪器设备进行了精心的检查和全面的评估。他们首先对每台仪器的硬件和软件进行了逐一检查,包括检查设备的外观是否完好,各部件是否牢固连接,以及软件版本是否更新至最新。随后,团队对仪器的性能进行了细致的评估,包括仪器的精确度、稳定性、响应速度等方面的测试。同时,他们还根据每台仪器的实际使用情况和客户的需求,提供了个性化的性能优化建议,帮助客户充分发挥仪器的潜力,提高实验效率和数据质量。贝克曼库尔特生命科学走进北京生物制品研究所上门巡检美谷分子:品质源于细节美谷分子,专注于分子生物学与生物制药的技术革新,在客户关怀季中工程师上门服务用实力与专业确保客户的每一套设备都能达到高标准,无论是基础研究还是复杂工艺,美谷分子都将与客户并肩作战,为科研成果的转化保驾护航。美谷分子走进浙江大学国际科创中心上门巡检在这个充满生机的季节,丹纳赫集团与仪器信息网携手通过第四届客户关怀季,用科技的温度温暖每一个生命科学领域。我们期待每一次上门巡检都能成为一次心与心的交流,让科技的力量真正惠及每一个人。让我们一同见证在科技的浪潮中,丹纳赫集团用心服务,共筑未来!【关于客户关怀季】自2021年起,仪器信息网携手30家品牌合作伙伴发起了“客户关怀月”这一公益活动,致力于通过实际行动向用户传递真诚的关怀,切实解决他们面临的问题。在过去的三届活动中,我们与30家品牌合作伙伴的上百位工程师共同为数万用户提供了专业的售后直播服务,超过6000+用户参与了报名,并已为1000+家用户提供了巡检服务。【关于仪器信息网“品牌合作伙伴”】仪器信息网品牌合作伙伴项目自2006年成立以来,始终致力于为行业传递正能量,引领行业健康快速发展。在市场竞争日益激烈的今天,国家对科学仪器行业的重视程度不断提升,科学仪器的发展态势激流勇进。在这个大背景下,仪器信息网再次携手30家品牌合作伙伴,共同承诺持续为用户提供优质的产品和服务。我们倾力打造用户和企业交流的平台,促进多方互利共赢。通过不断创新和完善服务,我们致力于为用户提供更加全面、专业的支持和帮助,满足用户在科研、教育、工业生产等领域的多样化需求。
  • 盘点:分子诊断常用技术50年的沿革与进步
    一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初的技术储备。  (一)DNA印迹技术(Southernblot)  Southern于1975年发明了DNA印迹技术,通过限制性内切酶将DNA片段化,再以凝胶电泳将长度不等的DNA片段进行分离,通过虹吸或电压转印至醋酸纤维膜上,再使膜上的DNA变性与核素标记的寡核苷酸探针进行分子杂交,经洗脱后以放射自显影鉴别待测的DNA片段-探针间的同源序列。这一方法由于同时具备DNA片段酶切与分子探针杂交,保证了检测的特异性。因此,一经推出后便成为探针杂交领域最为经典的分子检测方法,广为运用于各种基因突变,如缺失、插入、易位等,及与限制性酶切片段长度多态性(restrictionfragment length polymorphism,RFLP)的鉴定中。Alwine等于1977年推出基于转印杂交的Northernblot技术也同样成为当时检测RNA的金标准。  (二)ASO反向斑点杂交(allele-specificoligonucleotide reverse dot blot,ASO-RDB)  使用核酸印迹技术进行核酸序列的杂交检测具有极高的特异性,但存在操作极为繁琐,检测时间长的缺点。1980年建立的样本斑点点样固定技术则摆脱了传统DNA印迹需要通过凝胶分离技术进行样本固定的缺点。通过在质粒载体导入单碱基突变的方法,构建了首条等位基因特异性寡核苷酸探针(allele-specificoligonucleotide,ASO),更使对核酸序列点突变的检测成为可能。1986年,Saiki[3]首次将PCR的高灵敏度与ASO斑点杂交的高特异性结合起来,实现了利用ASO探针对特定基因多态性进行分型。其后为了完成对同一样本的多个分子标记进行高通量检测,Saiki[4]又发明了ASO-RDB,通过将生物素标记的特异性PCR扩增产物与固定于膜上的探针杂交显色,进行基因分型、基因突变的检测。该法可将多种寡核苷酸探针固定于同一膜条上,只需通过1次杂交反应,即可筛查待检样本DNA的数十乃至数百种等位基因,具有操作简单、快速的特点,一度成为基因突变检测、基因分型与病原体筛选最为常用的技术。  (三)荧光原位杂交(fluorescencein situ hybridization,FISH)  FISH源于以核素标记的原位杂交技术,1977年Rudkin首次使用荧光素标记探针完成了原位杂交的尝试。在上世纪8090年代,细胞遗传学和非同位素标记技术的发展将FISH推向临床诊断的实践应用。相比于其它仅针对核酸序列进行检测的分子诊断技术,FISH结合了探针的高度特异性与组织学定位的优势,可检测定位完整细胞或经分离的染色体中特定的正常或异常DNA序列 由于使用高能量荧光素标记的DNA探针,可实现多种荧光素标记同时检测数个靶点。  如今,FISH已在染色体核型分析,基因扩增、 基因重排、病原微生物鉴定等多方面中得到广泛应用。通过比较基因组杂交(comparativegenomic hybridization,CGH)与光谱核型分析(spectralkaryotyping,SKY)等FISH衍生技术,使其正在越来越多的临床诊断领域中发挥作用。  (四)多重连接探针扩增技术(multiplexligation-dependent probe amplification,MLPA)  MLPA技术于2002年由Schouten等[6]首先报道。每个MLPA探针包括2个荧光标记的寡核苷酸片段,1个由化学合成,1个由M13噬菌体衍生法制备 每个探针都包括1段引物序列和1段特异性序列。在MLPA反应中,2个寡核苷酸片段都与靶序列进行杂交,再使用连接酶连接2部分探针。连接反应高度特异,只有当2个探针与靶序列完全杂交,连接酶才能将2段探针连接成1条完整的核酸单链 反之,如果靶序列与探针序列不完全互补,即使只有1个碱基的差别,就会导至杂交不完全,使连接反应无法进行。连接反应完成后,用1对荧光标记的通用引物扩增连接好的探针,每个探针扩增产的长度都是唯一的。最后,通过毛细管电泳分离扩增产物,便可对把核酸序列进行检测。由于巧妙地借鉴了扩增探针的原理,MLPA技术最多可在1次反应中对45个靶序列的拷贝数进行鉴定。  该技术具备探针连接反应的特异性与多重扩增探针杂交的高通量特性。经过MRC-Holland公司10余年的发展,MLPA技术已成为涵盖各种遗传性疾病诊断、药物基因学多遗传位点鉴定、肿瘤相关基因突变谱筛查、DNA甲基化程度定量等综合分子诊断体系,是目前临床最为常用的高通量对已知序列变异、基因拷贝数变异进行检测的方法。  (五)生物芯片  1991年Affymetrix公司的Fordor[7]利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列(microarray)的杂交芯片与基于微流控(microfluidic)的反应芯片2种。  1.微阵列芯片  (1)固相芯片:微阵列基因组DNA分析(microarray-basedgenomic DNA profiling,MGDP)芯片:将微阵列技术应用于MGDP检测中已有超过十年的历史,其技术平台主要分为2类,即微阵列比较基因组杂交(array-basedcomparative genome hybridization,aCGH)和基因型杂交阵列(SNParray)。顾名思义,aCGH芯片使用待测DNA与参比DNA的双色比对来显示两者间的拷贝数变异(CNV)的变化,而单核苷酸多态性(singlenucleotide polymorphism,SNP)芯片则无需与参比DNA进行比较,直接通过杂交信号强度显示待测DNA中的SNP信息。随着技术的不断进步,目前市场上已出现可同时检测SNP与CNV的高分辨率混合基因阵列芯片。MGDP芯片主要应用于发育迟缓、先天性异常畸形等儿童遗传病的辅助诊断及产前筛查。经验证,使用MGDP芯片进行染色体不平衡检测与FISH的诊断符合率可达100%,表达谱芯片(geneexpression profiling array,GEParray):1999年,Duggan等首次使用cDNA芯片绘制了mRNA表达谱信息。随着表观遗传学在疾病发生发展中的作用日益得到重视,目前也已出现microRNA芯片、长链非编码RNA(longnoncoding RNA,lncRNA)芯片等。类似于MGDP芯片,GEP芯片使用反转录后生成的cDNA文库与固定于芯片载体上的核酸探针进行杂交,从而检测杂交荧光信号的强度判断基因的表达情况。  相较于基因组杂交,GEP芯片对生物学意义更为重要的转录组信息进行检测,对疾病的诊断与预后判断具有特殊的意义。目前使用GEP芯片对急性髓细胞白血病、骨髓增生异常综合征等血液病及神经退行性变等进行诊断、分类及预后评估已经获得了令人满意的效果   (2)液相芯片:传统固相芯片将检测探针锚定于固相载体上捕获目的序列,而Luminex公司的xMAP技术则通过搭配不同比例的2种红色荧光染料,将聚苯乙烯微球标记为不同的荧光色,并对其进行编码得到具有上百种荧光编号的微球。通过xTAG技术将不同的特异性杂交探针交联至编码微球上,使得不同的探针能够通过微球编码得以区分。利用混合后的探针-微球复合物与待测样本进行杂交,使微球在流动鞘液的带动下通过红绿双色流式细胞仪,其中红色激光检测微球编码,绿色荧光检测经杂交后核酸探针上荧光报告基团的信号强度,一次完成对单个样本中多种靶序列的同时鉴定。目前,该技术已在囊性纤维化等遗传性疾病诊断、多种呼吸道病毒鉴定及人乳头瘤病毒分型取得了广泛的应用。  2.微流控芯片  1992年Harrison等首次提出了将毛细管电泳与进样设备整合到固相玻璃载体上构建“微全分析系统”的构想,通过分析设备的微型化与集成化,完成传统分析实验室向芯片上实验室(lab-on-chip)的转变。微流控芯片(microfluidicchip)由微米级流体的管道、反应器等元件构成,与宏观尺寸的分析装置相比,其结构极大地增加了流体环境的面积/体积比,以最大限度利用液体与物体表面有关的包括层流效应、毛细效应、快速热传导和扩散效应在内的特殊性能,从而在1张芯片上完成样品进样、预处理、分子生物学反应、检测等系列实验过程。  目前使用微流控芯片进行指导用药的多基因位点平行检测是主要临床应用领域。  二、核酸序列测定  测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。  (一)第1代测序  1975年Sanger与Coulson发表了使用加减法进行DNA序列测定的方法,随后Maxam在1977年提出了化学修饰降解法的模型,为核酸测序时代的来临拉开了序幕。  Sanger等于同年提出的末端终止法(Sanger测序法)利用2' 与3' 不含羟基的双脱氧核苷三磷酸(ddNTP)进行测序引物延伸反应,ddNTP在DNA合成反应中不能形成磷酸二酯键,DNA合成反应便会终止。如果分别在4个独立的DNA合成反应体系中加入经核素标记的特定ddNTP,则可在合成反应后对产物进行聚丙烯酰胺凝胶电泳(polyacrylamidegel electrophoresis,PAGE)及放射自显影,根据电泳条带确定待测分子的核苷酸序列。AppiedBiosystems公司在Sanger法的基础上,于1986年推出了首台商业化DNA测序仪PRISM 370A,并以荧光信号接收和计算机信号分析代替了核素标记和放射自显影检测体系。该公司于1995年推出的首台毛细管电泳测序仪PRISM 310更是使测序的通量大大提高。Sanger测序是最为经典的一代测序技术,仍是目前获取核酸序列最为常用的方法。  (二)第2代测序  1.焦磷酸测序(Pyro-sequencing)  不同于Sanger测序法所使用的合成后测序理念,Ronaghi分别于1996年与1998年提出了在固相与液相载体中通过边合成边测序的方法-焦磷酸测序。其基本原理是利用引物链延伸时所释放的焦磷酸基团激发荧光,通过峰值高低判断与其相匹配的碱基数量。由于使用了实时荧光监测的概念,焦磷酸测序实现了对特定位点碱基负荷比例的定量,因此在SNP位点检测、等位基因(突变)频率测定、细菌和病毒分型检测方面应用广泛。由于荧光报告原理不同,其对于序列变异的检测灵敏度从Sanger测序的20%提高到了5%。但由于该技术的仪器采购与单次检测成本较高,目前尚未得到大规模的临床使用。  2.高通量第2代测序  目前常见的高通量第二代测序平台主要有Roche454、IlluminaSolexa、ABISOLiD和LifeIon Torrent等,其均为通过DNA片段化构建DNA文库、文库与载体交联进行扩增、在载体面上进行边合成边测序反应,使得第1代测序中最高基于96孔板的平行通量扩大至载体上百万级的平行反应,完成对海量数据的高通量检测。该技术可以对基因组、转录组等进行真正的组学检测,在指导疾病分子靶向治疗、绘制药物基因组图谱指导个体化用药、感染性疾病的病原微生物宏基因组鉴定及通过母体中胎儿DNA信息进行产前诊断等方面已经取得了喜人的成绩。然而,由于该技术需要对DNA进行片段化处理,测序反应读长较短(如Solexa与SOLiD系统单次读长仅50bp),需要对数据进行大规模拼接,因此对分子诊断工作者掌握生物信息学知识提出了更高要求,以利于后期的测序数据分析。  (三)第3代测序  第3代测序技术的核心理念是以单分子为目标的边合成边测序。该技术的操作平台目前主要有Helicos公司的Heliscope、PacificBiosciences公司的SMRT和OxfordNanopore Technologies公司的纳米孔技术等。该技术进一步降低了成本,可对混杂的基因物质进行单分子检测,故对SNP、CNV的鉴定更具功效。但是目前其进入产品商业化,并最终投入临床应用仍有很长的距离。  三、基于分子构象的分子诊断技术  (一)变性梯度凝胶电泳(denaturinggradient gel electrophoresis,DGGE)与单链构象多态性(singlestrand conformation polymorphism,SSCP)  1970~1980年间,Fischer等与Orita等分别提出了利用核酸序列变异所导至双链变性条件差异与单链空间折叠差异,通过变性与非变性PAGE对变异序列进行分离鉴定的方法,即DGGE与SSCP。上述2项技术均通过变异核酸分子在空间构象上的差异,通过特定条件下电泳速率的变化进行检测。正因为核酸分子构象具有序列特异性,且对于序列的改变非常敏感,常常1个碱基的变化也能得到鉴定。但由于DGGE与SSCP均必须进行PCR后开盖电泳的操作,现已不常见于临床检测。  (二)变性高效液相色谱(denaturinghigh-performance liquid chromatography,dHPLC)  1997年,Oefner和Underhill建立了利用异源双链变性分离变异序列、使用色谱洗脱鉴定的技术,称为dHPLC,可自动检测单碱基置换及小片段核苷酸的插入或缺失。对于存在一定比例变异序列的核酸双链混合物,其经过变性和复性过程后,体系内将出现2种双链:一种为同源双链,由野生正义链-野生反义链或变异正义链-变异反义链构成的核酸双链 另一种为异源双链,即双链中1条单链为野生型,而另1条为变异型。由于存在部分碱基错配的异源双链DNA与同源双链DNA的解链特征不同,在相同的部分变性条件下,异源双链因存在错配区而更易变性,被色谱柱保留的时间短于同源双链,故先被洗脱下来,从而在色谱图中表现为双峰或多峰的洗脱曲线。由于该技术使用了较高分析灵敏度的色谱技术进行检测,可快速检出5%负荷的变异序列。但需注意的是,由于该技术主要通过异源双链进行序列变异检测,其不能明显区分野生型与变异型的纯合子。  (三)高分辨率熔解分析(high-resolutionmelting analysis,HRMA)  2003年,Wittwer等首次革命性地使用过饱和荧光染料将PCR产物全长进行荧光被动标记,再通过简单的产物熔解分析对单个碱基变化进行鉴定。该技术的原理也是通过异源双链进行序列变异鉴定。待测样本经PCR扩增后,若存在序列变异杂合子,则形成异源双链,其熔解温度大大下降。此时由于双链被饱和染料完全填充,其产物熔解温度的变化便可通过熔解曲线的差异得以判定。对于变异纯合子而言,HRMA也可利用其较高的分辨率完成PCR产物单个位点A:T双键配对与G:C三建配对热稳定性差异的鉴定,但是对于Ⅱ、Ⅲ类SNP的纯合子变异则无法有效区分。  如何利用DNA构象对序列进行推测,从而避免成本较高的序列测定或操作繁琐的杂交反应一直是分子生物学研究与应用的热点问题。目前,使用构象变化对序列变异进行间接检测的便捷性已得到一致肯定,尤其是HRMA可完成对变异序列单次闭管的扩增检测反应。但需要注意的是,由于基于构象变化的分子检测手段多无法通过探针杂交或核酸序列测定对检测的特异性进行严格的保证,因此其只适合大规模的初筛,而真正的确诊仍需要进行杂交或测序的验证。  四、定量PCR(quantitativePCR,qPCR)  相比于其他分子诊断检测技术,qPCR具有2项优势,即核酸扩增和检测在同一个封闭体系中通过荧光信号进行,杜绝了PCR后开盖处理所带来扩增产物的污染 同时通过动态监测荧光信号,可对低拷贝模板进行定量。正是由于上述技术优势,qPCR已经成为目前临床基因扩增实验室接受程度最高的技术,在各类病毒、细菌等病原微生物的鉴定和基因定量检测、基因多态性分型、基因突变筛查、基因表达水平监控等多种临床实践中得到大量应用。但伴随着qPCR技术的迅猛发展,有关这项技术的质量管理问题也日益突出,如何消除各类生物学变量所引起的检测变异,减少或抑制实验操作与方法学中的各种干扰因素是qPCR技术面临的难题。  (一)实时荧光定量PCR(real-timePCR)  1.双链掺入法  1992年Higuchi等通过在PCR反应液中掺入溴乙锭对每个核酸扩增热循环后的荧光强度进行测定,提出了使用荧光强度与热循环数所绘制的核酸扩增曲线,定量反应体系中初始模板的反应动力学(real-timePCR)模型,开创了通过实时闭管检测荧光信号进行核酸定量的方法。核酸染料可以嵌入DNA双链,且只有嵌入双链时才释放荧光,在每1次的扩增循环后检测反应管的荧光强度,绘制荧光强度-热循环数的S形核酸扩增曲线,以荧光阈值与扩增曲线的交点在扩增循环数轴上的投影作为循环阈值(Cyclethreshold,Ct),则Ct与反应体系中所含初始模板数量呈负指数关系,推断初始模板量。