当前位置: 仪器信息网 > 行业主题 > >

多孔石墨烯

仪器信息网多孔石墨烯专题为您整合多孔石墨烯相关的最新文章,在多孔石墨烯专题,您不仅可以免费浏览多孔石墨烯的资讯, 同时您还可以浏览多孔石墨烯的相关资料、解决方案,参与社区多孔石墨烯话题讨论。

多孔石墨烯相关的耗材

  • 多孔氮化硅石墨烯支持膜
    基于PELCO® 多孔氮化硅上的石墨烯支持膜这种石墨烯产品是由多孔氮化硅支撑,在0.5x0.5mm的窗口上铺了一层Si3N4,网格的孔径为2.5um,孔间距为4.5um。石墨烯的使用率为75%,可提供单层、2层、3-5层和6-8层石墨烯。适合UHR成像,或者作为一种实验平台。Example of nanopatterning of an atomically thin matter-wave beam splitter from a single-layer Graphene on Holey Silicon Nitride product. Ref: C. Brand, et. al. Nature Nanotechnology, Vol. 10, Oct. 2015 货号产品描述包装21712-5基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mm pkg/521712-10基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021712-25基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21722-5基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521722-10基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021722-25基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21742-5基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521742-10基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021742-25基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21772-5基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521772-10基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021772-25基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25
  • 多孔氮化硅石墨烯支持膜
    基于PELCO® 多孔氮化硅上的石墨烯支持膜这种石墨烯产品是由多孔氮化硅支撑,在0.5x0.5mm的窗口上铺了一层Si3N4,网格的孔径为2.5um,孔间距为4.5um。石墨烯的使用率为75%,可提供单层、2层、3-5层和6-8层石墨烯。适合UHR成像,或者作为一种实验平台。Example of nanopatterning of an atomically thin matter-wave beam splitter from a single-layer Graphene on Holey Silicon Nitride product. Ref: C. Brand, et. al. Nature Nanotechnology, Vol. 10, Oct. 2015 货号产品描述包装21712-5基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mm pkg/521712-10基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021712-25基于多孔氮化硅的单层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21722-5基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521722-10基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021722-25基于多孔氮化硅的2层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21742-5基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521742-10基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021742-25基于多孔氮化硅的3-5层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25 货号产品描述包装21772-5基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/521772-10基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/1021772-25基于多孔氮化硅的6-8层石墨烯支持膜,孔径2.5um,窗口0.5x0.5mmpkg/25
  • 实验室智能石墨消解仪 多孔批量处理加热均匀
    D4智能石墨消解仪采用高纯石墨材料作为加热体,包裹式加热,效率更高,温度均匀性更好。多孔设计,轻松实现样品的批量处理,是您样品消解的好伴侣。产品特点1、无线蓝牙技术,控制更智能使用mini平板(PAD)蓝牙控制技术,真彩触摸屏,仪器内部无需任何接插件和开关,便可轻松的实温度控制,让您的工作充满时尚、自由和畅快。2、均衡、包裹式加热,消解效率更高高纯石墨体具有良好的导热性,为所有样品提供均匀的热量,消除了加热盲点。立体包裹式加热,热量损失更少,效率更高,弥补了电热板加热的不足。3、多孔设计,处理量倍数于微波消解批量处理,整体时间大大缩短;标配39孔,一次可处理3900ml液体样品;可定制49孔、64孔或81孔,处理量倍数于微波消解仪;常压式消解仪更安全更快捷。4、高品质工艺,维护操作简单石墨体表面喷涂特氟龙涂层,易清洁、耐腐蚀;聚四氟乙烯台面,整机外围无金属部件,可在强酸强碱等恶劣环境中放心使用。5、安卓系统,时尚,功能强大采用先进的专家PID温控系统,独特的可视化监控,用户可通PDA界面清楚的看到整个消解过程中的各项参数:消解时间、保持时间、当前温度等,用户可以根据不同的样品自行编辑并保存消解方法。6、真实的样品温度可选配外置温度探针,保证了样品的真实温度,使样品消解更加到位。7、完善配件,更贴心可选配聚四氟乙烯消解管、回流盖、双层支架、单层支架、单层钢架、聚丙烯消解管、长短玻璃消解管等等,使用更贴心。
  • Hypercarb多孔石墨碳色谱柱35003-154630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-153030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-152130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-101030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-054630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-052146
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-102130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-031030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-032146
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-032130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-104630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-033030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-051030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-104646
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-103046
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-103030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-101046
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-052130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-054646
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-102146
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-053030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-103030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-053030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-104646
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-022135
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-032130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳5um色谱柱35005-154630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制