随后Morrison[22]提出了使用高灵敏度的双链染料SYBR GreenI进行反应体系中低拷贝模板定量的方法。这一方法操作简便,但由于仅使用扩增引物的序列启动核酸扩增,其产物特异性无法得到充分保证。虽然在实时荧光定量PCR反应后可通过熔解曲线对产物特异性进行检验,但其特异性明显逊于使用荧光探针进行检测,因此双链掺入法并未在临床实践中得到认可。  2.Taqman探针  由于双链掺入法存在特异性较低的问题,1996年Heid[23]综合之前发现的Taq酶的5' 核酸酶活性与荧光共振能量转移(fluorescenceresonance energy transfer,FRET)探针的概念提出了使用Taqman探针进行qPCR的方法。TaqMan探针的本质是FRET寡核苷酸探针,在探针的5' 端标记荧光报告基团,3' 端标记荧光淬灭基团,利用Taq酶具有5' 3' 外切酶活性,在PCR过程中水解与靶序列结合的寡核苷酸探针,使荧光基团得以游离,释放荧光信号。从而使能够与靶序列杂交的探针在扩增过程中释放荧光,通过real-timePCR的原理对其进行定量。由于其超高的特异性与成功的商品化推广,Taqman探针已经成为目前临床使用最为广泛的qPCR方法,其在各种病毒基因定量检测、基因分型、肿瘤相关基因表达检测等方面具有着不可替代的地位。  3.分子信标  同样在1996年,Tyagi等提出了使用分子信标(moleuclarbeacons)进行qPCR的方法,分子信标是5' 与3' 端分别标记有荧光报告基团与淬灭基团的寡核苷酸探针,其两端具有互补的高GC序列,在qPCR反应液中呈发夹结构,荧光基团与淬灭基团发生荧光共振能量转移(FRET)而保持静息状态。当PCR反应开始后,茎环结构在变性高温条件下打开,释放荧光 在退火过程中,靶序列特异性探针则与模板杂交保持线性,不能与模板杂交的探针则复性为茎环结构而荧光淬灭,通过检测qPCR体系中退火时的荧光信号强度,便可以real-timePCR原理特异性检测体系中的初始模板浓度。相比于Taqman探针,分子信标使用发卡结构使荧光基团与淬灭基团在空间上紧密结合,大大降低了检测的荧光背景,其检测特异性较Taqman探针更高,更适合等位基因的分型检测。  4.双杂交探针  1997年,Wittwer等发表了使用分别标记荧光供体基团与荧光受体基团的2条相邻寡核苷酸探针进行qPCR的方法。双杂交探针所标记的供体基团和受体基团的激发光谱间具有一定重叠,且2条探针与靶核酸的杂交位置应相互邻近。仅当2条探针与靶基因同时杂交时,供体与受体基因得以接近,从而通过FRET发生能量传递,激发荧光信号,荧光信号强度与反应体系中靶序列DNA含量呈正比。由于使用了2条探针进行靶序列杂交,该方法的特异性比传统单探针检测体系得到了极大地提升。  (二)数字PCR  早在上世纪90年代就出现了使用微流控阵列对单次qPCR反应进行分散检测的概念。基于这一理念,Vgelstein与Kinzter于1999年发表了数字PCR(digitalPCR)的方法,对结肠癌患者粪便中的微量K-RAS基因突变进行了定量。相比于传统的qPCR方法,数字PCR的核心是将qPCR反应进行微球乳糜液化,再将乳糜液分散至芯片的微反应孔中,保证每个反应孔中仅存在≤ 1个核酸模板。经过PCR后,对每个微反应孔的荧光信号进行检测,存在靶核酸模板的反应孔会释放荧光信号,没有靶模板的反应孔就没有荧光信号,以此推算出原始溶液中待测核酸的浓度。因此,数字PCR是1种检测反应终点荧光信号进行绝对定量的qPCR反应,而非以模板Ct值进行核酸定量的real-timePCR。  经由Quantalife公司开发(已于2011年被BIO-RAD收购)的微滴式数字PCR是首款商品化的数字PCR检测系统,目前已被广泛运用于微量病原微生物基因检测、低负荷遗传序列鉴定、基因拷贝数变异与单细胞基因表达检测等多个临床前沿领域。与传统qPCR相比较,该技术具有超高的灵敏度与精密度,使其成为目前qPCR领域的新星。  五、对未来5年的展望  半个世纪以来分子诊断的高速发展离不开分子生物学技术日新月异的进步。概而言之,在过去的50年中分子诊断技术取得了三大转化与3项提升:即报告信号检测从放射核素标记向荧光标记转化,操作方法由手工操作向全自动化转化,检测分析通量从单一标志物向高通量多组学联合判断转化 检测灵敏度、精密度、特异性的快速提升。  在未来5年中,我国分子诊断事业将迎来两方面的进步。随着卫生监管部门对分子诊断重要性的认识不断深入与越来越多高学历、高素质人才的进入,分子诊断将会出现理念的革命性进步,高通量技术将更多的进入临床的实际应用中。随着技术的进一步发展,传统针对特定基因异常、病原微生物感染鉴定的方法学,也将在检测的各项分析性能与操作便捷程度上取得长足的进步。对于传统人力与时间成本较高的检测方法学,将出现两极分化的态势,即Southern等经典的检测金标准将得到保留 而ASO-RDB等灵敏度、特异性均不能满足实际临床需求的方法将快速被新型技术所取代。最终,分子诊断也必将一改目前仅仅用于病原微生物基因检测与部分遗传性疾病诊断的局面,形成由肿瘤学、遗传学、微生物学、药物基因组学四足鼎立,快速发展的景象。
  • 一分钟了解岛津热老化塑料红外谱库
    热老化塑料谱库在食品、制药、电子电器、汽车等各个领域,因混入异物而引起的问题不断出现。异物的种类繁多,根据生产线以及使用环境的不同,周边使用的塑料零件会因为随时间降解或热老化而变得脆弱,从而会导致其一部分脱落发生混入。 而FTIR最适合用于分析此类塑料异物,但由于发生热老化或氧化的塑料红外光谱形状与老化前的光谱不同,因此,市售的塑料谱库难以匹配(即使匹配其光谱也似像非像),不易进行有效鉴别、定性。 该热老化塑料谱库收录了加热老化后的塑料红外光谱,对市售谱库难以涵盖的受热变化后的异物及不良品等未知样品的分析十分有效。 特点● 岛津特别制作的谱库,其中收录了静冈县工业技术研究所滨松工业技术支援中心所测量、获取的加热老化塑料IR光谱。● 包括13种常见塑料,未加热以及200℃~400℃热老化的结果。● 数据通过显微透射法测量,但在单次反射ATR测量法的基础上使用LabSolutions IR的高级ATR校正,便能以较高的匹配率进行检索。 适用领域● 各类异物分析-食品、制药、电子电器、汽车、石油化工等领域。● 受托分析等。 电镀零件上的异物分析示例电镀加工品中发现了半透明淡褐色异物。在测量该部分时会形成复杂的红外光谱,直接通过普通聚合物谱库检索无法匹配到相同结果。但通过热老化塑料谱库检索时,可以发现其属于热老化的聚乙烯。 继而可以了解到,该零件的包装用塑料袋脱落碎片附着在零件上,在之后的热处理工序中发生了氧化。 系列产品 紫外光照老化塑料谱库岛津特别制作的谱库,使用岩崎电气株式会社生产的加速老化人工环境气候箱,将照射了紫外光(强度为150 mW/cm2)后样品的红外光谱制作为数据库并进行收录。其中包括14种常见塑料,收录了未照射以及照射了1~550小时紫外线的样品,合计200张以上的光谱。 异物谱库异物谱库是指通过FTIR及EDX测量市政自来水部门以及食品制造商提供的实际异物所得的数据构成的谱库。与只收集纯品的普通谱库不同,该谱库收集了大量实际异物的光谱,因此大幅提升了异物光谱检索的精度。配合热老化塑料谱库,可以高效地分析异物。
  • 贝克曼库尔特全球技术总监获邀在“2008北京粉体周”作演讲
    “2008北京粉体周” 由中国建筑材料联合会、中国建筑材料联合会粉体技术分会、中国国际贸促会建材分会共同主办的,清华大学材料系等协办的“2008北京粉体周”于2008年4月1日在北京清华大学隆重召开,来自国内粉体行业以及美、日、韩、泰、澳、蒙等国的有关专家近300人参加了“国际粉体技术与应用论坛”、“全国粉体产品与设备应用技术交流大会”。 来自美国贝克曼库尔特公司的颗粒特性仪器部门的全球技术总监许人良博士应大会邀请,为大会“微纳米粉体材料”专题作了题为“粉体分析测试中干法分散技术进展”的技术报告,受到出席会议的专家的好评。 贝克曼库尔特公司也参加了同期举行的北京展览馆的 “国际粉体技术装备展”。贝克曼库尔特展示(介绍)了一系列粉体分析测量仪器,为从事粉体技术研究和生产的各界人士提供了全面而完善的解决方案。因此,贝克曼库尔特展位前所介绍的各款新技术分析仪器也获得相当大的关注。 screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300"
  • 北大谢晓亮教授:单分子技术透视生命之谜
    2012和2013年,由北京大学多个研究团队合作完成的世界首个高精度人类男性和女性个人遗传图谱相关论文相继发表于《科学》和《细胞》杂志。这一工作采用的单细胞DNA扩增技术MALBAC,与以前的技术相比,该技术将单细胞全基因组测序的精确度大幅度提高,以至于能够发现个别细胞之间的遗传差异。  MALBAC技术是由北京大学生物动态光学成像中心(BIOPIC)主任、哈佛大学终身教授、美国科学院院士谢晓亮领导的团队发明。他们的工作不仅大大拓展了单细胞基因组学研究技术,而且给现代医学带来了革命性的突破,是“精准医学”的一个最佳范例 。  通过与BIOPIC的汤富酬教授团队、北京大学第三医院院长乔杰团队的合作,2014年下半年,两对携带遗传疾病致病基因的夫妇在MALBAC技术的帮助下成功生下了健康的婴儿。此外,MALBAC技术还正在用于探索针对肿瘤患者的个体化诊断和治疗方案。  2015年7月18日,谢晓亮应邀在“未来论坛”上发表题为“单分子水平上的生命——通往精准医学之路”的演讲,回顾并展望了他在单分子基因组学上的基础研究和生物医学应用的探索之路。  北京大学生命科学院饶毅教授在现场介绍他时说:“谢晓亮的第一个基础研究工作是1998年开展的单分子酶学,他开创了在单分子层面对生命过程的研究。近年他又开始探索在医学上的应用。中国引进现代医学后,在现代药学方面只有少数几个药物作用领域的发现,在现代医学技术上唯一的发明和应用就是谢晓亮和汤富酬、乔杰三个团队合作诞生的‘MALBAC婴儿’。”  中国医学科学院院长曹雪涛认为,谢晓亮的MALBAC技术能够改变整个生物医学,其对未来精准医学的发展和应用的贡献是不可限量的。  “获得终身教授的人很多,但真正能够在人类历史上,特别是科技史上留下印记的科学家非常少见,而谢晓亮将理论和技术结合,用技术解决科学问题,是引领整个科学界发展的真正的一流科学家。”曹雪涛评价说:“他是一个让你无法预知将来还会做出什么创造性工作的科学家。这是一个科学家具有潜在创造力、影响力、引领力的标志。”  以下是根据现场录音和演讲PPT整理的演讲全文,全文已由谢晓亮教授审阅。  女士们、先生们:  我今天的讲座内容跨度会比较大,从物理学到化学、到生物、到医学。  著名的物理学家理查德?费曼(Richard Feynman)曾经说过:“如果要用一句话来描述我们拥有的最重要的科学知识,这句话应该是:所有物质都是原子组成。”原子在宇宙中比比皆是,但是如果只有独立的原子,我们的世界会变得非常无趣,没有生命、没有爱。原子间的相互作用导致分子的产生,分子们进行化学反应,产生新的分子,这才有了生命。  那么如果要用一句话来形容过去半个多世纪生命科学的主要进展,这句话应该是什么?我想应该是:生命过程可以在分子水平上得到解释。  单分子成像技术开启研究生涯  我在北大读本科时学的是化学,生物是到美国才学的。我1985年离开北大,来到美国加州大学圣地亚哥分校,攻读物理化学博士学位。我因从小就喜欢动手,在美国学的是用超快激光来研究化学反应动力学。  在化学和生物化学的教科书里,分子相互作用和化学反应总是在单分子的水平上描述的,可是迄今为止,我们的化学知识几乎都是从含有大量分子的实验中得到的,量大到摩尔(mole)的数量级。1摩尔是2克氢分子的分子数目,被称作“阿伏伽德罗常数”。阿伏伽德罗是意大利的化学家、物理学家,虽然他定义了阿伏伽德罗常数,但他只知道这是一个非常大的数,直到死也不知道到底是多大。现在我们知道,阿伏伽德罗常数是6.023x1023,这是个天文数字,我估算了一下,1摩尔1立方毫米的沙子,如果平铺在中国大地上,可以形成一个60米深的沙漠。  90年代初,我在美国太平洋西北国家实验室开始了我的独立研究生涯,带领一个团队研究在常温下用荧光来检测单个分子(见上图)。当时的研究非常令人兴奋,有几个小组在竞争,去年因为超分辨率荧光显微技术获得诺贝尔化学奖的两位科学家Eric Betzig和W.E. Moerner那时也在做同样的事。1994年7月,我第一次在《科学》杂志上发表了文章,研究单分子的动态过程。在此前的研究生和博士后阶段,我还没在《科学》或《自然》杂志上发表过文章。  这篇文章是和我的第一个博士后Bob Dunn合作的。当我们把这些技术发展起来以后,我有了一个预感,单分子技术在生物化学和分子生物学上将有重要的应用。所以我们就开始研究酶。  酶是生物过程的催化剂,加速生物化学的反应。我们把带有荧光的胆固醇氧化酶分子固定在99%的琼胶中,让它们不能游动,以便我们长时间地观察胆固醇酶催化的胆固醇氧化反应。  这个酶有两个态,在氧化态下,它有天然的荧光,在还原态下,它不会发光。酶作为生物催化剂,它在这两个态之间循环,自己最后是没有变化的。所以当我们观测单个酶分子的荧光时,每一次荧光的“亮/灭”就对应着一个酶分子催化状态的循环。这使我们第一次实时观测到了单个酶分子的化学反应。在单分子层面上,化学反应是随机发生的,即化学反应发生所需的等待时间是随机分布的,而不像在拥有大量分子系统中的反应里,有可被推测的结果。因此单个酶分子的荧光强度随时间变化的曲线是不会在下一个实验中重复出现的,尽管这个曲线的统计结果是可以重复的。  因为这个工作,哈佛大学给了我一个资深教授的职位。这个工作之所以重要,是因为很多生物大分子,比如DNA是以单分子或者少量几个分子的形式存在于细胞之中的,这个工作让人们能对单分子的生物化学反应进行实时观察。  大家知道,20世纪最重要的生物学发现是沃森(Watson)和克里克(Crick)解出遗传分子DNA的双螺旋结构。DNA是由四种碱基(A、T和C、G)配对构成的。遗传信息储存在碱基的序列里。  单分子酶学也具有实际应用意义。比如有人做了与我们类似的实验,造出了两个单分子DNA测序仪,其中一个美国加州的公司做的Pacbio测序仪,通过监测单个合成DNA的酶分子,将有荧光标记的四个碱基逐个加入到DNA模版上,以直接读取DNA分子的序列。这个技术的特点是它能够测很长的DNA序列。  在基础研究领域,单分子生物学增进了我们对许多生物大分子工作机理的深入了解,让我们在活细胞里直接观测蛋白质分子的逐个产生。分子生物学的中心法则告诉我们,在DNA上的遗传基因会转录成mRNA,在翻译过程中mRNA导致蛋白质的合成。  由于一个基因在单个活细胞里只有1到2个拷贝,基因表达过程就跟单个酶分子反应一样,也是随机发生的,所以单分子生物学与单细胞生物学是密切相关的。我们对单个活细胞的基因表达进行了非常详细的研究,从而使得分子生物学的中心法则得到了定量的描述。  上图右边的机体细胞有同样的基因和基因组,我们说它有同样的基因型,但它们有不同的表型,一个有荧光,一个没有荧光。这个细胞从一个表型变到另外一个表型,从没有荧光的状态变到有荧光的状态,可以证明这个过程完全是由于单个蛋白质分子从DNA的单链上随机脱落下来造成的。我觉得这是一个非常普遍的现象,单分子的小概率事件可以导致非常重要的生物学结果。  基因突变也是这样。这个基因型和表型的关系跟我生活中最大的奥秘是相连的,我的两个女儿是同卵双胞胎。同卵双胞胎被普遍认为有相同的基因组,我的双胞胎女儿确实非常相似,但她们有各自的特点,也许这跟基因表达的随机性是相关的。最近有研究表明,同卵双胞胎的基因组实际上是不一样的,因为我们的基因都是随时间变化的。不管怎么说,基因型和表型的关联是生物学中非常重要的一个问题。  破解基因组的奥秘  生物遗传学起源于孟德尔的遗传法则。孟德尔是一位牧师,他的伟大是去世之后才被人们认可的。几个月前,我应邀在捷克斯洛伐克给了一个“孟德尔讲座”,有幸在他曾经工作过的修道院(见下图)做了报告。(右图是孟德尔种植豌豆的田地,其上是他的雕像)  孟德尔的实验(见上图左图)是把绿色的豌豆和黄色的豌豆杂交,开始是用纯种豌豆杂交,杂交的结果还是绿色的,后来他把两个杂交出的绿豌豆再次杂交,就发现有1/4的几率可以得到黄色的豌豆。通过这个实验,他推断每个豌豆有2个等位基因,分别来源于上一代,一个是显性基因(绿色),一个是隐性基因(黄色)。  后来人们发现,人类也遵循类似的遗传法则。人的体细胞与豌豆一样,正常情况下都是双倍体,有46条染色体,其中23条来自父亲,23条来自母亲。染色体存在于细胞核内,是46条不同的DNA分子。它们有60亿对碱基,携带2万个基因。(编者注:人类基因组由30亿对碱基构成,分布于23条独立的染色体中。人类的体细胞是双倍体含有46条染色体,生殖细胞是单倍体,含有23条染色体。体细胞中的两套染色体分别源于父亲和母亲,它们所包含的碱基有微小的差异,因此人的全基因组包括约60亿对碱基)。  基因组的主要变化是点突变(SNV)和基因拷贝数的变化( CNV)。我们每个人之间的不同就是由于点突变,也就是单碱基发生了变化。60亿对碱基中大约只有千分之一的碱基在人与人之间是不同的。另外一个基因组产生变化的是基因拷贝数的变化(CNV)。一般来讲,基因拷贝数应该是2,一个来自于父亲,一个来自于母亲,形成两个等位基因。但有的时候,特别是发生癌症的时候,拷贝数可以变成1,3或者4,这叫染色体不正常。  2001年人类基因组计划完成,也就是这30亿对碱基的顺序被测定了,这是人类历史上的一个里程碑,意义重大。当时美国的一个私人公司(领导人是Craig Venter)和美国组织的国际团队(领导人是现任美国国家卫生局主任Francis Colon)展开了激烈的竞争,他们分别在《科学》杂志和《自然》杂志上发表文章。这项工作花了30多亿美金,用的方法是第一代电泳技术。这是1980年获得诺贝尔奖的技术,是由Fred Sanger(1918-2013)做出的。这是一个传统的办法,通过测DNA的长短来测序。  以这个技术为基础研发的第一代测序仪由美国公司ABI生产,该产品是产学研结合的范例。加州理工学院的教授Leroy Hood和他的研究生Mike Hunkapiller先在他们的实验室里改造了传统的 DNA测序方法,把电泳的方法用到毛细管里,用激光来代替放射性DNA监测仪,然后成立了ABI公司。这是一家车库公司,但后来这家公司很快垄断了世界测序仪市场。刚才说的参与人类基因组计划测序竞争的私人公司领导人Craig Venter就是买了250台这种仪器来完成的人类基因组的测序。  Craig Venter的一大科学贡献是把人类的基因库组装起来,他发明的方法是很有意思的“鸟枪法”。比如说我要知道《三国演义》这本书里文字的序列,但是我能得到的只是打碎的一行一行的片段。Venter的方法是找很多本《三国演义》,然后打碎成一行一行的,由于是随机的,所以每行的断裂都不一样,然后把得到的千千万万碎片上下重叠起来,就可以得到《三国演义》中原始的文字序列(见下图)。当时没有人觉得这个方法可行,而Venter坚信可以由此得到百分之八、九十的人类基因序列,虽然不是100%,但已经很了不起了。  如今十几年过去了,测序仪技术有了突飞猛进的发展。2007年以来,新一代的DNA测序仪层出不穷,主要是因为CCD(电荷耦合元件)的应用,使得大家可以在很多不同的位置上观测大量的序列,提高测序通量,这样一来,测序价格的衰减比指数衰减还快。现在如果你想测你的基因组,一天之内就可以完成,价格大概1000美金。其中Illumina公司的仪器占据了90%的市场。第三代测序仪是单分子测序仪,但它现在在成本、准确性和通量方面还不能与基于大量分子的DNA测序仪相竞争。  我的哈佛实验室也做过一个测序仪,但是我们起步比较晚,这是因为到哈佛以后要学怎么做教授,怎么教书,怎样申请基金。 我们只发表了一篇文章,没形成产品。中国目前还没有自己的测序仪,但就像中国需要自己的飞机一样,中国也需要自己的测序仪。这几年我和北大的黄岩谊教授一直在合作做这个工作。  哈佛实验室的新发明  新一代测序仪对医学的贡献是革命性的,它使个体化医疗成为可能。什么是个体化医疗?就是通过个人的基因组测序,为预防、检测和治疗疾病提供个体化的解决方案,所以基因测序成为了个体化医疗的基础。  一个著名的例子是,美国好莱坞影星安吉丽娜?茱莉公开宣布她切除了乳房,因为她知道自己携带一个有缺陷的基因BRAC1,她的医生估算过,她有87%的几率患乳腺癌,50%的几率患卵巢癌。她宣布切除乳房的这一天,是2013年5月13日,当时我正好在美国卫生局进行一个申请项目的答辩。我的实验室有一种技术,可以让父母避免把严重的遗传病遗传给胎儿。评审委员会听到朱莉的新闻后就问我,如果把我的技术用来避免把有缺陷的基因遗传给下一代,伦理上行不行?我当时还没想好,结果这个项目没有在美国启动。关于伦理问题,我到今天也没有一个好的答案。但我今天想告诉大家,我们这两年在北京大学的一个工作,是伦理上可以接受的。  这个新技术对我来讲是一个新的单分子实验。如果给我一个人的体细胞,我能告诉你这个人的基因组,就是46条染色体的序列是什么样的。  我们以前是测多细胞的,抽10毫升血来测。那么我们为什么要测单细胞的基因组?因为由于种种原因,基因组对每个细胞来讲都不相同。比如说人类生殖细胞(精子、卵子)在分裂时发生随机重组,使得每个生殖细胞都不相同。另外癌细胞中剧烈的基因组变化,也使得原发肿瘤中的细胞之间存在高度不同。  刚才说到在一个细胞中最常见的基因组改变包括点突变和基因拷贝数变化。这种变化是单分子的变化,所以是随机的,不同细胞是不同步的,不知道它什么时候发生,也不知道它在哪发生,因此每个细胞都拥有不同的基因组,这使得单细胞测序成为必须。只不过以前技术上不可行。到目前为止,还没有一台单分子测序仪可以把46条染色体从头测到尾进行测序,我们必须借助于单细胞基因组的扩增,就是把46条染色体放大,然后进行高通量的测序。  第一种方法是PCR(聚合酶链式反应)技术,这是一个在1985年获得诺贝尔奖的技术,有单拷贝的高灵敏度。在犯罪现场,只要拿到一个DNA分子,我们就可以把信号放大到被检测的点。但是如果用它来覆盖全基因组,指数放大覆盖率只有6%。因为PCR技术是指数放大,让一个DNA变成两个,两个变成四个。这种指数放大过程不够精确,因为它是对拷贝进行拷贝,一旦拷贝件出错,错误就会被传下去,结果就不准了。  2012年,我在哈佛的实验室发明了新的单细胞扩增方法——“多重退火环状循环扩增法”(MALBAC)。它的最大优势是线性扩增,而不是指数扩增,不针对DNA拷贝再做拷贝,我们只拷贝原始DNA。就像一台复印机把原始的一份文件复制成多份,如果一次复制出错的话,在扩增后的产物里是微不足道的。哪怕单个细胞的30亿个碱基对里有一个碱基错了,我们都能看出来,而且没有假阳性。这种方法比此前广泛应用的MDA(多重置换扩增)方法能更准确地检测SNV(点突变)和CNV(拷贝数变异),将覆盖率大大提高到了93%。  做出这个工作的是我哈佛实验室的博士后宗诚航和我当时的博士研究生陆思嘉。目前,宗诚航正在 Baylor College of Medicine 做助理教授。陆思嘉在哈佛的博士论文就是关于MALBAC技术。他想看到他毕业论文的社会效应,所以两年前回国跟我创立了做单细胞测序的公司——亿康基因。他目前担任亿康基因的CTO。  我们当时做的第一个实验就是测单个精子的序列。精子作为生殖细胞,是单倍体,有23条染色体,其中一半基因来自父亲,一半基因来自母亲。  如图所示,绿的是父源DNA,红的是母源DNA,每条染色体都是父源和母源基因的组合。由于基因组合交结的地方不一样,所以每个精子的序列都是不一样的。这就是为什么兄弟姐妹都不一样。  这项工作是与我以前BIOPIC的同事李瑞强教授合作的。精子来源于一位华人教授,我们检测了他的99个精子,发现了几个染色体不正常的精子细胞,其中一个缺第19号染色体,一个6号染色体出现了2个拷贝。好在这个人还算正常,因为任何一个正常的男子都会有~5%的精子出现拷贝数不正常的现象。这种不正常是由于细胞分裂时染色体没有正常分裂。这种染色体不正常的精子会导致生殖障碍、流产、胚胎停育或者唐氏综合症等遗传疾病,尽管父母看起来完全健康,但就是有5%的出错几率。对男子而言,这5%的几率是不随年龄变化而变化的。但对女士的卵子来讲,染色体不正常的几率在30岁之前是25%,此后很快随年龄的增长而上升,到40岁的时候是70%。这就导致发生生殖障碍的比率和流产的比率随年龄的增长而增加,生育成功率则随年龄的增长而递减。  利用MALBAC技术,我们可以选择一个染色体正常的受精卵来提高生育成功率,特别是对高龄产妇。这是可能的,因为她们染色体不正常的几率并不是100%,即使在43岁以后,妇女仍然有正常的卵细胞,只不过几率小一些。即使是50多岁的妇女,只要有一个染色体正常的受精卵,不管是本人的还是别人捐献的,她怀孕的成功率就和年轻妇女一样。也就是说有一个好的卵子是正常生育的前提条件。  中国是一个人口大国,出生缺陷率高,遗传疾病患者多,大概有1%。不孕不育的夫妇也越来越多,高达育龄夫妇的10%,全国大约有一千万对育龄夫妇存在不孕不育问题,渐渐成为一个严重的社会问题,此外,随着现代化进程的推进,头胎生育年龄逐渐增加,这个问题也会日益严重。不孕不育和遗传疾病不仅为患者个人带来了巨大的痛苦,也大大增加了家庭、社会与政府的负担。  MALBAC宝宝的诞生  世界上第一个试管婴儿诞生于1978年,迄今已有超过600万个孩子是通过试管婴儿技术出生的。Robert Edwards是试管婴儿的创始人,他于2013年去世了。然而直到他去世前两年,也就是2010年才荣获诺贝尔奖,并获得爵士封号。可以想象他当年的研究工作困难有多大,绝不仅仅是技术上的困难。  中国第一个试管婴儿于1988年在北医三院诞生,由张丽珠教授完成,她是现在北医三院院长、著名妇产科医生乔杰教授的导师。当时张教授比Edwards晚了10年,而这次乔杰院长走在了世界的前列。为了将单细胞基因组学在生殖医学中进行应用,我和乔杰院长、汤富酬教授,还有亿康基因公司展开合作。汤富酬是北京大学“生物动态光学成像中心”(BIOPIC)的一位年轻有为的科学家,BIOPIC成立于2010 年,致力于技术推动生物医学的研究。作为BIOPIC的主任,在过去的几年里,我不断往返于北大和哈佛之间。我们的合作是怎么开始的呢?我当时需要一份精子活力的报告,找到乔院长帮忙,乔院长了解我们的技术以后,就说你可别光研究精子,一定要研究卵子,因为研究女人要比研究男人有意思得多。2010年,我们的“北京大学生物动态光学成像中心”(BIOPIC)成立了,立志于用技术推动生物医学的研究。  我们要做的实验是对单个人卵细胞进行高精度的全基因组测序分析。下图是一个卵母细胞,里面有两根DNA是从父亲来的,两根DNA是从母亲来的。刚才讲过,基因在重组时的交结点不一样,使得每个卵子和精子都不同。卵母细胞成熟过程中,会在旁边产生一个第一极体和第二极体作为卵细胞减数分裂的产物,它们分别是双倍体和单倍体,这两个极体细胞是没有用的,会在生殖细胞发育过程中被降解。我们为了不影响受精卵正常发育,所以选择分析两个极体细胞的全基因组来推断这个受精卵的全基因组是否正常。  不正常的第一种情况是染色体拷贝数不正常。 原因是细胞分裂时染色体分裂异常,即使父母完全健康。这种染色体不正常会导致生殖障碍或者唐氏综合症等遗传疾病。  还有一种情况,如果父亲或母亲的基因有点突变,导致严重的遗传疾病,它们也会传给下一代。如果发生突变的基因只在极体内,受精卵没有点突变,那就没事 如果传到了受精卵里,就会让下一代患上遗传疾病。  用MALBAC技术来进行单细胞基因组扩增,我们可以同时检测并避免上述两种情况,来提高生殖细胞健康发育的成功率,避免遗传疾病发生。具体做法就是用激光打一个小洞,把毛细血管插进去,吸出两个极体细胞来测序。如果疾病遗传自母亲, 我们用这个办法。如果疾病遗传自父亲,我们则在受精第5天时取1—3个囊胚细胞来测序。  2013年,乔院长在北医三院开始了临床实验,利用MALBAC技术进行胚胎遗传诊断。我们第一个病例,是一位患有遗传性多发性软骨瘤(HME)的男性患者,他从10岁开始,几乎每过两三年就长一个瘤子,所以他的身上充满了金属。这种病是由于名为EXT2的基因发生单碱基杂合缺失,造成移码突变。与孟德尔推测豌豆遗传类似,他和正常女性生育的后代会有50%的概率患病。与豌豆实验不同的是,这是人命关天的事,不能出任何差错,所以我们特别需要MALBAC技术的精确性。  通过体外受精技术,共得到这对夫妇的18个胚胎,经过致病突变位点检测和染色体筛查,发现共有7个胚胎是既没有点突变,也没有染色体异常的,乔院长从中选了第4号胚胎进行移植。  2014年9月19日,世界首例MALBAC婴儿诞生了,我们去看这个孩子的时候,她真是完美,她一声都没哭,一直冲我笑。  第二个病例是一位携带少汗型外胚层发育不良致病突变基因的女性,她和丈夫已经有了一个遗传了这种疾病的儿子,没头发、没汗腺、没牙齿,他们想要二胎生一个正常的孩子。此病的发病率是十万分之一,美国电影演员迈克尔?贝瑞曼(Michael Berryman)也患有这种病,他没有毛发、汗腺和指甲,一直在呼吁医学界对他这种遗传病进行研究。这个致病基因EDA1是在X染色体上,如果生男孩,患病的概率是1/2,如果生女孩不会发病,因为女孩有两个X染色体,而致病基因EDA1是个隐性基因,但该女孩有1/2的概率携带这种致病基因。  通过试管婴儿技术,共得到这对夫妇的5个胚胎,其中2个胚胎既不携带致病基因,也没有染色体异常,乔院长选了一个看上去最健康的移植。这个孩子于2014年11月30日出生,不但正常而且肯定不再会把该疾病传给后代。  总结一下,MALBAC技术可以同时避免染色体不正常和非常严重的基因点突变导致的遗传疾病,使得我们可以提高生殖的成功率,得到健康的后代。  想要孩子的朋友可能会想,我们能不能用这种技术来选择一个胚胎,让孩子拥有更漂亮更聪明的基因?首先,基因组学还没有发展到这种程度,能够让我们非常了解哪个基因是控制长相的,哪个基因是控制聪明程度的。那不是单基因的问题,而是多基因的事情。我们现在做的,就是避免非常严重的遗传疾病。目前世界上大概有7000多种单基因遗传疾病,常见的有400多种。避免这类遗传疾病在伦理上是可以接受的。  能否在更广泛的情况下使用这类技术?比如是否应该筛选掉得癌几率高的BRAC1 基因,它导致癌症的几率是70%, 而不是100%, 我们能不能让父母决定婴儿以后的命运?我认为这不是我们科学家或者医生能解决的问题,整个社会应该进行伦理上的研究和讨论。  MALBAC的第二个应用是癌症。在中国,癌症的发病率、死亡率逐年上升。根据2012年的统计数据,中国每年新发癌症病例约为312万例,中国人一生患癌概率高达22%,死于癌症的概率为13%。  癌症是由于基因组改变所引起的疾病,针对癌症的很多重大课题都需要单细胞基因组学。首先是个体化治疗,即靶向治疗,就是要对症下药,通过测序找到基因组哪里出现了改变,现在很多新药都是靶向治疗。  癌症难以治愈和高死亡率的罪魁祸首是肿瘤的转移。其机理是癌症先出现在原发灶,然后通过血液循环扩散到身体的其他器官。然而,癌症病人血液中肿瘤细胞数量很少,一般只有几个,传统的研究手段往往基于大量细胞才能进行分析。因此我们的单细胞测序技术就可以用到循环肿瘤细胞的研究上。对病人来说,还有个好处就是抽血分析的检查是无创的,不用做活检。北大肿瘤医院的王洁教授、BIOPIC的白凡教授,以及天津医科大学的张宁等教授和我的实验室一起参与了这项工作。  我们在一个肺癌病人的几毫升血液样本中共找了8个循环肿瘤细胞,对它们进行基因测序,看到基因组不同位置点突变,这突变信息为个性化治疗提供了重要依据。但是,这8个循环肿瘤细胞的单碱基突变存在异质性——也就是说每个细胞都不一样,这样对癌症检测意义
  • 聚焦分子光谱现场快检技术——BCEIA 2013光谱仪器评议
    仪器信息网讯 2013年10月23-26日,由科技部批准、中国分析测试协会主办的&ldquo 第十五届北京分析测试学术报告会及展览会(BCEIA 2013)&rdquo 在北京展览馆隆重举行。自1985年创办以来,BCEIA融合分析、生命科学等仪器设备展览,国际性学术报告会,厂商技术交流以及分析测试科技发展的高层论坛等各项活动于一体,成为仪器行业两年一次的盛会。   以实时跟进国际分析技术最新动态、促进我国分析仪器自主研发为宗旨,在科技部倡导下,由中国分析测试协会主办,协同仪器技术评议网,本届BCEIA继续举办&ldquo 分析测试仪器与技术评议&mdash 从BCEIA仪器展看分析技术的进展&rdquo 活动。此活动包含分析测试仪器与技术专家质询、分析测试仪器与技术现场测评和科学仪器与生产企业数据库信息录入三个部分。评议结束后还将所评议的仪器汇总为相关专辑。   2013年10月24日,在北京展览馆2号会议室,中国分析测试协会分析测试仪器与技术评议光谱专业组对分子光谱仪器进行了现场评议。BCEIA 2013光谱仪器技术评议活动由清华大学分析中心的孙素琴老师主持,参加评议的专家有清华大学邓勃、中实国金国际实验室能力验证研究中心郑国经、清华大学分析中心周群、北京大学化学与分子工程学院李娜、国家生物医学分析中心宋占军等。 BCEIA 2013光谱仪器评议现场   为了应对食品安全,药品检测等领域日渐凸显的现场检测要求,此评议的中心议题围绕便携式现场检测分子光谱技术。来自ThermoFisher、Agilent、Bruker、PerkinElmer、Horiba、Foss、EnWave Optronics、Ocean Optics、聚光科技等光谱仪器厂家的产品负责人向评议专家介绍了各自最新推出的便携式拉曼、红外光谱、近红外光谱仪器,并在当天下午仪器现场评测时段现场演示了相关检测仪器的应用。   Horiba介绍其高灵敏度便携式拉曼光谱仪在现场检测,如考古壁画、地质、刑侦等领域的应用。针对拉曼信号弱的特征,Horiba通过降低暗电流等方式提升灵敏度,并以较低的激光功率实现文物等的无损检测。另附的光纤探头也可完成爆炸物等危险样品的现场、远程检测。Horiba另一款拉曼光谱仪与AFM联用,实现同区域拉曼成像,并能够进行车载现场分析。   EnWave Optronics恩威推介其稳频激光拉曼光谱仪(S Laser Raman Analyzer)作为现场快筛快检的工具。作为美国国家航空航天局(National Aeronautics and Space Administration,NASA)以及美国食品药品管理局(Food and Drug Administration,FDA)选定的仪器,恩威突出介绍其简洁的光学系统、-85° C强制冷CCD检测器及 X和Y轴的双重校正技术。另外,恩威为提供快速检测的整体解决方案,向用户提供3万张谱库供检索。在评议过程中,恩威还向评议组汇报了该仪器在高荧光背景样品、生物组织和生物活性样品、气体检测中的应用实例。   Thermo fisher赛默飞世尔介绍了其全系列的便携光谱仪器,包括手持式拉曼、手持式中红外、近红外,以及手持式X射线荧光光谱仪。自2005年Thermo第一代手持式拉曼光谱仪问世以来,设计不断更新,现已发展为专用于制药领域原辅料分析的TruScan手持式拉曼光谱仪和毒品分析专用TruNarc手持式拉曼光谱仪,重量不足1kg。该系列仪器通过了美国军标的测试,能够适应各种严苛的现场测试环境 提供近12,000种拉曼谱库,自带的解谱功能增强了仪器的易用性 其中,TruNarc获得2013年R&D 100 大奖以及Edison Awards创新奖。   Agilent安捷伦科技向与会专家介绍其移动测试部的手持红外光谱4100 Handheld 与4200 Flexscan。立体式的干涉仪确保其在移动的状态下仍能保持稳定的测试性能,全套采样附件ATR、掠角反射及漫反射适应现场各种类型的样品分析 4100 Handheld 与4200 Flexscan的应用领域涉及民航飞行器碳纤维材料的剖析以跟踪材料的老化程度、评估航空安全性能、燕窝中掺杂的检测等方面。   Bruker布鲁克光谱部门介绍其Tango系列近红外分析仪。2011年面市的Tango-R近红外漫反射积分球已广泛应用于饲料、食品、化工等固体样品的检测。最新推出的Tango-T透射模式近红外分析仪适用于液体样品,拥有RockSolid干涉仪并配置立体角镜 针对工业现场分析过程,它具有自动升温功能,达到即插即用 在石化(汽油酸值,辛烷值等测试及油品鉴定)、食品(食用油成份、品质鉴定)具有广泛应用。   PerkinElmer珀金埃尔默针对食品行业分析的便携式Dairy Guard可进行成分鉴定、添加物筛查等。Dairy Guard使用&ldquo 半无目标添加筛查&rdquo 的新算法,结合谱库检索 在改进灵敏度和对潜在污染物建立定量方法之间建立平衡,并对非法添加的种类给予建议 触屏Touch软件使添加物的筛查更容易,简化奶粉的检测。便携式的Spectrum 2则使用低于30W全新低功耗电源管理系统,配备无线路由系统,能够在潮湿环境的满足测试要求。   Foss福斯华ProFoss的在线近红外分析仪,着眼于满足企业生产的最高环境等级要求 经过严格的防尘、防水、防爆评测以及食品生产方面3A 认证 可安装在物料输送的管路中,自动断流检测避免了对生产控制的误判 基于在线检测的特点,仪器配置备用光源以及光纤采集信号方式,令其在食品包括饲料生产,流质测量(黄油,奶酪)等领域均已得到应用。   Ocean Optics海洋光学展示了微型手持式拉曼光谱仪ID Raman Mini。作为目前最小的手持式光谱仪,ID Raman Mini仅有330克,大小类似于一个手机 采用ROS取样方式用高度聚焦的激光束对多个拉曼活性靶点采样,对样品在较大面积范围内进行扫描 对化学品和爆炸品可进行快速准确的测试,适用于安检,刑侦、材料等现场分析。   聚光科技承担科技部863计划以及浙江省重大科技专项,自主研发近红外分析系统。聚光科技向专家评议组介绍了近红外光谱仪系列,及其在土壤、肥料、烟草、粮食种子、油料等领域的定量分析应用。 BCEIA 2013光谱仪器评议部分人员合影
  • 分子互作定量检测技术介绍及案例分享——中科院分子细胞科学卓越创新中心高级工程师吴萌
    为帮助科研工作者了解前沿分子互作分析技术,向用户传递准确、实用的技术干货和宝贵的实验经验。本期,仪器信息网特别邀请到中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)吴萌高级工程师谈一谈分子间相互作用定量分析技术及案例分享。中科院分子细胞科学卓越创新中心 吴萌 高级工程师现就职于中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)分子生物学技术平台,负责生物分子相互作用相关检测仪器管理,主要从事分子互作技术服务、平台仪器管理、用户使用培训及相关工作。深耕生物分子互作技术领域近十年,积累了大量相关经验,为科研工作者论文发表提供高质量的技术服务支持。探究生物分子间相互作用,可以从分子水平上揭示生物体各项生理机能,为探讨疾病的治疗和预防提供理论依据,对研究生命活动的规律有重要指导意义。近年来,可用于定量检测分子间相互作用的新型技术因其无需标记、实时表征且检测快速等特点而迅速发展,应用广泛。本文选取其中比较有代表性的四种技术,分别是等温滴定微量热(Isothermal Titration Calorimetry, ITC)、微量热泳动(MicroScale Thermophoresis, MST)、表面等离子共振(Surface Plasmon Resonance, SPR)和生物膜干涉(Bio-Layer Interferometry, BLI),围绕其技术特点进行介绍并分享几则研究案例。ITC、MST、SPR及BLI技术解析ITC技术可直接检测生物分子结合过程中的热量改变。实验时,保持仪器样品池和参比池温度相同,通过加热补偿原理检测体系热量变化,从而得到生物分子的结合信息。其最大特点在于样品在溶液内即可完成检测,且无需任何标记,单次实验即可测定亲和力常数及热力学常数。MST技术是测量溶液中分子环境的改变,如水化层、电荷等特性变化而导致的微量热改变,从而确定亲和力大小的。该技术优点在于仪器灵敏度高,分子结构或者构象上的微小改变都可以检测到,且不受样品分子量限制。MST在溶液中即可完成检测,样品不需要固定在一个表面。SPR技术则通过将一个分子固定在传感芯片表面的形式,将另一分子以溶液形式连续流过芯片,检测器可以实时检测到溶液中分子与芯片表面分子的结合、解离过程。SPR通过实时记录传感器芯片表面分子质量变化,实时监测分子间相互作用信息。BLI技术也是一种光学分析技术(原理类似SPR技术),检测的是生物传感器上固定的生物分子表面层厚度的变化。若待测分子与生物传感器尖端的固定相分子发生结合,其数量的变化可致实时测定的干涉图谱发生相应改变,进而得到分子间相互作用信息。SPR和BLI技术均可实时检测到结合过程和解离过程,因此不仅可以提供亲和力信息,还可以提供结合常数和解离常数等动力学信息。相比于免疫共沉淀、融合蛋白沉降等传统检测技术,以上四种技术具有所需样品量少、实验时间短、结果重复性好、假阳性低等特点,在生物分子相互作用检测中具有很大的优势,在蛋白质组学、细胞信号传导、疫苗和抗体药物研发、药物筛选及抗生素快速检测等多个领域应用广泛。本文分享几则不同科研领域的研究案例,希望为大家仪器应用方案拓宽思路。应用案例分享案例一:核酸适配体(Aptamer)通常是利用体外筛选技术(Systematic evolution of ligands by exponential enrichment,SELEX)从核酸分子文库中得到的寡核苷酸片段,能与相应的配体进行高亲和力和强特异性的结合。复旦大学附属眼耳鼻喉科医院的吴继红课题组[1]通过体外筛选技术筛选疾病生物标志物特异性结合的核酸适配体后,运用BLI和ITC等技术分析核酸适配体序列与靶分子之间的相互作用。优选动力学和热力学性能较好的核酸适配体序列进行优化和改造,通过BLI技术检测,获得最佳性能的核酸适配体序列,并建立了基于核酸适配体的快速检测疾病生物标志物的新方法。BLI技术进行核酸适配体的筛选及验证案例二:介孔二氧化硅纳米颗粒(Mesoporous silicana noparticles,MSNs)作为新一代纳米材料的代表,被认为是最有希望用于临床应用的药物载体。但目前大部分研究集中于MSNs的功能化设计上,其非功能化的固有生物学效应研究报道较少。上海交通大学医学院公共卫生学院王慧教授[2]等人通过对机制的研究,发现MSNs能够靶向肿瘤组织中巨噬细胞。运用MST技术检测到MSNs可直接作用于巨噬细胞表面TLR4受体。通过联合PD-1抗体,MSNs能够在治疗早期,快速地建立了T细胞炎症性的肿瘤微环境,从而克服肿瘤对PD-1抗体的耐药性。该研究为MSNs在肿瘤免疫治疗中的潜在应用提供了理论基础,为进一步开发新型纳米药物提供了科学依据。MST技术检测FITC-MSNs与TLR4蛋白的亲和力案例三:雷帕霉素靶蛋白复合物1(mTORC1)是感受营养与应激信号调节细胞生长与代谢的中心调控分子。中国科学院分子细胞科学卓越创新中心研究员丁建平研究员[3]等人研究揭示了SAMTOR作为一个S-腺苷甲硫氨酸(SAM)传感器,通过感知SAM以调控mTORC1活性的分子机制。该研究工作中,通过ITC技术测定了黑腹果蝇源SAMTOR(dSAMTOR)的MTase结构域与SAM和SAH的相互作用,进一步对激活mTORC1活性的功能开展深入研究。ITC技术检测SAM和SAH与dSAMTOR的亲和力案例四和案例五:蛋白-化合物亲和力测定蛋白和小分子化合物间的相互作用检测,经常受限于化合物的溶解性及分子量过小等因素,难以得到准确的亲和力信息。往往需要实验人员通过对测试条件,如缓冲液条件、传感器灵敏度、样品标记手段等改善和优化最终获得高质量的数据。中国科学院分子细胞科学卓越创新中心杨巍维研究员[4]等人运用SPR技术检测了重组SSRP1蛋白和糖酵解代谢物-丙酮酸(pyruvate, 分子量仅为88.06Da)的相互作用,成功得到二者之间的亲和力常数为280μMol,进而从机制上解释了丙酮酸在肿瘤DNA损伤应答(DNA damage response, DDR)中的新功能。上海交通大学医学院王宏林教授[5]等人利用生物素标记的AKBA固定到生物传感器上,通过BLI技术检测到AKBA可直接作用于甲硫氨酸腺苷转移酶IIα( MethionineAdenosyltransferase2A, MAT2A)。以上所分享的研究工作中,分子间相互作用的数据均在中科院分子细胞科学卓越创新中心的分子生物学技术平台的ITC、MST、BLI仪器和化学生物学技术平台的SPR仪器上完成的。分子生物学技术平台隶属于中国科学院分子细胞科学卓越创新中心的公共技术中心,是分子生物学国家重点实验室的主要技术平台。平台目前拥有蛋白质稳定性分析仪、差示扫描量热仪等可用于蛋白质质控、稳定性条件筛选等测试,同时拥有ITC、MST、BLI、SPR四台仪器,用于分子间相互作用的定量检测。经过近十年的发展和实验经验的积累,我们针对不同的样品体系进行归类,建立了成熟的检测方案,可以为科研及工业用户提供高质量的技术服务支撑。 参考文献:[1] Gao S., Zheng X., Teng Y, et al. Development of a fluorescently labeled aptamer structure- switching sssay for sensitive and rapid detection of gliotoxin. Analytical Chemistry. 2019,91 (2): 1610-1618[2] Sun M, Gu P, Yang Y, et al. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. Journal for Immuno Therapy of Cancer, 2021, 9: e002508[3] Tang X, Zhang Y, Wang G, et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. Sci Adv. 2022 Jul 8(26):eabn3868[4] Wu S, Cao R, Tao B, Wu P, et.al. Pyruvate facilitates FACT-mediated γH2AX loading to chromatin and promotes the radiation resistance of glioblastoma. Adv Sci (Weinh). 2022 Mar, 9(8): e2104055[5] Bai, J., Gao, Y., Chen, L. et al. Identification of a natural inhibitor of methionine adenosyl transferase 2A regulating one-carbon metabolism in keratinocytes. E Bio Medicine, Volume 39, 2019, Pages 575-590
  • 从两句话浅述分子光谱技术的应用进展
    五十年前的今天(1969年7月20日)美国宇宙飞船“阿波罗11”号登上了月球,首次实现了人类登上月球的梦想。宇航员阿姆斯特朗成为了第一个踏上月球的宇航员,并说出了流传于世的名言“这是我个人的一小步,但却是全人类的一大步。”  几年前在一套科学家传记丛书的扉页上看到两句话:“一切进步都是空间的拓展”“一切节约都是时间的延长”。这两句话我记忆深刻,尤其是第一句话,似乎能够在感性上理解和接纳,但又感觉很绝对,较难把握基本点。后一句话相对容易理解,因为马克思说过“一切节省,归根到底都归结为时间的节省”,本人从事的与分子光谱相关的科研和应用工作,也大都是以节约分析时间、提高分析效率、获得经济效益为主要目的。近一段时间,通过一些学术文献和新闻报道的研读和思考,对这两句话有了一些感悟,尤其对空间拓展的认识,有了一定的提高。应仪器信息网的编辑老师约稿,整理出来与同行们共同探讨。既然是认识和体会,尤其是这一领域涉及的基础理论和知识面很宽,与工程实际联系很深,文中肯定有遗漏的内容和内涵,也肯定有不正确的表达,敬请师长和同行批评指正。  1、在微观空间拓展中的应用进展  先从垃圾分类中的废塑料说起。  1972 年,Carpenter 在美国Florida 沿海首次发现了微塑料。随后,微塑料在全球各地的水、沉积物、生物体中不断被检出,尤其是在人类生产活动密集的港口及河流入海口、海岸带等地区。  2004年,英国科学家在Science上发表了关于海洋水体和沉积物中塑料碎片的论文。“微塑料”这个名词就渐渐的进入了人们的视野。直径小于 5mm 的塑料、纤维、或薄膜被定义为微塑料。  2018年1月26日 新华社报道,正在“雪龙”号上执行大洋科考任务的中国第34次南极科考队近日在南极戴维斯海采集的海水微样本中,利用“傅立叶变换显微红外光谱仪”进行分析鉴定,最终确认样本中的两个肉眼可见蓝色片状物为聚丙烯微塑料。  2018年9月5日,央视新闻报导,我国载人潜水器“蛟龙号”去年从大洋深处带回海洋生物,通过“傅立叶变换显微红外光谱仪”研究后发现,在4500米水深下生活的海洋生物体内检出微塑料,这些微塑料很可能是纤维状塑料绳。  2018年10月23日,英国卫报报导,维也纳医学大学的研究团队通过“傅立叶变换红外显微成像技术”首次从人类粪便中检出塑料微粒,研究检验了8名参与者的粪便,参与者来自欧洲、日本和俄罗斯,所有检体内都含有塑料微粒,研究包含10个塑料检验项目,检体中发现多达9种,尺寸从50至500微米,最常见的是聚丙烯和聚对苯二甲酸乙二醇酯,平均每10克粪便中有20颗塑料微粒。  2019年3月19日,媒体报道,国际非营利性新闻机构Orb Media和纽约州立大学弗里多尼亚分校的科学家对11个知名品牌的259瓶瓶装水进行了测试,发现几乎所有的瓶装水中都含有塑料微粒。  上述微塑料的研究尺寸大都在20微米以上,因为受光衍射所限,传统的傅立叶变换显微红外光谱的空间分辨率在10微米左右。实际上,在自然界中,还存在很多微塑料其尺寸可达微米乃至纳米级,1微米到100纳米的塑料颗粒被称为亚微塑料,尺寸小于100纳米的被称为纳米塑料。很多研究表明,大多数微小的塑料颗粒具有微米和纳米级别的尺寸。  目前共聚焦拉曼光谱可以实现亚微米级的化学成分分析,实际空间分辨率一般为1μm左右。2018年D Schymanski等人通过μ-Raman光谱对瓶装水中的微塑料分布进行了分析,得到了如图1所示的结果。尽管拉曼光谱可以实现较低的空间分辨率分析,但由于拉曼信号较弱,加上背景荧光较强,所以应用范围受到限制。图1 D Schymanski等人通过μ-Raman光谱分析瓶装水中微塑料的分布  近十年来,激光器尤其是量子级联激光器 (QCL)的快速发展,显著提升了传统傅立叶变换红外显微成像技术。例如,已有商品化的激光红外成像系统将QCL与快速扫描光学元件相结合,仅需测量几个关键波长,即可实现大面积的高分辨率图像,从而节省时间和成本。在ATR模式下,可选择小至 0.1 微米的像素分辨率。例如,在制药领域,通过该系统可获得有关活性药物成分、赋形剂、多晶型、盐类和缺陷的有用信息,以便能够快速找出并解决药物开发过程中遇到的问题,保证不同生产批次之间具有良好的一致性。图2 AFM-IR纳米级红外光谱获取示意图  纳米级红外光谱(Nano IR)则是一个里程碑式的技术突破,它通过利用原子力显微镜(AFM)与红外光谱联合的方式来表征物质,原子力显微镜的工作方式有点像唱片机针,它在材料表面上移动,并在提升和下降时测量最细微的表面特征。Nano IR可使红外光谱的空间分辨率突破了光学衍射极限,提高至10nm级别,典型的光学空间分辨率约为20 nm,在得到微区形貌、表面物理性能的基础上,进一步解析样品表面纳米尺度的化学信息。Nano IR目前主要有两种实现方式:一是基于光热诱导共振现象开发的原子力显微-红外光谱(AFM-IR)技术(见图2),另一种是基于针尖近场散射的s-SNOM(Scattering-type scanning nearfield optical microscopy,s-SNOM)技术(见图3)。两种技术都能实现微区的光谱信号采集和成像,从而获得化学成分信息。图3 s-SNOM纳米傅里叶变换红外光谱仪的结构示意图  AFM-IR纳米级红外技术主要依赖于样品的吸收系数ks,与针尖和样品的其他光学性质基本无光,因此该技术尤其适合具有较高热膨胀系数的软物质材料,例如高分子聚合物、复合材料、蛋白和细胞、纤维、多层膜结构、药物、锂电池等的纳米尺度的化学成分鉴定,组分分布及相分离结构,表界面化学分析和失效研究等方面。s-SNOM技术,其应用受到样品限制,只有对红外光有较强散射的样品才能得到信号,而且散射信号复杂,必须有模型进行修正,得到的红外光谱的波数也有漂移,使得结果的理解不够直接。但SNOM技术特别适用于硬质材料,特别是具有高反射率、高介电常数或强光学共振的材料。  AFM除了与红外光谱联用以外,还可与其他光谱相结合,例如AFM与拉曼光谱仪联用的针尖增强拉曼散射(Tip-enhanced RamanScattering,TERS)光谱技术,目前最佳的光学空间分辨率可达0.5 nm,AFM与太赫兹光谱技术联用的散射式的近场太赫兹(Scattering-type Scanning Near-field THz Spectroscopy,S-SNTS)光谱技术,目前最佳光学空间分辨率为40nm。TERS、Nano-IR与S-SNTS三种技术的基本原理类似,都是依赖于探测在金属化探针针尖尖端形成的、与针尖曲率半径大小相当的纳米级增强光源与待测分子之间的相互作用,来获得纳米级的光学空间分辨率。  F Huth等人将Nano-IR应用到对纳米尺度样品污染物的化学鉴定上,图4中显示的Si表面覆盖PMMA薄膜的横截面AFM成像图,其中AFM相位图显示在Si片和PMMA薄膜的界面存在一个100nm尺寸的污染物,使用Nano-FTIR在污染物中心获得的红外光谱清晰的揭示出了污染物的化学成分,与标准FTIR数据库中谱线进行比对,可以确定污染物为PDMS颗粒。图4 Nano-IR用于纳米级污染物的化学组成鉴别  S Gamage等人利用纳米级红外光谱成像技术,揭示如艾滋病病毒(HIV)、埃博拉病毒及流感病毒等有包膜病毒(Enveloped viruses)在入侵宿主细胞前进行的关键性结构变化。他们发现了一种抗病毒化合物,能有效地阻止流感病毒在低pH值暴露期间进入宿主细胞,低pH值环境是病毒引起感染的最佳条件。该方法提供了关于包膜病毒如何攻击宿主的重要细节,以及预防这些病毒攻击的可能方法。  我国科研人员也利用纳米级红外光谱技术开展了相关的研究工作。例如,唐福光等人利用纳米红外AFM-IR对高抗冲聚丙烯共聚物材料个三种不同微区组分进行分析,这些信息有助于理解聚合反应动力学与颗粒生长机理和催化剂的优化设计。史云胜等人通过纳米级红外光谱分析发现石墨平台表面具有非常有序的碳六元环结构,并且吸附的水分子最少。而石墨平台微结构的边缘由于悬键及微加工等原因是吸附水分子最多的位置,石墨基底由于微加工的破坏已经不具有碳六元环结构。这些信息明确了所处环境对石墨平台微结构不同位置的影响,为指导微机电器件的制备与应用提供了信息。韦鹏练等人应用纳米级红外技术研究了竹材纤维细胞壁的化学成分及其分布,观察到了木质素在细胞壁中具有团聚状的不均匀分布。  此外,同步辐射(Synchrotrons)作为另一种新型的红外光源,具有光谱宽(10~10000 cm-1)、亮度高(比传统Globar光源高2~3个数量级) 、小发散角等特性,特别是其高亮度的特性十分适合开展红外显微光谱成像研究,对小样品或小样品区域的表征上具有传统红外光谱无法比拟的优势(见图5)。随着同步辐射红外显微光谱技术的发展,已经将研究的重点从组织层次的红外光谱成像扩展到细胞层次的红外光谱成像,并在近十年的研究中取得了可观的研究成果,对细胞的结构和功能研究中以及其他领域(文化遗产、考古学、地球和空间科学、化学和高分子科学等)不同材料的研究中都会逐步显示出了独特的作用。图5 同步辐射光源的纳米红外光谱(Synchrotron infrared nanospectroscopy,SINS)系统示意图图6 SINS用于研究催化剂颗粒上的N-杂环卡宾分子化学转化示意图  例如,2017年C Y Wu等人在Nature上发文,他们使用基于同步辐射红外纳米光谱(Synchrotron-radiation-based infrared nanospectroscopy,SINS),成功研究了结合在催化剂颗粒上的N-杂环卡宾分子的化学转化,空间分辨率达25nm。研究人员由此可以分辨具有不同活性的颗粒区域,结果表明,与颗粒顶部的平坦区域相比,包含低配位数金属原子的颗粒边缘的催化活性更高,能更有效催化结合在催化剂颗粒上的N-杂环卡宾分子中化学活性基团的氧化和还原(见图6)。  光热诱导亚微米红外成像技术(Mid-infrared photothermal,MIP)采用AFM-IR光热技术的基本概念克服红外波长衍射极限的限制,具有亚微米级空间分辨率,空间分辨率可达500nm,可获得亚微米尺度下样品表面微小区域的化学信息。该技术通过脉冲式中红外激光器照射样品表面,产生光热效应,被聚焦到样品上的可见光作为“探针”进行检测。MIP技术可在反射模式下进行样品测试,无需制备薄片,适用于厚样品,提高了样品测试效率,可用于环境、材料、生命等领域。现已有商品化的光热诱导亚微米红外成像仪,填补了传统红外光谱显微镜和纳米红外光谱之间的空白,该产品还可实现红外和拉曼分析的一体化,共同检测有机、无机组分,可大大拓展该技术的应用领域。  亚微米级和纳米级红外光谱在很大程度上可以解决横向空间分辨率的测试问题,但物质尤其是生物组织对于紫外、近红外和中红外波段的光波均是强散射媒质,光波在其中传播的平均自由程仅约为1mm,超出这个极限以后,光散射将干扰光波的传播路径,致使其无法有效聚焦。由于这一限制,光学成像方法通常只能应用于浅层成像,当成像深度超过1mm以后,光学成像的空间分辨率会严重下降,大约仅为成像深度的1/3。因此,传统的光学成像方法难以实现对深层组织非浸入原位成像。声学检测方法可以有效地获取深层组织的高空间分辨率图像,因为在相同的传播距离下,声波的散射强度要比光波小两到三个数量级,故相比于光波,声波可以在生物组织,尤其是软组织中低散射地较长距离传播。因此,可采用光声成像技术解决这一问题。图7 光声信号产生示意图  光声成像是基于光声效应的一种复合成像技术,它有效地综合了声学方法对深层组织成像分辨率高的优点,以及光学成像在获取组织化学分子信息方面的优势。当激光照射物质时,被照射区域及临近区域会吸收电磁波能量并将其转换为热能,进而由于热胀冷缩而产生应力或压力的变换,激发并传播声波,称为光声信号(见图7)。其强度和相位不仅取决于光源,更取决于被照射物质的光吸收系数的空间分布,以及被照物质的光学、热学、弹性等特性。光声成像正是通过检测光声效应产生的光声信号,从而反演成像区域内部物质的光学特性,重构出光照射区域内部的图像。通过选择合适的成像模式和选用不同频率的超声换能器,光声成像可以提供微米甚至纳米量级的空间分辨率,同时获得毫米到几十毫米量级的成像深度。光声成像技术十几年的发展显示了它能对生物组织内一定深度病灶组织的结构和生物化学信息高分辨率、高对比度成像,而其他技术则暂不具有这样的功能。目前,光声成像技术已是生物组织无损检测领域里备受关注的研究方向之一,国际上众多研究学者将重心转移至这一研究方向。  光声成像有两种具体的实现方式:一种是光声断层成像(Photoacoustic tomography,PAT),另一种是光声显微镜(Photoacoustic microscopy,PAM)。光声断层成像系统使用非聚焦激光照射成像样品来产生光声信号,并利用非聚焦或线聚焦换能器接收光声信号,随后通过求解光声传播逆问题来重构光声图像。光声断层成像的图像重构依赖于特定的图像重构算法,其成像的空间分辨率和成像深度取决于超声换能器的工作频率。光声显微镜通常使用扫描的方式获得,而不需要复杂的重建算法。扫描的方式主要有两种,第一种是通过扫描一个聚焦的超声探测器以获取光声图像,这种方式被称为超声分辨率光声显微镜,它通过超声来进行定位,分辨率决定于超声换能器的带宽以及中心频率,分辨率能等达到15微米到100微米,由于利用超声进行定位,因此这种显微镜的成像深度能达到30毫米。第二种扫描方式是采用会聚的激光束进行扫描,通过这样的方式能达到光学分辨率的光声成像,它的分辨率取决于会聚激光束的衍射极限,因此它也被称为光学分辨率光声显微镜,由于这种方法通过光来定位,由于组织的散射的影响,它的穿透深度不如超声分辨率光声显微镜。  我国科研人员在这一领域做出了较大的贡献,例如华南师范大学生物光子学研究院邢达教授团队建立了基于二维扫描振镜的共焦光声显微成像系统,能够高分辨地成像多种癌症细胞、黑色素细胞、红细胞、神经细胞等,并建立起基于中空超声聚焦探测器的光声显微镜,实现了多尺度的光声显微成像。唐志列教授课题组建立了基于光声微腔的显微成像系统,获得了高分辨率的光声显微图像。中国科学院深圳先进研究院宋亮研究员课题组利用压缩感知技术提高了光声显微成像的成像速度,并通过改进光声显微成像系统的扫描装置实现了亚波长分辨率的光声成像。华中科技大学骆清铭教授团队构建了基于反射式显微物镜的光声显微成像系统,改善了成像分辨率及成像深度。图8 基于γFe2O3@Au 核壳型复合纳米结构的诊疗一体化纳米平台示意图  每种光谱成像技术都不能对生物组织做出完整的描述,由多方法组成的多模态成像技术是获得组织更多信息的有效途径。目前,多模态成像技术引导的诊疗一体化体系因其可以提供肿瘤在位置、尺寸、形状方面丰富的信息,从而可以指导有效治疗而引起人们的广泛关注。我国中科院苏州纳米技术与纳米仿生研究所张智军课题组与苏州大学陈华兵教授团队以及厦门大学任斌课题组等合作,构建了具有高粗糙度的γFe2O3@Au纳米花结构,有效增强了肿瘤拉曼成像信号,并同时提高了磁共振和光声成像效应,实现了高精度、高空间分辨率以及高灵敏度的磁共振/光声/SERS三模态协同成像:通过磁共振成像技术可以获得肿瘤的位置和轮廓的信息 通过光声成像可以对肿瘤进行深层次的定位,同时获得解剖学的信息 通过高灵敏度SERS成像可以对肿瘤边界进行精确定位,从而指导肿瘤切除手术。在此基础上,研究人员进一步利用这种金磁复合纳米材料的近红外光热效应,实现了肿瘤的光热治疗(见图8)。图9 空间位移拉曼光谱(SORS)测试示意图  如图9所示,空间位移拉曼光谱(Spatially Offset Raman Spectroscopy,SORS)是另一种可分析数毫米厚样品的技术,也可以对不透明包装内的材料进行化学分析。SORS可以使用相对较低能量的激光,在分层扩散的散射系统中,分离单个次层的拉曼光谱。在激发点样品表面上的空间位移区域收集拉曼光谱。在增加的空间位移处所观察到的拉曼光谱包括深层提供的相对贡献。  蔗糖是一种常用的药物赋形剂,蔗糖装在 1.5mm 壁厚的聚丙烯瓶里。如图10所示,用传统拉曼光谱仅测得聚丙烯的谱图,并未识别到蔗糖,而通过 SORS 直接获得了厚聚丙烯瓶内的蔗糖谱图,而没受到 PP 的干扰。因此,SORS 技术用于原料药进厂验证时,不需打开包装,直接在仓库验证,避免打开包装和重新密封的操作。图 10 传统拉曼和 SORS 直接检测聚丙烯瓶内蔗糖的结果  2、在宏观空间拓展中的应用进展  德国哲学家康德说过:“这个世界上唯有两样东西能让我们的心灵感到深深的震撼:一件是我们内心崇高的道德法则,另一件是我们头顶灿烂的星空。”自有人类文明史以来,人类对于浩瀚星空的探索从未停止。下面通过列举几个红外、近红外等光谱仪在空间探测方面的应用实例,介绍分子光谱技术在宏观空间拓展方面的应用进展。  2017年11月15日2时35分,我国在太原卫星发射中心用长征四号丙运载火箭,成功将“风云三号D”气象卫星发射升空,卫星顺利进入预定轨道。星上装载了10台套先进的遥感仪器(见图11),除了微波温度计、微波湿度计、微波成像仪、空间环境监测仪器包和全球导航卫星掩星探测仪等5台继承性仪器之外,红外大气垂直探测仪、近红外高光谱温室气体监测仪、广角极光成像仪、电离层光度计为全新研制、首次上星搭载,核心仪器中分辨率光谱成像仪进行了大幅升级改进,性能显著提升。中分辨率光谱成像仪可以每日无缝隙获取全球250米分辨率真彩色图像,实现云、气溶胶、水汽、陆地表面特性、海洋水色等大气、陆地、海洋参量的高精度定量反演,为我国生态治理与恢复、环境监测与保护提供科学支持,为全球生态环境、灾害监测和气候评估提供中国观测方案。红外大气垂直探测仪采用迈克尔逊干涉分光的方式实现大气红外高光谱探测,光谱覆盖1370个通道,谱分辨率最高达0.625cm-1,可以获取高频次区域晴空和云顶以上的大气三维结构。该仪器选择大气混合比稳定的二氧化碳红外吸收带,探测大气的温度廓线,选择水汽红外吸收带探测大气的湿度廓线。不同的二氧化碳吸收通道探测到的红外辐射主要来自于特定的高度层,对该高度的大气温度变化敏感,利用此原理可以获得大气的温度垂直分布信息。同样,不同的水汽吸收通道对不同高度层的大气湿度变化敏感,从而可以获得大气的湿度垂直分布信息。不同高度的大气对不同探测通道的红外辐射贡献存在差异,根据这些差异可以反演出大气温度、湿度的三维结构。近红外高光谱温室气体监测仪是一台可监测全球温室气体浓度的遥感仪器,它可以获取二氧化碳、甲烷、一氧化碳等主要温室气体的全球浓度分布和时间变化的信息,提高区域尺度上地表温室气体通量的定量估算,分析和监测全球碳源碳汇,为巴黎气候大会温室气体减排提供科学监测数据。图11 “风云三号”气象卫星携带的科学仪器  据《每日邮报》北京时间2018年8月21日报道,在使用高科技卫星扫描后,科学家首次发现月球地表存在冰。科学家表示,他们在月球极地的永久阴影区域探测到了冰。他们使用的近红外光谱成像技术,可以分辨出不同类型的水,其中包括地表、吸收到土壤中或结合在矿物中的水。之前人类已经在月球土壤中发现水,但这被认为是人类首次在月球地表探测到水。地表水冰仅占到月球阴影覆盖区域的约3.5%。过去的方法无法区分水和羟基基团(—OH),本研究利用近红外反射光谱方法,为月球存在H2O提供了无可辩驳的证据,这一方法还可以非常准确地区分不同类型的水。这些数据是由印度首个月球探测器月船一号(Chandrayaan-1)携带的月球矿物成像仪(Moon Mineralogy Mapper)获得的,月船一号发射时间是2008年。  2019年1月3日上午10点26分,我国嫦娥四号月球探测器成功着陆在月球背面的冯卡门坑内。此后,玉兔二号巡视器驶抵月背表面,其上携带的近红外成像光谱仪成功获取了着陆区探测点的高质量光谱数据。在多台科学有效载荷中,近红外成像光谱仪是唯一服务于月球矿物组成探测与研究的科学仪器,该光谱仪采用AOTF分光技术,光谱范围为0.45~2.40μm,光谱分辨率为2~12nm,具备在轨定标及防尘功能,能适应-20~55℃工作以及-50~70℃存储的温度环境,重量小于6kg,是一台高性能、轻小型、高集成的仪器(见图12)。近红外成像光谱仪对月球车前方0.7m的月表进行精细光谱信息获取,可以看到0.1m分辨率的月表矿物特征,为月面巡视区矿物组成分析提供科学探测数据。2019年5月16日,中国科学院天文台宣布,李春来研究团队利用嫦娥四号探测数据,证明了月球背面南极-艾特肯盆地存在以橄榄石和低钙辉石为主的深部物质,由此,月幔化学成分的神秘面纱缓缓揭开帷幕。图13为该团队发表在Nuture上的月幔近红外光谱图及其解析结果。图12 嫦娥四号上的近红外成像光谱仪图13 发表在Nuture上的月幔近红外光谱图及其解析结果  新华社北京2019年3月29日电,中国科学院国家天文台近日发布了郭守敬望远镜(LAMOST)7年来获取的1125万条光谱。这是世界上首个获取光谱数突破千万量级的光谱巡天项目。LAMOST是我国自主研制、世界上口径最大的光谱巡天望远镜。此次发布的高质量光谱数达到937万条,约为国际上其他巡天项目发布光谱数之和的2倍,另有一个636万组恒星光谱参数星表,是目前全世界最大的恒星参数星表。LAMOST结合红外、射电、X射线、伽马射线巡天的大量天体的光谱观测在在各类天体多波段交叉证认上做出重大贡献。在星系探索中,包含着极其丰富信息的光谱起了非常关键的作用。其中星系的光谱可以提供距离、构成、分布和运动等信息,而恒星的光谱则包含构成、光度、温度、化学组成、空间分布和演化历史等资讯(见图14)。从大量天体的光谱观测中还可以发现许多奇异的天体和天体现象。所有这些,将促进人类对宇宙演化规律、物质结构、相互作用等最基本物理规律的新认识。图14 光谱用于深空探测示意图  2018年6月29日,国外媒体报道,哈勃望远镜的“接任者”詹姆斯?韦伯望远镜将推迟至最早2021年3月30日发射。韦伯望远镜由NASA和欧洲航天局以及加拿大航天局联合研发,它将是有史以来建造的最6 A Ebner,R Zimmerleiter,C Cobet,K Hingerl,M Brandstetter,J Kilgus. Sub-second quantum cascade laser based infrared spectroscopic ellipsometry. Optics Letters,2019,44(14):3426~3429  17 N Picque,T W Hansch. Frequency comb spectroscopy. Nature Photonics,2019,13(3):146~157  (本文是“2019中国仪器仪表学会学术年会”和“2019国际应用光学与光子学学术交流会”讲稿的文字整理)(褚小立)
  • AFM vs. STM 分子级别分辨率成像技术
    如果你已经看过我上一篇介绍低电流STM成像的短文[i],那么那些HOPG上钴和镍八乙基卟啉(CoOEP 和NiOEP)自组装二维晶格子的高分辨STM图像一定会令你印象深刻。Roger也是一样,在看到那些图片之后,他向我建议可以尝试使用Cypher AFM的轻敲模式(调幅AC模式)来代替STM观察CoOEP的 晶格,因为我们知道Cypher AFM在空气中的成像质量相当稳定。当我把这个想法告诉Kerry Hipps教授时,他第一反应是“这不可能!”。我接着跟他说: “我非常确定这个是可行的。” 好吧,我承认我的倔强和执着,所以无论如何,我都要尝试一下这个“疯狂”的想法。我选择了一个尖锐,敏捷,硬度中等,悬臂为硅材料的镀金探针(FS-1500AuD探针)。 它的针尖半径为Rtip = 10± 2 nm,空气中的共振频率为fair≈1.5MHz,弹性系数为k≈6N / m。您也可以在我们的探针库找到它.当我将针尖接近样品表面时,样品表面的苯基辛烷薄层会立即吸附在探针悬臂上(见图1)。在这样一种气相-液相混合振荡介质中,针尖的共振频率会立即降到0.66 MHz。这种情况下的溶液需要大约10分钟之后才达到平衡,而在此之后,即使探针在表面移动也不会再次影响到溶液的稳定性。图1. 苯基辛烷/ HOPG界面处干涉条纹的时间序列图像。这些图像是通过Cypher ES顶视光学系统捕获的。当溶液吸附到AFM悬臂上时,苯基辛烷弯月面起到衍射器的作用而产生出干涉条纹。由于BlueDrive出色的光热激发稳定性,在平衡溶液中调谐悬臂后,我能够将自由驱动振幅和设定点分别稳定在~1.44 nm(90 mV)和~0.34 nm(21 mV)[iii] 。瞧瞧图2中的图像,CoOEP晶格渐渐在视野中显现出来,这里观察到的的~1.4 nm的晶格的分子间距和预期的理论值一摸一样!我向 Hipps教授展示了这组图片,他不得不惊叹地说一句 “Wow!”图2. 低振幅轻敲模式下CoOEP的分子晶格分辨率图像。 (A)扫描边长为100 nm。 (B)沿(A)中的白线的截面,从中可以清楚的观察到CoOEP分子有规则间隔。 (C)扫描边长为100nm 的3D图像。将图2继续放大后(见图3),我确信自己可以在一部分相位图中看到卟啉环结构。您可能会注意到的是,相比上一篇短文中的STM图像,这里的测量结果似乎对样品表面的污染更加敏感。我们可以看到样品表面上有一些无定形的团聚物,这些污染物会和扫描过程中的针尖相互作用,使扫描的图像发生了一些变化。这意味着在AFM测量之前,您务必对样品表面,探针和探针支架进行全方位的清洁。图3.在轻敲模式下CoOEP晶格的AFM放大图像。 (A)扫描边长为20纳米的形貌图。 (B)扫描边长为20纳米的相位图。注意卟啉环结构在图像的上部清晰可见。这些数据让我想起了纽卡斯尔大学的Rob Atkin教授,诺丁汉大学的Peter Beton教授和南京大学的王欣然教授曾经发表的一些关于使用Cypher 在大气环境下进行的AFM的研究 [iv-vi]。这里我来具体介绍一下这些研究的成果。第一项研究[iv]阐明了在恒电位控制偏压下石墨(HOPG)表面的离子液体(EMIm + TFSI-)的纳米结构(见图4A)。此外,施加的偏压在开路电位附近有规律地变化,同时分子Stern层作为偏压的函数(以及离子组分的函数,例如Li +和Cl-)进行了重新整合。第二项研究[v]主要集中在观察吸附在六方氮化硼(hBN)和其他样品表面上的5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的超分子结构,及分析该吸附现象对TCPP分子的光电子特性的影响。图4B显示了hBN上TCPP的正方晶格结构。第三项研究[vi]探讨了HOPG和hBN上高流动性的二辛基苯并噻吩并苯并噻吩(C8-BTBT)的少层二维分子晶体的范德瓦尔外延结构,这种材料可用于实现有机场效晶体管。图4C显示了在hBN上生长的C8-BTBT晶格的高分辨率形貌。图4. 2D分子晶格的AFM成像。 (A)吸附在HOPG基片上的纯EMIm + TFSI-Stern层的相位图 扫描边长为30nm,在块体EMIm + TFSI-离子液体中成像(参见参考文献[iv])。 (B)组装在hBN基片上的TCPP的正方晶格的形貌图像 扫描边长为50nm,在空气中成像(参见参考文献[v])。 (C)在hBN基片上生长的C8-BTBT晶格的形貌图像 扫描边长为10nm,在空气中成像(参见参考文献[vi])。References[i] April Current Amplifiers Bring May Ultra-Low-Current STM[ii] Learn more about Cypher here: https://www.oxford-instruments.com/products/atomic-force-microscopy-systems-afm/asylum-research/highresolution-fast-scanning-afm.[iii] (a) Learn more about blueDrive at https://afm.oxinst.com/bluedrive and athttps://pdfs.semanticscholar.org/e807/9171fb282e6340f6813a0f6b8cee8b4bae74.pdf. (b) A. Labuda, K. Kobayashi,Y. Miyahara, and P. Grütter, Retrofitting an atomic force microscope withphotothermal excitation for a clean cantilever response in low Qenvironments, Review of Scientific Instruments, 2012 83, 053703.https://aip.scitation.org/doi/abs/10.1063/1.4712286.[iv] A. Elbourne, S. McDonald, K. Vo?chovsky, F. Endres, G. G. Warr, and R.Atkin, Nanostructure of the Ionic Liquid–Graphite Stern Layer, ACS Nano,2015, 9(7), 7608–7620. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b02921.[v] V. V. Korolkov, S. A. Svatek, A. Summerfield, J. Kerfoot, L. Yang, T. Taniguchi,K. Watanabe, N. R. Champness, N. A. Besley, and P. H. Beton, van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional PorphyrinArrays on Boron Nitride, ACS Nano, 2015, 9(10), 10347–10355.https://pubs.acs.org/doi/10.1021/acsnano.5b04443.[vi] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y.Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B.Xu & X. Wang, Two-dimensional quasi-freestanding molecular crystals forhigh-performance organic field-effect transistors, Nature Communications,2014, 5:5162, 1–7. https://www.nature.com/articles/ncomms6162.*转载文章前请与牛津仪器联系,未获许可谢绝转载,谢谢。
  • ThermoScientific液质技术小分子应用(全国)讲座
    Thermo Scientific公司质谱与色谱部诚挚邀请您参加于2007年度在全国各城市举办的液相色谱/质谱技术在小分子领域应用的专题讲座。来自美国圣何塞工厂的质谱技术应用专家将与您进行面对面的交流,共同探讨最新的液质联用技术在化合物鉴定、生物样品分析、环境以及食品安全等领域中的应用。通过本次专题讲座您将了解:生物样品分析中最新的定量辅助工具,多级高分辨组合质谱的功能,QED-MS/MS等技术及在重要行业的解决方案。届时我们将恭候您的光临! 讲座日程安排 8:45 - 9:15 报到 9:15 - 9:30 致欢迎词 9:30 - 10:20 生物样品分析中基体的影响和离子抑止的挑战:CDER新指导原则的影响 10:20 - 11:10 硬件和软件工具组合开发代谢研究中精确质量数和MSn数据的优势 11:10 - 12:00 EQuan & QED: 在环境和食品安全应用中的,快速质谱扫描、高灵敏、同时进行定性与定量分析的挑战 12:00 结束 演讲者和报告内容 杜英华博士, 液质产品发展经理 Thermo Scientific, San Jose, USA 生物样品分析 在第三届水晶城生物样品分析技术会上,讨论了基体对定量分析的影响,重新引起了业界和FDA的兴趣,为了让您了解如何降低基体的干扰和避免样品分析重复失败,给您介绍以下方面: • 减少离子抑制和基体影响的方法 • FAIMS在减少药物有关的非内源性化学干扰的作用 • 开发皮实的方法降低样品分析重复失败 • 高通量药物开发方案 杜英华博士, 液质产品发展经理 复杂化合物的鉴定 您将了解结构解析的系列仪器和工具,包括使用线性离子阱质谱和Mass FrontierTM软件自动处理MSn数据鉴定结构。开发由LTQ OrbitrapTM得到的高分辨和精确分子量的数据在复杂结构难题的解决方法。 王勇为博士, 中国应用支持部经理 ThermoFisher Scientific, 上海示范中心 环境和食品安全 食品和水环境体系的农药、抗生素等禁用物质的允许水平监测需要达到低检出限,您将了解Thermo的环境和食品分析方案,重点包括: --EQuan(TM), 一种减少样品前处理和改善LOD的独特方法 --QED-MS/MS技术,可以在定量分析后进行全扫描和谱库检索对对结构鉴定和确证 如需获得具体讲座信息,请联系: 热电(上海)科技仪器有限公司 北京市金融街23号平安大厦1010~1019室(100032) 电话:010-58503588-3254 传真:010-66210851 联系人:吴昭 --讲 座 日 程-- 2007年4月16日 周一 南京 地点: 玄武饭店 玄武厅 地址:南京市中央路193号 2007年4月17日 周二 杭州 地点:浙江文华大酒店 六楼 文华厅 地址:杭州市文二路38号 2007年4月18日 周三 武汉 地点:海怡锦江大酒店 七楼 多功能厅 地址:武汉市洪山路特一号 2007年4月19日 周四 广州 地点:广州白云宾馆 二十九楼 2903会议室 地址:广州越秀区环市东路367号 2007年4月20日 周五 长沙 地点:长沙运达喜来登酒店四楼 1号会议室 地址:长沙市芙蓉中路一段478号 运达国际广场 2007年5月14日 周一 郑州 地点:长城饭店 国际会议中心 地址:郑州市金水区经三路十四号 2007年5月15日 周二 沈阳 地点: 沈阳洲际酒店 象牙厅 地址:沈阳市和平区南京北街208号 2007年5月16日 周三 哈尔滨 地点: 哈尔滨华融饭店 六层 世纪厅 地址:哈尔滨市南岗区颐园街2号 2007年5月17日 周四 济南 地点:济南索菲特银座大饭店 宴会厅 地址: 济南泺源大街66号 2007年5月18日 周五 天津 地点: 天津假日饭店 津门厅 地址:天津市中山路288号
  • 可用于预测分子特性!人工智能公司DeepMind开发出化学界最有价值的技术之一
    原文作者:Davide Castelvecchi机器学习算法利用电子密度预测材料性质伦敦人工智能公司DeepMind的科学家领导的一个团队开发了一种机器学习模型,该模型能通过预测分子中电子的分布来预测分子的特性。这种方法发表于12月10日的《科学》杂志上[1],它可以比现有技术更准确地计算一些分子的性质。人工智能预测单个分子中电子的分布(示意图),并利用它来计算物理性质。来源:DeepMind维也纳大学的材料科学家Anatole von Lilienfeld说,“能做到如此精确是一项壮举。”波兰罗兹理工大学的计算化学家Katarzyna Pernal说,这篇论文是“一项扎实的工作”。但她补充说,在能为计算化学家所用之前,机器学习模型还有很长的路要走。预测性质原则上,材料和分子的结构完全由量子力学决定,特别是由支配电子波函数行为的薛定谔方程(Schrödinger equation)决定。这些数学工具能描述特定电子在特定空间位置出现的概率。但是DeepMind的物理学家James Kirkpatrick说,因为所有的电子之间都存在相互作用,所以根据这样的第一性原理(first principle)计算结构或分子轨道异常棘手,仅能对最简单的分子进行计算,比如苯。为了避开这个问题,那些依赖新分子的发现或开发的研究人员——从药理学家到电池工程师,几十年来一直使用一套被称为密度泛函理论(DFT)的技术来预测分子的物理性质。该理论并不模拟单个电子,而是计算电子负电荷在分子中的总体分布。“DFT着眼于平均电荷密度,所以它不知道单个电子的状态。”Kirkpatrick说。物质的大多数性质可以根据该密度轻易地计算出来。自20世纪60年代DFT建立以来,它已经成为物理科学中应用最广泛的技术之一:2014年,《自然》新闻团队的一项调查发现,在被引次数最多的100篇论文中,有12篇是关于DFT的。材料性质的现代数据库,如Materials Project,很大程度上由DFT计算的数据组成。但是这种方法有局限性,而且现在已经知道它会对某些类型的分子给出错误的结果,甚至包括氯化钠这样简单的分子。尽管DFT已经比基于基本量子理论的计算要高效得多,但它们仍然很耗时,并且通常需要超级计算机。因此,在过去的十年里,理论化学家越来越多地开始用机器学习进行实验,特别是用在材料的化学反应活性或导热能力等性质的研究上。理想问题DeepMind团队可能做出了迄今为止最具野心的尝试,他们利用人工智能来计算电子密度,这是DFT计算的最终结果。“在某种程度上这属于理想的机器学习问题:你知道答案,但不知道想用什么计算公式。”理论化学家Aron Cohen说。他长期从事DFT研究,目前在DeepMind工作。该团队用薛定谔方程导出的1161个精确解数据训练了一个人工神经网络。为了提高其准确性,他们还将一些已知的物理定律硬连接进了神经网络中。von Lilienfeld说,他们随后用一组DFT计算常用的标准分子测试了训练好的系统,结果很出色。“这是研究群体目前能得到的最好结果了,而他们大获全胜。”他说。von Lilienfeld补充说,机器学习有个优点是,尽管训练模型需要海量的计算能力,但这个过程只要做一次,之后就能在普通笔记本电脑进行独立的预测运算。与每次都从头开始计算相比,机器学习模型大大降低了成本和碳足迹。Kirkpatrick和Cohen说,DeepMind正在发布他们训练好的系统供任何人使用。作者表示,目前该模型主要适用于分子,而不适用于材料的晶体结构计算,但之后的版本也可能会适用于材料。参考文献:1. Kirkpatrick, J. et al. Science374, 1385–1389 (2021).原文以DeepMind AI tackles one of chemistry’s most valuable techniques为标题发表在2021年12月10日《自然》的新闻版块上
  • 罗氏、华大、珀金埃尔默纷纷杀入,10款测序自动化建库系统大盘点
    01 珀金埃尔默 BioQule NGS 系统6月6日,PerkinElmer宣布推出仅供研究使用的 (RUO) BioQule NGS 系统——一种自动化台式NGS建库解决方案,该系统一次最多可制备 8 个样品的文库。BioQule NGS 系统将自动热循环、通过光学量化的集成质量控制和强大的液体处理技术整合到一个设备中,使研究人员能够生成高质量的 NGS 文库,在需要基因组分析的各种应用中产生可靠、可重复的结果。BioQule NGS系统内置的定量模块可对其自身生成的文库进行自动定量。BioQule NGS系统使用的方法程序和试剂盒是预开发和预验证的,整个系统可以由用户直接安装、设置和运行,无需专门供应商的支持。02 罗氏诊断-AVENIO Edge System全自动NGS建库工作站去年11月,罗氏诊断中国宣布重磅推出AVENIO Edge System全自动NGS建库工作站,这是目前市场上唯一集文库制备、靶向探针捕获和文库质控于一体,实现“样本进,结果出”的NGS建库工作站,在提升检测质量、简化运行程序及改善管理效率等方面享有显著优势和价值,开创行业新标准。03 华大智造-肿瘤自动化建库系统MGISP-100MGISP-100自动化样本制备系统是由华大智造自主研发的一款专注于二代测序领域的自动化工作站,具有功能全面、经济高效、运行稳定、可拓展性强的特点,适用于广大中小型实验室采用。系统采用集成化设计,覆盖实验全流程,预置高精密移液系统、PCR仪、磁珠纯化模块、温控设备等功能模块,以及全面的防污染设置,支持定制化开发。整套系统建库时间短,可对样本进行批量自动化操作,省去了繁琐的重复步骤,能有效减少人为误差,提高NGS文库制备的稳定性和诊断精度,有效降低总成本,全面提升实验室整体工作效率。04安捷伦-Magnis NGS Prep全自动系统2019年,安捷伦发布二代测序(NGS)文库制备系统——Magnis NGS Prep全自动系统。该系统专为分子实验室设计,系统设计简单,只需按一下按钮就可以进行复杂的DNA测序分析。全自动Magnis NGS Prep系统能够分析混合基因组分和复杂基因突变,包括由于福尔马林固定石蜡包埋(FFPE)导致的DNA降解。Magnis系统为NGS文库制备提供了一套完整的解决方案。该系统尽可能的缩短了复杂NGS建库时间,实现操作完全自动化。05 微岩医学-PathoLab 自动化提取建库系统微岩医学自主研发的PathoLab 自动化提取建库系统,适配多样本类型,4h即可完成24通量样本的核酸提取和文库构建操作,完美适配一张测序芯片。仪器兼备全外排通风、顶端过滤及封膜设置,适配定制化无菌试剂盒,层层防止外部污染,确保检测结果高准确度!且兼具安全性、报警功能及进度条提示等人性化操作界面,可全面提升实验室整体工作效率!06杰毅生物-NGSmaster病原宏基因组一站式建库仪杰毅生物通过数年的研发推出了NGSmasterTM全自动一站式建库仪,涵盖了核酸提取、文库构建、文库纯化等所有NGS上机测序前的所有工作,样本在一个封闭式空间操作,最大程度降低了操作空间的气溶胶污染宏基因组项目,对于后期的解读帮助很大。07 思路迪-ANDiS自动化封闭式建库仪思路迪自动化封闭式建库仪ANDiS 400采用集成化设计,覆盖NGS文库制备全流程,预置高精度移液系统,温控设备,二维码扫描仪,微电脑控制系统等功能模块;搭配全封闭设计卡盒,实现全自动化文库制备。该仪器还可提高NGS文库制备的稳定性和诊断精度,有效降低总成本,全面提升了实验室整体工作效率。ANDiS 400目前的应用范围广泛,其配套建库卡盒可覆盖国内外实体肿瘤临床指南推荐检测的基因变异,可应用于肺癌、胃肠癌、乳腺癌、卵巢癌等多个瘤种的靶向治疗免疫治疗及化疗用药指导。08 燃石-全自动文库制备系统Magnis BR2019年,燃石在中国病理年会卫星会上发布了一款新产品——NGS全自动文库制备系统Magnis BR。Magnis BR是中国首款可支持探针捕获法的NGS全自动文库制备系统,在检测通量上的灵活性以及检测流程的自动化程度上均超越了既有的NGS自动化解决方案。09 墨卓生物-NOVA—MobiNova-100高通量单细胞建库系统墨卓MobiNova-100单细胞测序建库系统,基于分子标签(barcode)的单细胞识别,利用独家专利的标签和油包水技术,通过优化微流控芯片的设计和仪器控制,在液滴生成时稳定实现细胞分离和微球、试剂、细胞的共包裹达到较高的细胞捕获率。DBS-LibPrep是一台自动化建库仪,是以数字化微流体技术为核心的文库制备系统,将温度控制、磁珠控制、PCR等操作有机结合起来,让每个实验室迈入无人值守的文库制备新时代。针对不同的建库试剂盒流程,衡芯生物可以为客户提供自主研发和生产的DBS-LibPrep建库芯片,下图是DBS-LibPrep芯片和芯片上不同的反应区。
  • 2013年赛默飞世尔科技分子光谱软件技术交流会(第二轮通知)
    尊敬的用户,您好! 赛默飞世尔科技分子光谱部感谢各位用户对尼高力系列产品的支持与厚爱,为了让用户更多的了解使用的光谱软件的功能,更好的发挥已有仪器的功能,准备在北京组织&ldquo 2013年赛默飞世尔科技分子光谱软件技术交流会&rdquo 。希望通过此举抛砖引玉,让大家辛苦获得的数据发挥更大的作用。 会议内容及日程安排: 8:30 -- 9:00 来宾签到 9:00 -- 9:20 致欢迎辞,赛默飞世尔科技(中国)有限公司与分子光谱产品简介 9:20 -- 12.00 Thermo软件介绍、技术及其应用实例 1. Thermo分子光谱软件总介 2. QCheck高精度识别-质控的有效工具 3. 混合物分析的法宝-卓越的Specta 4. OMNIC Picta红外显微软件-让显微分析轻而易举 5. 使用激光拉曼光谱仪与TQ定量软件对样品进行准确快速定量分析 期间穿插提问、茶歇、讨论 12:00 -- 13.00 午餐 会议时间:2013年04月09日(星期二) 会议地点:北京翠宫饭店(海淀区知春路76号) 二层多功能厅 地图 没有报名的用户,可点击以下链接,在线注册: http://www.thermo.com.cn/InvitationDetail.aspx?ID=78
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
  • 俄罗斯库兹巴斯国立技术大学代表团到山东科技大学参观实验室
    4月13日,俄罗斯库兹巴斯国立大学代表团一行4人在副校长靳奉祥的陪同下到山东科技大学机电学院参观实验室,国际交流处处长李平、机电学院主要负责人陪同参观。院长肖林京向来宾介绍了我院实验室建设情况。
  • 【分子诊断机遇保卫战】寻求行业标准和基于临床的技术开发至关重要
    p   2016年,新一代测序、液体活检技术为主的新型分子诊断技术正在逐步进入临床实践,并得到了空前的发展,然而其在产品开发、临床开发与应用中的规范与标准仍在不断摸索,如实验室的操作规范、试剂开发的质控规范、样本来源及处理规范、临床指导的解读规范等亟待设立标准,建立各学科领域的行业共识。 br/ /p p   定于12月17-18日于首都北京举办的P4 China临床分子诊断技术与应用论坛,将汇聚监管部门、临床病理、检验、分子诊断、临床一线专家与分子诊断科学家,共同呼吁行业标准,促进分子诊断产品的有序研发。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/d3e35d8f-e233-48d3-a94c-7aca499530c6.jpg" title=" bf9289768ac3ab91a7ae642e335813a9.jpg" / /p p   本届大会以“从系统生物学研究、精准诊断应用到转化医学研发,探索P4精准医疗之路”为主题,将邀请约60位国内外政府官员、一流专家学者、知名企业高层等发表演讲,近600位行业精英共同参与。大会包括主会场--国内外精准医疗发展机遇与战略布局,三大分会场--多组学与系统生物学论坛、临床分子诊断技术开发与应用论坛、精准医药研发论坛,探讨从系统生物学研究、精准诊断的应用到转化医学的研发,聚焦从精准医学科研到产业化开发过程中的难点重点,并展示国际国内领先精准医疗的成果转化与最佳实践。会议将由大会报告、专题分会、圆桌会议、一对一配对、现场展示等活动组成。 /p p strong    /strong strong 三大精彩板块主题: /strong /p p   分子诊断产品开发的监管:跟进CLIA、LDT、试剂研发的质量监管趋势与要求 /p p   NGS在个性化诊断与用药的规范开发与应用:学习新一代测序技术在临床应用中的质控规范以及临床应用案例 /p p   肿瘤液体活检在临床中的开发: 探索肿瘤液体活检在临床转化中的实际效用与比较、液体活检技术的提升策略 /p p    strong 精彩议题一览 /strong /p p   CLIA与LDT在国内规范化还要多久? /p p   NGS测序的技术要求与质量的规范要求解析 /p p   个体化医学分子检测的标准化与规范化之路 /p p   NGS文库样本的高质量制备策略、一站式检测与临床精准指导方案 /p p   二代测序临床应用中对于检测样本的规范解读 /p p   二代测序检测与分析在临床应用中的规范解析 /p p   二代测序的选择依据与数据临床解读的体系建设 /p p   液体活检的临床应用范围、各项技术的应用进展 /p p   临床液体活检诊断/监测肿瘤的案例分享 /p p   基于各项分子诊断技术的液体活检的临床效果比较 /p p   临床医生如何看待二代测序与液体活检在临床诊断中的应用? /p p   strong  演讲嘉宾一览 /strong /p p   石远凯,中国医学科学院肿瘤医院副院长 /p p   王新京,美国国立卫生研究院DNA诊断实验室主任 /p p   康熙雄,北京天坛医院检验科主任 /p p   张力建,北京大学肿瘤医院胸外科主任医师、全国卫生产业企业管理协会基因技术研究与应用专业委员会会长 /p p   石怀银,解放军总医院病理科主任 /p p   于津浦,天津肿瘤医院肿瘤分子诊断中心主任 /p p   杨晓莉,武警总医院检验科主任 /p p   赵景民,解放军302医院病理诊断与研究中心主任 /p p   杨国华,格诺生物研发副总裁 /p p   周 洲,北京阜外医院临床检验中心常务副主任、分子诊断中心主任 /p p   刘 毅,解放军307医院全军肿瘤中心分子检验中心主任 /p p   中国食品药品检定研究院 /p p   国家卫生计生委临床检验中心 /p p   ...... /p p   (排名不分先后) /p p    /p p span style=" color: rgb(0, 176, 240) " strong   11月5日之前报名可享受早期报名特别优惠! /strong /span /p p   联系电话:+86 21 6052 9507 /p p   邮箱:p4china@bmapglobal.com /p p   P4 China 期待您的加入! /p
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 分子光谱厂商齐聚第十七届分子光谱会
    仪器信息网讯 2012年10月19-23日,由中国光学学会和中国化学会主办,韶关学院和韶关市化学化工学会联合承办的“第17届全国分子光谱学学术会议”在广东韶关召开。230余名分子光谱领域的专家学者参加了此次会议。   大会期间各分子光谱仪器厂商通过现场仪器展示,以及会议报告的方式向与会人员展示了各自最新的仪器及应用技术。 赛默飞世尔科技 Nicolet iS50红外光谱仪   赛默飞展示了今年5月最新推出的Nicolet iS50红外光谱仪。该仪器具有“一体化”集成光谱系统,拥有可放进样品仓的傅里叶变换拉曼模块,一体化专属的NIR,以及内置的一体化高灵敏式金刚石ATR,从而可从简单的FTIR光谱仪升级为全自动多光谱系统,获取从远红外至可见光的光谱。同时Nicolet iS50可与红外显微镜、流变仪、气相、热重分析仪等仪器联用。 安捷伦科技(中国)有限公司 Cary630傅里叶变换红外光谱仪   安捷伦在现场展示了Cary630红外光谱仪。据介绍,近年来安捷伦科技针对红外光谱技术的一个发展方向是移动测量技术和现场分析技术。移动式和现场测量需要仪器在非常规环境中使用,可适合车载和便携,光源、激光、干涉仪使用寿命长并无需维护,光谱数据质量和实验室仪器可比。安捷伦先后推出的4100 ExoScan手持式红外光谱仪及Cary630红外光谱仪,为现场检测提供了有效的解决方案。 岛津国际贸易(上海)有限公司   岛津主要介绍了2011年最新推出的紫外可见分光光度计UV-2600/2700,该型号与岛津原机型相比更加紧凑,测定波长范围延伸至近红外( 190-1400nm),使用岛津专利技术Lo-Ray-Ligh等级衍射光栅。 珀金埃尔默仪器(上海)有限公司 Spectrum Two红外光谱仪   珀金埃尔默展示了2011年最新推出的Spectrum Two红外光谱仪,据介绍该仪器最大的特点是不怕潮,即使使用加湿机在旁边加湿也不影响其性能。如果在极端潮湿的环境中可选择ZnSe窗片,仪器中的干燥剂可使用5年,可携带至任何环境使用。 雷尼绍(上海)贸易有限公司   作为拉曼光谱仪器的主要供应商之一,据介绍雷尼绍近年来在拉曼光谱成像技术方面取得了不少成果,如最新三维(3D)拉曼成像技术,可立体地收集并显示透明材料中的拉曼数据,提供测试样品的完整3D视像 研发高效光学效率的接口使inVia显微拉曼可与Bruker、NT-MDT以及Nanonics Imaging公司的扫描探针显微镜直接耦合。 北京凯元盛世科技 AXSUN法布里-珀罗干涉近红外光谱仪 JDSU公司MicroNIRTM1700光谱仪   凯元盛世展示了美国AXSUN公司的法布里-珀罗干涉近红外光谱仪,据介绍AXSUN公司在MEMS技术研究方面拥有丰富的经验,该公司将MEMS技术用于加工近红外光谱仪的核心部件,使得其整体长度仅有14mm,重量约3Kg,适用于任何地方使用。另外还有JDSU公司的MicroNIRTM1700光谱仪,该仪器体积非常小,其主要原因是采用JDSU先进的光学镀膜和制造技术,设计制造了具有楔形镀层的线性渐变滤光片。 天美(中国)科学仪器有限公司   天美(中国)科学仪器有限公司的分子光谱产品主要为分子荧光和紫外可见光谱仪。 堀场贸易(上海)有限公司   堀场贸易(上海)有限公司的分子光谱仪器产品主要有拉曼光谱仪、分子荧光光谱仪。 布鲁克光谱仪器公司 LUMOS独立式红外显微镜   据介绍,布鲁克于2012年最新推出的LUMOS独立式红外显微镜,其突出特点是高度智能化,仪器的所有部件都实现了自动化控制并配以电子编码,确保实现全自动化、高智能操作流程。同时采用自动化控制ATR晶体,确保了用户无需任何手动操作便可实现从透射到反射到ATR模式的切换,使得仪器的操作更加简单方便。 上海千欣仪器有限公司   作为美国PTI公司的独家代理商,上海千欣的工作人员介绍了PTI推出的TimeMasterTM系列荧光寿命测量系统,据介绍该仪器的突出特点是采用了先进的频闪分时测量技术,从而仪器能够探测7pM荧光素的寿命,最短测量寿命可达100ps。激发光源可采用激光、弧光脉冲及LED灯以满足不同的应用。 伯乐生命医学产品(上海)有限公司   伯乐生命医学产品(上海)有限公司主要展示了其光谱数据库和软件产品。   此外,会议期间赛默飞世尔科技吴秋波做了题为《傅里叶变换红外光谱仪最新进展》的主题报告,安捷伦科技宋建华做了题为《Agilent红外新技术及移动式测量》的主题报告,岛津王娟娟做了题为《红外光谱技术的应用进展》的主题报告,珀金埃尔默郁露做了题为《不怕潮的红外及红外最潮应用介绍》的主题报告。   另外,雷尼绍王志芳做了《显微拉曼光谱成像技术及应用》的邀请报告,北京凯元盛世科技朱业伟做了题为《基于法布里珀罗干涉的近红外光谱仪》的邀请报告,天津港东赵晓廷做了题为《天津港东分子光谱产品介绍》的邀请报告,上海千欣隋逸凡做了题为《模块化、通用化的荧光光谱仪——从量子点到食品科学的应用》的邀请报告,伯乐生命医学袁有荣做了题为《光谱解析解决方案——萨特勒光谱数据库与KnouwItAll》的邀请报告,天美科技覃冰做了题为《荧光光谱在材料科学中应用进展》的邀请报告,堀场周磊做了题为《有色溶解有机质分析技术迈向标准化》的邀请报告,布鲁克李纪华做了题为《近紫外-远紫外FT-PL的最新应用》的邀请报告。   会议期间赛默飞世尔科技还组织了新产品宣介会,并赞助了本次会议的欢迎晚宴。 赛默飞世尔科技新产品宣介会 赛默飞世尔科技欢迎晚宴
  • 【报告推荐】第二届分子互作网络会议之新技术新应用篇
    为帮助科研工作者及时了解分子互作技术最新进展和前沿应用,促进业内交流,2024年6月5日,仪器信息网将举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,共邀请12位来自知名科研院校和仪器企业的业内专家进行探讨交流。其中,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管李文奇、中国医学科学院医药生物技术研究所研究员李珂、中国科学院昆明植物研究所研究员刘将新、中国科学院深圳先进技术研究院副研究员陈明海、中国科学院分子细胞科学卓越创新中心高级工程师吴萌和普瑞麦迪(北京)实验室技术有限公司产品总监张达威6位专家将围绕分析超速离心技术、荧光互补技术、多维分子互作分析技术、微量热技术和分子互作技术联用等创新技术及前沿应用展开分享交流,欢迎大家报名参会!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名) 精彩报告重磅来袭 张达威 普瑞麦迪(北京)实验室技术有限公司 产品总监《多维分子互作分析技术及应用介绍》6月5日 10:30-11:00张达威,毕业于天津大学化工学院。在生命科学设备领域工作16年,具有丰富的分子互作、蛋白稳定性表征、流式细胞仪等产品和市场经验。曾在贝克曼和诺坦普担任市场工作。现任普瑞麦迪公司FIDA产品线总监。报告摘要:分子互作技术层出不穷,但由于分子本身的复杂性以及环境异质性,很难用一种技术完全有效表征分子间的相互作用。新一代多维分子互作技术FIDA,有别于传统互作的固定和标记技术,通过第一性的原理,彻底释放分子束缚,可在任何体系中对完全自由态的分子进行亲和力和动力学检测,并实时获得质控数据,极大拓展互作的宽度和准度。「报名参会」李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师《分析超速离心技术在生物分子相互作用研究中的应用》6月5日 11:00-11:30李文奇,博士毕业于清华大学生命科学学院,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管,高级工程师;曾任国家蛋白质科学研究(北京)设施清华基地副主任。担任生物学杂志编委,电子显微镜学会仪器共享委员会委员。多年从事蛋白质表达纯化,理化性质分析与相互作用研究工作:熟悉原核、酵母、昆虫细胞、哺乳动物细胞等蛋白表达系统以及蛋白质无标签纯化、亲和标签纯化、活性组分纯化等多种分离纯化手段;熟练掌握发酵工程工艺;精通圆二色光谱、差示扫描量热技术、生物膜干涉技术、表面等离子共振技术、微量热泳动技术、分析超速离心技术等多种理化性质分析和相互作用研究技术。报告摘要:待定。「报名参会」陈明海 中国科学院深圳先进技术研究院 副研究员《荧光互补技术在分子互作研究中的应用》6月5日 11:30-12:00中国科学院深圳先进技术研究院副研究员,博士生导师。2017年获微生物学博士学位,2019年7月加入中国科学院深圳先进技术研究院,任副研究员职位。主要研究方向是基于合成生物学技术发展新型荧光传感系统用于病毒-宿主互作分子事件研究。研究成果以第一/通讯作者身份发表于ACS Nano, Biomaterials, Chem. Sci., Anal. Chem.等期刊。主持国家重点研发计划课题、中科院先导B课题、国家自然科学基金青年项目、广东省自然科学基金面上项目等项目。担任 Front. Cell. Infect. Microbiol.期刊客座编辑。曾获中国科学院优秀博士论文奖和中国科学院院长奖,入选第六届中国科协青年人才托举工程。报告摘要:蛋白质/RNA相互作用等分子事件在生物体生命活动过程中发挥了关键的作用,荧光互补技术为活细胞内分子事件的监测提供了有力工具。但是活细胞在成像过程中常常产生很强的绿色背景荧光,干扰基于绿色荧光蛋白的生物传感器的信号。为了解决上述问题,我们以近红外光敏色素蛋白为对象,创建了一系列长波长的分子互作传感器。「报名参会」刘将新 中国科学院昆明植物研究所 研究员《分子互作技术联用发现活性天然先导物和靶标研究》6月5日 15:00-15:30刘将新,研究员,博士生导师,中国科学院昆明植物研究所,植物化学与天然药物全国重点实验室。重点开展基于药物靶标和分子互作技术的天然活性先导化合物发现、成药性评价以及活性天然产物新靶标和作用机制研究。主持云南省重大科技专项生物医药专项、国家自然科学基金面上项目、青年项目,中科院“西部之光”人才项目、云南省万人计划青年拔尖人才、校企合作等项目十余项。以通讯作者/第一在Nat. Commun., J. Med. Chem., Eur. J. Med. Chem.等国际高水平期刊上发表论文多篇。担任中国药理学会中药与天然药物药理专业委员会青年委员,《Chinese herbal medicines》, 《Natural Products and Bioprospecting》等杂志青年编委。报告摘要:我们团队一直致力于药用植物中活性先导化合物发现和成药性评价、以及主要药效物质的靶标研究,推动天然产物来源的原始药物创新,为疾病治疗提供策略。前期基于核磁共振NMR STD、SPR等方法,针对特定药物靶标,筛选药用植物活性天然产物库,获得多个苗头化合物。其中具有自主产权的先导物30已完成临床前一系列生物学评价,详细阐释其与靶点的分子作用机制,动物模型药效显著,目前作为候选药物分子进一步开发。「报名参会」李珂 中国医学科学院医药生物技术研究所研究员《靶向互作清除肿瘤起始细胞》6月5日 15:30-16:00获国家优青、万人计划青年拔尖等荣誉称号,主要研究领域为靶向蛋白质稳态清除肿瘤起始细胞。以第一/通讯作者身份在Cancer Cell、Science Translational Medicine、Nature Communications、Autophagy及Oncogene等国际权威学术期刊发表多篇论文。另有多篇合作学术成果发表在Immunity、Gastroenterology等国际学术期刊。全部论文已被Cell、Cancer Cell等杂志引用930余次,研究成果获得7项授权发明专利。主持5项国家自然科学基金项目。鉴定导致变异型急性早幼粒白血病发病的全新融合基因NUP98-RARA,被纳入《2021版CSCO恶性血液病诊疗指南》。获中国药理学会“施维雅青年药理学家奖”。作为主要完成人获教育部高等学校科学研究优秀成果二等奖、北京市科学技术三等奖及中华医学科技三等奖等荣誉。任中国抗癌协会抗癌药物专业委员会常委。报告摘要:待定。「报名参会」吴萌 中国科学院分子细胞科学卓越创新中心 高级工程师《两种微量热技术在分子互作检测中的应用》6月5日 16:00-16:30高级工程师,现就职于中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)分子生物学技术平台,负责生物分子相互作用相关检测仪器管理,主要从事分子互作技术服务、平台仪器管理、用户使用培训及相关工作。深耕生物分子互作技术领域,积累了大量相关经验,为科研工作者论文发表提供高质量的技术服务支持。报告摘要:生物大分子之间的相互作用的探究是深入阐明蛋白质如何发挥功能、探究其作用机制等必不可少的研究内容。本次报告结合工作中的应用案例,对该研究领域中常用的两种微量热技术:等温滴定微量热(ITC)和微量热泳动(MST)的基本原理、样本要求、具体操作及技术差异性等进行介绍。「报名参会」扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(2023年) (点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(2023年) (点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(2023年) (点击查看)
  • 速度!12分钟Pooling 384个NGS文库
    Pooling是测序文库上机前的临门一脚。经过数小时乃至几天的实验,初始样品终于变成浓度、片段大小都符合质控指标的library嗷嗷待测。Pooling实验通常由两位操作者协作。根据表单信息将文库归一化到一定浓度,再将想要合并测序的文库混合,耗时耗力。事实上Pooling完全可以不需要密集的吸液移液操作,不需要这么多时间和精力投入,甚至就不需要移液器和吸头。采用Echo声波移液系统,12分钟即可完成384个文库pooling1,而手工完成归一化和pooling需耗时长达3小时。Echo通过聚焦声波能量转移低至2.5nL的样品,不需要吸头,无物理接触。每秒传输几百个液滴实现nL到uL级的液体传输。Echo可以微量化反应体系到几微升,甚至数百纳升,将样品从微孔板任意孔快速转移到目的板任意孔。在基因组学及合成生物学中,被应用到微量化NGS建库和快速pooling文库、引物、寡聚核苷酸探针当中。Echo 一步法NGS文库Pooling Echo不与文库样本直接接触,不需要费时间加载或清洗吸头,可以在不到一秒的时间将微孔板上的NGS文库转移到目标孔内。 高浓度文库不需额外稀释。通过nL至uL级液滴转移,将浓度归一化和pooling简化为一步进行。 数据管理和自动化操作可以避免人工操作失误,提高实验过程的可靠性。Echo可关联输入文件,软件自动完成高通量pooling左:将需要pooling的各文库信息写入输入文件,采用Echo一步法完成Pooling。 右:比较384个文库的200 nL/文库等体积Echo混样和等摩尔量Echo混样。结果显示经Echo pooling后文库获得更加均一的测序量。Echo 微量化NGS文库定量质控Echo可完成384孔甚至1536孔每板的超高通量微量化文库质控定量。声波移液含DNA染料的缓冲溶液、文库到酶标板中进行荧光检测。或是进行文库qPCR检测体系构建,避免标准品梯度稀释的累积误差和气溶胶污染。文库定量的微量化能够减少试剂消耗,有效控制成本。此外,Echo支持在软件中以表单的形式挑选某些文库做qPCR。整个实验过程数据可循,避免手工操作的窜孔等错误。采用Echo完成文库定量,微量化反应体系至2 uL,4 uL及8 uL绘制校准曲线
  • 安捷伦科技公司推出用于分子分析的新一代荧光原位杂交检测技术
    安捷伦科技公司推出用于分子分析的新一代荧光原位杂交检测技术 2012 年 3 月 5 日,加尼福利亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A)今日推出新一代荧光原位杂交(FISH)技术&mdash &mdash 安捷伦 SureFISH 探针,为众多分子分析应用带来种类繁多的业内最高分辨率的探针。 探针的性能显著优于现有的 FISH 探针。探针能够特异性检测出小至 50kb 的基因组区域中的变异,也能检测出高度重复的基因组区域附近的变异。与同类技术相比,这些探针的分辨率更高且杂交时间更快,是为了使用户满足美国医学遗传学学会指南有关临床细胞遗传学的规定专门设计。 华盛顿大学圣路易斯医学院细胞遗传学和分子病理学、临床基因组学和医学系主任,美国医学遗传学院专家委员(FACMG)Shashikant Kulkarni 博士是安捷伦SureFISH探针技术的早期用户,他谈到:&ldquo 基于我们使用安捷伦高分辨率寡核苷酸 FISH 技术的经验,我们相信 SureFISH 采用的寡核苷酸设计方法将成为分析此前难于分析的基因组区域的有力工具。&rdquo 安捷伦SureFISH 探针是 I 类分析物特定试剂,由安捷伦德克萨斯州锡达河工厂生产制造,该工厂已获得美国食品和药品管理局(FDA)医疗器械设施注册认证,严格按照质量标准规定和现有的优良制造标准制造探针。 安捷伦基因组学副总裁和总经理 Robert Schueren 谈到:&ldquo 我们提供的全套高性能解决方案,便于细胞遗传学研究人员选择最贴合需求的分子分析方法,这将对细胞遗传学领域带来重大影响。我们完善的细胞遗传学组合产品包括 SureFISH 探针、CGH 和 CGH+SNP 阵列、扫描仪和安捷伦细胞遗传学软件。现在用户可以一站式获得所有需要的细胞遗传学产品。&rdquo 安捷伦为先天性疾病和癌症相关应用提供了各式各样的 FISH 探针。目前的探针产品列表包括几百种 SureFISH 探针用于检测最常见的基因组区域,能够满足众多细胞遗传学研究的需求。安捷伦计划在年底继续推出其他 SureFISH 探针。客户可以登录新的 SureFISH 网站 www.agilent.com/genomics/SureFISH 轻松选择所需 SureFISH 探针,SureFISH 染色体浏览器便于进行探针选择和在线购买,网站上还列出了所有探针杂交 4 小时和 14 小时的图片,帮助用户在购买前了解探针性能。 有关 Agilent SureFISH 探针的更多信息,请访问 www.agilent.com/genomics/SureFISH。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A) 是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • “如何应对SSR分子标记技术在分子育种中的挑战”讲座在杭举行
    2014年4月11日,德国耶拿携手杭州顺平公司,在浙江大学生命科学学院举办了“如何应对SSR分子标记技术在分子育种中的挑战”的专题讲座,由耶拿公司的应用专家吴潇韫女士主讲,内容涵盖植物育种技术、分子标记技术、SSR分子标记在植物育种中的应用,以及SSR分子育种研究中所遇到的挑战及德国耶拿提供的解决方案 。 众多浙江大学的师生参加了此次活动,讲座过程中提问讨论热烈,会后还举行了答谢客户的抽奖活动,活动举得圆满成功。
  • 多重PCR建库技术在植物研究中的应用
    PCR(Multiplex PCR)多重PCR(Multiplex PCR)可在一个反应内加入两对及两对以上的引物,同时扩增两个及两个以上的目标核酸片段。而多重PCR建库技术是一种整合多重PCR及二代测序的靶向测序技术。该方法具有成本低、检测效率高、应用灵活、适应性广等特点。应用方向多重PCR建库技术在植物研究中都有广泛的应用。品种鉴定:国标GB/T38551-2020[1]已经明确水稻、玉米、大豆、棉花等16个物种可通过MNP方式进行原始品种鉴定、实质性派生品种鉴定和品种真实性鉴定。判断依据则是根据测序后得到的标记位点数进行遗传相似度的计算,最后对比待测品种与对照品种的遗传相似度来定论。万人静等[2] 研究了MNP在第六大粮食作物木薯品种鉴定的应用,利用241份木薯的全基因组信息筛选到623个MNP标记位点。基于此,在28个木薯品种中两两比较时,99.47%(376/378)的品种对间的差异大于 46%,比例在 0.3%~81.0%之间,均值为 71.78%,MNP具很更高的品种区分能力。遗传多样性分析:多重 PCR 靶向捕获测序可用于对植物种群中的遗传多样性进行分析。通过选择性引物捕获特定基因组区域, 并对多个样本进行测序比较, 可以研究不同品种或种群中的遗传差异和多态性, 为植物种质资源的保护和利用提供重要的分子标记信息。比如, Zhang 等[3]利用多重 PCR 靶向捕获测序技术对来自中国海南省和广东省的 998份野生稻种质资源进行了基因分型和遗传多样性评估, 最终构建了 299 份野生稻核心种质资源, 为野生稻的分类、保护和创新提供科学依据。多重PCR建库技术原理多重建库技术工作原理[4]是依靠 PCR 对于靶向位点的定点扩增。对多个待测 SNP 位点设计特异扩增引物,在第一轮 PCR 中抑制引物干扰和非特异扩增,使数以千计的靶向引物能够在一管 PCR 反应中实现高度均一化的扩增,从而大量富集目标片段。随后,在 第二轮 PCR 中,加上测序接头和文库条形码,最终获得测序所需的文库。最后通过大规模并行测序 (massively parallel sequencing,MPS)揭示目标位点的标记基因型。多重建库流程步骤多重PCR建库技术的优势1. 高效性:多重PCR建库技术可以同时扩增多个目标序列,从而提高样品处理的效率。相比于逐个扩增目标序列的方法,多重PCR可以大大减少实验的时间和工作量。2. 经济性:由于一次扩增可以处理多个目标序列,多重PCR建库技术可以节省试剂的使用量和实验成本。这对于大规模研究和高通量测序项目尤为重要。3. 信息丰富性:多重PCR建库技术可以同时扩增多个目标序列,从而获取更多的信息。这对于研究复杂疾病、多个基因的相互作用或群体遗传学研究具有重要意义。4. 准确性和一致性:多重PCR建库技术可以在同一反应体系中同时进行扩增,从而保证了不同目标序列在扩增效率和条件方面的一致性。这可以减少实验中的变异性,并提高测序结果的一致性和可靠性。5. 灵活性:多重PCR建库技术可以根据研究需要灵活设计引物组合,从而适应不同的实验设计和研究方向。这使得多重PCR建库技术在个性化分析和定制实验中具有很高的灵活性。多重建库流程 相关设备推荐成都瀚辰光翼自主研发NovaLib 4800 Pro医疗级一体机,领跑核酸提取与文库构建领域~NovaLib 4800 Pro集核酸提取及文库构建于一体,整合了温控模块、加热震荡模块、磁力架模块、PCR模块、冷存模块等,可实现样本进,文库出。无需复杂、繁琐的手工操作,一键即启,可实现多种NGS流程一体化,无需人工干预。提取及文库制备全自动一体机NovaLib 4800 Pro 核心优势灵活性突出:兼顾高通量和灵活,24通道移液模块具备液位探测功能,可根据需要独立灵活使用单通道、8通道、24通道,配合可配置试剂载架,支持试剂原管、预分装多种上样独创先进设计:采用批间流水线设计理念提高并行效率;首创五腔室物理分区隔离设计,配备多腔室压差智能控制和HEPA系统,集成智能路径规划功能实现零污染实现无人值守:无人值守时间长,集成双堆栈耗材系统。一站式交付,从核酸提取到建库全流程自动化,中途无需补充耗材和试剂环保设计理念:固液分离,垃圾处理简单高效,集成大容量废料仓储系统开放式平台:流程可编辑,支持根据需要自定义流程及参数,用户可自由选择试剂NovaLib 4800 Pro 使用流程NovaLib 4800 Pro 应用流程NovaLib 4800 Pro 部分软件画面参考文献【1】GB/T 38551-2020, 植物品种鉴定 MNP 标记法[S]【2】万人静,李琼,周新成,李论,李甜甜,周俊飞,彭海,章伟雄,方治伟.木薯 MNP 标记在品种鉴定中的应用[J/OL].热带作物学报.https://kns.cnki.net/kcms/detail//46.1019.S.20230223.1705.004.html【3】Genetic diversity of wild rice accessions (Oryza rufipogon Griff.) in Guangdong and Hainan Provinces, China, and construction of a wild rice core collection【4】徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠.2020.靶向测序基因型检测(GBTS)技术及其应用.中国农业科学,53(15):2983-3004.
  • MDx2019第五届中国先进分子诊断技术与应用论坛在上海召开
    p style=" text-indent: 2em " 2019年5月9日~10日,MDx2019第五届中国先进分子诊断技术与应用论坛在上海富豪环球东亚酒店举行。本次论坛主题为 strong “从LDT到IVD,从服务走向产品;拓展创新分子诊断技术与产品的注册与新应用” /strong ,邀请来自知名院校、第三方检测机构的的专家学者与行业精英进行了热烈的讨论。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/e2431b4a-f31c-42f0-80b2-0304e296d4d8.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " 论坛现场 /p p   近年来,基因测序、液体活检、个性化用药指导、伴随诊断等技术迅速发展,肿瘤治疗进入到个性化精准医疗时代,国内体外诊断行业逐步崛起。在这样的大背景下,论坛开设 strong “液体活检与NGS技术”、“创新分子诊断技术开发与临床应用”、“分子诊断法规注册与上市” /strong 三大专场,重点讨论了肿瘤液体活检技术在早筛早诊与治疗应用的开发、前沿分子诊断技术开发与应用、肿瘤免疫治疗与临床预后检测应用拓展、分子诊断产品的法规与注册、NGS技术下的政策与标准、分子诊断与基因检测商业模式探讨等问题。 /p p   以下为本次论坛部分报告人: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/1b25d283-f0bc-430c-a0f9-781691ea7923.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 上1:复旦大学生命科学学院特聘教授、副院长 卢大儒 2:首都医科大学北京天坛医院实验诊断中心主任康熙雄 3:上海食品药品监督医疗器械监管处处长 林森勇 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   下1:暨南大学医学院教授 张灏 2:上海交通大学转化医学学院副院长、教授 崔大祥 3:中国食品药品检定研究院非传染病诊断试剂室主任 黄杰 /span /p p   论坛第一天,国内基因测序领军企业华大智造作了主题为“从LDT到IVD,聚焦NGS技术、服务于产品”的卫星会,并重磅推出MGIEasy PCR-Free DNA文库制备试剂套装和MGIEasy酶切PCR-Free DNA文库制备试剂套装。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 568px height: 400px " src=" https://img1.17img.cn/17img/images/201905/uepic/bd7dcbe4-1481-44d2-a70b-b24a2e32a1d7.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 568" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " MGIEasy PCR-Free DNA文库制备试剂套装 /p p   据了解,这款试剂套装全流程无PCR扩增步骤,使用1μg 基因组DNA仅需3.5个小时就能获得高准确度的全基因组文库。无PCR扩增错误累积,基因组覆盖均一性好,变异检测性能优,能够最大程度还原基因组真实原貌。这款试剂盒适用于华大智造MGISEQ-2000、BGISEQ-500等多款测序平台。 /p p   会场外,众多仪器厂商携优秀产品精彩亮相。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/92845f3b-30bd-4893-988a-8aae30161125.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " 上海乐枫 Genie G 超纯水系统 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/156d09fd-849e-4a40-9376-73a9c6cd1a73.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " 华大智造MGISEQ-2000基因测序仪 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/558f00ff-0ccc-4af3-bc74-51e0a2ae1828.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " 奥盛Nano-500微量分光光度计 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/6b132b1d-8014-45fe-b019-67d2e2b69d70.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " 奥盛Auto-Pure96/24全自动核酸提取仪 /p
  • 王静:分子印记技术及其研究进展
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告。   如下为中国农业科学院农业质量标准与检测技术研究所、农业部农产品质量标准研究中心王静教授报告的精彩内容: 中国农业科学院农业质量标准与检测技术研究所、农业部农产品质量标准研究中心王静教授 报告题目:分子印记技术及其研究进展   王静教授介绍到,分子印记技术(MIT)源于20世纪40年代的免疫学,是为获得在空间结构和结合位点上与某一分子完全匹配的聚合物的实验制备技术。近年来,该技术越来越多的应用于色谱分离、抗体或受体模拟、生物传感器以及药载体系等诸多领域。MIT技术具有特殊的分子结构和官能团,能选择性地识别印迹分子,具有抗恶劣环境的能力,表现出高度稳定性和长的使用寿命,且可根据不同的目的制备不同的分子印迹聚合物(MIPs),MIPs可用于色谱柱、固相微萃取、药物缓释系统、MI-SPE、MIM-传感器等方面。   之后,王静教授介绍了课题组相关研究工作。据介绍,王静教授所在课题组研究建立了3类17种三嗪类农药、3种磺酰脲类农药、氯霉素和三聚氰胺等的特异性分离富集检测体系,包括MIP合成体系优化及识别,MIP的选择性、特异性和吸附容量等性能指标评价与表征,MIP-SPE柱及其MIP-SPE-LC(/MS/MS)体系的建立与应用,分子印迹芯片-表面等离子共振传感检测技术集成等。   其中,基于磁性纳米粒子的免疫分析是一种集高效与高灵敏度于一身的分析技术,王静教授还特别介绍了磁性纳米粒子的制备、结构及修饰等方面的研究,同时简述了磁性印迹的特征及荧光标记-磁性印迹检测法等相关内容。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制